Sample records for high lightning activity

  1. Global Lightning Activity

    NASA Technical Reports Server (NTRS)

    Christian, Hugh J.

    2004-01-01

    Our knowledge of the global distribution of lightning has improved dramatically since the advent of spacebased lightning observations. Of major importance was the 1995 launch of the Optical Transient Detector (OTD), followed in 1997 by the launch of the Lightning Imaging Sensor (LIS). Together, these instruments have generated a continuous eight-year record of global lightning activity. These lightning observations have provided a new global perspective on total lightning activity. For the first time, total lightning activity (cloud-to-ground and intra-cloud) has been observed over large regions with high detection efficiency and accurate geographic location. This has produced new insights into lightning distributions, times of occurrence and variability. It has produced a revised global flash rate estimate (44 flashes per second) and has lead to a new realization of the significance of total lightning activity in severe weather. Accurate flash rate estimates are now available over large areas of the earth (+/- 72 deg. latitude). Ocean-land contrasts as a function of season are clearly reveled, as are orographic effects and seasonal and interannual variability. The space-based observations indicate that air mass thunderstorms, not large storm system dominate global activity. The ability of LIS and OTD to detect total lightning has lead to improved insight into the correlation between lightning and storm development. The relationship between updraft development and lightning activity is now well established and presents an opportunity for providing a new mechanism for remotely monitoring storm development. In this concept, lightning would serve as a surrogate for updraft velocity. It is anticipated that this capability could lead to significantly improved severe weather warning times and reduced false warning rates. This talk will summarize our space-based lightning measurements, will discuss how lightning observations can be used to monitor severe weather, and

  2. Global Lightning Activity

    NASA Technical Reports Server (NTRS)

    Christian, Hugh

    2003-01-01

    Our knowledge of the global distribution of lightning has improved dramatically since the 1995 launch of the Optical Transient Detector (OTD) followed in 1997 by the launch of the Lightning Imaging Sensor (LIS). Together, these instruments have generated a continuous seven-year record of global lightning activity. These lightning observations have provided a new global perspective on total lightning activity. For the first time, total lightning activity (CG and IC) has been observed over large regions with high detection efficiencies and accurate geographic location. This has produced new insights into lightning distributions, times of occurrence and variability. It has produced a revised global flash rate estimate (46 flashes per second) and has lead to a new realization of the significance of total lightning activity in severe weather. Accurate flash rate estimates are now available for large areas of the earth (+/- 72deg latitude) Ocean-land contrasts as a function of season are clearly revealed, as are orographic effects and seasonal and interannual variability. The data set indicates that air mass thunderstorms, not large storm systems dominate global activity. The ability of LIS and OTD to detect total lightning has lead to improved insight into the correlation between lightning and storm development. The relationship between updraft development and lightning activity is now well established and presents an opportunity for providing a new mechanism for remotely monitoring storm development. In this concept, lightning would serve as a surrogate for updraft velocity. It is anticipated hat this capability could lead to significantly improved severe weather warning times and reduced false warning rates.

  3. First ever Evaluation of Atmospheric Lightning Activity in Pakistan

    NASA Astrophysics Data System (ADS)

    Shahzad, M. I.; Qaiser, S.; Campbell, J. R.; Mahmud, S.

    2016-12-01

    In Pakistan, most of the atmospheric lightning occurs in monsoon and pre-monsoon seasons. To prevent or at least minimize the unforeseen property damages and human casuality, we need to identify the vulnerable locations to lightning in Pakistan. However, unfortunately, there has not been any study regarding the lightning hazards to date for Pakistan. In this study satellite based datasets of location and Time of Occurrence (TOA) along with ground data for subset of thunderstorms are used to identify lightning-prone locations in Pakistan for the years 2001-2014. This is the first study to compute climatologies for lighting activity, identifying locations that are susceptible to high, moderate and low lightning activities regionally. Results of the study indicate that lightning activity is comparatively higher over the mountain and sub-mountain regions in the Punjab, Federally Administered Tribal Areas (FATA) and Khyber Pakhtoon Khwa (KPK) provinces. Overall, there is a significant increase in lighting activity in Pakistan from 2001-2014 with more than a 138 % increase near Islamabad and Karachi, indicating the development a lightening dipole. Interestingly, lightning data shows a strong correlation between flashes-per-year and El Niño and La Niña conditions. Atmospheric lightning in Pakistan shows a seasonal pattern, with significant dependencies on Convective Available Potential Energy (CAPE), Aerosol Optical Depth (AOD), Total Cloud Cover, Convective Precipitation, Soil Temperature and Total Column Ozone. Extreme lighting events are found significantly dependant on high surface temperatures, high CAPE and AOD values between 0-0.4 in pre monsoon and monsoon seasons that contribute to overall staggering high mean intra-seasonal value of 66832 flashes. The results surely demand urgent attention of the stakeholders and policy makers for proposing mitigation and adaptation strategies.

  4. Nowcasting and forecasting of lightning activity: the Talos project.

    NASA Astrophysics Data System (ADS)

    Lagouvardos, Kostas; Kotroni, Vassiliki; Kazadzis, Stelios; Giannaros, Theodore; Karagiannidis, Athanassios; Galanaki, Elissavet; Proestakis, Emmanouil

    2015-04-01

    Thunder And Lightning Observing System (TALOS) is a research program funded by the Greek Ministry of Education with the aim to promote excellence in the field of lightning meteorology. The study focuses on exploring the real-time observations provided by the ZEUS lightning detection system, operated by the National Observatory of Athens since 2005, as well as the 10-year long database of the same system. More precisely the main research issues explored are: - lightning climatology over the Mediterranean focusing on lightning spatial and temporal distribution, on the relation of lightning with topographical features and instability and on the importance of aerosols in lightning initiation and enhancement. - nowcasting of lightning activity over Greece, with emphasis on the operational aspects of this endeavour. The nowcasting tool is based on the use of lightning data complemented by high-time resolution METEOSAT imagery. - forecasting of lightning activity over Greece based on the use of WRF numerical weather prediction model. - assimilation of lightning with the aim to improve the model precipitation forecast skill. In the frame of this presentation the main findings of each of the aforementioned issues are highlighted.

  5. Characteristics of the Lightning Activities in Southwest China from Low-Earth Orbiting and Geostationary Satellites-, and Ground-based Lightning Observations

    NASA Astrophysics Data System (ADS)

    Hui, W.; Huang, F.; Guo, Q.; Li, D.; Yao, Z.; Zou, W.

    2017-12-01

    The development of lightning detection technology accumulates a large amount of long-term data for investigating the lightning activities. Ground-based lightning networks provide continuous lightning location but offer limited spatial coverage because of the complex underlying surface conditions. Space-based optical sensors can detect lightning with global homogeneity. However, observing from satellites in low-earth orbit has fixed locations at the ground very shortly during its overpasses. The latest launched geostationary satellite-based lightning imagers can detect lightning in real time, and provide complete life-cycle coverage of each observed thunderstorm. In this study, based on multi-source lightning data, the lightning activities in southwest China, which with complex terrain and prone to appear lightning, are researched. Firstly, the climatological characteristics of lightning activities in this region from 1998 to 2013 are analyzed by using very-high resolution (0.1°) Lightning Imaging Sensor (LIS)-derived data. The results indicate that the lightning activity is more intense in eastern and southern regions of southwest China than in western and northern regions; the monthly and hourly flash densities also show its obvious seasonal and diurnal variation respectively, which is consistent with the development of the convective systems in the region. The results show that the spatial and temporal distribution of lightning activities in southwest China is related to its topography, water vapor, and atmospheric conditions. Meanwhile, by comparing with the analysis derived data from Chinese Ground-based Lightning Location System, the LIS-based detection results are confirmed. Furthermore, the process of a thunderstorm in southwest China from 29 to 30 March 2017 is investigated by using the new-generation monitoring data of Chinese Fengyun-4 geostationary satellite-based Lightning Mapping Imager (LMI) and the rainfall data. The results tell us more about the

  6. High current lightning test of space shuttle external tank lightning protection system

    NASA Technical Reports Server (NTRS)

    Mumme, E.; Anderson, A.; Schulte, E. H.

    1977-01-01

    During lift-off, the shuttle launch vehicle (external tank, solid rocket booster and orbiter) may be subjected to a lightning strike. Tests of a proposed lightning protection method for the external tank and development materials which were subjected to simulated lightning strikes are described. Results show that certain of the high resistant paint strips performed remarkably well in diverting the 50 kA lightning strikes.

  7. Spatio-temporal activity of lightnings over Greece

    NASA Astrophysics Data System (ADS)

    Nastos, P. T.; Matsangouras, I. T.; Chronis, T. G.

    2012-04-01

    Extreme precipitation events are always associated with convective weather conditions driving to intense lightning activity: Cloud to Ground (CG), Ground to Cloud (GC) and Cloud to Cloud (CC). Thus, the study of lightnings, which typically occur during thunderstorms, gives evidence of the spatio-temporal variability of intense precipitation. Lightning is a natural phenomenon in the atmosphere, being a major cause of storm related with deaths and main trigger of forest fires during dry season. Lightning affects the many electrochemical systems of the body causing nerve damage, memory loss, personality change, and emotional problems. Besides, among the various nitrogen oxides sources, the contribution from lightning likely represents the largest uncertainty. An operational lightning detection network (LDN) has been established since 2007 by HNMS, consisting of eight time-of-arrival sensors (TOA), spatially distributed across Greek territory. In this study, the spatial and temporal variability of recorded lightnings (CG, GC and CC) are analyzed over Greece, during the period from January 14, 2008 to December 31, 2009, for the first time. The data for retrieving the location and time-of-occurrence of lightning were acquired from Hellenic National Meteorological Service (HNMS). In addition to the analysis of spatio-temporal activity over Greece, the HNMS-LDN characteristics are also presented. The results of the performed analysis reveal the specific geographical sub-regions associated with lightnings incidence. Lightning activity occurs mainly during the autumn season, followed by summer and spring. Higher frequencies of flashes appear over Ionian and Aegean Sea than over land during winter period against continental mountainous regions during summer period.

  8. Lightning activity on Jupiter

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Bar-Nun, A.; Scarf, F. L.; Look, A. F.; Hunt, G. E.

    1982-01-01

    Photographic observations of the nightside of Jupiter by the Voyager 1 spacecraft show the presence of extensive lightning activity. Detection of whistlers by the plasma wave analyzer confirms the optical observations and implies that many flashes were not recorded by the Voyager camera because the intensity of the flashes was below the threshold sensitivity of the camera. Measurements of the optical energy radiated per flash indicate that the observed flashes had energies similar to that for terrestrial superbolts. The best estimate of the lightning energy dissipation rate of 0.0004 W/sq m was derived from a consideration of the optical and radiofrequency measurements. The ratio of the energy dissipated by lightning compared to the convective energy flux is estimated to be between 0.000027 and 0.00005. The terrestrial value is 0.0001.

  9. SAETTA: high resolution 3D mapping of the lightning activity around Corsica Island

    NASA Astrophysics Data System (ADS)

    Coquillat, Sylvain; Defer, Eric; Lambert, Dominique; Pinty, Jean-Pierre; Pont, Véronique; Prieur, Serge

    2017-04-01

    In the frame of the French atmospheric observatory CORSiCA (http://www.obs-mip.fr/corsica), a total lightning activity detection system called SAETTA (Suivi de l'Activité Electrique Tridimensionnelle Totale de l'Atmosphère) has been deployed in Corsica Island in order to strengthen the potential of observation of convective events causing heavy rainfall and flash floods in the West Mediterranean basin. SAETTA is a network of 12 LMA stations (Lightning Mapping Array) developed by New Mexico Tech (USA). The instrument allows observing lightning flashes in 3D and real time, at high temporal (80 µs) and spatial resolutions. It detects the radiations emitted by cloud discharges in the 60-66 MHz band, in a radius of about 350 km from the centre of the network, in passive mode and standalone (solar panel and batteries). Initially deployed in May 2014, SAETTA operated from July 13 to October 20 in 2014 and from April 19 to December 1st in 2015. It is now in permanent operation since 16 April 2016. Many high quality observations have been performed so far that provide an accurate location in space and time of the convective events. They also bring interesting dynamical and microphysical features of those events. For example the intensity of the convective surges, the transport of charged ice particles in the stratiform area of the thunderclouds can be deduced from SAETTA observations. Specific events have also been detected as well: bolts-from-the-blue, inter cloud discharges, high level discharges in convective but also in stratiform areas, inverted dipoles. The specific lightning patterns of 2015 illustrate the complex influence of the relief, probably via slope and valley winds over Corsica and via induced lee-side convergences over the sea. SAETTA is expected to operate for at least a decade over Corsica so it will participate to the calibration/validation of upcoming lightning detectors from space such as MTG-LI. It will also be a key instrument during the field

  10. Aerosols and lightning activity: The effect of vertical profile and aerosol type

    NASA Astrophysics Data System (ADS)

    Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Amiridis, V.; Marinou, E.; Price, C.; Kazantzidis, A.

    2016-12-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite has been utilized for the first time in a study regarding lightning activity modulation due to aerosols. Lightning activity observations, obtained by the ZEUS long range Lightning Detection Network, European Centre for Medium range Weather Forecasts (ECMWF) Convective Available Potential Energy (CAPE) data and Cloud Fraction (CF) retrieved by MODIS on board Aqua satellite have been combined with CALIPSO CALIOP data over the Mediterranean basin and for the period March to November, from 2007 to 2014. The results indicate that lightning activity is enhanced during days characterized by higher Aerosol Optical Depth (AOD) values, compared to days with no lightning. This study contributes to existing studies on the link between lightning activity and aerosols, which have been based just on columnar AOD satellite retrievals, by performing a deeper analysis into the effect of aerosol profiles and aerosol types. Correlation coefficients of R = 0.73 between the CALIPSO AOD and the number of lightning strikes detected by ZEUS and of R = 0.93 between ECMWF CAPE and lightning activity are obtained. The analysis of extinction coefficient values at 532 nm indicates that at an altitudinal range exists, between 1.1 km and 2.9 km, where the values for extinction coefficient of lightning-active and non-lightning-active cases are statistically significantly different. Finally, based on the CALIPSO aerosol subtype classification, we have investigated the aerosol conditions of lightning-active and non-lightning-active cases. According to the results polluted dust aerosols are more frequently observed during non-lightning-active days, while dust and smoke aerosols are more abundant in the atmosphere during the lightning-active days.

  11. The impact of the Western Ghats on lightning activity on the western coast of India

    NASA Astrophysics Data System (ADS)

    Kamra, A. K.; Nair, A. A.

    2015-06-01

    The effect of the Western Ghats on the lightning activity across the west coast of India around the coastal metropolitan city of Mumbai during the 1998-2012 period is investigated using data from the Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. A land-sea contrast of an order of magnitude in the lightning activity is observed even in a small area across the western coast of India. The shape of a zone of high lightning activity formed almost parallel to the Western Ghats during the onset and withdrawal phases of monsoon, strongly suggests the effect of the Western Ghats in its formation. Seasonal variation of the lightning activity in this area and also in each of its four equal sectors (two each over the Arabian Sea and over land) is bi-annual with one peak each in the onset (May/June) and withdrawal months (September/October) of monsoon and a sharp dip to very low values during the monsoon months (July/August) of maximum seasonal rainfall. The lightning activity in each sector is found to increase over the 1998-2012 period. However, the increase in lightning activity over the sector containing Mumbai is found to be greater during the pre- and post-monsoon periods and smaller during the monsoon period as compared to an identical sector immediately south of it.

  12. Seasonal prediction of lightning activity in North Western Venezuela: Large-scale versus local drivers

    NASA Astrophysics Data System (ADS)

    Muñoz, Á. G.; Díaz-Lobatón, J.; Chourio, X.; Stock, M. J.

    2016-05-01

    The Lake Maracaibo Basin in North Western Venezuela has the highest annual lightning rate of any place in the world (~ 200 fl km- 2 yr- 1), whose electrical discharges occasionally impact human and animal lives (e.g., cattle) and frequently affect economic activities like oil and natural gas exploitation. Lightning activity is so common in this region that it has a proper name: Catatumbo Lightning (plural). Although short-term lightning forecasts are now common in different parts of the world, to the best of the authors' knowledge, seasonal prediction of lightning activity is still non-existent. This research discusses the relative role of both large-scale and local climate drivers as modulators of lightning activity in the region, and presents a formal predictability study at seasonal scale. Analysis of the Catatumbo Lightning Regional Mode, defined in terms of the second Empirical Orthogonal Function of monthly Lightning Imaging Sensor (LIS-TRMM) and Optical Transient Detector (OTD) satellite data for North Western South America, permits the identification of potential predictors at seasonal scale via a Canonical Correlation Analysis. Lightning activity in North Western Venezuela responds to well defined sea-surface temperature patterns (e.g., El Niño-Southern Oscillation, Atlantic Meridional Mode) and changes in the low-level meridional wind field that are associated with the Inter-Tropical Convergence Zone migrations, the Caribbean Low Level Jet and tropical cyclone activity, but it is also linked to local drivers like convection triggered by the topographic configuration and the effect of the Maracaibo Basin Nocturnal Low Level Jet. The analysis indicates that at seasonal scale the relative contribution of the large-scale drivers is more important than the local (basin-wide) ones, due to the synoptic control imposed by the former. Furthermore, meridional CAPE transport at 925 mb is identified as the best potential predictor for lightning activity in the Lake

  13. Lightning Instrumentation at KSC

    NASA Technical Reports Server (NTRS)

    Colon, Jose L.; Eng, D.

    2003-01-01

    This report summarizes lightning phenomena with a brief explanation of lightning generation and lightning activity as related to KSC. An analysis of the instrumentation used at launching Pads 39 A&B for measurements of lightning effects is included with alternatives and recommendations to improve the protection system and upgrade the actual instrumentation system. An architecture for a new data collection system to replace the present one is also included. A novel architecture to obtain lightning current information from several sensors using only one high speed recording channel while monitoring all sensors to replace the actual manual lightning current recorders and a novel device for the protection system are described.

  14. Search for possible relationship between volcanic ash particles and thunderstorm lightning activity

    NASA Astrophysics Data System (ADS)

    Várai, A.; Vincze, M.; Lichtenberger, J.; Jánosi, I. M.

    2011-12-01

    Explosive volcanic eruptions that eject columns of ash from the crater often generate lightning discharges strong enough to be remotely located by very low frequency radio waves. A fraction of volcanic ash particles can stay and disperse long enough to have an effect on weather phenomena days later such as thunderstorms and lightnings. In this work we report on lightning activity analysis over Europe following two recent series of volcanic eruptions in order to identify possible correlations between ash release and subsequent thunderstorm flash frequency. Our attempts gave negative results which can be related to the fact that we have limited information on local atmospheric variables of high enough resolution, however lightning frequency is apparently determined by very local circumstances.

  15. High Speed Video Observations of Natural Lightning and Their Implications to Fractal Description of Lightning

    NASA Astrophysics Data System (ADS)

    Liu, N.; Tilles, J.; Boggs, L.; Bozarth, A.; Rassoul, H.; Riousset, J. A.

    2016-12-01

    Recent high speed video observations of triggered and natural lightning flashes have significantly advanced our understanding of lightning initiation and propagation. For example, they have helped resolve the initiation of lightning leaders [Stolzenburg et al., JGR, 119, 12198, 2014; Montanyà et al, Sci. Rep., 5, 15180, 2015], the stepping of negative leaders [Hill et al., JGR, 116, D16117, 2011], the structure of streamer zone around the leader [Gamerota et al., GRL, 42, 1977, 2015], and transient rebrightening processes occurring during the leader propagation [Stolzenburg et al., JGR, 120, 3408, 2015]. We started an observational campaign in the summer of 2016 to study lightning by using a Phantom high-speed camera on the campus of Florida Institute of Technology, Melbourne, FL. A few interesting natural cloud-to-ground and intracloud lightning discharges have been recorded, including a couple of 8-9 stroke flashes, high peak current flashes, and upward propagating return stroke waves from ground to cloud. The videos show that the propagation of the downward leaders of cloud-to-ground lightning discharges is very complex, particularly for the high-peak current flashes. They tend to develop as multiple branches, and each of them splits repeatedly. For some cases, the propagation characteristics of the leader, such as speed, are subject to sudden changes. In this talk, we present several selected cases to show the complexity of the leader propagation. One of the effective approaches to characterize the structure and propagation of lightning leaders is the fractal description [Mansell et al., JGR, 107, 4075, 2002; Riousset et al., JGR, 112, D15203, 2007; Riousset et al., JGR, 115, A00E10, 2010]. We also present a detailed analysis of the high-speed images of our observations and formulate useful constraints to the fractal description. Finally, we compare the obtained results with fractal simulations conducted by using the model reported in [Riousset et al., 2007

  16. Cloud-to-ground lightning activity in Colombia: A 14-year study using lightning location system data

    NASA Astrophysics Data System (ADS)

    Herrera, J.; Younes, C.; Porras, L.

    2018-05-01

    This paper presents the analysis of 14 years of cloud-to-ground lightning activity observation in Colombia using lightning location systems (LLS) data. The first Colombian LLS operated from 1997 to 2001. After a few years, this system was upgraded and a new LLS has been operating since 2007. Data obtained from these two systems was analyzed in order to obtain lightning parameters used in designing lightning protection systems. The flash detection efficiency was estimated using average peak current maps and some theoretical results previously published. Lightning flash multiplicity was evaluated using a stroke grouping algorithm resulting in average values of about 1.0 and 1.6 for positive and negative flashes respectively and for both LLS. The time variation of this parameter changes slightly for the years considered in this study. The first stroke peak current for negative and positive flashes shows median values close to 29 kA and 17 kA respectively for both networks showing a great dependence on the flash detection efficiency. The average percentage of negative and positive flashes shows a 74.04% and 25.95% of occurrence respectively. The daily variation shows a peak between 23 and 02 h. The monthly variation of this parameter exhibits a bimodal behavior typical of the regions located near The Equator. The lightning flash density was obtained dividing the study area in 3 × 3 km cells and resulting in maximum average values of 25 and 35 flashes km- 2 year- 1 for each network respectively. A comparison of these results with global lightning activity hotspots was performed showing good correlation. Besides, the lightning flash density variation with altitude shows an inverse relation between these two variables.

  17. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability

    NASA Technical Reports Server (NTRS)

    Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey

    2015-01-01

    Lightning one of the most dangerous weather-related phenomena, especially as many jobs and activities occur outdoors, presenting risk from a lightning strike. Cloud-to-ground (CG) lightning represents a considerable safety threat to people at airfields, marinas, and outdoor facilities-from airfield personnel, to people attending outdoor stadium events, on beaches and golf courses, to mariners, as well as emergency personnel. Holle et al. (2005) show that 90% of lightning deaths occurred outdoors, while 10% occurred indoors despite the perception of safety when inside buildings. Curran et al. (2000) found that nearly half of fatalities due to weather were related to convective weather in the 1992-1994 timeframe, with lightning causing a large component of the fatalities, in addition to tornadoes and flash flooding. Related to the aviation industry, CG lightning represents a considerable hazard to baggage-handlers, aircraft refuelers, food caterers, and emergency personnel, who all become exposed to the risk of being struck within short time periods while convective storm clouds develop. Airport safety protocols require that ramp operations be modified or discontinued when lightning is in the vicinity (typically 16 km), which becomes very costly and disruptive to flight operations. Therefore, much focus has been paid to nowcasting the first-time initiation and extent of lightning, both of CG and of any lightning (e.g, in-cloud, cloud-to-cloud). For this project three lightning nowcasting methodologies will be combined: (1) a GOESbased 0-1 hour lightning initiation (LI) product (Harris et al. 2010; Iskenderian et al. 2012), (2) a High Resolution Rapid Refresh (HRRR) lightning probability and forecasted lightning flash density product, such that a quantitative amount of lightning (QL) can be assigned to a location of expected LI, and (3) an algorithm that relates Pseudo-GLM data (Stano et al. 2012, 2014) to the so-called "lightning jump" (LJ) methodology (Shultz et al

  18. Numerical modeling of an intense precipitation event and its associated lightning activity over northern Greece

    NASA Astrophysics Data System (ADS)

    Pytharoulis, I.; Kotsopoulos, S.; Tegoulias, I.; Kartsios, S.; Bampzelis, D.; Karacostas, T.

    2016-03-01

    This study investigates an intense precipitation event and its lightning activity that affected northern Greece and primarily Thessaloniki on 15 July 2014. The precipitation measurement of 98.5 mm in 15 h at the Aristotle University of Thessaloniki set a new absolute record maximum. The thermodynamic analysis indicated that the event took place in an environment that could support deep thunderstorm activity. The development of this intense event was associated with significant low-level convergence and upper-level divergence even before its triggering and a positive vertical gradient of relative vorticity advection. The high resolution (1.667 km × 1.667 km) non-hydrostatic WRF-ARW numerical weather prediction model was used to simulate this intense precipitation event, while the Lightning Potential Index was utilized to calculate the potential for lightning activity. Sensitivity experiments suggested that although the strong synoptic forcing assumed primary role in the occurrence of intense precipitation and lightning activity, their spatiotemporal variability was affected by topography. The application of the very fine resolution topography of NASA Shuttle Radar Topographic Mission improved the simulated precipitation and the calculated lightning potential.

  19. NOAA study finds fishing tops U.S. lightning death activities

    Science.gov Websites

    lightning were male. "When people think of lightning deaths, they usually think of golf," occurred while people were participating in leisure activities, with fishing topping the list at 26 deaths deaths). The remaining 77 people were struck by lightning while participating in a number of other

  20. Variability of lightning activity over India on ENSO time scales

    NASA Astrophysics Data System (ADS)

    Ahmad, Adnan; Ghosh, Mili

    2017-12-01

    ENSO, the reliable indicator of inter-annual climate variation of the ocean-atmosphere system in the tropical Pacific region, can affect the overall lightning activity which is another atmospheric phenomenon. In the present study, the impact of the ENSO on the total lightning activity over India has been studied for the period 2004-2014. During the El-Nino period (July 2004-April 2005 and July 2009-April 2010), total number of lightning flashes increased by 10% and 18% respectively and during La-Nina period (July 2010-April 2011 and August 2011 to March 2012), the total number of lightning flashes decreased approximately by 19% and 28% respectively as compared to the mean of corresponding period (2004-14) of the Non-ENSO. Seasonal variation of flash density is also examined for the El-Nino and La-Nina period. The result shows that in the El-Nino period of the pre-monsoon and monsoon seasons, there is an increment in the flash density approximately by 48% and 9% respectively than the Non-ENSO and the spatial variation also having high flash density along the foot of Himalayas region. In the post-monsoon season, there is a marginal change in the flash density between El-Nino and the Non-ENSO. In the winter season, there is an increment in flash density in the El-Nino period approximately by 45% than the Non-ENSO. In the La-Nina period of the pre-monsoon and monsoon seasons, there is the decrement in the flash density approximately by the 44% and 24% respectively than the Non-ENSO. In the Post-monsoon season and winter season of La-Nina, the flash density is increased by about 24% and 33% over India. These findings can be applied to do proper planning of lightning induced hazard mitigation as lightning is of one of the major natural disasters of India.

  1. The Characteristics of Total Lightning Activity in Severe Florida Thunderstorms

    NASA Technical Reports Server (NTRS)

    Williams, E.; Goodman, S. J.; Raghavan, R.; Boldi, R.; Matlin, A.; Weber, M.; Hodanish, S.; Sharp, D.

    1997-01-01

    Severe thunderstorms are defined by specific exceedance criteria regarding either wind speed (greater than or equal to 50 kts), hailstone diameter (greater than or equal to 3/4 inch), the occurrence of a tornado, or any combination thereof. Although traditional radar signatures of severe thunderstorms have been well documented, the characteristics of associated total lightning activity (both intracloud and cloud-to-ground) of severe thunderstorms remain poorly established. The reason for this are (1) less than 1% of all storms are actually severe, (2) intracloud lightning, which is typically the dominant form of electrical discharge within thunderstorms, is not routinely measured or recorded, (3) direct visual observations of intracloud lightning are obscured during the daytime, and (4) the migratory nature of many severe thunderstorms can make the accurate detection and mapping of intracloud lightning difficult when using fixed-location sensors. The recent establishment of LISDAD (Lightning Imaging Sensor Data Acquisition and Display - discussed in Goodman et al, this Meeting) has substantially addressed these limitations in east central Florida (ECFL). Analysis of total lightning flash Count histories using the LDAR (Lightning Detection And Ranging) system for known severe thunderstorms (currently irrespective of seasonal aspects and severe storm-type) has revealed flash rates exceeding 1 per second. This appears to be a necessary, but not sufficient,condition for most ECFL severe storm cases. The differences in radar-observed storm structure for high flash rate storms (to include both severe and non-severe categories) will be described together with the timing of peak flash rate vs. the timing of the severe weather manifestation. Comparisons with the satellite-bases OTD (Optical Transient Detector) overhead passes will also be presented when possible.

  2. Lightning activity during the 1999 Superior derecho

    NASA Astrophysics Data System (ADS)

    Price, Colin G.; Murphy, Brian P.

    2002-12-01

    On 4 July 1999, a severe convective windstorm, known as a derecho, caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators of severe weather.

  3. Lightning Activity During the 1999 Superior Derecho

    NASA Astrophysics Data System (ADS)

    Price, C. G.; Murphy, B. P.

    2002-12-01

    On 4 July 1999, a severe convective windstorm, known as a derecho, caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators of severe weather.

  4. 21st Century Lightning Protection for High Altitude Observatories

    NASA Astrophysics Data System (ADS)

    Kithil, Richard

    2013-05-01

    One of the first recorded lightning insults to an observatory was in January 1890 at the Ben Nevis Observatory in Scotland. In more recent times lightning has caused equipment losses and data destruction at the US Air Force Maui Space Surveillance Complex, the Cerro Tololo observatory and the nearby La Serena scientific and technical office, the VLLA, and the Apache Point Observatory. In August 1997 NOAA's Climate Monitoring and Diagnostic Laboratory at Mauna Loa Observatory was out of commission for a month due to lightning outages to data acquisition computers and connected cabling. The University of Arizona has reported "lightning strikes have taken a heavy toll at all Steward Observatory sites." At Kitt Peak, extensive power down protocols are in place where lightning protection for personnel, electrical systems, associated electronics and data are critical. Designstage lightning protection defenses are to be incorporated at NSO's ATST Hawaii facility. For high altitude observatories lightning protection no longer is as simple as Franklin's 1752 invention of a rod in the air, one in the ground and a connecting conductor. This paper discusses selection of engineered lightning protection subsystems in a carefully planned methodology which is specific to each site.

  5. Relationship between convective precipitation and lightning activity using radar quantitative precipitation estimates and total lightning data

    NASA Astrophysics Data System (ADS)

    Pineda, N.; Rigo, T.; Bech, J.; Argemí, O.

    2009-09-01

    Thunderstorms can be characterized by both rainfall and lightning. The relationship between convective precipitation and lightning activity may be used as an indicator of the rainfall regime. Besides, a better knowledge of local thunderstorm phenomenology can be very useful to assess weather surveillance tasks. Two types of approach can be distinguished in the bibliography when analyzing the rainfall and lightning activity. On one hand, rain yields (ratio of rain mass to cloud-to-ground flash over a common area) calculated for long temporal and spatial domains and using rain-gauge records to estimate the amounts of precipitation. On the other hand, a case-by-case approach has been used in many studies to analyze the relationship between convective precipitation and lightning in individual storms, using weather radar data to estimate rainfall volumes. Considering a local thunderstorm case study approach, the relation between rainfall and lightning is usually quantified as the Rainfall-Lightning ratio (RLR). This ratio estimates the convective rainfall volume per lightning flash. Intense storms tend to produce lower RLR values than moderate storms, but the range of RLR found in diverse studies is quite wide. This relationship depends on thunderstorm type, local climatology, convective regime, type of lightning flashes considered, oceanic and continental storms, etc. The objective of this paper is to analyze the relationship between convective precipitation and lightning in a case-by-case approach, by means of daily radar-derived quantitative precipitation estimates (QPE) and total lightning data, obtained from observations of the Servei Meteorològic de Catalunya remote sensing systems, which covers an area of approximately 50000 km2 in the NE of the Iberian Peninsula. The analyzed dataset is composed by 45 thunderstorm days from April to October 2008. A good daily correlation has been found between the radar QPE and the CG flash counts (best linear fit with a R^2

  6. Lightning activity and severe storm structure

    NASA Technical Reports Server (NTRS)

    Taylor, W. L.; Brandes, E. A.; Rust, W. D.; Macgorman, D. R.

    1984-01-01

    Space-time mapping of VHF sources from four severe storms on June 19, 1980 reveals that lightning processes for cloud-to-ground (CG) and large intracloud (IC) flashes are confined to an altitude below about 10 km and closely associated with the central regions of high reflectivity. Another class of IC flashes produces a splattering of sources within the storms' main electrically active volumes and also within the large divergent wind canopy aloft. There is no apparent temporal association between the small high altitude IC flashes that occur almost continuously and the large IC and CG flashes that occur sporadically in the lower portions of storms.

  7. Methods to estimate lightning activity using WWLLN and RS data

    NASA Astrophysics Data System (ADS)

    Baranovskiy, Nikolay V.; Belikova, Marina Yu.; Karanina, Svetlana Yu.; Karanin, Andrey V.; Glebova, Alena V.

    2017-11-01

    The aim of the work is to develop a comprehensive method for assessing thunderstorm activity using WWLLN and RS data. It is necessary to group lightning discharges to solve practical problems of lightning protection and lightningcaused forest fire danger, as well as climatology problems using information on the spatial and temporal characteristics of thunderstorms. For grouping lightning discharges, it is proposed to use clustering algorithms. The region covering Timiryazevskiy forestry (Tomsk region, borders (55.93 - 56.86)x(83.94 - 85.07)) was selected for the computational experiment. We used the data on lightning discharges registered by the WWLLN network in this region on July 23, 2014. 273 lightning discharges were sampling. A relatively small number of discharges allowed us a visual analysis of solutions obtained during clustering.

  8. Using Satellite Lightning Data as a Hands-On Activity for a Broad Audience

    NASA Astrophysics Data System (ADS)

    Sinclair, L.; Smith, T.; Smith, D. K.; Weigel, A. M.; Bugbee, K.; Leach, C.

    2017-12-01

    Satellite lightning data archived at the NASA Global Hydrology Resource Center Distributed Active Archive Center (GHRC DAAC) captures the number of lightning flashes occurring within four by four kilometer pixels around the world from January 1998 through October 2014. These data were measured by the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite. As an outreach effort to educate other on the use lightning measurements, the GHRC DAAC developed an interactive color-by-number poster showing accumulated lightning flashes around the world. As participants color the poster it reveals regions of maximum lightning flash counts across the Earth, including Lake Maracaibo in Catatumbo, Venezuela and a region in Congo, Africa. This hands-on activity is a bright, colorful, and inviting way to bring lightning data to a broad audience and can be used for people of many ages, including elementary-aged audiences up to adults.

  9. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world.

    PubMed

    Dowdy, Andrew J

    2016-02-11

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world.

  10. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world

    PubMed Central

    Dowdy, Andrew J.

    2016-01-01

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world’s tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world. PMID:26865431

  11. A Comparison between Lightning Activity and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Kevin, Driscoll T.; Hugh, Christian J.; Goodman, Steven J.

    1999-01-01

    A recent examination of data from the Lightning Imaging Sensor (LIS) and the TRMM Microwave Imager (TMI) suggests that storm with the highest frequency of lightning also possess the most pronounced microwave scattering signatures at 37 and 85 GHz. This study demonstrates a clear dependence between lightning and the passive microwave measurements, and accentuates how direct the relationship really is between cloud ice and lightning activity. In addition, the relationship between the quantity of ice content and the frequency of lightning (not just the presence of lightning) , is consistent throughout the seasons in a variety of regimes. Scatter plots will be presented which show the storm-averaged brightness temperatures as a function of the lightning density of the storms (L/Area) . In the 85 GHz and 37 GHz scatter plots, the brightness temperature is presented in the form Tb = k1 x log10(L/Area) + k2, where the slope of the regression, k1, is 58 for the 85 GHz relationship and 30.7 for the 37 GHz relationship. The regression for both these fits showed a correlation of 0.76 (r2 = 0.58), which is quite promising considering the simple procedure used to make the comparisons, which have not yet even been corrected for the view angle differences between the instruments, or the polarization corrections in the microwave imager.

  12. Solar rotational cycle in lightning activity in Japan during the 18-19th centuries

    NASA Astrophysics Data System (ADS)

    Miyahara, Hiroko; Kataoka, Ryuho; Mikami, Takehiko; Zaiki, Masumi; Hirano, Junpei; Yoshimura, Minoru; Aono, Yasuyuki; Iwahashi, Kiyomi

    2018-04-01

    Thunderstorm and cloud activities sometimes show a 27-day period, and this has long been studied to uncover a possible important link to solar rotation. Because the 27-day variations in the solar forcing parameters such as solar ultraviolet and galactic cosmic rays become more prominent when the solar activity is high, it is expected that the signal of the 27-day period in meteorological phenomena may wax and wane according to the changes in the solar activity level. In this study, we examine in detail the intensity variations in the signal of the 27-day solar rotational period in thunder and lightning activity from the 18th to the 19th centuries based on 150-year-long records found in old diaries kept in Japan and discuss their relation with the solar activity levels. Such long records enable us to examine the signals of solar rotation at both high and low solar activity levels. We found that the signal of the solar rotational period in the thunder and lightning activity increases as the solar activity increases. In this study, we also discuss the possibility of the impact of the long-term climatological conditions on the signals of the 27-day period in thunder/lightning activities.

  13. Cosmic rays, solar activity, magnetic coupling, and lightning incidence

    NASA Technical Reports Server (NTRS)

    Ely, J. T. A.

    1984-01-01

    A theoretical model is presented and described that unifies the complex influence of several factors on spatial and temporal variation of lightning incidence. These factors include the cosmic radiation, solar activity, and coupling between geomagnetic and interplanetary (solar wind) magnetic fields. Atmospheric electrical conductivity in the 10 km region was shown to be the crucial parameter altered by these factors. The theory reconciles several large scale studies of lightning incidence previously misinterpreted or considered contradictory. The model predicts additional strong effects on variations in lightning incidence, but only small effects on the morphology and rate of thunderstorm development.

  14. [Lightning strikes and lightning injuries in prehospital emergency medicine. Relevance, results, and practical implications].

    PubMed

    Hinkelbein, J; Spelten, O; Wetsch, W A

    2013-01-01

    Up to 32.2% of patients in a burn center suffer from electrical injuries. Of these patients, 2-4% present with lightning injuries. In Germany, approximately 50 people per year are injured by a lightning strike and 3-7 fatally. Typically, people involved in outdoor activities are endangered and affected. A lightning strike usually produces significantly higher energy doses as compared to those in common electrical injuries. Therefore, injury patterns vary significantly. Especially in high voltage injuries and lightning injuries, internal injuries are of special importance. Mortality ranges between 10 and 30% after a lightning strike. Emergency medical treatment is similar to common electrical injuries. Patients with lightning injuries should be transported to a regional or supraregional trauma center. In 15% of all cases multiple people may be injured. Therefore, it is of outstanding importance to create emergency plans and evacuation plans in good time for mass gatherings endangered by possible lightning.

  15. Lightning control system using high power microwave FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiho, M.; Watanbe, A.; Kawasaki, S.

    A research project for developing a thunder lightning control system using an induction linac based high power microwave free electron laser (FEL) started at JAERI The system will produce weakly ionized plasma rod in the atmosphere by high power microwaves and control a lightning path, away from , e. g., nuclear power stations and rocket launchers. It has been known that about MW/cm{sup 2} power density is enough for the atmospheric breakdown in the microwave region, and which means high power microwave FEL with GW level output power is feasible for atmospheric breakdown, and accordingly is feasible for thunder lightningmore » control tool with making a conductive plasma channel in the atmosphere. From the microwave attenuation consideration in the atmosphere, FEL of 35GHz(0.13dB/km), 90GHz(0.35dB/km), 140GHz(1.7dB/km), and of 270 GHz(4.5dB/km) are the best candidates for the system. Comparing with other proposed lightning control system using visible or ultraviolet laser, the system using microwave has an advantage that microwave suffers smaller attenuation by rain or snow which always exist in the real atmospheric circumstances when lightning occurs.« less

  16. The Interferometric View of Lightning

    NASA Astrophysics Data System (ADS)

    Stock, M.; Lapierre, J. L.

    2017-12-01

    Recent advances in off the shelf high-speed digitizers has enabled vast improvements in broadband, digital VHF interferometers. These simple instruments consist of 3 or more VHF antennas distributed in an array which are then digitized at a speed above the Nyquist frequency of the antenna bandwidth (usually 200+ MHz). Broadband interferometers are capable of creating very detailed maps of lightning, with time resolution better than 1us, and angular resolution only limited by their baseline lengths. This is combined with high sensitivity, and the ability to locate both continuously emitting and impulsive radiation sources. They are not without their limitations though. Because the baselines are relatively short, the maps are only 2-dimensional (direction to the source), unless many antennas are used only a single VHF radiation source can be located at any instant, and because the antennas are almost always arranged in a planar array they are better suited for observing lightning at high elevation angles. Even though imperfect, VHF interferometers provide one of the most detailed views of the behavior of lightning flashes inside a cloud. This presentation will present the overall picture of in-cloud lightning as seen by VHF interferometers. Most flashes can be split into 3 general phases of activity. Phase 1 is the initiation phase, covering all activity until the negative leader completes its vertical extension, and includes both lightning initiation and initial breakdown pulses. Phase 2 is the active phase and includes all activity during the horizontal extension of the negative leader. During Phase 2, any K-processes which occur tend to be short in duration and extent. Phase 3 is the final phase, and includes all activity after the negative leader stops propagating. During Phase 3, the conductivity of the lightning channels starts to decline, and extensive K-processes are seen which traverse the entire channel structure, this is also the period in which regular

  17. Fifty Years of Lightning Observations from Space

    NASA Astrophysics Data System (ADS)

    Christian, H. J., Jr.

    2017-12-01

    Some of the earliest satellites, starting with OSO (1965), ARIEL (1967), and RAE (1968), detected lightning using either optical and RF sensors, although that was not their intent. One of the earliest instruments designed to detect lightning was the PBE (1977). The use of space to study lightning activity has exploded since these early days. The advent of focal-plane imaging arrays made it possible to develop high performance optical lightning sensors. Prior to the use of charged-coupled devices (CCD), most space-based lightning sensors used only a few photo-diodes, which limited the location accuracy and detection efficiency (DE) of the instruments. With CCDs, one can limit the field of view of each detector (pixel), and thus improve the signal to noise ratio over single-detectors that summed the light reflected from many clouds with the lightning produced by a single cloud. This pixelization enabled daytime DE to increase from a few percent to close to 90%. The OTD (1995), and the LIS (1997), were the first lightning sensors to utilize focal-plane arrays. Together they detected global lightning activity for more than twenty years, providing the first detailed information on the distribution of global lightning and its variability. The FORTE satellite was launched shortly after LIS, and became the first dedicated satellite to simultaneously measure RF and optical lightning emissions. It too used a CCD focal plane to detect and locate lightning. In November 2016, the GLM became the first lightning instrument in geostationary orbit. Shortly thereafter, China placed its GLI in orbit. Lightning sensors in geostationary orbit significantly increase the value of space-based observations. For the first time, lightning activity can be monitored continuously, over large areas of the Earth with high, uniform DE and location accuracy. In addition to observing standard lightning, a number of sensors have been placed in orbit to detect transient luminous events and

  18. An improved method for predicting the lightning performance of high and extra-high-voltage substation shielding

    NASA Astrophysics Data System (ADS)

    Vinh, T.

    1980-08-01

    There is a need for better and more effective lightning protection for transmission and switching substations. In the past, a number of empirical methods were utilized to design systems to protect substations and transmission lines from direct lightning strokes. The need exists for convenient analytical lightning models adequate for engineering usage. In this study, analytical lightning models were developed along with a method for improved analysis of the physical properties of lightning through their use. This method of analysis is based upon the most recent statistical field data. The result is an improved method for predicting the occurrence of sheilding failure and for designing more effective protection for high and extra high voltage substations from direct strokes.

  19. The Deep Space Gateway Lightning Mapper (DLM) - Monitoring Global Change and Thunderstorm Processes Through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Lang, Timothy; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; hide

    2018-01-01

    Function: Monitor global change and thunderstorm processes through observations of Earth's high-latitude lightning. This instrument will combine long-lived sampling of individual thunderstorms with long-term observations of lightning at high latitudes: How is global change affecting thunderstorm patterns; How do high-latitude thunderstorms differ from low-latitude? Why is the Gateway the optimal facility for this instrument / research: Expected DSG (Deep Space Gateway) orbits will provide nearly continuous viewing of the Earth's high latitudes (50 degrees latitude and poleward); These regions are not well covered by existing lightning mappers (e.g., Lightning Imaging Sensor / LIS, or Geostationary Lightning Mapper / GLM); Polar, Molniya, Tundra, etc. Earth orbits have significant drawbacks related to continuous coverage and/or stable FOVs (Fields of View).

  20. Lightning charge moment changes estimated by high speed photometric observations from ISS

    NASA Astrophysics Data System (ADS)

    Hobara, Y.; Kono, S.; Suzuki, K.; Sato, M.; Takahashi, Y.; Adachi, T.; Ushio, T.; Suzuki, M.

    2017-12-01

    Optical observations by the CCD camera using the orbiting satellite is generally used to derive the spatio-temporal global distributions of the CGs and ICs. However electrical properties of the lightning such as peak current and lightning charge are difficult to obtain from the space. In particular, CGs with considerably large lightning charge moment changes (CMC) and peak currents are crucial parameters to generate red sprites and elves, respectively, and so it must be useful to obtain these parameters from space. In this paper, we obtained the lightning optical signatures by using high speed photometric observations from the International Space Station GLIMS (Global Lightning and Sprit MeasurementS JEM-EF) mission. These optical signatures were compared quantitatively with radio signatures recognized as truth values derived from ELF electromagnetic wave observations on the ground to verify the accuracy of the optically derived values. High correlation (R > 0.9) was obtained between lightning optical irradiance and current moment, and quantitative relational expression between these two parameters was derived. Rather high correlation (R > 0.7) was also obtained between the integrated irradiance and the lightning CMC. Our results indicate the possibility to derive lightning electrical properties (current moment and CMC) from optical measurement from space. Moreover, we hope that these results will also contribute to forthcoming French microsatellite mission TARANIS.

  1. Laboratory-produced ball lightning

    NASA Astrophysics Data System (ADS)

    Golka, Robert K., Jr.

    1994-05-01

    For 25 years I have actively been searching for the true nature of ball lightning and attempting to reproduce it at will in the laboratory. As one might expect, many unidentified lights in the atmosphere have been called ball lightning, including Texas Maffa lights (automobile headlights), flying saucers (UFOs), swamp gas in Ann Arbor, Michigan, etc. For 15 years I thought ball lightning was strictly a high-voltage phenomenon. It was not until 1984 when I was short-circuiting the electrical output of a diesel electric railroad locomotive that I realized that the phenomenon was related more to a high current. Although I am hoping for some other types of ball lightning to emerge such as strictly electrostatic-electromagnetic manifestations, I have been unlucky in finding laboratory provable evidence. Cavity-formed plasmodes can be made by putting a 2-inch burning candle in a home kitchen microwave oven. The plasmodes float around for as long as the microwave energy is present.

  2. A Model Lightning Safety Policy for Athletics

    PubMed Central

    Bennett, Brian L.

    1997-01-01

    Objective: The purpose of this paper is to present a model policy on lightning safety for athletic trainers. Background: Among college athletic programs in the United States there is a serious lack of written policy on lightning safety. Available evidence shows that most National Collegiate Athletic Association (NCAA) Division I institutions, even though they are located in high lightning activity areas of the country, do not have formal, written lightning safety policies. Clinical Advantages/ Recommendations: The policy presented herein, which is at the forefront of such policies, is the lightning safety policy written as part of a policies and procedures manual for the division of sports medicine at a public NCAA Division I university. This is a policy based on practicality that utilizes the “flash-to- bang” method for determining the distance of lightning activity from the observer. The policy begins with the importance of prevention, including the daily monitoring of weather reports. The policy defines a “safe shelter” and specifies the chain of command for determining who removes a team or individuals from an athletic site in the event of dangerous lightning activity. PMID:16558459

  3. Cloud-to-ground lightning activity over Greece: Spatio-temporal analysis and impacts

    NASA Astrophysics Data System (ADS)

    Matsangouras, I. T.; Nastos, P. T.; Kapsomenakis, J.

    2016-03-01

    Cloud-to-ground (CG) lightning activity recorded by the Hellenic National Meteorological Service (HNMS) Precision Lightning Network (PLN) is analysed over the wider area of Greece. In addition, the spatial and temporal relationships between TRMM 3B42 (Tropical Rainfall Measuring Mission) datasets and lightning are presented. The analyses concern the period from January 14, 2008 to December 31, 2012. The Laboratory of Climatology and Atmospheric Environment, University of Athens, has established a detailed dataset of lightning impacts over Greece from 1895 to 2013, based on digitized archive editions of newspapers. The mean seasonal variability of CG lightning activity revealed autumn as the most dominant season with 303 LD, while the mean monthly variability of CG indicated October as the most lightning active month and May as the month with a mean of 27 LD. The mean annual spatial distribution of CG lightning per km2, depicted the maximum frequency over Pindus mountain range (> 7 CG/km2). During the autumn season, the northern Ionian Sea experienced a mean frequency of more than 5 CG/km2, compared to the southern Ionian Sea and NW Peloponnesus, where values of more than 7 CG/km2 are depicted. During the summer season, the maximum frequency appeared along Pindus mountain range, around Attica, Thessaly and central Macedonia highlands. The spatial distribution of seasonal correlations between the number of CG flashes/day and gridded (TRMM 3B42) daily rainfall totals for the period 2008-2012 over Greece, indicated that correlations were mainly positive all over the under study area, within all seasons, and especially during summer and autumn. Regarding the lightning impacts in Greece, based on the 1895-2013 study period, more than 343 fatalities and at least 224 injured people have been recorded. The spatial analysis of lightning impacts, showed that the majority of events has been recorded over Greek mainland and only few scattered events have been reported over

  4. Infrasound from lightning measured in Ivory Coast

    NASA Astrophysics Data System (ADS)

    Farges, T.; Matoza, R. S.

    2011-12-01

    It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 lightning flashes are produced per second over the globe. More than two thirds (42) of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including lightning flashes, ...). Some of the IMS stations are located where worldwide lightning detection networks (e.g. WWLLN) have a weak detection capability but lightning activity is high (e.g. Africa, South America). These infrasound stations are well localised to study lightning flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such lightning studies possible. For example, Farges and Blanc (2010) show clearly that it is possible to measure lightning infrasound from thunderstorms within a range of distances from the infrasound station. Infrasound from lightning can be detected when the thunderstorm is within about 75 km from the station. The motion of the squall zone is very well measured inside this zone. Up to 25% of lightning flashes can be detected with this technique, giving better results locally than worldwide lightning detection networks. An IMS infrasound station has been installed in Ivory Coast for 8 years. The optical space-based instrument OTD measured a rate of 10-20 flashes/km^2/year in that country and showed strong seasonal variations (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with lightning activity and its temporal variation. First statistical results will be presented in this paper based on 3 years of data (2005-2008).

  5. Use of High-Resolution WRF Simulations to Forecast Lightning Threat

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.; LaCasse, K.; Goodman, S. J.; Cecil, D. J.

    2008-01-01

    Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors aloft in storms. This relationship is exploited, in conjunction with the capabilities of cloud-resolving forecast models such as WRF, to forecast explicitly the threat of lightning from convective storms using selected output fields from the model forecasts. The simulated vertical flux of graupel at -15C and the shape of the simulated reflectivity profile are tested in this study as proxies for charge separation processes and their associated lightning risk. Our lightning forecast method differs from others in that it is entirely based on high-resolution simulation output, without reliance on any climatological data. short [6-8 h) simulations are conducted for a number of case studies for which three-dmmensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity fields, and METAR and ACARS data y&eld satisfactory simulations. __nalyses of the lightning threat fields suggests that both the graupel flux and reflectivity profile approaches, when properly calibrated, can yield reasonable lightning threat forecasts, although an ensemble approach is probably desirable in order to reduce the tendency for misplacement of modeled storms to hurt the accuracy of the forecasts. Our lightning threat forecasts are also compared to other more traditional means of forecasting thunderstorms, such as those based on inspection of the convective available potential energy field.

  6. The Behavior of Total Lightning Activity in Severe Florida Thunderstorms

    NASA Technical Reports Server (NTRS)

    Williams, Earle; Boldi, Bob; Matlin, Anne; Weber, Mark; Hodanish, Steve; Sharp, Dave; Goodman, Steve; Raghavan, Ravi; Buechler, Dennis

    1998-01-01

    The development of a new observational system called LISDAD (Lightning Imaging Sensor Demonstration and Display) has enabled a study of severe weather in central Florida. The total flash rates for storms verified to be severe are found to exceed 60 flashes/min, with some values reaching 500 flashes/min. Similar to earlier results for thunderstorm microbursts, the peak flash rate precedes the severe weather at the ground by 5-20 minutes. A distinguishing feature of severe storms is the presence of lightning "jumps"-abrupt increases in flash rate in advance of the maximum rate for the storm. ne systematic total lightning precursor to severe weather of all kinds-wind, hail, tornadoes-is interpreted in terms of the updraft that sows the seeds aloft for severe weather at the surface and simultaneously stimulates the ice microphysics that drives the lightning activity.

  7. Lightning hazard region over the maritime continent observed from satellite and climate change threat

    NASA Astrophysics Data System (ADS)

    Ilhamsyah, Y.; Koesmaryono, Y.; Hidayat, R.; Murjaya, J.; Nurjaya, I. W.; Rizwan

    2017-02-01

    Climate change would lead to such hydrometeorological disaster as: flash-flood, landslide, hailstone, lightning, and twister become more likely to happen in the future. In terms of lightning event, one research question arise of where lightning would be mostly to strike over the Maritime Continent (MC)?. The objective of the research is to investigate region with high-density of lightning activity over MC by mapping climatological features of lightning flashes derived from onboard NASA-TRMM Satellite, i.e. Optical Transient Detector/Lightning Imaging Sensor (OTD/LIS). Based on data retrieved since 1995-2013, it is seasonally observed that during transition season March to May, region with high vulnerability of lightning flashes cover the entire Sumatra Island, the Malacca Strait, and Peninsular Malaysia as well as Java Island. High-frequent of lightning activity over the Malacca Strait is unique since it is the only sea-region in the world where lightning flashes are denser. As previously mentioned that strong lightning activity over the strait is driven by mesoscale convective system of Sumatra Squalls due to convergences of land breeze between Sumatra and Peninsular Malaysia. Lightning activity over the strait is continuously observed throughout season despite the intensity reduced. Java Island, most populated island, receive high-density of lightning flashes during rainy season (December to February) but small part in the northwestern of Java Island, e.g., Bogor and surrounding areas, the density of lightning flashes are high throughout season. Northern and southern parts of Kalimantan and Central part of Sulawesi are also prone to lightning activity particularly during transition season March to May and September to November. In the eastern part of MC, Papua receive denser lightning flashes during September to November. It is found that lightning activity are mostly concentrated over land instead of ocean which is in accordance with diurnal convective

  8. Where are the lightning hotspots on Earth?

    NASA Astrophysics Data System (ADS)

    Albrecht, R. I.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R. J.; Christian, H. J., Jr.

    2015-12-01

    The first lightning observations from space date from the early 1960s and more than a dozen spacecraft orbiting the Earth have flown instruments that recorded lightning signals from thunderstorms over the past 45 years. In this respect, the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS), having just completed its mission (1997-2015), provides the longest and best total (intracloud and cloud-to-ground) lightning data base over the tropics.We present a 16 year (1998-2013) reprocessed data set to create very high resolution (0.1°) TRMM LIS total lightning climatology. This detailed very high resolution climatology is used to identify the Earth's lightning hotspots and other regional features. Earlier studies located the lightning hotspot within the Congo Basin in Africa, but our very high resolution lightning climatology found that the highest lightning flash rate on Earth actually occurs in Venezuela over Lake Maracaibo, with a distinct maximum during the night. The higher resolution dataset clearly shows that similar phenomenon also occurs over other inland lakes with similar conditions, i.e., locally forced convergent flow over a warm lake surface which drives deep nocturnal convection. Although Africa does not have the top lightning hotspot, it comes in a close second and it is the continent with the highest number of lightning hotspots, followed by Asia, South America, North America, and Oceania. We also present climatological maps for local hour and month of lightning maxima, along with a ranking of the highest five hundred lightning maxima, focusing discussion on each continent's 10 highest lightning maxima. Most of the highest continental maxima are located near major mountain ranges, revealing the importance of local topography in thunderstorm development. These results are especially relevant in anticipation of the upcoming availability of continuous total lightning observations from the Geostationary Lightning Mapping (GLM

  9. Cloud-to-ground lightning activity in Colombia and the influence of topography

    NASA Astrophysics Data System (ADS)

    Aranguren, D.; López, J.; Inampués, J.; Torres, H.; Betz, H.

    2017-02-01

    Lightning activity on the Colombian mountains, where the altitude varies from 0 to more than 5000 MSL, is studied based on VLF/LF lightning detection data and using a 2012-2013 dataset. The influence of altitude is observed by evaluating cloud-to-ground lightning incidence at different altitude intervals. The relationship between ground flash density and altitude gradient vectors is studied. Results show a clear dependence of the flash density on elevation.

  10. The relationship of lightning activity and short-duation rainfall events during warm seasons over the Beijing metropolitan region

    NASA Astrophysics Data System (ADS)

    Wu, F.; Cui, X.; Zhang, D. L.; Lin, Q.

    2017-12-01

    The relationship between lightning activity and rainfall associated with 2925 short-duration rainfall (SDR) events over the Beijing metropolitan region (BMR) is examined during the warm seasons of 2006-2007, using the cloud-to-ground (CG) and intracloud (IC) lightning data from Surveillance et Alerte Foudre par Interférometrie Radioélectrique (SAFIR)-3000 and 5-min rainfall data from automatic weather stations (AWSs). To facilitate the analysis of the rainfall-lightning correlations, the SDR events are categorized into six different intensity grades according to their hourly rainfall rates (HRRs), and an optimal radius of 10 km from individual AWSs for counting their associated lightning flashes is used. Results show that the lightning-rainfall correlations vary significantly with different intensity grades. Weak correlations (R 0.4) are found in the weak SDR events, and 40-50% of the events are no-flash ones. And moderate correlation (R 0.6) are found in the moderate SDR events, and > 10-20% of the events are no-flash ones. In contrast, high correlations (R 0.7) are obtained in the SDHR events, and < 10% of the events are no-flash ones. The results indicate that lightning activity is observed more frequently and correlated more robust with the rainfall in the SDHR events. Significant time lagged correlations between lightning and rainfall are also found. About 80% of the SDR events could reach their highest correlation coefficients when the associated lightning flashes shift at time lags of < 25 min before and after rainfall begins. The percentages of SDR events with CG or total lightning activity preceding, lagging or coinciding with rainfall shows that (i) in about 55% of the SDR events lightning flashes preceded rainfall; (ii) the SDR events with lightning flashes lagging behind rainfall accounted for about 30%; and (iii) the SDR events without any time shifts accounted for the remaining 15%. Better lightning-rainfall correlations can be attained when time

  11. Lightning Mapping Observations: What we are learning.

    NASA Astrophysics Data System (ADS)

    Krehbiel, P.

    2001-12-01

    The use of radio frequency time-of-arrival techniques for accurately mapping lightning discharges is revolutionizing our ability to study lightning discharge processes and to investigate thunderstorms. Different types of discharges are being observed that we have not been able to study before or knew existed. Included are a variety of inverted and normal polarity intracloud and cloud-to-ground discharges, frequent short-duration discharges at high altitude in storms and in overshooting convective tops, highly energetic impulsive discharge events, and horizontally extensive `spider' lightning discharges in large mesoscale convective systems. High time resolution measurements valuably complement interferometric observations and are starting to exceed the ability of interferometers to provide detailed pictures of flash development. Mapping observations can be used to infer the polarity of the breakdown channels and hence the location and sign of charge regions in the storm. The lightning activity in large, severe storms is found to be essentially continuous and volume-filling, with substantially more lightning inside the storm than between the cloud and ground. Spectacular dendritic structures are observed in many flashes. The lightning observations can be used to infer the electrical structure of a storm and therefore to study the electrification processes. The results are raising fundamental questions about how storms become electrified and how the electrification evolves with time. Supercell storms are commonly observed to electrify in an inverted or anomalous manner, raising questions about how these storms are different from normal storms, and even what is `normal'. The high lightning rates in severe storms raises the distinct possibility that the discharges themselves might be sustaining or enhancing the electrification. Correlated observations with radar, instrumented balloons and aircraft, and ground-based measurements are leading to greatly improved

  12. Nowcasting of Lightning-Related Accidents in Africa

    NASA Astrophysics Data System (ADS)

    Ihrlich, Laura; Price, Colin

    2016-04-01

    Tropical Africa is the world capital of thunderstorm activity with the highest density of strikes per square kilometer per year. As a result it is also the continent with perhaps the highest casualties and injuries from direct lightning strikes. This region of the globe also has little lightning protection of rural homes and schools, while many casualties occur during outdoor activities (e.g. farming, fishing, sports, etc.) In this study we investigated two lightning-caused accidents that got wide press coverage: A lightning strike to a Cheetah Center in Namibia which caused a huge fire and great destruction (16 October 2013), and a plane crash in Mali where 116 people died (24 July 2014). Using data from the World Wide Lightning Location Network (WWLLN) we show that the lightning data alone can provide important early warning information that can be used to reduce risks and damages and loss of life from lightning strikes. We have developed a now-casting scheme that allows for early warnings across Africa with a relatively low false alarm rate. To verify the accuracy of our now-cast, we have performed some statistical analysis showing relatively high skill at providing early warnings (lead time of a few hours) based on lightning alone. Furthermore, our analysis can be used in forensic meteorology for determining if such accidents are caused by lightning strikes.

  13. High-detail snapshots of rare gigantic jet lightning

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-08-01

    In the ionosphere, more than 80 kilometers above Earth's surface, incoming radiation reacts with the thin air to produce highly charged ions, inducing an electric potential between the ionosphere and the surface. This charge difference is dissipated by a slow leak from the ionosphere during calm weather and reinvigorated by a charge built up near the surface during a thunderstorm. In 2001, however, researchers discovered gigantic jets (GJs), powerful lightning that arcs from tropospheric clouds up to the ionosphere, suggesting there may be an alternate path by which charge is redistributed. GJs are transient species, and little is known about how much charge they can carry, how they form, or how common they are. In a step toward answering these questions, Lu et al. report on two GJs that occurred near very high frequency (VHF) lightning detection systems, which track the development of lightning in three spatial dimensions, giving an indication of the generation mechanism. The researchers also measured the charge transfer in the two GJs through remote sensing of magnetic fields. They found that both jets originated from the development of otherwise normal intracloud lightning. The dissipation of the cloud's positively charged upper layer allowed the negative lightning channel to break through and travel up out of the top of the cloud to the ionosphere. The first jet, which occurred off the coast of Florida, leapt up to 80 kilometers, depositing 110 coulombs of negative charge in 370 milliseconds. The second jet, observed in Oklahoma, traveled up to 90 kilometers, raising only 10-20 coulombs in 300 milliseconds. Each new observation of gigantic jets such as these can provide valuable information toward understanding this novel atmospheric behavior. (Geophysical Research Letters, doi:10.1029/2011GL047662, 2011)

  14. Statistical-dynamical modeling of the cloud-to-ground lightning activity in Portugal

    NASA Astrophysics Data System (ADS)

    Sousa, J. F.; Fragoso, M.; Mendes, S.; Corte-Real, J.; Santos, J. A.

    2013-10-01

    The present study employs a dataset of cloud-to-ground discharges over Portugal, collected by the Portuguese lightning detection network in the period of 2003-2009, to identify dynamically coherent lightning regimes in Portugal and to implement a statistical-dynamical modeling of the daily discharges over the country. For this purpose, the high-resolution MERRA reanalysis is used. Three lightning regimes are then identified for Portugal: WREG, WREM and SREG. WREG is a typical cold-core cut-off low. WREM is connected to strong frontal systems driven by remote low pressure systems at higher latitudes over the North Atlantic. SREG is a combination of an inverted trough and a mid-tropospheric cold-core nearby Portugal. The statistical-dynamical modeling is based on logistic regressions (statistical component) developed for each regime separately (dynamical component). It is shown that the strength of the lightning activity (either strong or weak) for each regime is consistently modeled by a set of suitable dynamical predictors (65-70% of efficiency). The difference of the equivalent potential temperature in the 700-500 hPa layer is the best predictor for the three regimes, while the best 4-layer lifted index is still important for all regimes, but with much weaker significance. Six other predictors are more suitable for a specific regime. For the purpose of validating the modeling approach, a regional-scale climate model simulation is carried out under a very intense lightning episode.

  15. The Deep Space Gateway Lightning Mapper (DLM) — Monitoring Global Change and Thunderstorm Processes through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    NASA Astrophysics Data System (ADS)

    Lang, T. J.; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; Tatum, P. F.

    2018-02-01

    We propose the Deep Space Gateway Lightning Mapper (DLM) instrument. The primary goal of the DLM is to optically monitor Earth's high-latitude (50° and poleward) total lightning not observed by current and planned spaceborne lightning mappers.

  16. Location accuracy evaluation of lightning location systems using natural lightning flashes recorded by a network of high-speed cameras

    NASA Astrophysics Data System (ADS)

    Alves, J.; Saraiva, A. C. V.; Campos, L. Z. D. S.; Pinto, O., Jr.; Antunes, L.

    2014-12-01

    This work presents a method for the evaluation of location accuracy of all Lightning Location System (LLS) in operation in southeastern Brazil, using natural cloud-to-ground (CG) lightning flashes. This can be done through a multiple high-speed cameras network (RAMMER network) installed in the Paraiba Valley region - SP - Brazil. The RAMMER network (Automated Multi-camera Network for Monitoring and Study of Lightning) is composed by four high-speed cameras operating at 2,500 frames per second. Three stationary black-and-white (B&W) cameras were situated in the cities of São José dos Campos and Caçapava. A fourth color camera was mobile (installed in a car), but operated in a fixed location during the observation period, within the city of São José dos Campos. The average distance among cameras was 13 kilometers. Each RAMMER sensor position was determined so that the network can observe the same lightning flash from different angles and all recorded videos were GPS (Global Position System) time stamped, allowing comparisons of events between cameras and the LLS. The RAMMER sensor is basically composed by a computer, a Phantom high-speed camera version 9.1 and a GPS unit. The lightning cases analyzed in the present work were observed by at least two cameras, their position was visually triangulated and the results compared with BrasilDAT network, during the summer seasons of 2011/2012 and 2012/2013. The visual triangulation method is presented in details. The calibration procedure showed an accuracy of 9 meters between the accurate GPS position of the object triangulated and the result from the visual triangulation method. Lightning return stroke positions, estimated with the visual triangulation method, were compared with LLS locations. Differences between solutions were not greater than 1.8 km.

  17. High-Resolution WRF Forecasts of Lightning Threat

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; McCaul, E. W., Jr.; LaCasse, K.

    2007-01-01

    Tropical Rainfall Measuring Mission (TRMM)lightning and precipitation observations have confirmed the existence of a robust relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of the Weather Research and Forecast (WRF) model, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Initial experiments using 6-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. The WRF has been initialized on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data. An array of subjective and objective statistical metrics is employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.

  18. Infrasound from lightning measured in Ivory Coast

    NASA Astrophysics Data System (ADS)

    Farges, T.; Millet, C.; Matoza, R. S.

    2012-04-01

    It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 lightning flashes are produced per second over the globe. More than two thirds (42) of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including lightning flashes, …). Some of the IMS stations are located where worldwide lightning detection networks (e.g. WWLLN) have a weak detection capability but lightning activity is high (e.g. Africa, South America). These infrasound stations are well localised to study lightning flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such lightning studies possible. For example, Farges and Blanc (2010) show clearly that it is possible to measure lightning infrasound from thunderstorms within a range of distances from the infrasound station. Infrasound from lightning can be detected when the thunderstorm is within about 75 km from the station. The motion of the squall zone is very well measured inside this zone. Up to 25% of lightning flashes can be detected with this technique, giving better results locally than worldwide lightning detection networks. An IMS infrasound station has been installed in Ivory Coast for 9 years. The lightning rate of this region is 10-20 flashes/km2/year from space-based instrument OTD (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with lightning activity and its temporal variation. First statistical results will be presented in this paper based on 4 years of data (2005-2009). For short lightning distances (less than 20 km), up to 60 % of lightning detected by WWLLN has been one-to-one correlated

  19. a review and an update on the winter lightning that occurred on a rotating windmill and its standalone lightning protection tower

    NASA Astrophysics Data System (ADS)

    Wang, D.; Takagi, N.

    2012-12-01

    We have observed the lightning occurred on a 100 m high windmill and its 105 m high standalone lightning-protection tower about 45 m separated from the windmill in the Hokuriku area of Japan for 7 consecutive winter seasons from 2005 to 2012. Our main observation items include: (1) Lightning current at the bottom of both the windmill and the tower. (2) Thunderstorm electric fields and the electric field changes caused by lightning at multiple sites. (3) Optical images by both low and high speed imaging systems. During the 7 winter seasons, over 100 lightning have hit either the tower or the windmill or both. All the lightning but two observed are of upward lightning. Those upward lightning can be sub-classified into self-initiated types and other-triggered types according to whether there is a discharge activity prior to the upward leaders or not. Self-initiated and other-triggered upward lightning tend to have biased percentages in terms of striking locations (windmill versus tower) and thunderstorm types (active versus weak). All the upward lightning but one contained only initial continuous current stages. In the presentation, we will first give a review on those results we have reported before [1-3]. As an update, we will report the following results. (1) The electric field change required for triggering a negative upward leader is usually more than twice bigger than that for triggering a positive upward leader. (2) An electric current pulse with an amplitude of several tens of Amperes along a high structure has been observed to occur in response to a rapid electric change generated by either a nearby return stroke or K-change. References [1] D.Wang, N.Takagi, T.Watanebe, H. Sakurano, M. Hashimoto, Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower, Geophys. Res. Lett., Vol.35, L02803, doi:10.1029/2007GL032136, 2008. [2] W. Lu, D.Wang, Y. Zhang and N. Takagi, Two associated upward lightning flashes

  20. Lightning NOx Estimates from Space-Based Lightning Imagers

    NASA Technical Reports Server (NTRS)

    Koshak, William J.

    2017-01-01

    The intense heating of air by a lightning channel, and subsequent rapid cooling, leads to the production of lightning nitrogen oxides (NOx = NO + NO2) as discussed in Chameides [1979]. In turn, the lightning nitrogen oxides (or "LNOx" for brevity) indirectly influences the Earth's climate because the LNOx molecules are important in controlling the concentration of ozone (O3) and hydroxyl radicals (OH) in the atmosphere. Climate is most sensitive to O3 in the upper troposphere, and LNOx is the most important source of NOx in the upper troposphere at tropical and subtropical latitudes; hence, lightning is a useful parameter to monitor for climate assessments. The National Climate Assessment (NCA) program was created in response to the Congressionally-mandated Global Change Research Act (GCRA) of 1990. Thirteen US government organizations participate in the NCA program which examines the effects of global change on the natural environment, human health and welfare, energy production and use, land and water resources, human social systems, transportation, agriculture, and biological diversity. The NCA focuses on natural and human-induced trends in global change, and projects major trends 25 to 100 years out. In support of the NCA, the NASA Marshall Space Flight Center (MSFC) continues to assess lightning-climate inter-relationships. This activity applies a variety of NASA assets to monitor in detail the changes in both the characteristics of ground- and space- based lightning observations as they pertain to changes in climate. In particular, changes in lightning characteristics over the conterminous US (CONUS) continue to be examined by this author using data from the Tropical Rainfall Measuring Mission Lightning Imaging Sensor. In this study, preliminary estimates of LNOx trends derived from TRMM/LIS lightning optical energy observations in the 17 yr period 1998-2014 are provided. This represents an important first step in testing the ability to make remote retrievals

  1. Towards understanding the nature of any relationship between Solar Activity and Cosmic Rays with thunderstorm activity and lightning discharge

    NASA Astrophysics Data System (ADS)

    O'Regan, J.; Muller, J.-P.; Matthews, S.

    2012-04-01

    The runaway breakdown hypothesis of lightning discharge has predicted relationships between cosmic rays' interactions with the atmosphere and thunderstorm production and lightning activity. Precipitating energetic particles lead to the injection of MeV-energy electrons into electrified thunderclouds [1,2], resulting in runaway breakdown occurring, and assisting in the process of charge separation [2]. Previous lightning studies show that correlations to solar activity are weak but significant, with better correlations to solar activity and cosmic rays when carried out over smaller geographical areas [3,4,5,6] and over longer timescales [6]. In this work, correlations are explored between variations of SEPs and lightning activity levels at various spatio-temporal scales. Temporal scales span from short-term (days) scales surrounding large Earth-directed coronal mass ejection (CME) events to long-term (years) scales. Similarly, spatial scales span from 1-degree x 1-degree latitudinal-longitudinal grid scales to an entirely global study, for varying timescales. Additionally, investigation of correlation sign and statistical significance by 1-degree latitudinal bands is also employed, allowing a comparative study of lightning activity relative to regions of greatest - and contrasting regions of relative absence of - energetic particle precipitation. These regions are determined from electron and proton flux maps, derived from measurements from the Medium Energy Proton and Electron Detector (MEPED) onboard the Polar Orbiting Environmental Satellite (POES) system. Lightning data is obtained from the World Wide Lightning Location Network (WWLLN) for the period 2005 to 2011. The correlations of lightning strike rates are carried out with respect to Relative Sunspot Number (R), 10.7cm Solar radio flux (F10.7), Galactic Cosmic Ray (GCR) neutron monitor flux, the Ap geomagnetic activity index, and Disturbance Storm Time (DST) index. Correlations show dramatic variations in

  2. Can High-resolution WRF Simulations Be Used for Short-term Forecasting of Lightning?

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Lapenta, W.; McCaul, E. W., Jr.; LaCasse, K.; Petersen, W.

    2006-01-01

    A number of research teams have begun to make quasi-operational forecast simulations at high resolution with models such as the Weather Research and Forecast (WRF) model. These model runs have used horizontal meshes of 2-4 km grid spacing, and thus resolved convective storms explicitly. In the light of recent global satellite-based observational studies that reveal robust relationships between total lightning flash rates and integrated amounts of precipitation-size ice hydrometeors in storms, it is natural to inquire about the capabilities of these convection-resolving models in representing the ice hydrometeor fields faithfully. If they do, this might make operational short-term forecasts of lightning activity feasible. We examine high-resolution WRF simulations from several Southeastern cases for which either NLDN or LMA lightning data were available. All the WRF runs use a standard microphysics package that depicts only three ice species, cloud ice, snow and graupel. The realism of the WRF simulations is examined by comparisons with both lightning and radar observations and with additional even higher-resolution cloud-resolving model runs. Preliminary findings are encouraging in that they suggest that WRF often makes convective storms of the proper size in approximately the right location, but they also indicate that higher resolution and better hydrometeor microphysics would be helpful in improving the realism of the updraft strengths, reflectivity and ice hydrometeor fields.

  3. Science of Ball Lightning (Fire Ball)

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Yoshi-Hiko

    1989-08-01

    The Table of Contents for the full book PDF is as follows: * Organizing Committee * Preface * Ball Lightning -- The Continuing Challenge * Hungarian Ball Lightning Observations in 1987 * Nature of Ball Lightning in Japan * Phenomenological and Psychological Analysis of 150 Austrian Ball Lightning Reports * Physical Problems and Physical Properties of Ball Lightning * Statistical Analysis of the Ball Lightning Properties * A Fluid-Dynamical Model for Ball Lightning and Bead Lightning * The Lifetime of Hill's Vortex * Electrical and Radiative Properties of Ball Lightning * The Candle Flame as a Model of Ball Lightning * A Model for Ball Lightning * The High-Temperature Physico-Chemical Processes in the Lightning Storm Atmosphere (A Physico-Chemical Model of Ball Lightning) * New Approach to Ball Lightning * A Calculation of Electric Field of Ball Lightning * The Physical Explanation to the UFO over Xinjiang, Northern West China * Electric Reconnection, Critical Ionization Velocity, Ponderomotive Force, and Their Applications to Triggered and Ball Lightning * The PLASMAK™ Configuration and Ball Lightning * Experimental Research on Ball Lightning * Performance of High-Voltage Test Facility Designed for Investigation of Ball Lightning * List of Participants

  4. Combined VLF and VHF lightning observations of Hurricane Rita landfall

    NASA Astrophysics Data System (ADS)

    Henderson, B. G.; Suszcynsky, D. M.; Wiens, K. C.; Hamlin, T.; Jeffery, C. A.; Orville, R. E.

    2009-12-01

    Hurricane Rita displayed abundant lightning in its northern eyewall as it made landfall at 0740 UTC 24 Sep 2005 near the Texas/Louisiana border. For this work, we combined VHF and VLF lightning data from Hurricane Rita, along with radar observations from Gulf Coast WSR-88D stations, for the purpose of demonstrating the combined utility of these two spectral regions for hurricane lightning monitoring. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. As Rita approached the Gulf coast, the VHF lightning emissions were distinctly periodic with a period of 1.5 to 2 hours, which is consistent with the rotational period of hurricanes. VLF lightning emissions, measured by LASA and NLDN, were present in some of these VHF bursts but not all of them. At landfall, there was a significant increase in lightning emissions, accompanied by a significant convective surge observed in radar. Furthermore, VLF and VHF lightning source heights clearly increase as a function of time. The evolution of the IC/CG ratio is consistent with that seen in thunderstorms, showing a dominance of IC activity during storm development, followed by an increase in CG activity at the storm’s peak. The periodic VHF lightning events are correlated with increases in convective growth (quantified by the volume of radar echo >40 dB) above 7 km altitude. VLF can discriminate between lightning types, and in the LASA data, Rita landfall lightning activity was dominated by Narrow Bi-polar Events (NBEs)—high-energy, high-altitude, compact intra-cloud discharges. The opportunity to locate NBE lightning sources in altitude may be particularly useful in quantifying the vertical extent (strength) of the convective development and in possibly deducing vertical charge distributions.

  5. Dancing red sprites and the lightning activity in their parent thunderstorm

    NASA Astrophysics Data System (ADS)

    Bór, József; Zelkó, Zoltán; Hegedüs, Tibor; Jäger, Zoltán; Mlynarczyk, Janusz; Popek, Martin; Betz, Hans-Dieter

    2016-04-01

    Red sprites are brief optical emissions initiated in the mesosphere by intense tropospheric lightning discharges. A group of red sprites, in which the elements appear in rapid succession with some lateral offset from one another is referred to as a dancing sprite event. The occurrence of such events implies that significant and sequential charge removal extending to large regions of the thunderstorm can take place in the underlying cloud system. In this work, we examine the relation of the locations and observation times of appearing sprite elements to the temporal and spatial distribution of the lightning activity in a specific sprite-active thunderstorm. The selected mesoscale convective system (MCS) composed of several extremely active thundercloud cells crossed Central Europe from South-West to North-East through Germany, Austria, the Czech Republic, and Poland on the night of 6 August, 2013. This MCS has triggered over one hundred sprites including several dancing sprite events. Video recordings of sprites captured from Sopron, Hungary (16.6°E, 47.7°N) and Nydek, Czech Republic (18.8°E, 49.7°N) were used to identify dancing sprite events and to determine the exact locations of the appearing sprite elements by a triangulation technique used originally to analyze meteor observations. Lightning activity in the MCS can be reviewed using the database of LINET lightning detection network which fully covers the region of interest (ROI). The poster demonstrates how cases of sequential charge removal in the thunderstorm can be followed by combining the available information on the occurrence time, location, polarity, and type (CG/IC) of detected lightning strokes in the ROI on one hand and the occurrence time and location of elements in dancing sprite events on the other hand.

  6. Lightning and Climate

    NASA Astrophysics Data System (ADS)

    Williams, E.

    2012-12-01

    Lightning is of interest in the domain of climate change for several reasons: (1) thunderstorms are extreme forms of moist convection, and lightning flash rate is a sensitive measure of that extremity, (2) thunderstorms are deep conduits for delivering water substance from the boundary layer to the upper troposphere and stratosphere, and (3) global lightning can be monitored continuously and inexpensively within a natural framework (the Earth-ionosphere waveguide and Schumann resonances). Lightning and temperature, and lightning and upper tropospheric water vapor, are positively correlated on weather-related time scales (diurnal, semiannual, and annual) with a lightning temperature sensitivity of order 10% per oC. Lightning also follows temperature variations on the ENSO time scale, both locally and globally. The response of lightning in some of its extreme forms (exceptional flash rates and the prevalence of sprite-producing mesoscale lightning, for example) to temperature variations will be addressed. Consistently obtained records of lightning activity on longer time scales are scarce as stable detection networks are uncommon. As a consequence, thunder day data have been used to extend the lightning record for climate studies, with evidence for increases over decades in urban areas. Global records of lightning following Schumann resonance intensity and from space-based optical sensors (OTD and LIS) are consistent with the record of ionospheric potential representing the global electrical circuit in showing flat behavior over the few decades. This flatness is not well understood, though the majority of all lightning flashes are found in the tropics, the most closely regulated portion of the atmosphere. Other analysis of frequency variations of Schumann resonances in recent decades shows increased lightning in the northern hemisphere, where the global warming is most pronounced. The quantity more fundamental than temperature for lightning control is cloud buoyancy

  7. Lightning prevention systems for paper mills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, R.B. Jr.

    1989-05-01

    Paper mills are increasingly relying on sensitive electronic equipment to control their operations. However, the sensitivity of these devices has made mills vulnerable to the effects of lightning strokes. An interruption in the power supply or the destruction of delicate microcircuits can have devastating effects on mill productivity. The authors discuss how lightning strokes can be prevented by a Dissipation Array system (DAS). During the past 17 years, the concept has been applied to a host of applications in regions with a high incidence of lightning activity. With nearly 700 systems now installed, more than 4000 system-years of history havemore » been accumulated. Areas as large as 1 km{sup 2} and towers as high as 2000 ft have been protected and completely isolated from lightning strokes. There have been very few failures, and in every case, the cause of the failure was determined and corrected.« less

  8. Lightning Protection

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lightning Technologies, Inc., Pittsfield, MA, - a spinoff company founded by president J. Anderson Plumer, a former NASA contractor employee who developed his expertise with General Electric Company's High Voltage Laboratory - was a key player in Langley Research Center's Storm Hazards Research Program. Lightning Technologies used its NASA acquired experience to develop protective measures for electronic systems and composite structures on aircraft, both of which are particularly susceptible to lightning damage. The company also provides protection design and verification testing services for complete aircraft systems or individual components. Most aircraft component manufacturers are among Lightning Technologies' clients.

  9. Lightning Enhancement Over Major Shipping Lanes

    NASA Astrophysics Data System (ADS)

    Thornton, J. A.; Holzworth, R. H., II; Virts, K.; Mitchell, T. P.

    2017-12-01

    Using twelve years of high resolution global lightning stroke data from the World Wide Lightning Location Network (WWLLN), we show that lightning density is enhanced by up to a factor of two directly over shipping lanes in the northeastern Indian Ocean and the South China Sea as compared to adjacent areas with similar climatological characteristics. The lightning enhancement is most prominent during the convectively active season, November-April for the Indian Ocean and April - December in the South China Sea, and has been detectable from at least 2005 to the present. We hypothesize that emissions of aerosol particles and precursors by maritime vessel traffic leads to a microphysical enhancement of convection and storm electrification in the region of the shipping lanes. These persistent localized anthropogenic perturbations to otherwise clean regions are a unique opportunity to more thoroughly understand the sensitivity of maritime deep convection and lightning to aerosol particles.

  10. Solar wind modulation of UK lightning

    NASA Astrophysics Data System (ADS)

    Davis, Chris; Harrison, Giles; Lockwood, Mike; Owens, Mathew; Barnard, Luke

    2013-04-01

    The response of lightning rates in the UK to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. The fast solar wind streams' arrivals are determined from modulation of the solar wind Vy component, measured by the Advanced Composition Explorer (ACE) spacecraft. Lightning rate changes around these event times are then determined from the very low frequency Arrival Time Difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream's source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 day rate of the Sun. Arrival of the high speed stream at Earth also coincides with a rapid decrease in cosmic ray flux and an increase in lightning rates over the UK, persisting for around 40 days. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again for around 40 days after the arrival of a high speed solar wind stream. This increase in lightning may be beneficial to medium range forecasting of hazardous weather.

  11. Lightning Activity Relative to the Microphysical and Kinematic Structure of Storms during a Thunder-Snow Episode on 29-30 November 2006

    NASA Astrophysics Data System (ADS)

    Emersic, C.; Macgorman, D.; Schuur, T.; Lund, N.; Payne, C.; Bruning, E.

    2007-12-01

    We have examined lightning activity relative to the microphysical and kinematic structure of a winter thunderstorm complex (a thunder-snow episode) observed east of Norman, Oklahoma during the evening of 29-30 November 2006. Polarimetric radar provided information about the type of particles present in various regions of the storms. The Lightning Mapping Array (LMA) recorded VHF signals produced by developing lightning channels. The times of arrival of these lightning signals across the array were then used to reconstruct the location and structure of lightning, and these reconstructions were overlaid with radar data to examine the relationship between lightning properties and storm particle types. Four storms in this winter complex have been examined. It was inferred from lightning structure that, in their mature stage, all cells we examined had a positive tripole electrical structure (an upper positive charge center, a midlevel negative charge center, and a lower positive charge center). The storms began with lightning activity in the lower dipole (lower positive and midlevel negative regions), but this evolved into lightning activity throughout the tripole structure within approximately 15-20 minutes. In the longer lived storms, the mature stage lasted for approximately 1.5-2 hours. During this stage, the lower positive charge region was situated less than 5 km above ground, the midlevel negative charge region was typically above 5 km, and the upper positive charge region was located at an altitude of less than 10 km in all the storm cells analyzed. The charge regions descended over approximately the last 30 minutes of lightning activity, the lower charge regions eventually reaching ground. This resulted in the loss of the lower positive charge center and the subsequent diminishment of the lower negative charge center. Lightning initiation usually coincided with the edges of regions of high reflectivity and was coincident with the presence of graupel and ice

  12. Learning from concurrent Lightning Imaging Sensor and Lightning Mapping Array observations in preparation for the MTG-LI mission

    NASA Astrophysics Data System (ADS)

    Defer, Eric; Bovalo, Christophe; Coquillat, Sylvain; Pinty, Jean-Pierre; Farges, Thomas; Krehbiel, Paul; Rison, William

    2016-04-01

    The upcoming decade will see the deployment and the operation of French, European and American space-based missions dedicated to the detection and the characterization of the lightning activity on Earth. For instance the Tool for the Analysis of Radiation from lightNIng and Sprites (TARANIS) mission, with an expected launch in 2018, is a CNES mission dedicated to the study of impulsive energy transfers between the atmosphere of the Earth and the space environment. It will carry a package of Micro Cameras and Photometers (MCP) to detect and locate lightning flashes and triggered Transient Luminous Events (TLEs). At the European level, the Meteosat Third Generation Imager (MTG-I) satellites will carry in 2019 the Lightning Imager (LI) aimed at detecting and locating the lightning activity over almost the full disk of Earth as usually observed with Meteosat geostationary infrared/visible imagers. The American community plans to operate a similar instrument on the GOES-R mission for an effective operation in early 2016. In addition NASA will install in 2016 on the International Space Station the spare version of the Lightning Imaging Sensor (LIS) that has proved its capability to optically detect the tropical lightning activity from the Tropical Rainfall Measuring Mission (TRMM) spacecraft. We will present concurrent observations recorded by the optical space-borne Lightning Imaging Sensor (LIS) and the ground-based Very High Frequency (VHF) Lightning Mapping Array (LMA) for different types of lightning flashes. The properties of the cloud environment will also be considered in the analysis thanks to coincident observations of the different TRMM cloud sensors. The characteristics of the optical signal will be discussed according to the nature of the parent flash components and the cloud properties. This study should provide some insights not only on the expected optical signal that will be recorded by LI, but also on the definition of the validation strategy of LI, and

  13. Lightning Safety Tips and Resources

    MedlinePlus

    ... Safety Brochure U.S. Lightning Deaths in 2018 : 5 Youtube: Lightning Safety for the Deaf and Hard of ... for Hard of Hearing: jpg , high res png YouTube: Lightning Safety Tips Lightning Safety When Working Outdoors : ...

  14. Monitoring lightning from space with TARANIS

    NASA Astrophysics Data System (ADS)

    Farges, T.; Blanc, E.; Pinçon, J.

    2010-12-01

    Some recent space experiments, e.g. OTD, LIS, show the large interest of lightning monitoring from space and the efficiency of optical measurement. Future instrumentations are now defined for the next generation of geostationary meteorology satellites. Calibration of these instruments requires ground truth events provided by lightning location networks, as NLDN in US, and EUCLID or LINET in Europe, using electromagnetic observations at a regional scale. One of the most challenging objectives is the continuous monitoring of the lightning activity over the tropical zone (Africa, America, and Indonesia). However, one difficulty is the lack of lightning location networks at regional scale in these areas to validate the data quality. TARANIS (Tool for the Analysis of Radiations from lightNings and Sprites) is a CNES micro satellite project. It is dedicated to the study of impulsive transfers of energy, between the Earth atmosphere and the space environment, from nadir observations of Transient Luminous Events (TLEs), Terrestrial Gamma ray Flashes (TGFs) and other possible associated emissions. Its orbit will be sun-synchronous at 10:30 local time; its altitude will be 700 km. Its lifetime will be nominally 2 years. Its payload is composed of several electromagnetic instruments in different wavelengths: X and gamma-ray detectors, optical cameras and photometers, electromagnetic wave sensors from DC to 30 MHz completed by high energy electron detectors. The optical instrument includes 2 cameras and 4 photometers. All sensors are equipped with filters for sprite and lightning differentiation. The filters of cameras are designed for sprite and lightning observations at 762 nm and 777 nm respectively. However, differently from OTD or LIS instruments, the filter bandwidth and the exposure time (respectively 10 nm and 91 ms) prevent lightning optical observations during daytime. The camera field of view is a square of 500 km at ground level with a spatial sampling frequency of

  15. The GOES-R Lightning Mapper Sensor

    NASA Technical Reports Server (NTRS)

    Buechler, Dennis; Christian, Hugh; Goodman, Steve

    2004-01-01

    The Lightning Mapper Sensor on GOES-R builds on previous measurements of lightning from low earth orbit by the OTD (Optical Transient Detector) and LIS (Lightning Imaging Sensor) sensors. Unlike observations from low earth orbit, the GOES-R platform will allow continuous monitoring of lightning activity over the Continental United States and southern Canada, Central and South America, and portions of the Atlantic and Pacific Oceans. The LMS will detect total (cloud-to-ground and intracloud) lightning at storm scale resolution (approx. 8 km) using a highly sensitive Charge Coupled Device (CCD) detector array. Discrimination between lightning optical transients and a bright sunlit background scene is accomplished by employing spectral, spatial, and temporal filtering along with a background subtraction technique. The result is 24 hour detection capability of total lightning. These total lightning observations can be made available to users within about 20 seconds. Research indicates a number of ways that total lightning observations from LMS could benefit operational activities, including 1) potential increases in lead times and reduced false alarms for severe thunderstorm and tornado Warnings, 2) improved routing of &rail around thunderstorms, 3) support for spacecraft launches and landings, 4) improved ability to monitor tropical cyclone intensity, 5) ability to monitor thunderstorm intensification/weakening during radar outages or where radar coverage is poor, 6) better identification of deep convection for the initialization of numerical prediction models, 7) improved forest fire forecasts, 8) identification of convective initiation, 9) identification of heavy convective snowfall, and 10) enhanced temporal resolution of storm evolution (1 minute) than is available from radar observations. Total lightning data has been used in an operational environment since July 2003 at the Huntsville, Alabama National Weather Service office. Total lightning measurements are

  16. Combining satellite-based fire observations and ground-based lightning detections to identify lightning fires across the conterminous USA

    USGS Publications Warehouse

    Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2012-01-01

    Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.

  17. Comparison of lightning activity in the two most active areas of the Congo Basin

    NASA Astrophysics Data System (ADS)

    Kigotsi, Jean K.; Soula, Serge; Georgis, Jean-François

    2018-02-01

    A comparison of the lightning activity in the two most active areas (Area_max for the main maximum and Area_sec for the secondary maximum) of the Congo Basin is made with data obtained by the World Wide Lightning Location Network (WWLLN) during 2012 and 2013. Both areas of same size (5° × 5°) exhibit flash counts in a ratio of about 1.32 for both years and very different distributions of the flash rate density (FRD) with maximums in a ratio of 1.94 and 2.59 for 2012 and 2013, respectively. The FRD is much more widely distributed in Area_sec, which means the whole area contributes more or less equal to the lightning activity. The diurnal cycle is much more pronounced in Area_max than in Area_sec with a ratio between the maximum and the minimum of 15.4 and 4.7, respectively. However, the minimum and maximum of the hourly flash rates are observed roughly at the same time in both areas, between 07:00 and 09:00 UTC and between 16:00 and 17:00 UTC, respectively. In Area_sec the proportion of days with low lightning rate (0-1000 flashes per day) is much larger (˜ 45 % in 2013) compared to Area_max (˜ 23 % in 2013). In Area_max the proportion of days with moderate lightning rate (1001-6000 flashes per day) is larger (˜ 68.5 % in 2013) compared to Area_sec (˜ 46 % in 2013). The very intense convective events are slightly more numerous in Area_sec. In summary, the thunderstorm activity in Area_sec is more variable at different scales of time (annually and daily), in intensity and in location. Area_max combines two favourable effects for thunderstorm development, the convergence associated with the African easterly jet of the Southern Hemisphere (AEJ-S) and a geographic effect due to the orography and the presence of a lake. The location of the strong convection in Area_sec is modulated by the distance of westward propagation/regeneration of mesoscale convective systems (MCSs) in relation to the phase of Kelvin waves.

  18. The physics of lightning

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.; Uman, Martin A.

    2014-01-01

    Despite being one of the most familiar and widely recognized natural phenomena, lightning remains relatively poorly understood. Even the most basic questions of how lightning is initiated inside thunderclouds and how it then propagates for many tens of kilometers have only begun to be addressed. In the past, progress was hampered by the unpredictable and transient nature of lightning and the difficulties in making direct measurements inside thunderstorms, but advances in instrumentation, remote sensing methods, and rocket-triggered lightning experiments are now providing new insights into the physics of lightning. Furthermore, the recent discoveries of intense bursts of X-rays and gamma-rays associated with thunderstorms and lightning illustrate that new and interesting physics is still being discovered in our atmosphere. The study of lightning and related phenomena involves the synthesis of many branches of physics, from atmospheric physics to plasma physics to quantum electrodynamics, and provides a plethora of challenging unsolved problems. In this review, we provide an introduction to the physics of lightning with the goal of providing interested researchers a useful resource for starting work in this fascinating field. By what physical mechanism or mechanisms is lightning initiated in the thundercloud? What is the maximum cloud electric field magnitude and over what volume of the cloud? What, if any, high energy processes (runaway electrons, X-rays, gamma rays) are involved in lightning initiation and how? What is the role of various forms of ice and water in lightning initiation? What physical mechanisms govern the propagation of the different types of lightning leaders (negative stepped, first positive, negative dart, negative dart-stepped, negative dart-chaotic) between cloud and ground and the leaders inside the cloud? What is the physical mechanism of leader attachment to elevated objects on the ground and to the flat ground? What are the characteristics

  19. Lightning Activity Analyses with Respect to the SPCZ Location and to Surface Air Humidity Around Tahiti

    NASA Astrophysics Data System (ADS)

    Ortega, P.; Guignes, T.

    2006-12-01

    The South Pacific Convergence Zone (SPCZ) is located from the West Pacific warm pool and trends Southeast towards French Polynesia. The Island Climate Update monthly publishes the mean location deduced from the outgoing long-wave radiation anomalies or higher rainfall. On the other hand, the Wide World Lightning Location Network monthly provides data from which the lightning activity distribution in the 0°-30° South latitude and 150°-240° West longitude area can be drawn. Scanning this rectangle from West to East the location of the maximum lightning activity can be located versus the longitude. Fitting the location of these maximum with a polynomial function leads to a curve comparable with the monthly mean position of the SPCZ, showing that this band of cloudiness is the main source of lightning in this whole area. Besides, relations between surface atmospheric parameters, the number of thunder days and the number of flashes recorded around Tahiti have been analyzed using, the absolute humidity and the lightning activity recorded during the last nine years with the help of CIGRE Lightning Flash Counters. Since it is known that the cloud base is closely related to the boundary layer relative humidity, the aim of the analysis was to sort out a correlation between this parameter and the lightning activity. No correlation has been clearly put in evidence with the number of thunder days but the monthly mean values of the amount of flashes recorded exhibit similar oscillation with air humidity over a 9 year long period including the several phases of the ENSO.

  20. Multivariate Statistical Inference of Lightning Occurrence, and Using Lightning Observations

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis

    2004-01-01

    Two classes of multivariate statistical inference using TRMM Lightning Imaging Sensor, Precipitation Radar, and Microwave Imager observation are studied, using nonlinear classification neural networks as inferential tools. The very large and globally representative data sample provided by TRMM allows both training and validation (without overfitting) of neural networks with many degrees of freedom. In the first study, the flashing / or flashing condition of storm complexes is diagnosed using radar, passive microwave and/or environmental observations as neural network inputs. The diagnostic skill of these simple lightning/no-lightning classifiers can be quite high, over land (above 80% Probability of Detection; below 20% False Alarm Rate). In the second, passive microwave and lightning observations are used to diagnose radar reflectivity vertical structure. A priori diagnosis of hydrometeor vertical structure is highly important for improved rainfall retrieval from either orbital radars (e.g., the future Global Precipitation Mission "mothership") or radiometers (e.g., operational SSM/I and future Global Precipitation Mission passive microwave constellation platforms), we explore the incremental benefit to such diagnosis provided by lightning observations.

  1. How Lightning Works Inside Thunderstorms: A Half-Century of Lightning Studies

    NASA Astrophysics Data System (ADS)

    Krehbiel, P. R.

    2015-12-01

    Lightning is a fascinating and intriguing natural phenomenon, but the most interesting parts of lightning discharges are inside storms where they are obscured from view by the storm cloud. Although clouds are essentially opaque at optical frequencies, they are fully transparent at radio frequencies (RF). This, coupled with the fact that lightning produces prodigious RF emissions, has allowed us to image and study lightning inside storms using various RF and lower-frequency remote sensing techniques. As in all other scientific disciplines, the technology for conducting the studies has evolved to an incredible extent over the past 50 years. During this time, we have gone from having very little or no knowledge of how lightning operates inside storms, to being able to 'see' its detailed structure and development with an increasing degree of spatial and temporal resolution. In addition to studying the discharge processes themselves, lightning mapping observations provide valuable information on the electrical charge structure of storms, and on the mechanisms by which storms become strongly electrified. In this presentation we briefly review highlights of previous observations, focussing primarily on the long string of remote-sensing studies I have been involved in. We begin with the study of lightning charge centers of cloud-to-ground discharges in central New Mexico in the late 1960s and continue up to the present day with interferometric and 3-dimensional time-of-arrival VHF mapping observations of lightning in normally- and anomalously electrified storms. A particularly important aspect of the investigations has been comparative studies of lightning in different climatological regimes. We conclude with observations being obtained by a high-speed broadband VHF interferometer, which show in unprecedented detail how individual lightning discharges develop inside storms. From combined interferometer and 3-D mapping data, we are beginning to unlock nature's secrets

  2. Lightning discharges produced by wind turbines

    NASA Astrophysics Data System (ADS)

    Montanyà, Joan; van der Velde, Oscar; Williams, Earle R.

    2014-02-01

    New observations with a 3-D Lightning Mapping Array and high-speed video are presented and discussed. The first set of observations shows that under certain thunderstorm conditions, wind turbine blades can produce electric discharges at regular intervals of 3 s in relation to its rotation, over periods of time that range from a few minutes up to hours. This periodic effect has not been observed in static towers indicating that the effect of rotation is playing a critical role. The repeated discharges can occur tens of kilometers away from electrically active thunderstorm areas and may or may not precede a fully developed upward lightning discharge from the turbine. Similar to rockets used for triggering lightning, the fast movement of the blade tip plays an important role on the initiation of the discharge. The movement of the rotor blades allows the tip to "runaway" from the generated corona charge. The second observation is an uncommon upward/downward flash triggered by a wind turbine. In that flash, a negative upward leader was initiated from a wind turbine without preceding lightning activity. The flash produced a negative cloud-to-ground stroke several kilometers from the initiation point. The third observation corresponds to a high-speed video record showing simultaneous upward positive leaders from a group of wind turbines triggered by a preceding intracloud flash. The fact that multiple leaders develop simultaneously indicates a poor shielding effect among them. All these observations provide some special features on the initiation of lightning by nonstatic and complex tall structures.

  3. Relationship between lightning and solar activity for recorded between CE 1392-1877 in Korea

    NASA Astrophysics Data System (ADS)

    Jeon, Junhyeok; Noh, Sung-Jun; Lee, Dong-Hee

    2018-07-01

    In this study, we collected lightning data recorded in the Joseon-wangjo-sillok, one of the Korean history books, and discuss the characteristics of the long term variations and distribution of lightning based on the data. Although historical data such as lightning records are fragmentary, they are important information of solar activity on a long term scale. We found that there is a difference between the monthly distribution of lightning recorded in the Joseon-wangjo-sillok and the monthly distribution of modern observations. This difference of distribution could be understood to reflect that the purpose of viewpoint of the observers is different between the past and the present. Nevertheless, it is a very interesting result that the periodicity calculated from the records of lightning recorded in the Joseon-wangjo-sillok is similar to the solar cycle which is widely known as almost periodically 11 years.

  4. Lightning attachment process to common buildings

    NASA Astrophysics Data System (ADS)

    Saba, M. M. F.; Paiva, A. R.; Schumann, C.; Ferro, M. A. S.; Naccarato, K. P.; Silva, J. C. O.; Siqueira, F. V. C.; Custódio, D. M.

    2017-05-01

    The physical mechanism of lightning attachment to grounded structures is one of the most important issues in lightning physics research, and it is the basis for the design of the lightning protection systems. Most of what is known about the attachment process comes from leader propagation models that are mostly based on laboratory observations of long electrical discharges or from observations of lightning attachment to tall structures. In this paper we use high-speed videos to analyze the attachment process of downward lightning flashes to an ordinary residential building. For the first time, we present characteristics of the attachment process to common structures that are present in almost every city (in this case, two buildings under 60 m in São Paulo City, Brazil). Parameters like striking distance and connecting leaders speed, largely used in lightning attachment models and in lightning protection standards, are revealed in this work.Plain Language SummarySince the time of Benjamin Franklin, no one has ever recorded <span class="hlt">high</span>-speed video images of a <span class="hlt">lightning</span> connection to a common building. It is very difficult to do it. Cameras need to be very close to the structure chosen to be observed, and long observation time is required to register one <span class="hlt">lightning</span> strike to that particular structure. Models and theories used to determine the zone of protection of a <span class="hlt">lightning</span> rod have been developed, but they all suffer from the lack of field data. The submitted manuscript provides results from <span class="hlt">high</span>-speed video observations of <span class="hlt">lightning</span> attachment to low buildings that are commonly found in almost every populated area around the world. The proximity of the camera and the <span class="hlt">high</span> frame rate allowed us to see interesting details that will improve the understanding of the attachment process and, consequently, the models and theories used by <span class="hlt">lightning</span> protection standards. This paper also presents spectacular images and videos of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917613R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917613R"><span>Forest fires caused by <span class="hlt">lightning</span> <span class="hlt">activity</span> in Portugal</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russo, Ana; Ramos, Alexandre M.; Benali, Akli; Trigo, Ricardo M.</p> <p>2017-04-01</p> <p> and Atmosphere (IPMA). The main objective of this work was to evaluate and quantify the relations between the wildfires' occurrence and the <span class="hlt">lightning</span> <span class="hlt">activity</span>. In particularly we were able to verify if wildfires which were identified as "ignited by <span class="hlt">lightning</span>" by comparing its location to the <span class="hlt">lightning</span> discharges location database. Furthermore we have also investigated possible fire ignition by <span class="hlt">lightning</span> discharges that have not yet been labeled in the PRFD by comparing daily data from both datasets. - Bastos A., Gouveia C.M., Trigo R.M., Running S.W., 2014. Biogeosciences, 11, 3421-3435. - Pereira M.G., B.D. Malamud R.M. Trigo, P.I. Alves, 2011. Nat. Hazards Earth Syst. Sci., 11, 3343-3358. - Gouveia C., Trigo R.M., DaCamara C.C., 2009. Nat. Hazards Earth Syst. Sci., 9, 185-195 - Gouveia C.M., Bistinas I., Liberato M.L.R., Bastos A., Koutsiasd N., Trigo R., 2016. Agricultural and Forest Meteorology, 218-219, 135-145. Acknowledgements Research performed was supported by FAPESP/FCT Project Brazilian Fire-Land-Atmosphere System (BrFLAS) (1389/2014 and 2015/01389-4). Ana Russo thanks FCT for granted support (SFRH/BPD/99757/2014). A. M. Ramos was also supported by a FCT postdoctoral grant (FCT/DFRH/ SFRH/BPD/84328/2012).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900037492&hterms=radioastronomy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dradioastronomy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900037492&hterms=radioastronomy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dradioastronomy"><span>Upper limit set for level of <span class="hlt">lightning</span> <span class="hlt">activity</span> on Titan</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Desch, M. D.; Kaiser, M. L.</p> <p>1990-01-01</p> <p>Because optically thick cloud and haze layers prevent <span class="hlt">lightning</span> detection at optical wavelength on Titan, a search was conducted for <span class="hlt">lightning</span>-radiated signals (spherics) at radio wavelengths using the planetary radioastronomy instrument aboard Voyager 1. Given the maximum ionosphere density of about 3000/cu cm, <span class="hlt">lightning</span> spherics should be detectable above an observing frequency of 500 kHz. Since no evidence for spherics is found, an upper limit to the total energy per flash in Titan <span class="hlt">lightning</span> of about 10 to the 6th J, or about 1000 times weaker than that of typical terrestrial <span class="hlt">lightning</span>, is inferred.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820006841','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820006841"><span>Measurement of characteristics of <span class="hlt">lightning</span> at <span class="hlt">high</span> altitudes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coquelet, M.; Gall, D.</p> <p>1981-01-01</p> <p>New development in aeronautical technology -- the use of composite materials, new electronic components, electric flight controls -- have made aircraft potentially more and more vulnerable to the effects of <span class="hlt">lightning</span>. In-flight tests were conducted to evaluate the current in a bolt of <span class="hlt">lightning</span>, to measure voltage surge in the onboard circuitry and in certain pieces of equipment, and to document the relationship <span class="hlt">lightning</span> bolt current and the voltage surge so as to develop a theoretical model and thuds to become acquainted with the significant</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE13A2230H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE13A2230H"><span>Total <span class="hlt">lightning</span> characteristics of recent hazardous weather events in Japan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hobara, Y.; Kono, S.; Ogawa, T.; Heckman, S.; Stock, M.; Liu, C.</p> <p>2017-12-01</p> <p>In recent years, the total <span class="hlt">lightning</span> (IC + CG) <span class="hlt">activity</span> have attracted a lot of attention to improve the quality of prediction of hazardous weather phenomena (hail, wind gusts, tornadoes, heavy precipitation). Sudden increases of the total <span class="hlt">lightning</span> flash rate so-called <span class="hlt">lightning</span> jump (LJ) preceding the hazardous weather, reported in several studies, are one of the promising precursors. Although, increases in the frequency and intensity of these extreme weather events were reported in Japan, relationship with these events with total <span class="hlt">lightning</span> have not studied intensively yet. In this paper, we will demonstrate the recent results from Japanese total <span class="hlt">lightning</span> detection network (JTLN) in relation with hazardous weather events occurred in Japan in the period of 2014-2016. Automatic thunderstorm cell tracking was carried out based on the very <span class="hlt">high</span> spatial and temporal resolution X-band MP radar echo data (1 min and 250 m) to correlate with total <span class="hlt">lightning</span> <span class="hlt">activity</span>. Results obtained reveal promising because the flash rate of total <span class="hlt">lightning</span> tends to increase about 10 40 minutes before the onset of the extreme weather events. We also present the differences in <span class="hlt">lightning</span> characteristics of thunderstorm cells between hazardous weather events and non-hazardous weather events, which is a vital information to improve the prediction efficiency.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090017495&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DG%2526T','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090017495&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DG%2526T"><span>The North Alabama <span class="hlt">Lightning</span> Warning Product</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Buechler, Dennis E.; Blakeslee, R. J.; Stano, G. T.</p> <p>2009-01-01</p> <p>The North Alabama <span class="hlt">Lightning</span> Mapping Array NALMA has been collecting total <span class="hlt">lightning</span> data on storms in the Tennessee Valley region since 2001. Forecasters from nearby National Weather Service (NWS) offices have been ingesting this data for display with other AWIPS products. The current <span class="hlt">lightning</span> product used by the offices is the <span class="hlt">lightning</span> source density plot. The new product provides a probabalistic, short-term, graphical forecast of the probability of <span class="hlt">lightning</span> <span class="hlt">activity</span> occurring at 5 min intervals over the next 30 minutes . One of the uses of the current <span class="hlt">lightning</span> source density product by the Huntsville National Weather Service Office is to identify areas of potential for cloud-to-ground flashes based on where LMA total <span class="hlt">lightning</span> is occurring. This product quantifies that observation. The <span class="hlt">Lightning</span> Warning Product is derived from total <span class="hlt">lightning</span> observations from the Washington, D.C. (DCLMA) and North Alabama <span class="hlt">Lightning</span> Mapping Arrays and cloud-to-ground <span class="hlt">lightning</span> flashes detected by the National <span class="hlt">Lightning</span> Detection Network (NLDN). Probability predictions are provided for both intracloud and cloud-to-ground flashes. The gridded product can be displayed on AWIPS workstations in a manner similar to that of the <span class="hlt">lightning</span> source density product.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050237927&hterms=Quality+risk+management&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DQuality%2Brisk%2Bmanagement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050237927&hterms=Quality+risk+management&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DQuality%2Brisk%2Bmanagement"><span>Pre-Launch GOES-R Risk Reduction <span class="hlt">Activities</span> for the Geostationary <span class="hlt">Lightning</span> Mapper</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, S. J.; Blakeslee, R. J.; Boccippio, D. J.; Christian, H. J.; Koshak, W. J.; Petersen, W. A.</p> <p>2005-01-01</p> <p>The GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM) is a new instrument planned for GOES-R that will greatly improve storm hazard nowcasting and increase warning lead time day and night. Daytime detection of <span class="hlt">lightning</span> is a particularly significant technological advance given the fact that the solar illuminated cloud-top signal can exceed the intensity of the <span class="hlt">lightning</span> signal by a factor of one hundred. Our approach is detailed across three broad themes which include: Data Processing Algorithm Readiness, Forecast Applications, and Radiance Data Mining. These themes address how the data will be processed and distributed, and the algorithms and models for developing, producing, and using the data products. These pre-launch risk reduction <span class="hlt">activities</span> will accelerate the operational and research use of the GLM data once GOES-R begins on-orbit operations. The GLM will provide unprecedented capabilities for tracking thunderstorms and earlier warning of impending severe and hazardous weather threats. By providing direct information on <span class="hlt">lightning</span> initiation, propagation, extent, and rate, the GLM will also capture the updraft dynamics and life cycle of convective storms, as well as internal ice precipitation processes. The GLM provides information directly from the heart of the thunderstorm as opposed to cloud-top only. Nowcasting applications enabled by the GLM data will expedite the warning and response time of emergency management systems, improve the dispatch of electric power utility repair crews, and improve airline routing around thunderstorms thereby improving safety and efficiency, saving fuel and reducing delays. The use of GLM data will assist the Bureau of Land Management (BLM) and the Forest Service in quickly detecting <span class="hlt">lightning</span> ground strikes that have a <span class="hlt">high</span> probability of causing fires. Finally, GLM data will help assess the role of thunderstorms and deep convection in global climate, and will improve regional air quality and global chemistry/climate modeling</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023353','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023353"><span>Global <span class="hlt">lightning</span> studies</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Wright, Pat; Christian, Hugh; Blakeslee, Richard; Buechler, Dennis; Scharfen, Greg</p> <p>1991-01-01</p> <p>The global <span class="hlt">lightning</span> signatures were analyzed from the DMSP Optical Linescan System (OLS) imagery archived at the National Snow and Ice Data Center. Transition to analysis of the digital archive becomes available and compare annual, interannual, and seasonal variations with other global data sets. An initial survey of the quality of the existing film archive was completed and <span class="hlt">lightning</span> signatures were digitized for the summer months of 1986 to 1987. The relationship is studied between: (1) global and regional <span class="hlt">lightning</span> <span class="hlt">activity</span> and rainfall, and (2) storm electrical development and environment. Remote sensing data sets obtained from field programs are used in conjunction with satellite/radar/<span class="hlt">lightning</span> data to develop and improve precipitation estimation algorithms, and to provide a better understanding of the co-evolving electrical, microphysical, and dynamical structure of storms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070038289&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeostationary','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070038289&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeostationary"><span>Geostationary <span class="hlt">Lightning</span> Mapper for GOES-R</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven; Blakeslee, Richard; Koshak, William</p> <p>2007-01-01</p> <p>The Geostationary <span class="hlt">Lightning</span> Mapper (GLM) is a single channel, near-IR optical detector, used to detect, locate and measure total <span class="hlt">lightning</span> <span class="hlt">activity</span> over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of <span class="hlt">lightning</span> from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. The mission objectives for the GLM are to 1) provide continuous, full-disk <span class="hlt">lightning</span> measurements for storm warning and Nowcasting, 2) provide early warning of tornadic <span class="hlt">activity</span>, and 3) accumulate a long-term database to track decadal changes of <span class="hlt">lightning</span>. The GLM owes its heritage to the NASA <span class="hlt">Lightning</span> Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 11 year data record of global <span class="hlt">lightning</span> <span class="hlt">activity</span>. Instrument formulation studies begun in January 2006 will be completed in March 2007, with implementation expected to begin in September 2007. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite, airborne science missions (e.g., African Monsoon Multi-disciplinary Analysis, AMMA), and regional test beds (e.g, <span class="hlt">Lightning</span> Mapping Arrays) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time <span class="hlt">lightning</span> mapping data now being provided to selected forecast offices will lead to improved understanding of the application of these data in the severe storm warning process and accelerate the development of the pre-launch algorithms and Nowcasting applications. Proxy data combined with MODIS and Meteosat Second Generation SEVERI observations will also lead to new</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21208587-packaging-waste-hitting-home-runs-how-education-lightning-strike-detection-technology-supports-company-community-activities','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21208587-packaging-waste-hitting-home-runs-how-education-lightning-strike-detection-technology-supports-company-community-activities"><span>Packaging Waste and Hitting Home Runs: How Education and <span class="hlt">Lightning</span> Strike Detection Technology Supports Company and Community <span class="hlt">Activities</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Deecke, T.A.; Hyde, J.V.; Hylko, J.M.</p> <p>2006-07-01</p> <p>The weather is the most significant and unmanageable variable when performing environmental remediation <span class="hlt">activities</span>. This variable can contribute to the failure of a project in two ways: 1) severe injury to an employee or employees following a cloud-to-ground <span class="hlt">lightning</span> strike without prior visual or audible warnings; and 2) excessive 'down time' associated with mobilization and demobilization <span class="hlt">activities</span> after a false alarm (e.g., <span class="hlt">lightning</span> was seen in the distance but was actually moving away from the site). Therefore, in order for a project to be successful from both safety and financial viewpoints, the uncertainties associated with inclement weather, specifically <span class="hlt">lightning</span>, needmore » to be understood to eliminate the element of surprise. This paper discusses educational information related to the history and research of <span class="hlt">lightning</span>, how <span class="hlt">lightning</span> storms develop, types of <span class="hlt">lightning</span>, the mechanisms of <span class="hlt">lightning</span> injuries and fatalities, and follow-up medical treatment. Fortunately, <span class="hlt">lightning</span> storm monitoring does not have to be either costly or elaborate. WESKEM, LLC selected the Boltek StormTracker <span class="hlt">Lightning</span> Detection System with the Aninoquisi <span class="hlt">Lightning</span> 2000{sup TM} software. This fixed system, used in combination with online weather web pages, monitors and alarms WESKEM, LLC field personnel in the event of an approaching <span class="hlt">lightning</span> storm. This application was expanded to justify the purchase of the hand-held Sky Scan <span class="hlt">Lightning</span>/Storm Detector Model P5 used by the Heath Youth Athletic Association (HYAA) which is a non-profit, charitable organization offering sports programs for the youth and young adults in the local community. Fortunately, a <span class="hlt">lightning</span> injury or fatality has never occurred on a WESKEM Paducah project or an HYAA-sponsored event. Using these fixed and hand-held systems will continue to prevent such injuries from occurring in the foreseeable future. (authors)« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA507300','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA507300"><span>The <span class="hlt">High</span> Energy <span class="hlt">Lightning</span> Simulator (HELS) Test Facility for Testing Explosive Items</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1996-08-01</p> <p>Center, Redstone Arsenal, AL Thomas E. Roy and David W. Bagwell AMTEC Corporation, Huntsville, AL ABSTRACT Details of the <span class="hlt">High</span> Energy <span class="hlt">Lightning</span>...simulated <span class="hlt">lightning</span> testing of inerted missiles and inerted explosive items containing electrically initiated explosive trains is to determine the...penetrate the safety cages, which are electrically conductive and grounded, without loss of current. This transmission system consists of six large</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25478304','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25478304"><span>Tropic <span class="hlt">lightning</span>: myth or menace?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McCarthy, John</p> <p>2014-11-01</p> <p><span class="hlt">Lightning</span> is one of the leading causes of death related to environmental disaster. Of all <span class="hlt">lightning</span> fatalities documented between 2006 and 2012, leisure <span class="hlt">activities</span> contributed the largest proportion of deaths, with water-associated, sports, and camping being the most common. Despite the prevalence of these <span class="hlt">activities</span> throughout the islands, Hawai'i has had zero documented <span class="hlt">lightning</span> fatalities since weather data tracking was initiated in 1959. There is a common misconception that <span class="hlt">lightning</span> does not strike the ground in Hawai'i. This myth may contribute to a potentially dangerous false sense of security, and recognition of warning signs and risk factor modification remain the most important prevention strategies. <span class="hlt">Lightning</span> damage occurs on a spectrum, from minor burns to multi-organ dysfunction. After injury, initial treatment should focus on "reverse triage" and immediate cardiopulmonary resuscitation when indicated, followed by transfer to a healthcare facility. Definitive treatment entails monitoring and management of potential sequelae, to include cardiovascular, neurologic, dermatologic, ophthalmologic, audiovestibular, and psychiatric complications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4244891','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4244891"><span>Tropic <span class="hlt">Lightning</span>: Myth or Menace?</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p><span class="hlt">Lightning</span> is one of the leading causes of death related to environmental disaster. Of all <span class="hlt">lightning</span> fatalities documented between 2006 and 2012, leisure <span class="hlt">activities</span> contributed the largest proportion of deaths, with water-associated, sports, and camping being the most common. Despite the prevalence of these <span class="hlt">activities</span> throughout the islands, Hawai‘i has had zero documented <span class="hlt">lightning</span> fatalities since weather data tracking was initiated in 1959. There is a common misconception that <span class="hlt">lightning</span> does not strike the ground in Hawai‘i. This myth may contribute to a potentially dangerous false sense of security, and recognition of warning signs and risk factor modification remain the most important prevention strategies. <span class="hlt">Lightning</span> damage occurs on a spectrum, from minor burns to multi-organ dysfunction. After injury, initial treatment should focus on “reverse triage” and immediate cardiopulmonary resuscitation when indicated, followed by transfer to a healthcare facility. Definitive treatment entails monitoring and management of potential sequelae, to include cardiovascular, neurologic, dermatologic, ophthalmologic, audiovestibular, and psychiatric complications. PMID:25478304</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V43B2861B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V43B2861B"><span>Using Volcanic <span class="hlt">Lightning</span> Measurements to Discern Variations in Explosive Volcanic <span class="hlt">Activity</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.</p> <p>2013-12-01</p> <p>VHF observations of volcanic <span class="hlt">lightning</span> have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical <span class="hlt">activity</span> occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The <span class="hlt">high</span> rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic <span class="hlt">activity</span>. The fact that vent discharges are observed concurrent with explosive volcanic <span class="hlt">activity</span> indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed <span class="hlt">lightning</span> observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic <span class="hlt">lightning</span> observations in general, are a valuable tool for volcano monitoring, providing a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMAE31A0267Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMAE31A0267Z"><span>Statistical Patterns in Natural <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zoghzoghy, F. G.; Cohen, M.; Said, R.; Inan, U. S.</p> <p>2011-12-01</p> <p>Every day millions of <span class="hlt">lightning</span> flashes occur around the globe but the understanding of this natural phenomenon is still lacking. Fundamentally, <span class="hlt">lightning</span> is nature's way of destroying charge separation in clouds and restoring electric neutrality. Thus, statistical patterns of <span class="hlt">lightning</span> <span class="hlt">activity</span> indicate the scope of these electric discharges and offer a surrogate measure of timescales for charge buildup in thunderclouds. We present a statistical method to investigate spatio-temporal correlations among <span class="hlt">lightning</span> flashes using National <span class="hlt">Lightning</span> Detection Network (NLDN) stroke data. By monitoring the distribution of <span class="hlt">lightning</span> <span class="hlt">activity</span>, we can observe the charging and discharging processes in a given thunderstorm. In particular, within a given storm, the flashes do not occur as a memoryless random process. We introduce the No Flash Zone (NFZ) which results from the suppressed probability of two consecutive neighboring flashes. This effect lasts for tens of seconds and can extend up to 15 km around the location of the initial flash, decaying with time. This suppression effect may be a function of variables such as storm location, storm phase, and stroke peak current. We develop a clustering algorithm, Storm-Locator, which groups strokes into flashes, storm cells, and thunderstorms, and enables us to study <span class="hlt">lightning</span> and the NFZ in different geographical regions, and for different storms. The recursive algorithm also helps monitor the interaction among spatially displaced storm cells, and can provide more insight into the spatial and temporal impacts of <span class="hlt">lightning</span> discharges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT........94L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT........94L"><span>Investigating <span class="hlt">lightning</span>-to-ionosphere energy coupling based on VLF <span class="hlt">lightning</span> propagation characterization</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lay, Erin Hoffmann</p> <p></p> <p>In this dissertation, the capabilities of the World-Wide <span class="hlt">Lightning</span> Location Network (WWLLN) are analyzed in order to study the interactions of <span class="hlt">lightning</span> energy with the lower ionosphere. WWLLN is the first global ground-based <span class="hlt">lightning</span> location network and the first <span class="hlt">lightning</span> detection network that continuously monitors <span class="hlt">lightning</span> around the world in real time. For this reason, a better characterization of the WWLLN could allow many global atmospheric science problems to be addressed, including further investigation into the global electric circuit and global mapping of regions of the lower ionosphere likely to be impacted by strong <span class="hlt">lightning</span> and transient luminous events. This dissertation characterizes the World-Wide Location Network (WWLLN) in terms of detection efficiency, location and timing accuracy, and <span class="hlt">lightning</span> type. This investigation finds excellent timing and location accuracy for WWLLN. It provides the first experimentally-determined estimate of relative global detection efficiency that is used to normalize <span class="hlt">lightning</span> counts based on location. These normalized global <span class="hlt">lightning</span> data from the WWLLN are used to map intense storm regions around the world with <span class="hlt">high</span> time and spatial resolution as well as to provide information on energetic emissions known as elves and terrestrial gamma-ray flashes (TGFs). This dissertation also improves WWLLN by developing a procedure to provide the first estimate of relative <span class="hlt">lightning</span> stroke radiated energy in the 1-24 kHz frequency range by a global <span class="hlt">lightning</span> detection network. These characterizations and improvements to WWLLN are motivated by the desire to use WWLLN data to address the problem of <span class="hlt">lightning</span>-to-ionosphere energy coupling. Therefore, WWLLN stroke rates are used as input to a model, developed by Professor Mengu Cho at the Kyushu Institute of Technology in Japan, that describes the non-linear effect of <span class="hlt">lightning</span> electromagnetic pulses (EMP) on the ionosphere by accumulating electron density changes resulting</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070031877','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070031877"><span>The ENSO Effect on the Temporal and Spatial Distribution of Global <span class="hlt">Lightning</span> <span class="hlt">Activity</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chronis, Themis G.; Goodman, Steven J.; Cecil, Dan; Buechler, Dennis; Pittman, Jasna; Robertson, Franklin R.; Blakeslee, Richard J.</p> <p>2007-01-01</p> <p>The recently reprocessed (1997-2006) OTD/LIS database is used to investigate the global <span class="hlt">lightning</span> climatology in response to the ENSO cycle. A linear correlation map between <span class="hlt">lightning</span> anomalies and ENSO (NINO3.4) identifies areas that generally follow patterns similar to precipitation anomalies. We also observed areas where significant <span class="hlt">lightning</span>/ENSO correlations are found and are not accompanied of significant precipitation/ENSO correlations. An extreme case of the strong decoupling between <span class="hlt">lightning</span> and precipitation is observed over the Indonesian peninsula (Sumatra) where positive <span class="hlt">lightning</span>/NINO3.4 correlations are collocated with negative precipitation/NINO3.4 correlations. Evidence of linear relationships between the spatial extent of thunderstorm distribution and the respective NINO3.4 magnitude are presented for different regions on the Earth. Strong coupling is found over areas remote to the main ENSO axis of influence and both during warm and cold ENSO phases. Most of the resulted relationships agree with the tendencies of precipitation related to ENSO empirical maps or documented teleconnection patterns. Over the Australian continent, opposite behavior in terms of thunderstorm <span class="hlt">activity</span> is noted for warm ENSO phases with NINO3.4 magnitudes with NINO3.4>+l.08 and 0<NqNO3.4<I.08. Finally, we investigate the spatial distribution of areas that consistently portrayed enhanced <span class="hlt">lightning</span> <span class="hlt">activity</span> during the main warm/cold (El Nino/La Nina) ENSO episodes of the past decade. The observed patterns show no spatial overlapping and identify areas that in their majority are in agreement with empirical precipitation/ENSO maps. The areas that appear during the warm ENSO phase are found over regions that have been identified as anomalous Hadley circulation ENSO-related patterns. The areas that appear during the cold ENSO phase are found predominantly around the west hemisphere equatorial belt and are in their majority identified by anomalous Walker circulation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ERL.....9e5004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ERL.....9e5004S"><span>Evidence for solar wind modulation of <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scott, C. J.; Harrison, R. G.; Owens, M. J.; Lockwood, M.; Barnard, L.</p> <p>2014-05-01</p> <p>The response of <span class="hlt">lightning</span> rates over Europe to arrival of <span class="hlt">high</span> speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind V y component, measured by the Advanced Composition Explorer spacecraft. <span class="hlt">Lightning</span> rate changes around these event times are determined from the very low frequency arrival time difference (ATD) system of the UK Met Office. Arrival of <span class="hlt">high</span> speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the <span class="hlt">high</span> speed stream’s source being co-located with an <span class="hlt">active</span> region appearing on the Eastern solar limb and rotating at the 27 d period of the Sun. Arrival of the <span class="hlt">high</span> speed stream at Earth also coincides with a small (˜1%) but rapid decrease in galactic cosmic ray flux, a moderate (˜6%) increase in lower energy solar energetic protons (SEPs), and a substantial, statistically significant increase in <span class="hlt">lightning</span> rates. These changes persist for around 40 d in all three quantities. The <span class="hlt">lightning</span> rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again persisting for around 40 d after the arrival of a <span class="hlt">high</span> speed solar wind stream. This result appears to contradict earlier studies that found an anti-correlation between sunspot number and thunder days over solar cycle timescales. The increase in <span class="hlt">lightning</span> rates and thunder days that we observe coincides with an increased flux of SEPs which, while not being detected at ground level, nevertheless penetrate the atmosphere to tropospheric altitudes. This effect could be further amplified by an increase in mean <span class="hlt">lightning</span> stroke intensity that brings more strokes above the detection threshold of the ATD system. In order to remove any potential seasonal bias the analysis was repeated for daily solar wind triggers occurring during the summer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123.2861H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123.2861H"><span>LOFAR <span class="hlt">Lightning</span> Imaging: Mapping <span class="hlt">Lightning</span> With Nanosecond Precision</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hare, B. M.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Falcke, H.; Hörandel, J. R.; Leijnse, H.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; Trinh, T. N. G.; ter Veen, S.; Winchen, T.</p> <p>2018-03-01</p> <p><span class="hlt">Lightning</span> mapping technology has proven instrumental in understanding <span class="hlt">lightning</span>. In this work we present a pipeline that can use <span class="hlt">lightning</span> observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for <span class="hlt">lightning</span> flashes that are over 20 km outside the area enclosed by LOFAR antennas (˜3,200 km2), and can potentially locate over 10,000 sources per <span class="hlt">lightning</span> flash. We also show that LOFAR is the first <span class="hlt">lightning</span> mapping system that is sensitive to the spatial structure of the electrical current during individual <span class="hlt">lightning</span> leader steps.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NHESS..16..871S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NHESS..16..871S"><span><span class="hlt">Lightning</span> and electrical <span class="hlt">activity</span> during the Shiveluch volcano eruption on 16 November 2014</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shevtsov, Boris M.; Firstov, Pavel P.; Cherneva, Nina V.; Holzworth, Robert H.; Akbashev, Renat R.</p> <p>2016-03-01</p> <p>According to World Wide <span class="hlt">Lightning</span> Location Network (WWLLN) data, a sequence of <span class="hlt">lightning</span> discharges was detected which occurred in the area of the explosive eruption of Shiveluch volcano on 16 November 2014 in Kamchatka. Information on the ash cloud motion was confirmed by the measurements of atmospheric electricity, satellite observations and meteorological and seismic data. It was concluded that WWLLN resolution is enough to detect the earlier stage of volcanic explosive eruption when electrification processes develop the most intensively. The <span class="hlt">lightning</span> method has the undeniable advantage for the fast remote sensing of volcanic electric <span class="hlt">activity</span> anywhere in the world. There is a good opportunity for the development of WWLLN technology to observe explosive volcanic eruptions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820015803','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820015803"><span>Evaluation of <span class="hlt">lightning</span> accommodation systems for wind-driven turbine rotors</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bankaitis, H.</p> <p>1982-01-01</p> <p>Wind-driven turbine generators are being evaluated as an alternative source of electric energy. Areas of favorable location for the wind-driven turbines (<span class="hlt">high</span> wind density) coincide with areas of <span class="hlt">high</span> incidence of thunderstorm <span class="hlt">activity</span>. These locations, coupled with the 30-m or larger diameter rotor blades, make the wind-driven turbine blades probable terminations for <span class="hlt">lightning</span> strikes. Several candidate systems of <span class="hlt">lightning</span> accommodation for composite-structural-material blades were designed and their effectiveness evaluated by submitting the systems to simulated <span class="hlt">lightning</span> strikes. The test data were analyzed and system design were reviewed on the basis of the analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE32A..04A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE32A..04A"><span>Simultaneous Observation of <span class="hlt">Lightning</span> and Terrestrial Gamma-ray Flashes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alnussirat, S.; Christian, H. J., Jr.; Fishman, G. J.; Burchfield, J. C.</p> <p>2017-12-01</p> <p>The relative timing between TGFs and <span class="hlt">lightning</span> optical emissions is a critical parameter that may elucidate the production mechanism(s) of TGFs. In this work, we study the correlation between optical emissions detected by the Geostationary <span class="hlt">Lightning</span> Mapper (GLM) and TGFs triggered by the Fermi-GBM. The GLM is the only instrument that detects total <span class="hlt">lightning</span> <span class="hlt">activities</span> (IC and CG) continuously (day and night) over a large area of the Earth, with very <span class="hlt">high</span> efficiency and location accuracy. The unique optical emission data from the GLM will enable us to study, for the first time, the <span class="hlt">lightning</span> <span class="hlt">activity</span> before and after the TGF production. From this investigation, we hope to clarify the production mechanism of TGFs and the characteristics of thundercloud cells that produce them. A description of the GLM concept and operation will be presented and as well as the preliminary results of the TGF-optical emission correlation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GeoRL..3515802A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GeoRL..3515802A"><span>Characterization of infrasound from <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Assink, J. D.; Evers, L. G.; Holleman, I.; Paulssen, H.</p> <p>2008-08-01</p> <p>During thunderstorm <span class="hlt">activity</span> in the Netherlands, electromagnetic and infrasonic signals are emitted due to the process of <span class="hlt">lightning</span> and thunder. It is shown that correlating infrasound detections with results from a electromagnetic <span class="hlt">lightning</span> detection network is successful up to distances of 50 km from the infrasound array. Infrasound recordings clearly show blastwave characteristics which can be related to cloud-ground discharges, with a dominant frequency between 1-5 Hz. Amplitude measurements of CG discharges can partly be explained by the beam pattern of a line source with a dominant frequency of 3.9 Hz, up to a distance of 20 km. The ability to measure <span class="hlt">lightning</span> <span class="hlt">activity</span> with infrasound arrays has both positive and negative implications for CTBT verification purposes. As a scientific application, <span class="hlt">lightning</span> studies can benefit from the worldwide infrasound verification system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMAE23A..03J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMAE23A..03J"><span><span class="hlt">High</span>-Speed Video Observations of a Natural <span class="hlt">Lightning</span> Stepped Leader</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jordan, D. M.; Hill, J. D.; Uman, M. A.; Yoshida, S.; Kawasaki, Z.</p> <p>2010-12-01</p> <p><span class="hlt">High</span>-speed video images of one branch of a natural negative <span class="hlt">lightning</span> stepped leader were obtained at a frame rate of 300 kfps (3.33 us exposure) on June 18th, 2010 at the International Center for <span class="hlt">Lightning</span> Research and Testing (ICLRT) located on the Camp Blanding Army National Guard Base in north-central Florida. The images were acquired using a 20 mm Nikon lens mounted on a Photron SA1.1 <span class="hlt">high</span>-speed camera. A total of 225 frames (about 0.75 ms) of the downward stepped leader were captured, followed by 45 frames of the leader channel re-illumination by the return stroke and subsequent decay following the ground attachment of the primary leader channel. Luminous characteristics of dart-stepped leader propagation in triggered <span class="hlt">lightning</span> obtained by Biagi et al. [2009, 2010] and of long laboratory spark formation [e.g., Bazelyan and Raizer, 1998; Gallimberti et al., 2002] are evident in the frames of the natural <span class="hlt">lightning</span> stepped leader. Space stems/leaders are imaged in twelve different frames at various distances in front of the descending leader tip, which branches into two distinct components 125 frames after the channel enters the field of view. In each case, the space stem/leader appears to connect to the leader tip above in the subsequent frame, forming a new step. Each connection is associated with significant isolated brightening of the channel at the connection point followed by typically three or four frames of upward propagating re-illumination of the existing leader channel. In total, at least 80 individual steps were imaged.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3681151','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3681151"><span><span class="hlt">Lightning</span> Sensors for Observing, Tracking and Nowcasting Severe Weather</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Price, Colin</p> <p>2008-01-01</p> <p>Severe and extreme weather is a major natural hazard all over the world, often resulting in major natural disasters such as hail storms, tornados, wind storms, flash floods, forest fires and <span class="hlt">lightning</span> damages. While precipitation, wind, hail, tornados, turbulence, etc. can only be observed at close distances, <span class="hlt">lightning</span> <span class="hlt">activity</span> in these damaging storms can be monitored at all spatial scales, from local (using very <span class="hlt">high</span> frequency [VHF] sensors), to regional (using very low frequency [VLF] sensors), and even global scales (using extremely low frequency [ELF] sensors). Using sensors that detect the radio waves emitted by each <span class="hlt">lightning</span> discharge, it is now possible to observe and track continuously distant thunderstorms using ground networks of sensors. In addition to the number of <span class="hlt">lightning</span> discharges, these sensors can also provide information on <span class="hlt">lightning</span> characteristics such as the ratio between intra-cloud and cloud-to-ground <span class="hlt">lightning</span>, the polarity of the <span class="hlt">lightning</span> discharge, peak currents, charge removal, etc. It has been shown that changes in some of these <span class="hlt">lightning</span> characteristics during thunderstorms are often related to changes in the severity of the storms. In this paper different <span class="hlt">lightning</span> observing systems are described, and a few examples are provided showing how <span class="hlt">lightning</span> may be used to monitor storm hazards around the globe, while also providing the possibility of supplying short term forecasts, called nowcasting. PMID:27879700</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23478564','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23478564"><span><span class="hlt">Lightning</span> injuries in sports and recreation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thomson, Eric M; Howard, Thomas M</p> <p>2013-01-01</p> <p>The powers of <span class="hlt">lightning</span> have been worshiped and feared by all known human cultures. While the chance of being struck by <span class="hlt">lightning</span> is statistically very low, that risk becomes much greater in those who frequently work or play outdoors. Over the past 2 yr, there have been nearly 50 <span class="hlt">lightning</span>-related deaths reported within the United States, with a majority of them associated with outdoor recreational <span class="hlt">activities</span>. Recent publications primarily have been case studies, review articles, and a discussion of a sixth method of injury. The challenge in reducing <span class="hlt">lightning</span>-related injuries in organized sports has been addressed well by both the National Athletic Trainers' Association and the National Collegiate Athletic Association in their guidelines on <span class="hlt">lightning</span> safety. Challenges remain in educating the general population involved in recreational outdoor <span class="hlt">activities</span> that do not fall under the guidelines of organized sports.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PCE....35..469P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PCE....35..469P"><span>Circulation types related to <span class="hlt">lightning</span> <span class="hlt">activity</span> over Catalonia and the Principality of Andorra</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pineda, N.; Esteban, P.; Trapero, L.; Soler, X.; Beck, C.</p> <p></p> <p>In the present study, we use a Principal Component Analysis (PCA) to characterize the surface 6-h circulation types related to substantial <span class="hlt">lightning</span> <span class="hlt">activity</span> over the Catalonia area (north-eastern Iberia) and the Principality of Andorra (eastern Pyrenees) from January 2003 to December 2007. The gridded data used for classification of the circulation types is the NCEP Final Analyses of the Global Tropospheric Analyses at 1° resolution over the region 35°N-48°N by 5°W-8°E. <span class="hlt">Lightning</span> information was collected by the SAFIR <span class="hlt">lightning</span> detection system operated by the Meteorological Service of Catalonia (SMC), which covers the region studied. We determined nine circulation types on the basis of the S-mode orthogonal rotated Principal Component Analysis. The “extreme scores” principle was used previous to the assignation of all cases, to obtain the number of final types and their centroids. The distinct differences identified in the resulting mean Sea Level Pressure (SLP) fields enabled us to group the types into three main patterns, taking into account their scale/dynamical origin. The first group of types shows the different distribution of the centres of action at synoptic scale associated with the occurrence of <span class="hlt">lightning</span>. The second group is connected to mesoscale dynamics, mainly induced by the relief of the Pyrenees. The third group shows types with low gradient SLP patterns in which the <span class="hlt">lightning</span> <span class="hlt">activity</span> is a consequence of thermal dynamics (coastal and mountain breezes). Apart from reinforcing the consistency of the groups obtained, analysis of the resulting classification improves our understanding of the geographical distribution and genesis factors of thunderstorm <span class="hlt">activity</span> in the study area, and provides complementary information for supporting weather forecasting. Thus, the catalogue obtained will provide advances in different climatological and meteorological applications, such as nowcasting products or detection of climate change trends.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930005198','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930005198"><span>Evidence for <span class="hlt">lightning</span> on Venus</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Strangeway, R. J.</p> <p>1992-01-01</p> <p><span class="hlt">Lightning</span> is an interesting phenomenon both for atmospheric and ionospheric science. At the Earth <span class="hlt">lightning</span> is generated in regions where there is strong convection. <span class="hlt">Lightning</span> also requires the generation of large charge-separation electric fields. The energy dissipated in a <span class="hlt">lightning</span> discharge can, for example, result in chemical reactions that would not normally occur. From an ionospheric point of view, <span class="hlt">lightning</span> generates a broad spectrum of electromagnetic radiation. This radiation can propagate through the ionosphere as whistler mode waves, and at the Earth the waves propagate to <span class="hlt">high</span> altitudes in the plasmasphere where they can cause energetic particle precipitation. The atmosphere and ionosphere of Venus are quite different from those on the Earth, and the presence of <span class="hlt">lightning</span> at Venus has important consequences for our knowledge of why <span class="hlt">lightning</span> occurs and how the energy is dissipated in the atmosphere and ionosphere. As discussed here, it now appears that <span class="hlt">lightning</span> occurs in the dusk local time sector at Venus.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE23B2483N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE23B2483N"><span>First <span class="hlt">high</span> speed imaging of <span class="hlt">lightning</span> from summer thunderstorms over India: Preliminary results based on amateur recording using a digital camera</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Narayanan, V. L.</p> <p>2017-12-01</p> <p>For the first time, <span class="hlt">high</span> speed imaging of <span class="hlt">lightning</span> from few isolated tropical thunderstorms are observed from India. The recordings are made from Tirupati (13.6oN, 79.4oE, 180 m above mean sea level) during summer months with a digital camera capable of recording <span class="hlt">high</span> speed videos up to 480 fps. At 480 fps, each individual video file is recorded for 30 s resulting in 14400 deinterlaced images per video file. An automatic processing algorithm is developed for quick identification and analysis of the <span class="hlt">lightning</span> events which will be discussed in detail. Preliminary results indicating different types of phenomena associated with <span class="hlt">lightning</span> like stepped leader, dart leader, luminous channels corresponding to continuing current and M components are discussed. While most of the examples show cloud to ground discharges, few interesting cases of intra-cloud, inter-cloud and cloud-air discharges will also be displayed. This indicates that though <span class="hlt">high</span> speed cameras with few 1000 fps are preferred for a detailed study on <span class="hlt">lightning</span>, moderate range CMOS sensor based digital cameras can provide important information as well. The <span class="hlt">lightning</span> imaging <span class="hlt">activity</span> presented herein is initiated as an amateur effort and currently plans are underway to propose a suite of supporting instruments to conduct coordinated campaigns. The images discussed here are acquired from normal residential area and indicate how frequent <span class="hlt">lightning</span> strikes are in such tropical locations during thunderstorms, though no towering structures are nearby. It is expected that popularizing of such recordings made with affordable digital cameras will trigger more interest in <span class="hlt">lightning</span> research and provide a possible data source from amateur observers paving the way for citizen science.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EP%26S...70...88T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EP%26S...70...88T"><span>Initiation of a <span class="hlt">lightning</span> search using the <span class="hlt">lightning</span> and airglow camera onboard the Venus orbiter Akatsuki</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, Yukihiro; Sato, Mitsuteru; Imai, Masataka; Lorenz, Ralph; Yair, Yoav; Aplin, Karen; Fischer, Georg; Nakamura, Masato; Ishii, Nobuaki; Abe, Takumi; Satoh, Takehiko; Imamura, Takeshi; Hirose, Chikako; Suzuki, Makoto; Hashimoto, George L.; Hirata, Naru; Yamazaki, Atsushi; Sato, Takao M.; Yamada, Manabu; Murakami, Shin-ya; Yamamoto, Yukio; Fukuhara, Tetsuya; Ogohara, Kazunori; Ando, Hiroki; Sugiyama, Ko-ichiro; Kashimura, Hiroki; Ohtsuki, Shoko</p> <p>2018-05-01</p> <p>The existence of <span class="hlt">lightning</span> discharges in the Venus atmosphere has been controversial for more than 30 years, with many positive and negative reports published. The <span class="hlt">lightning</span> and airglow camera (LAC) onboard the Venus orbiter, Akatsuki, was designed to observe the light curve of possible flashes at a sufficiently <span class="hlt">high</span> sampling rate to discriminate <span class="hlt">lightning</span> from other sources and can thereby perform a more definitive search for optical emissions. Akatsuki arrived at Venus during December 2016, 5 years following its launch. The initial operations of LAC through November 2016 have included a progressive increase in the <span class="hlt">high</span> voltage applied to the avalanche photodiode detector. LAC began <span class="hlt">lightning</span> survey observations in December 2016. It was confirmed that the operational <span class="hlt">high</span> voltage was achieved and that the triggering system functions correctly. LAC <span class="hlt">lightning</span> search observations are planned to continue for several years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26873252','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26873252"><span>[Neurological diseases after <span class="hlt">lightning</span> strike : <span class="hlt">Lightning</span> strikes twice].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gruhn, K M; Knossalla, Frauke; Schwenkreis, Peter; Hamsen, Uwe; Schildhauer, Thomas A; Tegenthoff, Martin; Sczesny-Kaiser, Matthias</p> <p>2016-06-01</p> <p><span class="hlt">Lightning</span> strikes rarely occur but 85 % of patients have <span class="hlt">lightning</span>-related neurological complications. This report provides an overview about different modes of energy transfer and neurological conditions related to <span class="hlt">lightning</span> strikes. Moreover, two case reports demonstrate the importance of interdisciplinary treatment and the spectrum of neurological complications after <span class="hlt">lightning</span> strikes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014276','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014276"><span>Effects of <span class="hlt">Lightning</span> and Other Meteorological Factors on Fire <span class="hlt">Activity</span> in the North American Boreal Forest: Implications for Fire Weather Forecasting</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Peterson, D.; Wang, J.; Ichoku, C.; Remer, L. A.</p> <p>2010-01-01</p> <p>The effects of <span class="hlt">lightning</span> and other meteorological factors on wildfire <span class="hlt">activity</span> in the North American boreal forest are statistically analyzed during the fire seasons of 2000-2006 through an integration of the following data sets: the MODerate Resolution Imaging Spectroradiometer (MODIS) level 2 fire products, the 3-hourly 32-kin gridded meteorological data from North American Regional Reanalysis (NARR), and the <span class="hlt">lightning</span> data collected by the Canadian <span class="hlt">Lightning</span> Detection Network (CLDN) and the Alaska <span class="hlt">Lightning</span> Detection Network (ALDN). Positive anomalies of the 500 hPa geopotential height field, convective available potential energy (CAPE), number of cloud-to-ground <span class="hlt">lightning</span> strikes, and the number of consecutive dry days are found to be statistically important to the seasonal variation of MODIS fire counts in a large portion of Canada and the entirety of Alaska. Analysis of fire occurrence patterns in the eastern and western boreal forest regions shows that dry (in the absence of precipitation) <span class="hlt">lightning</span> strikes account for only 20% of the total <span class="hlt">lightning</span> strikes, but are associated with (and likely cause) 40% of the MODIS observed fire counts in these regions. The chance for ignition increases when a threshold of at least 10 dry strikes per NARR grid box and at least 10 consecutive dry days is reached. Due to the orientation of the large-scale pattern, complex differences in fire and <span class="hlt">lightning</span> occurrence and variability were also found between the eastern and western sub-regions. Locations with a <span class="hlt">high</span> percentage of dry strikes commonly experience an increased number of fire counts, but the mean number of fire counts per dry strike is more than 50% higher in western boreal forest sub-region, suggesting a geographic and possible topographic influence. While wet <span class="hlt">lightning</span> events are found to occur with a large range of CAPE values, a <span class="hlt">high</span> probability for dry <span class="hlt">lightning</span> occurs only when 500 hPa geopotential heights are above 5700m and CAPE values are near the maximum</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070038265&hterms=warm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dwarm','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070038265&hterms=warm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dwarm"><span>Response of Global <span class="hlt">Lightning</span> <span class="hlt">Activity</span> Observed by the TRMM/LIS During Warm and Cold ENSO Phases</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chronis, Themis G.; Cecil, Dan; Goodman, Steven J.; Buechler, Dennis</p> <p>2007-01-01</p> <p>This paper investigates the response of global <span class="hlt">lightning</span> <span class="hlt">activity</span> to the transition from the warm (January February March-JFM 1998) to the cold (JFM 1999) ENSO phase. The nine-year global <span class="hlt">lightning</span> climatology for these months from the Tropical Rainfall Measuring Mission (TRMM) <span class="hlt">Lightning</span> Imaging Sensor (LIS) provides the observational baseline. Flash rate density is computed on a 5.0x5.0 degree lat/lon grid within the LIS coverage area (between approx.37.5 N and S) for each three month period. The flash rate density anomalies from this climatology are examined for these months in 1998 and 1999. The observed <span class="hlt">lightning</span> anomalies spatially match the documented general circulation features that accompany the warm and cold ENSO events. During the warm ENSO phase the dominant positive <span class="hlt">lightning</span> anomalies are located mostly over the Western Hemisphere and more specifically over Gulf of Mexico, Caribbean and Northern Mid-Atlantic. We further investigate specifically the Northern Mid-Atlantic related anomaly features since these show strong relation to the North Atlantic Oscillation (NAO). Furthermore these observed anomaly patterns show strong spatial agreement with anomalous upper level (200 mb) cold core cyclonic circulations. Positive sea surface temperature anomalies during the warm ENSO phase also affect the <span class="hlt">lightning</span> <span class="hlt">activity</span>, but this is mostly observed near coastal environments. Over the open tropical oceans, there is climatologically less <span class="hlt">lightning</span> and the anomalies are less pronounced. Warm ENSO related anomalies over the Eastern Hemisphere are most prominent over the South China coast. The transition to the cold ENSO phase illustrates the detected <span class="hlt">lightning</span> anomalies to be more pronounced over East and West Pacific. A comparison of total global <span class="hlt">lightning</span> between warm and cold ENSO phase reveals no significant difference, although prominent regional anomalies are located over mostly oceanic environments. All three tropical "chimneys" (Maritime Continent, Central</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017446','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017446"><span>First Cloud-to-Ground <span class="hlt">Lightning</span> Timing Study</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huddleston, Lisa L.</p> <p>2013-01-01</p> <p>NASA's LSP, GSDO and other programs use the probability of cloud-to-ground (CG) <span class="hlt">lightning</span> occurrence issued by the 45th Weather Squadron (45 WS) in their daily and weekly <span class="hlt">lightning</span> probability forecasts. These organizations use this information when planning potentially hazardous outdoor <span class="hlt">activities</span>, such as working with fuels, or rolling a vehicle to a launch pad, or whenever personnel will work outside and would be at-risk from <span class="hlt">lightning</span>. These organizations would benefit greatly if the 45 WS could provide more accurate timing of the first CG <span class="hlt">lightning</span> strike of the day. The Applied Meteorology Unit (AMU) has made significant improvements in forecasting the probability of <span class="hlt">lightning</span> for the day, but forecasting the time of the first CG <span class="hlt">lightning</span> with confidence has remained a challenge. To address this issue, the 45 WS requested the AMU to determine if flow regimes, wind speed categories, or a combination of the two could be used to forecast the timing of the first strike of the day in the Kennedy Space Center (KSC)/Cape Canaveral Air Force Station (CCAFS) <span class="hlt">lightning</span> warning circles. The data was stratified by various sea breeze flow regimes and speed categories in the surface to 5,000-ft layer. The surface to 5,000-ft layer was selected since that is the layer the 45 WS uses to predict the behavior of sea breeze fronts, which are the dominant influence on the occurrence of first <span class="hlt">lightning</span> in Florida during the warm season. Due to small data sample sizes after stratification, the AMU could not determine a statistical relationship between flow regimes or speed categories and the time of the first CG strike.. As expected, although the amount and timing of <span class="hlt">lightning</span> <span class="hlt">activity</span> varies by time of day based on the flow regimes and speed categories, there are extended tails of low <span class="hlt">lightning</span> <span class="hlt">activity</span> making it difficult to specify times when the threat of the first <span class="hlt">lightning</span> flash can be avoided. However, the AMU developed a graphical user interface with input from the 45 WS</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015525','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015525"><span><span class="hlt">High</span> Impact Weather Forecasts and Warnings with the GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William; Mach, Douglas M.</p> <p>2011-01-01</p> <p>The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. A major advancement over the current GOES include a new capability for total <span class="hlt">lightning</span> detection (cloud and cloud-to-ground flashes) from the Geostationary <span class="hlt">Lightning</span> Mapper (GLM). The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado <span class="hlt">activity</span>, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Science Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to develop cal/val performance monitoring tools and new applications using the GLM alone, in conjunction with other instruments, and merged or blended integrated observing system products combining satellite, radar, in-situ and numerical models. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based <span class="hlt">lightning</span> networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmRe.203...62S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmRe.203...62S"><span>Evidence for the influence of land uses and soil types on cloud-to-ground <span class="hlt">lightning</span> <span class="hlt">activity</span> in Asturias (Spain)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sisniega, David Prieto; García, Manuel Mora; Menéndez, Susana Fernández; Soriano, Luís Rivas; de Pablo Dávila, Fernando</p> <p>2018-05-01</p> <p>The present study analyses the impact of the different categories of land use and types of soils on cloud-to-ground (CG) <span class="hlt">lightning</span> <span class="hlt">activity</span> in the region of Asturias (Spain). Thirteen (fifteen) land uses (types of soils) and a range of fourteen years (2000 to 2013) of CG-<span class="hlt">lightning</span> flash data were considered to complete the study. Some areas that have suffered the strong impact of human <span class="hlt">activity</span> (urban, mining, and industrial) were associated with the increase of CG-<span class="hlt">lightning</span> <span class="hlt">activity</span>. When considering vegetated areas, areas with non-agricultural vegetation, arable land and permanent crops, it was showed a greater CG <span class="hlt">activity</span>. With reference to the types of soils, Fluvisols, Regosols/Cambic-Arenosols, and Luvisols, these seemed to be associated to the increase of CG-<span class="hlt">lightning</span> <span class="hlt">activity</span>. The results found for the region of Asturias are different from those reported by Mora et al. (2015) for the region of Castilla y Leon (Spain).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870003628&hterms=thunder+lightning&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dthunder%2Blightning','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870003628&hterms=thunder+lightning&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dthunder%2Blightning"><span>Optical characteristics of <span class="hlt">lightning</span> and thunderstorm currents</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Krider, E. P.; Blakeslee, R. J.</p> <p>1985-01-01</p> <p>Researchers determined that <span class="hlt">lightning</span> can be used to determine the diurnal variations of thunderstorms, i.e., storms that produce audible thunder, and that these variations are also in good agreement with diurnal variations in rainfall and convective <span class="hlt">activity</span>. Measurements of the Maxwell current density, J sub m, under <span class="hlt">active</span> thunderstorms show that this physical quantity is quasi-steady between <span class="hlt">lightning</span> discharges and that <span class="hlt">lightning</span> does not produce large changes in J sub m. Maps of J sub m show contours of iso-current density that are consistent with the locations of radar echos and the locations of where <span class="hlt">lightning</span> has altered the cloud charge distribution.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22474.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22474.html"><span>Artist's Concept of Jupiter <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-06-06</p> <p>This artist's concept of <span class="hlt">lightning</span> distribution in Jupiter's northern hemisphere incorporates a JunoCam image with artistic embellishments. Data from NASA's Juno mission indicates that most of the <span class="hlt">lightning</span> <span class="hlt">activity</span> on Jupiter is near its poles. https://photojournal.jpl.nasa.gov/catalog/PIA22474</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ERL.....9k5009O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ERL.....9k5009O"><span>Modulation of UK <span class="hlt">lightning</span> by heliospheric magnetic field polarity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Owens, M. J.; Scott, C. J.; Lockwood, M.; Barnard, L.; Harrison, R. G.; Nicoll, K.; Watt, C.; Bennett, A. J.</p> <p>2014-11-01</p> <p>Observational studies have reported solar magnetic modulation of terrestrial <span class="hlt">lightning</span> on a range of time scales, from days to decades. The proposed mechanism is two-step: <span class="hlt">lightning</span> rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of <span class="hlt">lightning</span>. GCR flux is, in turn, primarily controlled by the heliospheric magnetic field (HMF) intensity. Consequently, global changes in <span class="hlt">lightning</span> rates are expected. This study instead considers HMF polarity, which doesn't greatly affect total GCR flux. Opposing HMF polarities are, however, associated with a 40-60% difference in observed UK <span class="hlt">lightning</span> and thunder rates. As HMF polarity skews the terrestrial magnetosphere from its nominal position, this perturbs local ionospheric potential at <span class="hlt">high</span> latitudes and local exposure to energetic charged particles from the magnetosphere. We speculate as to the mechanism(s) by which this may, in turn, redistribute the global location and/or intensity of thunderstorm <span class="hlt">activity</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JASTP.136...98L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JASTP.136...98L"><span><span class="hlt">High</span>-altitude electrical discharges associated with thunderstorms and <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Ningyu; McHarg, Matthew G.; Stenbaek-Nielsen, Hans C.</p> <p>2015-12-01</p> <p>The purpose of this paper is to introduce electrical discharge phenomena known as transient luminous events above thunderstorms to the <span class="hlt">lightning</span> protection community. Transient luminous events include the upward electrical discharges from thunderstorms known as starters, jets, and gigantic jets, and electrical discharges initiated in the lower ionosphere such as sprites, halos, and elves. We give an overview of these phenomena with a focus on starters, jets, gigantic jets, and sprites, because similar to ordinary <span class="hlt">lightning</span>, streamers and leaders are basic components of these four types of transient luminous events. We present a few recent observations to illustrate their main properties and briefly review the theories. The research in transient luminous events has not only advanced our understanding of the effects of thunderstorms and <span class="hlt">lightning</span> in the middle and upper atmosphere, but also improved our knowledge of basic electrical discharge processes critical for sparks and <span class="hlt">lightning</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMAE33A0266A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMAE33A0266A"><span>Acoustic Manifestations of Natural versus Triggered <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Rison, W.; Thomas, R. J.; Eack, K.; Eastvedt, E. M.; Aulich, G. D.; Trueblood, J.</p> <p>2010-12-01</p> <p>Positive leaders are rarely detected by VHF <span class="hlt">lightning</span> detection systems; positive leader channels are usually outlined only by recoil events. Positive cloud-to-ground (CG) channels are usually not mapped. The goal of this work is to study the types of thunder produced by natural versus triggered <span class="hlt">lightning</span> and to assess which types of thunder signals have electromagnetic <span class="hlt">activity</span> detected by the <span class="hlt">lightning</span> mapping array (LMA). Towards this end we are investigating the <span class="hlt">lightning</span> detection capabilities of acoustic techniques, and comparing them with the LMA. In a previous study we used array beam forming and time of flight information to locate acoustic sources associated with <span class="hlt">lightning</span>. Even though there was some mismatch, generally LMA and acoustic techniques saw the same phenomena. To increase the database of acoustic data from <span class="hlt">lightning</span>, we deployed a network of three infrasound arrays (30 m aperture) during the summer of 2010 (August 3 to present) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) and audio range sources due to natural and triggered <span class="hlt">lightning</span>. The arrays were located at a range of distances (60 to 1400 m) surrounding the triggering site, called the Kiva, used by Langmuir Laboratory to launch rockets. We have continuous acoustic measurements of <span class="hlt">lightning</span> data from July 20 to September 18 of 2009, and from August 3 to September 1 of 2010. So far, <span class="hlt">lightning</span> <span class="hlt">activity</span> around the Kiva was higher during the summer of 2009. We will present acoustic data from several interesting <span class="hlt">lightning</span> flashes including a comparison between a natural and a triggered one.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18395987','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18395987"><span><span class="hlt">Lightning</span> injury: a review.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ritenour, Amber E; Morton, Melinda J; McManus, John G; Barillo, David J; Cancio, Leopoldo C</p> <p>2008-08-01</p> <p><span class="hlt">Lightning</span> is an uncommon but potentially devastating cause of injury in patients presenting to burn centers. These injuries feature unusual symptoms, <span class="hlt">high</span> mortality, and significant long-term morbidity. This paper will review the epidemiology, physics, clinical presentation, management principles, and prevention of <span class="hlt">lightning</span> injuries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JASTP..70.2222G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JASTP..70.2222G"><span>Geomagnetic and sunspot <span class="hlt">activity</span> associations and ionospheric effects of <span class="hlt">lightning</span> phenomena at Trivandrum near dip equator</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Girish, T. E.; Eapen, P. E.</p> <p>2008-12-01</p> <p>From a study of thunder/<span class="hlt">lightning</span> observations in Trivandrum (near dip equator) for selected years between 1853 and 2005, we could find an inverse relation of the same with sunspot <span class="hlt">activity</span> and associations with enhancements in diurnal range of local geomagnetic declination. The results seem to suggest <span class="hlt">lightning</span>-associated modulation of E-region dynamo currents in the equatorial ionosphere and the thunderstorm <span class="hlt">activity</span> near dip equator probably acts as a moderator to regulate electric potential gradient changes in the global electric circuit due to solar <span class="hlt">activity</span> changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMAE31B0433H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMAE31B0433H"><span>Preliminary Results form the Japanese Total <span class="hlt">Lightning</span> Network</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hobara, Y.; Ishii, H.; Kumagai, Y.; Liu, C.; Heckman, S.; Price, C. G.; Williams, E. R.</p> <p>2015-12-01</p> <p>We report on the initial observational results from the first Japanese Total <span class="hlt">Lightning</span> Detection Network (JTLN) in relation to severe weather phenomena. The University of Electro-Communications (UEC) has deployed the Earth Networks (EN) Total <span class="hlt">Lightning</span> System over Japan to carry out research on the relationship between thunderstorm <span class="hlt">activity</span> and severe weather phenomena since 2013. In this paper we first demonstrate the current status of our new network followed by the initial scientific results. The <span class="hlt">lightning</span> jump algorithm was applied to our total <span class="hlt">lightning</span> data to study the relationship between total lighting <span class="hlt">activity</span> and hazardous weather events such as gust fronts and tornadoes over land reported by the JMA (Japanese Meteorological Agency) in 2014. As a result, a clear increase in total lighting flash rate as well as <span class="hlt">lightning</span> jumps are observed prior to most hazardous weather events (~20 min) indicating potential usefulness for early warning in Japan. Furthermore we are going to demonstrate the relationship of total <span class="hlt">lightning</span> <span class="hlt">activities</span> with meteorological radar data focusing particularly on Japanese Tornadic storms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080037560','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080037560"><span>GOES-R Geostationary <span class="hlt">Lightning</span> Mapper Performance Specifications and Algorithms</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mach, Douglas M.; Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Petersen, William A.; Boldi, Robert A.; Carey, Lawrence D.; Bateman, Monte G.; Buchler, Dennis E.; McCaul, E. William, Jr.</p> <p>2008-01-01</p> <p>The Geostationary <span class="hlt">Lightning</span> Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total <span class="hlt">lightning</span> <span class="hlt">activity</span> over the full-disk. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series will carry a GLM that will provide continuous day and night observations of <span class="hlt">lightning</span>. The mission objectives for the GLM are to: (1) Provide continuous, full-disk <span class="hlt">lightning</span> measurements for storm warning and nowcasting, (2) Provide early warning of tornadic <span class="hlt">activity</span>, and (2) Accumulate a long-term database to track decadal changes of <span class="hlt">lightning</span>. The GLM owes its heritage to the NASA <span class="hlt">Lightning</span> Imaging Sensor (1997- present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global <span class="hlt">lightning</span> <span class="hlt">activity</span>. GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to develop the Level 2 algorithms and applications. The science data will consist of <span class="hlt">lightning</span> "events", "groups", and "flashes". The algorithm is being designed to be an efficient user of the computational resources. This may include parallelization of the code and the concept of sub-dividing the GLM FOV into regions to be processed in parallel. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., <span class="hlt">Lightning</span> Mapping Arrays in North Alabama, Oklahoma, Central Florida, and the Washington DC Metropolitan area) are being used to develop the prelaunch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160000240','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160000240"><span>An Integrated 0-1 Hour First-Flash <span class="hlt">Lightning</span> Nowcasting, <span class="hlt">Lightning</span> Amount and <span class="hlt">Lightning</span> Jump Warning Capability</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey; Chronis, Themis</p> <p>2015-01-01</p> <p>Using satellite-based methods that provide accurate 0-1 hour convective initiation (CI) nowcasts, and rely on proven success coupling satellite and radar fields in the Corridor Integrated Weather System (CIWS; operated and developed at MIT-Lincoln Laboratory), to subsequently monitor for first-flash <span class="hlt">lightning</span> initiation (LI) and later period <span class="hlt">lightning</span> trends as storms evolve. Enhance IR-based methods within the GOES-R CI Algorithm (that must meet specific thresholds for a given cumulus cloud before the cloud is considered to have an increased likelihood of producing <span class="hlt">lightning</span> next 90 min) that forecast LI. Integrate GOES-R CI and LI fields with radar thresholds (e.g., first greater than or equal to 40 dBZ echo at the -10 C altitude) and NWP model data within the WDSS-II system for LI-events from new convective storms. Track ongoing <span class="hlt">lightning</span> using <span class="hlt">Lightning</span> Mapping Array (LMA) and pseudo-Geostationary <span class="hlt">Lightning</span> Mapper (GLM) data to assess per-storm <span class="hlt">lightning</span> trends (e.g., as tied to <span class="hlt">lightning</span> jumps) and outline threat regions. Evaluate the ability to produce LI nowcasts through a "<span class="hlt">lightning</span> threat" product, and obtain feedback from National Weather Service forecasters on its value as a decision support tool.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4519F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4519F"><span>Infrasound from <span class="hlt">lightning</span> measured in Ivory Coast from 2004 to 2014</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farges, Thomas; Le Pichon, Alexis; Ceranna, Lars; Diawara, Adama</p> <p>2016-04-01</p> <p>It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 <span class="hlt">lightning</span> flashes are produced per second over the globe. 80 % of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural <span class="hlt">activity</span> (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including <span class="hlt">lightning</span> flashes …). Some of the IMS stations are located where <span class="hlt">lightning</span> <span class="hlt">activity</span> is <span class="hlt">high</span> (e.g. Africa, South America). These infrasound stations are well localised to study <span class="hlt">lightning</span> flash <span class="hlt">activity</span> and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such <span class="hlt">lightning</span> studies possible. Assink et al. (2008) and Farges and Blanc (2010) show clearly that it is possible to measure <span class="hlt">lightning</span> infrasound from thunderstorms within 300 km. One-to-one correlation is possible when the thunderstorm is within about 75 km from the station. When the <span class="hlt">lightning</span> flash occurs within 20 km, it is also possible to rebuild the 3D geometry of the discharges when the network size is less than 100 m (Arechiga et al., 2011; Gallin, 2014). An IMS infrasound station has been installed in Ivory Coast since 2002. The <span class="hlt">lightning</span> rate of this region is 10-20 flashes/km²/year from space-based instrument OTD (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with <span class="hlt">lightning</span> <span class="hlt">activity</span> and its temporal variation. First statistical results will be presented in this paper based on 10 years of data (2005-2014). Correlation between infrasound having a mean frequency higher than 1 Hz and <span class="hlt">lightning</span> flashes detected by the World Wide <span class="hlt">Lightning</span> Location Network (WWLLN) is systematically looked for. One-to-one correlation is obtained for flashes occurring within about 100 km. An exponential decrease of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26471123','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26471123"><span>The start of <span class="hlt">lightning</span>: Evidence of bidirectional <span class="hlt">lightning</span> initiation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Montanyà, Joan; van der Velde, Oscar; Williams, Earle R</p> <p>2015-10-16</p> <p><span class="hlt">Lightning</span> flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, <span class="hlt">lightning</span> inception is typically hidden from sight of camera systems used in research. Other technology such as <span class="hlt">lightning</span> mapping systems based on radio waves can typically detect only some aspects of the <span class="hlt">lightning</span> initiation process and subsequent development of positive and negative leaders. We report here a serendipitous recording of bidirectional <span class="hlt">lightning</span> initiation in virgin air under the cloud base at ~11,000 images per second, and the differences in characteristics of opposite polarity leader sections during the earliest stages of the discharge. This case reveals natural <span class="hlt">lightning</span> initiation, propagation and a return stroke as in negative cloud-to-ground flashes, upon connection to another <span class="hlt">lightning</span> channel - without any masking by cloud.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/894330','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/894330"><span><span class="hlt">Lightning</span> Protection Certification for <span class="hlt">High</span> Explosives Facilities at Lawrence Livermore National Laboratory</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Clancy, T J; Brown, C G; Ong, M M</p> <p>2006-01-11</p> <p>Presented here is an innovation in lighting safety certification, and a description of its implementation for <span class="hlt">high</span> explosives processing and storage facilities at Lawrence Livermore National Laboratory. <span class="hlt">Lightning</span> rods have proven useful in the protection of wooden structures; however, modern structures made of rebar, concrete, and the like, require fresh thinking. Our process involves a rigorous and unique approach to <span class="hlt">lightning</span> safety for modern buildings, where the internal voltages and currents are quantified and the risk assessed. To follow are the main technical aspects of <span class="hlt">lightning</span> protection for modern structures and these methods comply with the requirements of the Nationalmore » Fire Protection Association, the National Electrical Code, and the Department of Energy [1][2]. At the date of this release, we have certified over 70 HE processing and storage cells at our Site 300 facility.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080013550&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeostationary','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080013550&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeostationary"><span>Geostationary <span class="hlt">Lightning</span> Mapper for GOES-R and Beyond</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.</p> <p>2008-01-01</p> <p>The Geostationary <span class="hlt">Lightning</span> Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total <span class="hlt">lightning</span> <span class="hlt">activity</span> over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch readiness in December 2014 will carry a GLM that will provide continuous day and night observations of <span class="hlt">lightning</span> from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk <span class="hlt">lightning</span> measurements for storm warning and nowcasting, 2) provide early warning of tornadic <span class="hlt">activity</span>, and 3) accumulate a long-term database to track decadal changes of <span class="hlt">lightning</span>. The GLM owes its heritage to the NASA <span class="hlt">Lightning</span> Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global <span class="hlt">lightning</span> <span class="hlt">activity</span>. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models will be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to develop the Level 2 algorithms and applications. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., <span class="hlt">Lightning</span> Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time <span class="hlt">lightning</span> mapping data are being provided in an experimental mode to selected National Weather Service (NWS</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030062245&hterms=inversion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dinversion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030062245&hterms=inversion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dinversion"><span>Mathematical Inversion of <span class="hlt">Lightning</span> Data: Techniques and Applications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William</p> <p>2003-01-01</p> <p>A survey of some interesting mathematical inversion studies dealing with radio, optical, and electrostatic measurements of <span class="hlt">lightning</span> are presented. A discussion of why NASA is interested in <span class="hlt">lightning</span>, what specific physical properties of <span class="hlt">lightning</span> are retrieved, and what mathematical techniques are used to perform the retrievals are discussed. In particular, a relatively new multi-station VHF time-of-arrival (TOA) antenna network is now on-line in Northern Alabama and will be discussed. The network, called the <span class="hlt">Lightning</span> Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of <span class="hlt">lightning</span> strokes within cloud and ground flashes. The LMA supports on-going ground-validation <span class="hlt">activities</span> of the low Earth orbiting <span class="hlt">Lightning</span> Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The LMA also provides detailed studies of the distribution and evolution of thunderstorms and <span class="hlt">lightning</span> in the Tennessee Valley, and offers interesting comparisons with other meteorological/geophysical datasets. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. A new channel mapping retrieval algorithm is introduced for this purpose. To characterize the spatial distribution of retrieval errors, the algorithm has been applied to analyze literally tens of millions of computer-simulated <span class="hlt">lightning</span> VHF point sources that have been placed at various ranges, azimuths, and altitudes relative to the LMA network. Statistical results are conveniently summarized in <span class="hlt">high</span>-resolution, color-coded, error maps.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008582','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008582"><span><span class="hlt">Lightning</span> Jump Algorithm Development for the GOES·R Geostationary <span class="hlt">Lightning</span> Mapper</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140008582'); toggleEditAbsImage('author_20140008582_show'); toggleEditAbsImage('author_20140008582_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140008582_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140008582_hide"></p> <p>2014-01-01</p> <p>Current work on the <span class="hlt">lightning</span> jump algorithm to be used in GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the <span class="hlt">lightning</span> jump itself. This work outlines the progress of the last year, where analysis and performance of the <span class="hlt">lightning</span> jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total <span class="hlt">lightning</span> mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and <span class="hlt">lightning</span> jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the <span class="hlt">lightning</span> jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/<span class="hlt">lightning</span> jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with <span class="hlt">high</span> density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003988','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003988"><span>Using Total <span class="hlt">Lightning</span> Observations to Enhance <span class="hlt">Lightning</span> Safety</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stano, Geoffrey T.</p> <p>2012-01-01</p> <p><span class="hlt">Lightning</span> is often the underrated threat faced by the public when it comes to dangerous weather phenomena. Typically, larger scale events such as floods, hurricanes, and tornadoes receive the vast majority of attention by both the general population and the media. This comes from the fact that these phenomena are large, longer lasting, can impact a large swath of society at one time, and are dangerous events. The threat of <span class="hlt">lightning</span> is far more isolated on a case by case basis, although millions of cloud-to-ground <span class="hlt">lightning</span> strikes hit this United States each year. While attention is given to larger meteorological events, <span class="hlt">lightning</span> is the second leading cause of weather related deaths in the United States. This information raises the question of what steps can be taken to improve <span class="hlt">lightning</span> safety. Already, the meteorological community s understanding of <span class="hlt">lightning</span> has increased over the last 20 years. <span class="hlt">Lightning</span> safety is now better addressed with the National Weather Service s access to the National <span class="hlt">Lightning</span> Detection Network data and enhanced wording in their severe weather warnings. Also, local groups and organizations are working to improve public awareness of <span class="hlt">lightning</span> safety with easy phrases to remember, such as "When Thunder Roars, Go Indoors." The impacts can be seen in the greater array of contingency plans, from airports to sports stadiums, addressing the threat of <span class="hlt">lightning</span>. Improvements can still be made and newer technologies may offer new tools as we look towards the future. One of these tools is a network of sensors called a <span class="hlt">lightning</span> mapping array (LMA). Several of these networks exist across the United States. NASA s Short-term Prediction Research and Transition Center (SPoRT), part of the Marshall Spaceflight Center, has access to three of these networks from Huntsville, Alabama, the Kennedy Space Center, and Washington D.C. The SPoRT program s mission is to help transition unique products and observations into the operational forecast environment</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993AREPS..21...43R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993AREPS..21...43R"><span>Planetary <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russell, C. T.; Clayton, R. N.; Buseck, P. R.; Hua, X.; Holsapple, K. A.; Esposito, L. W.; Aherns, T. J.; Hecht, J.</p> <p></p> <p>The present state of knowledge concerning <span class="hlt">lightning</span> on the planets is reviewed. Voyager data have clearly established the presence of <span class="hlt">lightning</span> discharges at each of the four Jovian planets. In situ data for <span class="hlt">lightning</span> on Venus are discussed in some detail, including reported quantitative occurrence rates and hypotheses concerning the relationship of Venusian <span class="hlt">lightning</span> to VLF bursts observed in the Venus atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM51B2462Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM51B2462Z"><span>On the interactions between energetic electrons and <span class="hlt">lightning</span> whistler waves observed at <span class="hlt">high</span> L-shells on Van Allen Probes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, H.; Holzworth, R. H., II; Brundell, J. B.; Hospodarsky, G. B.; Jacobson, A. R.; Fennell, J. F.; Li, J.</p> <p>2017-12-01</p> <p><span class="hlt">Lightning</span> produces strong broadband radio waves, called "sferics", which propagate in the Earth-ionosphere waveguide and are detected thousands of kilometers away from their source. Global real-time detection of <span class="hlt">lightning</span> strokes including their time, location and energy, is conducted with the World Wide <span class="hlt">Lightning</span> Location Network (WWLLN). In the ionosphere, these sferics couple into very low frequency (VLF) whistler waves which propagate obliquely to the Earth's magnetic field. A good match has previously been shown between WWLLN sferics and Van Allen Probes <span class="hlt">lightning</span> whistler waves. It is well known that <span class="hlt">lightning</span> whistler waves can modify the distribution of energetic electrons in the Van Allen belts by pitch angle scattering into the loss cone, especially at low L-Shells (referred to as LEP - <span class="hlt">Lightning</span>-induced Electron Precipitation). It is an open question whether <span class="hlt">lightning</span> whistler waves play an important role at <span class="hlt">high</span> L-shells. The possible interactions between energetic electrons and <span class="hlt">lightning</span> whistler waves at <span class="hlt">high</span> L-shells are considered to be weak in the past. However, <span class="hlt">lightning</span> is copious, and weak pitch angle scattering into the drift or bounce loss cone would have a significant influence on the radiation belt populations. In this work, we will analyze the continuous burst mode EMFISIS data from September 2012 to 2016, to find out <span class="hlt">lightning</span> whistler waves above L = 3. Based on that, MAGEIS data are used to study the related possible wave-particle interactions. In this talk, both case study and statistical analysis results will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMAE31A0424D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMAE31A0424D"><span>Oceanic <span class="hlt">Lightning</span> versus Continental <span class="hlt">Lightning</span>: VLF Peak Current Discrepancies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dupree, N. A., Jr.; Moore, R. C.</p> <p>2015-12-01</p> <p>Recent analysis of the Vaisala global <span class="hlt">lightning</span> data set GLD360 suggests that oceanic <span class="hlt">lightning</span> tends to exhibit larger peak currents than continental <span class="hlt">lightning</span> (<span class="hlt">lightning</span> occurring over land). The GLD360 peak current measurement is derived from distant measurements of the electromagnetic fields emanated during the <span class="hlt">lightning</span> flash. Because the GLD360 peak current measurement is a derived quantity, it is not clear whether the actual peak currents of oceanic <span class="hlt">lightning</span> tend to be larger, or whether the resulting electromagnetic field strengths tend to be larger. In this paper, we present simulations of VLF signal propagation in the Earth-ionosphere waveguide to demonstrate that the peak field values for oceanic <span class="hlt">lightning</span> can be significantly stronger than for continental <span class="hlt">lightning</span>. Modeling simulations are performed using the Long Wave Propagation Capability (LWPC) code to directly evaluate the effect of ground conductivity on VLF signal propagation in the 5-15 kHz band. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-Ionosphere waveguide to an impulsive <span class="hlt">lightning</span> flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. Furthermore, we evaluate the effect of return stroke speed on these results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070038367','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070038367"><span>Diurnal <span class="hlt">Lightning</span> Distributions as Observed by the Optical Transient Detector (OTD) and the <span class="hlt">Lightning</span> Imaging Sensor (LIS)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bailey, Jeff C.; Blakeslee, Richard J.; Buechler, Dennis E.; Christian, Hugh J.</p> <p>2007-01-01</p> <p>Data obtained from the Optical Transient Detector (April 1995 to March 2000) and the <span class="hlt">Lightning</span> Imaging Sensor (December 1997 to December 2005) satellites (70 and 35 inclination low earth orbits, respectively) are used to statistically determine the number of flashes in the annual and seasonal diurnal cycle as a function of local and universal time. The data are further subdivided by season, land versus ocean, northern versus southern hemisphere, and other spatial (e.g., continents) and temporal (e.g., time of peak diurnal amplitude) categories. The data include corrections for detection efficiency and instrument view time. Continental results display strong diurnal variation, with a <span class="hlt">lightning</span> peak in the late afternoon and a minimum in late morning. In regions of the world dominated by large mesoscale convective systems the peak in the diurnal curve shifts toward late evening or early morning hours. The maximum diurnal flash rate occurs in June-August, corresponding to the Northern Hemisphere summer, while the minimum occurs in December-February. Summer <span class="hlt">lightning</span> dominates over winter <span class="hlt">activity</span> and springtime <span class="hlt">lightning</span> dominates over autumn <span class="hlt">activity</span> at most continental locations. This latter behavior occurs especially strongly over the Amazon region in South America in September-November. Oceanic <span class="hlt">lightning</span> <span class="hlt">activity</span> in winter and autumn tends to exceed that in summer and spring. Global <span class="hlt">lightning</span> is well correlated in phase but not in amplitude with the Carnegie curve. The diurnal flash rate varies about 4-35 percent about the mean, while the Carnegie curve varies around 4-15 percent.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1323377','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1323377"><span>National Athletic Trainers' Association Position Statement: <span class="hlt">Lightning</span> Safety for Athletics and Recreation</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Walsh, Katie M.; Bennett, Brian; Cooper, Mary Ann; Holle, Ronald L.; Kithil, Richard; López, Raul E.</p> <p>2000-01-01</p> <p>Objective: To educate athletic trainers and others about the dangers of <span class="hlt">lightning</span>, provide <span class="hlt">lightning</span>-safety guidelines, define safe structures and locations, and advocate prehospital care for <span class="hlt">lightning</span>-strike victims. Background: <span class="hlt">Lightning</span> may be the most frequently encountered severe-storm hazard endangering physically <span class="hlt">active</span> people each year. Millions of <span class="hlt">lightning</span> flashes strike the ground annually in the United States, causing nearly 100 deaths and 400 injuries. Three quarters of all <span class="hlt">lightning</span> casualties occur between May and September, and nearly four fifths occur between 10:00 AM and 7:00 PM, which coincides with the hours for most athletic or recreational <span class="hlt">activities</span>. Additionally, <span class="hlt">lightning</span> casualties from sports and recreational <span class="hlt">activities</span> have risen alarmingly in recent decades. Recommendations: The National Athletic Trainers' Association recommends a proactive approach to <span class="hlt">lightning</span> safety, including the implementation of a <span class="hlt">lightning</span>-safety policy that identifies safe locations for shelter from the <span class="hlt">lightning</span> hazard. Further components of this policy are monitoring local weather forecasts, designating a weather watcher, and establishing a chain of command. Additionally, a flash-to-bang count of 30 seconds or more should be used as a minimal determinant of when to suspend <span class="hlt">activities</span>. Waiting 30 minutes or longer after the last flash of <span class="hlt">lightning</span> or sound of thunder is recommended before athletic or recreational <span class="hlt">activities</span> are resumed. <span class="hlt">Lightning</span>- safety strategies include avoiding shelter under trees, avoiding open fields and spaces, and suspending the use of land-line telephones during thunderstorms. Also outlined in this document are the prehospital care guidelines for triaging and treating <span class="hlt">lightning</span>-strike victims. It is important to evaluate victims quickly for apnea, asystole, hypothermia, shock, fractures, and burns. Cardiopulmonary resuscitation is effective in resuscitating pulseless victims of <span class="hlt">lightning</span> strike. Maintenance of cardiopulmonary</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16558665','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16558665"><span>National athletic trainers' association position statement: <span class="hlt">lightning</span> safety for athletics and recreation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walsh, K M; Bennett, B; Cooper, M A; Holle, R L; Kithil, R; López, R E</p> <p>2000-10-01</p> <p>To educate athletic trainers and others about the dangers of <span class="hlt">lightning</span>, provide <span class="hlt">lightning</span>-safety guidelines, define safe structures and locations, and advocate prehospital care for <span class="hlt">lightning</span>-strike victims. <span class="hlt">Lightning</span> may be the most frequently encountered severe-storm hazard endangering physically <span class="hlt">active</span> people each year. Millions of <span class="hlt">lightning</span> flashes strike the ground annually in the United States, causing nearly 100 deaths and 400 injuries. Three quarters of all <span class="hlt">lightning</span> casualties occur between May and September, and nearly four fifths occur between 10:00 AM and 7:00 PM, which coincides with the hours for most athletic or recreational <span class="hlt">activities</span>. Additionally, <span class="hlt">lightning</span> casualties from sports and recreational <span class="hlt">activities</span> have risen alarmingly in recent decades. The National Athletic Trainers' Association recommends a proactive approach to <span class="hlt">lightning</span> safety, including the implementation of a <span class="hlt">lightning</span>-safety policy that identifies safe locations for shelter from the <span class="hlt">lightning</span> hazard. Further components of this policy are monitoring local weather forecasts, designating a weather watcher, and establishing a chain of command. Additionally, a flash-to-bang count of 30 seconds or more should be used as a minimal determinant of when to suspend <span class="hlt">activities</span>. Waiting 30 minutes or longer after the last flash of <span class="hlt">lightning</span> or sound of thunder is recommended before athletic or recreational <span class="hlt">activities</span> are resumed. <span class="hlt">Lightning</span>- safety strategies include avoiding shelter under trees, avoiding open fields and spaces, and suspending the use of land-line telephones during thunderstorms. Also outlined in this document are the prehospital care guidelines for triaging and treating <span class="hlt">lightning</span>-strike victims. It is important to evaluate victims quickly for apnea, asystole, hypothermia, shock, fractures, and burns. Cardiopulmonary resuscitation is effective in resuscitating pulseless victims of <span class="hlt">lightning</span> strike. Maintenance of cardiopulmonary resuscitation and first-aid certification should</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030061356&hterms=bateman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbateman','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030061356&hterms=bateman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbateman"><span>A Total <span class="hlt">Lightning</span> Climatology for the Tennessee Valley Region</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McCaul, E. W.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R.; Christian, H.; Boccippio, D.; Koshak, W.; Bailey, J.; Hallm, J.; Bateman, M.</p> <p>2003-01-01</p> <p>Total flash counts derived from the North Alabama <span class="hlt">Lightning</span> Mapping Array are being processed for 2002 to form a climatology of total <span class="hlt">lightning</span> for the Tennessee Valley region. The data from this <span class="hlt">active</span> and interesting period will be compared to data fiom the National <span class="hlt">Lightning</span> Detection Network, space-based <span class="hlt">lightning</span> sensors, and weather radars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982fugv.rept.....D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982fugv.rept.....D"><span><span class="hlt">Lightning</span> protection of distribution systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Darveniza, M.; Uman, M. A.</p> <p>1982-09-01</p> <p>Research work on the <span class="hlt">lightning</span> protection of distribution systems is described. The rationale behind the planning of the first major phase of the work - the field experiments conducted in the Tampa Bay area during August 1978 and July to September 1979 is explained. The aims of the field work were to characterize <span class="hlt">lightning</span> in the Tampa Bay area, and to identify the <span class="hlt">lightning</span> parameters associated with the occurrence of line outages and equipment damage on the distribution systems of the participating utilities. The equipment developed for these studies is fully described. The field work provided: general data on <span class="hlt">lightning</span> - e.g., electric and magnetic fields of cloud and ground flashes; data from automated monitoring of <span class="hlt">lightning</span> <span class="hlt">activity</span>; stroke current waveshapes and peak currents measured at distribution arresters; and line outage and equipment damage on 13 kV networks in the Tampa Bay area. Computer aided analyses were required to collate and to process the accumulated data. The computer programs developed for this work are described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713577H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713577H"><span>Severe weather detection by using Japanese Total <span class="hlt">Lightning</span> Network</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hobara, Yasuhide; Ishii, Hayato; Kumagai, Yuri; Liu, Charlie; Heckman, Stan; Price, Colin</p> <p>2015-04-01</p> <p>In this paper we demonstrate the preliminary results from the first Japanese Total <span class="hlt">Lightning</span> Network. The University of Electro-Communications (UEC) recently deployed Earth Networks Total <span class="hlt">Lightning</span> System over Japan to conduct various <span class="hlt">lightning</span> research projects. Here we analyzed the total <span class="hlt">lightning</span> data in relation with 10 severe events such as gust fronts and tornadoes occurred in 2014 in mainland Japan. For the analysis of these events, <span class="hlt">lightning</span> jump algorithm was used to identify the increase of the flash rate in prior to the severe weather events. We found that <span class="hlt">lightning</span> jumps associated with significant increasing <span class="hlt">lightning</span> <span class="hlt">activities</span> for total <span class="hlt">lightning</span> and IC clearly indicate the severe weather occurrence than those for CGs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/244930-high-speed-plasma-imaging-lightning-bolt','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/244930-high-speed-plasma-imaging-lightning-bolt"><span><span class="hlt">High</span>-speed plasma imaging: A <span class="hlt">lightning</span> bolt</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wurden, G.A.; Whiteson, D.O.</p> <p></p> <p>Using a gated intensified digital Kodak Ektapro camera system, the authors captured a <span class="hlt">lightning</span> bolt at 1,000 frames per second, with 100-{micro}s exposure time on each consecutive frame. As a thunder storm approaches while darkness descended (7:50 pm) on July 21, 1994, they photographed <span class="hlt">lightning</span> bolts with an f22 105-mm lens and 100% gain on the intensified camera. This 15-frame sequence shows a cloud to ground stroke at a distance of about 1.5 km, which has a series of stepped leaders propagating downwards, following by the upward-propagating main return stroke.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SGeo...34..755P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SGeo...34..755P"><span><span class="hlt">Lightning</span> Applications in Weather and Climate Research</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Price, Colin G.</p> <p>2013-11-01</p> <p>Thunderstorms, and <span class="hlt">lightning</span> in particular, are a major natural hazard to the public, aviation, power companies, and wildfire managers. <span class="hlt">Lightning</span> causes great damage and death every year but also tells us about the inner working of storms. Since <span class="hlt">lightning</span> can be monitored from great distances from the storms themselves, <span class="hlt">lightning</span> may allow us to provide early warnings for severe weather phenomena such as hail storms, flash floods, tornadoes, and even hurricanes. <span class="hlt">Lightning</span> itself may impact the climate of the Earth by producing nitrogen oxides (NOx), a precursor of tropospheric ozone, which is a powerful greenhouse gas. Thunderstorms themselves influence the climate system by the redistribution of heat, moisture, and momentum in the atmosphere. What about future changes in <span class="hlt">lightning</span> and thunderstorm <span class="hlt">activity</span>? Many studies show that higher surface temperatures produce more <span class="hlt">lightning</span>, but future changes will depend on what happens to the vertical temperature profile in the troposphere, as well as changes in water balance, and even aerosol loading of the atmosphere. Finally, <span class="hlt">lightning</span> itself may provide a useful tool for tracking climate change in the future, due to the nonlinear link between <span class="hlt">lightning</span>, temperature, upper tropospheric water vapor, and cloud cover.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5677374','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5677374"><span>Assessing <span class="hlt">Lightning</span> and Wildfire Hazard by Land Properties and Cloud to Ground <span class="hlt">Lightning</span> Data with Association Rule Mining in Alberta, Canada</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cha, DongHwan; Wang, Xin; Kim, Jeong Woo</p> <p>2017-01-01</p> <p>Hotspot analysis was implemented to find regions in the province of Alberta (Canada) with <span class="hlt">high</span> frequency Cloud to Ground (CG) <span class="hlt">lightning</span> strikes clustered together. Generally, hotspot regions are located in the central, central east, and south central regions of the study region. About 94% of annual <span class="hlt">lightning</span> occurred during warm months (June to August) and the daily <span class="hlt">lightning</span> frequency was influenced by the diurnal heating cycle. The association rule mining technique was used to investigate frequent CG <span class="hlt">lightning</span> patterns, which were verified by similarity measurement to check the patterns’ consistency. The similarity coefficient values indicated that there were <span class="hlt">high</span> correlations throughout the entire study period. Most wildfires (about 93%) in Alberta occurred in forests, wetland forests, and wetland shrub areas. It was also found that <span class="hlt">lightning</span> and wildfires occur in two distinct areas: frequent wildfire regions with a <span class="hlt">high</span> frequency of <span class="hlt">lightning</span>, and frequent wild-fire regions with a low frequency of <span class="hlt">lightning</span>. Further, the preference index (PI) revealed locations where the wildfires occurred more frequently than in other class regions. The wildfire hazard area was estimated with the CG <span class="hlt">lightning</span> hazard map and specific land use types. PMID:29065564</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29065564','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29065564"><span>Assessing <span class="hlt">Lightning</span> and Wildfire Hazard by Land Properties and Cloud to Ground <span class="hlt">Lightning</span> Data with Association Rule Mining in Alberta, Canada.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cha, DongHwan; Wang, Xin; Kim, Jeong Woo</p> <p>2017-10-23</p> <p>Hotspot analysis was implemented to find regions in the province of Alberta (Canada) with <span class="hlt">high</span> frequency Cloud to Ground (CG) <span class="hlt">lightning</span> strikes clustered together. Generally, hotspot regions are located in the central, central east, and south central regions of the study region. About 94% of annual <span class="hlt">lightning</span> occurred during warm months (June to August) and the daily <span class="hlt">lightning</span> frequency was influenced by the diurnal heating cycle. The association rule mining technique was used to investigate frequent CG <span class="hlt">lightning</span> patterns, which were verified by similarity measurement to check the patterns' consistency. The similarity coefficient values indicated that there were <span class="hlt">high</span> correlations throughout the entire study period. Most wildfires (about 93%) in Alberta occurred in forests, wetland forests, and wetland shrub areas. It was also found that <span class="hlt">lightning</span> and wildfires occur in two distinct areas: frequent wildfire regions with a <span class="hlt">high</span> frequency of <span class="hlt">lightning</span>, and frequent wild-fire regions with a low frequency of <span class="hlt">lightning</span>. Further, the preference index (PI) revealed locations where the wildfires occurred more frequently than in other class regions. The wildfire hazard area was estimated with the CG <span class="hlt">lightning</span> hazard map and specific land use types.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRD..11718213Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRD..11718213Y"><span>Aerosol indirect effect on tropospheric ozone via <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, Tianle; Remer, Lorraine A.; Bian, Huisheng; Ziemke, Jerald R.; Albrecht, Rachel; Pickering, Kenneth E.; Oreopoulos, Lazaros; Goodman, Steven J.; Yu, Hongbin; Allen, Dale J.</p> <p>2012-09-01</p> <p>Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. Inadequate understanding of processes related to O3 production, in particular those natural ones such as <span class="hlt">lightning</span>, contributes to this uncertainty. Here we demonstrate a new effect of aerosol particles on O3production by affecting <span class="hlt">lightning</span> <span class="hlt">activity</span> and <span class="hlt">lightning</span>-generated NOx (LNOx). We find that <span class="hlt">lightning</span> flash rate increases at a remarkable rate of 30 times or more per unit of aerosol optical depth. We provide observational evidence that indicates the observed increase in <span class="hlt">lightning</span> <span class="hlt">activity</span> is caused by the influx of aerosols from a volcano. Satellite data analyses show O3is increased as a result of aerosol-induced increase in <span class="hlt">lightning</span> and LNOx, which is supported by modle simulations with prescribed <span class="hlt">lightning</span> change. O3production increase from this aerosol-<span class="hlt">lightning</span>-ozone link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. In the face of anthropogenic aerosol increase our findings suggest that <span class="hlt">lightning</span> <span class="hlt">activity</span>, LNOx and O3, especially in the upper troposphere, have all increased substantially since preindustrial time due to the proposed aerosol-<span class="hlt">lightning</span>-ozone link, which implies a stronger O3 historical radiative forcing. Aerosol forcing therefore has a warming component via its effect on O3 production and this component has mostly been ignored in previous studies of climate forcing related to O3and aerosols. Sensitivity simulations suggest that 4-8% increase of column tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via <span class="hlt">lightning</span>. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications for understanding past and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.2850A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.2850A"><span>The response of thunderstorms and <span class="hlt">lightning</span> to smoke from Amazonian fires</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Altaratz, Orit; Koren, Ilan; Yair, Yoav; Price, Colin</p> <p>2010-05-01</p> <p>The effects of man-made aerosols on clouds are long believed to be a key component for model predictions of climate change, yet are one of the least understood. <span class="hlt">High</span> aerosol concentrations can change the convection intensity and hence the electrical <span class="hlt">activity</span> of thunderclouds. Focusing on the Amazon dry season in Brazil, where thousands of man-made forest fires inject smoke into the atmosphere, we studied the aerosol effects on thunderclouds and <span class="hlt">lightning</span>. We used the ground-based World-Wide <span class="hlt">Lightning</span> Location Network (WWLLN) measurements together with Aqua-MODIS remotely-sensed aerosol and cloud data to study the relationship between aerosol loading and <span class="hlt">lightning</span> flash occurrence. We present evidence for the transition between two regimes, representing opposing effects of aerosols on clouds. The first is the microphysical effect which is manifested in an increase in convective intensity (and therefore in electrical <span class="hlt">activity</span>), followed by the radiative effect that becomes dominant with the increase in aerosol loading leading to a decrease in convective intensity, manifested in lower <span class="hlt">lightning</span> <span class="hlt">activity</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070002700','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070002700"><span>Use of <span class="hlt">High</span>-resolution WRF Simulations to Forecast <span class="hlt">Lightning</span> Threat</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McCaul, William E.; LaCasse, K.; Goodman, S. J.</p> <p>2006-01-01</p> <p>Recent observational studies have confirmed the existence of a robust statistical relationship between <span class="hlt">lightning</span> flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of recent forecast models such as WRF, to forecast the threat of <span class="hlt">lightning</span> from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated <span class="hlt">lightning</span> risk. Six-h simulations are conducted for a number of case studies for which three-dimensional <span class="hlt">lightning</span> validation data from the North Alabama <span class="hlt">Lightning</span> Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data yield the most realistic simulations. An array of subjective and objective statistical metrics are employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016plp..book.....M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016plp..book.....M"><span>Principles of <span class="hlt">Lightning</span> Physics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mazur, Vladislav</p> <p>2016-12-01</p> <p>Principles of <span class="hlt">Lightning</span> Physics presents and discusses the most up-to-date physical concepts that govern many <span class="hlt">lightning</span> events in nature, including <span class="hlt">lightning</span> interactions with man-made structures, at a level suitable for researchers, advanced students and well-educated <span class="hlt">lightning</span> enthusiasts. The author's approach to understanding <span class="hlt">lightning</span>-to seek out, and show what is common to all <span class="hlt">lightning</span> flashes-is illustrated by an analysis of each type of <span class="hlt">lightning</span> and the multitude of <span class="hlt">lightning</span>-related features. The book examines the work that has gone into the development of new physical concepts, and provides critical evaluations of the existing understanding of the physics of <span class="hlt">lightning</span> and the lexicon of terms and definitions presently used in <span class="hlt">lightning</span> research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.7750R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.7750R"><span>Forest fires and <span class="hlt">lightning</span> <span class="hlt">activity</span> during the outstanding 2003 and 2005 fire seasons</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russo, Ana; Ramos, Alexandre; Trigo, Ricardo</p> <p>2013-04-01</p> <p>Wildfires in southern Europe cause frequent extensive economical and ecological losses and, even human casualties. Comparatively to other Mediterranean countries, Portugal is the country with more burnt area and fires per unit area in the last decade, mainly during the summer season (Pereira et al., 2011). According to the fire records available, between 1980 and 2009, wildfires have affected over 3 million hectares in Portugal (JRC, 2011), which corresponds to approximately a third of the Portuguese Continental territory. The main factors that influence fire ignition and propagation are: (1) the presence of fuel (i.e. vegetation); (2) climate and weather; (3) socioeconomic conditions that affect land use/land cover patterns, fire-prevention and fire-fighting capacity and (4) topography. Specifically, weather (e.g. wind, temperature, precipitation, humidity, and <span class="hlt">lightning</span> occurrence) plays an important role in fire behavior, affecting both ignition and spread of wildfires. Some countries have a relatively large fraction of fires caused by <span class="hlt">lightning</span>, e.g. northwestern USA, Canada, Russia (). In contrast, Portugal has only a small percentage of fire records caused by <span class="hlt">lightning</span>. Although significant doubts remain for the majority of fires in the catalog since they were cataloged without a likely cause. The recent years of 2003 and 2005 were particularly outstanding for fire <span class="hlt">activity</span> in Portugal, registering, respectively, total burned areas of 425 726 ha and 338 262 ha. However, while the 2003 was triggered by an exceptional heatwave that struck the entire western Europe, the 2005 fire season registered was coincident with one of the most severe droughts of the 20th century. In this work we have used mainly two different databases: 1) the Portuguese Rural Fire Database (PRFD) which is representative of rural fires that have occurred in Continental Portugal, 2001-2011, with the original data provided by the Autoridade Florestal Nacional (AFN, 2011); 2) <span class="hlt">lightning</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22486500-note-lightning-temperature','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22486500-note-lightning-temperature"><span>Note on <span class="hlt">lightning</span> temperature</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Alanakyan, Yu. R., E-mail: yralanak@mail.ru</p> <p>2015-10-15</p> <p>In this paper, some features of the dynamics of a <span class="hlt">lightning</span> channel that emerges after the leader-streamer process, are theoretically studied. It is shown that the dynamic pinch effect in the channel becomes possible if a discharge current before the main (quasi-steady) stage of a <span class="hlt">lightning</span> discharge increases rapidly. The ensuing magnetic compression of the channel increases plasma temperature to several million degrees leading to a soft x-ray flash within the <span class="hlt">highly</span> ionized plasma. The relation between the plasma temperature and the channel radius during the main stage of a <span class="hlt">lightning</span> discharge is derived.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMAE31B0430S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMAE31B0430S"><span>Scientific <span class="hlt">Lightning</span> Detection Network for Kazakhstan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Streltsov, A. V.; Lozbin, A.; Inchin, A.; Shpadi, Y.; Inchin, P.; Shpadi, M.; Ayazbayev, G.; Bykayev, R.; Mailibayeva, L.</p> <p>2015-12-01</p> <p>In the frame of grant financing of the scientific research in 2015-2017 the project "To Develop Electromagnetic System for <span class="hlt">lightning</span> location and atmosphere-lithosphere coupling research" was found. The project was start in January, 2015 and should be done during 3 years. The purpose is to create a system of electromagnetic measurements for <span class="hlt">lightning</span> location and atmosphere-lithosphere coupling research consisting of a network of electric and magnetic sensors and the dedicated complex for data processing and transfer to the end user. The main tasks are to set several points for electromagnetic measurements with 100-200 km distance between them, to develop equipment for these points, to develop the techniques and software for <span class="hlt">lightning</span> location (Time-of-arrival and Direction Finding (TOA+DF)) and provide a <span class="hlt">lightning</span> <span class="hlt">activity</span> research in North Tien-Shan region with respect to seismicity and other natural and manmade <span class="hlt">activities</span>. Also, it is planned to use <span class="hlt">lightning</span> data for Global Electric Circuit (GEC) investigation. Currently, there are <span class="hlt">lightning</span> detection networks in many countries. In Kazakhstan we have only separate units in airports. So, we don't have full <span class="hlt">lightning</span> information for our region. It is planned, to setup 8-10 measurement points with magnetic and electric filed antennas for VLF range. The final data set should be including each stroke location, time, type (CG+, CG-, CC+ or CC-) and waveform from each station. As the magnetic field <span class="hlt">lightning</span> antenna the ferrite rod VLF antenna will be used. As the electric field antenna the wide range antenna with specific frequencies filters will be used. For true event detection TOA and DF methods needs detected stroke from minimum 4 stations. In this case we can get location accuracy about 2-3 km and better.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE33A2527B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE33A2527B"><span><span class="hlt">Lightning</span> Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, <span class="hlt">Activation</span>, and First Results</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.</p> <p>2017-12-01</p> <p>Over two decades, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based <span class="hlt">lightning</span> observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global <span class="hlt">lightning</span> climatology. The <span class="hlt">Lightning</span> Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) provided global observations of tropical <span class="hlt">lightning</span> for an impressive 17 years before that mission came to a close in April 2015. Now a space-qualified LIS, built as the flight spare for TRMM, has been installed on the International Space Station (ISS) for a minimum two year mission following its SpaceX launch on February 19, 2017. The LIS, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission, was robotically installed in an Earth-viewing position on the outside of the ISS, providing a great opportunity to not only extend the 17-year TRMM LIS record of tropical <span class="hlt">lightning</span> measurements but also to expand that coverage to higher latitudes missed by the TRMM mission. Since its <span class="hlt">activation</span>, LIS has continuously observed the amount, rate, and radiant energy <span class="hlt">lightning</span> within its field-of-view as it orbits the Earth. A major focus of this mission is to better understand the processes which cause <span class="hlt">lightning</span>, as well as the connections between <span class="hlt">lightning</span> and subsequent severe weather events. This understanding is a key to improving weather predictions and saving lives and property here in the United States and around the world. The LIS measurements will also help cross-validate observations from the new Geostationary <span class="hlt">Lightning</span> Mapper (GLM) operating on NOAA's newest weather satellite GOES-16. An especially unique contribution from the ISS platform will be the availability of real-time <span class="hlt">lightning</span> data, especially valuable for operational forecasting and warning applications over data sparse regions such</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990064210&hterms=physical+activity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dphysical%2Bactivity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990064210&hterms=physical+activity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dphysical%2Bactivity"><span>Comparisons of the Vertical Development of Deep Tropical Convection and Associated <span class="hlt">Lightning</span> <span class="hlt">Activity</span> on a Global Basis</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Williams, E.; Lin, S.; Labrada, C.; Christian, H.; Goodman, S.; Boccippio, D.; Driscoll, K.</p> <p>1999-01-01</p> <p>Simultaneous radar (13.8 Ghz) and <span class="hlt">lightning</span> (<span class="hlt">Lightning</span> Imaging Sensor) observations from the NASA TRMM (Tropical Rainfall Measuring Mission) spacecraft afford a new opportunity to examine differences in tropical continental and oceanic convection on a global basis, The 250 meter vertical resolution of the radar data and the approximately 17 dBZ sensitivity are well suited to providing vertical profiles of radar reflectivity over the entire tropical belt. The reflectivity profile has been shown in numerous local ground-based studies to be a good indicator of both updraft velocity and electrical <span class="hlt">activity</span>. The radar and <span class="hlt">lightning</span> observations for multiple satellite orbits have been integrated to produce global CAPPI's for various altitudes. At 7 km altitude, where mixed phase microphysics is known to be <span class="hlt">active</span>, the mean reflectivity in continental convection is 10-15 dB greater than the value in oceanic convection. These results provide a sound physical basis for the order-of-magnitude contrast in <span class="hlt">lightning</span> counts between continental and oceanic convection. These observations still beg the question, however, about the contrast in updraft velocity in these distinct convective regimes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMAE22A..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMAE22A..08M"><span>HAARP-based Investigations of <span class="hlt">Lightning</span>-induced Nonlinearities within the D-Region Ionosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, R. C.</p> <p>2015-12-01</p> <p>It is well-documented that energetic <span class="hlt">lightning</span> can produce fantastical events with the lower ionosphere. Although the <span class="hlt">High</span>-frequency <span class="hlt">Active</span> Auroral Research Program (HAARP) transmitter is not as powerful as <span class="hlt">lightning</span>, it can be used to investigate the nonlinear interactions that occur within the lower ionosphere, many of which also occur during <span class="hlt">lightning</span>-induced ionospheric events. This paper presents the best experimental results obtained during D-region modification experiments performed by the University of Florida at the HAARP observatory between 2007 and 2014, including ELF/VLF wave generation experiments, wave-wave mixing experiments, and cross-modulation experiments. We emphasize the physical processes important for <span class="hlt">lightning</span>-ionosphere interactions that can be directly investigated using HAARP.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE41A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE41A..06S"><span>Combining GOES-16 Geostationary <span class="hlt">Lightning</span> Mapper with the ground based Earth Networks Total <span class="hlt">Lightning</span> Network</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stock, M.; Lapierre, J. L.; Zhu, Y.</p> <p>2017-12-01</p> <p>Recently, the Geostationary <span class="hlt">Lightning</span> Mapper (GLM) began collecting optical data to locate <span class="hlt">lightning</span> events and flashes over the North and South American continents. This new instrument promises uniformly <span class="hlt">high</span> detection efficiency (DE) over its entire field of view, with location accuracy on the order of 10 km. In comparison, Earth Networks Total <span class="hlt">Lightning</span> Networks (ENTLN) has a less uniform coverage, with higher DE in regions with dense sensor coverage, and lower DE with sparse sensor coverage. ENTLN also offers better location accuracy, <span class="hlt">lightning</span> classification, and peak current estimation for their <span class="hlt">lightning</span> locations. It is desirable to produce an integrated dataset, combining the strong points of GLM and ENTLN. The easiest way to achieve this is to simply match located <span class="hlt">lightning</span> processes from each system using time and distance criteria. This simple method will be limited in scope by the uneven coverage of the ground based network. Instead, we will use GLM group locations to look up the electric field change data recorded by ground sensors near each GLM group, vastly increasing the coverage of the ground network. The ground waveforms can then be used for: improvements to differentiation between glint and <span class="hlt">lightning</span> for GLM, higher precision lighting location, current estimation, and <span class="hlt">lightning</span> process classification. Presented is an initial implementation of this type of integration using preliminary GLM data, and waveforms from ENTLN.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.tmp..441D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.tmp..441D"><span>Spatial and temporal analysis of a 17-year <span class="hlt">lightning</span> climatology over Bangladesh with LIS data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dewan, Ashraf; Ongee, Emmanuel T.; Rahman, Md. Masudur; Mahmood, Rezaul; Yamane, Yusuke</p> <p>2017-10-01</p> <p>Using NASA's TRMM <span class="hlt">Lightning</span> Imaging Sensor (LIS) data from 1998 to 2014, this paper presents a 17-year <span class="hlt">lightning</span> climatology of Bangladesh, at 0.5° × 0.5° spatial resolution. Diurnal, seasonal, monthly and annual variations in the occurrence of <span class="hlt">lightning</span> flashes were explored. The diurnal regime of <span class="hlt">lightning</span> is dominated by afternoon/evening events. Overall, peak <span class="hlt">lightning</span> <span class="hlt">activity</span> occurs in the early morning (0200 LST) and evening (1900 LST). The distribution of <span class="hlt">lightning</span> flash counts by season over Bangladesh landmass is as follows: pre-monsoon (69.2%), monsoon (24.1%), post-monsoon (4.6%) and winter (2.1%). Flash rate density (FRD) hotspots were primarily located in the north and north-eastern parts of Bangladesh, with a maximum of 72 fl km-2 year-1. Spatially, the distribution of FRD increases from the Bay of Bengal in the south to relatively higher elevations (of the Himalayan foothills) in the north. A spatial shift in FRD hotspots occurs with change in season. For example, in monsoon season, hotspots of <span class="hlt">lightning</span> <span class="hlt">activity</span> move in a south-westerly direction from their pre-monsoon location (i.e. north-eastern Bangladesh) towards West Bengal in India. South and south-eastern parts of Bangladesh experience <span class="hlt">high</span> <span class="hlt">lightning</span> <span class="hlt">activity</span> during post-monsoon season due to regional orographic lifting and low-pressure systems (i.e. cyclone) in the Bay of Bengal. To the best of our knowledge, this is the first study focused on LIS-based <span class="hlt">lightning</span> climatology over Bangladesh. This baseline study, therefore, is an essential first step towards effective management of <span class="hlt">lightning</span>-related hazards in Bangladesh.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23672391','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23672391"><span>National Athletic Trainers' Association position statement: <span class="hlt">lightning</span> safety for athletics and recreation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walsh, Katie M; Cooper, Mary Ann; Holle, Ron; Rakov, Vladimir A; Roeder, William P; Ryan, Michael</p> <p>2013-01-01</p> <p>To present recommendations for the education, prevention, and management of <span class="hlt">lightning</span> injuries for those involved in athletics or recreation. <span class="hlt">Lightning</span> is the most common severe-storm <span class="hlt">activity</span> encountered annually in the United States. The majority of <span class="hlt">lightning</span> injuries can be prevented through an aggressive educational campaign, vacating outdoor <span class="hlt">activities</span> before the <span class="hlt">lightning</span> threat, and an understanding of the attributes of a safe place from the hazard. This position statement is focused on supplying information specific to <span class="hlt">lightning</span> safety and prevention and treatment of <span class="hlt">lightning</span> injury and providing <span class="hlt">lightning</span>-safety recommendations for the certified athletic trainer and those who are involved in athletics and recreation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3600929','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3600929"><span>National Athletic Trainers' Association Position Statement: <span class="hlt">Lightning</span> Safety for Athletics and Recreation</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Walsh, Katie M.; Cooper, Mary Ann; Holle, Ron; Rakov, Vladimir A.; Roeder, William P.; Ryan, Michael</p> <p>2013-01-01</p> <p>Objective: To present recommendations for the education, prevention, and management of <span class="hlt">lightning</span> injuries for those involved in athletics or recreation. Background: <span class="hlt">Lightning</span> is the most common severe-storm <span class="hlt">activity</span> encountered annually in the United States. The majority of <span class="hlt">lightning</span> injuries can be prevented through an aggressive educational campaign, vacating outdoor <span class="hlt">activities</span> before the <span class="hlt">lightning</span> threat, and an understanding of the attributes of a safe place from the hazard. Recommendations: This position statement is focused on supplying information specific to <span class="hlt">lightning</span> safety and prevention and treatment of <span class="hlt">lightning</span> injury and providing <span class="hlt">lightning</span>-safety recommendations for the certified athletic trainer and those who are involved in athletics and recreation. PMID:23672391</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160006716&hterms=air+quality&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dair%2Bquality','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160006716&hterms=air+quality&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dair%2Bquality"><span><span class="hlt">Lightning</span> NOx and Impacts on Air Quality</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Murray, Lee T.</p> <p>2016-01-01</p> <p><span class="hlt">Lightning</span> generates relatively large but uncertain quantities of nitrogen oxides, critical precursors for ozone and hydroxyl radical (OH), the primary tropospheric oxidants. <span class="hlt">Lightning</span> nitrogen oxide strongly influences background ozone and OH due to <span class="hlt">high</span> ozone production efficiencies in the free troposphere, effecting small but non-negligible contributions to surface pollutant concentrations. <span class="hlt">Lightning</span> globally contributes 3-4 ppbv of simulated annual-mean policy-relevant background (PRB) surface ozone, comprised of local, regional, and hemispheric components, and up to 18 ppbv during individual events. Feedbacks via methane may counter some of these effects on decadal time scales. <span class="hlt">Lightning</span> contributes approximately 1 percent to annual-mean surface particulate matter, as a direct precursor and by promoting faster oxidation of other precursors. <span class="hlt">Lightning</span> also ignites wildfires and contributes to nitrogen deposition. Urban pollution influences <span class="hlt">lightning</span> itself, with implications for regional <span class="hlt">lightning</span>-nitrogen oxide production and feedbacks on downwind surface pollution. How <span class="hlt">lightning</span> emissions will change in a warming world remains uncertain.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20764570-bead-lightning-formation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20764570-bead-lightning-formation"><span>Bead <span class="hlt">lightning</span> formation</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ludwig, G.O.; Saba, M.M.F.; Division of Space Geophysics, National Space Research Institute, 12227-010, Sao Jose dos Campos, SP</p> <p>2005-09-15</p> <p>Formation of beaded structures in triggered <span class="hlt">lightning</span> discharges is considered in the framework of both magnetohydrodynamic (MHD) and hydrodynamic instabilities. It is shown that the space periodicity of the structures can be explained in terms of the kink and sausage type instabilities in a cylindrical discharge with anomalous viscosity. In particular, the fast growth rate of the hydrodynamic Rayleigh-Taylor instability, which is driven by the backflow of air into the channel of the decaying return stroke, dominates the initial evolution of perturbations during the decay of the return current. This instability is responsible for a significant enhancement of the anomalousmore » viscosity above the classical level. Eventually, the damping introduced at the current channel edge by the <span class="hlt">high</span> level of anomalous viscous stresses defines the final length scale of bead <span class="hlt">lightning</span>. Later, during the continuing current stage of the <span class="hlt">lightning</span> flash, the MHD pinch instability persists, although with a much smaller growth rate that can be enhanced in a M-component event. The combined effect of these instabilities may explain various aspects of bead <span class="hlt">lightning</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100033708&hterms=Pollution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DPollution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100033708&hterms=Pollution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DPollution"><span>Weekly Cycle of <span class="hlt">Lightning</span>: Evidence of Storm Invigoration by Pollution</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong</p> <p>2009-01-01</p> <p>We have examined summertime 1998 2009 U.S. <span class="hlt">lightning</span> data from the National <span class="hlt">Lightning</span> Detection Network (NLDN) to look for weekly cycles in <span class="hlt">lightning</span> <span class="hlt">activity</span>. As was found by Bell et al. (2008) for rain over the southeast U.S., there is a significant weekly cycle in afternoon <span class="hlt">lightning</span> <span class="hlt">activity</span> that peaks in the middle of the week there. The weekly cycle appears to be reduced over population centers. <span class="hlt">Lightning</span> <span class="hlt">activity</span> peaks on weekends over waters near the SE U.S. The statistical significance of weekly cycles over the western half of the country is generally small. We found no evidence of a weekly cycle of synoptic-scale forcing that might explain these patterns. The <span class="hlt">lightning</span> behavior is entirely consistent with the explanation suggested by Bell et al. (2008) for the cycles in rainfall and other atmospheric data from the SE U.S., that aerosols can cause storms to intensify in humid, convectively unstable environments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A53D0174Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A53D0174Y"><span>Aerosol indirect effect on tropospheric ozone via <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.</p> <p>2012-12-01</p> <p>Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of <span class="hlt">lightning</span> <span class="hlt">activity</span> to aerosol loading with <span class="hlt">lightning</span> <span class="hlt">activity</span> increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in <span class="hlt">lightning</span> <span class="hlt">activity</span> is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in <span class="hlt">lightning</span> and <span class="hlt">lightning</span> produced NOx. Model simulations with prescribed <span class="hlt">lightning</span> change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing <span class="hlt">lightning</span> and thus <span class="hlt">lightning</span> produced nitrogen oxides. This aerosol-<span class="hlt">lightning</span>-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via <span class="hlt">lightning</span>. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT.........5C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT.........5C"><span>Terrestrial gamma-ray flash production by <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carlson, Brant E.</p> <p></p> <p>Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near <span class="hlt">active</span> thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good <span class="hlt">lightning</span> data exists, TGFs are closely associated with measurable <span class="hlt">lightning</span> discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of <span class="hlt">high</span>-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with <span class="hlt">lightning</span>, fields produced by <span class="hlt">lightning</span> are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields <span class="hlt">high</span> above thunderstorms as suggested by upper atmospheric <span class="hlt">lightning</span> research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from <span class="hlt">lightning</span> strokes, can indeed drive TGF production, but the requirements on the source <span class="hlt">lightning</span> are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of <span class="hlt">lightning</span> physics motivate a new mechanism for TGF production by <span class="hlt">lightning</span> current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9073D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9073D"><span>Comparing distinct ground-based <span class="hlt">lightning</span> location networks covering the Netherlands</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Vos, Lotte; Leijnse, Hidde; Schmeits, Maurice; Beekhuis, Hans; Poelman, Dieter; Evers, Läslo; Smets, Pieter</p> <p>2015-04-01</p> <p><span class="hlt">Lightning</span> can be detected using a ground-based sensor network. The Royal Netherlands Meteorological Institute (KNMI) monitors <span class="hlt">lightning</span> <span class="hlt">activity</span> in the Netherlands with the so-called FLITS-system; a network combining SAFIR-type sensors. This makes use of Very <span class="hlt">High</span> Frequency (VHF) as well as Low Frequency (LF) sensors. KNMI has recently decided to replace FLITS by data from a sub-continental network operated by Météorage which makes use of LF sensors only (KNMI <span class="hlt">Lightning</span> Detection Network, or KLDN). KLDN is compared to the FLITS system, as well as Met Office's long-range Arrival Time Difference (ATDnet), which measures Very Low Frequency (VLF). Special focus lies on the ability to detect Cloud to Ground (CG) and Cloud to Cloud (CC) <span class="hlt">lightning</span> in the Netherlands. Relative detection efficiency of individual flashes and <span class="hlt">lightning</span> <span class="hlt">activity</span> in a more general sense are calculated over a period of almost 5 years. Additionally, the detection efficiency of each system is compared to a ground-truth that is constructed from flashes that are detected by both of the other datasets. Finally, infrasound data is used as a fourth <span class="hlt">lightning</span> data source for several case studies. Relative performance is found to vary strongly with location and time. As expected, it is found that FLITS detects significantly more CC <span class="hlt">lightning</span> (because of the strong aptitude of VHF antennas to detect CC), though KLDN and ATDnet detect more CG <span class="hlt">lightning</span>. We analyze statistics computed over the entire 5-year period, where we look at CG as well as total <span class="hlt">lightning</span> (CC and CG combined). Statistics that are considered are the Probability of Detection (POD) and the so-called <span class="hlt">Lightning</span> <span class="hlt">Activity</span> Detection (LAD). POD is defined as the percentage of reference flashes the system detects compared to the total detections in the reference. LAD is defined as the fraction of system recordings of one or more flashes in predefined area boxes over a certain time period given the fact that the reference detects at least one</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5316997-pioneer-venus-orbiter-search-venusian-lightning','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5316997-pioneer-venus-orbiter-search-venusian-lightning"><span>Pioneer Venus orbiter search for Venusian <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Borucki, W.J.; Dyer, J.W.; Phillips, J.R.</p> <p>1991-07-01</p> <p>During the 1988 and 1990, the star sensor aboard the Pioneer Venus orbiter (PVO) was used to search for optical pulses from <span class="hlt">lightning</span> on the nightside of Venus. Useful data were obtained for 53 orbits in 1988 and 55 orbits in 1990. During this period, approximately 83 s of search time plus 7749 s of control data were obtained. The results again find no optical evidence for <span class="hlt">lightning</span> <span class="hlt">activity</span>. With the region that was observed during 1988, the results imply that the upper bound to short-duration flashes is 4 {times} 10{sup {minus}7} flashes/km{sup 2}/s for flashes that are at leastmore » 50% as bright as typical terrestrial <span class="hlt">lightning</span>. During 1990, when the 2-Hz filter was used, the results imply an upper bound of 1 {times} 10{sup {minus}7} flashes/km{sup 2}/s for long-duration flashes at least 1.6% as bright as typical terrestrial <span class="hlt">lightning</span> flashes or 33% as bright as the pulses observed by the Venera 9. The upper bounds to the flash rates for the 1988 and 1990 searches are twice and one half the global terrestrial rate, respectively. These two searches covered the region from 60{degrees}N latitude to 30{degrees}S latitude, 250{degrees} to 350{degrees} longitude, and the region from 45{degrees}N latitude to 55{degrees}S latitude, 155{degrees} to 300{degrees} longitude. Both searches sampled much of the nightside region from the dawn terminator to within 4 hours of the dusk terminator. These searches covered a much larger latitude range than any previous search. The results show that the Beat and Phoebe Regio areas previously identified by Russell et al. (1988) as areas with <span class="hlt">high</span> rates of <span class="hlt">lightning</span> <span class="hlt">activity</span> were not <span class="hlt">active</span> during the two seasons of the observations. When the authors assume that their upper bounds to the nightside flash rate are representative of the entire planet, the results imply that the global flash rate and energy dissipation rate derived by Krasnopol'sky (1983) from his observation of a single storm are too <span class="hlt">high</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123.2347S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123.2347S"><span>Characteristics of <span class="hlt">Lightning</span> Within Electrified Snowfall Events Using <span class="hlt">Lightning</span> Mapping Arrays</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schultz, Christopher J.; Lang, Timothy J.; Bruning, Eric C.; Calhoun, Kristin M.; Harkema, Sebastian; Curtis, Nathan</p> <p>2018-02-01</p> <p>This study examined 34 <span class="hlt">lightning</span> flashes within four separate thundersnow events derived from <span class="hlt">lightning</span> mapping arrays (LMAs) in northern Alabama, central Oklahoma, and Washington DC. The goals were to characterize the in-cloud component of each <span class="hlt">lightning</span> flash, as well as the correspondence between the LMA observations and <span class="hlt">lightning</span> data taken from national <span class="hlt">lightning</span> networks like the National <span class="hlt">Lightning</span> Detection Network (NLDN). Individual flashes were examined in detail to highlight several observations within the data set. The study results demonstrated that the structures of these flashes were primarily normal polarity. The mean area encompassed by this set of flashes is 375 km2, with a maximum flash extent of 2,300 km2, a minimum of 3 km2, and a median of 128 km2. An average of 2.29 NLDN flashes were recorded per LMA-derived <span class="hlt">lightning</span> flash. A maximum of 11 NLDN flashes were recorded in association with a single LMA-derived flash on 10 January 2011. Additionally, seven of the 34 flashes in the study contain zero NLDN-identified flashes. Eleven of the 34 flashes initiated from tall human-made objects (e.g., communication towers). In at least six <span class="hlt">lightning</span> flashes, the NLDN detected a return stroke from the cloud back to the tower and not the initial upward leader. This study also discusses <span class="hlt">lightning</span>'s interaction with the human-built environment and provides an example of <span class="hlt">lightning</span> within heavy snowfall observed by Geostationary Operational Environmental Satellite-16's Geostationary <span class="hlt">Lightning</span> Mapper.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29910996','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29910996"><span>Characteristics of <span class="hlt">Lightning</span> within Electrified Snowfall Events using <span class="hlt">Lightning</span> Mapping Arrays.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schultz, Christopher J; Lang, Timothy J; Bruning, Eric C; Calhoun, Kristin M; Harkema, Sebastian; Curtis, Nathan</p> <p>2018-02-27</p> <p>This study examined 34 <span class="hlt">lightning</span> flashes within four separate thundersnow events derived from <span class="hlt">lightning</span> mapping arrays (LMAs) in northern Alabama, central Oklahoma, and Washington DC. The goals were to characterize the in-cloud component of each <span class="hlt">lightning</span> flash, as well as the correspondence between the LMA observations and <span class="hlt">lightning</span> data taken from national <span class="hlt">lightning</span> networks like the National <span class="hlt">Lightning</span> Detection Network (NLDN). Individual flashes were examined in detail to highlight several observations within the dataset. The study results demonstrated that the structures of these flashes were primarily normal polarity. The mean area encompassed by this set of flashes is 375 km 2 , with a maximum flash extent of 2300 km 2 , a minimum of 3 km 2 , and a median of 128 km 2 . An average of 2.29 NLDN flashes were recorded per LMA-derived <span class="hlt">lightning</span> flash. A maximum of 11 NLDN flashes were recorded in association with a single LMA-derived flash on 10 January 2011. Additionally, seven of the 34 flashes in the study contain zero NLDN identified flashes. Eleven of the 34 flashes initiated from tall human-made objects (e.g., communication towers). In at least six <span class="hlt">lightning</span> flashes, the NLDN detected a return stroke from the cloud back to the tower and not the initial upward leader. This study also discusses <span class="hlt">lightning</span>'s interaction with the human built environment and provides an example of <span class="hlt">lightning</span> within heavy snowfall observed by GOES-16's Geostationary <span class="hlt">Lightning</span> Mapper.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmRe.195...31W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmRe.195...31W"><span>The relationship of <span class="hlt">lightning</span> <span class="hlt">activity</span> and short-duration rainfall events during warm seasons over the Beijing metropolitan region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Fan; Cui, Xiaopeng; Zhang, Da-Lin; Qiao, Lin</p> <p>2017-10-01</p> <p>The relationship between <span class="hlt">lightning</span> <span class="hlt">activity</span> and rainfall associated with 2925 short-duration rainfall (SDR) events over the Beijing metropolitan region (BMR) is examined during the warm seasons of 2006-2007, using the cloud-to-ground (CG) and intracloud (IC) <span class="hlt">lightning</span> data from Surveillance et Alerte Foudre par Interférometrie Radioélectrique (SAFIR)-3000 and 5-min rainfall data from automatic weather stations (AWSs). An optimal radius of 10 km around selected AWSs is used to determine the <span class="hlt">lightning</span>-rainfall relationship. The <span class="hlt">lightning</span>-rainfall correlations vary significantly, depending upon the intensity of SDR events. That is, correlation coefficient (R 0.7) for the short-duration heavy rainfall (SDHR, i.e., ≥ 20 mm h- 1) events is found higher than that (R 0.4) for the weak SDR (i.e., 5-10 mm h- 1) events, and lower percentage of the SDHR events (< 10%) than the weak SDR events (40-50%) are observed with few flashes. Significant time-lagged correlations between <span class="hlt">lightning</span> and rainfall are also found. About 80% of the SDR events could reach their highest correlation coefficients when the associated <span class="hlt">lightning</span> flashes shift at time lags of < 25 min before and after rainfall begins. Those events with <span class="hlt">lightning</span> preceding rainfall account for 50-60% of the total SDR events. Better <span class="hlt">lightning</span>-rainfall correlations can be attained when time lags are incorporated, with the use of total (CG and IC) <span class="hlt">lightning</span> data. These results appear to have important implications for improving the nowcast of SDHR events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120002845','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120002845"><span>Inter-Comparison of <span class="hlt">Lightning</span> Trends from Ground-Based Networks During Severe Weather: Applications Toward GLM</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carey, Lawrence D.; Schultz, Chris J.; Petersen, Walter A.; Rudlosky, Scott D.; Bateman, Monte; Cecil, Daniel J.; Blakeslee, Richard J.; Goodman, Steven J.</p> <p>2011-01-01</p> <p>The planned GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM) will provide total <span class="hlt">lightning</span> data on the location and intensity of thunderstorms over a hemispheric spatial domain. Ongoing GOES-R research <span class="hlt">activities</span> are demonstrating the utility of total flash rate trends for enhancing forecasting skill of severe storms. To date, GLM total <span class="hlt">lightning</span> proxy trends have been well served by ground-based VHF systems such as the Northern Alabama <span class="hlt">Lightning</span> Mapping Array (NALMA). The NALMA (and other similar networks in Washington DC and Oklahoma) provide <span class="hlt">high</span> detection efficiency (> 90%) and location accuracy (< 1 km) observations of total <span class="hlt">lightning</span> within about 150 km from network center. To expand GLM proxy applications for <span class="hlt">high</span> impact convective weather (e.g., severe, aviation hazards), it is desirable to investigate the utility of additional sources of continuous <span class="hlt">lightning</span> that can serve as suitable GLM proxy over large spatial scales (order 100 s to 1000 km or more), including typically data denied regions such as the oceans. Potential sources of GLM proxy include ground-based long-range (regional or global) VLF/LF <span class="hlt">lightning</span> networks such as the relatively new Vaisala Global <span class="hlt">Lightning</span> Dataset (GLD360) and Weatherbug Total <span class="hlt">Lightning</span> Network (WTLN). Before using these data in GLM research applications, it is necessary to compare them with LMAs and well-quantified cloud-to-ground (CG) <span class="hlt">lightning</span> networks, such as Vaisala s National <span class="hlt">Lightning</span> Detection Network (NLDN), for assessment of total and CG <span class="hlt">lightning</span> location accuracy, detection efficiency and flash rate trends. Preliminary inter-comparisons from these <span class="hlt">lightning</span> networks during selected severe weather events will be presented and their implications discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V11E..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V11E..06S"><span>Monitoring the development of volcanic eruptions through volcanic <span class="hlt">lightning</span> - Using a <span class="hlt">lightning</span> mapping array, seismic and infrasound array, and visual plume analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, C. M.; Thompson, G.; McNutt, S. R.; Behnke, S. A.; Edens, H. E.; Van Eaton, A. R.; Gaudin, D.; Thomas, R. J.</p> <p>2017-12-01</p> <p>The period of 28 May - 7 June 2015 at Sakurajima Volcano, Japan witnessed a multitude of Vulcanian eruptive events, which resulted in plumes reaching 500-3000m above the vent. These plumes varied from white, gas-rich plumes to dark grey and black ash-rich plumes, and were recorded on lowlight and infrared cameras. A nine-station <span class="hlt">lightning</span> mapping array (LMA) was deployed to locate sources of VHF (67-73 MHz) radiation produced by <span class="hlt">lightning</span> flashes and other types of electrical <span class="hlt">activity</span> such as `continuous RF (radio frequency)'. Two Nanometrics Trillium broadband seismometers and six BSU infrasound sensors were deployed. Over this ten day period we recorded 1556 events that consisted of both seismic and infrasound signals, indicating explosive <span class="hlt">activity</span>. There are an additional 1222 events that were recorded as only seismic or infrasound signals, which may be a result of precursory seismic signals or noise contamination. Plume discharge types included both distinct <span class="hlt">lightning</span> flashes and `continuous RF'. The LMA ran continuously for the duration of the experiment. On 30 May 2015 at least seven <span class="hlt">lightning</span> flashes were also detected by the Vaisala Global <span class="hlt">Lightning</span> Detection 360 network, which detects VLF (3-30 kHz) radiation. However the University of Washington's World Wide <span class="hlt">Lightning</span> Location Network, which also detects VLF radiation, detected no volcanic <span class="hlt">lightning</span> flashes in this time period. This indicates that the electrical <span class="hlt">activity</span> in Sakurajima's plume occurs near the lower limits of the VLF detection threshold. We investigate relationships between the plume dynamics, the geophysical signal and the corresponding electrical <span class="hlt">activity</span> through: plume velocity and height; event waveform cross-correlation; volcano acoustic-seismic ratios; overall geophysical energy; RSAM records; and VHF sources detected by the LMA. By investigating these relationships we hope to determine the seismic/infrasound energy threshold required to generate measurable electrical <span class="hlt">activity</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PrAeS..64....1G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PrAeS..64....1G"><span><span class="hlt">Lightning</span> strike protection of composites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gagné, Martin; Therriault, Daniel</p> <p>2014-01-01</p> <p>Aircraft structures are being redesigned to use fiber-reinforced composites mainly due to their <span class="hlt">high</span> specific stiffness and strength. One of the main drawbacks from changing from electrically conductive metals to insulating or semi-conducting composites is the higher vulnerability of the aircraft to <span class="hlt">lightning</span> strike damage. The current protection approach consists of bonding a metal mesh to the surface of the composite structure, but this weight increase negatively impact the fuel efficiency. This review paper presents an overview of the <span class="hlt">lightning</span> strike problematic, the regulations, the <span class="hlt">lightning</span> damage to composite, the current protection solutions and other material or technology alternatives. Advanced materials such as polymer-based nanocomposites and carbon nanotube buckypapers are promising candidates for lightweight <span class="hlt">lightning</span> strike protection technology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915111A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915111A"><span>Laboratory simulations of volcanic ash charging and conditions for volcanic <span class="hlt">lightning</span> on Venus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Airey, Martin; Warriner-Bacon, Elliot; Aplin, Karen</p> <p>2017-04-01</p> <p><span class="hlt">Lightning</span> may be important in the emergence of life on Earth and elsewhere, as significant chemical reactions occur in the superheated region around the <span class="hlt">lightning</span> channel. This, combined with the availability of phosphates in volcanic clouds, suggests that volcanic <span class="hlt">lightning</span> could have been the catalyst for the formation of biological compounds on the early Earth [1]. In addition to meteorological <span class="hlt">lightning</span>, volcanic <span class="hlt">activity</span> also generates electrical discharges within charged ash plumes, which can be a significant contributor to atmospheric electricity on geologically <span class="hlt">active</span> planets. The physical properties of other planetary atmospheres, such as that of Venus, have an effect on the processes that lead to the generation of volcanic <span class="hlt">lightning</span>. Volcanism is known to have occurred on Venus in the past, and recent observations made by ESA's Venus Express satellite have provided evidence for currently <span class="hlt">active</span> volcanism [2-4], and <span class="hlt">lightning</span> discharges [e.g. 5]. Venusian <span class="hlt">lightning</span> could potentially be volcanic in origin, since no meteorological mechanisms are known to separate charge effectively in its clouds [6]. The hunt for further evidence for <span class="hlt">lightning</span> at Venus is ongoing, for example by means of the <span class="hlt">Lightning</span> and Airglow Camera (LAC) [7] on Akatsuki, the current JAXA mission at Venus. Our laboratory experiments simulate ash generation and measure electrical charging of the ash under typical atmospheric conditions on Earth and Venus. The study uses a 1 litre chamber, which, when pressurised and heated, can simulate the <span class="hlt">high</span>-pressure, <span class="hlt">high</span>-temperature, carbon dioxide-dominated atmosphere of Venus at 10 km altitude ( 5 MPa, 650 K). A key finding of previous work [8] is that ash plume-forming eruptions are more likely to occur at higher altitudes such as these on Venus. The chamber contains temperature/pressure monitoring and logging equipment, a rock collision apparatus (based on [9]) to generate the charged rock fragments, and charge measurement electrodes connected</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMAE12A..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMAE12A..06B"><span>Trends in <span class="hlt">Lightning</span> Electrical Energy Derived from the <span class="hlt">Lightning</span> Imaging Sensor</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bitzer, P. M.; Koshak, W. J.</p> <p>2016-12-01</p> <p>We present results detailing an emerging application of space-based measurement of <span class="hlt">lightning</span>: the electrical energy. This is a little-used attribute of <span class="hlt">lightning</span> data which can have applications for severe weather, <span class="hlt">lightning</span> physics, and wildfires. In particular, we use data from the Tropical Rainfall Measuring Mission <span class="hlt">Lightning</span> Imaging Sensor (TRMM/LIS) to find the temporal and spatial variations in the detected spectral energy density. This is used to estimate the total <span class="hlt">lightning</span> electrical energy, following established methodologies. Results showing the trend in time of the electrical energy, as well as the distribution around the globe, will be highlighted. While flashes have been typically used in most studies, the basic scientifically-relevant measured unit by LIS is the optical group data product. This generally corresponds to a return stroke or IC pulse. We explore how the electrical energy varies per LIS group, providing an extension and comparison with previous investigations. The result is an initial climatology of this new and important application of space-based optical measurements of <span class="hlt">lightning</span>, which can provide a baseline for future applications using the Geostationary <span class="hlt">Lightning</span> Mapper (GLM), the European <span class="hlt">Lightning</span> Imager (LI), and the International Space Station <span class="hlt">Lightning</span> Imaging Sensor (ISS/LIS) instruments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JASTP.134...78S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JASTP.134...78S"><span><span class="hlt">Lightning</span> and middle atmospheric discharges in the atmosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siingh, Devendraa; Singh, R. P.; Kumar, Sarvan; Dharmaraj, T.; Singh, Abhay K.; Singh, Ashok K.; Patil, M. N.; Singh, Shubha</p> <p>2015-11-01</p> <p>Recent development in <span class="hlt">lightning</span> discharges including transient luminous events (TLEs) and global electric circuit are discussed. Role of solar <span class="hlt">activity</span>, convective available potential energy, surface temperature and difference of land-ocean surfaces on convection process are discussed. Different processes of discharge initiation are discussed. Events like sprites and halos are caused by the upward quasi-electrostatic fields associated with intense cloud-to-ground discharges while jets (blue starter, blue jet, gigantic jet) are caused by charge imbalance in thunderstorm during <span class="hlt">lightning</span> discharges but they are not associated with a particular discharge flash. Elves are generated by the electromagnetic pulse radiated during <span class="hlt">lightning</span> discharges. The present understanding of global electric circuit is also reviewed. Relation between <span class="hlt">lightning</span> <span class="hlt">activity</span>/global electric circuit and climate is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8848654','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8848654"><span><span class="hlt">Lightning</span> and transportation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cherington, M</p> <p>1995-12-01</p> <p>It is a little-known fact that <span class="hlt">lightning</span> casualties often involve travel or transportation. López and colleagues, in their studies on the epidemiology of <span class="hlt">lightning</span> injuries, have reported that 10% of <span class="hlt">lightning</span> injuries are categorized under transportation. In the majority of their cases, victims were struck while standing outside or near their vehicles during a thunderstorm. During my review of the neurologic complications of <span class="hlt">lightning</span> injuries, I was impressed by the number of case reports in which the victim was struck while either in or near a vehicle, airplane or vessel. In this article, I shall put forth information on four aspects of <span class="hlt">lightning</span> that relate to the danger to people traveling in vehicles, boats, and airplanes. First, I shall deal with <span class="hlt">lightning</span> safety on ships and boats. People who enjoy recreational sailing, including the "weekend sailor" and those who enjoy fishing from a boat, should be fortified with knowledge about <span class="hlt">lightning</span> protection. Second, I shall consider the matter of <span class="hlt">lightning</span> strikes to aircraft. In the third section, I shall discuss the question of <span class="hlt">lightning</span> safety in automobiles. Fourth, I shall review those cases found in my literature review in which the victim was struck while in or near a vehicle, boat, or airplane.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800022141','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800022141"><span>Analysis of electrical transients created by <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nanevicz, J. E.; Vance, E. F.</p> <p>1980-01-01</p> <p>A series of flight tests was conducted using a specially-instrumented NASA Learjet to study the electrical transients created on an aircraft by nearby <span class="hlt">lightning</span>. The instrumentation included provisions for the time-domain and frequency-domain recording of the electrical signals induced in sensors located both on the exterior and on the interior of the aircraft. The design and calibration of the sensors and associated measuring systems is described together with the results of the flight test measurements. The results indicate that the concept of providing instrumentation to follow the <span class="hlt">lightning</span> signal from propagation field, to aircraft skin current, to current on interior wiring is basically sound. The results of the measurement indicate that the <span class="hlt">high</span> frequency signals associated with <span class="hlt">lightning</span> stroke precursor <span class="hlt">activity</span> are important in generating electromagnetic noise on the interior of the aircraft. Indeed, the signals produced by the precursors are often of higher amplitude and of longer duration that the pulse produced by the main return stroke.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011703','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011703"><span>Sao Paulo <span class="hlt">Lightning</span> Mapping Array (SP-LMA): Network Assessment and Analyses for Intercomparison Studies and GOES-R Proxy <span class="hlt">Activities</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bailey, J. C.; Blakeslee, R. J.; Carey, L. D.; Goodman, S. J.; Rudlosky, S. D.; Albrecht, R.; Morales, C. A.; Anselmo, E. M.; Neves, J. R.; Buechler, D. E.</p> <p>2014-01-01</p> <p>A 12 station <span class="hlt">Lightning</span> Mapping Array (LMA) network was deployed during October 2011 in the vicinity of Sao Paulo, Brazil (SP-LMA) to contribute total <span class="hlt">lightning</span> measurements to an international field campaign [CHUVA - Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)]. The SP-LMA was operational from November 2011 through March 2012 during the Vale do Paraiba campaign. Sensor spacing was on the order of 15-30 km, with a network diameter on the order of 40-50km. The SP-LMA provides good 3-D <span class="hlt">lightning</span> mapping out to 150 km from the network center, with 2-D coverage considerably farther. In addition to supporting CHUVA science/mission objectives, the SP-LMA is supporting the generation of unique proxy data for the Geostationary <span class="hlt">Lightning</span> Mapper (GLM) and Advanced Baseline Imager (ABI), on NOAA's Geostationary Operational Environmental Satellite-R (GOES-R: scheduled for a 2015 launch). These proxy data will be used to develop and validate operational algorithms so that they will be ready to use on "day1" following the GOES-R launch. As the CHUVA Vale do Paraiba campaign opportunity was formulated, a broad community-based interest developed for a comprehensive <span class="hlt">Lightning</span> Location System (LLS) intercomparison and assessment study, leading to the participation and/or deployment of eight other ground-based networks and the space-based <span class="hlt">Lightning</span> Imaging Sensor (LIS). The SP-LMA data is being intercompared with <span class="hlt">lightning</span> observations from other deployed <span class="hlt">lightning</span> networks to advance our understanding of the capabilities/contributions of each of these networks toward GLM proxy and validation <span class="hlt">activities</span>. This paper addresses the network assessment including noise reduction criteria, detection efficiency estimates, and statistical and climatological (both temporal and spatially) analyses for intercomparison studies and GOES-R proxy <span class="hlt">activities</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IzAOP..53....1E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IzAOP..53....1E"><span>The influence of <span class="hlt">lightning</span> <span class="hlt">activity</span> and anthropogenic factors on large-scale characteristics of natural fires</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eliseev, A. V.; Mokhov, I. I.; Chernokulsky, A. V.</p> <p>2017-01-01</p> <p>A module for simulating of natural fires (NFs) in the climate model of the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM), is extended with respect to the influence of <span class="hlt">lightning</span> <span class="hlt">activity</span> and population density on the ignition frequency and fire suppression. The IAP RAS CM is used to perform numerical experiments in accordance with the conditions of the project that intercompares climate models, CMIP5 (Coupled Models Intercomparison Project, phase 5). The frequency of <span class="hlt">lightning</span> flashes was assigned in accordance with the LIS/OTD satellite data. In the calculations performed, anthropogenic ignitions play an important role in NF occurrences, except for regions at subpolar latitudes and, to a lesser degree, tropical and subtropical regions. Taking into account the dependence of fire frequency on <span class="hlt">lightning</span> <span class="hlt">activity</span> and population density intensifies the influence of characteristics of natural fires on the climate changes in tropics and subtropics as compared to the version of the IAP RAS CM that does not take the influence of ignition sources on the large-scale characteristics of NFs into consideration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19345842','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19345842"><span>When <span class="hlt">lightning</span> strikes: bolting down the facts & fiction.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Usatch, Ben</p> <p>2009-04-01</p> <p>MYTH: There's no danger from <span class="hlt">lightning</span> until the rain starts. FACT: <span class="hlt">Lightning</span> often precedes the storm by up to 10 miles. A reasonable guideline is the "30-30 rule," by which you count the seconds between the flash and the thunder. If the time span is less than 30 seconds, seek shelter. Additionally, wait a full 30 minutes from last <span class="hlt">lightning</span> flash to resume outdoor <span class="hlt">activities</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170012196','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170012196"><span><span class="hlt">Lightning</span> Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, <span class="hlt">Activation</span> and First Results</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.; Virts, K.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170012196'); toggleEditAbsImage('author_20170012196_show'); toggleEditAbsImage('author_20170012196_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170012196_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170012196_hide"></p> <p>2017-01-01</p> <p>Mission: Fly a flight-spare LIS (<span class="hlt">Lightning</span> Imaging Sensor) on ISS to take advantage of unique capabilities provided by the ISS (e.g., <span class="hlt">high</span> inclination, real time data); Integrate LIS as a hosted payload on the DoD Space Test Program-Houston 5 (STP-H5) mission and launch on a Space X rocket for a minimum 2 year mission. Measurement: NASA and its partners developed and demonstrated effectiveness and value of using space-based <span class="hlt">lightning</span> observations as a remote sensing tool; LIS measures <span class="hlt">lightning</span> (amount, rate, radiant energy) with storm scale resolution, millisecond timing, and <span class="hlt">high</span> detection efficiency, with no land-ocean bias. Benefit: LIS on ISS will extend TRMM (Tropical Rainfall Measuring Mission) time series observations, expand latitudinal coverage, provide real time data to operational users, and enable cross-sensor calibration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1369034','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1369034"><span>What Initiates <span class="hlt">Lightning</span>?</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None</p> <p></p> <p><span class="hlt">Lightning</span> is an energetic electric discharge, creating a current that flows briefly within a cloud--or between a cloud and the ground--and heating the air to temperatures about five times hotter than the sun’s surface. But there’s a lot about <span class="hlt">lightning</span> that’s still a mystery. Los Alamos National Laboratory is working to change that. Because <span class="hlt">lightning</span> produces optical and radio frequency signals similar to those from a nuclear explosion, it’s important to be able to distinguish whether such signals are caused by <span class="hlt">lightning</span> or a nuclear event. As part of the global security mission at Los Alamos, scientists use <span class="hlt">lightning</span> tomore » help develop better instruments for nuclear test-ban treaty monitoring and, in the process, have learned a lot about <span class="hlt">lightning</span> itself.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090037586','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090037586"><span>NASA Manned Launch Vehicle <span class="hlt">Lightning</span> Protection Development</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McCollum, Matthew B.; Jones, Steven R.; Mack, Jonathan D.</p> <p>2009-01-01</p> <p>, which has resulted in lost launch opportunities and increased expenditures in manpower to assess Space Shuttle vehicle health and safety after <span class="hlt">lightning</span> events at the launch pad. Because of <span class="hlt">high</span>-percentage launch availability and long-term on-pad requirements, LCC constraints are no longer considered feasible. The Constellation vehicles must be designed to withstand direct and indirect effects of <span class="hlt">lightning</span>. A review of the vehicle design and potential concerns will be presented as well as the new catenary <span class="hlt">lightning</span> protection system for the launch pad. This system is required to protect the Constellation vehicles during launch processing when vehicle <span class="hlt">lightning</span> effects protection might be compromised by such items as umbilical connections and open access hatches.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120014476','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120014476"><span>Using the VAHIRR Radar Algorithm to Investigate <span class="hlt">Lightning</span> Cessation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stano, Geoffrey T.; Schultz, Elise V.; Petersen, Walter A.</p> <p>2012-01-01</p> <p>Accurately determining the threat posed by <span class="hlt">lightning</span> is a major area for improved operational forecasts. Most efforts have focused on the initiation of <span class="hlt">lightning</span> within a storm, with far less effort spent investigating <span class="hlt">lightning</span> cessation. Understanding both components, initiation and cessation, are vital to improving <span class="hlt">lightning</span> safety. Few organizations <span class="hlt">actively</span> forecast <span class="hlt">lightning</span> onset or cessation. One such organization is the 45th Weather Squadron (45WS) for the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45WS has identified that charged anvil clouds remain a major threat of continued <span class="hlt">lightning</span> and can greatly extend the window of a potential <span class="hlt">lightning</span> strike. Furthermore, no discernable trend of total <span class="hlt">lightning</span> <span class="hlt">activity</span> has been observed consistently for all storms. This highlights the need for more research to find a robust method of knowing when a storm will cease producing <span class="hlt">lightning</span>. Previous <span class="hlt">lightning</span> cessation work has primarily focused on forecasting the cessation of cloud-to -ground <span class="hlt">lightning</span> only. A more recent, statistical study involved total <span class="hlt">lightning</span> (both cloud-to-ground and intracloud). Each of these previous works has helped the 45WS take steps forward in creating improved and ultimately safer <span class="hlt">lightning</span> cessation forecasts. Each study has either relied on radar data or recommended increased use of radar data to improve cessation forecasts. The reasoning is that radar data is able to either directly or by proxy infer more about dynamical environment leading to cloud electrification and eventually <span class="hlt">lightning</span> cessation. The authors of this project are focusing on a two ]step approach to better incorporate radar data and total <span class="hlt">lightning</span> to improve cessation forecasts. This project will utilize the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) algorithm originally developed during the Airborne Field Mill II (ABFM II) research project. During the project, the VAHIRR product showed a trend of increasing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MAP...128..303B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MAP...128..303B"><span><span class="hlt">Lightning</span> characteristics of derecho producing mesoscale convective systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bentley, Mace L.; Franks, John R.; Suranovic, Katelyn R.; Barbachem, Brent; Cannon, Declan; Cooper, Stonie R.</p> <p>2016-06-01</p> <p>Derechos, or widespread, convectively induced wind storms, are a common warm season phenomenon in the Central and Eastern United States. These damaging and severe weather events are known to sweep quickly across large spatial regions of more than 400 km and produce wind speeds exceeding 121 km h-1. Although extensive research concerning derechos and their parent mesoscale convective systems already exists, there have been few investigations of the spatial and temporal distribution of associated cloud-to-ground <span class="hlt">lightning</span> with these events. This study analyzes twenty warm season (May through August) derecho events between 2003 and 2013 in an effort to discern their <span class="hlt">lightning</span> characteristics. Data used in the study included cloud-to-ground flash data derived from the National <span class="hlt">Lightning</span> Detection Network, WSR-88D imagery from the University Corporation for Atmospheric Research, and damaging wind report data obtained from the Storm Prediction Center. A spatial and temporal analysis was conducted by incorporating these data into a geographic information system to determine the distribution and <span class="hlt">lightning</span> characteristics of the environments of derecho producing mesoscale convective systems. Primary foci of this research include: (1) finding the approximate size of the <span class="hlt">lightning</span> <span class="hlt">activity</span> region for individual and combined event(s); (2) determining the intensity of each event by examining the density and polarity of <span class="hlt">lightning</span> flashes; (3) locating areas of highest <span class="hlt">lightning</span> flash density; and (4) to provide a <span class="hlt">lightning</span> spatial analysis that outlines the temporal and spatial distribution of flash <span class="hlt">activity</span> for particularly strong derecho producing thunderstorm episodes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002963','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002963"><span>Sao Paulo <span class="hlt">Lightning</span> Mapping Array (SP-LMA): Network Assessment and Analyses for Intercomparison Studies and GOES-R Proxy <span class="hlt">Activities</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blakeslee, R. J.; Bailey, J. C.; Carey, L. D.; Goodman, S. J.; Rudlosky, S. D.; Albrecht, R.; Morales, C. A.; Anselmo, E. M.; Neves, J. R.</p> <p>2013-01-01</p> <p>A 12 station <span class="hlt">Lightning</span> Mapping Array (LMA) network was deployed during October 2011in the vicinity of São Paulo, Brazil (SP-LMA) to contribute total <span class="hlt">lightning</span> measurements to an international field campaign [CHUVA - Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)]. The SP-LMA was operational from November 2011 through March 2012. Sensor spacing was on the order of 15-30 km, with a network diameter on the order of 40-50km. The SP-LMA provides good 3-D <span class="hlt">lightning</span> mapping out to150 km from the network center, with 2-D coverage considerably farther. In addition to supporting CHUVA science/mission objectives, the SP-LMA is supporting the generation of unique proxy data for the Geostationary <span class="hlt">Lightning</span> Mapper (GLM) and Advanced Baseline Imager (ABI), on NOAA's Geostationary Operational Environmental Satellite-R (GOES-R: scheduled for a 2015 launch). These proxy data will be used to develop and validate operational algorithms so that they will be ready to use on "day1" following the GOES-R launch. The SP-LMA data also will be intercompared with <span class="hlt">lightning</span> observations from other deployed <span class="hlt">lightning</span> networks to advance our understanding of the capabilities/contributions of each of these networks toward GLM proxy and validation <span class="hlt">activities</span>. This paper addresses the network assessment and analyses for intercomparison studies and GOES-R proxy <span class="hlt">activities</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..12212296W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..12212296W"><span>Improving <span class="hlt">Lightning</span> and Precipitation Prediction of Severe Convection Using <span class="hlt">Lightning</span> Data Assimilation With NCAR WRF-RTFDDA</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Haoliang; Liu, Yubao; Cheng, William Y. Y.; Zhao, Tianliang; Xu, Mei; Liu, Yuewei; Shen, Si; Calhoun, Kristin M.; Fierro, Alexandre O.</p> <p>2017-11-01</p> <p>In this study, a <span class="hlt">lightning</span> data assimilation (LDA) scheme was developed and implemented in the National Center for Atmospheric Research Weather Research and Forecasting-Real-Time Four-Dimensional Data Assimilation system. In this LDA method, graupel mixing ratio (qg) is retrieved from observed total <span class="hlt">lightning</span>. To retrieve qg on model grid boxes, column-integrated graupel mass is first calculated using an observation-based linear formula between graupel mass and total <span class="hlt">lightning</span> rate. Then the graupel mass is distributed vertically according to the empirical qg vertical profiles constructed from model simulations. Finally, a horizontal spread method is utilized to consider the existence of graupel in the adjacent regions of the <span class="hlt">lightning</span> initiation locations. Based on the retrieved qg fields, latent heat is adjusted to account for the latent heat releases associated with the formation of the retrieved graupel and to promote convection at the observed <span class="hlt">lightning</span> locations, which is conceptually similar to the method developed by Fierro et al. Three severe convection cases were studied to evaluate the LDA scheme for short-term (0-6 h) <span class="hlt">lightning</span> and precipitation forecasts. The simulation results demonstrated that the LDA was effective in improving the short-term <span class="hlt">lightning</span> and precipitation forecasts by improving the model simulation of the qg fields, updrafts, cold pool, and front locations. The improvements were most notable in the first 2 h, indicating a <span class="hlt">highly</span> desired benefit of the LDA in <span class="hlt">lightning</span> and convective precipitation nowcasting (0-2 h) applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005EOSTr..86..398S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005EOSTr..86..398S"><span>Katrina and Rita were lit up with <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shao, X.-M.; Harlin, J.; Stock, M.; Stanley, M.; Regan, A.; Wiens, K.; Hamlin, T.; Pongratz, M.; Suszcynsky, D.; Light, T.</p> <p></p> <p>Hurricanes generally produce very little <span class="hlt">lightning</span> <span class="hlt">activity</span> compared to other noncyclonic storms, and <span class="hlt">lightning</span> is especially sparse in the eye wall and inner regions within tens of kilometers surrounding the eye [Molinari et al., 1994, 1999]. (The eye wall is the wall of clouds that encircles the eye of the hurricane.) <span class="hlt">Lightning</span> can sometimes be detected in the outer, spiral rainbands, but the <span class="hlt">lightning</span> occurrence rate varies significantly from hurricane to hurricane as well as within an individual hurricane's lifetime.Hurricanes Katrina and Rita hit the U.S. Gulf coasts of Louisiana, Mississippi, and Texas, and their distinctions were not just limited to their tremendous intensity and damage caused. They also differed from typical hurricanes in their <span class="hlt">lightning</span> production rate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770011155','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770011155"><span>Status of research into <span class="hlt">lightning</span> effects on aircraft</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Plumer, J. A.</p> <p>1976-01-01</p> <p>Developments in aircraft <span class="hlt">lightning</span> protection since 1938 are reviewed. Potential <span class="hlt">lightning</span> problems resulting from present trends toward the use of electronic controls and composite structures are discussed, along with presently available <span class="hlt">lightning</span> test procedures for problem assessment. The validity of some procedures is being questioned because of pessimistic results and design implications. An in-flight measurement program is needed to provide statistics on <span class="hlt">lightning</span> severity at flight altitudes and to enable more realistic tests, and operators are urged to supply researchers with more details on electronic components damaged by <span class="hlt">lightning</span> strikes. A need for review of certain aspects of fuel system vulnerability is indicated by several recent accidents, and specific areas for examination are identified. New educational materials and standardization <span class="hlt">activities</span> are also noted.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29138444','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29138444"><span>The Elusive Evidence of Volcanic <span class="hlt">Lightning</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Genareau, K; Gharghabi, P; Gafford, J; Mazzola, M</p> <p>2017-11-14</p> <p><span class="hlt">Lightning</span> strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic <span class="hlt">lightning</span> discharge, when airborne volcanic ash is transformed into <span class="hlt">lightning</span>-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of <span class="hlt">lightning</span>-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory <span class="hlt">high</span>-current impulse experiments, this research shows that within the <span class="hlt">lightning</span> discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of <span class="hlt">lightning</span> during explosive eruptions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....3339P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....3339P"><span>Positive <span class="hlt">lightning</span> and severe weather</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Price, C.; Murphy, B.</p> <p>2003-04-01</p> <p>In recent years researchers have noticed that severe weather (tornados, hail and damaging winds) are closely related to the amount of positive <span class="hlt">lightning</span> occurring in thunderstorms. On 4 July 1999, a severe derecho (wind storm) caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) <span class="hlt">lightning</span> occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) <span class="hlt">lightning</span> measured by the Canadian <span class="hlt">Lightning</span> Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG <span class="hlt">lightning</span>. Such <span class="hlt">high</span> ratios of +CG are rare, and may be useful indicators for short-term forecasts of severe weather.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23761114','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23761114"><span>Central hyperadrenergic state after <span class="hlt">lightning</span> strike.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parsaik, Ajay K; Ahlskog, J Eric; Singer, Wolfgang; Gelfman, Russell; Sheldon, Seth H; Seime, Richard J; Craft, Jennifer M; Staab, Jeffrey P; Kantor, Birgit; Low, Phillip A</p> <p>2013-08-01</p> <p>To describe and review autonomic complications of <span class="hlt">lightning</span> strike. Case report and laboratory data including autonomic function tests in a subject who was struck by <span class="hlt">lightning</span>. A 24-year-old man was struck by <span class="hlt">lightning</span>. Following that, he developed dysautonomia, with persistent inappropriate sinus tachycardia and autonomic storms, as well as posttraumatic stress disorder (PTSD) and functional neurologic problems. The combination of persistent sinus tachycardia and episodic exacerbations associated with hypertension, diaphoresis, and agitation was <span class="hlt">highly</span> suggestive of a central hyperadrenergic state with superimposed autonomic storms. Whether the additional PTSD and functional neurologic deficits were due to a direct effect of the <span class="hlt">lightning</span> strike on the central nervous system or a secondary response is open to speculation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMAE11A..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMAE11A..01G"><span>The GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodman, S. J.; Blakeslee, R. J.; Koshak, W. J.; Mach, D. M.; Bailey, J. C.; Buechler, D. E.; Carey, L. D.; Schultz, C. J.; Bateman, M. G.; McCaul, E., Jr.; Stano, G. T.</p> <p>2012-12-01</p> <p>The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total <span class="hlt">lightning</span> detection (cloud and cloud-to-ground flashes) from the Geostationary <span class="hlt">Lightning</span> Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total <span class="hlt">lightning</span> <span class="hlt">activity</span> (in-cloud and cloud-to-ground <span class="hlt">lightning</span> flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado <span class="hlt">activity</span>, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development, an Algorithm Working Group (AWG) <span class="hlt">Lightning</span> Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 <span class="hlt">lightning</span> event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA <span class="hlt">Lightning</span> Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low earth orbit, and from ground-based <span class="hlt">lightning</span> networks and intensive pre-launch field campaigns. GLM will produce the same or similar <span class="hlt">lightning</span> flash attributes provided by the LIS and OTD, and thus extends their combined climatology over the western hemisphere into the coming decades. Science and application development along with pre-operational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRA..117.8311S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRA..117.8311S"><span>Long recovery VLF perturbations associated with <span class="hlt">lightning</span> discharges</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salut, M. M.; Abdullah, M.; Graf, K. L.; Cohen, M. B.; Cotts, B. R. T.; Kumar, Sushil</p> <p>2012-08-01</p> <p>Long D-region ionospheric recovery perturbations are a recently discovered and poorly understood subcategory of early VLF events, distinguished by exceptionally long ionospheric recovery times of up to 20 min (compared to more typical ˜1 min recovery times). Characteristics and occurrence rates of long ionospheric recovery events on the NWC transmitter signal recorded at Malaysia are presented. 48 long recovery events were observed. The location of the causative <span class="hlt">lightning</span> discharge for each event is determined from GLD360 and WWLLN data, and each discharge is categorized as being over land or sea. Results provide strong evidence that long recovery events are attributed predominately to <span class="hlt">lightning</span> discharges occurring over the sea, despite the fact that <span class="hlt">lightning</span> <span class="hlt">activity</span> in the region is more prevalent over land. Of the 48 long recovery events, 42 were attributed to <span class="hlt">lightning</span> <span class="hlt">activity</span> over water. Analysis of the causative <span class="hlt">lightning</span> of long recovery events in comparison to all early VLF events reveals that these long recovery events are detectable for lighting discharges at larger distances from the signal path, indicating a different scattering pattern for long recovery events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.8377Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.8377Y"><span>Measurement of electromagnetic waves in ELF and VLF bands to monitor <span class="hlt">lightning</span> <span class="hlt">activity</span> in the Maritime Continent</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamashita, Kozo; Takahashi, Yukihiro; Ohya, Hiroyo; Tsuchiya, Fuminori; Sato, Mitsuteru; Matsumoto, Jun</p> <p>2013-04-01</p> <p>Data of <span class="hlt">lightning</span> discharge has been focused on as an effective way for monitoring and nowcasting of thunderstorm <span class="hlt">activity</span> which causes extreme weather. Spatial distribution of <span class="hlt">lightning</span> discharge has been used as a proxy of the presence or absence of deep convection. Latest observation shows that there is extremely huge <span class="hlt">lightning</span> whose scale is more than hundreds times bigger than that of averaged event. This result indicates that <span class="hlt">lightning</span> observation should be carried out to estimate not only existence but also scale for quantitative evaluation of atmospheric convection. In this study, <span class="hlt">lightning</span> observation network in the Maritime Continent is introduced. This network is consisted of the sensors which make possible to measure electromagnetic wave radiated from <span class="hlt">lightning</span> discharges. Observation frequency is 0.1 - 40 kHz for the measurement of magnetic field and 1 - 40 kHz for that of electric field. Sampling frequency is 100 kHz. Waveform of electromagnetic wave is recorded by personal computer. We have already constructed observation stations at Tainan in Taiwan (23.1N, 121.1E), Saraburi in Thailand (14.5N, 101.0E), and Pontianak in Indonesia (0.0N, 109.4E). Furthermore, we plan to install the monitoring system at Los Banos in Philippines (14.18, 121.25E) and Hanoi in Viet Nam. Data obtained by multipoint observation is synchronized by GPS receiver installed at each station. By using data obtained by this network, location and scale of <span class="hlt">lightning</span> discharge can be estimated. Location of <span class="hlt">lightning</span> is determined based on time of arrival method. Accuracy of geolocation could be less than 10km. Furthermore, charge moment is evaluated as a scale of each <span class="hlt">lightning</span> discharge. It is calculated from electromagnetic waveform in ELF range (3-30 kHz). At the presentation, we will show the initial result about geolocation for source of electromagnetic wave and derivation of charge moment value based on the measurement of ELF and VLF sferics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE11A..02A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE11A..02A"><span>On the controls of deep convection and <span class="hlt">lightning</span> in the Amazon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albrecht, R. I.; Giangrande, S. E.; Wang, D.; Morales, C. A.; Pereira, R. F. O.; Machado, L.; Silva Dias, M. A. F.</p> <p>2017-12-01</p> <p>Local observations and remote sensing have been extensively used to unravel cloud distribution and life cycle but yet their representativeness in cloud resolve models (CRMs) and global climate models (GCMs) are still very poor. In addition, the complex cloud-aerosol-precipitation interactions (CAPI), as well as thermodynamics, dynamics and large scale controls on convection have been the focus of many studies in the last two decades but still no final answer has been reached on the overall impacts of these interactions and controls on clouds, especially on deep convection. To understand the environmental and CAPI controls of deep convection, cloud electrification and <span class="hlt">lightning</span> <span class="hlt">activity</span> in the pristine region of Amazon basin, in this study we use long term satellite and field campaign measurements to depict the characteristics of deep convection and the relationships between <span class="hlt">lightning</span> and convective fluxes in this region. Precipitation and <span class="hlt">lightning</span> <span class="hlt">activity</span> from the Tropical Rainfall Measuring Mission (TRMM) satellite are combined with estimates of aerosol concentrations and reanalysis data to delineate the overall controls on thunderstorms. A more detailed analysis is obtained studying these controls on the relationship between <span class="hlt">lightning</span> <span class="hlt">activity</span> and convective mass fluxes using radar wind profiler and 3D total <span class="hlt">lightning</span> during GoAmazon 2014/15 field campaign. We find evidences that the large scale conditions control the distribution of the precipitation, with widespread and more frequent mass fluxes of moderate intensity during the wet season, resulting in less vigorous convection and lower <span class="hlt">lightning</span> <span class="hlt">activity</span>. Under higher convective available potential energy, <span class="hlt">lightning</span> is enhanced in polluted and background aerosol conditions. The relationships found in this study can be used in model parameterizations and ensemble evaluations of both <span class="hlt">lightning</span> <span class="hlt">activity</span> and <span class="hlt">lightning</span> NOx from seasonal forecasting to climate projections and in a broader sense to Earth Climate</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFMSA21B0084H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFMSA21B0084H"><span>Ionospheric signatures of <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsu, M.; Liu, J.</p> <p>2003-12-01</p> <p>The geostationary metrology satellite (GMS) monitors motions of thunderstorm cloud, while the <span class="hlt">lightning</span> detection network (LDN) in Taiwan and the very <span class="hlt">high</span> Frequency (VHF) radar in Chung-Li (25.0›XN, 121.2›XE) observed occurrences of <span class="hlt">lightning</span> during May and July, 1997. Measurements from the digisonde portable sounder (DPS) at National Central University shows that <span class="hlt">lightning</span> results in occurrence of the sporadic E-layer (Es), as well as increase and decrease of plasma density at the F2-peak and E-peak in the ionosphere, respectively. A network of ground-based GPS receivers is further used to monitor the spatial distribution of the ionospheric TEC. To explain the plasma density variations, a model is proposed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMAE31A0261M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMAE31A0261M"><span>On Day-to-Day Variability of Global <span class="hlt">Lightning</span> <span class="hlt">Activity</span> as Quantified from Background Schumann Resonance Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mushtak, V. C.; Williams, E. R.</p> <p>2011-12-01</p> <p>Among the palette of methods (satellite, VLF, ELF) for monitoring global <span class="hlt">lightning</span> <span class="hlt">activity</span>, observations of the background Schumann resonances (SR) provide a unique prospect for estimating the integrated <span class="hlt">activity</span> of global <span class="hlt">lightning</span> <span class="hlt">activity</span> in absolute units (coul2 km2/sec). This prospect is ensured by the SR waves' low attenuation, with wavelengths commensurate with the dimensions of dominant regional <span class="hlt">lightning</span> "chimneys", and by the accumulating methodology for background SR techniques. Another benefit is the reduction of SR measurements into a compact set of resonance characteristics (modal frequencies, intensities, and quality factors). Suggested and tested in numerical simulations by T.R. Madden in the 1960s, the idea to invert the SR characteristics for the global <span class="hlt">lightning</span> source has been farther developed, statistically substantiated, and practically realized here on the basis of the computing power and the quantity of experimental material way beyond what the SR pioneers had at their disposal. The critical issue of the quality of the input SR parameters is addressed by implementing a statistically substantiated sanitizing procedure to dispose of the fragments of the observed time series containing unrepresentative elements - local interference of various origin and strong ELF transients originating outside the major "chimneys" represented in the source model. As a result of preliminary research, a universal empirical sanitizing criterion has been established. Due to the fact that the actual observations have been collected from a set of individually organized ELF stations with various equipment sets and calibration techniques, the relative parameters in both input (the intensities) and output (the "chimney" <span class="hlt">activities</span>) are being used as far as possible in the inversion process to avoid instabilities caused by calibration inconsistencies. The absolute regional <span class="hlt">activities</span> - and so the sought for global <span class="hlt">activity</span> in absolute units - is determined in the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004EOSTr..85..110O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004EOSTr..85..110O"><span><span class="hlt">Lightning</span> Physics and Effects</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orville, Richard E.</p> <p>2004-03-01</p> <p><span class="hlt">Lightning</span> Physics and Effects is not a <span class="hlt">lightning</span> book; it is a <span class="hlt">lightning</span> encyclopedia. Rarely in the history of science has one contribution covered a subject with such depth and thoroughness as to set the enduring standard for years, perhaps even decades, to come. This contribution covers all aspects of <span class="hlt">lightning</span>, including <span class="hlt">lightning</span> physics, <span class="hlt">lightning</span> protection, and the interaction of <span class="hlt">lightning</span> with a variety of objects and systems as well as the environment. The style of writing is well within the ability of the technical non-expert and anyone interested in <span class="hlt">lightning</span> and its effects. Potential readers will include physicists; engineers working in the power industry, communications, computer, and aviation industries; atmospheric scientists; geophysicists; meteorologists; atmospheric chemists; foresters; ecologists; physicians working in the area of electrical trauma; and, lastly, architects. This comprehensive reference volume contains over 300 illustrations, 70 tables with quantitative information, and over 6000 reference and bibliography entries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930053748&hterms=rain+storm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Drain%2Bstorm','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930053748&hterms=rain+storm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Drain%2Bstorm"><span>Radar characteristics of cloud-to-ground <span class="hlt">lightning</span> producing storms in Florida</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Buechler, D. E.; Goodman, S. J.</p> <p>1991-01-01</p> <p>The interrelation between cloud-to-ground <span class="hlt">lightning</span>, convective rainfall, and the environment in Central Florida storms is examined. The rain flux, storm area, and ground discharge rates are computed within the outlined area. Time-height cross sections of maximum dBZ values at each level for two storms are shown. The multicellular nature of these storms is readily apparent. The cloud-to-ground <span class="hlt">lightning</span> <span class="hlt">activity</span> occurs mainly where <span class="hlt">high</span> reflectivity values (30-40 dBZ) extend above 7 km.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRD..118..787Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRD..118..787Z"><span>Statistical patterns in the location of natural <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zoghzoghy, F. G.; Cohen, M. B.; Said, R. K.; Inan, U. S.</p> <p>2013-01-01</p> <p><span class="hlt">Lightning</span> discharges are nature's way of neutralizing the electrical buildup in thunderclouds. Thus, if an individual discharge destroys a substantial fraction of the cloud charge, the probability of a subsequent flash is reduced until the cloud charge separation rebuilds. The temporal pattern of <span class="hlt">lightning</span> <span class="hlt">activity</span> in a localized region may thus inherently be a proxy measure of the corresponding timescales for charge separation and electric field buildup processes. We present a statistical technique to bring out this effect (as well as the subsequent recovery) using <span class="hlt">lightning</span> geo-location data, in this case with data from the National <span class="hlt">Lightning</span> Detection Network (NLDN) and from the GLD360 Network. We use this statistical method to show that a <span class="hlt">lightning</span> flash can remove an appreciable fraction of the built up charge, affecting the neighboring <span class="hlt">lightning</span> <span class="hlt">activity</span> for tens of seconds within a ˜ 10 km radius. We find that our results correlate with timescales of electric field buildup in storms and suggest that the proposed statistical tool could be used to study the electrification of storms on a global scale. We find that this flash suppression effect is a strong function of flash type, flash polarity, cloud-to-ground flash multiplicity, the geographic location of <span class="hlt">lightning</span>, and is proportional to NLDN model-derived peak stroke current. We characterize the spatial and temporal extent of the suppression effect as a function of these parameters and discuss various applications of our findings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120001434','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120001434"><span>The Goes-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas</p> <p>2011-01-01</p> <p>The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total <span class="hlt">lightning</span> detection (cloud and cloud-to-ground flashes) from the Geostationary <span class="hlt">Lightning</span> Mapper (GLM), and improved storm diagnostic capability with the Advanced Baseline Imager. The GLM will map total <span class="hlt">lightning</span> <span class="hlt">activity</span> (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado <span class="hlt">activity</span>, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. In this paper we will report on new Nowcasting and storm warning applications being developed and evaluated at various NOAA Testbeds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150001382','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150001382"><span>Exploring <span class="hlt">Lightning</span> Jump Characteristics</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.</p> <p>2014-01-01</p> <p>This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total <span class="hlt">lightning</span> flash rate (i.e., <span class="hlt">lightning</span> jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total <span class="hlt">lightning</span> <span class="hlt">activity</span> from three different <span class="hlt">lightning</span> detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and <span class="hlt">lightning</span> flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730023587','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730023587"><span>Automatic <span class="hlt">lightning</span> detection and photographic system</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wojtasinski, R. J.; Holley, L. D.; Gray, J. L.; Hoover, R. B. (Inventor)</p> <p>1972-01-01</p> <p>A system is presented for monitoring and recording <span class="hlt">lightning</span> strokes within a predetermined area with a camera having an electrically operated shutter with means for advancing the film in the camera after <span class="hlt">activating</span> the shutter. The system includes an antenna for sensing <span class="hlt">lightning</span> strikes which, in turn, generates a signal that is fed to an electronic circuit which generates signals for operating the shutter of the camera. Circuitry is provided for preventing <span class="hlt">activation</span> of the shutter as the film in the camera is being advanced.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110024188','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110024188"><span><span class="hlt">Lightning</span> Protection and Instrumentation at Kennedy Space Center</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Colon, Jose L.</p> <p>2005-01-01</p> <p><span class="hlt">Lightning</span> is a natural phenomenon, but can be dangerous. Prevention of <span class="hlt">lightning</span> is a physical impossibility and total protection requires compromises on costs and effects, therefore prediction and measurements of the effects that might be produced by iightn:ing is a most at locat:ions where people or sensitive systems and equipment are exposed. This is the case of the launching pads for the Space Shuttle at Kennedy Space Center (KSC) of the National Aeronautics and Space Administration. This report summarizes lightring phenomena with a brief explanation of <span class="hlt">lightning</span> generation and <span class="hlt">lightning</span> <span class="hlt">activity</span> as related to KSC. An analysis of the instrumentation used at the launching pads for measurements of <span class="hlt">lightning</span> effects with alternatives to improve the protection system and up-grade the actual instrumentation system is indicated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMAE21A0296W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMAE21A0296W"><span>A comparison between initial continuous currents of different types of upward <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, D.; Sawada, N.; Takagi, N.</p> <p>2009-12-01</p> <p>We have observed the <span class="hlt">lightning</span> to a wind turbine and its <span class="hlt">lightning</span>-protection tower for four consecutive winter seasons from 2005 to 2009. Our observation items include (1) thunderstorm electrical fields and <span class="hlt">lightning</span>-caused electric field changes at multi sites around the wind turbine, (2) electrical currents at the bottom of the wind turbine and its <span class="hlt">lightning</span> protection tower, (3) normal video and <span class="hlt">high</span> speed image of <span class="hlt">lightning</span> optical channels. Totally, we have obtained the data for 42 <span class="hlt">lightning</span> that hit either on wind turbine or its <span class="hlt">lightning</span> protection tower or both. Among these 42 <span class="hlt">lightning</span>, 38 are upward <span class="hlt">lightning</span> and 2 are downward <span class="hlt">lightning</span>. We found the upward <span class="hlt">lightning</span> can be sub-classified into two types. Type 1 upward <span class="hlt">lightning</span> are self-triggered from a <span class="hlt">high</span> structure, while type 2 <span class="hlt">lightning</span> are triggered by a discharge occurred in other places which could be either a cloud discharge or a cloud-to-ground discharge (other-triggered). In this study, we have compared the two types of upward <span class="hlt">lightning</span> in terms of initial continuous current rise time, peak current and charge transferred to the ground. We found that the initial current of self-triggered <span class="hlt">lightning</span> tends to rise significantly faster and to a bigger peak value than the other-triggered <span class="hlt">lightning</span>, although both types of <span class="hlt">lightning</span> transferred similar amount of charge to the ground.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5965181','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5965181"><span><span class="hlt">Lightning</span> Burns and Electrical Trauma in a Couple Simultaneously Struck by <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Eyerly-Webb, Stephanie A.; Solomon, Rachele; Lee, Seong K.; Sanchez, Rafael; Carrillo, Eddy H.; Davare, Dafney L.; Kiffin, Chauniqua; Rosenthal, Andrew</p> <p>2017-01-01</p> <p>More people are struck and killed by <span class="hlt">lightning</span> each year in Florida than any other state in the United States. This report discusses a couple that was simultaneously struck by <span class="hlt">lightning</span> while walking arm-in-arm. Both patients presented with characteristic <span class="hlt">lightning</span> burns and were admitted for hemodynamic monitoring, serum labs, and observation and were subsequently discharged home. Despite the superficial appearance of <span class="hlt">lightning</span> burns, serious internal electrical injuries are common. Therefore, <span class="hlt">lightning</span> strike victims should be admitted and evaluated for cardiac arrhythmias, renal injury, and neurological sequelae.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1643R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1643R"><span><span class="hlt">Lightning</span> and Life on Exoplanets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rimmer, Paul; Ardaseva, Aleksandra; Hodosan, Gabriella; Helling, Christiane</p> <p>2016-07-01</p> <p>Miller and Urey performed a ground-breaking experiment, in which they discovered that electric discharges through a low redox ratio gas of methane, ammonia, water vapor and hydrogen produced a variety of amino acids, the building blocks of proteins. Since this experiment, there has been significant interest on the connection between <span class="hlt">lightning</span> chemistry and the origin of life. Investigation into the atmosphere of the Early Earth has generated a serious challenge for this project, as it has been determined both that Earth's early atmosphere was likely dominated by carbon dioxide and molecular nitrogen with only small amounts of hydrogen, having a very <span class="hlt">high</span> redox ratio, and that discharges in gases with <span class="hlt">high</span> redox ratios fail to yield more than trace amounts of biologically relevant products. This challenge has motivated several origin of life researchers to abandon <span class="hlt">lightning</span> chemistry, and to concentrate on other pathways for prebiotic synthesis. The discovery of over 2000 exoplanets includes a handful of rocky planets within the habitable zones around their host stars. These planets can be viewed as remote laboratories in which efficient <span class="hlt">lightning</span> driven prebiotic synthesis may take place. This is because many of these rocky exoplanets, called super-Earths, have masses significantly greater than that of Earth. This higher mass would allow them to more retain greater amounts hydrogen within their atmosphere, reducing the redox ratio. Discharges in super-Earth atmospheres can therefore result in a significant yield of amino acids. In this talk, I will discuss new work on what <span class="hlt">lightning</span> might look like on exoplanets, and on <span class="hlt">lightning</span> driven chemistry on super-Earths. Using a chemical kinetics model for a super-Earth atmosphere with smaller redox ratios, I will show that in the presence of <span class="hlt">lightning</span>, the production of the amino acid glycine is enhanced up to a certain point, but with very low redox ratios, the production of glycine is again inhibited. I will conclude</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28465545','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28465545"><span>On the initiation of <span class="hlt">lightning</span> in thunderclouds.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chilingarian, Ashot; Chilingaryan, Suren; Karapetyan, Tigran; Kozliner, Lev; Khanikyants, Yeghia; Hovsepyan, Gagik; Pokhsraryan, David; Soghomonyan, Suren</p> <p>2017-05-02</p> <p>The relationship of <span class="hlt">lightning</span> and elementary particle fluxes in the thunderclouds is not fully understood to date. Using the particle beams (the so-called Thunderstorm Ground Enhancements - TGEs) as a probe we investigate the characteristics of the interrelated atmospheric processes. The well-known effect of the TGE dynamics is the abrupt termination of the particle flux by the <span class="hlt">lightning</span> flash. With new precise electronics, we can see that particle flux decline occurred simultaneously with the rearranging of the charge centers in the cloud. The analysis of the TGE energy spectra before and after the <span class="hlt">lightning</span> demonstrates that the <span class="hlt">high</span>-energy part of the TGE energy spectra disappeared just after <span class="hlt">lightning</span>. The decline of particle flux coincides on millisecond time scale with first atmospheric discharges and we can conclude that Relativistic Runaway Electron Avalanches (RREA) in the thundercloud assist initiation of the negative cloud to ground <span class="hlt">lightning</span>. Thus, RREA can provide enough ionization to play a significant role in the unleashing of the <span class="hlt">lightning</span> flash.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3737249','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3737249"><span>Central Hyperadrenergic State After <span class="hlt">Lightning</span> Strike</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Parsaik, Ajay K.; Ahlskog, J. Eric; Singer, Wolfgang; Gelfman, Russell; Sheldon, Seth H.; Seime, Richard J.; Craft, Jennifer M.; Staab, Jeffrey P.; Kantor, Birgit; Low, Phillip A.</p> <p>2013-01-01</p> <p>Objective To describe and review autonomic complications of <span class="hlt">lightning</span> strike. Methods Case report and laboratory data including autonomic function tests in a subject who was struck by <span class="hlt">lightning</span>. Results A 24-year-old man was struck by <span class="hlt">lightning</span>. Following that, he developed dysautonomia, with persistent inappropriate sinus tachycardia and autonomic storms, as well as posttraumatic stress disorder (PTSD) and functional neurologic problems. Interpretation The combination of persistent sinus tachycardia and episodic exacerbations associated with hypertension, diaphoresis, and agitation were <span class="hlt">highly</span> suggestive of a central hyperadrenergic state with superimposed autonomic storms. Whether the additional PTSD and functional neurologic deficits were due to a direct effect of the <span class="hlt">lightning</span> strike on the CNS or a secondary response is open to speculation. PMID:23761114</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730000043','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730000043"><span>An automatic <span class="hlt">lightning</span> detection and photographic system</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wojtasinski, R. J.; Holley, L. D.; Gray, J. L.; Hoover, R. B.</p> <p>1973-01-01</p> <p>Conventional 35-mm camera is <span class="hlt">activated</span> by an electronic signal every time <span class="hlt">lightning</span> strikes in general vicinity. Electronic circuit detects <span class="hlt">lightning</span> by means of antenna which picks up atmospheric radio disturbances. Camera is equipped with fish-eye lense, automatic shutter advance, and small 24-hour clock to indicate time when exposures are made.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100040471','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100040471"><span>Triggered-<span class="hlt">Lightning</span> Interaction with a <span class="hlt">Lightning</span> Protective System: Current Distribution and Electromagnetic Environment</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mata, C. T.; Rakov, V. A.; Mata, A. G.</p> <p>2010-01-01</p> <p>A new comprehensive <span class="hlt">lightning</span> instrumentation system has been designed for Launch Complex 39B (LC3913) at the Kennedy Space Center, Florida. This new instrumentation system includes the synchronized recording of six <span class="hlt">high</span>-speed video cameras; currents through the nine downconductors of the new <span class="hlt">lightning</span> protection system for LC3913; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. A 20:1 scaled down model of the new <span class="hlt">Lightning</span> Protection System (LPS) of LC39B was built at the International Center for <span class="hlt">Lightning</span> Research and Testing, Camp Blanding, FL. This scaled down <span class="hlt">lightning</span> protection system was instrumented with the transient recorders, digitizers, and sensors to be used in the final instrumentation installation at LC3913. The instrumentation used at the ICLRT is also a scaled-down instrumentation of the LC39B instrumentation. The scaled-down LPS was subjected to seven direct <span class="hlt">lightning</span> strikes and six (four triggered and two natural nearby flashes) in 2010. The following measurements were acquired at the ICLRT: currents through the nine downconductors; two dl-/dt, 3-axis stations, one at the center of the LPS (underneath the catenary wires), and another 40 meters south from the center of the LPS; ten dE/dt stations, nine of them on the perimeter of the LPS and one at the center of the LPS (underneath the catenary wire system); and the incident current. Data from representative events are presented and analyzed in this paper.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMAE12A..04L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMAE12A..04L"><span><span class="hlt">Lightning</span> in Colorado forest fire smoke plumes during summer 2012</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lang, T. J.; Krehbiel, P. R.; Dolan, B.; Lindsey, D.; Rutledge, S. A.; Rison, W.</p> <p>2012-12-01</p> <p> <span class="hlt">lightning</span> by 10-15 minutes. Discharges typically only occurred over the span of a few minutes thereafter, or sporadically over the course of one of more hours. Plume <span class="hlt">lightning</span> was intra-cloud and relatively small in size, and featured extensive precursor <span class="hlt">activity</span>. Due to the preponderance of ash in the plumes and the lack of precipitation-sized ice, electrification had to occur via some other mechanism besides standard graupel-based non-inductive mechanisms. Triboelectric charging of the ash particles, aided by reduced breakdown fields at <span class="hlt">high</span> altitudes, is posited as the primary mechanism behind the <span class="hlt">lightning</span> in these smoke plumes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC33D0547C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC33D0547C"><span>Using <span class="hlt">High</span> Resolution Model Data to Improve <span class="hlt">Lightning</span> Forecasts across Southern California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Capps, S. B.; Rolinski, T.</p> <p>2014-12-01</p> <p>Dry <span class="hlt">lightning</span> often results in a significant amount of fire starts in areas where the vegetation is dry and continuous. Meteorologists from the USDA Forest Service Predictive Services' program in Riverside, California are tasked to provide southern and central California's fire agencies with fire potential outlooks. Logistic regression equations were developed by these meteorologists several years ago, which forecast probabilities of <span class="hlt">lightning</span> as well as <span class="hlt">lightning</span> amounts, out to seven days across southern California. These regression equations were developed using ten years of historical gridded data from the Global Forecast System (GFS) model on a coarse scale (0.5 degree resolution), correlated with historical <span class="hlt">lightning</span> strike data. These equations do a reasonably good job of capturing a <span class="hlt">lightning</span> episode (3-5 consecutive days or greater of <span class="hlt">lightning</span>), but perform poorly regarding more detailed information such as exact location and amounts. It is postulated that the inadequacies in resolving the finer details of episodic <span class="hlt">lightning</span> events is due to the coarse resolution of the GFS data, along with limited predictors. Stability parameters, such as the Lifted Index (LI), the Total Totals index (TT), Convective Available Potential Energy (CAPE), along with Precipitable Water (PW) are the only parameters being considered as predictors. It is hypothesized that the statistical forecasts will benefit from higher resolution data both in training and implementing the statistical model. We have dynamically downscaled NCEP FNL (Final) reanalysis data using the Weather Research and Forecasting model (WRF) to 3km spatial and hourly temporal resolution across a decade. This dataset will be used to evaluate the contribution to the success of the statistical model of additional predictors in higher vertical, spatial and temporal resolution. If successful, we will implement an operational dynamically downscaled GFS forecast product to generate predictors for the resulting</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080013627&hterms=bateman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbateman','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080013627&hterms=bateman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbateman"><span>A Comparison of <span class="hlt">Lightning</span> Flashes as Observed by the <span class="hlt">Lightning</span> Imaging Sensor and the North Alabama <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bateman, M. G.; Mach, D. M.; McCaul, M. G.; Bailey, J. C.; Christian, H. J.</p> <p>2008-01-01</p> <p>The <span class="hlt">Lightning</span> Imaging Sensor (LIS) aboard the TRMM satellite has been collecting optical <span class="hlt">lightning</span> data since November 1997. A <span class="hlt">Lightning</span> Mapping Array (LMA) that senses VHF impulses from <span class="hlt">lightning</span> was installed in North Alabama in the Fall of 2001. A dataset has been compiled to compare data from both instruments for all times when the LIS was passing over the domain of our LMA. We have algorithms for both instruments to group pixels or point sources into <span class="hlt">lightning</span> flashes. This study presents the comparison statistics of the flash data output (flash duration, size, and amplitude) from both algorithms. We will present the results of this comparison study and show "point-level" data to explain the differences. AS we head closer to realizing a Global <span class="hlt">Lightning</span> Mapper (GLM) on GOES-R, better understanding and ground truth of each of these instruments and their respective flash algorithms is needed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140007319','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140007319"><span><span class="hlt">Lightning</span> Tracking Tool for Assessment of Total Cloud <span class="hlt">Lightning</span> within AWIPS II</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burks, Jason E.; Stano, Geoffrey T.; Sperow, Ken</p> <p>2014-01-01</p> <p>Total <span class="hlt">lightning</span> (intra-cloud and cloud-to-ground) has been widely researched and shown to be a valuable tool to aid real-time warning forecasters in the assessment of severe weather potential of convective storms. The trend of total <span class="hlt">lightning</span> has been related to the strength of a storm's updraft. Therefore a rapid increase in total <span class="hlt">lightning</span> signifies the strengthening of the parent thunderstorm. The assessment of severe weather potential occurs in a time limited environment and therefore constrains the use of total <span class="hlt">lightning</span>. A tool has been developed at NASA's Short-term Prediction Research and Transition (SPoRT) Center to assist in quickly analyzing the total <span class="hlt">lightning</span> signature of multiple storms. The development of this tool comes as a direct result of forecaster feedback from numerous assessments requesting a real-time display of the time series of total <span class="hlt">lightning</span>. This tool also takes advantage of the new architecture available within the AWIPS II environment. SPoRT's <span class="hlt">lightning</span> tracking tool has been tested in the Hazardous Weather Testbed (HWT) Spring Program and significant changes have been made based on the feedback. In addition to the updates in response to the HWT assessment, the <span class="hlt">lightning</span> tracking tool may also be extended to incorporate other requested displays, such as the intra-cloud to cloud-to-ground ratio as well as incorporate the <span class="hlt">lightning</span> jump algorithm.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmRe.172....1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmRe.172....1M"><span>The verification of <span class="hlt">lightning</span> location accuracy in Finland deduced from <span class="hlt">lightning</span> strikes to trees</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mäkelä, Antti; Mäkelä, Jakke; Haapalainen, Jussi; Porjo, Niko</p> <p>2016-05-01</p> <p>We present a new method to determine the ground truth and accuracy of <span class="hlt">lightning</span> location systems (LLS), using natural <span class="hlt">lightning</span> strikes to trees. Observations of strikes to trees are being collected with a Web-based survey tool at the Finnish Meteorological Institute. Since the Finnish thunderstorms tend to have on average a low flash rate, it is often possible to identify from the LLS data unambiguously the stroke that caused damage to a given tree. The coordinates of the tree are then the ground truth for that stroke. The technique has clear advantages over other methods used to determine the ground truth. Instrumented towers and rocket launches measure upward-propagating <span class="hlt">lightning</span>. Video and audio records, even with triangulation, are rarely capable of <span class="hlt">high</span> accuracy. We present data for 36 quality-controlled tree strikes in the years 2007-2008. We show that the average inaccuracy of the <span class="hlt">lightning</span> location network for that period was 600 m. In addition, we show that the 50% confidence ellipse calculated by the <span class="hlt">lightning</span> location network and used operationally for describing the location accuracy is physically meaningful: half of all the strikes were located within the uncertainty ellipse of the nearest recorded stroke. Using tree strike data thus allows not only the accuracy of the LLS to be estimated but also the reliability of the uncertainty ellipse. To our knowledge, this method has not been attempted before for natural <span class="hlt">lightning</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840035322&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Drust','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840035322&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Drust"><span><span class="hlt">Lightning</span> and related phenomena in thunderstorms and squall lines</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rust, W. D.; Taylor, W. L.; Macgorman, D. R.; Brandes, E.; Mazur, V.; Arnold, R.; Marshall, T.; Christian, H.; Goodman, S. J.</p> <p>1984-01-01</p> <p>During the past few years, cooperative research on storm electricity has yielded the following results of both basic and applied interest: (1) the intracloud to cloud-to-ground flashing ratio can be as great as 40:1; (2) as storm cells in a squall line dissipate, longer flashes become predominant; (3) there are two centers of <span class="hlt">lightning</span> <span class="hlt">activity</span> maxima that are vertically separated, the lower maximum at about 5 km and the upper at about 12 km. In addition, (4) storms produce <span class="hlt">lightning</span> in their upper regions at a <span class="hlt">high</span> rate; (5) <span class="hlt">lightning</span> appears to be related in time to convective motions; (6) positive cloud-to-ground flashes occur in the severe stage of storms and in the later, well-developed stage of squall line storms; (7) mesoscale convective complexes have been observed to have cloud-to-ground flashing rates of more than 48/min; and (8) the electric field in anvils well away from the main storm core (more than 60 km) can be very <span class="hlt">high</span>, more than 94 kV/m.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6356663-shielding-theory-upward-lightning','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6356663-shielding-theory-upward-lightning"><span>A shielding theory for upward <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shindo, Takatoshi; Aihara, Yoshinori</p> <p>1993-01-01</p> <p>A new shielding theory is proposed based on the assumption that the occurrence of <span class="hlt">lightning</span> strokes on the Japan Sea coast in winter is due to the inception of upward leaders from tall structures. Ratios of the numbers of <span class="hlt">lightning</span> strokes to <span class="hlt">high</span> structures observed there in winter show reasonable agreement with values calculated by this theory. Shielding characteristics of a <span class="hlt">high</span> structure in various conditions are predicted.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMAE11A..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMAE11A..06M"><span><span class="hlt">Lightning</span> Forecasts and Data Assimilation into Numerical Weather Prediction Models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacGorman, D. R.; Mansell, E. R.; Fierro, A.; Ziegler, C.</p> <p>2012-12-01</p> <p>This presentation reviews two aspects of <span class="hlt">lightning</span> in numerical weather prediction (NWP) models: forecasting <span class="hlt">lightning</span> and assimilating <span class="hlt">lightning</span> data into NWP models to improve weather forecasts. One of the earliest routine forecasts of <span class="hlt">lightning</span> was developed for fire weather operations. This approach used a multi-parameter regression analysis of archived cloud-to-ground (CG) <span class="hlt">lightning</span> data and archived NWP data to optimize the combination of model state variables to use in forecast equations for various CG rates. Since then, understanding of how storms produce <span class="hlt">lightning</span> has improved greatly. As the treatment of ice in microphysics packages used by NWP models has improved and the horizontal resolution of models has begun approaching convection-permitting scales (with convection-resolving scales on the horizon), it is becoming possible to use this improved understanding in NWP models to predict <span class="hlt">lightning</span> more directly. An important role for data assimilation in NWP models is to depict the location, timing, and spatial extent of thunderstorms during model spin-up so that the effects of prior convection that can strongly influence future thunderstorm <span class="hlt">activity</span>, such as updrafts and outflow boundaries, can be included in the initial state of a NWP model run. Radar data have traditionally been used, but systems that map <span class="hlt">lightning</span> <span class="hlt">activity</span> with varying degrees of coverage, detail, and detection efficiency are now available routinely over large regions and reveal information about storms that is complementary to the information provided by radar. Because data from <span class="hlt">lightning</span> mapping systems are compact, easily handled, and reliably indicate the location and timing of thunderstorms, even in regions with little or no radar coverage, several groups have investigated techniques for assimilating these data into NWP models. This application will become even more valuable with the launch of the Geostationary <span class="hlt">Lightning</span> Mapper on the GOES-R satellite, which will extend routine</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710123C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710123C"><span>SAETTA: fine-scale observation of the total <span class="hlt">lightning</span> <span class="hlt">activity</span> in the framework of the CORSiCA atmospheric observatory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coquillat, Sylvain; Defer, Eric; Lambert, Dominique; Martin, Jean-Michel; Pinty, Jean-Pierre; Pont, Véronique; Prieur, Serge</p> <p>2015-04-01</p> <p>Located in the West Mediterranean basin, Corsica is strategically positioned for atmospheric studies referred by MISTRALS/HyMeX and MISTRALS/CHARMEX programs. The implementation of the project of atmospheric observatory CORSiCA (supported by the Collectivité Territoriale de Corse via CPER/FEDER funds) was an opportunity to strengthen the potential observation of convective events causing heavy rainfall and flash floods, by acquiring a total <span class="hlt">lightning</span> <span class="hlt">activity</span> detection system adapted to storm tracking at a regional scale. This detection system called SAETTA (Suivi de l'Activité Electrique Tridimensionnelle Totale de l'Atmosphère) is a network of 12 LMA stations (<span class="hlt">Lightning</span> Mapping Array). Developed by New Mexico Tech (USA), the instrument allows observing <span class="hlt">lightning</span> flashes in 3D and real time, at <span class="hlt">high</span> temporal and spatial resolutions. It detects the radiations emitted by cloud discharges in the 60-66 MHz band, in a radius of about 300 km from the centre of the network, in passive mode and standalone (solar panel and battery). Each LMA station samples the signal at <span class="hlt">high</span> rate (80 microseconds), records data on internal hard disk, and transmits a decimated signal in real-time via the 3G phone network. The decimated data are received on a server that calculates the position of the detected sources by the time-of-arrival method and manages a quasi real-time display on a website. The non decimated data intended for research applications are recovered later on the field. Deployed in May and June 2014, SAETTA operated nominally from July 13 to October 20, 2014. It is to be definitively re-installed in spring 2015 after a hardware updating. The operation of SAETTA is contractually scheduled until the end of 2019, but it is planned to continue well beyond to obtain longer-term observations for addressing issues related to climatic trends. SAETTA has great scientific potential in a broad range of topics: physics of discharge; monitoring and simulation of storm systems</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.A21A0108E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.A21A0108E"><span>Measurements of Ozone, <span class="hlt">Lightning</span>, and Electric Fields within Thunderstorms over Langmuir Laboratory, New Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eack, K. B.; Winn, W. P.; Rust, W. D.; Minschwaner, K.; Fredrickson, S.; Kennedy, D.; Edens, H. E.; Kalnajs, L. E.; Rabin, R. M.; Lu, G. P.; Bonin, D.</p> <p>2008-12-01</p> <p>A field project was conducted at the Langmuir Laboratory for Atmospheric Research during the summer of 2008 in an effort to better understand the direct production of ozone within electrically <span class="hlt">active</span> storms. Five balloon flights were successfully launched into thunderstorms during this project. In situ measurements from the balloon instrument package included ozone mixing ratio, electric field strength, meteorological variables, and GPS location and timing. <span class="hlt">Lightning</span> discharges were identified within each storm using a ground based <span class="hlt">lightning</span> mapping array. The data show that the instruments ascended through regions of <span class="hlt">high</span> electric fields within the sampled storms, and in some cases the balloon was in very close proximity to <span class="hlt">lightning</span>. Relationships between electric field, <span class="hlt">lightning</span>, and ozone observed during these flights will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.8273F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.8273F"><span>Infrasound from <span class="hlt">lightning</span>: characteristics and impact on an infrasound station</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farges, Thomas; Blanc, Elisabeth</p> <p>2010-05-01</p> <p>More than two third of the infrasound stations of the International Monitoring System (IMS) of the CTBTO are now certified and measure routinely signals due particularly to natural <span class="hlt">activity</span> (swell, volcano, severe weather including <span class="hlt">lightning</span>, …). It is well established that more than 2,000 thunderstorms are continuously <span class="hlt">active</span> all around the world and that about 45 <span class="hlt">lightning</span> flashes are produced per second over the globe. During the Eurosprite 2005 campaign, we took the opportunity to measure, in France during summer, infrasound from <span class="hlt">lightning</span> and from sprites (which are transient luminous events occurring over thunderstorm). We examine the possibility to measure infrasound from <span class="hlt">lightning</span> when thunderstorms are close or far from the infrasound station. Main results concern detection range of infrasound from <span class="hlt">lightning</span>, amplitude vs. distance law, and characteristics of frequency spectrum. We show clearly that infrasound from <span class="hlt">lightning</span> can be detected when the thunderstorm is within about 75 km from the station. In good noise conditions, infrasound from <span class="hlt">lightning</span> can be detected when thunderstorms are located more than 200 km from the station. No signal is recorded from <span class="hlt">lightning</span> flashes occurring between 75 and 200 km away from the station, defining then a silence zone. When the thunderstorm is close to the station, the infrasound signal could reach several Pascal. The signal is then on average 30 dB over the noise level at 1 Hz. Infrasound propagate upward where the highest frequencies are dissipated and can produce a significant heating of the upper mesosphere. Some of these results have been confirmed by case studies with data from the IMS Ivory Coast station. The coverage of the IMS stations is very good to study the thunderstorm <span class="hlt">activity</span> and its disparity which is a good proxy of the global warming. Progress in data processing for infrasound data in the last ten years and the appearance of global <span class="hlt">lightning</span> detection network as the World Wide <span class="hlt">Lightning</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.S34C..04F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.S34C..04F"><span>Infrasound from <span class="hlt">lightning</span>: characteristics and impact on an infrasound station</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farges, T.; Blanc, E.</p> <p>2009-12-01</p> <p>More than two third of the infrasound stations of the International Monitoring System (IMS) of the CTBTO are now certified and measure routinely signals due particularly to natural <span class="hlt">activity</span> (swell, volcano, severe weather including <span class="hlt">lightning</span>, …). It is well established that more than 2,000 thunderstorms are continuously <span class="hlt">active</span> all around the world and that about 45 <span class="hlt">lightning</span> flashes are produced per second over the globe. During the Eurosprite 2005 campaign, we took the opportunity to measure, in France during summer, infrasound from <span class="hlt">lightning</span> and from sprites (which are transient luminous events occurring over thunderstorm). We examine the possibility to measure infrasound from <span class="hlt">lightning</span> when thunderstorms are close or far from the infrasound station. Main results concern detection range of infrasound from <span class="hlt">lightning</span>, amplitude vs. distance law, and characteristics of frequency spectrum. We show clearly that infrasound from <span class="hlt">lightning</span> can be detected when the thunderstorm is within about 75 km from the station. In good noise conditions, infrasound from <span class="hlt">lightning</span> can be detected when thunderstorms are located more than 200 km from the station. No signal is recorded from <span class="hlt">lightning</span> flashes occurring between 75 and 200 km away from the station, defining then a silence zone. When the thunderstorm is close to the station, the infrasound signal could reach several Pascal. The signal is then on average 30 dB over the noise level at 1 Hz. Infrasound propagate upward where the highest frequencies are dissipated and can produce a significant heating of the upper mesosphere. Some of these results have been confirmed by case studies with data from the IMS Ivory Coast station. The coverage of the IMS stations is very good to study the thunderstorm <span class="hlt">activity</span> and its disparity which is a good proxy of the global warming. Progress in data processing for infrasound data in the last ten years and the appearance of global <span class="hlt">lightning</span> detection network as the World Wide <span class="hlt">Lightning</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmRe.197..255L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmRe.197..255L"><span>Spatio-temporal dimension of <span class="hlt">lightning</span> flashes based on three-dimensional <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>López, Jesús A.; Pineda, Nicolau; Montanyà, Joan; Velde, Oscar van der; Fabró, Ferran; Romero, David</p> <p>2017-11-01</p> <p>3D mapping system like the LMA - <span class="hlt">Lightning</span> Mapping Array - are a leap forward in <span class="hlt">lightning</span> observation. LMA measurements has lead to an improvement on the analysis of the fine structure of <span class="hlt">lightning</span>, allowing to characterize the duration and maximum extension of the cloud fraction of a <span class="hlt">lightning</span> flash. During several years of operation, the first LMA deployed in Europe has been providing a large amount of data which now allows a statistical approach to compute the full duration and horizontal extension of the in-cloud phase of a <span class="hlt">lightning</span> flash. The "Ebro <span class="hlt">Lightning</span> Mapping Array" (ELMA) is used in the present study. Summer and winter lighting were analyzed for seasonal periods (Dec-Feb and Jun-Aug). A simple method based on an ellipse fitting technique (EFT) has been used to characterize the spatio-temporal dimensions from a set of about 29,000 <span class="hlt">lightning</span> flashes including both summer and winter events. Results show an average <span class="hlt">lightning</span> flash duration of 440 ms (450 ms in winter) and a horizontal maximum length of 15.0 km (18.4 km in winter). The uncertainties for summer <span class="hlt">lightning</span> lengths were about ± 1.2 km and ± 0.7 km for the mean and median values respectively. In case of winter <span class="hlt">lightning</span>, the level of uncertainty reaches up to 1 km and 0.7 km of mean and median value. The results of the successful correlation of CG discharges with the EFT method, represent 6.9% and 35.5% of the total LMA flashes detected in summer and winter respectively. Additionally, the median value of <span class="hlt">lightning</span> lengths calculated through this correlative method was approximately 17 km for both seasons. On the other hand, the highest median ratios of <span class="hlt">lightning</span> length to CG discharges in both summer and winter were reported for positive CG discharges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/976609','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/976609"><span>Global optical <span class="hlt">lightning</span> flash rates determined with the Forte satellite</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Light, T.; Davis, S. M.; Boeck, W. L.</p> <p>2003-01-01</p> <p>Using FORTE photodiode detector (PDD) observations of <span class="hlt">lightning</span>, we have determined the geographic distribution of nighttime flash rate density. We estimate the PDD flash detection efficiency to be 62% for total <span class="hlt">lightning</span> through comparison to <span class="hlt">lightning</span> observations by the TRMM satellite's <span class="hlt">Lightning</span> Imaging Sensor (LIS), using cases in which FORTE and TRMM viewed the same storm. We present here both seasonal and l,ot,al flash rate maps. We examine some characteristics of the optical emissions of <span class="hlt">lightning</span> in both <span class="hlt">high</span> and low flash rate environments, and find that while <span class="hlt">lightning</span> occurs less frequently over ocean, oceanic <span class="hlt">lightning</span> flashes are somewhat moremore » powerful, on average, than those over land.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122..423P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122..423P"><span>The properties of optical <span class="hlt">lightning</span> flashes and the clouds they illuminate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peterson, Michael; Deierling, Wiebke; Liu, Chuntao; Mach, Douglas; Kalb, Christina</p> <p>2017-01-01</p> <p>Optical <span class="hlt">lightning</span> sensors like the Optical Transient Detector and <span class="hlt">Lightning</span> Imaging Sensor (LIS) measure total <span class="hlt">lightning</span> across large swaths of the globe with <span class="hlt">high</span> detection efficiency. With two upcoming missions that employ these sensors - LIS on the International Space Station and the Geostationary <span class="hlt">Lightning</span> Mapper on the GOES-R satellite - there has been increased interest in what these measurements can reveal about <span class="hlt">lightning</span> and thunderstorms in addition to total flash <span class="hlt">activity</span>. Optical <span class="hlt">lightning</span> imagers are capable of observing the characteristics of individual flashes that include their sizes, durations, and radiative energies. However, it is important to exercise caution when interpreting trends in optical flash measurements because they can be affected by the scene. This study uses coincident measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite to examine the properties of LIS flashes and the surrounding cloud regions they illuminate. These combined measurements are used to assess to what extent optical flash characteristics can be used to make inferences about flash structure and energetics. Clouds illuminated by <span class="hlt">lightning</span> over land and ocean regions that are otherwise similar based on TRMM measurements are identified. Even when LIS flashes occur in similar clouds and background radiances, oceanic flashes are still shown to be larger, brighter, longer lasting, more prone to horizontal propagation, and to contain more groups than their land-based counterparts. This suggests that the optical trends noted in literature are not entirely the result of radiative transfer effects but rather stem from physical differences in the flashes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015676','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015676"><span>The GOES-R GeoStationary <span class="hlt">Lightning</span> Mapper (GLM)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas</p> <p>2011-01-01</p> <p>The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total <span class="hlt">lightning</span> detection (cloud and cloud-to-ground flashes) from the Geostationary <span class="hlt">Lightning</span> Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total <span class="hlt">lightning</span> <span class="hlt">activity</span> (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado <span class="hlt">activity</span>, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF <span class="hlt">lightning</span> mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) <span class="hlt">Lightning</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100033571','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100033571"><span>Situational <span class="hlt">Lightning</span> Climatologies</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauman, William; Crawford, Winifred</p> <p>2010-01-01</p> <p>Research has revealed distinct spatial and temporal distributions of <span class="hlt">lightning</span> occurrence that are strongly influenced by large-scale atmospheric flow regimes. It was believed there were two flow systems, but it has been discovered that actually there are seven distinct flow regimes. The Applied Meteorology Unit (AMU) has recalculated the <span class="hlt">lightning</span> climatologies for the Shuttle Landing Facility (SLF), and the eight airfields in the National Weather Service in Melbourne (NWS MLB) County Warning Area (CWA) using individual <span class="hlt">lightning</span> strike data to improve the accuracy of the climatologies. The software determines the location of each CG <span class="hlt">lightning</span> strike with 5-, 10-, 20-, and 30-nmi (.9.3-, 18.5-, 37-, 55.6-km) radii from each airfield. Each CG <span class="hlt">lightning</span> strike is binned at 1-, 3-, and 6-hour intervals at each specified radius. The software merges the CG <span class="hlt">lightning</span> strike time intervals and distance with each wind flow regime and creates probability statistics for each time interval, radii, and flow regime, and stratifies them by month and warm season. The AMU also updated the graphical user interface (GUI) with the new data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23799482','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23799482"><span><span class="hlt">Lightning</span> burns.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Russell, Katie W; Cochran, Amalia L; Mehta, Sagar T; Morris, Stephen E; McDevitt, Marion C</p> <p>2014-01-01</p> <p>We present the case of a <span class="hlt">lightning</span>-strike victim. This case illustrates the importance of in-field care, appropriate referral to a burn center, and the tendency of <span class="hlt">lightning</span> burns to progress to full-thickness injury.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030111776&hterms=quantitative+data+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dquantitative%2Bdata%2Banalysis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030111776&hterms=quantitative+data+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dquantitative%2Bdata%2Banalysis"><span><span class="hlt">Lightning</span> and Precipitation: Observational Analysis of LIS and PR</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Adamo, C.; Solomon, R.; Goodman, S.; Dietrich, S.; Mugnai, A.</p> <p>2003-01-01</p> <p><span class="hlt">Lightning</span> flash rate can identify areas of convective rainfall when the storms are dominated by ice-phase precipitation. Modeling and observational studies indicate that cloud electrification and microphysics are very closely related and it is of great interest to understand the relationship between <span class="hlt">lightning</span> and cloud microphysical quantities. Analyzing data from the <span class="hlt">Lightning</span> Image Sensor (LIS) and the Precipitation Radar (PR), we show a quantitative relationship between microphysical characteristics of thunderclouds and <span class="hlt">lightning</span> flash rate. We have performed a complete analysis of all data available over the Mediterranean during the TRMM mission and show a range of reflective profiles as a function of <span class="hlt">lightning</span> <span class="hlt">activity</span> for both convective and stratiform regimes as well as seasonal variations. Due to the increasing global coverage of <span class="hlt">lightning</span> detection networks, this kind of study can used to extend the knowledge about thunderstorms and discriminate between different regimes in regions where radar measurements are readilly available.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960002997','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960002997"><span>Low-pressure electrical discharge experiment to simulate <span class="hlt">high</span>-altitude <span class="hlt">lightning</span> above thunderclouds</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jarzembski, M. A.; Srivastava, V.</p> <p>1995-01-01</p> <p>Recently, extremely interesting <span class="hlt">high</span>-altitude cloud-ionosphere electrical discharges, like <span class="hlt">lightning</span> above thunderstorms, have been observed from NASA's space shuttle missions and during airborne and ground-based experiments. To understand these discharges, a new experiment was conceived to simulate a thundercloud in a vacuum chamber using a dielectric in particulate form into which electrodes were inserted to create charge centers analogous to those in an electrified cloud. To represent the ionosphere, a conducting medium (metallic plate) was introduced at the top of the chamber. It was found that for different pressures between approximately 1 and 300 mb, corresponding to various upper atmospheric altitudes, different discharges occurred above the simulated thundercloud, and these bore a remarkable similarity to the observed atmospheric phenomena. At pressures greater than 300 mb, these discharges were rare and only discharges within the simulated thundercloud were observed. Use of a particulate dielectric was critical for the successful simulation of the <span class="hlt">high</span>-altitude <span class="hlt">lightning</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820009178&hterms=peak+detectioN&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dpeak%2BdetectioN','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820009178&hterms=peak+detectioN&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dpeak%2BdetectioN"><span>Detection and analysis of radio frequency <span class="hlt">lightning</span> emissions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jalali, F.</p> <p>1982-01-01</p> <p>The feasibility study of detection of <span class="hlt">lightning</span> discharges from a geosynchronous satellite requires adequate ground-based information regarding emission characteristics. In this investigation, a measurement system for collection of S-band emission data is set up and calibrated, and the operations procedures for rapid data collection during a storm <span class="hlt">activity</span> developed. The system collects emission data in two modes; a digitized, <span class="hlt">high</span>-resolution, short duration record stored in solid-state memory, and a continuous long-duration record on magnetic tape. Representative <span class="hlt">lightning</span> flash data are shown. Preliminary results indicate appreciable RF emissions at 2 gHz from both the leader and return strokes portions of the cloud-to-ground discharge with strong peaks associated with the return strokes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE41A..02V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE41A..02V"><span>Cross-Referencing GLM and ISS-LIS with Ground-Based <span class="hlt">Lightning</span> Networks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Virts, K.; Blakeslee, R. J.; Goodman, S. J.; Koshak, W. J.</p> <p>2017-12-01</p> <p>The Geostationary <span class="hlt">Lightning</span> Mapper (GLM), in geostationary orbit aboard GOES-16 since late 2016, and the <span class="hlt">Lightning</span> Imaging Sensor (LIS), installed on the International Space Station in February 2017, provide observations of total <span class="hlt">lightning</span> <span class="hlt">activity</span> from space. ISS-LIS samples the global tropics and mid-latitudes, while GLM observes the full thunderstorm life-cycle over the Americas and surrounding oceans. The launch of these instruments provides an unprecedented opportunity to compare <span class="hlt">lightning</span> observations across multiple space-based optical <span class="hlt">lightning</span> sensors. In this study, months of observations from GLM and ISS-LIS are cross-referenced with each other and with <span class="hlt">lightning</span> detected by the ground-based Earth Networks Global <span class="hlt">Lightning</span> Network (ENGLN) and the Vaisala Global <span class="hlt">Lightning</span> Dataset 360 (GLD360) throughout and beyond the GLM field-of-view. In addition to calibration/validation of the new satellite sensors, this study provides a statistical comparison of the characteristics of <span class="hlt">lightning</span> observed by the satellite and ground-based instruments, with an emphasis on the <span class="hlt">lightning</span> flashes uniquely identified by the satellites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APh....82...21C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APh....82...21C"><span>Extensive air showers, <span class="hlt">lightning</span>, and thunderstorm ground enhancements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chilingarian, A.; Hovsepyan, G.; Kozliner, L.</p> <p>2016-09-01</p> <p>For <span class="hlt">lightning</span> research, we monitor particle fluxes from thunderclouds, the so-called thunderstorm ground enhancements (TGEs) initiated by runaway electrons, and extensive air showers (EASs) originating from <span class="hlt">high</span>-energy protons or fully stripped nuclei that enter the Earth's atmosphere. We also monitor the near-surface electric field and atmospheric discharges using a network of electric field mills. The Aragats "electron accelerator" produced several TGEs and <span class="hlt">lightning</span> events in the spring of 2015. Using 1-s time series, we investigated the relationship between <span class="hlt">lightning</span> and particle fluxes. <span class="hlt">Lightning</span> flashes often terminated the particle flux; in particular, during some TGEs, <span class="hlt">lightning</span> events would terminate the particle flux thrice after successive recovery. It was postulated that a <span class="hlt">lightning</span> terminates a particle flux mostly in the beginning of a TGE or in its decay phase; however, we observed two events (19 October 2013 and 20 April 2015) when the huge particle flux was terminated just at the peak of its development. We discuss the possibility of a huge EAS facilitating <span class="hlt">lightning</span> leader to find its path to the ground.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930040920&hterms=quantitative+research&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dquantitative%2Bresearch','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930040920&hterms=quantitative+research&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dquantitative%2Bresearch"><span>MSFC shuttle <span class="hlt">lightning</span> research</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vaughan, Otha H., Jr.</p> <p>1993-01-01</p> <p>The shuttle mesoscale <span class="hlt">lightning</span> experiment (MLE), flown on earlier shuttle flights, and most recently flown on the following space transportation systems (STS's), STS-31, -32, -35, -37, -38, -40, -41, and -48, has continued to focus on obtaining additional quantitative measurements of <span class="hlt">lightning</span> characteristics and to create a data base for use in demonstrating observation simulations for future spaceborne <span class="hlt">lightning</span> mapping systems. These flights are also providing design criteria data for the design of a proposed shuttle MLE-type <span class="hlt">lightning</span> research instrument called mesoscale <span class="hlt">lightning</span> observational sensors (MELOS), which are currently under development here at MSFC.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Natur.558...87B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Natur.558...87B"><span>Prevalent <span class="hlt">lightning</span> sferics at 600 megahertz near Jupiter's poles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, Shannon; Janssen, Michael; Adumitroaie, Virgil; Atreya, Sushil; Bolton, Scott; Gulkis, Samuel; Ingersoll, Andrew; Levin, Steven; Li, Cheng; Li, Liming; Lunine, Jonathan; Misra, Sidharth; Orton, Glenn; Steffes, Paul; Tabataba-Vakili, Fachreddin; Kolmašová, Ivana; Imai, Masafumi; Santolík, Ondřej; Kurth, William; Hospodarsky, George; Gurnett, Donald; Connerney, John</p> <p>2018-06-01</p> <p><span class="hlt">Lightning</span> has been detected on Jupiter by all visiting spacecraft through night-side optical imaging and whistler (<span class="hlt">lightning</span>-generated radio waves) signatures1-6. Jovian <span class="hlt">lightning</span> is thought to be generated in the mixed-phase (liquid-ice) region of convective water clouds through a charge-separation process between condensed liquid water and water-ice particles, similar to that of terrestrial (cloud-to-cloud) <span class="hlt">lightning</span>7-9. Unlike terrestrial <span class="hlt">lightning</span>, which emits broadly over the radio spectrum up to gigahertz frequencies10,11, <span class="hlt">lightning</span> on Jupiter has been detected only at kilohertz frequencies, despite a search for signals in the megahertz range12. Strong ionospheric attenuation or a <span class="hlt">lightning</span> discharge much slower than that on Earth have been suggested as possible explanations for this discrepancy13,14. Here we report observations of Jovian <span class="hlt">lightning</span> sferics (broadband electromagnetic impulses) at 600 megahertz from the Microwave Radiometer15 onboard the Juno spacecraft. These detections imply that Jovian <span class="hlt">lightning</span> discharges are not distinct from terrestrial <span class="hlt">lightning</span>, as previously thought. In the first eight orbits of Juno, we detected 377 <span class="hlt">lightning</span> sferics from pole to pole. We found <span class="hlt">lightning</span> to be prevalent in the polar regions, absent near the equator, and most frequent in the northern hemisphere, at latitudes higher than 40 degrees north. Because the distribution of <span class="hlt">lightning</span> is a proxy for moist convective <span class="hlt">activity</span>, which is thought to be an important source of outward energy transport from the interior of the planet16,17, increased convection towards the poles could indicate an outward internal heat flux that is preferentially weighted towards the poles9,16,18. The distribution of moist convection is important for understanding the composition, general circulation and energy transport on Jupiter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.3435D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.3435D"><span>Using radar-derived parameters to forecast <span class="hlt">lightning</span> cessation for nonisolated storms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davey, Matthew J.; Fuelberg, Henry E.</p> <p>2017-03-01</p> <p><span class="hlt">Lightning</span> impacts operations at the Kennedy Space Center (KSC) and other outdoor venues leading to injuries, inconvenience, and detrimental economic impacts. This research focuses on cases of "nonisolated" <span class="hlt">lightning</span> which we define as one cell whose flashes have ceased although it is still embedded in weak composite reflectivity (Z ≥ 15 dBZ) with another cell that is still producing flashes. The objective is to determine if any radar-derived parameters provide useful information about the occurrence of <span class="hlt">lightning</span> cessation in remnant storms. The data set consists of 50 warm season (May-September) nonisolated storms near KSC during 2013. The research utilizes the National <span class="hlt">Lightning</span> Detection Network, the second generation <span class="hlt">Lightning</span> Detection and Ranging network, and polarized radar data. These data are merged and analyzed using the Warning Decision Support System-Integrated Information at 1 min intervals. Our approach only considers 62 parameters, most of which are related to the noninductive charging mechanism. They included the presence of graupel at various thermal altitudes, maximum reflectivity of the decaying storm at thermal altitudes, maximum connecting composite reflectivity between the decaying cell and <span class="hlt">active</span> cell, minutes since the previous flash, and several others. Results showed that none of the parameters reliably indicated <span class="hlt">lightning</span> cessation for even our restrictive definition of nonisolated storms. Additional research is needed before cessation can be determined operationally with the <span class="hlt">high</span> degree of accuracy required for safety.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015499','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015499"><span>Aircraft <span class="hlt">Lightning</span> Electromagnetic Environment Measurement</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.</p> <p>2011-01-01</p> <p>This paper outlines a NASA project plan for demonstrating a prototype <span class="hlt">lightning</span> strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures <span class="hlt">lightning</span> current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of <span class="hlt">lightning</span> (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new <span class="hlt">lightning</span> environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in <span class="hlt">high</span>-speed, <span class="hlt">high</span> dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990004337','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990004337"><span>Total <span class="hlt">Lightning</span> and Radar Storm Characteristics Associated with Severe Storms in Central Florida</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Raghavan, Ravi; Ramachandran, Rahul; Buechler, Dennis; Hodanish, Stephen; Sharp, David; Williams, Earle; Boldi, Bob; Matlin, Anne; Weber, Mark</p> <p>1998-01-01</p> <p>A number of prior studies have examined the association of <span class="hlt">lightning</span> <span class="hlt">activity</span> with the occurrence of severe weather and tornadoes, in particular. <span class="hlt">High</span> flash rates are often observed in tornadic storms (Taylor, 1973; Johnson, 1980; Goodman and Knupp, 1993) but not always. Taylor found that 23% of nontornadic storms and 1% of non-severe storms had sferics rates comparable to the tornadic storms. MacGorman (1993) found that storms with mesocyclones produced more frequent intracloud (IC) <span class="hlt">lightning</span> than cloud-to-ground (CG) <span class="hlt">lightning</span>. MacGorman (1993) and others suggest that the <span class="hlt">lightning</span> <span class="hlt">activity</span> accompanying tomadic storms will be dominated by intracloud <span class="hlt">lightning</span>-with an increase in intracloud and total flash rates as the updraft increases in depth, size, and velocity. In a recent study, Perez et al. (1998) found that CG flash rates alone are too variable to be a useful predictor of (F4, F5) tornado formation. Studies of non-tomadic storms have also shown that total <span class="hlt">lightning</span> flash rates track the updraft, with rates increasing as the updraft intensities and decreasing rapidly with cessation of vertical growth or downburst onset (Goodman et al., 1988; Williams et al., 1989). Such relationships result from the development of mixed phase precipitation and increased hydrometer collisions that lead to the efficient separation of charge. Correlations between updraft strength and other variables such as cloud-top height, cloud water mass, and hail size have also been observed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE13A2225J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE13A2225J"><span><span class="hlt">Lightning</span> Prediction using Electric Field Measurements Associated with Convective Events at a Tropical Location</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jana, S.; Chakraborty, R.; Maitra, A.</p> <p>2017-12-01</p> <p>Nowcasting of <span class="hlt">lightning</span> <span class="hlt">activities</span> during intense convective events using a single electric field monitor (EFM) has been carried out at a tropical location, Kolkata (22.65oN, 88.45oE). Before and at the onset of heavy <span class="hlt">lightning</span>, certain changes of electric field (EF) can be related to <span class="hlt">high</span> liquid water content (LWC) and low cloud base height (CBH). The present study discusses the utility of EF observation to show a few aspects of convective events. Large convective cloud showed by <span class="hlt">high</span> LWC and low CBH can be detected from EF variation which could be a precursor of upcoming convective events. Suitable values of EF gradient can be used as an indicator of impending <span class="hlt">lightning</span> events. An EF variation of 0.195 kV/m/min can predict <span class="hlt">lightning</span> within 17.5 km radius with a probability of detection (POD) of 91% and false alarm rate (FAR) of 8% with a lead time of 45 min. The total number of predicted <span class="hlt">lightning</span> strikes is nearly 9 times less than that measured by the <span class="hlt">lightning</span> detector. This prediction technique can, therefore, give an estimate of cloud to ground (CG) and intra cloud (IC) lighting occurrences within the surrounding area. This prediction technique involving POD, FAR and lead time information shows a better prediction capability compared to the techniques reported earlier. Thus an EFM can be effectively used for prediction of <span class="hlt">lightning</span> events at a tropical location.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850000462&hterms=stroke&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dstroke','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850000462&hterms=stroke&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dstroke"><span>Plotting <span class="hlt">Lightning</span>-Stroke Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tatom, F. B.; Garst, R. A.</p> <p>1986-01-01</p> <p>Data on <span class="hlt">lightning</span>-stroke locations become easier to correlate with cloudcover maps with aid of new graphical treatment. Geographic region divided by grid into array of cells. Number of <span class="hlt">lightning</span> strokes in each cell tabulated, and value representing density of <span class="hlt">lightning</span> strokes assigned to each cell. With contour-plotting routine, computer draws contours of <span class="hlt">lightning</span>-stroke density for region. Shapes of contours compared directly with shapes of storm cells.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AMT....10..221B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AMT....10..221B"><span>Observing relationships between <span class="hlt">lightning</span> and cloud profiles by means of a satellite-borne cloud radar</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buiat, Martina; Porcù, Federico; Dietrich, Stefano</p> <p>2017-01-01</p> <p>Cloud electrification and related <span class="hlt">lightning</span> <span class="hlt">activity</span> in thunderstorms have their origin in the charge separation and resulting distribution of charged iced particles within the cloud. So far, the ice distribution within convective clouds has been investigated mainly by means of ground-based meteorological radars. In this paper we show how the products from Cloud Profiling Radar (CPR) on board CloudSat, a polar satellite of NASA's Earth System Science Pathfinder (ESSP), can be used to obtain information from space on the vertical distribution of ice particles and ice content and relate them to the <span class="hlt">lightning</span> <span class="hlt">activity</span>. The analysis has been carried out, focusing on 12 convective events over Italy that crossed CloudSat overpasses during significant <span class="hlt">lightning</span> <span class="hlt">activity</span>. The CPR products considered here are the vertical profiles of cloud ice water content (IWC) and the effective radius (ER) of ice particles, which are compared with the number of strokes as measured by a ground <span class="hlt">lightning</span> network (LINET). Results show a strong correlation between the number of strokes and the vertical distribution of ice particles as depicted by the 94 GHz CPR products: in particular, cloud upper and middle levels, <span class="hlt">high</span> IWC content and relatively <span class="hlt">high</span> ER seem to be favourable contributory causes for CG (cloud to ground) stroke occurrence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EPSC....9...34R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EPSC....9...34R"><span>Venus Express Contributions to the Study of Planetary <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russell, C. T.; Hart, R. A.; Zhang, T. L.</p> <p>2014-04-01</p> <p>Jupiter, and Saturn are expected to generate the electrical potential differences in their clouds sufficient to cause a breakdown in the atmosphere,creating a conducting path for the electric potential to discharge. This <span class="hlt">high</span>-energy phenomenon creates a hot, <span class="hlt">high</span>-pressure channel that enables chemical reactions not possible under usual local thermodynamic conditions. Thus it is of some interest to determine if <span class="hlt">lightning</span> occurs in an atmosphere. While Venus is not usually considered one of the wet planets, <span class="hlt">lightning</span> has been an object of interest since the Venera landers. It was observed with electromagnetic coils on Venera 11, 12, 13, 14 landers [2]. It was observed with a visible spectrometer on the Venera 9 orbits [1]. It was mapped during solar occultations by the electric antenna on the Pioneer Venus Orbiter [4]. These measurements revealed extensive <span class="hlt">lightning</span> <span class="hlt">activity</span> with an electromagnetic energy flux similar to that on Earth. However, the observations were limited in number in the atmosphere and to the nightside from orbit. In order to improve the understanding of Venus <span class="hlt">lightning</span>, the Venus Express magnetometer was given a 128-Hz sampling rate that could cover much of the ELF frequencies at which <span class="hlt">lightning</span> could be observed in the weak magnetic fields of the Venus ionosphere [5]. This investigation was immediately successful [3], but mastering the cleaning of the broadband data took several years to accomplish. Furthermore, the <span class="hlt">high</span> polar latitudes of VEX periapsis were not the ideal locations to conduct the more global survey that was desired. Fortunately, after precessing poleward over the first few years the latitude of periapsis has returned to lower latitudes(Figures 1 and 2) and <span class="hlt">active</span> electrical storms are now being studied. The charged constituent of the Venus atmosphere need not be water. In fact, we believe it is H2SO4 which polarizes much as water does and which freezes and melts at similar temperatures. If it is H2SO4, we would expect the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/977796','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/977796"><span>Global <span class="hlt">lightning</span> and severe storm monitoring from GPS orbit</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Suszcynsky, D. M.; Jacobson, A. R.; Linford, J</p> <p></p> <p>Over the last few decades, there has been a growing interest to develop and deploy an automated and continuously operating satellite-based global <span class="hlt">lightning</span> mapper [e.g. Christian et al., 1989; Weber et al., 1998; Suszcynsky et al., 2000]. <span class="hlt">Lightning</span> is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. Satellite-based <span class="hlt">lightning</span> mappers are designed to exploit this relationship by using <span class="hlt">lightning</span> detection as a proxy for remotely identifying, locating and characterizing strong convective <span class="hlt">activity</span> on a global basis. Global <span class="hlt">lightning</span> and convection mapping promises to provide users with (1) an enhancedmore » global severe weather monitoring and early warning capability [e.g. Weber et al., 1998] (2) improved ability to optimize aviation flight paths around convective cells, particularly over oceanic and remote regions that are not sufficiently serviced by existing weather radar [e.g. Weber et al., 1998], and (3) access to regional and global proxy data sets that can be used for scientific studies and as input into meteorological forecast and global climatology models. The physical foundation for satellite-based remote sensing of convection by way of <span class="hlt">lightning</span> detection is provided by the basic interplay between the electrical and convective states of a thundercloud. It is widely believed that convection is a driving mechanism behind the hydrometeor charging and transport that produces charge separation and <span class="hlt">lightning</span> discharges within thunderclouds [e.g. see chapter 3 in MacGorman and Rust, 1998]. Although cloud electrification and discharge processes are a complex function of the convective dynamics and microphysics of the cloud, the fundamental relationship between convection and electrification is easy to observe. For example, studies have shown that the strength of the convective process within a thundercell can be loosely parameterized (with large variance) by the intensity</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988STIA...8929272T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988STIA...8929272T"><span>Development of concepts for the protection of space launchers against <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taillet, Joseph</p> <p>1988-12-01</p> <p>Following a review of the characteristics of <span class="hlt">lightning</span> and the effects of <span class="hlt">lightning</span> on space launchers, various strategies for protection against <span class="hlt">lightning</span> are discussed. Special attention is given to the damage inflicted on the Apollo 12 and Atlas/Centaur vehicles by <span class="hlt">lightning</span>. It is demonstrated that the protection of space launchers is best performed by the real-time observation of atmospheric discharges at <span class="hlt">high</span> altitude by such systems as the interferometric <span class="hlt">lightning</span> alert system, SAFIR.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE33A2524B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE33A2524B"><span>A first look at <span class="hlt">lightning</span> energy determined from GLM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bitzer, P. M.; Burchfield, J. C.; Brunner, K. N.</p> <p>2017-12-01</p> <p>The Geostationary <span class="hlt">Lightning</span> Mapper (GLM) was launched in November 2016 onboard GOES-16 has been undergoing post launch and product post launch testing. While these have typically focused on <span class="hlt">lightning</span> metrics such as detection efficiency, false alarm rate, and location accuracy, there are other attributes of the <span class="hlt">lightning</span> discharge that are provided by GLM data. Namely, the optical energy radiated by <span class="hlt">lightning</span> may provide information useful for <span class="hlt">lightning</span> physics and the relationship of <span class="hlt">lightning</span> energy to severe weather development. This work presents initial estimates of the <span class="hlt">lightning</span> optical energy detected by GLM during this initial testing, with a focus on observations during field campaign during spring 2017 in Huntsville. This region is advantageous for the comparison due to the proliferation of ground-based <span class="hlt">lightning</span> instrumentation, including a <span class="hlt">lightning</span> mapping array, interferometer, HAMMA (an array of electric field change meters), <span class="hlt">high</span> speed video cameras, and several long range VLF networks. In addition, the field campaign included airborne observations of the optical emission and electric field changes. The initial estimates will be compared with previous observations using TRMM-LIS. In addition, a comparison between the operational and scientific GLM data sets will also be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.3820O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.3820O"><span>Modulation of UK <span class="hlt">lightning</span> and the atmospheric electric circuit by heliospheric magnetic field polarity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Owens, Mathew; Scott, Chris; Lockwood, Mike; Barnard, Luke; Harrison, Giles; Nicoll, Keri; Watt, Clare; Bennett, Alec</p> <p>2015-04-01</p> <p>Observational studies have reported solar magnetic modulation of terrestrial <span class="hlt">lightning</span> on a range of time scales, from days to decades. The proposed mechanism is two-step: <span class="hlt">lightning</span> rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of <span class="hlt">lightning</span>. GCR flux is, in turn, primarily controlled by the heliospheric magnetic field (HMF) intensity. Consequently, global changes in <span class="hlt">lightning</span> rates are expected. This study instead considers HMF polarity, which doesn't greatly affect total GCR flux. Opposing HMF polarities are, however, associated with a 40 to 60% difference in observed UK <span class="hlt">lightning</span> and thunder rates. As HMF polarity skews the terrestrial magnetosphere from its nominal position, this perturbs local ionospheric potential at <span class="hlt">high</span> latitudes and local exposure to energetic charged particles from the magnetosphere. We speculate as to the mechanism(s) by which this may, in turn, redistribute the global location and/or intensity of thunderstorm <span class="hlt">activity</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMAE31A0273A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMAE31A0273A"><span>Infrasound Observations from <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Thomas, R. J.; Jones, K. R.</p> <p>2008-12-01</p> <p>To provide additional insight into the nature of <span class="hlt">lightning</span>, we have investigated its infrasound manifestations. An array of three stations in a triangular configuration, with three sensors each, was deployed during the Summer of 2008 (July 24 to July 28) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) sources due to <span class="hlt">lightning</span>. Hyperbolic formulations of time of arrival (TOA) measurements and interferometric techniques were used to locate <span class="hlt">lightning</span> sources occurring over and outside the network. A comparative analysis of simultaneous <span class="hlt">Lightning</span> Mapping Array (LMA) data and infrasound measurements operating in the same area was made. The LMA locates the sources of impulsive RF radiation produced by <span class="hlt">lightning</span> flashes in three spatial dimensions and time, operating in the 60 - 66 MHz television band. The comparison showed strong evidence that <span class="hlt">lightning</span> does produce infrasound. This work is a continuation of the study of the frequency spectrum of thunder conducted by Holmes et al., who reported measurements of infrasound frequencies. The integration of infrasound measurements with RF source localization by the LMA shows great potential for improved understanding of <span class="hlt">lightning</span> processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMED31A0609W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMED31A0609W"><span>Chasing <span class="hlt">Lightning</span>: Sferics, Tweeks and Whistlers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Webb, P. A.; Franzen, K.; Garcia, L.; Schou, P.; Rous, P.</p> <p>2008-12-01</p> <p>We all know what <span class="hlt">lightning</span> looks like during a thunderstorm, but the visible flash we see is only part of the story. This is because <span class="hlt">lightning</span> also generates light with other frequencies that we cannot perceive with our eyes, but which are just as real as visible light. Unlike the visible light from <span class="hlt">lightning</span>, these other frequencies can carry the <span class="hlt">lightning</span>'s energy hundreds or thousands of miles across the surface of the Earth in the form of special signals called "tweeks" and "sferics". Some of these emissions can even travel tens of thousands of miles out into space before returning to the Earth as "whistlers". The INSPIRE Project, Inc is a non-profit scientific and educational corporation whose beginning mission was to bring the excitement of observing these very low frequency (VLF) natural radio waves emissions from <span class="hlt">lightning</span> to <span class="hlt">high</span> school students. Since 1989, INSPIRE has provided specially designed radio receiver kits to over 2,600 participants around the world to make observations of signals in the VLF frequency range. Many of these participants are using the VLF data they collect in very creative projects that include fiction, music and art exhibitions. During the Fall 2008 semester, the first INSPIRE based university-level course was taught at University of Maryland Baltimore County (UMBC) as part of its First-Year Seminar (FYS) series. The FYS classes are limited to 20 first-year students per class and are designed to create an <span class="hlt">active</span>-learning environment that encourages student participation and discussion that might not otherwise occur in larger first-year classes. This presentation will cover the experiences gained from using the INSPIRE kits as the basis of a university course. This will include the lecture material that covers the basic physics of <span class="hlt">lightning</span>, thunderstorms and the Earth's atmosphere, as well as the electronics required to understand the basic workings of the VLF kit. It will also cover the students assembly of the kit in an</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070037459&hterms=bateman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbateman','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070037459&hterms=bateman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbateman"><span>Electric Field and <span class="hlt">Lightning</span> Observations in the Core of Category 5 Hurricane Emily</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blakeslee, Richard; Mach, Doug M.; Bateman, Monte G.; Bailey, Jeff C.</p> <p>2007-01-01</p> <p>Significant electric fields and <span class="hlt">lightning</span> <span class="hlt">activity</span> associated with Hurricane Emily were observed from a NASA <span class="hlt">high</span>-altitude ER-2 aircraft on July 17, 2005 while this storm developed as a compact but intense category 5 hurricane in the Caribbean south of Cuba. The electrical measurements were acquired as part of the NASA sponsored Tropical Cloud Systems and Processes (TCSP) experiment. In addition to the electrical measurements, the aircraft's remote sensing instrument complement also included <span class="hlt">active</span> radars, passive microwave, visible and infrared radiometers, and a temperature sounder providing details on the dynamical, microphysical, and environmental structure, characteristics and development of this intense storm. Cloud-to-ground <span class="hlt">lightning</span> location data from Vaisala's long range <span class="hlt">lightning</span> detection network were also acquired and displayed in real-time along with electric fields measured at the aircraft. These data and associated display also supported aircraft guidance and vectoring during the mission. During the observing period, flash rates in excess of 3 to 5 flashes per minute, as well as large electric field and field change values were observed as the storm appeared to undergo periods of intensification, especially in the northwest quadrant in the core eyewall regions. This is in contrast to most hurricanes that tend to be characterized by weak electrification and little or no <span class="hlt">lightning</span> <span class="hlt">activity</span> except in the outer rain bands. It should be noted that this storm also had significant <span class="hlt">lightning</span> associated with its rain bands.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.1363T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.1363T"><span>Plans of <span class="hlt">lightning</span> and airglow measurements with LAC/Akatsuki</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, Yukihiro; Hoshino, Naoya; Sato, Mitsuteru; Yair, Yoav; Galand, Marina; Fukuhara, Tetsuya</p> <p></p> <p>Though there are extensive researches on the existence of <span class="hlt">lightning</span> discharge in Venus over few decades, this issue is still under controversial. Recently it is reported that the magnetometer on board Venus Express detected whistler mode waves whose source could be <span class="hlt">lightning</span> discharge occurring well below the spacecraft. However, it is too early to determine the origin of these waves. On the other hand, night airglow is expected to provide essential information on the atmospheric circulation in the upper atmosphere of Venus. But the number of consecutive images of airglow obtained by spacecraft is limited and even the variations of most enhanced location is still unknown. In order to identify the discharge phenomena in the atmosphere of Venus separating from noises and to know the daily variation of airglow distribution in night-side disk, we plan to observe the <span class="hlt">lightning</span> and airglow optical emissions with <span class="hlt">high</span>-speed and <span class="hlt">high</span>-sensitivity optical detector with narrow-band filters on board Akatsuki. We are ready to launch the flight model of <span class="hlt">lightning</span> and airglow detector, LAC (<span class="hlt">Lightning</span> and Airglow Camera). Main difference from other previous equipments which have provided evidences of <span class="hlt">lightning</span> existence in Venus is the <span class="hlt">high</span>-speed sampling rate at 32 us interval for each pixel, enabling us to distinguish the optical <span class="hlt">lightning</span> flash from other pulsing noises. In this presentation the observation strategies, including ground-based support with optical telescopes, are shown and discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=The+AND+lightning&pg=2&id=EJ464567','ERIC'); return false;" href="https://eric.ed.gov/?q=The+AND+lightning&pg=2&id=EJ464567"><span>A <span class="hlt">Lightning</span> Safety Primer for Camps.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Attarian, Aram</p> <p>1992-01-01</p> <p>Provides the following information about <span class="hlt">lightning</span>, which is necessary for camp administrators and staff: (1) warning signs of <span class="hlt">lightning</span>; (2) dangers of <span class="hlt">lightning</span>; (3) types of <span class="hlt">lightning</span> injuries; (4) prevention of <span class="hlt">lightning</span> injury; and (5) helpful training tips. (KS)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AtmRe.125...34G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AtmRe.125...34G"><span>The GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas; Bailey, Jeffrey; Buechler, Dennis; Carey, Larry; Schultz, Chris; Bateman, Monte; McCaul, Eugene; Stano, Geoffrey</p> <p>2013-05-01</p> <p>The Geostationary Operational Environmental Satellite R-series (GOES-R) is the next block of four satellites to follow the existing GOES constellation currently operating over the Western Hemisphere. Advanced spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total <span class="hlt">lightning</span> detection (cloud and cloud-to-ground flashes) from the Geostationary <span class="hlt">Lightning</span> Mapper (GLM), and improved cloud and moisture imagery with the 16-channel Advanced Baseline Imager (ABI). The GLM will map total <span class="hlt">lightning</span> <span class="hlt">activity</span> continuously day and night with near-uniform storm-scale spatial resolution of 8 km with a product refresh rate of less than 20 s over the Americas and adjacent oceanic regions in the western hemisphere. This will aid in forecasting severe storms and tornado <span class="hlt">activity</span>, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, an Algorithm Working Group (AWG) <span class="hlt">Lightning</span> Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 <span class="hlt">lightning</span> event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA <span class="hlt">Lightning</span> Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low Earth orbit, and from ground-based <span class="hlt">lightning</span> networks and intensive prelaunch field campaigns. The GLM will produce the same or similar <span class="hlt">lightning</span> flash attributes provided by the LIS and OTD, and thus extend their combined climatology over the western hemisphere into the coming decades. Science and application development along with preoperational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003532','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003532"><span>Using Cloud-to-Ground <span class="hlt">Lightning</span> Climatologies to Initialize Gridded <span class="hlt">Lightning</span> Threat Forecasts for East Central Florida</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lambert, Winnie; Sharp, David; Spratt, Scott; Volkmer, Matthew</p> <p>2005-01-01</p> <p>Each morning, the forecasters at the National Weather Service in Melbourn, FL (NWS MLB) produce an experimental cloud-to-ground (CG) <span class="hlt">lightning</span> threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/<span class="hlt">lightning</span>.shtml) . Given the hazardous nature of <span class="hlt">lightning</span> in central Florida, especially during the warm season months of May-September, these maps help users factor the threat of <span class="hlt">lightning</span>, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of <span class="hlt">lightning</span> occurrence and the expected amount of CG <span class="hlt">activity</span>. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative <span class="hlt">lightning</span> threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The <span class="hlt">lightning</span> threat index maps are issued for the 24-hour period beginning at 1200 UTC (0700 AM EST) each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season <span class="hlt">lightning</span> climatologies that could be used as first-guess inputs to initialize <span class="hlt">lightning</span> threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to increase consistency between forecasters while enabling them to focus on</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/949855-lightning-vulnerability-fiber-optic-cables','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/949855-lightning-vulnerability-fiber-optic-cables"><span><span class="hlt">Lightning</span> vulnerability of fiber-optic cables.</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Martinez, Leonard E.; Caldwell, Michele</p> <p>2008-06-01</p> <p>One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a <span class="hlt">lightning</span> strike representing an extreme but very importantmore » case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative <span class="hlt">lightning</span> conditions at the Sandia <span class="hlt">Lightning</span> Simulator (SLS). Simulated <span class="hlt">lightning</span> currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC <span class="hlt">high</span> voltage and simulated <span class="hlt">lightning</span> tests performed at the Sandia <span class="hlt">Lightning</span> Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative <span class="hlt">lightning</span> conditions.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950032597&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950032597&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DGlobal%2Bwarming"><span>Possible implications of global climate change on global <span class="hlt">lightning</span> distributions and frequencies</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Price, Colin; Rind, David</p> <p>1994-01-01</p> <p>The Goddard Institute for Space Studies (GISS) general circulation model (GCM) is used to study the possible implications of past and future climate change on global <span class="hlt">lightning</span> frequencies. Two climate change experiments were conducted: one for a 2 x CO2 climate (representing a 4.2 degs C global warming) and one for a 2% decrease in the solar constant (representing a 5.9 degs C global cooling). The results suggest at 30% increase in global <span class="hlt">lightning</span> <span class="hlt">activity</span> for the warmer climate and a 24% decrease in global <span class="hlt">lightning</span> <span class="hlt">activity</span> for the colder climate. This implies an approximate 5-6% change in global <span class="hlt">lightning</span> frequencies for every 1 degs C global warming/cooling. Both intracloud and cloud-to-ground frequencies are modeled, with cloud-to-ground <span class="hlt">lightning</span> frequencies showing larger sensitivity to climate change than intracloud frequencies. The magnitude of the modeled <span class="hlt">lightning</span> changes depends on season, location, and even time of day.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100021055','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100021055"><span>Estimates of the <span class="hlt">Lightning</span> NOx Profile in the Vicinity of the North Alabama <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William J.; Peterson, Harold S.; McCaul, Eugene W.; Blazar, Arastoo</p> <p>2010-01-01</p> <p>The NASA Marshall Space Flight Center <span class="hlt">Lightning</span> Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama <span class="hlt">Lightning</span> Mapping Array (NALMA) data to estimate the (unmixed and otherwise environmentally unmodified) vertical source profile of <span class="hlt">lightning</span> nitrogen oxides, NOx = NO + NO2. Data from the National <span class="hlt">Lightning</span> Detection Network (Trademark) (NLDN) is also employed. This is part of a larger effort aimed at building a more realistic <span class="hlt">lightning</span> NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Overall, special attention is given to several important <span class="hlt">lightning</span> variables including: the frequency and geographical distribution of <span class="hlt">lightning</span> in the vicinity of the NALMA network, <span class="hlt">lightning</span> type (ground or cloud flash), <span class="hlt">lightning</span> channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting <span class="hlt">lightning</span> NOx source profiles are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRD..117.3113C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRD..117.3113C"><span>Preliminary <span class="hlt">lightning</span> observations over Greece</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chronis, Themis G.</p> <p>2012-02-01</p> <p>The first Precision <span class="hlt">Lightning</span> Network, monitoring the Cloud-to-Ground (CG) <span class="hlt">lightning</span> stroke <span class="hlt">activity</span> over Greece and surrounding waters is operated and maintained by the Hellenic National Meteorological Service. This paper studies the regional (land/water interface), seasonal and diurnal variability of the CG strokes as a function of density, polarity and peak current. Additional investigation uniquely links the CG stroke current to sea surface salinity and cloud electrical capacitance. In brief, this study's major findings area as follows: (1) The seasonal maps of thunder days agree well with the regional climatic convective characteristics of the study area, (2) the CG diurnal variability is consistent with the global <span class="hlt">lightning</span> <span class="hlt">activity</span> observations over land and ocean, (3) the maxima of monthly averaged CG counts are located over land and water during typical summer and fall months respectively for both polarities, (4) CG peak currents show a distinct seasonality with larger currents during relatively colder months and smaller currents during summer months, and (5) strong linear trends between -CGs and sea surface salinity; (6) this trend is absent for +CGs data analysis of the employed database relate to the thunderstorm's RC constant and agrees with previous numerical modeling studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Electric+AND+discharge&id=EJ081790','ERIC'); return false;" href="https://eric.ed.gov/?q=Electric+AND+discharge&id=EJ081790"><span>Thunderclouds and <span class="hlt">Lightning</span> Conductors</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Martin, P. F.</p> <p>1973-01-01</p> <p>Discusses the historical background of the development of <span class="hlt">lightning</span> conductors, describes the nature of thunderclouds and the <span class="hlt">lightning</span> flash, and provides a calculation of the electric field under a thundercloud. Also discussed are point discharge currents and the attraction theory of the <span class="hlt">lightning</span> conductor. (JR)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090017890&hterms=epa&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Depa','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090017890&hterms=epa&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Depa"><span>A NASA <span class="hlt">Lightning</span> Parameterization for CMAQ</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William; Khan, Maudood; Biazar, Arastoo; Newchurch, Mike; McNider, Richard</p> <p>2009-01-01</p> <p>Many state and local air quality agencies use the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system to determine compliance with the National Ambient Air Quality Standards (NAAQS). Because emission reduction scenarios are tested using CMAQ with an aim of determining the most efficient and cost effective strategies for attaining the NAAQS, it is very important that trace gas concentrations derived by CMAQ are accurate. Overestimating concentrations can literally translate into billions of dollars lost by commercial and government industries forced to comply with the standards. Costly health, environmental and socioeconomic problems can result from concentration underestimates. Unfortunately, <span class="hlt">lightning</span> modeling for CMAQ is <span class="hlt">highly</span> oversimplified. This leads to very poor estimates of <span class="hlt">lightning</span>-produced nitrogen oxides "NOx" (= NO + NO2) which directly reduces the accuracy of the concentrations of important CMAQ trace gases linked to NOx concentrations such as ozone and methane. Today it is known that <span class="hlt">lightning</span> is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2-20 Tg(N)/yr. In addition, NOx indirectly influences our climate since it controls the concentration of ozone and hydroxyl radicals (OH) in the atmosphere. Ozone is an important greenhouse gas and OH controls the oxidation of various greenhouse gases. We describe a robust NASA <span class="hlt">lightning</span> model, called the <span class="hlt">Lightning</span> Nitrogen Oxides Model (LNOM) that combines state-of-the-art <span class="hlt">lightning</span> measurements, empirical results from field studies, and beneficial laboratory results to arrive at a realistic representation of <span class="hlt">lightning</span> NOx production for CMAQ. NASA satellite <span class="hlt">lightning</span> data is used in conjunction with ground-based <span class="hlt">lightning</span> detection systems to assure that the best representation of <span class="hlt">lightning</span> frequency, geographic location, channel length, channel altitude, strength (i.e., channel peak current), and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980201084','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980201084"><span>Space Shuttle Video Images: An Example of Warm Cloud <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vaughan, Otha H., Jr.; Boeck, William L.</p> <p>1998-01-01</p> <p>Warm cloud <span class="hlt">lightning</span> has been reported in several tropical locations. We have been using the intensified monochrome TV cameras at night during a number of shuttle flights to observe large <span class="hlt">active</span> thunderstorms and their associated <span class="hlt">lightning</span>. During a nighttime orbital pass of the STS-70 mission on 17 July 1995 at 07:57:42 GMT, the controllers obtained video imagery of a small cloud that was producing <span class="hlt">lightning</span>. Data from a GOES infrared image establishes that the cloud top had a temperature of about 271 degrees Kelvin ( -2 degrees Celsius). Since this cloud was electrified to the extent that a <span class="hlt">lightning</span> discharge did occur, it may be another case of <span class="hlt">lightning</span> in a cloud that presents little if any evidence of frozen or melting precipitation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22215021','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22215021"><span><span class="hlt">Lightning</span> safety of animals.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gomes, Chandima</p> <p>2012-11-01</p> <p>This paper addresses a concurrent multidisciplinary problem: animal safety against <span class="hlt">lightning</span> hazards. In regions where <span class="hlt">lightning</span> is prevalent, either seasonally or throughout the year, a considerable number of wild, captive and tame animals are injured due to <span class="hlt">lightning</span> generated effects. The paper discusses all possible injury mechanisms, focusing mainly on animals with commercial value. A large number of cases from several countries have been analyzed. Economically and practically viable engineering solutions are proposed to address the issues related to the <span class="hlt">lightning</span> threats discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910006347','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910006347"><span>Predicting thunderstorm evolution using ground-based <span class="hlt">lightning</span> detection networks</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.</p> <p>1990-01-01</p> <p><span class="hlt">Lightning</span> measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground <span class="hlt">lightning</span> <span class="hlt">activity</span> is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total <span class="hlt">lightning</span> <span class="hlt">activity</span> is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete <span class="hlt">lightning</span> discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100024155','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100024155"><span>Effects of <span class="hlt">Lightning</span> Injection on Power-MOSFETs</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Celaya, Jose; Saha, Sankalita; Wysocki, Phil; Ely, Jay; Nguyen, Truong; Szatkowski, George; Koppen, Sandra; Mielnik, John; Vaughan, Roger; Goebel, Kai</p> <p>2009-01-01</p> <p><span class="hlt">Lightning</span> induced damage is one of the major concerns in aircraft health monitoring. Such short-duration <span class="hlt">high</span> voltages can cause significant damage to electronic devices. This paper presents a study on the effects of <span class="hlt">lightning</span> injection on power metal-oxide semiconductor field effect transistors (MOSFETs). This approach consisted of pin-injecting <span class="hlt">lightning</span> waveforms into the gate, drain and/or source of MOSFET devices while they were in the OFF-state. Analysis of the characteristic curves of the devices showed that for certain injection modes the devices can accumulate considerable damage rendering them inoperable. Early results demonstrate that a power MOSFET, even in its off-state, can incur considerable damage due to <span class="hlt">lightning</span> pin injection, leading to significant deviation in its behavior and performance, and to possibly early device failures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006epsc.conf..446K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006epsc.conf..446K"><span>Electromagnetic emission from terrestrial <span class="hlt">lightning</span> in the 0.1-30 MHz frequency range</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karashtin, A. N.; Gurevich, A. V.</p> <p></p> <p>Results of measurements carried out at SURA facility of Radiophisical Research Institute and at Tien-Shan Mountain Scientific Station of Lebedev Physical Institute using specially designed installations for short electromagnetic pulse observation in the frequency range from 0.1 to 30 MHz are presented. Specific attention is paid to initial stage of the <span class="hlt">lightning</span> discharge. It is shown that <span class="hlt">lightning</span> can be initiated by extensive atmospheric showers caused by <span class="hlt">high</span> energy cosmic ray particles. Analysis of emission of few thousand <span class="hlt">lightning</span> discharges showed that • Short wave radio emission of <span class="hlt">lightning</span> consists of a series of short pulses with duration from less than 100 nanoseconds to several microseconds separated well longer gaps. • Background noise between <span class="hlt">lightning</span> discharges is not differ from one observed without thunderstorm <span class="hlt">activity</span> (at given sensitivity). Usually it is the same between <span class="hlt">lightning</span> pulses at least at the initial stage. • Each <span class="hlt">lightning</span> discharge radio emission starts with a number of very short (less than 100 nanoseconds at 0.7 level) bi-polar pulses. Gaps between initial pulses vary from several microseconds to few hundreds of microseconds. No radio emission was observed before the first pulse during at least 500 milliseconds. Both positive and negative polarity of the first pulses occur in approximately equal proportion in different <span class="hlt">lightning</span> discharges while the polarity was the same in any individual <span class="hlt">lightning</span>. • First pulse amplitude, width and waveform are consistent with predicted by the theory of combined action of runaway breakdown and extensive atmospheric shower caused by cosmic ray particle of 1016 eV energy. <span class="hlt">Lightning</span> discharges at other planets can be initiated by cosmic ray particles as well. This work was partly supported by ISTC grant # 2236p. The work of one of the authors (A. N. Karashtin) was also partly supported by INTAS grant # 03-51-5727.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012NHESS..12..639S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012NHESS..12..639S"><span>Cloud-to-ground <span class="hlt">lightning</span> in Portugal: patterns and dynamical forcing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santos, J. A.; Reis, M. A.; Sousa, J.; Leite, S. M.; Correia, S.; Janeira, M.; Fragoso, M.</p> <p>2012-03-01</p> <p>An analysis of the cloud-to-ground discharges (CGD) over Portugal is carried out using data collected by a network of sensors maintained by the Portuguese Meteorological Institute for 2003-2009 (7 yr). Only cloud-to-ground flashes are considered and negative polarity CGD are largely dominant. The total number of discharges reveals a considerable interannual variability and a large irregularity in their distribution throughout the year. However, it is shown that a large number of discharges occur in the May-September period (71%), with a bimodal distribution that peaks in May and September, with most of the <span class="hlt">lightning</span> <span class="hlt">activity</span> recorded in the afternoon (from 16:00 to 18:00 UTC). In spring and autumn the <span class="hlt">lightning</span> <span class="hlt">activity</span> tends to be scattered throughout the country, whereas in summer it tends to be more concentrated over northeastern Portugal. Winter generally presents low <span class="hlt">lightning</span> <span class="hlt">activity</span>. Furthermore, two significant couplings between the monthly number of days with discharges and the large-scale atmospheric circulation are isolated: a regional forcing, predominantly in summer, and a remote forcing. In fact, the identification of daily <span class="hlt">lightning</span> regimes revealed three important atmospheric conditions for triggering <span class="hlt">lightning</span> <span class="hlt">activity</span>: regional cut-off lows, cold troughs induced by remote low pressure systems and summertime regional low pressures at low-tropospheric levels combined with a mid-tropospheric cold trough.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018uhec.confa1023B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018uhec.confa1023B"><span><span class="hlt">High</span>-Energy Particle Showers Observed at Ground Level in Coincidence with Downward <span class="hlt">Lightning</span> Leaders at the Telescope Array Observatory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belz, John; Abbasi, Rasha; Le Von, Ryan; Krehbiel, Paul; Remington, Jackson; Rison, William</p> <p></p> <p>Terrestrial Gamma Ray Flashes (TGFs) detected by satellite observations have been shown to be generated by upward propagating negative leaders at altitudes of about 10 to 12 km above Mean Sea Level (MSL), and have durations ranging between a few hundred microseconds and a few milliseconds. The Telescope Array Cosmic Ray observatory, designed to observe air showers induced by ultra <span class="hlt">high</span> energy cosmic rays, includes a surface scintillator detector (SD) covering approximately 700 square kilometers on a 1.2 km grid. Following the observation of anomalous SD triggers correlated with local <span class="hlt">lightning</span> <span class="hlt">activity</span>, a <span class="hlt">Lightning</span> Mapping Array (LMA) and slow electric field antenna were installed at the TA site in order to characterize the <span class="hlt">lightning</span> associated with these anomalous triggers. In this talk, we present evidence that the anomalous triggers are produced during the initial breakdown phase of fast, downward propagating, negative leaders above the detectors which produced the triggers. The durations of the <span class="hlt">high</span> energy radiation are a few hundred microseconds, similar to satellite observations of TGFs. The triggers were produced within a few hundred microseconds of the initiation of the leaders, when the leaders were at an altitude of about 3 to 4 km MSL. The TA scintillation detectors are not optimized for gamma ray detection, however we present the results of simulations demonstrating that the fluxes observed are consistent with this picture. We conclude that the anomalous triggers observed by TA are clearly due to <span class="hlt">high</span> energy radiation produced by the fast downward propagating negative leaders, and are probably downward-directed TGFs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830043058&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Drust','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830043058&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Drust"><span><span class="hlt">Lightning</span> propagation and flash density in squall lines as determined with radar</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mazur, V.; Rust, W. D.</p> <p>1983-01-01</p> <p><span class="hlt">Lightning</span> echo rise times and range-time variations due to discharge propagation are determined using S and L band radars, and the evolution of precipitation reflectivity and the associated <span class="hlt">lightning</span> <span class="hlt">activity</span> in squall lines is investigated using VHF and L band radars. The rise time of radar echoes can be explained by ionized channel propagation through the radar beams. Speeds of at least 250,000 m/s are found from measurements of the radial velocity of streamer propagation along the antenna beam. The range-time variations in <span class="hlt">lightning</span> echoes indicate that either new ionization occurs as streamers develop into different parts of the cloud, channel delay occurs during which adequate ionization exists for radar detection, or continuing current occurs. Determinations of the <span class="hlt">lightning</span> flash density for a squall line in the U.S. show that the maximum <span class="hlt">lightning</span> density tends to be near the leading edge of the precipitation cores in developing cells. Long discharges are produced as a cell in the squall line develops and the total <span class="hlt">lightning</span> density increases, although short discharges predominate. As the cell dissipates, short flashes diminish or cease and the long flashes dominate the <span class="hlt">lightning</span> <span class="hlt">activity</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950007857','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950007857"><span>Produce documents and media information. [on <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alzmann, Melanie A.; Miller, G.A.</p> <p>1994-01-01</p> <p><span class="hlt">Lightning</span> data and information were collected from the United States, Germany, France, Brazil, China, and Australia for the dual purposes of compiling a global <span class="hlt">lightning</span> data base and producing publications on the Marshall Space Flight Center's <span class="hlt">lightning</span> program. Research covers the history of <span class="hlt">lightning</span>, the characteristics of a storm, types of lightningdischarges, observations from airplanes and spacecraft, the future fole of planes and spacecraft in <span class="hlt">lightning</span> studies, <span class="hlt">lightning</span> detection networks, and the relationships between <span class="hlt">lightning</span> and rainfall. Descriptions of the Optical Transient Dectector, the <span class="hlt">Lightning</span> Imaging Sensor, and the <span class="hlt">Lightning</span> Mapper Sensor are included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100026543','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100026543"><span>Recent Advancements in <span class="hlt">Lightning</span> Jump Algorithm Work</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.</p> <p>2010-01-01</p> <p>In the past year, the primary objectives were to show the usefulness of total <span class="hlt">lightning</span> as compared to traditional cloud-to-ground (CG) networks, test the <span class="hlt">lightning</span> jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any <span class="hlt">lightning</span> jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., <span class="hlt">High</span> Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 <span class="hlt">lightning</span> jump algorithm configuration holds the most promise in terms of prospective operational <span class="hlt">lightning</span> jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational <span class="hlt">lightning</span> jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track <span class="hlt">lightning</span> trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 <span class="hlt">lightning</span> jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in <span class="hlt">lightning</span>). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.8173H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.8173H"><span>Do cosmic ray air showers initiate <span class="hlt">lightning</span>?: A statistical analysis of cosmic ray air showers and <span class="hlt">lightning</span> mapping array data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hare, B. M.; Dwyer, J. R.; Winner, L. H.; Uman, M. A.; Jordan, D. M.; Kotovsky, D. A.; Caicedo, J. A.; Wilkes, R. A.; Carvalho, F. L.; Pilkey, J. T.; Ngin, T. K.; Gamerota, W. R.; Rassoul, H. K.</p> <p>2017-08-01</p> <p>It has been argued in the technical literature, and widely reported in the popular press, that cosmic ray air showers (CRASs) can initiate <span class="hlt">lightning</span> via a mechanism known as relativistic runaway electron avalanche (RREA), where large numbers of <span class="hlt">high</span>-energy and low-energy electrons can, somehow, cause the local atmosphere in a thundercloud to transition to a conducting state. In response to this claim, other researchers have published simulations showing that the electron density produced by RREA is far too small to be able to affect the conductivity in the cloud sufficiently to initiate <span class="hlt">lightning</span>. In this paper, we compare 74 days of cosmic ray air shower data collected in north central Florida during 2013-2015, the recorded CRASs having primary energies on the order of 1016 eV to 1018 eV and zenith angles less than 38°, with <span class="hlt">Lightning</span> Mapping Array (LMA) data, and we show that there is no evidence that the detected cosmic ray air showers initiated <span class="hlt">lightning</span>. Furthermore, we show that the average probability of any of our detected cosmic ray air showers to initiate a <span class="hlt">lightning</span> flash can be no more than 5%. If all <span class="hlt">lightning</span> flashes were initiated by cosmic ray air showers, then about 1.6% of detected CRASs would initiate <span class="hlt">lightning</span>; therefore, we do not have enough data to exclude the possibility that <span class="hlt">lightning</span> flashes could be initiated by cosmic ray air showers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006IJTFM.126...61K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006IJTFM.126...61K"><span><span class="hlt">Lightning</span> Phenomenology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kawasaki, Zen</p> <p></p> <p>This paper presents a phenomenological idea about <span class="hlt">lightning</span> flash to share the back ground understanding for this special issue. <span class="hlt">Lightning</span> discharges are one of the terrible phenomena, and Benjamin Franklin has led this natural phenomenon to the stage of scientific investigation. Technical aspects like monitoring and location are also summarized in this article.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20860108-self-similar-magnetohydrodynamic-model-ball-lightnings','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20860108-self-similar-magnetohydrodynamic-model-ball-lightnings"><span>A self-similar magnetohydrodynamic model for ball <span class="hlt">lightnings</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tsui, K. H.</p> <p>2006-07-15</p> <p>Ball <span class="hlt">lightning</span> is modeled by magnetohydrodynamic (MHD) equations in two-dimensional spherical geometry with azimuthal symmetry. Dynamic evolutions in the radial direction are described by the self-similar evolution function y(t). The plasma pressure, mass density, and magnetic fields are solved in terms of the radial label {eta}. This model gives spherical MHD plasmoids with axisymmetric force-free magnetic field, and spherically symmetric plasma pressure and mass density, which self-consistently determine the polytropic index {gamma}. The spatially oscillating nature of the radial and meridional field structures indicate embedded regions of closed field lines. These regions are named secondary plasmoids, whereas the overall self-similarmore » spherical structure is named the primary plasmoid. According to this model, the time evolution function allows the primary plasmoid expand outward in two modes. The corresponding ejection of the embedded secondary plasmoids results in ball <span class="hlt">lightning</span> offering an answer as how they come into being. The first is an accelerated expanding mode. This mode appears to fit plasmoids ejected from thundercloud tops with acceleration to ionosphere seen in <span class="hlt">high</span> altitude atmospheric observations of sprites and blue jets. It also appears to account for midair <span class="hlt">high</span>-speed ball <span class="hlt">lightning</span> overtaking airplanes, and ground level <span class="hlt">high</span>-speed energetic ball <span class="hlt">lightning</span>. The second is a decelerated expanding mode, and it appears to be compatible to slowly moving ball <span class="hlt">lightning</span> seen near ground level. The inverse of this second mode corresponds to an accelerated inward collapse, which could bring ball <span class="hlt">lightning</span> to an end sometimes with a cracking sound.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJTP...57..388A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJTP...57..388A"><span>New Physical Mechanism for <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Artekha, Sergey N.; Belyan, Andrey V.</p> <p>2018-02-01</p> <p>The article is devoted to electromagnetic phenomena in the atmosphere. The set of experimental data on the thunderstorm <span class="hlt">activity</span> is analyzed. It helps to identify a possible physical mechanism of <span class="hlt">lightning</span> flashes. This mechanism can involve the formation of metallic bonds in thunderclouds. The analysis of the problem is performed at a microphysical level within the framework of quantum mechanics. The mechanism of appearance of metallic conductivity includes the resonant tunneling of electrons along resonance-percolation trajectories. Such bonds allow the charges from the vast cloud charged subsystems concentrate quickly in <span class="hlt">lightning</span> channel. The formation of metal bonds in the thunderstorm cloudiness is described as the second-order phase transition. A successive mechanism for the process of formation and development of the <span class="hlt">lightning</span> channel is suggested. This mechanism is associated with the change in the orientation of crystals in growing electric field. Possible consequences of the quantum-mechanical mechanism under discussion are compared with the results of observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21570915-number-lightning-discharges-causing-damage-lightning-arrester-cables-aerial-transmission-lines-power-systems','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21570915-number-lightning-discharges-causing-damage-lightning-arrester-cables-aerial-transmission-lines-power-systems"><span>Number of <span class="hlt">lightning</span> discharges causing damage to <span class="hlt">lightning</span> arrester cables for aerial transmission lines in power systems</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nikiforov, E. P.</p> <p>2009-07-15</p> <p>Damage by <span class="hlt">lightning</span> discharges to <span class="hlt">lightning</span> arrester cables for 110-175 kV aerial transmission lines is analyzed using data from power systems on incidents with aerial transmission lines over a ten year operating period (1997-2006). It is found that failures of <span class="hlt">lightning</span> arrester cables occur when a tensile force acts on a cable heated to the melting point by a <span class="hlt">lightning</span> current. The <span class="hlt">lightning</span> currents required to heat a cable to this extent are greater for larger cable cross sections. The probability that a <span class="hlt">lightning</span> discharge will develop decreases as the amplitude of the <span class="hlt">lightning</span> current increases, which greatly reduces themore » number of <span class="hlt">lightning</span> discharges which damage TK-70 cables compared to TK-50 cables. In order to increase the reliability of <span class="hlt">lightning</span> arrester cables for 110 kV aerial transmission lines, TK-70 cables should be used in place of TK-50 cables. The number of <span class="hlt">lightning</span> discharges per year which damage <span class="hlt">lightning</span> arrester cables is lowered when the density of aerial transmission lines is reduced within the territory of electrical power systems. An approximate relationship between these two parameters is obtained.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130011295','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130011295"><span>Objective <span class="hlt">Lightning</span> Forecasting at Kennedy Space Center/Cape Canaveral Air Force Station using Cloud-to-Ground <span class="hlt">Lightning</span> Surveillance System Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lambert, Winifred; Wheeler, Mark</p> <p>2004-01-01</p> <p>The 45th Weather Squadron (45 WS) forecasters at Cape Canaveral Air Force Station (CCAFS) in Florida include a probability of thunderstorm occurrence in their daily morning briefings. This information is used by personnel involved in determining the possibility of violating Launch Commit Criteria, evaluating Flight Rules for the Space Shuttle, and daily planning for ground operation <span class="hlt">activities</span> on Kennedy Space Center (KSC)/CCAFS. Much of the current <span class="hlt">lightning</span> probability forecast is based on a subjective analysis of model and observational data. The forecasters requested that a <span class="hlt">lightning</span> probability forecast tool based on statistical analysis of historical warm-season (May - September) data be developed in order to increase the objectivity of the daily thunderstorm probability forecast. The tool is a set of statistical <span class="hlt">lightning</span> forecast equations that provide a <span class="hlt">lightning</span> occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season. This study used 15 years (1989-2003) of warm season data to develop the objective forecast equations. The local CCAFS 1000 UTC sounding was used to calculate stability parameters for equation predictors. The Cloud-to-Ground <span class="hlt">Lightning</span> Surveillance System (CGLSS) data were used to determine <span class="hlt">lightning</span> occurrence for each day. The CGLSS data have been found to be more reliable indicators of <span class="hlt">lightning</span> in the area than surface observations through local informal analyses. This work was based on the results from two earlier research projects. Everitt (1999) used surface observations and rawinsonde data to develop logistic regression equations that forecast the daily thunderstorm probability at CCAFS. The Everitt (1999) equations showed an improvement in skill over the Neumann-Pfeffer thunderstorm index (Neumann 1971), which uses multiple linear regression, and also persistence and climatology forecasts. Lericos et al. (2002) developed <span class="hlt">lightning</span> distributions over the Florida peninsula based on specific flow regimes. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100020940&hterms=lightning+protection+system+buildings&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlightning%2Bprotection%2Bsystem%2Bbuildings','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100020940&hterms=lightning+protection+system+buildings&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlightning%2Bprotection%2Bsystem%2Bbuildings"><span>Estimates of the <span class="hlt">Lightning</span> NOx Profile in the Vicinity of the North Alabama <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William J.; Peterson, Harold</p> <p>2010-01-01</p> <p>The NASA Marshall Space Flight Center <span class="hlt">Lightning</span> Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama <span class="hlt">Lightning</span> Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of <span class="hlt">lightning</span> nitrogen oxides, NOx = NO + NO 2 . This is part of a larger effort aimed at building a more realistic <span class="hlt">lightning</span> NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Data from the National <span class="hlt">Lightning</span> Detection Network TM (NLDN) is also employed. Overall, special attention is given to several important <span class="hlt">lightning</span> variables including: the frequency and geographical distribution of <span class="hlt">lightning</span> in the vicinity of the LMA network, <span class="hlt">lightning</span> type (ground or cloud flash), <span class="hlt">lightning</span> channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting raw NOx profiles are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMAE13A0330L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMAE13A0330L"><span>Dual-Polarization Radar Observations of Upward <span class="hlt">Lightning</span>-Producing Storms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lueck, R.; Helsdon, J. H.; Warner, T.</p> <p>2013-12-01</p> <p>The Upward <span class="hlt">Lightning</span> Triggering Study (UPLIGHTS) seeks to determine how upward <span class="hlt">lightning</span>, which originates from the tips of tall objects, is triggered by nearby flash <span class="hlt">activity</span>. As a component of this study we analyze standard and dual-polarization weather radar data. The Correlation Coefficient (CC) in particular can be used to identify and quantify the melting layer associated with storms that produce upward <span class="hlt">lightning</span>. It has been proposed that positive charge generation due to aggregate shedding at the melting layer results in a positive charge region just above the cloud base. This positive charge region may serve as a positive potential well favorable for negative leader propagation, which initiate upward positive leaders from tall objects. We characterize the horizontal coverage, thickness and height of the melting layer in addition to cloud base heights when upward <span class="hlt">lightning</span> occurs to determine trends and possible threshold criteria relating to upward <span class="hlt">lightning</span> production. Furthermore, we characterize storm type and morphology using relevant schemes as well as precipitation type using the Hydrometer Classification Algorithm (HCA) for upward <span class="hlt">lightning</span>-producing storms. Ice-phase hydrometeors have been shown to be a significant factor in thunderstorm electrification. Only a small fraction of storms produce upward <span class="hlt">lightning</span>, so null cases will be examined and compared as well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27665937','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27665937"><span>Measuring Method for <span class="hlt">Lightning</span> Channel Temperature.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, X; Zhang, J; Chen, L; Xue, Q; Zhu, R</p> <p>2016-09-26</p> <p>In this paper, we demonstrate the temperature of <span class="hlt">lightning</span> channel utilizing the theory of <span class="hlt">lightning</span> spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the <span class="hlt">lightning</span> discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated <span class="hlt">lightning</span> has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the <span class="hlt">lightning</span> current intensity in range of 5-50 kA. Based on the results, the temperature of the <span class="hlt">lightning</span> channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the <span class="hlt">lightning</span> current intensity, which shows good agreement with that of the natural <span class="hlt">lightning</span> cases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...633906L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...633906L"><span>Measuring Method for <span class="hlt">Lightning</span> Channel Temperature</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.</p> <p>2016-09-01</p> <p>In this paper, we demonstrate the temperature of <span class="hlt">lightning</span> channel utilizing the theory of <span class="hlt">lightning</span> spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the <span class="hlt">lightning</span> discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated <span class="hlt">lightning</span> has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the <span class="hlt">lightning</span> current intensity in range of 5-50 kA. Based on the results, the temperature of the <span class="hlt">lightning</span> channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the <span class="hlt">lightning</span> current intensity, which shows good agreement with that of the natural <span class="hlt">lightning</span> cases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G31B1073T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G31B1073T"><span>Nowcast of thunderstorm and typhoon <span class="hlt">activity</span> based on <span class="hlt">lightning</span> detection and flexible operation of micro-satellites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, Y.</p> <p>2016-12-01</p> <p>It has become known that <span class="hlt">lightning</span> <span class="hlt">activity</span> represents the thunderstorm <span class="hlt">activity</span>, namely, the intensity and area of precipitation and/or updraft. Thunderstorm is also important as a proxy of the energy input from ocean to atmosphere in typhoon, meaning that if we could monitor the thunderstorm with <span class="hlt">lightning</span> we could predict the maximum wind velocity near the typhoon center by one or two days before. Constructing ELF and VLF radio wave observation network in Southeast Asia (AVON) and a regional dense network of automated weather station in a big city, we plan to establish the monitoring system for thunderstorm development in western pacific warm pool (WPWP) where typhoon is formed and in detail in big city area. On the other hand, some developing countries in SE-Asia are going to own micro-satellites dedicated to meteorological remote sensing. Making use of the <span class="hlt">lightning</span> <span class="hlt">activity</span> data measured by the ground-based networks, and information on 3-D structures of thunderclouds observed by the flexible on-demand operation of the remote-sensing micro-satellites, we would establish a new methodology to obtain very detail semi-real time information that cannot be achieved only with existing observation facilities, such as meteorological radar or large meteorological satellite. Using this new system we try to issue nowcast for the local thunderstorm and for typhoons. The first attempt will be carried out in Metro Manila in Philippines and WPWP as one of the SATREPS projects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmRe.197...76S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmRe.197...76S"><span>Performance assessment of Beijing <span class="hlt">Lightning</span> Network (BLNET) and comparison with other <span class="hlt">lightning</span> location networks across Beijing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Srivastava, Abhay; Tian, Ye; Qie, Xiushu; Wang, Dongfang; Sun, Zhuling; Yuan, Shanfeng; Wang, Yu; Chen, Zhixiong; Xu, Wenjing; Zhang, Hongbo; Jiang, Rubin; Su, Debin</p> <p>2017-11-01</p> <p>The performances of Beijing <span class="hlt">Lightning</span> Network (BLNET) operated in Beijing-Tianjin-Hebei urban cluster area have been evaluated in terms of detection efficiency and relative location accuracy. A self-reference method has been used to show the detection efficiency of BLNET, for which fast antenna waveforms have been manually examined. Based on the fast antenna verification, the average detection efficiency of BLNET is 97.4% for intracloud (IC) flashes, 73.9% for cloud-to-ground (CG) flashes and 93.2% for the total flashes. Result suggests the CG detection of regional dense network is <span class="hlt">highly</span> precise when the thunderstorm passes over the network; however it changes day to day when the thunderstorms are outside the network. Further, the CG stroke data from three different <span class="hlt">lightning</span> location networks across Beijing are compared. The relative detection efficiency of World Wide <span class="hlt">Lightning</span> Location Network (WWLLN) and Chinese Meteorology Administration - <span class="hlt">Lightning</span> Detection Network (CMA-LDN, also known as ADTD) are approximately 12.4% (16.8%) and 36.5% (49.4%), respectively, comparing with fast antenna (BLNET). The location of BLNET is in middle, while WWLLN and CMA-LDN average locations are southeast and northwest, respectively. Finally, the IC pulses and CG return stroke pulses have been compared with the S-band Doppler radar. This type of study is useful to know the approximate situation in a region and improve the performance of <span class="hlt">lightning</span> location networks in the absence of ground truth. Two <span class="hlt">lightning</span> flashes occurred on tower in the coverage of BLNET show that the horizontal location error was 52.9 m and 250 m, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4797K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4797K"><span><span class="hlt">Lightning</span> climatology in the Congo Basin: methodology and first results</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kigotsi, Jean; Soula, Serge; Georgis, Jean-François; Barthe, Christelle</p> <p>2016-04-01</p> <p>The global climatology of <span class="hlt">lightning</span> issued from space observations (OTD and LIS) clearly showed the maximum of the thunderstorm <span class="hlt">activity</span> is located in a large area of the Congo Basin, especially in the Democratic Republic of Congo (DRC). The first goal of the present study is to compare observations from the World Wide <span class="hlt">Lightning</span> Location Network (WWLLN) from the <span class="hlt">Lightning</span> Imaging Sensor (LIS) over a 9-year period (2005-2013) in this 2750 km × 2750 km area. The second goal is to analyse the <span class="hlt">lightning</span> <span class="hlt">activity</span> in terms of time and space variability. The detection efficiency (DE) of the WWLLN relative to LIS has increased between 2005 and 2013, typically from about 1.70 % to 5.90 %, in agreement with previous results for other regions of the world. The mean monthly flash rate describes an annual cycle with a maximum between November and March and a minimum between June and August, associated with the ICTZ migration but not exactly symmetrical on both sides of the equator. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, depending on the reference year, in agreement with previous works in other regions of the world. The annual flash density shows a sharp maximum localized in eastern DRC regardless of the reference year and the period of the year. This annual maximum systematically located west of Kivu Lake corresponds to that previously identified by many authors as the worldwide maximum which Christian et al. (2013) falsely attributed to Rwanda. Another more extended region within the Congo Basin exhibits moderately large values, especially during the beginning of the period analyzed. A comparison of both patterns of <span class="hlt">lightning</span> density from the WWLLN and from LIS allows to validate the representativeness of this world network and to restitute the total <span class="hlt">lightning</span> <span class="hlt">activity</span> in terms of <span class="hlt">lightning</span> density and rate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..457L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..457L"><span>Relationship between aerosol and <span class="hlt">lightning</span> over Indo-Gangetic Plain (IGP), India</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lal, D. M.; Ghude, Sachin D.; Mahakur, M.; Waghmare, R. T.; Tiwari, S.; Srivastava, Manoj K.; Meena, G. S.; Chate, D. M.</p> <p>2017-08-01</p> <p>The relationship between aerosol and <span class="hlt">lightning</span> over the Indo-Gangetic Plain (IGP), India has been evaluated by utilising aerosol optical depth (AOD), cloud droplet effective radius and cloud fraction from Moderate Resolution Imaging Spectroradiometer. <span class="hlt">Lightning</span> flashes have been observed by the <span class="hlt">lightning</span> Imaging sensor on the board of Tropical Rainfall and Measuring Mission and humidity from modern-era retrospective-analysis for research and applications for the period of 2001-2012. In this study, the role of aerosol in <span class="hlt">lightning</span> generation over the north-west sector of IGP has been revealed. It is found that <span class="hlt">lightning</span> <span class="hlt">activity</span> increases (decreases) with increasing aerosols during normal (deficient) monsoon rainfall years. However, <span class="hlt">lightning</span> increases with increasing aerosol during deficient rainfall years when the average value of AOD is less than 0.88. We have found that during deficient rainfall years the moisture content of the atmosphere and cloud fraction is smaller than that during the years with normal or excess monsoon rainfall over the north-west IGP. Over the north-east Bay of Bengal and its adjoining region the variations of moisture and cloud fraction between the deficient and normal rainfall years are minimal. We have found that the occurrence of the <span class="hlt">lightning</span> over this region is primarily due to its topography and localised circulation. The warm-dry air approaching from north-west converges with moist air emanating from the Bay of Bengal causing instability that creates an environment for deep convective cloud and <span class="hlt">lightning</span>. The relationship between <span class="hlt">lightning</span> and aerosol is stronger over the north-west sector of IGP than the north-east, whereas it is moderate over the central IGP. We conclude that aerosol is playing a major role in <span class="hlt">lightning</span> <span class="hlt">activity</span> over the north-west sector of IGP, but, local meteorological conditions such as convergences of dry and moist air is the principal cause of <span class="hlt">lightning</span> over the north-east sector of IGP. In addition</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=The+AND+lightning&pg=2&id=EJ130237','ERIC'); return false;" href="https://eric.ed.gov/?q=The+AND+lightning&pg=2&id=EJ130237"><span>The <span class="hlt">Lightning</span> Discharge</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Orville, Richard E.</p> <p>1976-01-01</p> <p>Correspondence of Benjamin Franklin provides authenticity to a historical account of early work in the field of <span class="hlt">lightning</span>. Present-day theories concerning the formation and propagation of <span class="hlt">lightning</span> are expressed and photographic evidence provided. (CP)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023305','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023305"><span>Thunderstorm monitoring and <span class="hlt">lightning</span> warning, operational applications of the Safir system</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Richard, Philippe</p> <p>1991-01-01</p> <p>During the past years a new range of studies have been opened by the application of electromagnetic localization techniques to the field of thunderstorm remote sensing. VHF localization techniques were used in particular for the analysis of <span class="hlt">lightning</span> discharges and gave access to time resolved 3-D images of <span class="hlt">lightning</span> discharges within thunderclouds. Detection and localization techniques developed have been applied to the design of the SAFIR system. This development's main objective was the design of an operational system capable of assessing and warning in real time for <span class="hlt">lightning</span> hazards and potential thunderstorm hazards. The SAFIR system main detection technique is the long range interferometric localization of thunderstorm electromagnetic <span class="hlt">activity</span>; the system performs the localization of intracloud and cloud to ground <span class="hlt">lightning</span> discharges and the analysis of the characteristics of the <span class="hlt">activity</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2607583','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2607583"><span>Air traffic controller <span class="hlt">lightning</span> strike.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Spieth, M. E.; Kimura, R. L.; Schryer, T. D.</p> <p>1994-01-01</p> <p>Andersen Air Force Base in Guam boasts the tallest control tower in the Air Force. In 1986, an air traffic controller was struck by <span class="hlt">lightning</span> as the bolt proceeded through the tower. Although he received only a backache, the <span class="hlt">lightning</span> left a hole with surrounding scorch marks on his fatigue shirt and his undershirt. The <span class="hlt">lightning</span> strike also ignited a portion of the field lighting panel, which caused the runway lights to go out immediately. Lack of a <span class="hlt">lightning</span> rod is the most likely reason the controller was struck. Proper precautions against <span class="hlt">lightning</span> strikes can prevent such occupational safety hazards. PMID:7966436</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5036177','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5036177"><span>Measuring Method for <span class="hlt">Lightning</span> Channel Temperature</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.</p> <p>2016-01-01</p> <p>In this paper, we demonstrate the temperature of <span class="hlt">lightning</span> channel utilizing the theory of <span class="hlt">lightning</span> spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the <span class="hlt">lightning</span> discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated <span class="hlt">lightning</span> has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the <span class="hlt">lightning</span> current intensity in range of 5–50 kA. Based on the results, the temperature of the <span class="hlt">lightning</span> channel is derived to be 6140.8–10424 K. Moreover, the temperature of the channel is approximately exponential to the <span class="hlt">lightning</span> current intensity, which shows good agreement with that of the natural <span class="hlt">lightning</span> cases. PMID:27665937</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA12575.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA12575.html"><span>First <span class="hlt">Lightning</span> Flashes on Saturn</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-04-14</p> <p>NASA Cassini spacecraft captured the first <span class="hlt">lightning</span> flashes on Saturn. The storm that generated the <span class="hlt">lightning</span> lasted from January to October 2009, making it the longest-lasting <span class="hlt">lightning</span> storm known in the solar system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180001922','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180001922"><span>ENSO Related Interannual <span class="hlt">Lightning</span> Variability from the Full TRMM LIS <span class="hlt">Lightning</span> Climatology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clark, Austin; Cecil, Daniel J.</p> <p>2018-01-01</p> <p>It has been shown that the El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of <span class="hlt">lightning</span> production in the tropics and subtropics more than any other atmospheric oscillation. This study further investigated how ENSO phase affects <span class="hlt">lightning</span> production in the tropics and subtropics. Using the Tropical Rainfall Measuring Mission (TRMM) <span class="hlt">Lightning</span> Imaging Sensor (LIS) and the Oceanic Nino Index (ONI) for ENSO phase, <span class="hlt">lightning</span> data were averaged into corresponding mean annual warm, cold, and neutral 'years' for analysis of the different phases. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases. These processes were then studied for inter-annual variance and subsequent correlation to ENSO during the study period to best describe the observed <span class="hlt">lightning</span> deviations from year to year at each location.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..12213420L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..12213420L"><span>Three-Dimensional Reconstruction of Cloud-to-Ground <span class="hlt">Lightning</span> Using <span class="hlt">High</span>-Speed Video and VHF Broadband Interferometer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yun; Qiu, Shi; Shi, Lihua; Huang, Zhengyu; Wang, Tao; Duan, Yantao</p> <p>2017-12-01</p> <p>The time resolved three-dimensional (3-D) spatial reconstruction of <span class="hlt">lightning</span> channels using <span class="hlt">high</span>-speed video (HSV) images and VHF broadband interferometer (BITF) data is first presented in this paper. Because VHF and optical radiations in step formation process occur with time separation no more than 1 μs, the observation data of BITF and HSV at two different sites provide the possibility of reconstructing the time resolved 3-D channel of <span class="hlt">lightning</span>. With the proposed procedures for 3-D reconstruction of leader channels, dart leaders as well as stepped leaders with complex multiple branches can be well reconstructed. The differences between 2-D speeds and 3-D speeds of leader channels are analyzed by comparing the development of leader channels in 2-D and 3-D space. Since return stroke (RS) usually follows the path of previous leader channels, the 3-D speeds of the return strokes are first estimated by combination with the 3-D structure of the preceding leaders and HSV image sequences. For the fourth RS, the ratios of the 3-D to 2-D RS speeds increase with height, and the largest ratio of the 3-D to 2-D return stroke speeds can reach 2.03, which is larger than the result of triggered <span class="hlt">lightning</span> reported by Idone. Since BITF can detect <span class="hlt">lightning</span> radiation in a 360° view, correlated BITF and HSV observations increase the 3-D detection probability than dual-station HSV observations, which is helpful to obtain more events and deeper understanding of the <span class="hlt">lightning</span> process.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003618','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003618"><span>Using Flow Regime <span class="hlt">Lightning</span> and Sounding Climatologies to Initialize Gridded <span class="hlt">Lightning</span> Threat Forecasts for East Central Florida</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lambert, Winifred; Short, David; Wolkmer, Matthew; Sharp, David; Spratt, Scott</p> <p>2006-01-01</p> <p>Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) <span class="hlt">lightning</span> threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/<span class="hlt">lightning</span>.shtml) . Given the hazardous nature of <span class="hlt">lightning</span> in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of <span class="hlt">lightning</span>, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of <span class="hlt">lightning</span> occurrence and the expected amount of CG <span class="hlt">activity</span>. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative <span class="hlt">lightning</span> threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The <span class="hlt">lightning</span> threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season <span class="hlt">lightning</span> climatologies that could be used as first-guess inputs to initialize <span class="hlt">lightning</span> threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to improve consistency between forecasters while allowing them to focus on the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130012614','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130012614"><span>Using Flow Regime <span class="hlt">Lightning</span> and Sounding Climatologies to Initialize Gridded <span class="hlt">Lightning</span> Threat Forecasts for East Central Florida</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lambert, Winifred; Short, David; Volkmer, Matthew; Sharp, David; Spratt, Scott</p> <p>2007-01-01</p> <p>Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) <span class="hlt">lightning</span> threat index map for their county warning area (CWA) that is posted to their web site (httl://www.srh.weather.gov/mlb/ghwo/<span class="hlt">lightning</span>.shtml) . Given the hazardous nature of <span class="hlt">lightning</span> in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of <span class="hlt">lightning</span>, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of <span class="hlt">lightning</span> occurrence and the expected amount of CG <span class="hlt">activity</span>. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative <span class="hlt">lightning</span> threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The <span class="hlt">lightning</span> threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Until recently, the forecasters created each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season <span class="hlt">lightning</span> climatologies that could be used as first-guess inputs to initialize <span class="hlt">lightning</span> threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent was to improve consistency between forecasters while allowing them to focus on the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014RaSc...49..753O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014RaSc...49..753O"><span>Spatial distribution and temporal variations of occurrence frequency of <span class="hlt">lightning</span> whistlers observed by VLF/WBA onboard Akebono</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oike, Yuta; Kasahara, Yoshiya; Goto, Yoshitaka</p> <p>2014-09-01</p> <p>We statistically analyzed <span class="hlt">lightning</span> whistlers detected from the analog waveform data below 15 kHz observed by the VLF instruments onboard Akebono. We examined the large amount of data obtained at Uchinoura Space Center in Japan for 22 years from 1989 to 2010. The <span class="hlt">lightning</span> whistlers were mainly observed inside the L shell region below 2. Seasonal dependence of the occurrence frequency of <span class="hlt">lightning</span> whistlers has two peaks around July to August and December to January. As <span class="hlt">lightning</span> is most <span class="hlt">active</span> in summer, in general, these two peaks correspond to summer in the Northern and Southern Hemispheres, respectively. Diurnal variation of the occurrence frequency showed that <span class="hlt">lightning</span> whistlers begin to increase in the early evening and remain at a <span class="hlt">high</span>-occurrence level through the night with a peak around 21 in magnetic local time (MLT). This peak shifts toward nightside compared with <span class="hlt">lightning</span> <span class="hlt">activity</span>, which begins to rise around noon and peaks in the late afternoon. This trend is supposed to be caused by attenuation of VLF wave in the ionosphere in the daytime. Comparison study with the ground-based observation revealed consistent results, except that the peak of the ground-based observation appeared after midnight while our measurements obtained by Akebono was around 21 in MLT. This difference is explained qualitatively in terms that <span class="hlt">lightning</span> whistlers measured at the ground station passed through the ionosphere twice above both source region and the ground station. These facts provide an important clue to evaluate quantitatively the absorption effect of <span class="hlt">lightning</span> whistler in the ionosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123.2628V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123.2628V"><span>Optimizing Precipitation Thresholds for Best Correlation Between Dry <span class="hlt">Lightning</span> and Wildfires</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vant-Hull, Brian; Thompson, Tollisha; Koshak, William</p> <p>2018-03-01</p> <p>This work examines how to adjust the definition of "dry <span class="hlt">lightning</span>" in order to optimize the correlation between dry <span class="hlt">lightning</span> flash count and the climatology of large (>400 km2) <span class="hlt">lightning</span>-ignited wildfires over the contiguous United States (CONUS). The National <span class="hlt">Lightning</span> Detection Network™ and National Centers for Environmental Prediction Stage IV radar-based, gauge-adjusted precipitation data are used to form climatic data sets. For a 13 year analysis period over CONUS, a correlation of 0.88 is found between annual totals of wildfires and dry <span class="hlt">lightning</span>. This optimal correlation is found by defining dry <span class="hlt">lightning</span> as follows: on a 0.1° hourly grid, a precipitation threshold of no more than 0.3 mm may accumulate during any hour over a period of 3-4 days preceding the flash. Regional optimized definitions vary. When annual totals are analyzed as done here, no clear advantage is found by weighting positive polarity cloud-to-ground (+CG) <span class="hlt">lightning</span> differently than -CG <span class="hlt">lightning</span>. The <span class="hlt">high</span> variability of dry <span class="hlt">lightning</span> relative to the precipitation and <span class="hlt">lightning</span> from which it is derived suggests it would be an independent and useful climate indicator.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSMGP33A..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSMGP33A..07B"><span>Fulgurites: a rock magnetic study of mineralogical changes caused by <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Begnini, G. S.; Tohver, E.; Schmieder, M.</p> <p>2013-05-01</p> <p>Fulgurites are natural glass samples produced by <span class="hlt">lightning</span> strikes on rock or soil substrates. Instantaneous electrical discharges of 10-200 kA are typical, and the temperatures produced by <span class="hlt">lightning</span> strikes exceed 1700C, the melting temperature of quartz. Paleomagnetic observations of <span class="hlt">lightning</span> strikes typically include <span class="hlt">high</span> intensity remanent magnetizations with <span class="hlt">highly</span>-variable to random magnetic directions. Alternating field demagnetization is commonly used to remove the overprinting effects of <span class="hlt">Lightning</span> Induced Remanent Magnetization (LIRM), indicating low coercivities of the magnetic carriers. We conducted a rock magnetic analysis of 15 specimens of natural fulgurite from South Africa including hysteresis and thermoremanent heating and cooling experiments using a Variable Field Translational Balance. The analysed specimens demonstrate two distinct ranges of Curie temperature: 440-600C and 770-778C, suggesting the presence of both iron oxides (likely Fe-rich magnetite) and a reduced iron alloy, likely kamacite. <span class="hlt">High</span> temperature, <span class="hlt">highly</span> reduced assemblages have been reported from petrological observations of fulgurites. Our rock magnetic observations of a metallic iron phase in the fulgurite samples from a terrestrial, surficial environment demonstrates a mineralogical resemblance to differentiated, iron-rich meteorites. We suggest that LIRMs in <span class="hlt">lightning</span>-struck localities may include a chemical remagnetization associated with <span class="hlt">lightning</span>-induced electrolysis or reduction of iron oxides.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790010065','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790010065"><span>Space Shuttle <span class="hlt">Lightning</span> Protection</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Suiter, D. L.; Gadbois, R. D.; Blount, R. L.</p> <p>1979-01-01</p> <p>The technology for <span class="hlt">lightning</span> protection of even the most advanced spacecraft is available and can be applied through cost-effective hardware designs and design-verification techniques. In this paper, the evolution of the Space Shuttle <span class="hlt">Lightning</span> Protection Program is discussed, including the general types of protection, testing, and anlayses being performed to assess the <span class="hlt">lightning</span>-transient-damage susceptibility of solid-state electronics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/959070','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/959070"><span>Indirect <span class="hlt">Lightning</span> Safety Assessment Methodology</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ong, M M; Perkins, M P; Brown, C G</p> <p>2009-04-24</p> <p><span class="hlt">Lightning</span> is a safety hazard for <span class="hlt">high</span>-explosives (HE) and their detonators. In the However, the current flowing from the strike point through the rebar of the building The methodology for estimating the risk from indirect lighting effects will be presented. It has two parts: a method to determine the likelihood of a detonation given a <span class="hlt">lightning</span> strike, and an approach for estimating the likelihood of a strike. The results of these two parts produce an overall probability of a detonation. The probability calculations are complex for five reasons: (1) <span class="hlt">lightning</span> strikes are stochastic and relatively rare, (2) the quality ofmore » the Faraday cage varies from one facility to the next, (3) RF coupling is inherently a complex subject, (4) performance data for abnormally stressed detonators is scarce, and (5) the arc plasma physics is not well understood. Therefore, a rigorous mathematical analysis would be too complex. Instead, our methodology takes a more practical approach combining rigorous mathematical calculations where possible with empirical data when necessary. Where there is uncertainty, we compensate with conservative approximations. The goal is to determine a conservative estimate of the odds of a detonation. In Section 2, the methodology will be explained. This report will discuss topics at a <span class="hlt">high</span>-level. The reasons for selecting an approach will be justified. For those interested in technical details, references will be provided. In Section 3, a simple hypothetical example will be given to reinforce the concepts. While the methodology will touch on all the items shown in Figure 1, the focus of this report is the indirect effect, i.e., determining the odds of a detonation from given EM fields. Professor Martin Uman from the University of Florida has been characterizing and defining extreme <span class="hlt">lightning</span> strikes. Using Professor Uman's research, Dr. Kimball Merewether at Sandia National Laboratory in Albuquerque calculated the EM fields inside a Faraday</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMAE24A..07P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMAE24A..07P"><span>About the variations on <span class="hlt">lightning</span> <span class="hlt">activity</span> in Brazil from 1960s to 1990s based on thunderstorm days: preliminary results</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pinto, O.; Pinto, I. R.</p> <p>2009-12-01</p> <p>Thunder day frequencies (TD) have been collected throughout the world in a systematic way since the beginning of the twenty century, producing the longest <span class="hlt">lightning</span>-related data set available to investigate possible climatic changes in the global, tropical or, even, regional <span class="hlt">lightning</span> <span class="hlt">activity</span>. Such changes may be related to natural climate variations associated with many different large scale phenomena and/or to anthropogenic warming variations. The role of each component may be different at different spatial scales. In Brazil TD data have been recorded in many stations throughout the country. In this report, TD data from 1960s to 1990s in different stations in Brazil are analyzed looking for variations related to volcanic eruptions, El Niño Southern Oscillation (ENSO), tropical Atlantic sea-surface temperature (SST) anomaly, Pacific Decadal Oscillation (POD), solar irradiance and urban effects. The preliminary results are discussed in the context of their implications for future climatic changes in the <span class="hlt">lightning</span> <span class="hlt">activity</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec25-581.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec25-581.pdf"><span>14 CFR 25.581 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure <span class="hlt">Lightning</span> Protection § 25.581 <span class="hlt">Lightning</span> protection. (a) The airplane must be protected against catastrophic effects from <span class="hlt">lightning</span>. (b) For metallic... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false <span class="hlt">Lightning</span> protection. 25.581 Section 25.581...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title14-vol1/pdf/CFR-2014-title14-vol1-sec25-581.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title14-vol1/pdf/CFR-2014-title14-vol1-sec25-581.pdf"><span>14 CFR 25.581 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure <span class="hlt">Lightning</span> Protection § 25.581 <span class="hlt">Lightning</span> protection. (a) The airplane must be protected against catastrophic effects from <span class="hlt">lightning</span>. (b) For metallic... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false <span class="hlt">Lightning</span> protection. 25.581 Section 25.581...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol1/pdf/CFR-2013-title14-vol1-sec25-581.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol1/pdf/CFR-2013-title14-vol1-sec25-581.pdf"><span>14 CFR 25.581 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure <span class="hlt">Lightning</span> Protection § 25.581 <span class="hlt">Lightning</span> protection. (a) The airplane must be protected against catastrophic effects from <span class="hlt">lightning</span>. (b) For metallic... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false <span class="hlt">Lightning</span> protection. 25.581 Section 25.581...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol1/pdf/CFR-2012-title14-vol1-sec25-581.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol1/pdf/CFR-2012-title14-vol1-sec25-581.pdf"><span>14 CFR 25.581 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure <span class="hlt">Lightning</span> Protection § 25.581 <span class="hlt">Lightning</span> protection. (a) The airplane must be protected against catastrophic effects from <span class="hlt">lightning</span>. (b) For metallic... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false <span class="hlt">Lightning</span> protection. 25.581 Section 25.581...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130014258','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130014258"><span><span class="hlt">Lightning</span> NOx Statistics Derived by NASA <span class="hlt">Lightning</span> Nitrogen Oxides Model (LNOM) Data Analyses</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William; Peterson, Harold</p> <p>2013-01-01</p> <p>What is the LNOM? The NASA Marshall Space Flight Center (MSFC) <span class="hlt">Lightning</span> Nitrogen Oxides Model (LNOM) [Koshak et al., 2009, 2010, 2011; Koshak and Peterson 2011, 2013] analyzes VHF <span class="hlt">Lightning</span> Mapping Array (LMA) and National <span class="hlt">Lightning</span> Detection Network(TradeMark) (NLDN) data to estimate the <span class="hlt">lightning</span> nitrogen oxides (LNOx) produced by individual flashes. Figure 1 provides an overview of LNOM functionality. Benefits of LNOM: (1) Does away with unrealistic "vertical stick" <span class="hlt">lightning</span> channel models for estimating LNOx; (2) Uses ground-based VHF data that maps out the true channel in space and time to < 100 m accuracy; (3) Therefore, true channel segment height (ambient air density) is used to compute LNOx; (4) True channel length is used! (typically tens of kilometers since channel has many branches and "wiggles"); (5) Distinction between ground and cloud flashes are made; (6) For ground flashes, actual peak current from NLDN used to compute NOx from <span class="hlt">lightning</span> return stroke; (7) NOx computed for several other <span class="hlt">lightning</span> discharge processes (based on Cooray et al., 2009 theory): (a) Hot core of stepped leaders and dart leaders, (b) Corona sheath of stepped leader, (c) K-change, (d) Continuing Currents, and (e) M-components; and (8) LNOM statistics (see later) can be used to parameterize LNOx production for regional air quality models (like CMAQ), and for global chemical transport models (like GEOS-Chem).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820000305&hterms=thunderstorm+protection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dthunderstorm%2Bprotection','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820000305&hterms=thunderstorm+protection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dthunderstorm%2Bprotection"><span>The Design of <span class="hlt">Lightning</span> Protection</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1983-01-01</p> <p>Engineering study guides design and monitoring of <span class="hlt">lightning</span> protection. Design studies for project are collected in 150-page report, containing wealth of information on design of <span class="hlt">lightning</span> protection systems and on instrumentation for monitoring current waveforms of <span class="hlt">lightning</span> strokes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110004347','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110004347"><span>The Goes-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM): Algorithm and Instrument Status</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas</p> <p>2010-01-01</p> <p>The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total <span class="hlt">lightning</span> detection (cloud and cloud-to-ground flashes) from the Geostationary <span class="hlt">Lightning</span> Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total <span class="hlt">lightning</span> <span class="hlt">activity</span> (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado <span class="hlt">activity</span>, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. A joint field campaign with Brazilian researchers in 2010-2011 will produce concurrent observations from a VHF <span class="hlt">lightning</span> mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) <span class="hlt">Lightning</span> Imaging Sensor (LIS) overpasses, and related ground and in-situ <span class="hlt">lightning</span> and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23054785','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23054785"><span>The reciprocal relation between <span class="hlt">lightning</span> and pollution and their impact over Kolkata, India.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Middey, Anirban; Chaudhuri, Sutapa</p> <p>2013-05-01</p> <p>Aerosol loading in the atmosphere can cause increased <span class="hlt">lightning</span> flashes, and those <span class="hlt">lightning</span> flashes produce NOX , which reacts in sun light to produce surface ozone. The present study deals with the effect of surface pollutants on premonsoon (April-May) <span class="hlt">lightning</span> <span class="hlt">activity</span> over the station Kolkata (22.65° N, 88.45° E). Seven-year (2004-2010) premonsoon thunderstorms data are taken for the study. Different parameters like aerosol optical depth and cloud top temperature from the Moderate Resolution Imaging Spectroradiometer satellite products along with <span class="hlt">lightning</span> flash data from Tropical Rainfall Measuring Mission's (TRMM) <span class="hlt">Lightning</span> Imaging Sensor are analyzed. Some surface pollution parameters like suspended particulate matter, particulate matter 10, nitrogen oxides (NOX), and surface ozone (O₃) data during the same period are taken account for clear understanding of their association with <span class="hlt">lightning</span> <span class="hlt">activity</span>. Heights of convective condensation level and lifting condensation level are collected from radiosonde observations to anticipate about cloud base. It is found that increased surface pollution in a near storm environment is related to increased <span class="hlt">lightning</span> flash rate, which results in increased surface NOX and consequently increased surface ozone concentration over the station Kolkata.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27451005','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27451005"><span>Inducing Therapeutic Hypothermia in Cardiac Arrest Caused by <span class="hlt">Lightning</span> Strike.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scantling, Dane; Frank, Brian; Pontell, Mathew E; Medinilla, Sandra</p> <p>2016-09-01</p> <p>Only limited clinical scenarios are grounds for induction of therapeutic hypothermia. Its use in traumatic cardiac arrests, including those from <span class="hlt">lightning</span> strikes, is not well studied. Nonshockable cardiac arrest rhythms have only recently been included in resuscitation guidelines. We report a case of full neurological recovery with therapeutic hypothermia after a <span class="hlt">lightning</span>-induced pulseless electrical <span class="hlt">activity</span> cardiac arrest in an 18-year-old woman. We also review the important pathophysiology of <span class="hlt">lightning</span>-induced cardiac arrest and neurologic sequelae, elaborate upon the mechanism of therapeutic hypothermia, and add case-based evidence in favor of the use of targeted temperature management in <span class="hlt">lightning</span>-induced cardiac arrest. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090033091','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090033091"><span>Preliminary Development and Evaluation of <span class="hlt">Lightning</span> Jump Algorithms for the Real-Time Detection of Severe Weather</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.</p> <p>2009-01-01</p> <p>Previous studies have demonstrated that rapid increases in total <span class="hlt">lightning</span> <span class="hlt">activity</span> (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in <span class="hlt">lightning</span> <span class="hlt">activity</span> have been termed "<span class="hlt">lightning</span> jumps." Herein, we document a positive correlation between <span class="hlt">lightning</span> jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. A total of 107 thunderstorms were examined in this study, with 69 of the 107 thunderstorms falling into the category of non-severe, and 38 into the category of severe. From the dataset of 69 isolated non-severe thunderstorms, an average peak 1 minute flash rate of 10 flashes/min was determined. A variety of severe thunderstorm types were examined for this study including an MCS, MCV, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 non-severe, 38 severe) from the Tennessee Valley and Washington D.C tested 6 <span class="hlt">lightning</span> jump algorithm configurations (Gatlin, Gatlin 45, 2(sigma), 3(sigma), Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2(sigma) <span class="hlt">lightning</span> jump algorithm had a <span class="hlt">high</span> probability of detection (POD; 87%), a modest false alarm rate (FAR; 33%), and a solid Heidke Skill Score (HSS; 0.75). A second and more simplistic <span class="hlt">lightning</span> jump algorithm named the Threshold 8 <span class="hlt">lightning</span> jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 minutes and 20 minutes, respectively. The overall goal of this study is to advance the development of an operationally-applicable jump algorithm that can be used with either total <span class="hlt">lightning</span> observations made from the ground, or in the near future from space using the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JPhCS.301a2063B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JPhCS.301a2063B"><span><span class="hlt">Lightning</span> protection: challenges, solutions and questionable steps in the 21st century</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berta, István</p> <p>2011-06-01</p> <p>Besides the special primary <span class="hlt">lightning</span> protection of extremely <span class="hlt">high</span> towers, huge office and governmental buildings, large industrial plants and resident parks most of the challenges were connected to the secondary <span class="hlt">lightning</span> protection of sensitive devices in Information and Communication Technology. The 70 year history of Budapest School of <span class="hlt">Lightning</span> Protection plays an important role in the research and education of <span class="hlt">lightning</span> and development of <span class="hlt">lightning</span> protection. Among results and solutions the Rolling Sphere designing method (RS) and the Probability Modulated Attraction Space (PMAS) theory are detailed. As a new field Preventive <span class="hlt">Lightning</span> Protection (PLP) has been introduced. The PLP method means the use of special preventive actions only for the duration of the thunderstorm. Recently several non-conventional <span class="hlt">lightning</span> protection techniques have appeared as competitors of the air termination systems formed of conventional Franklin rods. The questionable steps, non-conventional <span class="hlt">lightning</span> protection systems reported in the literature are the radioactive <span class="hlt">lightning</span> rods, Early Streamer Emission (ESE) rods and Dissipation Arrays (sometimes called Charge Transfer Systems).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820019046','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820019046"><span>Correlation of satellite <span class="hlt">lightning</span> observations with ground-based <span class="hlt">lightning</span> experiments in Florida, Texas and Oklahoma</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Edgar, B. C.; Turman, B. N.</p> <p>1982-01-01</p> <p>Satellite observations of <span class="hlt">lightning</span> were correlated with ground-based measurements of <span class="hlt">lightning</span> from data bases obtained at three separate sites. The percentage of ground-based observations of <span class="hlt">lightning</span> that would be seen by an orbiting satellite was determined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E2840S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E2840S"><span>Aerosol indirect effects on <span class="hlt">lightning</span> in the generation of induced NOx and tropospheric ozone over an Indian urban metropolis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saha, Upal; Maitra, Animesh; Talukdar, Shamitaksha; Jana, Soumyajyoti</p> <p></p> <p><span class="hlt">Lightning</span> flashes, associated with vigorous convective <span class="hlt">activity</span>, is one of the most prominent weather phenomena in the tropical atmosphere. <span class="hlt">High</span> aerosol loading is indirectly associated with the increase in <span class="hlt">lightning</span> flash rates via the formation of tropospheric ozone during the pre-monsoon and monsoon over the tropics. Tropospheric ozone, an important greenhouse pollutant gas have impact on Earth’s radiation budget and play a key role in changing the atmospheric circulation patterns. <span class="hlt">Lightning</span>-induced NOx is a primary pollutant found in photochemical smog and an important precursor for the formation of tropospheric ozone. A critical analysis is done to study the indirect effects of <span class="hlt">high</span> aerosol loading on the formation of tropospheric ozone via <span class="hlt">lightning</span> flashes and induced NOx formation over an urban metropolitan location Kolkata (22°32'N, 88°20'E), India during the period 2001-2012. The seasonal variation of <span class="hlt">lightning</span> flash rates (LFR), taken from TRMM-LIS 2.5o x 2.5o gridded dataset, show that the LFR was observed to be intensified in the pre-monsoon (March-May) and <span class="hlt">high</span> in monsoon (June-September) months over the region. Aerosol Optical Depth (AOD) at 555nm, taken from MISR 0.5o x 0.5o gridded level-3 dataset, plays an indirect effect on the increase in LFR during the pre-monsoon and monsoon months and has positive correlations between them during these periods. This is also justified from the seasonal variation of the increase in LFR due to the increase in AOD over the region during 2001-2012. The calibrated GOME and OMI/AURA satellite data analysis shows that the tropospheric ozone, formed as a result of <span class="hlt">lightning</span>-induced NOx and due to the increased AOD at 555 nm, also increases during the pre-monsoon and monsoon months. The seasonal variation of <span class="hlt">lightning</span>-induced tropospheric NOx, taken from SCIAMACHY observations also justified the fact that the pre-monsoon and monsoon LFR solely responsible for the generation of induced NOx over the region. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA614923','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA614923"><span>Utilizing Four Dimensional <span class="hlt">Lightning</span> and Dual-Polarization Radar to Develop <span class="hlt">Lightning</span> Initiation Forecast Guidance</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-03-26</p> <p>Electrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 <span class="hlt">Lightning</span> Discharge ...charge is caused by falling graupel that is positively charged (Wallace and Hobbs 2006). 2.3 <span class="hlt">Lightning</span> Discharge <span class="hlt">Lightning</span> occurs when the electric...emission of positive corona from the surface of precipitation particles, causing the electric field to become locally enhanced and supporting the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E2856S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E2856S"><span>Electron density increases due to <span class="hlt">Lightning</span> <span class="hlt">activity</span> as deduced from LWPC code and VLF signal perturbations.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samir, Nait Amor; Bouderba, Yasmina</p> <p></p> <p>VLF signal perturbations in association with thunderstorm <span class="hlt">activity</span> appear as changes in the signal amplitude and phase. Several papers reported on the characteristics of thus perturbations and their connection to the <span class="hlt">lightning</span> strokes amplitude and polarity. In this contribution, we quantified the electrons density increases due to <span class="hlt">lightning</span> <span class="hlt">activity</span> by the use of the LWPC code and VLF signal perturbations parameters. The method is similar to what people did in studying the solar eruptions effect. the results showed that the reference height (h') decreased to lower altitudes (between 70 and 80 km). From the LWPC code results the maximum of the electron density was then deduced. Therefore, a numerical simulation of the atmospheric species times dependences was performed to study the recovery times of the electrons density at different heights. The results showed that the recovery time last for several minutes and explain the observation of long recovery Early signal perturbations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816829L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816829L"><span>First results of the Colombia <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>López, Jesus; Montanyà, Joan; van der Velde, Oscar; Romero, David; Fabró, Ferran; Taborda, John; Aranguren, Daniel; Torres, Horacio</p> <p>2016-04-01</p> <p>In April 2015 the 3D <span class="hlt">Lightning</span> Mapping Array (COLMA) network was installed on Santa Marta area (north of Colombia). The COLMA maps VHF radio emissions of <span class="hlt">lightning</span> leaders in three dimensions by the time-of-arrival technique (Rison et al., 1999). This array has six sensors with base lines between 5 km to 20 km. The COLMA is the first VHF 3D network operating in the tropics and it has been installed in the frame of ASIM (Atmosphere-Space Interactions Monitor) ESA's mission in order to investigate the electrical characteristics of tropical thunderstorms favorable for the production of Terrestrial Gamma ray Flashes (TGF). In this paper we present COLMA data of several storms. We discuss <span class="hlt">lightning</span> <span class="hlt">activity</span>, <span class="hlt">lightning</span> leader altitudes and thunderstorm charge structures compared to data form our ELMA (Ebro <span class="hlt">Lightning</span> Mapping Array) at the north-east coast of Spain. The data confirm what we expected, <span class="hlt">lightning</span> leaders can propagate at higher altitudes compared to mid latitude thunderstorms because the higher vertical development of tropical thunderstorms. A simple inspection of a ten minute period of the 16th of November of 2015 storm shows a tripolar electric charge structure. In that case, the midlevel negative charge region was located between 7 to 9 km. The structure presented a lower positive charge below the midlevel negative and centred at 6.5 km and an upper positive charge region extending from 9 km to slightly more than 15 km. This vertical extension of the upper positive charge where negative leaders evolve is significantly larger compared to the storms at the ELMA area in Spain. COLMA has shown frequent <span class="hlt">activity</span> of negative leaders reaching altitudes of more than 15 km.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJWC.16201065U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJWC.16201065U"><span>Laboratory demonstration of <span class="hlt">lightning</span> strike pattern on different roof tops installed with Franklin Rods</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ullah, Irshad; Baharom, MNR; Ahmed, H.; Luqman, HM.; Zainal, Zainab</p> <p>2017-11-01</p> <p>Protection against <span class="hlt">lightning</span> is always a challenging job for the researcher. The consequences due to <span class="hlt">lightning</span> on different building shapes needs a comprehensive knowledge in order to provide the information to the common man. This paper is mainly concern with <span class="hlt">lightning</span> pattern when it strikes on the building with different shape. The work is based on the practical experimental work in <span class="hlt">high</span> voltage laboratory. Different shapes of the scaled structures have been selected in order to investigate the equal distribution of <span class="hlt">lightning</span> voltage. The equal distribution of <span class="hlt">lightning</span> voltage will provide the maximum probability of <span class="hlt">lightning</span> strike on air terminal of the selected shapes. Building shapes have a very important role in <span class="hlt">lightning</span> protection. The shapes of the roof tops have different geometry and the Franklin rod installation is also varies with changing the shape of the roof top. According to the ambient weather condition of Malaysia <span class="hlt">high</span> voltage impulse is applied on the <span class="hlt">lightning</span> rod installed on different geometrical shape. The equal distribution of <span class="hlt">high</span> voltage impulse is obtained as the geometry of the scaled structure is identical and the air gap for all the tested object is kept the same. This equal distribution of the <span class="hlt">lightning</span> voltage also proves that the probability of <span class="hlt">lightning</span> strike is on the corner and the edges of the building structure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990009077','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990009077"><span><span class="hlt">Lightning</span> Characteristics and <span class="hlt">Lightning</span> Strike Peak Current Probabilities as Related to Aerospace Vehicle Operations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, Dale L.; Vaughan, William W.</p> <p>1998-01-01</p> <p>A summary is presented of basic <span class="hlt">lightning</span> characteristics/criteria for current and future NASA aerospace vehicles. The paper estimates the probability of occurrence of a 200 kA peak <span class="hlt">lightning</span> return current, should <span class="hlt">lightning</span> strike an aerospace vehicle in various operational phases, i.e., roll-out, on-pad, launch, reenter/land, and return-to-launch site. A literature search was conducted for previous work concerning occurrence and measurement of peak lighting currents, modeling, and estimating probabilities of launch vehicles/objects being struck by <span class="hlt">lightning</span>. This paper presents these results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180001961','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180001961"><span>ENSO Related Inter-Annual <span class="hlt">Lightning</span> Variability from the Full TRMM LIS <span class="hlt">Lightning</span> Climatology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clark, Austin; Cecil, Daniel</p> <p>2018-01-01</p> <p>The El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of <span class="hlt">lightning</span> production more than any other atmospheric oscillation. This study further investigated how ENSO phase affects <span class="hlt">lightning</span> production in the tropics and subtropics using the Tropical Rainfall Measuring Mission (TRMM) <span class="hlt">Lightning</span> Imaging Sensor (LIS). <span class="hlt">Lightning</span> data were averaged into mean annual warm, cold, and neutral 'years' for analysis of the different phases and compared to model reanalysis data. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900007374','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900007374"><span>Rocket-triggered <span class="hlt">lightning</span> strikes and forest fire ignition</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fenner, James H.</p> <p>1989-01-01</p> <p>Background information on the rocket-triggered <span class="hlt">lightning</span> project at Kennedy Space Center (KSC), a summary of the forecasting problem there, the facilities and equipment available for undertaking field experiments at KSC, previous research <span class="hlt">activity</span> performed, a description of the atmospheric science field laboratory near Mosquito Lagoon on the KSC complex, methods of data acquisition, and present results are discussed. New sources of data for the 1989 field experiment include measuring the electric field in the lower few thousand feet of the atmosphere by suspending field measuring devices below a tethered balloon. Problems encountered during the 1989 field experiment are discussed. Future prospects for both triggered <span class="hlt">lightning</span> and <span class="hlt">lightning</span>-kindled forest fire research at KSC are listed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012IJTPE.132..102S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012IJTPE.132..102S"><span>Seasonal and Local Characteristics of <span class="hlt">Lightning</span> Outages of Power Distribution Lines in Hokuriku Area</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sugimoto, Hitoshi; Shimasaki, Katsuhiko</p> <p></p> <p>The proportion of the <span class="hlt">lightning</span> outages in all outages on Japanese 6.6kV distribution lines is <span class="hlt">high</span> with approximately 20 percent, and then <span class="hlt">lightning</span> protections are very important for supply reliability of 6.6kV lines. It is effective for the <span class="hlt">lightning</span> performance to apply countermeasures in order of the area where a large number of the <span class="hlt">lightning</span> outages occur. Winter <span class="hlt">lightning</span> occurs in Hokuriku area, therefore it is also important to understand the seasonal characteristics of the <span class="hlt">lightning</span> outages. In summer 70 percent of the <span class="hlt">lightning</span> outages on distribution lines in Hokuriku area were due to sparkover, such as power wire breakings and failures of pole-mounted transformers. However, in winter almost half of <span class="hlt">lightning</span>-damaged equipments were surge arrester failures. The number of the <span class="hlt">lightning</span> outages per <span class="hlt">lightning</span> strokes detected by the <span class="hlt">lightning</span> location system (LLS) in winter was 4.4 times larger than that in summer. The authors have presumed the occurrence of <span class="hlt">lightning</span> outages from <span class="hlt">lightning</span> stroke density, 50% value of <span class="hlt">lightning</span> current and installation rate of <span class="hlt">lightning</span> protection equipments and overhead ground wire by multiple regression analysis. The presumed results suggest the local difference in the <span class="hlt">lightning</span> outages.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3351789','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3351789"><span>Brain electromagnetic <span class="hlt">activity</span> and <span class="hlt">lightning</span>: potentially congruent scale-invariant quantitative properties</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Persinger, Michael A.</p> <p>2012-01-01</p> <p>The space-time characteristics of the axonal action potential are remarkably similar to the scaled equivalents of <span class="hlt">lightning</span>. The energy and current densities from these transients within their respective volumes or cross-sectional areas are the same order of magnitude. Length–velocity ratios and temporal durations are nearly identical. There are similar chemical consequences such as the production of nitric oxide. Careful, quantitative examination of the characteristics of <span class="hlt">lightning</span> may reveal analogous features of the action potential that could lead to a more accurate understanding of these powerful correlates of neurocognitive processes. PMID:22615688</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT.......302K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT.......302K"><span><span class="hlt">Lightning</span> Strike Induced Damage Mechanisms of Carbon Fiber Composites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kawakami, Hirohide</p> <p></p> <p>Composite materials have a wide application in aerospace, automotive, and other transportation industries, because of the superior structural and weight performances. Since carbon fiber reinforced polymer composites possess a much lower electrical conductivity as compared to traditional metallic materials utilized for aircraft structures, serious concern about damage resistance/tolerance against <span class="hlt">lightning</span> has been rising. Main task of this study is to clarify the <span class="hlt">lightning</span> damage mechanism of carbon fiber reinforced epoxy polymer composites to help further development of <span class="hlt">lightning</span> strike protection. The research on <span class="hlt">lightning</span> damage to carbon fiber reinforced polymer composites is quite challenging, and there has been little study available until now. In order to tackle this issue, building block approach was employed. The research was started with the development of supporting technologies such as a current impulse generator to simulate a <span class="hlt">lightning</span> strike in a laboratory. Then, fundamental electrical properties and fracture behavior of CFRPs exposed to <span class="hlt">high</span> and low level current impulse were investigated using simple coupon specimens, followed by extensive parametric investigations in terms of different prepreg materials frequently used in aerospace industry, various stacking sequences, different <span class="hlt">lightning</span> intensity, and <span class="hlt">lightning</span> current waveforms. It revealed that the thermal resistance capability of polymer matrix was one of the most influential parameters on <span class="hlt">lightning</span> damage resistance of CFRPs. Based on the experimental findings, the semi-empirical analysis model for predicting the extent of <span class="hlt">lightning</span> damage was established. The model was fitted through experimental data to determine empirical parameters and, then, showed a good capability to provide reliable predictions for other test conditions and materials. Finally, structural element level <span class="hlt">lightning</span> tests were performed to explore more practical situations. Specifically, filled-hole CFRP plates and patch</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29073666','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29073666"><span>Trigeminal Neuralgia Following <span class="hlt">Lightning</span> Injury.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>López Chiriboga, Alfonso S; Cheshire, William P</p> <p>2017-01-01</p> <p><span class="hlt">Lightning</span> and other electrical incidents are responsible for more than 300 injuries and 100 deaths per year in the United States alone. <span class="hlt">Lightning</span> strikes can cause a wide spectrum of neurologic manifestations affecting any part of the neuraxis through direct strikes, side flashes, touch voltage, connecting leaders, or acoustic shock waves. This article describes the first case of trigeminal neuralgia induced by <span class="hlt">lightning</span> injury to the trigeminal nerve, thereby adding a new syndrome to the list of possible <span class="hlt">lightning</span>-mediated neurologic injuries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V11E..05V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V11E..05V"><span>Electrification processes and <span class="hlt">lightning</span> generation in volcanic plumes—observations from recent eruptions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Eaton, A. R.; Smith, C. M.; Schneider, D. J.</p> <p>2017-12-01</p> <p><span class="hlt">Lightning</span> in volcanic plumes provides a promising way to monitor ash-producing eruptions and investigate their dynamics. Among the many methods of <span class="hlt">lightning</span> detection are global networks of sensors that detect electromagnetic radiation in the very low frequency band (3-30 kHz), including the World Wide <span class="hlt">Lightning</span> Location Network. These radio waves propagate thousands of kilometers at the speed of light, providing an opportunity for rapid detection of explosive volcanism anywhere in the world. <span class="hlt">Lightning</span> is particularly valuable as a near real-time indicator of ash-rich plumes that are hazardous to aviation. Yet many fundamental questions remain. Under what conditions does electrical <span class="hlt">activity</span> in volcanic plumes become powerful, detectable <span class="hlt">lightning</span>? And conversely, can we use <span class="hlt">lightning</span> to illuminate eruption processes and hazards? This study highlights recent observations from the eruptions of Redoubt (Alaska, 2009), Kelud (Indonesia, 2014), Calbuco (Chile, 2015), and Bogoslof (Alaska, 2017) to examine volcanic lighting from a range of eruption styles (Surtseyan to Plinian) and mass eruption rates from 10^5 to 10^8 kg/s. It is clear that <span class="hlt">lightning</span> stroke-rates do not scale in a simple way with mass eruption rate or plume height across different eruptions. However, relative changes in electrical <span class="hlt">activity</span> through individual eruptions relate to changes in eruptive intensity, ice content, and volcanic plume processes (fall vs. flow).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IJTPE.131..481M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IJTPE.131..481M"><span><span class="hlt">Lightning</span> Overvoltage on Low-Voltage Distribution System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michishita, Koji</p> <p></p> <p>The portion of the faults of a medium-voltage line, cause by <span class="hlt">lightning</span>, tends to increase with often reaching beyond 30%. However, due to the recent progress of the <span class="hlt">lightning</span> protection design, the number of faults has decreased to 1/3 of that at 30 years ago. As for the low-voltage distribution line, the fault rate has been estimated primarily, although the details of the overvoltages have not been studied yet. For the further development of <span class="hlt">highly</span> information-oriented society, improvement of reliability of electric power supply to the appliance in a low-voltage customer will be socially expected. Therefore, it is important to establish effective <span class="hlt">lightning</span> protection design of the low-voltage distribution system, defined to be composed of lines having mutual interaction on the customers' electric circuits, such as a low-voltage distribution line, an antenna line and a telecommunication line. In this report, the author interprets the recent research on the <span class="hlt">lightning</span> overvoltage on a low-voltage distribution system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMAE23B0319R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMAE23B0319R"><span>The Colorado <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rison, W.; Krehbiel, P. R.; Thomas, R. J.; Rodeheffer, D.; Fuchs, B.</p> <p>2012-12-01</p> <p>A fifteen station <span class="hlt">Lightning</span> Mapping Array (LMA) was installed in northern Colorado in the spring of 2012. While the driving force for the array was to produce 3-dimensional <span class="hlt">lightning</span> data to support the Deep Convective Clouds and Chemistry (DC3) Experiment (Barth, this conference), data from the array are being used for several other projects. These include: electrification studies in conjunction with the CSU CHILL radar (Lang et al, this conference); observations of the parent <span class="hlt">lightning</span> discharges of sprites (Lyons et al, this conference); trying to detect upward discharges triggered by wind turbines, characterizing conditions in which aircraft flying through clouds produce discharges which can be detected by the LMA, and other opportunities, such as observations of <span class="hlt">lightning</span> in pyrocumulus clouds produced by the <span class="hlt">High</span> Park Fire west of Fort Collins, CO. All the COLMA stations are solar-powered, and use broadband cellular modems for data communications. This makes the stations completely self-contained and autonomous, allowing a station to be installed anywhere a cellular signal is available. Because most of the stations were installed well away from anthropogenic noise sources, the COLMA is very sensitive. This is evidenced by the numerous plane tracks detected in its the vicinity. The diameter, D, of the COLMA is about 100 km, significantly larger than other LMAs. Because the error in the radial distance r is proportional to (r/D)2, and the error in the altitude z is proportional to (z/D)2, the larger array diameter greatly expands the usable range of the COLMA. The COLMA is able to detect and characterize lighting flashes to a distance of about 350 km from the array center. In addition to a web-based display (<span class="hlt">lightning</span>.nmt.edu/colma), geo-referenced images are produced and updated at one-minute intervals. These geo-referenced images can be used to overlay the real-time <span class="hlt">lightning</span> data on Google Earth and other mapping software. These displays were used by the DC3</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20817399','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20817399"><span>Industrial accidents triggered by <span class="hlt">lightning</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Renni, Elisabetta; Krausmann, Elisabeth; Cozzani, Valerio</p> <p>2010-12-15</p> <p>Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. <span class="hlt">Lightning</span> strikes are the most frequent cause of major accidents triggered by natural events. In order to contribute towards the development of a quantitative approach for assessing <span class="hlt">lightning</span> risk at industrial facilities, <span class="hlt">lightning</span>-triggered accident case histories were retrieved from the major industrial accident databases and analysed to extract information on types of vulnerable equipment, failure dynamics and damage states, as well as on the final consequences of the event. The most vulnerable category of equipment is storage tanks. <span class="hlt">Lightning</span> damage is incurred by immediate ignition, electrical and electronic systems failure or structural damage with subsequent release. Toxic releases and tank fires tend to be the most common scenarios associated with <span class="hlt">lightning</span> strikes. Oil, diesel and gasoline are the substances most frequently released during <span class="hlt">lightning</span>-triggered Natech accidents. Copyright © 2010 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983RvGSP..21..892W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983RvGSP..21..892W"><span>Planetary <span class="hlt">lightning</span> - Earth, Jupiter, and Venus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, M. A.; Krider, E. P.; Hunten, D. M.</p> <p>1983-05-01</p> <p>The principal characteristics of <span class="hlt">lightning</span> on earth are reviewed, and the evidence for <span class="hlt">lightning</span> on Venus and Jupiter is examined. The mechanisms believed to be important to the electrification of terrestrial clouds are reviewed, with attention given to the applicability of some of these mechanisms to the atmospheres of Venus and Jupiter. The consequences of the existence of <span class="hlt">lightning</span> on Venus and Jupiter for their atmospheres and for theories of cloud electrification on earth are also considered. Since spacecraft observations do not conclusively show that <span class="hlt">lightning</span> does occur on Venus, it is suggested that alternative explanations for the experimental results be explored. Since Jupiter has no true surface, the Jovian <span class="hlt">lightning</span> flashes are cloud dischargaes. Observations suggest that Jovian <span class="hlt">lightning</span> emits, on average, 10 to the 10 J of optical energy per flash, whereas on earth <span class="hlt">lightning</span> radiates only about 10 to the 6th J per flash. Estimates of the average planetary <span class="hlt">lightning</span> rate on Jupiter range from 0.003 per sq km per yr to 40 per sq km per yr.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMAE33A0339B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMAE33A0339B"><span>Characteristics of VLF/LF Sferics from Elve-producing <span class="hlt">Lightning</span> Discharges</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blaes, P.; Zoghzoghy, F. G.; Marshall, R. A.</p> <p>2013-12-01</p> <p><span class="hlt">Lightning</span> return strokes radiate an electromagnetic pulse (EMP) which interacts with the D-region ionosphere; the largest EMPs produce new ionization, heating, and optical emissions known as elves. Elves are at least six times more common than sprites and other transient luminous events. Though the probability that a <span class="hlt">lightning</span> return stroke will produce an elve is correlated with the return stroke peak current, many large peak current strokes do not produce visible elves. Apart from the <span class="hlt">lightning</span> peak current, elve production may depend on the return stroke speed, <span class="hlt">lightning</span> altitude, and ionospheric conditions. In this work we investigate the detailed structure of <span class="hlt">lightning</span> that gives rise to elves by analyzing the characteristics of VLF/LF <span class="hlt">lightning</span> sferics in conjunction with optical elve observations. <span class="hlt">Lightning</span> sferics were observed using an array of six VLF/LF receivers (1 MHz sample-rate) in Oklahoma, and elves were observed using two <span class="hlt">high</span>-speed photometers pointed over the Oklahoma region: one located at Langmuir Laboratory, NM and the other at McDonald Observatory, TX. Hundreds of elves with coincident LF sferics were observed during the summer months of 2013. We present data comparing the characteristics of elve-producing and non-elve producing <span class="hlt">lightning</span> as measured by LF sferics. In addition, we compare these sferic and elve observations with FDTD simulations to determine key properties of elve-producing <span class="hlt">lightning</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790022698','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790022698"><span>Proceedings: Workshop on the Need for <span class="hlt">Lightning</span> Observations from Space</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Christensen, L. S. (Editor); Frost, W. (Editor); Vaughan, W. W. (Editor)</p> <p>1979-01-01</p> <p>The results of the Workshop on the Need for <span class="hlt">Lightning</span> Observations from Space held February 13-15, 1979, at the University of Tennessee Space Institute, Tullahoma, Tennessee are presented. The interest and <span class="hlt">active</span> involvement by the engineering, operational, and scientific participants in the workshop demonstrated that <span class="hlt">lightning</span> observations from space is a goal well worth pursuing. The unique contributions, measurement requirements, and supportive research investigations were defined for a number of important applications. <span class="hlt">Lightning</span> has a significant role in atmospheric processes and needs to be systematically investigated. Satellite instrumentation specifically designed for indicating the characteristics of <span class="hlt">lightning</span> are of value in severe storms research, in engineering and operational problem areas, and in providing information on atmospheric electricity and its role in meteorological processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920000497&hterms=faraday&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfaraday','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920000497&hterms=faraday&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfaraday"><span>Faraday Cage Protects Against <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jafferis, W.; Hasbrouck, R. T.; Johnson, J. P.</p> <p>1992-01-01</p> <p>Faraday cage protects electronic and electronically actuated equipment from <span class="hlt">lightning</span>. Follows standard <span class="hlt">lightning</span>-protection principles. Whether <span class="hlt">lightning</span> strikes cage or cables running to equipment, current canceled or minimized in equipment and discharged into ground. Applicable to protection of scientific instruments, computers, radio transmitters and receivers, and power-switching equipment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850008037&hterms=cookbook&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcookbook','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850008037&hterms=cookbook&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcookbook"><span><span class="hlt">Lightning</span> research: A user's lament</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Golub, C. N.</p> <p>1984-01-01</p> <p>As a user of devices and procedures for <span class="hlt">lightning</span> protection, the author is asking the <span class="hlt">lightning</span> research community for cookbook recipes to help him solve his problems. He is lamenting that realistic devices are scarce and that his mission does not allow him the time nor the wherewithal to bridge the gap between research and applications. A few case histories are presented. In return for their help he is offering researchers a key to <span class="hlt">lightning</span> technology--the use of the Eastern Test Range and its extensive resources as a proving ground for their experiment in the <span class="hlt">lightning</span> capital of the United States. A current example is given--a joint <span class="hlt">lightning</span> characterization project to take place there. Typical resources are listed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21143289-approach-lightning-overvoltage-protection-medium-voltage-lines-severe-lightning-areas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21143289-approach-lightning-overvoltage-protection-medium-voltage-lines-severe-lightning-areas"><span>An Approach to the <span class="hlt">Lightning</span> Overvoltage Protection of Medium Voltage Lines in Severe <span class="hlt">Lightning</span> Areas</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Omidiora, M. A.; Lehtonen, M.</p> <p>2008-05-08</p> <p>This paper deals with the effect of shield wires on <span class="hlt">lightning</span> overvoltage reduction and the energy relief of MOV (Metal Oxide Varistor) arresters from direct strokes to distribution lines. The subject of discussion is the enhancement of <span class="hlt">lightning</span> protection in Finnish distribution networks where <span class="hlt">lightning</span> is most severe. The true index of <span class="hlt">lightning</span> severity in these areas is based on the ground flash densities and return stroke data collected from the Finnish meteorological institute. The presented test case is the IEEE 34-node test feeder injected with multiple <span class="hlt">lightning</span> strokes and simulated with the Alternative Transients Program/Electromagnetic Transients program (ATP/EMTP). Themore » response of the distribution line to <span class="hlt">lightning</span> strokes was modeled with three different cases: no protection, protection with surge arresters and protection with a combination of shield wire and arresters. Simulations were made to compare the resulting overvoltages on the line for all the analyzed cases.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25466573','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25466573"><span><span class="hlt">Lightning</span> related fatalities in livestock: veterinary expertise and the added value of <span class="hlt">lightning</span> location data.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vanneste, E; Weyens, P; Poelman, D R; Chiers, K; Deprez, P; Pardon, B</p> <p>2015-01-01</p> <p>Although <span class="hlt">lightning</span> strike is an important cause of sudden death in livestock on pasture and among the main reasons why insurance companies consult an expert veterinarian, scientific information on this subject is limited. The aim of the present study was to provide objective information on the circumstantial evidence and pathological findings in <span class="hlt">lightning</span> related fatalities (LRF), based on a retrospective analysis of 410 declarations, examined by a single expert veterinarian in Flanders, Belgium, from 1998 to 2012. Predictive logistic models for compatibility with LRF were constructed based on anamnestic, environmental and pathological factors. In addition, the added value of <span class="hlt">lightning</span> location data (LLD) was evaluated. Pathognomonic singe lesions were present in 84/194 (43%) confirmed reports. Factors which remained significantly associated with LRF in the multivariable model were age, presence of a tree or open water in the near surroundings, tympany and presence of feed in the oral cavity at the time of investigation. This basic model had a sensitivity (Se) of 53.8% and a specificity (Sp) of 88.2%. Relying only on LLD to confirm LRF in livestock resulted in a <span class="hlt">high</span> Se (91.3%), but a low Sp (41.2%), leading to a <span class="hlt">high</span> probability that a negative case would be wrongly accepted as an LRF. The best results were obtained when combining the model based on the veterinary expert investigation (circumstantial evidence and pathological findings), together with the detection of cloud-to-ground (CG) <span class="hlt">lightning</span> at the time and location of death (Se 89.1%; Sp 66.7%). Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23173444','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23173444"><span>[Relationships of forest fire with <span class="hlt">lightning</span> in Daxing' anling Mountains, Northeast China].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lei, Xiao-Li; Zhou, Guang-Sheng; Jia, Bing-Rui; Li, Shuai</p> <p>2012-07-01</p> <p>Forest fire is an important factor affecting forest ecosystem succession. Recently, forest fire, especially forest <span class="hlt">lightning</span> fire, shows an increasing trend under global warming. To study the relationships of forest fire with <span class="hlt">lightning</span> is essential to accurately predict the forest fire in time. Daxing' anling Mountains is a region with <span class="hlt">high</span> frequency of forest <span class="hlt">lightning</span> fire in China, and an important experiment site to study the relationships of forest fire with <span class="hlt">lightning</span>. Based on the forest fire records and the corresponding <span class="hlt">lightning</span> and meteorological observation data in the Mountains from 1966 to 2007, this paper analyzed the relationships of forest fire with <span class="hlt">lightning</span> in this region. In the period of 1966-2007, both the <span class="hlt">lightning</span> fire number and the fired forest area in this region increased significantly. The meteorological factors affecting the forest lighting fire were related to temporal scales. At yearly scale, the forest <span class="hlt">lightning</span> fire was significantly correlated with precipitation, with a correlation coefficient of -0.489; at monthly scale, it had a significant correlation with air temperature, the correlation coefficient being 0.18. The relationship of the forest <span class="hlt">lightning</span> fire with <span class="hlt">lightning</span> was also related to temporal scales. At yearly scale, there was no significant correlation between them; at monthly scale, the forest <span class="hlt">lightning</span> fire was strongly correlated with <span class="hlt">lightning</span> and affected by precipitation; at daily scale, a positive correlation was observed between forest <span class="hlt">lightning</span> fire and <span class="hlt">lightning</span> when the precipitation was less than 5 mm. According to these findings, a fire danger index based on ADTD <span class="hlt">lightning</span> detection data was established, and a forest <span class="hlt">lightning</span> fire forecast model was developed. The prediction accuracy of this model for the forest <span class="hlt">lightning</span> fire in Daxing' anling Mountains in 2005-2007 was > 80%.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800013441','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800013441"><span><span class="hlt">Lightning</span> Technology: Proceedings of a Technical Symposium</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1980-01-01</p> <p>Several facets of <span class="hlt">lightning</span> technology are considered including phenomenology, measurement, detection, protection, interaction, and testing. <span class="hlt">Lightning</span> electromagnetics, protection of ground systems, and simulated <span class="hlt">lightning</span> testing are emphasized. The <span class="hlt">lightning</span>-instrumented F-106 aircraft is described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmRe.178..304S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmRe.178..304S"><span><span class="hlt">Lightning</span> climatology in the Congo Basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soula, S.; Kasereka, J. Kigotsi; Georgis, J. F.; Barthe, C.</p> <p>2016-09-01</p> <p>The <span class="hlt">lightning</span> climatology of the Congo Basin including several countries of Central Africa is analysed in detail for the first time. It is based on data from the World Wide <span class="hlt">Lightning</span> Location Network (WWLLN), for the period from 2005 to 2013. A comparison of these data with <span class="hlt">Lightning</span> Imaging Sensor (LIS) data for the same period shows the relative detection efficiency of the WWLLN (DE) in the 2500 km × 2500 km region increases from about 1.70% in the beginning of the period to 5.90% in 2013, and it is in agreement with previous results for other regions of the world. However, the increase of DE is not uniform over the whole region. The average monthly flash rate describes an annual cycle with a strong <span class="hlt">activity</span> from October to March and a low one from June to August, associated with the ITCZ migration but not exactly symmetrical on both sides of the equator. The zonal distribution of the <span class="hlt">lightning</span> flashes exhibits a maximum between 1°S and 2°S and about 56% of the flashes are located south of the equator in the 10°S-10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year. The annual flash density and number of stormy days show a sharp maximum localized in the eastern part of Democratic Republic of Congo (DRC) regardless of the reference year and the period of the year. These maxima reach 12.86 fl km- 2 and 189 days, respectively, in 2013, and correspond to a very <span class="hlt">active</span> region located at the rear of the Virunga mountain range at altitudes that exceed 3000 m. The presence of these mountains plays a role in the thunderstorm development along the year. The estimation of this local maximum of the <span class="hlt">lightning</span> density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMAE12A..04Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMAE12A..04Y"><span>Development of Tactical <span class="hlt">Lightning</span> Avoidance Product for Terminal Weather Support</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoshikawa, E.; Yoshida, S.; Adachi, T.; Kusunoki, K.; Ushio, T.</p> <p>2015-12-01</p> <p>Aircraft initiated or intercepted <span class="hlt">lightning</span> is one of significant issues for civilian flight operation in Japan. It is much less possible than the past that <span class="hlt">lightning</span> strikes cause fatal aircraft accidents thanks to both of certifications of aircraft design for <span class="hlt">lightning</span> strikes and many of weather supports for aircraft operation. However, hundreds of <span class="hlt">lightning</span> strikes to aircrafts have still been reported in each recent year in Japan, and airlines have been forced to delay or cancel most of those flights and to cost several hundred millions of yen for repair. Especially, <span class="hlt">lightning</span> discharges during winter in the coastal area of the Sea of Japan frequently cause heavy damages on aircrafts due to their large charge transfer. It is important in actual aircraft operation that observed meteorological parameters are converted to decision-making information. Otherwise, pilots, controllers, or operators need to learn meteorology as much as weather experts, and to owe hard work load to interpret observed meteorological data to their risk. Ideally, it is desired to automatically provide them with predicted operation risk, for example, delay time, possibility of flight cancellation, and repair cost caused by <span class="hlt">lightning</span>.Our research group has just started development of tactical <span class="hlt">lightning</span> avoidance product, where a risk index of an aircraft operation due to <span class="hlt">lightning</span> is calculated mainly from three novel observation devices: The phased array weather radar has potential to detect thunderstorms in their early stage due to the <span class="hlt">high</span> volume scan rate of 10 - 30 sec. A <span class="hlt">lightning</span> mapping system, such as Broadband Observation network for <span class="hlt">Lightning</span> and Thunderstorm, indicates electrical structure inside clouds in concert with a co-located radar data. Aircraft sounding and real-time data downlink, especially <span class="hlt">high</span>-frequency data provided by Secondary Surveillance Radar mode S, gives in-situ measurements of wind and temperature. Especially the in-situ temperature data can indicate</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002874','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002874"><span>Global <span class="hlt">Lightning</span> Climatology from the Tropical Rainfall Measuring Mission (TRMM), <span class="hlt">Lightning</span> Imaging Sensor (LIS) and the Optical Transient Detector (OTD)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.</p> <p>2015-01-01</p> <p>The Tropical Rainfall Measuring Mission (TRMM) <span class="hlt">Lightning</span> Imaging Sensor (LIS) has been collecting observations of total <span class="hlt">lightning</span> in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw <span class="hlt">high</span> latitudes. <span class="hlt">Lightning</span> data from these instruments have been used to create gridded climatologies and time series of <span class="hlt">lightning</span> flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/7236988-lightning-protection-distribution-lines','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7236988-lightning-protection-distribution-lines"><span><span class="hlt">Lightning</span> protection of distribution lines</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McDermott, T.E.; Short, T.A.; Anderson, J.G.</p> <p>1994-01-01</p> <p>This paper reports a study of distribution line <span class="hlt">lightning</span> performance, using computer simulations of <span class="hlt">lightning</span> overvoltages. The results of previous investigations are extended with a detailed model of induced voltages from nearby strokes, coupled into a realistic power system model. The paper also considers the energy duty of distribution-class surge arresters exposed to direct strokes. The principal result is that widely separated pole-top arresters can effectively protect a distribution line from induced-voltage flashovers. This means that nearby <span class="hlt">lightning</span> strokes need not be a significant <span class="hlt">lightning</span> performance problem for most distribution lines.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790006134','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790006134"><span><span class="hlt">Lightning</span> current detector</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Livermore, S. F. (Inventor)</p> <p>1978-01-01</p> <p>An apparatus for measuring the intensity of current produced in an elongated electrical conductive member by a <span class="hlt">lightning</span> strike for determining the intensity of the <span class="hlt">lightning</span> strike is presented. The apparatus includes an elongated strip of magnetic material that is carried within an elongated tubular housing. A predetermined electrical signal is recorded along the length of said elongated strip of magnetic material. One end of the magnetic material is positioned closely adjacent to the electrically conductive member so that the magnetic field produced by current flowing through said electrically conductive member disturbs a portion of the recorded electrical signal directly proportional to the intensity of the <span class="hlt">lightning</span> strike.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=The+AND+lightning&pg=2&id=EJ610411','ERIC'); return false;" href="https://eric.ed.gov/?q=The+AND+lightning&pg=2&id=EJ610411"><span>Updated <span class="hlt">Lightning</span> Safety Recommendations.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Vavrek, R. James; Holle, Ronald L.; Lopez, Raul E.</p> <p>1999-01-01</p> <p>Summarizes the recommendations of the <span class="hlt">Lightning</span> Safety Group (LSG), which was first convened during the 1998 American Meteorological Society Conference. Findings outline appropriate actions under various circumstances when <span class="hlt">lightning</span> threatens. (WRM)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020068017&hterms=channels+distribution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dchannels%2Bdistribution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020068017&hterms=channels+distribution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dchannels%2Bdistribution"><span>A <span class="hlt">Lightning</span> Channel Retrieval Algorithm for the North Alabama <span class="hlt">Lightning</span> Mapping Array (LMA)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William; Arnold, James E. (Technical Monitor)</p> <p>2002-01-01</p> <p>A new multi-station VHF time-of-arrival (TOA) antenna network is, at the time of this writing, coming on-line in Northern Alabama. The network, called the <span class="hlt">Lightning</span> Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of <span class="hlt">lightning</span> strokes within cloud and ground flashes. The network will support on-going ground validation <span class="hlt">activities</span> of the low Earth orbiting <span class="hlt">Lightning</span> Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. It will also provide for many interesting and detailed studies of the distribution and evolution of thunderstorms and <span class="hlt">lightning</span> in the Tennessee Valley, and will offer many interesting comparisons with other meteorological/geophysical wets associated with <span class="hlt">lightning</span> and thunderstorms. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. In this study, a new revised channel mapping retrieval algorithm is introduced. The algorithm is an extension of earlier work provided in Koshak and Solakiewicz (1996) in the analysis of the NASA Kennedy Space Center (KSC) <span class="hlt">Lightning</span> Detection and Ranging (LDAR) system. As in the 1996 study, direct algebraic solutions are obtained by inverting a simple linear system of equations, thereby making computer searches through a multi-dimensional parameter domain of a Chi-Squared function unnecessary. However, the new algorithm is developed completely in spherical Earth-centered coordinates (longitude, latitude, altitude), rather than in the (x, y, z) cartesian coordinates employed in the 1996 study. Hence, no mathematical transformations from (x, y, z) into spherical coordinates are required (such transformations involve more numerical error propagation, more computer program coding, and slightly more CPU computing time). The new algorithm also has a more realistic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014597','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014597"><span>Cell Mergers and Their Impact on Cloud-to-Ground <span class="hlt">Lightning</span> Over the Houston Area</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gauthier, Michael L.; Petersen, Walter A.; Carey, Lawrence D.</p> <p>2009-01-01</p> <p>A previous hypothesis advanced from observational studies such as METROMEX suggests that the intensity, frequency, and organization of cumulus convection may be impacted by the forcing of enhanced merger <span class="hlt">activity</span> downstream of urban zones. A resulting corollary is that cities may exert an indirect anthropogenic forcing of parameters related to convection and associated phenomena such as <span class="hlt">lightning</span> and precipitation. This paper investigates the urban merger hypothesis by examining the role of convective cell mergers on the existence and persistence of the Houston <span class="hlt">lightning</span> "anomaly", a local maximum in cloud-to-ground (CG) <span class="hlt">lightning</span> <span class="hlt">activity</span> documented to exist over and east of Houston. Using eight summer seasons of peak columnar radar reflectivity, CG <span class="hlt">lightning</span> data and a cell-tracking algorithm, a two-dimensional cell merger climatology is created for portions of eastern Texas and Louisiana. Results from the tracking and analysis of over 3.8 million cells indicate that merger-driven enhancements in convection induce a positive response (O 46%) in ground-flash densities throughout the domain, with areas of enhanced <span class="hlt">lightning</span> typically being co-located with areas of enhanced merger <span class="hlt">activity</span>. However, while mergers over the Houston area (relative to elsewhere in the domain) do result in more vigorous convective cells that produce larger CG flash densities, we find that CG <span class="hlt">lightning</span> contributions due to mergers are distributed similarly throughout the domain. Hence while we demonstrate that cell mergers do greatly impact the production of <span class="hlt">lightning</span>, the urban cell merger hypothesis does not uniquely explain the presence of a local <span class="hlt">lightning</span> maximum near and downstream of Houston.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PEPS....4....7T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PEPS....4....7T"><span>Spatial distribution of cold-season <span class="hlt">lightning</span> frequency in the coastal areas of the Sea of Japan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsurushima, Daiki; Sakaida, Kiyotaka; Honma, Noriyasu</p> <p>2017-12-01</p> <p>The coastal areas of the Sea of Japan are a well-known hotspot of winter <span class="hlt">lightning</span> <span class="hlt">activity</span>. This study distinguishes between three common types of winter <span class="hlt">lightning</span> in that region (types A-C), based on their frequency distributions and the meteorological conditions under which they occur. Type A <span class="hlt">lightning</span> occurs with <span class="hlt">high</span> frequency in the Tohoku district. It is mainly caused by cold fronts that accompany cyclones passing north of the Japanese islands. Type B, which occurs most frequently in the coastal areas of the Hokuriku district, is mainly caused by topographically induced wind convergence and convective instability, both of which are associated with cyclones having multiple centers. Type C's <span class="hlt">lightning</span> frequency distribution pattern is similar to that of type B, but its principal cause is a topographically induced wind convergence generated by cold air advection from the Siberian continent. Type A is most frequently observed from October to November, while types B and C tend to appear from November to January, consistent with seasonal changes in <span class="hlt">lightning</span> frequency distribution in Japan's Tohoku and Hokuriku districts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH23E2864R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH23E2864R"><span>An In Depth Look at <span class="hlt">Lightning</span> Trends in Hurricane Harvey using Satellite and Ground-Based Measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ringhausen, J.</p> <p>2017-12-01</p> <p>This research combines satellite measurements of <span class="hlt">lightning</span> in Hurricane Harvey with ground-based <span class="hlt">lightning</span> measurements to get a better sense of the total <span class="hlt">lightning</span> occurring in the hurricane, both intra-cloud (IC) and cloud-to-ground (CG), and how it relates to the intensification and weakening of the tropical system. Past studies have looked at <span class="hlt">lightning</span> trends in hurricanes using the space based <span class="hlt">Lightning</span> Imaging Sensor (LIS) or ground-based <span class="hlt">lightning</span> detection networks. However, both of these methods have drawbacks. For instance, LIS was in low earth orbit, which limited <span class="hlt">lightning</span> observations to 90 seconds for a particular point on the ground; hence, continuous <span class="hlt">lightning</span> coverage of a hurricane was not possible. Ground-based networks can have a decreased detection efficiency, particularly for ICs, over oceans where hurricanes generally intensify. With the launch of the Geostationary <span class="hlt">Lightning</span> Mapper (GLM) on the GOES-16 satellite, researchers can study total <span class="hlt">lightning</span> continuously over the lifetime of a tropical cyclone. This study utilizes GLM to investigate total <span class="hlt">lightning</span> <span class="hlt">activity</span> in Hurricane Harvey temporally; this is augmented with spatial analysis relative to hurricane structure, similar to previous studies. Further, GLM and ground-based network data are combined using Bayesian techniques in a new manner to leverage the strengths of each detection method. This methodology 1) provides a more complete estimate of <span class="hlt">lightning</span> <span class="hlt">activity</span> and 2) enables the derivation of the IC:CG ratio (Z-ratio) throughout the time period of the study. In particular, details of the evolution of the Z-ratio in time and space are presented. In addition, <span class="hlt">lightning</span> stroke spatiotemporal trends are compared to <span class="hlt">lightning</span> flash trends. This research represents a new application of <span class="hlt">lightning</span> data that can be used in future study of tropical cyclone intensification and weakening.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SGeo...34..731R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SGeo...34..731R"><span>Electromagnetic Methods of <span class="hlt">Lightning</span> Detection</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rakov, V. A.</p> <p>2013-11-01</p> <p>Both cloud-to-ground and cloud <span class="hlt">lightning</span> discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various <span class="hlt">lightning</span> processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various <span class="hlt">lightning</span> locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. <span class="hlt">Lightning</span> location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. <span class="hlt">Lightning</span> locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern <span class="hlt">lightning</span> locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140012856','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140012856"><span>The GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM) and the Global Observing System for Total <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Buechler, D.; Carey, L.; Chronis, T.; Mach, D.; Bateman, M.; Peterson, H.; McCaul, E. W., Jr.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140012856'); toggleEditAbsImage('author_20140012856_show'); toggleEditAbsImage('author_20140012856_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140012856_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140012856_hide"></p> <p>2014-01-01</p> <p>for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total <span class="hlt">lightning</span> detection (cloud and cloud-to-ground flashes) from the Geostationary <span class="hlt">Lightning</span> Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total <span class="hlt">lightning</span> continuously day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado <span class="hlt">activity</span>, and convective weather impacts on aviation safety and efficiency among a number of potential applications. The GLM will help address the National Weather Service requirement for total <span class="hlt">lightning</span> observations globally to support warning decision-making and forecast services. Science and application development along with pre-operational product demonstrations and evaluations at NWS national centers, forecast offices, and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in 2016. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003035','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003035"><span>A Probabilistic, Facility-Centric Approach to <span class="hlt">Lightning</span> Strike Location</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huddleston, Lisa L.; Roeder, William p.; Merceret, Francis J.</p> <p>2012-01-01</p> <p>A new probabilistic facility-centric approach to <span class="hlt">lightning</span> strike location has been developed. This process uses the bivariate Gaussian distribution of probability density provided by the current <span class="hlt">lightning</span> location error ellipse for the most likely location of a <span class="hlt">lightning</span> stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collisionith spacecraft. Such a technique is important in spaceport processing <span class="hlt">activities</span> because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby <span class="hlt">lightning</span> strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC43L..03T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC43L..03T"><span>Possible linkage between supernovae, increased terrestrial <span class="hlt">lightning</span>, and wildfire <span class="hlt">activity</span> in the Late Miocene and Early Pleistocene</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, B. C.; Feulner, G.; Melott, A. L.; Kirsten, T.; von Bloh, W.</p> <p>2017-12-01</p> <p>Radioisotopes from deep-sea deposits show that Earth was affected by nearby supernovae about 2.5 and 8 million years ago. Recent modelling work shows that <span class="hlt">high</span>-energy particles from these events resulted in greatly enhanced ionization of the troposphere. This could have led to an increase in wildfires via more frequent <span class="hlt">lightning</span>. Here we show that published data on global fire <span class="hlt">activity</span> from charcoal records reveal a marked increase in wildfires around the times of the supernova explosions. We use a dynamic global vegetation model to assess the impact of increased <span class="hlt">lightning</span> frequency on vegetation patterns, finding a patchy global decrease in tree cover. Regionally, vegetation changes are particularly pronounced in western North America, the Mediterranean, Central Asia, Northern Indochina, subtropical South America, Africa and Australia, and notably East Africa, in agreement with empirical evidence for a global shift towards savannas during the Pleistocene. Our results demonstrate that moderately nearby supernovae have the potential to affect life on Earth even if they are too distant to initiate a mass extinction. Finally, we note that the shift from forest to savannah biomes in the East African Rift Valley region has been tentatively linked to hominin evolution in this region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH34B..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH34B..05S"><span>Real-time Monitoring of 2017 Hurricanes and Typhoons with <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Solorzano, N. N.; Thomas, J. N.; Bracy, C.; Holzworth, R. H., II</p> <p>2017-12-01</p> <p>The 2017 Atlantic season had the highest number of major hurricanes since 2005. To tackle the demand of real-time tropical cyclone (TC) monitoring, our group has developed a unique "storm-following" satellite and ground-based <span class="hlt">lightning</span> product known as WWLLN-TC (World Wide <span class="hlt">Lightning</span> Location Network - Tropical Cyclones; http://wwlln.net/storms/). In the present study, we explore this tool and other datasets, combining <span class="hlt">lightning</span> and microwave data to quantify areas of intense convection in 2017 TCs Harvey, Hato, Irma, Maria, Nate, Ophelia and others. For each storm, the temporal distribution of discharges outside and within the inner core is compared to the changes in TC intensity. The intensification processes, monitored in near real-time by WWLLN-TC, are quantified in terms of pressure and/or wind speed changes. A peak in <span class="hlt">lightning</span> <span class="hlt">activity</span> is often observed in the inner core of TCs before and during rapid weakening, such as in Hurricanes Irma and Maria and Typhoon Hato. The microwave frequencies investigated include the 37 to 183 GHz channels of the satellite sensors DMSP/SSMIS and GPM/GMI. We reconstruct brightness temperatures from <span class="hlt">lightning</span> data, providing more detailed pictures of the evolution of TCs at moments when satellite passes are missing or incomplete. This study also compares <span class="hlt">lightning</span> <span class="hlt">activity</span> in the inner core with convective and environmental parameters. Examples of environmental parameters discussed are sea surface temperature, wind shear, and sea surface height anomalies. We conclude by considering possible implications of WWLLN-TC on forecasts of rapid intensity change and rainfall.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100026043&hterms=under+armor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dunder%2Barmor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100026043&hterms=under+armor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dunder%2Barmor"><span>Exploring a Physically Based Tool for <span class="hlt">Lightning</span> Cessation: Preliminary Results</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, Elsie V.; Petersen, Walter A.; Carey, Lawrence D.; Buechler, Dennis E.; Gatlin, Patrick N.</p> <p>2010-01-01</p> <p>The University of Alabama in Huntsville (UAHuntsville) and NASA s Marshall Space Flight Center are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of <span class="hlt">lightning</span> cessation. The project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict <span class="hlt">lightning</span> cessation. While previous studies have developed statistically based <span class="hlt">lightning</span> cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with <span class="hlt">lightning</span>. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of <span class="hlt">lightning</span> <span class="hlt">activity</span> in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the North Alabama <span class="hlt">Lightning</span> Mapping Array are used in this study to investigate the radar signatures present before and after <span class="hlt">lightning</span> cessation. A summary of preliminary results will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AtmRe..76..127D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AtmRe..76..127D"><span><span class="hlt">Lightning</span> <span class="hlt">activity</span> related to satellite and radar observations of a mesoscale convective system over Texas on 7 8 April 2002</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dotzek, Nikolai; Rabin, Robert M.; Carey, Lawrence D.; MacGorman, Donald R.; McCormick, Tracy L.; Demetriades, Nicholas W.; Murphy, Martin J.; Holle, Ronald L.</p> <p>2005-07-01</p> <p>A multi-sensor study of the leading-line, trailing-stratiform (LLTS) mesoscale convective system (MCS) that developed over Texas in the afternoon of 7 April 2002 is presented. The analysis relies mainly on operationally available data sources such as GOES East satellite imagery, WSR-88D radar data and NLDN cloud-to-ground flash data. In addition, total <span class="hlt">lightning</span> information in three dimensions from the LDAR II network in the Dallas-Ft. Worth region is used. GOES East satellite imagery revealed several ring-like cloud top structures with a diameter of about 100 km during MCS formation. The Throckmorton tornadic supercell, which had formed just ahead of the developing linear MCS, was characterized by a <span class="hlt">high</span> CG+ percentage below a V-shaped cloud top overshoot north of the tornado swath. There were indications of the presence of a tilted electrical dipole in this storm. Also this supercell had low average CG- first stroke currents and flash multiplicities. Interestingly, especially the average CG+ flash multiplicity in the Throckmorton storm showed oscillations with an estimated period of about 15 min. Later on, in the mature LLTS MCS, the radar versus <span class="hlt">lightning</span> <span class="hlt">activity</span> comparison revealed two dominant discharge regions at the back of the convective leading edge and a gentle descent of the upper intracloud <span class="hlt">lightning</span> region into the trailing stratiform region, apparently coupled to hydrometeor sedimentation. There was evidence for an inverted dipole in the stratiform region of the LLTS MCS, and CG+ flashes from the stratiform region had <span class="hlt">high</span> first return stroke peak currents.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988JAP....63.3191G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988JAP....63.3191G"><span>Magnetic field generated by <span class="hlt">lightning</span> protection system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geri, A.; Veca, G. M.</p> <p>1988-04-01</p> <p>A <span class="hlt">lightning</span> protection system for today's civil buildings must be electromagnetically compatible with the electronic equipment present in the building. This paper highlights a mathematic model which analyzes the electromagnetic effects in the environment in which the <span class="hlt">lightning</span> protection system is. This model is developed by means of finite elements of an electrical circuit where each element is represented by a double pole circuit according to the trapezoidal algorithm developed using the finite difference method. It is thus possible to analyze the electromagnetic phenomena associated with the transient effects created by the <span class="hlt">lightning</span> stroke even for a <span class="hlt">high</span>-intensity current. Referring to an elementary system comprised of an air terminal, a down conductor, and a ground terminal, numerical results are here laid out.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22253708','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22253708"><span>Remarkable rates of <span class="hlt">lightning</span> strike mortality in Malawi.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mulder, Monique Borgerhoff; Msalu, Lameck; Caro, Tim; Salerno, Jonathan</p> <p>2012-01-01</p> <p>Livingstone's second mission site on the shore of Lake Malawi suffers very <span class="hlt">high</span> rates of consequential <span class="hlt">lightning</span> strikes. Comprehensive interviewing of victims and their relatives in seven Traditional Authorities in Nkhata Bay District, Malawi revealed that the annual rate of consequential strikes was 419/million, more than six times higher than that in other developing countries; the rate of deaths from <span class="hlt">lightning</span> was 84/million/year, 5.4 times greater than the highest ever recorded. These remarkable figures reveal that <span class="hlt">lightning</span> constitutes a significant stochastic source of mortality with potential life history consequences, but it should not deflect attention away from the more prominent causes of mortality in this rural area.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840005664','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840005664"><span><span class="hlt">Lightning</span> mapper sensor design study</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eaton, L. R.; Poon, C. W.; Shelton, J. C.; Laverty, N. P.; Cook, R. D.</p> <p>1983-01-01</p> <p>World-wide continuous measurement of <span class="hlt">lightning</span> location, intensity, and time during both day and night is to be provided by the <span class="hlt">Lightning</span> Mapper (LITMAP) instrument. A technology assessment to determine if the LITMAP requirements can be met using existing sensor and electronic technologies is presented. The baseline concept discussed in this report is a compromise among a number of opposing requirements (e.g., ground resolution versus array size; large field of view versus narrow bandpass filter). The concept provides coverage for more than 80 percent of the <span class="hlt">lightning</span> events as based on recent above-cloud NASA/U2 <span class="hlt">lightning</span> measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15777170','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15777170"><span>Modern concepts of treatment and prevention of <span class="hlt">lightning</span> injuries.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Edlich, Richard F; Farinholt, Heidi-Marie A; Winters, Kathryne L; Britt, L D; Long, William B</p> <p>2005-01-01</p> <p><span class="hlt">Lightning</span> is the second most common cause of weather-related death in the United States. <span class="hlt">Lightning</span> is a natural atmospheric discharge that occurs between regions of net positive and net negative electric charges. There are several types of <span class="hlt">lightning</span>, including streak <span class="hlt">lightning</span>, sheet <span class="hlt">lightning</span>, ribbon <span class="hlt">lightning</span>, bead <span class="hlt">lightning</span>, and ball <span class="hlt">lightning</span>. <span class="hlt">Lightning</span> causes injury through five basic mechanisms: direct strike, flash discharge (splash), contact, ground current (step voltage), and blunt trauma. While persons struck by <span class="hlt">lightning</span> show evidence of multisystem derangement, the most dramatic effects involve the cardiovascular and central nervous systems. Cardiopulmonary arrest is the most common cause of death in <span class="hlt">lightning</span> victims. Immediate resuscitation of people struck by <span class="hlt">lightning</span> greatly affects the prognosis. Electrocardiographic changes observed following <span class="hlt">lightning</span> accidents are probably from primary electric injury or burns of the myocardium without coronary artery occlusion. <span class="hlt">Lightning</span> induces vasomotor spasm from direct sympathetic stimulation resulting in severe loss of pulses in the extremities. This vasoconstriction may be associated with transient paralysis. Damage to the central nervous system accounts for the second most debilitating group of injuries. Central nervous system injuries from <span class="hlt">lightning</span> include amnesia and confusion, immediate loss of consciousness, weakness, intracranial injuries, and even brief aphasia. Other organ systems injured by <span class="hlt">lightning</span> include the eye, ear, gastrointestinal system, skin, and musculoskeletal system. The best treatment of <span class="hlt">lightning</span> injuries is prevention. The <span class="hlt">Lightning</span> Safety Guidelines devised by the <span class="hlt">Lightning</span> Safety Group should be instituted in the United States and other nations to prevent these devastating injuries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE33B2552D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE33B2552D"><span><span class="hlt">Lightning</span> leader models of terrestrial gamma-ray flashes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dwyer, J. R.; Liu, N.; Ihaddadene, K. M. A.</p> <p>2017-12-01</p> <p>Terrestrial gamma-ray flashes (TGFs) are bright sub-millisecond bursts of gamma rays that originate from thunderstorms. Because <span class="hlt">lightning</span> leaders near the ground have been observed to emit x-rays, presumably due to runaway electron production in the <span class="hlt">high</span>-field regions near the leader tips, models of TGFs have been developed by several groups that assume a similar production mechanism of runaway electrons from <span class="hlt">lightning</span> leaders propagating through thunderclouds. However, it remains unclear exactly how and where these runaway electrons are produced, since <span class="hlt">lightning</span> propagation at thunderstorm altitudes remains poorly understood. In addition, it is not obvious how to connect the observed behavior of the x-ray production from <span class="hlt">lightning</span> near the ground with the properties of TGFs. For example, it is not clear how to relate the time structure of the x-ray emission near the ground to that of TGFs, since x-rays from stepped leaders near the ground are usually produced in a series of sub-microsecond bursts, but TGFs are usually observed as much longer pulses without clear substructures, at sub-microsecond timescales or otherwise. In this presentation, spacecraft observations of TGFs, ground-based observations of x-rays from <span class="hlt">lightning</span> and laboratory sparks, and Monte Carlo and PIC simulations of runaway electron and gamma ray production and propagation will be used to constrain the <span class="hlt">lightning</span> leader models of TGFs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE13A2221W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE13A2221W"><span>Verification of a Schumann Resonance Inversion Method for Global <span class="hlt">Lightning</span> <span class="hlt">Activity</span> in Absolute Units</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, E. R.; Guha, A.; Liu, Y.; Boldi, R. A.; Pracser, E.; Said, R.; Satori, G.; Bozoki, T.; Bor, J.; Atkinson, M.; Beggan, C.; Cummer, S.; Lyu, F.; Fain, B.; Hobara, Y.; Alexander, K.; Kulak, A.; McCraty, R.; Mlynarczyk, J.; Montanya, J.; Moore, R. C.; Neska, M.; Ortega, P.; Price, C. G.; Rawat, R.; Sato, M.; Sinha, A. K.; Yampolski, Y.</p> <p>2017-12-01</p> <p>The global reach of single, calibrated ELF receivers operating in the Schumann resonance (SR) band (3-50 Hz) has been verified by global maps of energetic Q-burst locations and vertical charge moment change, and by locations of independently verified transient luminous events in a wide variety of locations worldwide. It has also been previously shown that with as few as six ELF receivers in widely separated locations, multi-station, multi-modal SR parameters extracted from the SR "background" signal can be inverted to provide the centroid locations of continental <span class="hlt">lightning</span> "chimneys" (Asia, Africa, Americas) and their respective <span class="hlt">lightning</span> <span class="hlt">activities</span> in absolute units (coul2 km2/sec). This inversion method involves a propagation model for the Earth-ionosphere cavity with day-night asymmetry. The Earth is now populated with more than 30 calibrated ELF receivers making continuous time series observations. This circumstance is exploited in the present study to verify the findings of the ELF inversion method. During the period May 17-20 and 23-24, 2015, two independent sets of nine ELF receivers each, in widely-separated geographical locations (first set: Antarctica (3 sites), Hungary, Japan (2 sites), Poland, Spitzbergen, and USA; second set: Antarctica, Canada, Cape Verde Island, Lithuania, New Zealand, Saudi Arabia, Scotland, Tahiti, and USA), are used to compare the locations and source strengths of <span class="hlt">lightning</span> chimneys. Detailed comparisons will be shown over Universal Time for selected days.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950033755&hterms=climate+change+forest&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dclimate%2Bchange%2Bforest','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950033755&hterms=climate+change+forest&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dclimate%2Bchange%2Bforest"><span>The impact of a 2 X CO2 climate on <span class="hlt">lightning</span>-caused fires</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Price, Colin; Rind, David</p> <p>1994-01-01</p> <p>Future climate change could have significant repercussions for <span class="hlt">lightning</span>-caused wildfires. Two empirical fire models are presented relating the frequency of <span class="hlt">lightning</span> fires and the area burned by these fires to the effective precipitation and the frequency of thunderstorm <span class="hlt">activity</span>. One model deals with the seasonal variations in <span class="hlt">lightning</span> fires, while the second model deals with the interannual variations of <span class="hlt">lightning</span> fires. These fire models are then used with the Goddard Institute for Space Studies General Circulation Model to investigate possible changes in fire frequency and area burned in a 2 X CO2 climate. In the United States, the annual mean number of <span class="hlt">lightning</span> fires increases by 44%, while the area burned increases by 78%. On a global scale, the largest increase in <span class="hlt">lightning</span> fires can be expected in untouched tropical ecosystems where few natural fires occur today.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015774','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015774"><span>TRMM-Based <span class="hlt">Lightning</span> Climatology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.</p> <p>2011-01-01</p> <p>Gridded climatologies of total <span class="hlt">lightning</span> flash rates seen by the spaceborne Optical Transient Detector (OTD) and <span class="hlt">Lightning</span> Imaging Sensor (LIS) have been updated. OTD collected data from May 1995 to March 2000. LIS data (equatorward of about 38 deg) has been added for 1998-2010. Flash counts from each instrument are scaled by the best available estimates of detection efficiency. The long LIS record makes the merged climatology most robust in the tropics and subtropics, while the <span class="hlt">high</span> latitude data is entirely from OTD. The mean global flash rate from the merged climatology is 46 flashes per second. The peak annual flash rate at 0.5 deg scale is 160 fl/square km/yr in eastern Congo. The peak monthly average flash rate at 2.5 scale is 18 fl/square km/mo, from early April to early May in the Brahmaputra Valley of far eastern India. <span class="hlt">Lightning</span> decreases in this region during the monsoon season, but increases further north and west. A monthly average peak from early August to early September in northern Pakistan also exceeds any monthly averages from Africa, despite central Africa having the greatest yearly average. Most continental regions away from the equator have an annual cycle with <span class="hlt">lightning</span> flash rates peaking in late spring or summer. The main exceptions are India and southeast Asia, with springtime peaks in April and May. For landmasses near the equator, flash rates peak near the equinoxes. For many oceanic regions, the peak flash rates occur in autumn. This is particularly noticeable for the Mediterranean and North Atlantic. Landmasses have a strong diurnal cycle of <span class="hlt">lightning</span>, with flash rates generally peaking between 3-5 pm local solar time. The central United States flash rates peak later, in late evening or early night. Flash rates peak after midnight in northern Argentina. These regions are known for large, intense, long-lived mesoscale convective systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRD..121.3929G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRD..121.3929G"><span>Statistical analysis of storm electrical discharges reconstituted from a <span class="hlt">lightning</span> mapping system, a <span class="hlt">lightning</span> location system, and an acoustic array</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallin, Louis-Jonardan; Farges, Thomas; Marchiano, Régis; Coulouvrat, François; Defer, Eric; Rison, William; Schulz, Wolfgang; Nuret, Mathieu</p> <p>2016-04-01</p> <p>In the framework of the European Hydrological Cycle in the Mediterranean Experiment project, a field campaign devoted to the study of electrical <span class="hlt">activity</span> during storms took place in the south of France in 2012. An acoustic station composed of four microphones and four microbarometers was deployed within the coverage of a <span class="hlt">Lightning</span> Mapping Array network. On the 26 October 2012, a thunderstorm passed just over the acoustic station. Fifty-six natural thunder events, due to cloud-to-ground and intracloud flashes, were recorded. This paper studies the acoustic reconstruction, in the low frequency range from 1 to 40 Hz, of the recorded flashes and their comparison with detections from electromagnetic networks. Concurrent detections from the European Cooperation for <span class="hlt">Lightning</span> Detection <span class="hlt">lightning</span> location system were also used. Some case studies show clearly that acoustic signal from thunder comes from the return stroke but also from the horizontal discharges which occur inside the clouds. The huge amount of observation data leads to a statistical analysis of <span class="hlt">lightning</span> discharges acoustically recorded. Especially, the distributions of altitudes of reconstructed acoustic detections are explored in detail. The impact of the distance to the source on these distributions is established. The capacity of the acoustic method to describe precisely the lower part of nearby cloud-to-ground discharges, where the <span class="hlt">Lightning</span> Mapping Array network is not effective, is also highlighted.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17520962','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17520962"><span><span class="hlt">Lightning</span> fatalities in the Transkei sub-region of South Africa.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Meel, B L</p> <p>2007-04-01</p> <p><span class="hlt">Lightning</span> is a particularly unsettling product of bad weather. It kills more people than other natural disasters such as floods, hurricanes, and tornadoes, but, because <span class="hlt">lightning</span> usually kills people one at a time, it tends to be an underrated hazard. <span class="hlt">High</span> risk groups are uneducated, unsheltered and rural people. This study was carried out to determine the incidence of <span class="hlt">lightning</span> fatalities in the Transkei sub-region. It is a review of records between 1993 and 2004 from the medico-legal autopsies at Umtata General Hospital (UGH). During the study period there were 10,860 autopsies performed on those who died of trauma and other unnatural circumstances which included 151 (1.4%) <span class="hlt">lightning</span> fatalities. This represents 0.31 deaths per million per year. The highest (0.5/million) was in 1999, and the lowest (0.13/million) in 1997. The age of the victims ranged from 1 to 82 years, with a mean of 22 years. Males and females were almost equally represented (50%). The highest number of deaths (26.5%) was in the age group of 11 to 20 years, and the lowest number (2.7%) in the age group of 70+ years. There is a <span class="hlt">high</span> incidence of <span class="hlt">lightning</span> fatalities in the Transkei sub-region of South Africa. People need to be educated to disregard the myths of <span class="hlt">lightning</span> strike.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/48025','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/48025"><span><span class="hlt">Lightning</span> fires in southwestern forests</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jack S. Barrows</p> <p>1978-01-01</p> <p><span class="hlt">Lightning</span> is the leading cause of fires in southwestern forests. On all protected private, state and federal lands in Arizona and New Mexico, nearly 80 percent of the forest, brush and range fires are ignited by <span class="hlt">lightning</span>. The Southwestern region leads all other regions of the United States both in total number of <span class="hlt">lightning</span> fires and in the area burned by these fires...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800013446&hterms=emp&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Demp','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800013446&hterms=emp&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Demp"><span>Electromagnetic sensors for general <span class="hlt">lightning</span> application</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baum, C. E.; Breen, E. L.; Onell, J. P.; Moore, C. B.; Sower, G. D.</p> <p>1980-01-01</p> <p>Electromagnetic sensors for general <span class="hlt">lightning</span> applications in measuring environment are discussed as well as system response to the environment. This includes electric and magnetic fields, surface current and charge densities, and currents on conductors. Many EMP sensors are directly applicable to <span class="hlt">lightning</span> measurements, but there are some special cases of <span class="hlt">lightning</span> measurements involving direct strikes which require special design considerations for the sensors. The sensors and instrumentation used by NMIMT in collecting data on <span class="hlt">lightning</span> at South Baldy peak in central New Mexico during the 1978 and 1979 <span class="hlt">lightning</span> seasons are also discussed. The Langmuir Laboratory facilities and details of the underground shielded instrumentation room and recording equipment are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA01096&hterms=Dark+web&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DDark%2Bweb','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA01096&hterms=Dark+web&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DDark%2Bweb"><span>Jovian <span class="hlt">Lightning</span> and Moonlit Clouds</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1997-01-01</p> <p>Jovian <span class="hlt">lightning</span> and moonlit clouds. These two images, taken 75 minutes apart, show <span class="hlt">lightning</span> storms on the night side of Jupiter along with clouds dimly lit by moonlight from Io, Jupiter's closest moon. The images were taken in visible light and are displayed in shades of red. The images used an exposure time of about one minute, and were taken when the spacecraft was on the opposite side of Jupiter from the Earth and Sun. Bright storms are present at two latitudes in the left image, and at three latitudes in the right image. Each storm was made visible by multiple <span class="hlt">lightning</span> strikes during the exposure. Other Galileo images were deliberately scanned from east to west in order to separate individual flashes. The images show that Jovian and terrestrial <span class="hlt">lightning</span> storms have similar flash rates, but that Jovian <span class="hlt">lightning</span> strikes are a few orders of magnitude brighter in visible light.<p/>The moonlight from Io allows the <span class="hlt">lightning</span> storms to be correlated with visible cloud features. The latitude bands where the storms are seen seem to coincide with the 'disturbed regions' in daylight images, where short-lived chaotic motions push clouds to <span class="hlt">high</span> altitudes, much like thunderstorms on Earth. The storms in these images are roughly one to two thousand kilometers across, while individual flashes appear hundreds of kilometer across. The <span class="hlt">lightning</span> probably originates from the deep water cloud layer and illuminates a large region of the visible ammonia cloud layer from 100 kilometers below it.<p/>There are several small light and dark patches that are artifacts of data compression. North is at the top of the picture. The images span approximately 50 degrees in latitude and longitude. The lower edges of the images are aligned with the equator. The images were taken on October 5th and 6th, 1997 at a range of 6.6 million kilometers by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.<p/>The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008697','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008697"><span>The GOES-R Series Geostationary <span class="hlt">Lightning</span> Mapper (GLM)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas M.</p> <p>2011-01-01</p> <p>The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total <span class="hlt">lightning</span> detection (cloud and cloud-to-ground flashes) from the Geostationary <span class="hlt">Lightning</span> Mapper (GLM), which will have just completed Critical Design Review and move forward into the construction phase of instrument development. The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado <span class="hlt">activity</span>, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (an engineering development unit and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based <span class="hlt">lightning</span> networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMetR..31..976W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMetR..31..976W"><span>Semi-idealized modeling of <span class="hlt">lightning</span> initiation related to vertical air motion and cloud microphysics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Fei; Zhang, Yijun; Zheng, Dong; Xu, Liangtao; Zhang, Wenjuan; Meng, Qing</p> <p>2017-10-01</p> <p>A three-dimensional charge-discharge numerical model is used, in a semi-idealized mode, to simulate a thunder-storm cell. Characteristics of the graupel microphysics and vertical air motion associated with the <span class="hlt">lightning</span> initiation are revealed, which could be useful in retrieving charge strength during <span class="hlt">lightning</span> when no charge-discharge model is available. The results show that the vertical air motion at the <span class="hlt">lightning</span> initiation sites ( W ini) has a cubic polynomial correlation with the maximum updraft of the storm cell ( W cell-max), with the adjusted regression coefficient R 2 of approximately 0.97. Meanwhile, the graupel mixing ratio at the <span class="hlt">lightning</span> initiation sites ( q g-ini) has a linear correlation with the maximum graupel mixing ratio of the storm cell ( q g-cell-max) and the initiation height ( z ini), with the coefficients being 0.86 and 0.85, respectively. These linear correlations are more significant during the middle and late stages of <span class="hlt">lightning</span> <span class="hlt">activity</span>. A zero-charge zone, namely, the area with very low net charge density between the main positive and negative charge layers, appears above the area of q g-cell-max and below the upper edge of the graupel region, and is found to be an important area for <span class="hlt">lightning</span> initiation. Inside the zero-charge zone, large electric intensity forms, and the ratio of q ice (ice crystal mixing ratio) to q g (graupel mixing ratio) illustrates an exponential relationship to q g-ini. These relationships provide valuable clues to more accurately locating the <span class="hlt">high</span>-risk area of <span class="hlt">lightning</span> initiation in thunderstorms when only dual-polarization radar data or outputs from numerical models without charging/discharging schemes are available. The results can also help understand the environmental conditions at <span class="hlt">lightning</span> initiation sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1320238','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1320238"><span>A Survey of <span class="hlt">Lightning</span> Policy in Selected Division I Colleges</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Walsh, Katie M.; Hanley, Michael J.; Graner, Susanne J.; Beam, Dwayne; Bazluki, Jim</p> <p>1997-01-01</p> <p>Objective: The purpose of this research was to investigate the hazards of <span class="hlt">lightning</span> for participants in outdoor athletics and to determine the existence of, and assess the nature of, <span class="hlt">lightning</span> safety policy at the collegiate level. Design and Setting: We used data from the National Severe Storms Laboratory in Norman, Oklahoma, and from a survey of Division I institutions. Subjects: The 48 National Collegiate Athletic Association Division I (football) universities in Florida, Michigan, Pennsylvania, North Carolina, and New York. Measurements: Athletic trainers at all of the selected 48 Division I institutions responded to the telephone survey. Results: Florida, Michigan, Pennsylvania, North Carolina, and New York led the country in <span class="hlt">lightning</span> deaths and injuries from 1959-1994. Only 8% (n = 4) of the institutions surveyed in these states have a written policy regarding <span class="hlt">lightning</span> safety. Conclusions: This study demonstrated the lack of <span class="hlt">lightning</span> safety policy in the surveyed universities and the need for a systematic plan of action to make fields safer for all who are involved in outdoor sport <span class="hlt">activities</span>. PMID:16558450</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990078596&hterms=tornado&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dtornado','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990078596&hterms=tornado&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dtornado"><span>Cloud-to-Ground <span class="hlt">Lightning</span> Characteristics of a Major Tropical Cyclone Tornado Outbreak</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McCaul, Eugene W., Jr.; Buechler, Dennis; Goodman, Steven J.</p> <p>1999-01-01</p> <p>A comprehensive analysis has been conducted of the cloud-to-ground <span class="hlt">lightning</span> <span class="hlt">activity</span> occurring within a landfalling tropical cyclone that produced an outbreak of strong and damaging tornadoes. Radar data indicate that 12 convective cells were responsible for 29 tornadoes, several of which received an F3 intensity rating, in the southeastern United States on 16 August 1994 within the remnants of Tropical Storm Beryl. Of these 12 tornadic storms, the most <span class="hlt">active</span> cell produced 315 flashes over a 5.5 hour period, while the other storms were less <span class="hlt">active</span>. Three tornadic storms failed to produce any CG <span class="hlt">lightning</span> at all. In general, the tornadic storms were more <span class="hlt">active</span> electrically than other non-tornadic cells within Beryl's remnants, although the flash rates were rather modest by comparison with significant midlatitude severe storm events. Very few positive polarity flashes were found in the Beryl outbreak. During some of the stronger tornadoes, CG flash rates in the parent storms showed sharp transient decreases. Doppler radar data suggest the stronger tornadic storms were small supercells, and the <span class="hlt">lightning</span> data indicate these storms exhibited <span class="hlt">lightning</span> characteristics similar to those found in heavy-precipitation supercell storms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec25-581.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec25-581.pdf"><span>14 CFR 25.581 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false <span class="hlt">Lightning</span> protection. 25.581 Section 25.581 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure <span class="hlt">Lightning</span> Protection § 25.581 <span class="hlt">Lightning</span> protection. (a...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=335478','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=335478"><span>On the Relationship between Observed NLDN <span class="hlt">Lightning</span> ...</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p><span class="hlt">Lightning</span>-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling <span class="hlt">lightning</span> NOX during the past decade, considerable uncertainties still exist with the quantification of <span class="hlt">lightning</span> NOX production and distribution in the troposphere. It is even more challenging for regional chemistry and transport models to accurately parameterize <span class="hlt">lightning</span> NOX production and distribution in time and space. The Community Multiscale Air Quality Model (CMAQ) parameterizes the <span class="hlt">lightning</span> NO emissions using local scaling factors adjusted by the convective precipitation rate that is predicted by the upstream meteorological model; the adjustment is based on the observed <span class="hlt">lightning</span> strikes from the National <span class="hlt">Lightning</span> Detection Network (NLDN). For this parameterization to be valid, the existence of an a priori reasonable relationship between the observed <span class="hlt">lightning</span> strikes and the modeled convective precipitation rates is needed. In this study, we will present an analysis leveraged on the observed NLDN <span class="hlt">lightning</span> strikes and CMAQ model simulations over the continental United States for a time period spanning over a decade. Based on the analysis, new parameterization scheme for <span class="hlt">lightning</span> NOX will be proposed and the results will be evaluated. The proposed scheme will be beneficial to modeling exercises where the obs</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMAE31A0420A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMAE31A0420A"><span>Acoustic vs Interferometric Measurements of <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arechiga, R. O.; Erives, H.; Sonnenfeld, R. G.; Stanley, M. A.; Rison, W.; Thomas, R. J.; Edens, H. E.; Lapierre, J. L.; Stock, M.; Jensen, D.; Morris, K.</p> <p>2015-12-01</p> <p>During the summer of 2015 we acquired acoustic and RF data on severalflashes from thunderstorms over Fort Morgan CO. and Langmuir Laboratoryin the Magdalena mountains of central New Mexico. The acoustic arrayswere located at a distance of roughly 150 m from the interferometers.<span class="hlt">Lightning</span> mapping array and slow antenna data were also obtained. Theacoustic arrays consist of arrays of five audio-range and six infrasoundmicrophones operating at 50 KHz and 1 KHz respectively. The lightninginterferometer at Fort Morgan CO. consists of three flat-plate, 13" diameterantennas at the vertices of an equilateral 50 m per side triangle. Theinterferometer at Langmuir Laboratory consists of three 13" dishes separatedby about 15 m. Both interferometers, operating at 180 Megasamples persecond, use the analysis software and digitizer hardware pioneered byStanley, Stock et al. The <span class="hlt">high</span> data rate allows for excellent spatialresolution of <span class="hlt">high</span> speed (and typically <span class="hlt">high</span> current) processes such asK-changes, return strokes and dart-leaders. In previous studies, we haveshown the usefulness of acoustic recordings to locate thunder sources aswell as infrasound pulses from <span class="hlt">lightning</span>. This work will present acomparison of Acoustic and Interferometric measurements from <span class="hlt">lightning</span>,using some interesting flashes, including a positive cloud to ground,that occurred in these campaigns.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.A71B0093M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.A71B0093M"><span>Three-Dimensional Radar and Total <span class="hlt">Lightning</span> Characteristics of Mesoscale Convective Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCormick, T. L.; Carey, L. D.; Murphy, M. J.; Demetriades, N. W.</p> <p>2002-12-01</p> <p>Preliminary analysis of three-dimensional radar and total <span class="hlt">lightning</span> characteristics for two mesoscale convective systems (MCSs) occurring in the Dallas-Fort Worth, Texas area during 12-13 October 2001 and 7-8 April 2002 are presented. This study utilizes WSR-88D Level II radar (KFWS), Vaisala GAI Inc. <span class="hlt">Lightning</span> Detection and Ranging II (LDAR II), and National <span class="hlt">Lightning</span> Detection Network (NLDN) data to gain a better understanding of the structure and evolution of MCSs, with special emphasis on total <span class="hlt">lightning</span>. More specifically, this research examines the following topics: 1) the characteristics and evolution of total <span class="hlt">lightning</span> in MCS's, 2) the correlation between radar reflectivity and <span class="hlt">lightning</span> flash origins in MCSs, 3) the evolution of the dominant cloud-to-ground (CG) <span class="hlt">lightning</span> polarity and peak current in both the stratiform and convective regions of MCSs, and 4) the similarities and differences in mesoscale structure and <span class="hlt">lightning</span> behavior between the two MCSs being studied. Results thus far are in good agreement with previous studies. For example, CG <span class="hlt">lightning</span> polarity in both MCSs is predominately negative (~90%). Also, the storm cells within the MCSs that exhibit very strong updrafts, identified by <span class="hlt">high</span> (> 50 dBZ) radar reflectivities, weak echo regions, hook echoes, and/or confirmed severe reports, have higher mean <span class="hlt">lightning</span> flash origin heights than storm cells with weaker updrafts. Finally, a significant increase in total <span class="hlt">lightning</span> production (from ~10 to ~18 flashes/min) followed by a significant decrease (from ~18 to ~12 to ~5 flashes/min) is evident approximately one-half hour and ten minutes, respectively, prior to tornado touchdown from a severe storm cell located behind the main convective squall line of the 12-13 October 2001 MCS. These preliminary results, as well as other total <span class="hlt">lightning</span> and radar characteristics of two MCSs, will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10564E..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10564E..06L"><span>Optical design of the <span class="hlt">lightning</span> imager for MTG</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lorenzini, S.; Bardazzi, R.; Di Giampietro, M.; Feresin, F.; Taccola, M.; Cuevas, L. P.</p> <p>2017-11-01</p> <p>The <span class="hlt">Lightning</span> Imager for Meteosat Third Generation is an optical payload with on-board data processing for the detection of <span class="hlt">lightning</span>. The instrument will provide a global monitoring of <span class="hlt">lightning</span> events over the full Earth disk from geostationary orbit and will operate in day and night conditions. The requirements of the large field of view together with the <span class="hlt">high</span> detection efficiency with small and weak optical pulses superimposed to a much brighter and <span class="hlt">highly</span> spatial and temporal variable background (full operation during day and night conditions, seasonal variations and different albedos between clouds oceans and lands) are driving the design of the optical instrument. The main challenge is to distinguish a true <span class="hlt">lightning</span> from false events generated by random noise (e.g. background shot noise) or sun glints diffusion or signal variations originated by microvibrations. This can be achieved thanks to a `multi-dimensional' filtering, simultaneously working on the spectral, spatial and temporal domains. The spectral filtering is achieved with a very narrowband filter centred on the bright <span class="hlt">lightning</span> O2 triplet line (777.4 nm +/- 0.17 nm). The spatial filtering is achieved with a ground sampling distance significantly smaller (between 4 and 5 km at sub satellite pointing) than the dimensions of a typical <span class="hlt">lightning</span> pulse. The temporal filtering is achieved by sampling continuously the Earth disk within a period close to 1 ms. This paper presents the status of the optical design addressing the trade-off between different configurations and detailing the design and the analyses of the current baseline. Emphasis is given to the discussion of the design drivers and the solutions implemented in particular concerning the spectral filtering and the optimisation of the signal to noise ratio.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990079433&hterms=rain+storm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Drain%2Bstorm','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990079433&hterms=rain+storm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Drain%2Bstorm"><span>Characterizing the Relationships Among <span class="hlt">Lightning</span> and Storm Parameters: <span class="hlt">Lightning</span> as a Proxy Variable</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, S. J.; Raghavan, R.; William, E.; Weber, M.; Boldi, B.; Matlin, A.; Wolfson, M.; Hodanish, S.; Sharp. D.</p> <p>1997-01-01</p> <p>We have gained important insights from prior studies that have suggested relationships between <span class="hlt">lightning</span> and storm growth, decay, convective rain flux, vertical distribution of storm mass and echo volume in the region, and storm energetics. A study was initiated in the Summer of 1996 to determine how total (in-cloud plus ground) <span class="hlt">lightning</span> observations might provide added knowledge to the forecaster in the determination and identification of severe thunderstorms and weather hazards in real-time. The Melbourne Weather Office was selected as a primary site to conduct this study because Melbourne is the only site in the world with continuous and open access to total <span class="hlt">lightning</span> (LDAR) data and a Doppler (WSR-88D) radar. A <span class="hlt">Lightning</span> Imaging Sensor Data Applications Demonstration (LISDAD) system was integrated into the forecaster's workstation during the Summer 1996 to allow the forecaster to interact in real-time with the multi-sensor data being displayed. LISDAD currently ingests LDAR data, the cloud-to-ground National <span class="hlt">Lightning</span> Detection Network (NLDN) data, and the Melbourne radar data in f real-time. The interactive features provide the duty forecaster the ability to perform quick diagnostics on storm cells of interest. Upon selection of a storm cell, a pop-up box appears displaying the time-history of various storm parameters (e.g., maximum radar reflectivity, height of maximum reflectivity, echo-top height, NLDN and LDAR <span class="hlt">lightning</span> flash rates, storm-based vertically integrated liquid water content). This product is archived to aid on detailed post-analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMAE23A..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMAE23A..01L"><span>Toward a Time-Domain Fractal <span class="hlt">Lightning</span> Simulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, C.; Carlson, B. E.; Lehtinen, N. G.; Cohen, M.; Lauben, D.; Inan, U. S.</p> <p>2010-12-01</p> <p>Electromagnetic simulations of <span class="hlt">lightning</span> are useful for prediction of <span class="hlt">lightning</span> properties and exploration of the underlying physical behavior. Fractal <span class="hlt">lightning</span> models predict the spatial structure of the discharge, but thus far do not provide much information about discharge behavior in time and therefore cannot predict electromagnetic wave emissions or current characteristics. Here we develop a time-domain fractal <span class="hlt">lightning</span> simulation from Maxwell's equations, the method of moments with the thin wire approximation, an adaptive time-stepping scheme, and a simplified electrical model of the <span class="hlt">lightning</span> channel. The model predicts current pulse structure and electromagnetic wave emissions and can be used to simulate the entire duration of a <span class="hlt">lightning</span> discharge. The model can be used to explore the electrical characteristics of the <span class="hlt">lightning</span> channel, the temporal development of the discharge, and the effects of these characteristics on observable electromagnetic wave emissions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850067258&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DATLA','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850067258&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DATLA"><span><span class="hlt">Lightning</span> on Venus</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scarf, F. L.</p> <p>1985-01-01</p> <p>On the night side of Venus, the plasma wave instrument on the Pioneer-Venus Orbiter frequently detects strong and impulsive low-frequency noise bursts when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere. The signals have characteristics of <span class="hlt">lightning</span> whistlers, and an attempt was made to identify the sources by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set strongly indicates a clustering of <span class="hlt">lightning</span> sources near the Beta and Phoebe Regios, with additional significant clustering near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized <span class="hlt">lightning</span> sources at or near the planetary surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130012038','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130012038"><span>Structural Analysis of <span class="hlt">Lightning</span> Protection System for New Launch Vehicle</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cope, Anne; Moore, Steve; Pruss, Richard</p> <p>2008-01-01</p> <p>This project includes the design and specification of a <span class="hlt">lightning</span> protection system for Launch Complex 39 B (LC39B) at Kennedy Space Center, FL in support of the Constellation Program. The purpose of the <span class="hlt">lightning</span> protection system is to protect the Crew Launch Vehicle (CLV) or Cargo Launch Vehicle (CaLV) and associated launch equipment from direct <span class="hlt">lightning</span> strikes during launch processing and other <span class="hlt">activities</span> prior to flight. The design includes a three-tower, overhead catenary wire system to protect the vehicle and equipment on LC39B as described in the study that preceded this design effort: KSC-DX-8234 "Study: Construct <span class="hlt">Lightning</span> Protection System LC3 9B". The study was a collaborative effort between Reynolds, Smith, and Hills (RS&H) and ASRC Aerospace (ASRC), where ASRC was responsible for the theoretical design and risk analysis of the <span class="hlt">lightning</span> protection system and RS&H was responsible for the development of the civil and structural components; the mechanical systems; the electrical and grounding systems; and the siting of the <span class="hlt">lightning</span> protection system. The study determined that a triangular network of overhead catenary cables and down conductors supported by three triangular free-standing towers approximately 594 ft tall (each equipped with a man lift, ladder, electrical systems, and communications systems) would provide a level of <span class="hlt">lightning</span> protection for the Constellation Program CLV and CaLV on Launch Pad 39B that exceeds the design requirements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3253777','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3253777"><span>Remarkable Rates of <span class="hlt">Lightning</span> Strike Mortality in Malawi</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Borgerhoff Mulder, Monique; Msalu, Lameck; Caro, Tim; Salerno, Jonathan</p> <p>2012-01-01</p> <p>Livingstone's second mission site on the shore of Lake Malawi suffers very <span class="hlt">high</span> rates of consequential <span class="hlt">lightning</span> strikes. Comprehensive interviewing of victims and their relatives in seven Traditional Authorities in Nkhata Bay District, Malawi revealed that the annual rate of consequential strikes was 419/million, more than six times higher than that in other developing countries; the rate of deaths from <span class="hlt">lightning</span> was 84/million/year, 5.4 times greater than the highest ever recorded. These remarkable figures reveal that <span class="hlt">lightning</span> constitutes a significant stochastic source of mortality with potential life history consequences, but it should not deflect attention away from the more prominent causes of mortality in this rural area. PMID:22253708</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.192G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.192G"><span>Ten years of <span class="hlt">Lightning</span> Imaging Sensor (LIS) data: Preparing the way for geostationary <span class="hlt">lightning</span> imaging</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grandell, J.; Stuhlmann, R.</p> <p>2010-09-01</p> <p>The <span class="hlt">Lightning</span> Imaging Sensor (LIS) onboard the Tropical Rainfall Measurement Mission (TRMM) platform has provided a continuous source of <span class="hlt">lightning</span> observations in the +/- 35 deg latitude region since 1998. LIS, together with its predecessor Optical Transient Detector (OTD) have established an unprecedented database of optical observations of <span class="hlt">lightning</span> from a low-earth orbit, allowing a more consistent and uniform view of <span class="hlt">lightning</span> that has been available from any ground-based system so far. The main disadvantage of LIS is that, since it operates on a low-earth orbit with a low inclination, only a small part of the globe is viewed at a time and only for a duration of ~2 minutes, and for a rapidly changing phenomenon like convection and the <span class="hlt">lightning</span> related thereto this is far from optimal. This temporal sampling deficiency can, however, be overcome with observations from a geostationary orbit. One such mission in preparation is the <span class="hlt">Lightning</span> Imager on-board the Meteosat Third Generation (MTG) satellite, which will provide service continuation to the Meteosat Second Generation (MSG) system from 2018 onwards. The current MSG system has become the primary European source of geostationary observations over Europe and Africa with the start of nominal operations in January 2004, and will be delivering observations and services at least until 2017. However, considering the typical development cycle for a new complex space system, it was already for a longer time necessary to plan for and define the MTG system. MTG needs to be available around 2016, before the end of the nominal lifetime of MSG-3. One of the new missions selected for MTG is the previously mentioned <span class="hlt">Lightning</span> Imager (LI) mission, detecting continuously over almost the full disc the <span class="hlt">lightning</span> discharges taking place in clouds or between cloud and ground with a resolution around 10 km. The LI mission is intended to provide a real time <span class="hlt">lightning</span> detection (cloud-to-cloud and cloud-to-ground strokes) and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008786','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008786"><span>Total <span class="hlt">Lightning</span> as an Indicator of Mesocyclone Behavior</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stough, Sarah M.; Carey, Lawrence D.; Schultz, Christopher J.</p> <p>2014-01-01</p> <p>Apparent relationship between total <span class="hlt">lightning</span> (in-cloud and cloud to ground) and severe weather suggests its operational utility. Goal of fusion of total <span class="hlt">lightning</span> with proven tools (i.e., radar <span class="hlt">lightning</span> algorithms. Preliminary work here investigates circulation from Weather Suveilance Radar- 1988 Doppler (WSR-88D) coupled with total <span class="hlt">lightning</span> data from <span class="hlt">Lightning</span> Mapping Arrays.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9614008','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9614008"><span><span class="hlt">Lightning</span>-associated deaths--United States, 1980-1995.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p></p> <p>1998-05-22</p> <p>A <span class="hlt">lightning</span> strike can cause death or various injuries to one or several persons. The mechanism of injury is unique, and the manifestations differ from those of other electrical injuries. In the United States, <span class="hlt">lightning</span> causes more deaths than do most other natural hazards (e.g., hurricanes and tornadoes), although the incidence of <span class="hlt">lightning</span>-related deaths has decreased since the 1950s. The cases described in this report illustrate diverse circumstances in which deaths attributable to <span class="hlt">lightning</span> can occur. This report also summarizes data from the Compressed Mortality File of CDC's National Center for Health Statistics on <span class="hlt">lightning</span> fatalities in the United States from 1980 through 1995, when 1318 deaths were attributed to <span class="hlt">lightning</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMAE13A0339R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMAE13A0339R"><span><span class="hlt">Lightning</span> Mapping Observations of Volume-Filling Small Discharges in Thunderstorms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rison, W.; Krehbiel, P. R.; Thomas, R. J.; Rodeheffer, D.</p> <p>2013-12-01</p> <p><span class="hlt">Lightning</span> is usually considered to be a large-scale electrical discharge in the atmosphere. For example, the American Meteorological Society's Glossary of Meteorology defines <span class="hlt">lightning</span> as "a transient, <span class="hlt">high</span>-current electric discharge with pathlengths measured in kilometers" (http://glossary.ametsoc.org/wiki/<span class="hlt">Lightning</span>). There have been several reported examples of short-duration discharges in thunderstorms, which have a duration of a few microseconds to less than a millisecond, and have a small spatial extent These short-duration discharges were located at <span class="hlt">high</span> altitudes (> 14 km), altitudes consistent with being located between the upper positive charge and the negative screening layer. At these altitudes, the electric field needed to initiate an electrical discharge is much lower than it is at the altitudes of initiation for IC (~8 km) or CG (~5 km) flashes. We have recently reported on short-duration "precursor" discharges with durations of a few microseconds to a few milliseconds, which occur in the <span class="hlt">high</span>-fields between the mid-level negative and upper positive charge regions. These "precursor" discharges are discrete in both time and space, being separated in time by hundreds of milliseconds to several seconds, and localized in space, usually very close to the initiation location of a subsequent IC discharge. We have recently observed nearly continuous, volume filling short-duration discharges in several thunderstorms. These discharges have durations of much less than a millisecond, spatial extents of less than a few hundred meters, and occur randomly in the volume between the mid-level negative and upper positive charge regions. During an <span class="hlt">active</span> period, these discharges occur every few milliseconds. The rates of these discharges decreases dramatically to a few per second following an IC discharge, then increases to several hundred per second until the next discharge. In a storm just off the Florida coast, one cell was producing a large number of these small</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19704405','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19704405"><span>Fatal <span class="hlt">lightning</span> strikes in Malaysia.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Murty, O P; Kian, Chong Kah; Ari Husin, Mohammed Husrul; Nanta Kumar, Ranjeev Kumar; Mohammed Yusuf, Wan Yuhana W</p> <p>2009-09-01</p> <p><span class="hlt">Lightning</span> strike is a natural phenomenon with potentially devastating effects and represents one of the important causes of deaths from environmental phenomena. Almost every organ system may be affected as <span class="hlt">lightning</span> current passes through the human body taking the shortest pathways between the contact points. A 10 years retrospective study (1996-2005) was conducted at University Hospital Kuala Lumpur (20 cases) also including cases during last 3 years from Hospital Tengku Ampuan Rahimah, Klang (7 cases) from the autopsy reports at Forensic Pathology Units of these 2 hospitals. Both these hospitals are attached to University of Malaya. There were 27 fatal cases of <span class="hlt">lightning</span> strike with male preponderance(92.59%) and male to female ratio of 12.5:1. Majority of victims of <span class="hlt">lightning</span> strike were from the age group between 30 and 39 years old. Most of the victims were foreign workers. Indonesians workers contributed to 59.26% of overall cases. Majority of them were construction workers who attributed i.e.11 of 27 cases (40.74%). Most of the victims were brought in dead (37.04%). In majority of the cases the <span class="hlt">lightning</span> incidence occurred in the evenings, with the frequency of 15 of 27 cases (62.5%). The month of December represented with the highest number of cases (5 cases of 23 cases); 2004 had the highest incidence of <span class="hlt">lightning</span> strike which was 5 (19.23%). <span class="hlt">Lightning</span> strike incidence occurred when victims had taken shelter (25.9%) under trees or shades. <span class="hlt">Lightning</span> strike in open areas occurred in 10 of 27 cases (37.0%). Head and neck were the most commonly affected sites with the incidence of 77.78% and 74% respectively in all the victims. Only 29.63% of the cases presented with ear bleeding.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990108648&hterms=lightning+facts&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlightning%2Bfacts','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990108648&hterms=lightning+facts&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlightning%2Bfacts"><span><span class="hlt">Lightning</span> and 85-GHz MCSs in the Global Tropics</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Toracinta, E. Richard; Zipser, E. J.</p> <p>1999-01-01</p> <p>Numerous observations of tropical convection show that tropical continental mesoscale convective systems (MCSs) are much more prolific <span class="hlt">lightning</span> producers than their oceanic counterparts. Satellite-based climatologies using 85-GHz passive microwave ice-scattering signatures from the Special Sensor Microwave/Imager (SSM/I) indicate that MCSs of various size and intensity are found throughout the global tropics. In contrast, global <span class="hlt">lightning</span> distributions show a strong land bias with an order of magnitude difference between land and ocean <span class="hlt">lightning</span>. This is somewhat puzzling, since 85-GHz ice-scattering and the charge separation processes that lead to <span class="hlt">lightning</span> are both thought to depend upon the existence of large graupel particles. The fact that low 85-GHz brightness temperatures are observed in tropical oceanic MCSs containing virtually no <span class="hlt">lightning</span> leads to the postulate that tropical oceanic and tropical continental MCSs have fundamentally different hydrometeor profiles through the mixed phase region of the cloud (0 C <= T <= 20 C). Until recently, validation of this postulate has not been practicable on a global scale. Recent deployment of the Tropical Rainfall Measuring Mission (TRMM) satellite presents a unique opportunity for MCS studies. The multi-sensor instrument ensemble aboard TRMM, including a multi-channel microwave radiometer, the <span class="hlt">Lightning</span> Imaging Sensor (LIS), and the first space-borne radar, facilitates <span class="hlt">high</span>-resolution case studies of MCS structure throughout the global tropics. An important precursor, however, is to better understand the distribution of MCSs and <span class="hlt">lightning</span> in the tropics. With that objective in mind, this research undertakes a systematic comparison of 85-GHz-defined MCSs and <span class="hlt">lightning</span> over the global tropics for a full year, as an initial step toward quantifying differences between land and ocean convective systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940018765','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940018765"><span><span class="hlt">Lightning</span> studies using LDAR and LLP data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Forbes, Gregory S.</p> <p>1993-01-01</p> <p>This study intercompared <span class="hlt">lightning</span> data from LDAR and LLP systems in order to learn more about the spatial relationships between thunderstorm electrical discharges aloft and <span class="hlt">lightning</span> strikes to the surface. The ultimate goal of the study is to provide information that can be used to improve the process of real-time detection and warning of <span class="hlt">lightning</span> by weather forecasters who issue <span class="hlt">lightning</span> advisories. The <span class="hlt">Lightning</span> Detection and Ranging (LDAR) System provides data on electrical discharges from thunderstorms that includes cloud-ground flashes as well as <span class="hlt">lightning</span> aloft (within cloud, cloud-to-cloud, and sometimes emanating from cloud to clear air outside or above cloud). The <span class="hlt">Lightning</span> Location and Protection (LLP) system detects primarily ground strikes from <span class="hlt">lightning</span>. Thunderstorms typically produce LDAR signals aloft prior to the first ground strike, so that knowledge of preferred positions of ground strikes relative to the LDAR data pattern from a thunderstorm could allow advance estimates of enhanced ground strike threat. Studies described in the report examine the position of LLP-detected ground strikes relative to the LDAR data pattern from the thunderstorms. The report also describes other potential approaches to the use of LDAR data in the detection and forecasting of <span class="hlt">lightning</span> ground strikes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27328835','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27328835"><span>Relativistic-microwave theory of ball <span class="hlt">lightning</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, H-C</p> <p>2016-06-22</p> <p>Ball <span class="hlt">lightning</span>, a fireball sometimes observed during <span class="hlt">lightnings</span>, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a <span class="hlt">lightning</span> stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball <span class="hlt">lightning</span>, such as the occurrence site, relation to the <span class="hlt">lightning</span> channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for <span class="hlt">lightning</span> protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...628263W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...628263W"><span>Relativistic-microwave theory of ball <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, H.-C.</p> <p>2016-06-01</p> <p>Ball <span class="hlt">lightning</span>, a fireball sometimes observed during <span class="hlt">lightnings</span>, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a <span class="hlt">lightning</span> stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball <span class="hlt">lightning</span>, such as the occurrence site, relation to the <span class="hlt">lightning</span> channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for <span class="hlt">lightning</span> protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4916449','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4916449"><span>Relativistic-microwave theory of ball <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wu, H.-C.</p> <p>2016-01-01</p> <p>Ball <span class="hlt">lightning</span>, a fireball sometimes observed during <span class="hlt">lightnings</span>, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a <span class="hlt">lightning</span> stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball <span class="hlt">lightning</span>, such as the occurrence site, relation to the <span class="hlt">lightning</span> channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for <span class="hlt">lightning</span> protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics. PMID:27328835</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016612','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016612"><span>Camp Blanding <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blakeslee,Richard; Christian, Hugh; Bailey, Jeffrey; Hall, John; Uman, Martin; Jordan, Doug; Krehbiel, Paul; Rison, William; Edens, Harald</p> <p>2011-01-01</p> <p>A seven station, short base-line <span class="hlt">Lightning</span> Mapping Array was installed at the Camp Blanding International Center for <span class="hlt">Lightning</span> Research and Testing (ICLRT) during April 2011. This network will support science investigations of Terrestrial Gamma-Ray Flashes (TGFs) and <span class="hlt">lightning</span> initiation using rocket triggered <span class="hlt">lightning</span> at the ICLRT. The network operations and data processing will be carried out through a close collaboration between several organizations, including the NASA Marshall Space Flight Center, University of Alabama in Huntsville, University of Florida, and New Mexico Tech. The deployment was sponsored by the Defense Advanced Research Projects Agency (DARPA). The network does not have real-time data dissemination. Description, status and plans will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........48T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........48T"><span>A comparison of two ground-based <span class="hlt">lightning</span> detection networks against the satellite-based <span class="hlt">lightning</span> imaging sensor (LIS)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, Kelsey B.</p> <p></p> <p>We compared <span class="hlt">lightning</span> stroke data from the ground-based World Wide <span class="hlt">Lightning</span> Location Network (WWLLN) and <span class="hlt">lightning</span> stroke data from the ground-based Earth Networks Total <span class="hlt">Lightning</span> Network (ENTLN) to <span class="hlt">lightning</span> group data from the satellite-based <span class="hlt">Lightning</span> Imaging Sensor (LIS) from 1 January 2010 through 30 June 2011. The region of study, about 39°S to 39°N latitude, 164°E to 17°W longitude, chosen to approximate the Geostationary <span class="hlt">Lightning</span> Mapper (GLM) field of view, was considered in its entirety and then divided into four geographical sub-regions. We found the highest 18-mon WWLLN coincidence percent (CP) value in the Pacific Ocean at 18.9% and the highest 18-mon ENTLN CP value in North America at 63.3%. We found the lowest 18-mon CP value for both WWLLN and ENTLN in South America at 6.2% and 2.2% respectively. Daily CP values and how often large radiance LIS groups had a coincident stroke varied. Coincidences between LIS groups and ENTLN strokes often resulted in more cloud than ground coincidences in North America and more ground than cloud coincidences in the other three sub-regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MsT..........4E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MsT..........4E"><span>Evaluation of <span class="hlt">Lightning</span> Jumps as a Predictor of Severe Weather in the Northeastern United States</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eck, Pamela</p> <p></p> <p>Severe weather events in the northeastern United States can be challenging to forecast, given how the evolution of deep convection can be influenced by complex terrain and the lack of quality observations in complex terrain. To supplement existing observations, this study explores using <span class="hlt">lightning</span> to forecast severe convection in areas of complex terrain in the northeastern United States. A sudden increase in <span class="hlt">lightning</span> flash rate by two standard deviations (2sigma), also known as a <span class="hlt">lightning</span> jump, may be indicative of a strengthening updraft and an increased probability of severe weather. This study assesses the value of using <span class="hlt">lightning</span> jumps to forecast severe weather during July 2015 in the northeastern United States. Total <span class="hlt">lightning</span> data from the National <span class="hlt">Lightning</span> Detection Network (NLDN) is used to calculate <span class="hlt">lightning</span> jumps using a 2sigma <span class="hlt">lightning</span> jump algorithm with a minimum threshold of 5 flashes min-1. <span class="hlt">Lightning</span> jumps are used to predict the occurrence of severe weather, as given by whether a Storm Prediction Center (SPC) severe weather report occurred 45 min after a <span class="hlt">lightning</span> jump in the same cell. Results indicate a <span class="hlt">high</span> probability of detection (POD; 85%) and a <span class="hlt">high</span> false alarm rate (FAR; 89%), suggesting that <span class="hlt">lightning</span> jumps occur in sub-severe storms. The interaction between convection and complex terrain results in a locally enhanced updraft and an increased probability of severe weather. Thus, it is hypothesized that conditioning on an upslope variable may reduce the FAR. A random forest is introduced to objectively combine upslope flow, calculated using data from the <span class="hlt">High</span> Resolution Rapid Refresh (HRRR), flash rate (FR), and flash rate changes with time (DFRDT). The random forest, a machine-learning algorithm, uses pattern recognition to predict a severe or non-severe classification based on the predictors. In addition to upslope flow, FR, and DFRDT, Next-Generation Radar (NEXRAD) Level III radar data was also included as a predictor to compare its</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol4/pdf/CFR-2011-title14-vol4-sec420-71.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol4/pdf/CFR-2011-title14-vol4-sec420-71.pdf"><span>14 CFR 420.71 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by <span class="hlt">lightning</span>. (1) Elements of a lighting protection system. Unless an... facilities shall have a <span class="hlt">lightning</span> protection system to ensure explosives are not initiated by <span class="hlt">lightning</span>. A...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol4/pdf/CFR-2012-title14-vol4-sec420-71.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol4/pdf/CFR-2012-title14-vol4-sec420-71.pdf"><span>14 CFR 420.71 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by <span class="hlt">lightning</span>. (1) Elements of a lighting protection system. Unless an... facilities shall have a <span class="hlt">lightning</span> protection system to ensure explosives are not initiated by <span class="hlt">lightning</span>. A...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title14-vol4/pdf/CFR-2014-title14-vol4-sec420-71.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title14-vol4/pdf/CFR-2014-title14-vol4-sec420-71.pdf"><span>14 CFR 420.71 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by <span class="hlt">lightning</span>. (1) Elements of a lighting protection system. Unless an... facilities shall have a <span class="hlt">lightning</span> protection system to ensure explosives are not initiated by <span class="hlt">lightning</span>. A...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol4/pdf/CFR-2013-title14-vol4-sec420-71.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol4/pdf/CFR-2013-title14-vol4-sec420-71.pdf"><span>14 CFR 420.71 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by <span class="hlt">lightning</span>. (1) Elements of a lighting protection system. Unless an... facilities shall have a <span class="hlt">lightning</span> protection system to ensure explosives are not initiated by <span class="hlt">lightning</span>. A...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22580490','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22580490"><span><span class="hlt">Lightning</span> and severe thunderstorms in event management.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walsh, Katie M</p> <p>2012-01-01</p> <p>There are a few national position stands/guidelines that address environmental conditions in athletics, yet they do not govern all outdoor sports. Extreme heat and cold, <span class="hlt">lightning</span>, and severe wind can all be fatal, yet the majority of outdoor sports have no published guidelines addressing these conditions in relation to <span class="hlt">activity</span>. Available research on extreme heat and cold conditions in athletics provides prevention strategies, to include acclimatization. <span class="hlt">Lightning</span> and severe wind are two environmental conditions to which humans cannot accommodate, and they both can be deadly. There are strong positions on extreme heat/cold and <span class="hlt">lightning</span> safety in athletics, but none affiliated with severe winds. Medical personnel involved in planning large outdoor sporting events must know of the presence of nationally published weather-related documents and apply them to their event. In addition, research needs to be expanded in the realm of establishing guidelines for safety to participants and spectators in severe wind conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22104330','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22104330"><span>Secondary missile injury from <span class="hlt">lightning</span> strike.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blumenthal, Ryan</p> <p>2012-03-01</p> <p>A 48-year-old-woman was struck dead by <span class="hlt">lightning</span> on October 24, 2010, in Pretoria, South Africa. The cause of death was due to direct <span class="hlt">lightning</span> strike. Examination showed secondary missile injury on her legs. This secondary missile (shrapnel) injury was caused by the <span class="hlt">lightning</span> striking the concrete pavement next to her. Small pieces of concrete were located embedded within the shrapnel wounds. This case report represents the first documented case of secondary missile formation (shrapnel injury) due to <span class="hlt">lightning</span> strike in the literature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17520964','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17520964"><span>Filigree burn of <span class="hlt">lightning</span>: two case reports.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kumar, Virendra</p> <p>2007-04-01</p> <p><span class="hlt">Lightning</span> is a powerful natural electrostatic discharge produced during a thunderstorm. The electric current passing through the discharge channels is direct with a potential of 1000 million volts or more. <span class="hlt">Lightning</span> can kill or injure a person by a direct strike, a side-flash, or conduction through another object. <span class="hlt">Lightning</span> can cause a variety of injuries in the skin and the cardiovascular, neurological and ophthalmic systems. Filigree burn of <span class="hlt">lightning</span> is a superficial burn and very rare. Two cases of death from <span class="hlt">lightning</span> which have this rare finding are reported and discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE33A2519C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE33A2519C"><span>Preliminary study on the Validation of FY-4A <span class="hlt">Lightning</span> Mapping Imager</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, D.; Lu, F.; Qie, X.; Zhang, X.; Huang, F.; Wang, D.</p> <p>2017-12-01</p> <p>The FengYun-4 (FY-4) geostationary meteorological satellite is the second generation of China's geostationary meteorological satellite. The FY-4A was launched on December 11th, 2016. It includes a new instrument <span class="hlt">Lightning</span> Mapping Imager (LMI) for total <span class="hlt">lightning</span> (cloud and cloud-to-ground flashes) detection. The LMI operates at a wavelength of 777.4nm with 1.9ms integrated time. And it could observe <span class="hlt">lightning</span> <span class="hlt">activity</span> continuously day and night with spatial resolution of 7.8 km (sub satellite point) over China region. The product algorithm of LMI consists of false signal filtering and flash clustering analysis. The false signal filtering method is used to identify and remove non-<span class="hlt">lightning</span> artifacts in optical events. The flash clustering analysis method is used to cluster "event" into "group" and "flash" using specified time and space threshold, and the other non-<span class="hlt">lightning</span> optical events are filtered further more in the clustering analysis. The ground-based <span class="hlt">lightning</span> location network (LLN) in China and WWLLN (World Wide <span class="hlt">Lightning</span> Location Network) were both used to make preliminary validation of LMI. The detection efficiency for cloud-to-ground <span class="hlt">lightning</span>, spatial and temporal accuracy of LMI were estimated by the comparison of <span class="hlt">lightning</span> observations from ground-based network and LMI. The day and night biases were also estiamted. Although the LLN and WWLLN mainly observe return strokes in cloud-to-ground flash, the accuracy of LMI still could be estimated for that it was not associated with the flash type mostly. The false alarm efficiency of LMI was estimated using the Geostationary Interferometric Infrared Sounder (GIIRS), another payloads on the FY-4A satellite. The GIIRS could identify the convective cloud region and give more information about the cloud properties. The GIIRS products were used to make a rough evaluation of false alarm efficiency of LMI. The results of this study reveal details of characteristics of LMI instrument. It is also found that the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19093549','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19093549"><span>[The study on the characteristics and particle densities of <span class="hlt">lightning</span> discharge plasma].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Jie; Yuan, Ping; Zhang, Hua-ming; Shen, Xiao-zhi</p> <p>2008-09-01</p> <p>According to the wavelengths, relative intensities and transition parameters of lines in cloud-to-ground <span class="hlt">lightning</span> spectra obtained by a slit-less spectrograph in Qinghai province and Xizang municipality, and by theoretical calculations of plasma, the average temperature and electron density for individual <span class="hlt">lightning</span> discharge channel were calculated, and then, using Saha equations, electric charge conservation equations and particle conservation equations, the particle densities of every ionized-state, the mass density, pressure and the average ionization degree were obtained. Moreover, the average ionization degree and characteristics of particle distributions in each <span class="hlt">lightning</span> discharge channel were analyzed. Local thermodynamic equilibrium and an optically thin emitting gas were assumed in the calculations. The result shows that the characteristics of <span class="hlt">lightning</span> discharge plasma have strong relationships with <span class="hlt">lightning</span> intensities. For a certain return stroke channel, both temperatures and electron densities of different positions show tiny trend of falling away with increasing height along the discharge channel. <span class="hlt">Lightning</span> channels are almost completely ionized, and the first ionized particles occupy the main station while N II has the highest particle density. On the other hand, the relative concentrations of N II and O II are near a constant in <span class="hlt">lightning</span> channels with different intensities. Generally speaking, the more intense the <span class="hlt">lightning</span> discharge, the higher are the values of channel temperature, electron density and relative concentrations of <span class="hlt">highly</span> ionized particles, but the lower the concentration of the neutral atoms. After considering the Coulomb interactions between positive and negative particles in the calculations, the results of ionization energies decrease, and the particle densities of atoms and first ionized ions become low while <span class="hlt">high</span>-ionized ions become <span class="hlt">high</span>. At a temperature of 28000 K, the pressure of the discharge channel due to electrons</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100020938&hterms=under+armor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dunder%2Barmor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100020938&hterms=under+armor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dunder%2Barmor"><span>Exploring a Physically Based Tool for <span class="hlt">Lightning</span> Cessation: A Preliminary Study</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, Elise V.; Petersen, Walter a.; Carey, Lawrence D.; Deierling, Wiebke</p> <p>2010-01-01</p> <p>The University of Alabama in Huntsville (UA Huntsville) and NASA's Marshall Space Flight Center are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of <span class="hlt">lightning</span> cessation. The project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict <span class="hlt">lightning</span> cessation. While previous studies have developed statistically based <span class="hlt">lightning</span> cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with <span class="hlt">lightning</span>. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of <span class="hlt">lightning</span> <span class="hlt">activity</span> in a given storm? Accordingly, data from the UA Huntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the North Alabama <span class="hlt">Lightning</span> Mapping Array are used in this study to investigate the radar signatures present before and after <span class="hlt">lightning</span> cessation. A summary of preliminary results will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.469L..39K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.469L..39K"><span>Fast radio bursts as pulsar <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Katz, J. I.</p> <p>2017-07-01</p> <p>There are striking phenomenological similarities between fast radio bursts (FRBs) and <span class="hlt">lightning</span> in the Earth's and planetary atmospheres. Both have very low duty factors, ≲10-8-10-5 for FRBs and (very roughly) ˜10-4 for the main return strokes in an <span class="hlt">active</span> thundercloud. <span class="hlt">Lightning</span> occurs in an electrified insulating atmosphere when a conducting path is created by and permits current flow. FRBs may occur in neutron star magnetospheres whose plasma is believed to be divided by vacuum gaps. Vacuum is a perfect insulator unless electric fields are sufficient for electron-positron pair production by curvature radiation, a <span class="hlt">high</span>-energy analogue of electrostatic breakdown in an insulating gas. FRB may be 'electrars' powered by the release of stored electrostatic energy, counterparts to soft gamma repeaters powered by the release of stored magnetostatic energy (magnetars). This frees pulsar FRB models from the constraint that their power not exceeds the instantaneous spin-down power. Energetic constraints imply that the sources of more energetic FRBs have shorter spin-down lifetimes, perhaps even less than the 3 yr over which FRB 121102 has been observed to repeat.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatCC...8..210F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatCC...8..210F"><span>A projected decrease in <span class="hlt">lightning</span> under climate change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finney, Declan L.; Doherty, Ruth M.; Wild, Oliver; Stevenson, David S.; MacKenzie, Ian A.; Blyth, Alan M.</p> <p>2018-03-01</p> <p><span class="hlt">Lightning</span> strongly influences atmospheric chemistry1-3, and impacts the frequency of natural wildfires4. Most previous studies project an increase in global <span class="hlt">lightning</span> with climate change over the coming century1,5-7, but these typically use parameterizations of <span class="hlt">lightning</span> that neglect cloud ice fluxes, a component generally considered to be fundamental to thunderstorm charging8. As such, the response of <span class="hlt">lightning</span> to climate change is uncertain. Here, we compare <span class="hlt">lightning</span> projections for 2100 using two parameterizations: the widely used cloud-top height (CTH) approach9, and a new upward cloud ice flux (IFLUX) approach10 that overcomes previous limitations. In contrast to the previously reported global increase in <span class="hlt">lightning</span> based on CTH, we find a 15% decrease in total <span class="hlt">lightning</span> flash rate with IFLUX in 2100 under a strong global warming scenario. Differences are largest in the tropics, where most <span class="hlt">lightning</span> occurs, with implications for the estimation of future changes in tropospheric ozone and methane, as well as differences in their radiative forcings. These results suggest that <span class="hlt">lightning</span> schemes more closely related to cloud ice and microphysical processes are needed to robustly estimate future changes in <span class="hlt">lightning</span> and atmospheric composition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080013544&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeostationary','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080013544&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeostationary"><span>Pre-Launch Algorithms and Risk Reduction in Support of the Geostationary <span class="hlt">Lightning</span> Mapper for GOES-R and Beyond</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Petersen, W.; Buechler, D. E.; Krehbiel, P. R.; Gatlin, P.; Zubrick, S.</p> <p>2008-01-01</p> <p>The Geostationary <span class="hlt">Lightning</span> Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total <span class="hlt">lightning</span> <span class="hlt">activity</span> over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of <span class="hlt">lightning</span> from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk <span class="hlt">lightning</span> measurements for storm warning and nowcasting, 2) provide early warning of tornadic <span class="hlt">activity</span>, and 3) accumulate a long-term database to track decadal changes of <span class="hlt">lightning</span>. The GLM owes its heritage to the NASA <span class="hlt">Lightning</span> Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global <span class="hlt">lightning</span> <span class="hlt">activity</span>. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models is expected to be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to develop the Level 2 ground processing algorithms and applications. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., <span class="hlt">Lightning</span> Mapping Arrays in North Alabama and the Washington DC Metropolitan area)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..121.2067Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..121.2067Z"><span>A statistical study of whistler waves observed by Van Allen Probes (RBSP) and <span class="hlt">lightning</span> detected by WWLLN</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Hao; Holzworth, Robert H.; Brundell, James B.; Jacobson, Abram R.; Wygant, John R.; Hospodarsky, George B.; Mozer, Forrest S.; Bonnell, John</p> <p>2016-03-01</p> <p><span class="hlt">Lightning</span>-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global <span class="hlt">lightning</span> data from the World Wide <span class="hlt">Lightning</span> Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we predicted the most probable 10 min for which each of the two RBSP satellites would be magnetically conjugate to <span class="hlt">lightning</span> producing regions. The prediction method uses integrated WWLLN stroke data for that day obtained during the three previous years. Using these predicted times for magnetic conjugacy to <span class="hlt">lightning</span> <span class="hlt">activity</span> regions, we recorded <span class="hlt">high</span> time resolution, burst mode waveform data. Here we show that whistlers are observed by the satellites in more than 80% of downloaded waveform data. About 22.9% of the whistlers observed by RBSP are one-to-one coincident with source <span class="hlt">lightning</span> strokes detected by WWLLN. About 40.1% more of whistlers are found to be one-to-one coincident with <span class="hlt">lightning</span> if source regions are extended out 2000 km from the satellites footpoints. <span class="hlt">Lightning</span> strokes with far-field radiated VLF energy larger than about 100 J are able to generate a detectable whistler wave in the inner magnetosphere. One-to-one coincidences between whistlers observed by RBSP and <span class="hlt">lightning</span> strokes detected by WWLLN are clearly shown in the L shell range of L = 1-3. Nose whistlers observed in July 2014 show that it may be possible to extend this coincidence to the region of L≥4.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18814638','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18814638"><span>Beyond the basics: <span class="hlt">lightning</span>-strike injuries.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mistovich, Joseph J; Krost, William S; Limmer, Daniel D</p> <p>2008-03-01</p> <p>It is estimated that a <span class="hlt">lightning</span> flash occurs approximately 8 million times per day throughout the world. Most strikes are benign and cause little damage to property and physical structures; however, when <span class="hlt">lightning</span> strikes a person or group of people, it is a significant medical and potentially traumatic event that could lead to immediate death or permanent disability. By understanding some basic physics of <span class="hlt">lightning</span> and pathophysiology of injuries associated with <span class="hlt">lightning</span> strikes, EMS providers will be better prepared to identify assessment findings, anticipate complications and provide effective emergency care.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980237715','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980237715"><span><span class="hlt">Lightning</span> Radio Source Retrieval Using Advanced <span class="hlt">Lightning</span> Direction Finder (ALDF) Networks</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William J.; Blakeslee, Richard J.; Bailey, J. C.</p> <p>1998-01-01</p> <p>A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of <span class="hlt">lightning</span> ground strikes from an Advanced <span class="hlt">Lightning</span> Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing and arrival time of <span class="hlt">lightning</span> radio emissions. Solutions for the plane (i.e., no Earth curvature) are provided that implement all of tile measurements mentioned above. Tests of the retrieval method are provided using computer-simulated data sets. We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the <span class="hlt">lightning</span> source lies near an outer sensor baseline of the ALDF network. In the absence of measurement errors, quadratic root degeneracy (no source location ambiguity) is shown to exist exactly on the outer sensor baselines for arbitrary non-collinear network geometries. The accuracy of the quadratic planar method is tested with computer generated data sets. The results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 deg. We also note some of the advantages and disadvantages of these methods over the nonlinear method of chi(sup 2) minimization employed by the National <span class="hlt">Lightning</span> Detection Network (NLDN) and discussed in Cummins et al.(1993, 1995, 1998).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1119585','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1119585"><span>Ionospheric effects of thunderstorms and <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lay, Erin H.</p> <p>2014-02-03</p> <p>Tropospheric thunderstorms have been reported to disturb the lower ionosphere (~65-90 km) by convective atmospheric gravity waves and by electromagnetic field changes produced by <span class="hlt">lightning</span> discharges. However, due to the low electron density in the lower ionosphere, <span class="hlt">active</span> probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. Recently, we have demonstrated that by using remotely-detected ?me waveforms of <span class="hlt">lightning</span> radio signals it is possible to probe the lower ionosphere and its fluctuations in a spatially and temporally-resolved manner. Here we report evidence of gravity wave effects on the lower ionosphere originating from the thunderstorm.more » We also report variations in the nighttime ionosphere atop a small thunderstorm and associate the variations with the storm’s electrical <span class="hlt">activity</span>. Finally, we present a data analysis technique to map ionospheric acoustic waves near thunderstorms.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010pcms.confE..14S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010pcms.confE..14S"><span>The saptio-temporal distribution of <span class="hlt">lightning</span> over the southern Levant and its relation to the regional synoptic systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shalev, S.; Izsak, T.; Saaroni, H.; Yair, Y.; Ziv, B.</p> <p>2010-09-01</p> <p>The saptio-temporal distribution of <span class="hlt">lightning</span> flashes over the southern Levant is derived from data obtained from the <span class="hlt">Lightning</span> Positioning and Tracking System (LPATS) operated by the Israeli Electrical Company (IEC). The system has an aerial coverage in a range of ~ 500 Km around central Israel, including the southeastern Mediterranean Sea, Israel, Lebanon, western Syria and Jordan and the eastern part of Sinai Peninsula and the Red Sea. The study period includes 4 years. The spatial distribution of <span class="hlt">lightning</span> flash density indicated the highest concentration over the sea, and is attributed to the contribution of sensible and latent heat fluxes. Other centers of <span class="hlt">high</span> flash density appear along the coastal plain, expressing the friction effect of the coastline, and along orographic barriers, especially in northern Israel. The intra-annual distribution shows a complete absence of <span class="hlt">lightning</span> in the eastern Mediterranean during the summer (JJA) which is due to the persistent existence of the subtropical <span class="hlt">high</span> above the region. The vast majority of the <span class="hlt">lightning</span> <span class="hlt">activity</span> occurs during 7 months between October and April. Even though over 65% of the rainfall is obtained in the winter months (DJF) only 35% of the <span class="hlt">lightning</span> is obtained in the winter and October is the richest month, with 40% of total annual number of <span class="hlt">lightning</span> flashes. This is attributed mostly to tropical intrusions, i.e., Red Sea Trough (RST), which is characterized by <span class="hlt">high</span> static instability. Cyprus lows are the synoptic system contributing the vast majority, >80%, of the rainfall in Israel, but only 42% of the <span class="hlt">lightning</span>, whereas the RST, a minor contributor of rainfall, shares 48% of the <span class="hlt">lightning</span>. However, during the winter 66% of the <span class="hlt">lightning</span> flashes are associated with Cyprus lows and 25% with RST while during the autumn months the ratio is reversed: only 27% are associated with Cyprus lows and the majority (63%) occurs during RST. It was found that over 80% of the days defined as Cyprus lows were</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMAE24A..03Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMAE24A..03Z"><span>Analysis and Modeling of Intense Oceanic <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zoghzoghy, F. G.; Cohen, M.; Said, R.; Lehtinen, N. G.; Inan, U.</p> <p>2014-12-01</p> <p>Recent studies using <span class="hlt">lightning</span> data from geo-location networks such as GLD360 suggest that <span class="hlt">lightning</span> strokes are more intense over the ocean than over land, even though they are less common [Said et al. 2013]. We present an investigation of the physical differences between oceanic and land <span class="hlt">lightning</span>. We have deployed a sensitive Low Frequency (1 MHz sampling rate) radio receiver system aboard the NOAA Ronald W. Brown research vessel and have collected thousands of <span class="hlt">lightning</span> waveforms close to deep oceanic <span class="hlt">lightning</span>. We analyze the captured waveforms, describe our modeling efforts, and summarize our findings. We model the ground wave (gw) portion of the <span class="hlt">lightning</span> sferics using a numerical method built on top of the Stanford Full Wave Method (FWM) [Lehtinen and Inan 2008]. The gwFWM technique accounts for propagation over a curved Earth with finite conductivity, and is used to simulate an arbitrary current profile along the <span class="hlt">lightning</span> channel. We conduct a sensitivity analysis and study the current profiles for land and for oceanic <span class="hlt">lightning</span>. We find that the effect of ground conductivity is minimal, and that stronger oceanic radio intensity does not result from shorter current rise-time or from faster return stroke propagation speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatAs.tmp...69B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatAs.tmp...69B"><span>Jovian <span class="hlt">lightning</span> whistles a new tune</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bortnik, Jacob</p> <p>2018-06-01</p> <p>The Juno spacecraft has detected unprecedented numbers of `whistlers' and `sferics' in its orbits around Jupiter, both indications of <span class="hlt">high</span> <span class="hlt">lightning</span> flash rates in the atmosphere of the gas giant planet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900004088','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900004088"><span>Systems tunnel linear shaped charge <span class="hlt">lightning</span> strike</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cook, M.</p> <p>1989-01-01</p> <p>Simulated <span class="hlt">lightning</span> strike testing of the systems tunnel linear shaped charge (LSC) was performed at the Thiokol <span class="hlt">Lightning</span> Test Complex in Wendover, Utah, on 23 Jun. 1989. The test article consisted of a 160-in. section of the LSC enclosed within a section of the systems tunnel. The systems tunnel was bonded to a section of a solid rocket motor case. All test article components were full scale. The systems tunnel cover of the test article was subjected to three discharges (each discharge was over a different grounding strap) from the <span class="hlt">high</span>-current generator. The LSC did not detonate. All three grounding straps debonded and violently struck the LSC through the openings in the systems tunnel floor plates. The LSC copper surface was discolored around the areas of grounding strap impact, and arcing occurred at the LSC clamps and LSC ends. This test verified that the present flight configuration of the redesigned solid rocket motor systems tunnel, when subjected to simulated <span class="hlt">lightning</span> strikes with peak current levels within 71 percent of the worst-case <span class="hlt">lightning</span> strike condition of NSTS-07636, is adequate to prevent LSC ignition. It is therefore recommended that the design remain unchanged.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28467585','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28467585"><span>Variations in otological presentation of <span class="hlt">lightning</span> strike victims: Clinical report of 3 patients.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kılıç, Erbil; Genç, Hakan; Aydın, Ümit; Aşık, Burak; Satar, Bülent</p> <p>2017-03-01</p> <p><span class="hlt">Lightning</span> strike can cause fatal or nonfatal injuries. Some nonfatal injuries are associated with otological symptoms and findings. Conductive hearing loss due to rupture of the tympanic membrane is the most common audiovestibular lesion of <span class="hlt">lightning</span> strike. Various forms of sensorineural hearing loss and dizziness have also been reported. Presently described are 3 cases of <span class="hlt">lightning</span> strike injury. First patient had mid-frequency hearing loss in right ear and <span class="hlt">high</span> frequency sensorineural hearing loss in left ear. Second patient had <span class="hlt">high</span> frequency sensorineural hearing loss in left ear, and the third had peripheral facial palsy with perilymphatic fistula on same side. This is the first documented case of mid-frequency hearing loss occurring after <span class="hlt">lightning</span> strike.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140012845','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140012845"><span>Meteorological Aspects of Two Modes of <span class="hlt">Lightning</span> Triggered Upward <span class="hlt">Lightning</span> (LTUL) Events in Sprite-Producing MCSs</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lyons, W. A.; Nelson, T. E.; Warner, T. A.; Lang, T. J.; Cummins, K.; Quick, M.; Rison, W.; Krehbiel, P.; Cummer, S. A.; Meyers, J.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140012845'); toggleEditAbsImage('author_20140012845_show'); toggleEditAbsImage('author_20140012845_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140012845_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140012845_hide"></p> <p>2014-01-01</p> <p>During the 2013 convective storm season, a <span class="hlt">high</span> resolution 3-D <span class="hlt">Lightning</span> Mapping Array was deployed to north central Kansas (Cummins et al, this conference.) In conjunction with fixed and mobile camera systems and electric field mills, this allowed for detailed investigations of <span class="hlt">lightning</span> induced upward lighting (LTUL) discharges from tall objects in the region, including wind turbines. Also, concurrent observations using a network of low-light cameras deployed over the central U.S. as part of the PhOCAL program detected transient luminous events (TLEs) above the Kansas LMA (KSLMA). During the night of 29-30 May 2013, waves of precipitation associated with several large MCSs traversing Kansas moved through the KSLMA domain. We focus on two LTUL events that exemplify two modes of upward <span class="hlt">lightning</span> production from tall structures. At 0859Z, 30 May 2013, a nearby + 92 kA CG, with extensive in-cloud branching passing overhead a wind farm, was followed by complex LTUL discharges from four turbines. In addition, a sprite was confirmed by the Bennett, CO SpriteNet camera. The parent flash covered a very large area. It initiated near the MCS convective leading line 150 km to the south, and traveled into a stratiform precipitation maximum over the KSLMA. Typically when a +CG precedes an LTUL, the triggering component is either 1) the return stroke that traverses the leader network which initially forms near the towers or 2) new negative leader <span class="hlt">activity</span> that develops once the return stroke reaches the end of the initial leader network that may not have initially been near the tower. In the latter case, the new leader development passes near the towers and triggers upward positive leaders similar to those associated with only an intracloud flash. The +CG return stroke may hit >10 km from the towers and the new leader development may travel extensive distances before getting close enough to the towers to trigger upward <span class="hlt">lightning</span>. In this case, there was the typical long delay</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/48980','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/48980"><span><span class="hlt">Lightning</span> fire research in the Rocky Mountains</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>J. S. Barrows</p> <p>1954-01-01</p> <p><span class="hlt">Lightning</span> is the major cause of fires in Rocky Mountain forests. The <span class="hlt">lightning</span> fire problem is the prime target of a broad research program now known as Project Skyfire. KEYWORDS: <span class="hlt">lightning</span>, fire research</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA099590','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA099590"><span><span class="hlt">Lightning</span> Technology (Supplement)</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-01-01</p> <p>material presented in this report was taken from a variety of sources; therefore, various units of measure are used. Use of trade names or names of...Clifford, and W. G. Butters 3. IMPLEMENTATION AND EXPERIENCE WITH <span class="hlt">LIGHTNING</span> HARDENING MEASURES ON THE NAVY/AIR FORCE COMBAT MANEUVERING RANGES...overall <span class="hlt">lightning</span> event taken from an appropriate base of wideband measurements . In 1979, the Air Force Wright Aeronautical Laboratories began a joint</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140003896','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140003896"><span>An Intrinsic Fiber-Optic Sensor for Structure <span class="hlt">Lightning</span> Current Measurement</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.</p> <p>2014-01-01</p> <p>An intrinsic optical-fiber sensor based on Faraday Effect is developed that is <span class="hlt">highly</span> suitable for measuring <span class="hlt">lightning</span> current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on <span class="hlt">lightning</span> towers, the sensor can help validate other sensors and <span class="hlt">lightning</span> detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a <span class="hlt">lightning</span> tower. <span class="hlt">High</span> current capabilities were demonstrated up to 200 kA at a <span class="hlt">lightning</span> test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered <span class="hlt">lightning</span> at the International Center for <span class="hlt">Lightning</span> Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for <span class="hlt">lightning</span> current measurement where low weight</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27466230','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27466230"><span>A Fossilized Energy Distribution of <span class="hlt">Lightning</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pasek, Matthew A; Hurst, Marc</p> <p>2016-07-28</p> <p>When <span class="hlt">lightning</span> strikes soil, it may generate a cylindrical tube of glass known as a fulgurite. The morphology of a fulgurite is ultimately a consequence of the energy of the <span class="hlt">lightning</span> strike that formed it, and hence fulgurites may be useful in elucidating the energy distribution frequency of cloud-to-ground <span class="hlt">lightning</span>. Fulgurites from sand mines in Polk County, Florida, USA were collected and analyzed to determine morphologic properties. Here we show that the energy per unit length of <span class="hlt">lightning</span> strikes within quartz sand has a geometric mean of ~1.0 MJ/m, and that the distribution is lognormal with respect to energy per length and frequency. Energy per length is determined from fulgurites as a function of diameter, and frequency is determined both by cumulative number and by cumulative length. This distribution parallels those determined for a number of <span class="hlt">lightning</span> parameters measured in actual atmospheric discharge events, such as charge transferred, voltage, and action integral. This methodology suggests a potential useful pathway for elucidating <span class="hlt">lightning</span> energy and damage potential of strikes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4964350','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4964350"><span>A Fossilized Energy Distribution of <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pasek, Matthew A.; Hurst, Marc</p> <p>2016-01-01</p> <p>When <span class="hlt">lightning</span> strikes soil, it may generate a cylindrical tube of glass known as a fulgurite. The morphology of a fulgurite is ultimately a consequence of the energy of the <span class="hlt">lightning</span> strike that formed it, and hence fulgurites may be useful in elucidating the energy distribution frequency of cloud-to-ground <span class="hlt">lightning</span>. Fulgurites from sand mines in Polk County, Florida, USA were collected and analyzed to determine morphologic properties. Here we show that the energy per unit length of <span class="hlt">lightning</span> strikes within quartz sand has a geometric mean of ~1.0 MJ/m, and that the distribution is lognormal with respect to energy per length and frequency. Energy per length is determined from fulgurites as a function of diameter, and frequency is determined both by cumulative number and by cumulative length. This distribution parallels those determined for a number of <span class="hlt">lightning</span> parameters measured in actual atmospheric discharge events, such as charge transferred, voltage, and action integral. This methodology suggests a potential useful pathway for elucidating <span class="hlt">lightning</span> energy and damage potential of strikes. PMID:27466230</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29303164','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29303164"><span>Automated Storm Tracking and the <span class="hlt">Lightning</span> Jump Algorithm Using GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM) Proxy Data.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schultz, Elise V; Schultz, Christopher J; Carey, Lawrence D; Cecil, Daniel J; Bateman, Monte</p> <p>2016-01-01</p> <p>This study develops a fully automated <span class="hlt">lightning</span> jump system encompassing objective storm tracking, Geostationary <span class="hlt">Lightning</span> Mapper proxy data, and the <span class="hlt">lightning</span> jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and <span class="hlt">lightning</span> information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the <span class="hlt">lightning</span> jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of <span class="hlt">lightning</span> jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the <span class="hlt">lightning</span> jump system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160009780','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160009780"><span>Automated Storm Tracking and the <span class="hlt">Lightning</span> Jump Algorithm Using GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM) Proxy Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte</p> <p>2016-01-01</p> <p>This study develops a fully automated <span class="hlt">lightning</span> jump system encompassing objective storm tracking, Geostationary <span class="hlt">Lightning</span> Mapper proxy data, and the <span class="hlt">lightning</span> jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and <span class="hlt">lightning</span> information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the <span class="hlt">lightning</span> jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of <span class="hlt">lightning</span> jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the <span class="hlt">lightning</span> jump system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5749929','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5749929"><span>Automated Storm Tracking and the <span class="hlt">Lightning</span> Jump Algorithm Using GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM) Proxy Data</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>SCHULTZ, ELISE V.; SCHULTZ, CHRISTOPHER J.; CAREY, LAWRENCE D.; CECIL, DANIEL J.; BATEMAN, MONTE</p> <p>2017-01-01</p> <p>This study develops a fully automated <span class="hlt">lightning</span> jump system encompassing objective storm tracking, Geostationary <span class="hlt">Lightning</span> Mapper proxy data, and the <span class="hlt">lightning</span> jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and <span class="hlt">lightning</span> information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the <span class="hlt">lightning</span> jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system’s performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system’s performance is evaluated with adjustments to parameter sensitivity. The system’s performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of <span class="hlt">lightning</span> jump strength) and flash rate threshold influenced the system’s performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the <span class="hlt">lightning</span> jump system. PMID:29303164</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSMAE11A..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSMAE11A..03M"><span>Modern Protection Against <span class="hlt">Lightning</span> Strikes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, C.</p> <p>2005-05-01</p> <p>The application of science to provide protection against <span class="hlt">lightning</span> strikes began around 1750 when Benjamin Franklin who invented the <span class="hlt">lightning</span> rod in an effort to discharge thunderclouds. Instead of preventing <span class="hlt">lightning</span> as he expected, his rods have been quite successful as strike receptors, intercepting cloud-to ground discharges and conducting them to Earth without damage to the structures on which they are mounted. In the years since Franklin's invention there has been little attention paid to the rod configuration that best serves as a strike receptor but Franklin's original ideas continue to be rediscovered and promoted. Recent measurements of the responses of variously configured rods to nearby strikes indicate that sharp-tipped rods are not the optimum configuration to serve as strike receptors since the ionization of the air around their tips limits the strength of the local electric fields created by an approaching <span class="hlt">lightning</span> leader. In these experiments, fourteen blunt-tipped rods exposed in strike-reception competitions with nearby sharp-tipped rods were struck by <span class="hlt">lightning</span> but none of the sharp-tipped rods were struck.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMAE23A0406B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMAE23A0406B"><span><span class="hlt">Lightning</span> Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, <span class="hlt">Activation</span>, and First Results</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.</p> <p>2016-12-01</p> <p>Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based <span class="hlt">lightning</span> observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global <span class="hlt">lightning</span> climatology. The observations included measurements from the <span class="hlt">Lightning</span> Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) and its Optical Transient Detector (OTD) predecessor that acquired global observations of total <span class="hlt">lightning</span> (i.e., intracloud and cloud-to-ground discharges) spanning a period from May 1995 through April 2015. As an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense (DoD) Space Test Program-Houston 5 (STP-H5) mission. The STP-H5 payload containing LIS is scheduled launch from NASA's Kennedy Space Center to the ISS in November 2016, aboard the SpaceX Cargo Resupply Services-10 (SpaceX-10) mission, installed in the unpressurized "trunk" of the Dragon spacecraft. After the Dragon is berth to ISS Node 2, the payload will be removed from the trunk and robotically installed in a nadir-viewing location on the external truss of the ISS. Following installation on the ISS, the LIS Operations Team will work with the STP-H5 and ISS Operations Teams to power-on LIS and begin instrument checkout and commissioning. Following successful <span class="hlt">activation</span>, LIS orbital operations will commence, managed from the newly established LIS Payload Operations Control Center (POCC) located at the National Space Science Technology Center (NSSTC) in Huntsville, AL. The well-established and robust processing, archival, and distribution infrastructure used for TRMM was easily adapted to the ISS mission, assuring that <span class="hlt">lightning</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........53S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........53S"><span>A Risk Management Framework to Characterize Black Swan Risks: A Case Study of <span class="hlt">Lightning</span> Effects on Insensitive <span class="hlt">High</span> Explosives</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanders, Gary A.</p> <p></p> <p>Effective and efficient risk management processes include the use of <span class="hlt">high</span> fidelity modeling and simulation during the concept exploration phase as part of the technology and risk assessment <span class="hlt">activities</span>, with testing and evaluation tasks occurring in later design development phases. However, some safety requirements and design architectures may be dominated by the low probability/<span class="hlt">high</span> consequence "Black Swan" vulnerabilities that require very early testing to characterize and efficiently mitigate. Failure to address these unique risks has led to catastrophic systems failures including the space shuttle Challenger, Deepwater Horizon, Fukushima nuclear reactor, and Katrina dike failures. Discovering and addressing these risks later in the design and development process can be very costly or even lead to project cancellation. This paper examines the need for risk management process adoption of early hazard phenomenology testing to inform the technical risk assessment, requirements definition and conceptual design. A case study of the <span class="hlt">lightning</span> design vulnerability of the insensitive <span class="hlt">high</span> explosives being used in construction, mining, demolition, and defense industries will be presented to examine the impact of this vulnerability testing during the concept exploration phase of the design effort. While these insensitive <span class="hlt">high</span> explosives are far less sensitive to accidental initiation by fire, impact, friction or even electrical stimuli, their full range of sensitivities have not been characterized and ensuring safe engineering design and operations during events such as <span class="hlt">lightning</span> storms requires vulnerability testing during the risk assessment phase.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26690603','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26690603"><span>ST-segment elevation following <span class="hlt">lightning</span> strike: case report and review of the literature.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akın, Alper; Bilici, Meki; Demir, Fikri; Gözü Pirinççioğlu, Ayfer; Yıldırım, Ahmet</p> <p>2015-01-01</p> <p><span class="hlt">Lightning</span> strikes may cause injury to the heart, ranging from slight electrocardiographic changes to fatal damage. As heart injury is the most important cause of mortality in these patients, cardiac monitoring is crucial. Even though various ECG changes have been reported, published data on pathologic ST-segment changes is scarce. Herein, we present a seven-year old patient with ST-segment elevation following a <span class="hlt">lightning</span> strike. There is not sufficient data regarding <span class="hlt">lightning</span>-related myocardial ischemia. However, because of the similar effects of <span class="hlt">lightning</span> strikes and <span class="hlt">high</span>-voltage electric shocks, we believe myocardial injury related to <span class="hlt">lightning</span> may be managed in the same manner as is cardiac involvement associated with electric shock.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870023308&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Drust','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870023308&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Drust"><span>Evolution of <span class="hlt">lightning</span> flash density and reflectivity structure in a multicell thunderstorm</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mazur, V.; Rust, W. D.; Gerlach, J. C.</p> <p>1986-01-01</p> <p>The radar reflectivity structure and the distribution of <span class="hlt">lightning</span> in a storm cell was investigated using S-band and UHF-band radar data for six storm cells over Wallops Island. The S-band scans were vertical and continuous, while the UHF data were taken in steps of 2.5 deg elevation. The peak in <span class="hlt">lightning</span> <span class="hlt">activity</span> during the study corresponded to a merging of two storm cells. A minimum height of 7 km was found necessary for the appearance of a 40 dBZ core with <span class="hlt">lightning</span>, which first appears in a multicell thunderstorm at the leading edge of the 50 dBZ core of the cell and between a cell and its decaying neighbor. The <span class="hlt">lightning</span> moves further into the cell during cell decay and decreases in density. Finally, the <span class="hlt">lightning</span> is offset horizontally from the precipitation core during cell growth but colocates with the precipitation core as the cell dissipates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMAE13B0354A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMAE13B0354A"><span>Preliminary analysis on faint luminous <span class="hlt">lightning</span> events recorded by multiple <span class="hlt">high</span> speed cameras</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alves, J.; Saraiva, A. V.; Pinto, O.; Campos, L. Z.; Antunes, L.; Luz, E. S.; Medeiros, C.; Buzato, T. S.</p> <p>2013-12-01</p> <p>The objective of this work is the study of some faint luminous events produced by <span class="hlt">lightning</span> flashes that were recorded simultaneously by multiple <span class="hlt">high</span>-speed cameras during the previous RAMMER (Automated Multi-camera Network for Monitoring and Study of <span class="hlt">Lightning</span>) campaigns. The RAMMER network is composed by three fixed cameras and one mobile color camera separated by, in average, distances of 13 kilometers. They were located in the Paraiba Valley (in the cities of São José dos Campos and Caçapava), SP, Brazil, arranged in a quadrilateral shape, centered in São José dos Campos region. This configuration allowed RAMMER to see a thunderstorm from different angles, registering the same <span class="hlt">lightning</span> flashes simultaneously by multiple cameras. Each RAMMER sensor is composed by a triggering system and a Phantom <span class="hlt">high</span>-speed camera version 9.1, which is set to operate at a frame rate of 2,500 frames per second with a lens Nikkor (model AF-S DX 18-55 mm 1:3.5 - 5.6 G in the stationary sensors, and a lens model AF-S ED 24 mm - 1:1.4 in the mobile sensor). All videos were GPS (Global Positioning System) time stamped. For this work we used a data set collected in four RAMMER manual operation days in the campaign of 2012 and 2013. On Feb. 18th the data set is composed by 15 flashes recorded by two cameras and 4 flashes recorded by three cameras. On Feb. 19th a total of 5 flashes was registered by two cameras and 1 flash registered by three cameras. On Feb. 22th we obtained 4 flashes registered by two cameras. Finally, in March 6th two cameras recorded 2 flashes. The analysis in this study proposes an evaluation methodology for faint luminous <span class="hlt">lightning</span> events, such as continuing current. Problems in the temporal measurement of the continuing current can generate some imprecisions during the optical analysis, therefore this work aim to evaluate the effects of distance in this parameter with this preliminary data set. In the cases that include the color camera we analyzed the RGB</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120006543','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120006543"><span>Future Expansion of the <span class="hlt">Lightning</span> Surveillance System at the Kennedy Space Center and the Cape Canaveral Air Force Station, Florida, USA</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mata, C. T.; Wilson, J. G.</p> <p>2012-01-01</p> <p>The NASA Kennedy Space Center (KSC) and the Air Force Eastern Range (ER) use data from two cloud-to-ground (CG) <span class="hlt">lightning</span> detection networks, the Cloud-to-Ground <span class="hlt">Lightning</span> Surveillance System (CGLSS) and the U.S. National <span class="hlt">Lightning</span> Detection Network (NLDN), and a volumetric mapping array, the <span class="hlt">lightning</span> detection and ranging II (LDAR II) system: These systems are used to monitor and characterize <span class="hlt">lightning</span> that is potentially hazardous to launch or ground operations and hardware. These systems are not perfect and both have documented missed <span class="hlt">lightning</span> events when compared to the existing <span class="hlt">lightning</span> surveillance system at Launch Complex 39B (LC39B). Because of this finding it is NASA's plan to install a <span class="hlt">lightning</span> surveillance system around each of the <span class="hlt">active</span> launch pads sharing site locations and triggering capabilities when possible. This paper shows how the existing <span class="hlt">lightning</span> surveillance system at LC39B has performed in 2011 as well as the plan for the expansion around all <span class="hlt">active</span> pads.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970024904','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970024904"><span><span class="hlt">Lightning</span> Effects in the Payload Changeout Room</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, Garland L.; Fisher, Franklin A.; Collier, Richard S.; Medelius, Pedro J.</p> <p>1997-01-01</p> <p>Analytical and empirical studies have been performed to provide better understanding of the electromagnetic environment inside the Payload Changeout Room and Orbiter payload bay resulting from <span class="hlt">lightning</span> strikes to the launch pad <span class="hlt">lightning</span> protection system. The analytical studies consisted of physical and mathematical modeling of the pad structure and the Payload Changeout Room. Empirical testing was performed using a <span class="hlt">lightning</span> simulator to simulate controlled (8 kA) <span class="hlt">lightning</span> strikes to the catenary wire <span class="hlt">lightning</span> protection system. In addition to the analyses and testing listed above, an analysis of the configuration with the vehicle present was conducted, in lieu of testing, by the Finite Difference, Time Domain method.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/362646-grounding-lightning-protection-volume','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/362646-grounding-lightning-protection-volume"><span>Grounding and <span class="hlt">lightning</span> protection. Volume 5</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Robinson, M.D.</p> <p>1987-12-31</p> <p>Grounding systems protect personnel and equipment by isolating faulted systems and dissipating transient currents. <span class="hlt">Lightning</span> protection systems minimize the possible consequences of a direct strike by <span class="hlt">lightning</span>. This volume focuses on design requirements of the grounding system and on present-day concepts used in the design of <span class="hlt">lightning</span> protection systems. Various types of grounding designs are presented, and their advantages and disadvantages discussed. Safety, of course, is the primary concern of any grounding system. Methods are shown for grounding the non-current-carrying parts of electrical equipment to reduce shock hazards to personnel. <span class="hlt">Lightning</span> protection systems are installed on tall structures (such asmore » chimneys and cooling towers) to minimize the possibility of structural damage caused by direct <span class="hlt">lightning</span> strokes. These strokes may carry currents of 200,000 A or more. The volume examines the formation and characteristics of <span class="hlt">lightning</span> strokes and the way stroke characteristics influence the design of <span class="hlt">lightning</span> protection systems. Because a large portion of the grounding system is buried in soil or concrete, it is not readily accessible for inspection or repair after its installation. The volume details the careful selection and sizing of materials needed to ensure a long, maintenance-free life for the system. Industry standards and procedures for testing the adequacy of the grounding system are also discussed.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-88_DarkLightning.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-88_DarkLightning.html"><span>ScienceCast 88: Dark <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-01-07</p> <p>Researchers studying thunderstorms have made a surprising discovery: The <span class="hlt">lightning</span> we see with our eyes has a dark competitor that discharges storm clouds and flings antimatter into space. Scientists are scrambling to understand "dark <span class="hlt">lightning</span>."</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008659','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008659"><span>Exploring the Use of Radar for Physically-Based Nowcasting of <span class="hlt">Lightning</span> Cessation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, Elise V.; Petersen, Walter A.; Carey, Lawrence D.</p> <p>2011-01-01</p> <p>NASA's Marshall Space Flight Center and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of <span class="hlt">lightning</span> cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically-based operational algorithm to predict <span class="hlt">lightning</span> cessation. While previous studies have developed statistically based <span class="hlt">lightning</span> cessation algorithms driven primarily by trending in the actual total <span class="hlt">lightning</span> flash rate, we believe that dual polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and ice-microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with <span class="hlt">lightning</span>. One question yet to be addressed is: To what extent can propagation phase-based ice-crystal alignment signatures be used to nowcast the cessation of <span class="hlt">lightning</span> <span class="hlt">activity</span> in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama <span class="hlt">Lightning</span> Mapping Array are used in this study to investigate the radar signatures present before and after <span class="hlt">lightning</span> cessation. Thus far our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased <span class="hlt">lightning</span> production (i.e., after the last <span class="hlt">lightning</span> flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the <span class="hlt">lightning</span> cessation signature was</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE13A2229S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE13A2229S"><span>Development of <span class="hlt">Lightning</span> Observation Network in the Western Pacific Region for the Intensity Prediction of Severe Weather</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sato, M.; Takahashi, Y.; Yamashita, K.; Kubota, H.; Hamada, J. I.; Momota, E.; Marciano, J. J.</p> <p>2017-12-01</p> <p><span class="hlt">Lightning</span> <span class="hlt">activity</span> represents the thunderstorm <span class="hlt">activity</span>, that is, the precipitation and/or updraft intensity and area. Thunderstorm <span class="hlt">activity</span> is also an important parameter in terms of the energy inputs from the ocean to the atmosphere inside tropical cyclone, which is one of severe weather events. Recent studies suggest that it is possible to predict the maximum wind velocity and minimum pressure near the center of the tropical cyclone by one or two days before if we monitor the <span class="hlt">lightning</span> <span class="hlt">activities</span> in the tropical cyclone. Many countries in the western Pacific region suffer from the attack of tropical cyclone (typhoon) and have a strong demand to predict the intensity development of typhoons. Thus, we started developing a new <span class="hlt">lightning</span> observation system and installing the observation system at Guam, Palau, and Manila in the Philippines from this summer. The <span class="hlt">lightning</span> observation system consists of a VLF sensor detecting <span class="hlt">lightning</span>-excited electromagnetic waves in the frequency range of 1-5 kHz, an automatic data-processing unit, solar panels, and batteries. <span class="hlt">Lightning</span>-excited pulse signals detected by the VLF sensor are automatically analyzed by the data-processing unit, and only the extracted information of the trigger time and pulse amplitude is transmitted to a data server via the 3G data communications. In addition, we are now developing an upgraded <span class="hlt">lightning</span> and weather observation system, which will be installed at 50 automated weather stations in Metro Manila and 10 radar sites in the Philippines under the 5-year project (SATREPS) scheme. At the presentation, we will show the initial results derived from the <span class="hlt">lightning</span> observation system in detail and will show the detailed future plan of the SATREPS project.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.epa.gov/cmaq/users-guide-wrf-lightning-assimilation','PESTICIDES'); return false;" href="https://www.epa.gov/cmaq/users-guide-wrf-lightning-assimilation"><span>User's Guide - WRF <span class="hlt">Lightning</span> Assimilation</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>This document describes how to run WRF with the <span class="hlt">lightning</span> assimilation technique described in Heath et al. (2016). The assimilation method uses gridded <span class="hlt">lightning</span> data to trigger and suppress sub-grid deep convection in Kain-Fritsch.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatCC...8..191M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatCC...8..191M"><span>An uncertain future for <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murray, Lee T.</p> <p>2018-03-01</p> <p>The most commonly used method for representing <span class="hlt">lightning</span> in global atmospheric models generally predicts <span class="hlt">lightning</span> increases in a warmer world. A new scheme finds the opposite result, directly challenging the predictive skill of an old stalwart.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.6051D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.6051D"><span>First images of thunder: Acoustic imaging of triggered <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.</p> <p>2015-07-01</p> <p>An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered <span class="hlt">lightning</span>. Measurements were taken at the International Center for <span class="hlt">Lightning</span> Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a <span class="hlt">lightning</span> event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at <span class="hlt">high</span> frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of <span class="hlt">lightning</span> channel altitude.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815451H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815451H"><span>Structural and erosive Effects of <span class="hlt">Lightning</span> on Sandstone: An Experimental Investigation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haddad, Houssam; Ebert, Matthias; Kenkmann, Thomas; Thoma, Klaus; Nau, Siegfried; Schäfer, Frank</p> <p>2016-04-01</p> <p>Recent prognoses predict an average temperature increase of the world's climate of about 1.5 to 2 °C until the end of 21st century. This change leads not only to a rise of the sea level but also to an increase of thunderstorms and therefore to a ~25 percent increase of cloud-to-ground <span class="hlt">lightning</span> events (Romps et al., 2014). It is known that (i) <span class="hlt">lightning</span> strikes are able to fragment surface rocks, which probably influences the erosion rates at exposed mountain areas (Knight and Grab, 2014), and (ii) the efficiency of the process increases due to the predicted climate change. However, our knowledge about the electro-mechanical destruction of rocks caused by <span class="hlt">high</span> energetic <span class="hlt">lightning</span> is incomplete. In this study, laboratory experiments of <span class="hlt">lightning</span> strikes were performed in order to understand the fragmentation of rocks and changes to landforms by <span class="hlt">lightning</span>. The artificial <span class="hlt">lightning</span> with known electric current was simulated by a <span class="hlt">high</span>-current generator in the laboratories of the Fraunhofer Ernst-Mach Institute for <span class="hlt">High</span>-Speed Dynamics (Freiburg, Germany). Different currents were transferred over a distance of ~2mm onto water-saturated sandstones by using a copper cathode (3 experiments; U, I, E, Δt: 6 kV, 200 kA, 0.1 MJ, 0.7 ms; 9 kV, 300 kA, 0.19 MJ, 0.9 ms; 12 kV, 400 kA, 0.35 MJ, 0.5 ms). The damaged sandstones were investigated by means of optical and electron-optical methods as well as by X-ray computed tomography to determine the modes and dimensions of melting and fragmentation. Digital elevation models of craters formed by ejection were obtained by white-light interferometry. The <span class="hlt">lightning</span> experiments produced small craters (~1 cm in diameter, ~0.5 cm depth) which surfaces and sub-surfaces consist of silicate melts (molten quartz and phyllosilicates). The silicate melts reach several hundred micrometers into the sub-surface and resemble the appearance of natural fulgurites. Melting of quartz indicate temperatures of at least 1650 °C. In addition, the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec25-1316.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec25-1316.pdf"><span>14 CFR 25.1316 - System <span class="hlt">lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... airplane; (5) Establishing the susceptibility of the systems to the internal and external <span class="hlt">lightning</span>...) Determining the <span class="hlt">lightning</span> strike zones for the airplane; (2) Establishing the external <span class="hlt">lightning</span> environment for the zones; (3) Establishing the internal environment; (4) Identifying all the electrical and...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150000720','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150000720"><span>Challenges in Modelling of <span class="hlt">Lightning</span>-Induced Delamination; Effect of Temperature-Dependent Interfacial Properties</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Naghipour, P.; Pineda, E. J.; Arnold, S.</p> <p>2014-01-01</p> <p><span class="hlt">Lightning</span> is a major cause of damage in laminated composite aerospace structures during flight. Due to the dielectric nature of Carbon fiber reinforced polymers (CFRPs), the <span class="hlt">high</span> energy induced by <span class="hlt">lightning</span> strike transforms into extreme, localized surface temperature accompanied with a <span class="hlt">high</span>-pressure shockwave resulting in extensive damage. It is crucial to develop a numerical tool capable of predicting the damage induced from a <span class="hlt">lightning</span> strike to supplement extremely expensive <span class="hlt">lightning</span> experiments. Delamination is one of the most significant failure modes resulting from a <span class="hlt">lightning</span> strike. It can be extended well beyond the visible damage zone, and requires sophisticated techniques and equipment to detect. A popular technique used to model delamination is the cohesive zone approach. Since the loading induced from a <span class="hlt">lightning</span> strike event is assumed to consist of extreme localized heating, the cohesive zone formulation should additionally account for temperature effects. However, the sensitivity to this dependency remains unknown. Therefore, the major focus point of this work is to investigate the importance of this dependency via defining various temperature dependency profiles for the cohesive zone properties, and analyzing the corresponding delamination area. Thus, a detailed numerical model consisting of multidirectional composite plies with temperature-dependent cohesive elements in between is subjected to <span class="hlt">lightning</span> (excessive amount of heat and pressure) and delamination/damage expansion is studied under specified conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023316','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023316"><span><span class="hlt">Lightning</span> protection for shuttle propulsion elements</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodloe, Carolyn C.; Giudici, Robert J.</p> <p>1991-01-01</p> <p>The results of <span class="hlt">lightning</span> protection analyses and tests are weighed against the present set of waivers to the NASA <span class="hlt">lightning</span> protection specification. The significant analyses and tests are contrasted with the release of a new and more realistic <span class="hlt">lightning</span> protection specification, in September 1990, that resulted in an inordinate number of waivers. A variety of <span class="hlt">lightning</span> protection analyses and tests of the Shuttle propulsion elements, the Solid Rocket Booster, the External Tank, and the Space Shuttle Main Engine, were conducted. These tests range from the sensitivity of solid propellant during shipping to penetration of cryogenic tanks during flight. The Shuttle propulsion elements have the capability to survive certain levels of <span class="hlt">lightning</span> strikes at certain times during transportation, launch site operations, and flight. Changes are being evaluated that may improve the odds of withstanding a major <span class="hlt">lightning</span> strike. The Solid Rocket Booster is the most likely propulsion element to survive if systems tunnel bond straps are improved. Wiring improvements were already incorporated and major protection tests were conducted. The External Tank remains vulnerable to burn-through penetration of its skin. Proposed design improvements include the use of a composite nose cone and conductive or laminated thermal protection system coatings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC33E1125K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC33E1125K"><span><span class="hlt">Lightning</span>-Related Indicators for National Climate Assessment (NCA) Studies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koshak, W. J.</p> <p>2017-12-01</p> <p>With the recent advent of space-based <span class="hlt">lightning</span> mappers [i.e., the Geostationary <span class="hlt">Lightning</span> Mapper (GLM) on GOES-16, and the <span class="hlt">Lightning</span> Imaging Sensor (LIS) on the International Space Station], improved investigations on the inter-relationships between <span class="hlt">lightning</span> and climate are now possible and can directly support the goals of the National Climate Assessment (NCA) program. <span class="hlt">Lightning</span> nitrogen oxides (LNOx) affect greenhouse gas concentrations such as ozone that influences changes in climate. Conversely, changes in climate (from any causes) can affect the characteristics of <span class="hlt">lightning</span> (e.g., frequency, current amplitudes, multiplicity, polarity) that in turn leads to changes in <span class="hlt">lightning</span>-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality). This study discusses improvements to, and recent results from, the NASA/MSFC NCA <span class="hlt">Lightning</span> Analysis Tool (LAT). It includes key findings on the development of different types of <span class="hlt">lightning</span> flash energy indicators derived from space-based <span class="hlt">lightning</span> observations, and demonstrates how these indicators can be used to estimate trends in LNOx across the continental US.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730018655','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730018655"><span>A three-station <span class="hlt">lightning</span> detection system</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ruhnke, L. H.</p> <p>1972-01-01</p> <p>A three-station network is described which senses magnetic and electric fields of <span class="hlt">lightning</span>. Directional and distance information derived from the data are used to redundantly determine <span class="hlt">lightning</span> position. This redundancy is used to correct consistent propagation errors. A comparison is made of the relative accuracy of VLF direction finders with a newer method to determine distance to and location of <span class="hlt">lightning</span> by the ratio of magnetic-to-electric field as observed at 400 Hz. It was found that VLF direction finders can determine <span class="hlt">lightning</span> positions with only one-half the accuracy of the method that uses the ratio of magnetic-to-electric field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000004589','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000004589"><span><span class="hlt">Lightning</span> Protection Guidelines for Aerospace Vehicles</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodloe, C. C.</p> <p>1999-01-01</p> <p>This technical memorandum provides <span class="hlt">lightning</span> protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of <span class="hlt">lightning</span>. Generic descriptions of the <span class="hlt">lightning</span> environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for <span class="hlt">lightning</span> protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080013556&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeostationary','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080013556&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeostationary"><span>Pre-Launch Algorithms and Risk Reduction in Support of the Geostationary <span class="hlt">Lightning</span> Mapper for GOES-R and Beyond</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven; Blakeslee, Richard; Koshak, William</p> <p>2008-01-01</p> <p>The Geostationary <span class="hlt">Lightning</span> Mapper (GLM) is a single channel, near-IR optical transient event detector, used to detect, locate and measure total <span class="hlt">lightning</span> <span class="hlt">activity</span> over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of <span class="hlt">lightning</span> from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. The mission objectives for the GLM are to 1) provide continuous,full-disk <span class="hlt">lightning</span> measurements for storm warning and Nowcasting, 2) provide early warning of tornado <span class="hlt">activity</span>, and 3) accumulate a long-term database to track decadal changes of <span class="hlt">lightning</span>. The GLM owes its heritage to the NASA <span class="hlt">Lightning</span> Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global <span class="hlt">lightning</span> <span class="hlt">activity</span>. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight units is expected to begin in latter part of the year. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to develop the Level 2B algorithms and applications. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., <span class="hlt">Lightning</span> Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time <span class="hlt">lightning</span> mapping data provided to selected National Weather Service forecast offices in Southern and Eastern Region are also improving</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28781929','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28781929"><span>Size limits for rounding of volcanic ash particles heated by <span class="hlt">lightning</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wadsworth, Fabian B; Vasseur, Jérémie; Llewellin, Edward W; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B</p> <p>2017-03-01</p> <p>Volcanic ash particles can be remelted by the <span class="hlt">high</span> temperatures induced in volcanic <span class="hlt">lightning</span> discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, <span class="hlt">high</span>-temperature conditions of volcanic <span class="hlt">lightning</span> discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters-capillary, Fourier, Stark, Biot, and Peclet numbers-to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the <span class="hlt">lightning</span> case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of <span class="hlt">lightning</span> temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to <span class="hlt">lightning</span> or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of <span class="hlt">lightning</span> conditions in volcanic plumes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRB..122.1977W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRB..122.1977W"><span>Size limits for rounding of volcanic ash particles heated by <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.</p> <p>2017-03-01</p> <p>Volcanic ash particles can be remelted by the <span class="hlt">high</span> temperatures induced in volcanic <span class="hlt">lightning</span> discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, <span class="hlt">high</span>-temperature conditions of volcanic <span class="hlt">lightning</span> discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the <span class="hlt">lightning</span> case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of <span class="hlt">lightning</span> temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to <span class="hlt">lightning</span> or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of <span class="hlt">lightning</span> conditions in volcanic plumes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/5236','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/5236"><span>Electromagnetic Effects Harmonization Working Group (EEHWG) - <span class="hlt">Lightning</span> Task Group : report on aircraft <span class="hlt">lightning</span> strike data</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2002-07-01</p> <p>In 1995, in response to the <span class="hlt">lightning</span> community's desire to revise the zoning criteria on aircraft, the Electromagnetic Effects Harmonization Working Group (EEHWG) decided that <span class="hlt">lightning</span> attachments to aircraft causing damage should be studied and co...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMAE33B0487M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMAE33B0487M"><span>Observation of Long Ionospheric Recoveries from <span class="hlt">Lightning</span>-induced Electron Precipitation Events</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohammadpour Salut, M.; Cohen, M.</p> <p>2015-12-01</p> <p> nonducted obliquely propagating whistler waves. The occurrence of <span class="hlt">high</span> peak current <span class="hlt">lightning</span> strokes is a prerequisite for long recovery LEP events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820050176&hterms=thunderstorm+protection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dthunderstorm%2Bprotection','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820050176&hterms=thunderstorm+protection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dthunderstorm%2Bprotection"><span><span class="hlt">Lightning</span> protection of wind turbines</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dodd, C. W.</p> <p>1982-01-01</p> <p>Possible damages to wind turbine components due to <span class="hlt">lightning</span> strikes are discussed and means to prevent the damage are presented. A low resistance path to the ground is noted to be essential for any turbine system, including metal paths on nonmetal blades to conduct the strike. Surge arrestors are necessary to protect against overvoltages both from utility lines in normal operation and against <span class="hlt">lightning</span> damage to control equipment and contactors in the generator. MOS structures are susceptible to static discharge injury, as are other semiconductor devices, and must be protected by the presence of static protection circuitry. It is recommended that the electronics be analyzed for the circuit transient response to a <span class="hlt">lightning</span> waveform, to induced and dc current injection, that input/output leads be shielded, everything be grounded, and <span class="hlt">lightning</span>-resistant components be chosen early in the design phase.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982ATJSE.104..121D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982ATJSE.104..121D"><span><span class="hlt">Lightning</span> protection of wind turbines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dodd, C. W.</p> <p>1982-05-01</p> <p>Possible damages to wind turbine components due to <span class="hlt">lightning</span> strikes are discussed and means to prevent the damage are presented. A low resistance path to the ground is noted to be essential for any turbine system, including metal paths on nonmetal blades to conduct the strike. Surge arrestors are necessary to protect against overvoltages both from utility lines in normal operation and against <span class="hlt">lightning</span> damage to control equipment and contactors in the generator. MOS structures are susceptible to static discharge injury, as are other semiconductor devices, and must be protected by the presence of static protection circuitry. It is recommended that the electronics be analyzed for the circuit transient response to a <span class="hlt">lightning</span> waveform, to induced and dc current injection, that input/output leads be shielded, everything be grounded, and <span class="hlt">lightning</span>-resistant components be chosen early in the design phase.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1022790','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1022790"><span>Neurologic complications of <span class="hlt">lightning</span> injuries.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cherington, M; Yarnell, P R; London, S F</p> <p>1995-01-01</p> <p>Over the past ten years, we have cared for 13 patients who suffered serious neurologic complications after being struck by <span class="hlt">lightning</span>. The spectrum of neurologic lesions includes the entire neuraxis from the cerebral hemispheres to the peripheral nerves. We describe these various neurologic disorders with regard to the site of the lesion, severity of the deficit, and the outcome. Damage to the nervous system can be a serious problem for patients struck by <span class="hlt">lightning</span>. Fatalities are associated with hypoxic encephalopathy in patients who suffered cardiac arrests. Patients with spinal cord lesions are likely to have permanent sequelae and paralysis. New technology for detecting <span class="hlt">lightning</span> with wideband magnetic direction finders is useful in establishing <span class="hlt">lightning</span>-flash densities in each state. Florida and the Gulf Coast states have the highest densities. Colorado and the Rocky Mountain states have the next highest. Images PMID:7785254</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhDT........74T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhDT........74T"><span><span class="hlt">Lightning</span>-driven electric and magnetic fields measured in the stratosphere: Implications for sprites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, Jeremy Norman</p> <p></p> <p>A well accepted model for sprite production involves quasi-electrostatic fields (QSF) driven by large positive cloud-to-ground (+CG) strokes that can cause electrical breakdown in the middle atmosphere. A new <span class="hlt">high</span> voltage, <span class="hlt">high</span> impedance, double Langmuir probe instrument is designed specifically for measuring these large <span class="hlt">lightning</span>-driven electric field changes at altitudes above 30 km. This <span class="hlt">High</span> Voltage (HV) Electric Field Detector measured 200 nearby (<75 km) <span class="hlt">lightning</span>-driven electric field changes, up to 140 V/m in magnitude, during the Brazil Sprite Balloon Campaign 2002--03. A numerical QSF model is developed and compared to the in situ measurements. It is found that the amplitudes and relaxation times of the electric fields driven by these nearby <span class="hlt">lightning</span> events generally agree with the numerical QSF model, which suggests that the QSF approach is valid for modeling <span class="hlt">lightning</span>-driven fields. Using the best fit parameters of this comparison, it is predicted that the electric fields at sprite altitudes (60--90 km) never surpass conventional breakdown in the mesosphere for each of these 200 nearby <span class="hlt">lightning</span> events. <span class="hlt">Lightning</span>-driven ELF to VLF (25 Hz--8 kHz) electric field changes were measured for each of the 2467 cloud-to-ground <span class="hlt">lightning</span> (CGs) detected by the Brazilian Integrated <span class="hlt">Lightning</span> Network (BIN) at distances of 75--600 km, and magnetic field changes (300 Hz--8 kHz) above the background noise were measured for about 35% (858) of these CGs. ELF pulses that occur 4--12 ms after the retarded time of the <span class="hlt">lightning</span> sferic, which have been previously attributed to sprites, were found for 1.4% of 934 CGs examined with a strong bias towards +CGs (4.9% or 9/184) compared to -CGs (0.5% or 4/750). These results disagree with results from the Sprites99 Balloon Campaign [Bering et al., 2004b], in which the <span class="hlt">lightning</span>-driven electric and magnetic field changes were rare, while the CG delayed ELF pulses were frequent. The Brazil Campaign results thus suggest that</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH33A1909R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH33A1909R"><span>Predicting Impacts of <span class="hlt">Lightning</span> Strikes on Aviation under a Changing Climate Using Regression Kriging</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rakas, J.; Ding, C.; Murthi, A.; Lukovic, J.; Bajat, B.</p> <p>2016-12-01</p> <p><span class="hlt">Lightning</span> is a serious hazard that can cause significant impacts on human infrastructure. In the aviation industry, <span class="hlt">lightning</span> strikes cause damage and outages to air traffic control equipment and facilities at airports that result in major disruptions in commercial air travel, compounding delays during storm events that lead to losses in the millions of dollars. To date poor attention has been given to how <span class="hlt">lightning</span> might change with the increase of greenhouse gases and temperature. Under some climate change scenarios, the increase in the occurrence and severity of storms in the future with potential for increases in <span class="hlt">lightning</span> <span class="hlt">activity</span> has been studied. Recent findings suggest that lighting rates will increase 12 percent per every degree Celsius rise in global temperatures. That will results to a 50 percent increase by the end of the century. Accurate prediction of the intensity and frequency of <span class="hlt">lightning</span> strikes is therefore required by the air traffic management and control sector in order to develop more robust adaptation and mitigation strategies under the threat of global climate change and increasing <span class="hlt">lightning</span> rates. In this work, we use the regression kriging method to predict <span class="hlt">lightning</span> strikes over several regions over the contiguous United Sates using two meteorological variables- namely convective available potential energy (CAPE) and total precipitation rate. These two variables are used as a measure of storm convection, since strong convections are related to more <span class="hlt">lightning</span>. Specifically, CAPE multiplied by precipitation is used as a proxy for <span class="hlt">lightning</span> strikes owing to a strong linear relationship between the two. These two meteorological variables are obtained from a subset of models used in phase 5 of the coupled model inter-comparison experiment pertaining to the "<span class="hlt">high</span> emissions" climate change scenario corresponding to the representative concentration pathway (RCP) 8.5. Precipitation observations from the National Weather Cooperative Network (COOP</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920045362&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920045362&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DGlobal%2Bwarming"><span>The effect of global warming on <span class="hlt">lightning</span> frequencies</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Price, Colin; Rind, David</p> <p>1990-01-01</p> <p>The first attempt to model global <span class="hlt">lightning</span> distributions by using the Goddard Institute for Space Studies (GISS) GCM is reported. Three sets of observations showing the relationship between <span class="hlt">lightning</span> frequency and cloud top height are shown. Zonally averaged <span class="hlt">lightning</span> frequency observed by satellite are compared with those calculated using the GISS GCM, and fair agreement is found. The change in <span class="hlt">lightning</span> frequency for a double CO2 climate is calculated and found to be nearly 2.23 x 10 exp 6 extra <span class="hlt">lightning</span> flashes per day.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/587206-sub-from-lightning-global-distribution-based-lightning-physics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/587206-sub-from-lightning-global-distribution-based-lightning-physics"><span>NO{sub x} from <span class="hlt">lightning</span> 1. Global distribution based on <span class="hlt">lightning</span> physics</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Price, C.; Penner, J.; Prather, M.</p> <p>1997-03-01</p> <p>This paper begins a study on the role of <span class="hlt">lightning</span> in maintaining the global distribution of nitrogen oxides (NO{sub x}) in the troposphere. It presents the first global and seasonal distributions of <span class="hlt">lightning</span>-produced NO{sub x} (LNO{sub x}) based on the observed distribution of electrical storms and the physical properties of <span class="hlt">lightning</span> strokes. We derive a global rate for cloud-to-ground (CG) flashes of 20{endash}30 flashes/s with a mean energy per flash of 6.7{times}10{sup 9}J. Intracloud (IC) flashes are more frequent, 50{endash}70 flashes/s but have 10{percent} of the energy of CG strokes and, consequently, produce significantly less NO{sub x}. It appears tomore » us that the majority of previous studies have mistakenly assumed that all <span class="hlt">lightning</span> flashes produce the same amount of NO{sub x}, thus overestimating the NO{sub x} production by a factor of 3. On the other hand, we feel these same studies have underestimated the energy released in CG flashes, resulting in two negating assumptions. For CG energies we adopt a production rate of 10{times}10{sup 16} molecules NO/J based on the current literature. Using a method to simulate global <span class="hlt">lightning</span> frequencies from satellite-observed cloud data, we have calculated the LNO{sub x} on various spatial (regional, zonal, meridional, and global) and temporal scales (daily, monthly, seasonal, and interannual). Regionally, the production of LNO{sub x} is concentrated over tropical continental regions, predominantly in the summer hemisphere. The annual mean production rate is calculated to be 12.2 Tg N/yr, and we believe it extremely unlikely that this number is less than 5 or more than 20 Tg N/yr. Although most of LNO{sub x} is produced in the lowest 5 km by CG <span class="hlt">lightning</span>, convective mixing in the thunderstorms is likely to deposit large amounts of NO{sub x} in the upper troposphere where it is important in ozone production. (Abstract Truncated)« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990008509','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990008509"><span>Optical Detection of <span class="hlt">Lightning</span> from Space</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boccippio, Dennis J.; Christian, Hugh J.</p> <p>1998-01-01</p> <p>Optical sensors have been developed to detect <span class="hlt">lightning</span> from space during both day and night. These sensors have been fielded in two existing satellite missions and may be included on a third mission in 2002. Satellite-hosted, optically-based <span class="hlt">lightning</span> detection offers three unique capabilities: (1) the ability to reliably detect <span class="hlt">lightning</span> over large, often remote, spatial regions, (2) the ability to sample all (IC and CG) <span class="hlt">lightning</span>, and (3) the ability to detect <span class="hlt">lightning</span> with uniform (i.e., not range-dependent) sensitivity or detection efficiency. These represent significant departures from conventional RF-based detection techniques, which typically have strong range dependencies (biases) or range limitations in their detection capabilities. The atmospheric electricity team of the NASA Marshall Space Flight Center's Global Hydrology and Climate Center has implemented a three-step satellite <span class="hlt">lightning</span> research program which includes three phases: proof-of-concept/climatology, science algorithm development, and operational application. The first instrument in the program, the Optical Transient Detector (OTD), is deployed on a low-earth orbit (LEO) satellite with near-polar inclination, yielding global coverage. The sensor has a 1300 x 1300 sq km field of view (FOV), moderate detection efficiency, moderate localization accuracy, and little data bias. The OTD is a proof-of-concept instrument and its mission is primarily a global <span class="hlt">lightning</span> climatology. The limited spatial accuracy of this instrument makes it suboptimal for use in case studies, although significant science knowledge has been gained from the instrument as deployed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150022939','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150022939"><span>The Intra-Cloud <span class="hlt">Lightning</span> Fraction in the Contiguous United States</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Medici, Gina; Cummins, Kenneth L.; Koshak, William J.; Rudlosky, Scott D.; Blakeslee, Richard J.; Goodman, Steven J.; Cecil, Daniel J.; Bright, David R.</p> <p>2015-01-01</p> <p><span class="hlt">Lightning</span> is dangerous and destructive; cloud-to-ground (CG) <span class="hlt">lightning</span> flashes can start fires, interrupt power delivery, destroy property and cause fatalities. Its rate-of-occurrence reflects storm kinematics and microphysics. For decades <span class="hlt">lightning</span> research has been an important focus, and advances in <span class="hlt">lightning</span> detection technology have been essential contributors to our increasing knowledge of <span class="hlt">lightning</span>. A significant step in detection technology is the Geostationary <span class="hlt">Lightning</span> Mapper (GLM) to be onboard the Geostationary Operational Environment Satellite R-Series (GOES-R) to be launched in early 2016. GLM will provide continuous "Total <span class="hlt">Lightning</span>" observations [CG and intra-cloud <span class="hlt">lightning</span> (IC)] with near-uniform spatial resolution over the Americas by measuring radiance at the cloud tops from the different types of <span class="hlt">lightning</span>. These Total <span class="hlt">Lightning</span> observations are expected to significantly improve our ability to nowcast severe weather. It may be important to understand the long-term regional differences in the relative occurrence of IC and CG <span class="hlt">lightning</span> in order to understand and properly use the short-term changes in Total <span class="hlt">Lightning</span> flash rate for evaluating individual storms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335488&Lab=NERL&keyword=forensics&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335488&Lab=NERL&keyword=forensics&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span><span class="hlt">Lightning</span> NOx Production in CMAQ Part I – Using Hourly NLDN <span class="hlt">Lightning</span> Strike Data</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><span class="hlt">Lightning</span>-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling <span class="hlt">lightning</span> NOX during the past dec...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900005749&hterms=thunderstorm+protection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dthunderstorm%2Bprotection','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900005749&hterms=thunderstorm+protection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dthunderstorm%2Bprotection"><span>Effects of <span class="hlt">lightning</span> on operations of aerospace vehicles</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fisher, Bruce D.</p> <p>1989-01-01</p> <p>Traditionally, aircraft <span class="hlt">lightning</span> strikes were a major aviation safety issue. However, the increasing use of composite materials and the use of digital avionics for flight critical systems will require that more specific <span class="hlt">lightning</span> protection measures be incorporated in the design of such aircraft in order to maintain the excellent <span class="hlt">lightning</span> safety record presently enjoyed by transport aircraft. In addition, several recent <span class="hlt">lightning</span> mishaps, most notably the loss of the Atlas/Centaur-67 vehicle at Cape Canaveral Air Force Station, Florida in March 1987, have shown the susceptibility of aircraft and launch vehicles to the phenomenon of vehicle-triggered <span class="hlt">lightning</span>. The recent findings of the NASA Storm Hazards Program were reviewed as they pertain to the atmospheric conditions conducive to aircraft <span class="hlt">lightning</span> strikes. These data are then compared to recent summaries of <span class="hlt">lightning</span> strikes to operational aircraft fleets. Finally, the new launch commit criteria for triggered <span class="hlt">lightning</span> being used by NASA and the U.S. Defense Department are summarized. The NASA Research data show that the greatest probability of a direct strike in a thunderstorm occurs at ambient temperatures of about -40 C. Relative precipitation and turbulence levels were characterized as negligible to light for these conditions. However, operational fleet data have shown that most aircraft <span class="hlt">lightning</span> strikes in routine operations occur at temperatures near the freezing level in non-cumulonimbus clouds. The non-thunderstorm environment was not the subject of dedicated airborne <span class="hlt">lightning</span> research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730002931','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730002931"><span><span class="hlt">Lightning</span> criteria relative to space shuttles: Currents and electric field intensity in Florida <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Uman, M. A.; Mclain, D. K.</p> <p>1972-01-01</p> <p>The measured electric field intensities of 161 <span class="hlt">lightning</span> strokes in 39 flashes which occurred between 1 and 35 km from an observation point at Kennedy Space Center, Florida during June and July of 1971 have been analyzed to determine the <span class="hlt">lightning</span> channel currents which produced the fields. In addition, typical channel currents are derived and from these typical electric fields at distances between 0.5 and 100 km are computed and presented. On the basis of the results recommendations are made for changes in the specification of <span class="hlt">lightning</span> properties relative to space vehicle design as given in NASA TMX-64589 (Daniels, 1971). The small sample of <span class="hlt">lightning</span> analyzed yielded several peak currents in the 100 kA range. Several current rise-times from zero to peak of 0.5 microsec or faster were found; and the fastest observed current rate-of-rise was near 200 kA/microsec. The various sources of error are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960020732','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960020732"><span><span class="hlt">Lightning</span> electromagnetics</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wahid, Parveen</p> <p>1995-01-01</p> <p>This project involved the determination of the effective radiated power of <span class="hlt">lightning</span> sources and the polarization of the radiating source. This requires the computation of the antenna patterns at all the LDAR site receiving antennas. The known radiation patterns and RF signal levels measured at the antennas will be used to determine the effective radiated power of the <span class="hlt">lightning</span> source. The azimuth and elevation patterns of the antennas in the LDAR system were computed using flight test data that was gathered specifically for this purpose. The results presented in this report deal with the azimuth patterns for all the antennas and the elevation patterns for three of the seven sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoJI.195..117S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoJI.195..117S"><span><span class="hlt">Lightning</span>-induced remanent magnetization—the Vredefort impact structure, South Africa</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salminen, Johanna; Pesonen, Lauri J.; Lahti, Kari; Kannus, Kari</p> <p>2013-10-01</p> <p>Earlier studies at the large Vredefort impact structure since 1960 have shown that values of natural remanent magnetizations (NRMs) and, hence, Koenigsberger's Q values (ratio of remanent over induced magnetization), for different rock lithologies are elevated compared to the values for similar rock types around the world. Three origins for the <span class="hlt">high</span> Q values have been suggested, namely shock by meteorite impact, enhanced plasma field and <span class="hlt">lightning</span> strikes. We have studied whether laboratory <span class="hlt">lightning</span> experiments can produce enhanced NRMs in the Vredefort target rocks. For comparison, we also included rocks from the Johannesburg dome, which is not a meteorite impact site. The results revealed increased NRMs, susceptibility and Q values of the rocks from both Vredefort and Johannesburg domes. Rock magnetic measurements and scanning electron microscope analyses of <span class="hlt">lightning</span> pulsed and unpulsed samples showed that the <span class="hlt">lightning</span> included changes in magnetic properties of the rocks. We suggest that in some samples <span class="hlt">lightning</span> have changed magnetic mineralogy by oxidizing magnetite to maghemite. Indication of this oxidation came from the low-temperature variation of the remanent magnetization where we observed several hallmarks of maghemitization in samples treated by <span class="hlt">lightning</span> strikes. Further indications of mineralogical changes include increased Curie points above the magnetite's Curie point (580 °C) and appearance of pronounced lower temperature (200-400 °C) phases in susceptibility versus temperature curves. These changes are interpreted to indicate partially oxidized magnetite (maghemitization) coupled with grain fragmentations and by this way grain size reduction. <span class="hlt">High</span>-temperature hysteresis and REM (= NRM/saturation isothermal remanent magnetization) studies support these conclusions. Our results were analogous with the ones for lodestones and protolodestones where partially oxidized magnetite is thought to make magnetization more intense.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990058131&hterms=water+wet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dwater%2Bwet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990058131&hterms=water+wet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dwater%2Bwet"><span>Observations of Total <span class="hlt">Lightning</span> Associated with Severe Convection During the Wet Season in Central Florida</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sharp, D.; Williams, E.; Weber, M.; Goodman, Steven J.; Raghavan, R.; Matlin, A.; Boldi, B.</p> <p>1998-01-01</p> <p>This paper will discuss findings of a collaborative <span class="hlt">lightning</span> research project between National Aeronautics and Space Administration, the Massachusetts Institute of Technology and the National Weather Service office In Melbourne Florida. In August 1996, NWS/MLB received a workstation which incorporates data from the KMLB WSR-88D, Cloud to Ground (CG) stroke data from the National <span class="hlt">Lightning</span> Detection Network (NLDN), and 3D volumetric <span class="hlt">lightning</span> data collected from the Kennedy Space Centers' <span class="hlt">Lightning</span> Detection And Ranging (LDAR) <span class="hlt">lightning</span> system. The two primary objectives of this <span class="hlt">lightning</span> workstation, called <span class="hlt">Lightning</span> Imaging Sensor Data Applications Display (USDAD), are to: observe how total <span class="hlt">lightning</span> relates to severe convective storm morphology over central Florida, and compare ground based total <span class="hlt">lightning</span> data (LDAR) to a satellite based <span class="hlt">lightning</span> detection system. This presentation will focus on objective #1. The LISDAD system continuously displays CG and total lighting <span class="hlt">activity</span> overlaid on top of the KMLB composite reflectivity product. This allows forecasters to monitor total <span class="hlt">lightning</span> <span class="hlt">activity</span> associated with convective cells occurring over the central Florida peninsula and adjacent coastal waters. The LISDAD system also keeps track of the amount of total <span class="hlt">lightning</span> data, and associated KMLB radar products with individual convective cells occurring over the region. By clicking on an individual cell, a history table displays flash rate information (CG and total <span class="hlt">lightning</span>) in one minute increments, along with radar parameter trends (echo tops, maximum dBz and height of maximum dBz) every 5 minutes. This history table Is updated continuously, without user intervention, as long as the cell is identified. Reviewing data collected during the 1997 wet season (21 cases) revealed that storms which produced severe weather (hall greater or = 0.75 in. or wind damage) typically showed a rapid rise In total <span class="hlt">lightning</span> prior to the onset of severe weather. On average, flash</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/36768','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/36768"><span>Relating <span class="hlt">lightning</span> data to fire occurrence data</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Frank H. Koch</p> <p>2009-01-01</p> <p><span class="hlt">Lightning</span> disturbance can affect forest health at various scales. <span class="hlt">Lightning</span> strikes may kill or weaken individual trees. <span class="hlt">Lightning</span>-damaged trees may in turn function as epicenters of pest outbreaks in forest stands, as is the case with the southern pine beetle and other bark beetles (Rykiel and others 1988).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec25-1316.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec25-1316.pdf"><span>14 CFR 25.1316 - System <span class="hlt">lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... systems to perform these functions are not adversely affected when the airplane is exposed to <span class="hlt">lightning</span>... these functions can be recovered in a timely manner after the airplane is exposed to <span class="hlt">lightning</span>. (c) Compliance with the <span class="hlt">lightning</span> protection criteria prescribed in paragraphs (a) and (b) of this section must...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMAE12A..05K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMAE12A..05K"><span><span class="hlt">Lightning</span> Mapping Observations During DC3 in Northern Colorado</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krehbiel, P. R.; Rison, W.; Thomas, R. J.</p> <p>2012-12-01</p> <p>The Deep Convective Clouds and Chemistry Experiment (DC3) was conducted in three regions covered by <span class="hlt">Lightning</span> Mapping Arrays (LMAs): Oklahoma and west Texas, northern Alabama, and northern Colorado. In this and a companion presentation, we discuss results obtained from the newly-deployed North Colorado LMA. The CO LMA revealed a surprising variety of <span class="hlt">lightning</span>-inferred electrical structures, ranging from classic tripolar, normal polarity storms to several variations of anomalously electrified systems. Storms were often characterized by a pronounced lack or deficit of cloud-to-ground discharges (negative or positive), both in relative and absolute terms compared to the large amount of intracloud <span class="hlt">activity</span> revealed by the LMA. Anomalous electrification was observed in small, localized storms as well as in large, deeply convective and severe storms. Another surprising observation was the frequent occurrence of embedded convection in the downwind anvil/outflow region of large storm systems. Observations of discharges in low flash rate situations over or near the network are sufficiently detailed to enable branching algorithms to estimate total channel lengths for modeling NOx production. However, this will not be possible in large or distant storm systems where the <span class="hlt">lightning</span> was essentially continuous and structurally complex, or spatially noisy. Rather, a simple empirical metric for characterizing the <span class="hlt">lightning</span> <span class="hlt">activity</span> can be developed based on the number of located VHF radiation sources, weighted for example by the peak source power, source altitude, and temporal duration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990036563','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990036563"><span>Electro-optic <span class="hlt">Lightning</span> Detector</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William J.; Solakiewicz, Richard J.</p> <p>1996-01-01</p> <p>The design, alignment, calibration, and field deployment of a solid-state <span class="hlt">lightning</span> detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. <span class="hlt">Lightning</span>-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred <span class="hlt">lightning</span> electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in northern Alabama.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990106243&hterms=applied+optics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dapplied%2Boptics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990106243&hterms=applied+optics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dapplied%2Boptics"><span>Electro-Optic <span class="hlt">Lightning</span> Detector</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, Willliam; Solakiewicz, Richard</p> <p>1998-01-01</p> <p>The design, alignment, calibration, and field deployment of a solid-state <span class="hlt">lightning</span> detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. <span class="hlt">Lightning</span>-caused electric field changes are then related to small changes in the transmission of laser light through the optical cell. Several hundred <span class="hlt">lightning</span> electric field change excursions were recorded during 4 thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in Northern Alabama.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120002866','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120002866"><span>Multicolor Photometric Observation of <span class="hlt">Lightning</span> from Space: Comparison with Radio Measurements</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Adachi, Toru; Cohen, Morris; Said, Ryan; Blakeslee, Richard J.; Cummer, Steven A.; Li, Jingbo; Lu, Geopeng; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred Bing-Chih; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20120002866'); toggleEditAbsImage('author_20120002866_show'); toggleEditAbsImage('author_20120002866_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20120002866_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20120002866_hide"></p> <p>2011-01-01</p> <p>This study evaluates the effectiveness of spectrophotometric measurements from space in revealing properties of <span class="hlt">lightning</span> flash. The multicolor optical waveform data obtained by FORMOSAT-2/Imager of Sprites and Upper Atmospheric <span class="hlt">Lightning</span> (ISUAL) were analyzed in relation to National <span class="hlt">Lightning</span> Detection Network (NLDN), North Alabama <span class="hlt">Lightning</span> Mapping Array (LMA). As of July 2011, we found six <span class="hlt">lightning</span> events which were observed by ISUAL and North Alabama LMA. In two of these events, NLDN showed clear positive cloud-to-ground (CG) discharges with peak current of +139.9 kA and +41.6 kA and, around that time, LMA showed continuous intra-cloud (IC) leader <span class="hlt">activities</span> at 4-6 km altitudes. ISUAL also observed consistent optical waveforms of the IC and CG components and, interestingly, it was found that the blue/red spectral ratio clearly decreased by a factor of 1.5-2.5 at the time of CG discharges. Other four <span class="hlt">lightning</span> events in which NLDN did not detect any CG discharges were also investigated, but such a feature was not found in any of these cases. These results suggest that the optical color of CG component is more reddish than that of IC component and we explain this as a result of more effective Rayleigh scattering in blue light emissions coming from lower-altitude light source. This finding suggests that spectral measurements could be a new useful technique to characterize ICs and CGs from space. In this talk, we will also present a result from <span class="hlt">lightning</span> statistical analysis of ISUAL spectrophotometric data and ULF magnetic data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=thunder&pg=3&id=EJ027314','ERIC'); return false;" href="https://eric.ed.gov/?q=thunder&pg=3&id=EJ027314"><span><span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pampe, William R.</p> <p>1970-01-01</p> <p>Presents basic physical theory for movement of electric charges in clouds, earth, and air during production of <span class="hlt">lightning</span> and thunder. Amount of electrical energy produced and heating effects during typical thunderstorms is described. Generalized safety practices are given. (JM)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970012901&hterms=nasa+shuttle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dnasa%2Bshuttle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970012901&hterms=nasa+shuttle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dnasa%2Bshuttle"><span>NASA Shuttle <span class="hlt">Lightning</span> Research: Observations of Nocturnal Thunderstorms and <span class="hlt">Lightning</span> Displays as Seen During Recent Space Shuttle Missions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vaughan, Otha H., Jr.</p> <p>1994-01-01</p> <p>A number of interesting <span class="hlt">lightning</span> events have been observed using the low light level TV camera of the space shuttle during nighttime observations of thunderstorms near the limb of the Earth. Some of the vertical type <span class="hlt">lightning</span> events that have been observed will be presented. Using TV cameras for observing <span class="hlt">lightning</span> near the Earth's limb allows one to determine the location of the <span class="hlt">lightning</span> and other characteristics by using the star field data and the shuttle's orbital position to reconstruct the geometry of the scene being viewed by the shuttle's TV cameras which are located in the payload bay of the shuttle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhD...50M5201M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhD...50M5201M"><span>Ball <span class="hlt">lightning</span> dynamics and stability at moderate ion densities</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morrow, R.</p> <p>2017-10-01</p> <p> <span class="hlt">lightning</span>. Additionally, ‘phantom plasma balls’ may well be generated and go unnoticed due to very low luminosity; luminous ball <span class="hlt">lightning</span> may be the exception. Finally, the mechanism described here may also be <span class="hlt">active</span> in the dynamics of bead <span class="hlt">lightning</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE31A..06C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE31A..06C"><span>Observation of <span class="hlt">high</span> energy radiation in the Surface Detectors of the Pierre Auger Observatory in correspondance with <span class="hlt">lightning</span> strikes.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colalillo, R.; Mussa, R.</p> <p>2017-12-01</p> <p>Very peculiar events have been detected with the surface detector (SD) of the Pierre Auger Observatory. These events are characterized by stations collecting a long-lasting signal compared to cosmic-ray signal, and by stations where the <span class="hlt">high</span>-frequency noise was observed. This noise could be associated with a <span class="hlt">lightning</span>-caused signal. A correlation between our events and <span class="hlt">lightning</span> strikes as recorded by the WWLLN (World Wide <span class="hlt">Lightning</span> Location Network) network was found. The time difference between <span class="hlt">lightning</span> and Auger data spans from 10 μs to 100 ms. The long-lasting signals are observed in stations distributed in a circular pattern with a typical radius of about 6 km for the big events, that are almost the whole sample. The amplitude of the signal is bigger close to the centre of the circle and decreases while the distance from the centre increases. The energy deposited in each station spans from 10 GeV to 1 TeV, well above the typical energies deposited by cosmic rays showers. The first stations reached by the signal are the central ones. The observed timing is consistent with a spherical or cylindrical front propagating from a source very close to the ground. The main characteristics of these events will be described. Studies are under way to understand phenomena and mechanisms that may have generated them.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023303','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023303"><span><span class="hlt">Lightning</span> location system supervising Swedish power transmission network</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Melin, Stefan A.</p> <p>1991-01-01</p> <p>For electric utilities, the ability to prevent or minimize <span class="hlt">lightning</span> damage on personnel and power systems is of great importance. Therefore, the Swedish State Power Board, has been using data since 1983 from a nationwide <span class="hlt">lightning</span> location system (LLS) for accurately locating <span class="hlt">lightning</span> ground strikes. <span class="hlt">Lightning</span> data is distributed and presented on color graphic displays at regional power network control centers as well as at the national power system control center for optimal data use. The main objectives for use of LLS data are: supervising the power system for optimal and safe use of the transmission and generating capacity during periods of thunderstorms; warning service to maintenance and service crews at power line and substations to end operations hazardous when <span class="hlt">lightning</span>; rapid positioning of emergency crews to locate network damage at areas of detected <span class="hlt">lightning</span>; and post analysis of power outages and transmission faults in relation to <span class="hlt">lightning</span>, using archived <span class="hlt">lightning</span> data for determination of appropriate design and insulation levels of equipment. Staff have found LLS data useful and economically justified since the availability of power system has increased as well as level of personnel safety.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3698W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3698W"><span><span class="hlt">Lightning</span> Mapping With an Array of Fast Antennas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Ting; Wang, Daohong; Takagi, Nobuyuki</p> <p>2018-04-01</p> <p>Fast Antenna <span class="hlt">Lightning</span> Mapping Array (FALMA), a low-frequency <span class="hlt">lightning</span> mapping system comprising an array of fast antennas, was developed and established in Gifu, Japan, during the summer of 2017. Location results of two hybrid flashes and a cloud-to-ground flash comprising 11 return strokes (RSs) are described in detail in this paper. Results show that concurrent branches of stepped leaders can be readily resolved, and K changes and dart leaders with speeds up to 2.4 × 107 m/s are also well imaged. These results demonstrate that FALMA can reconstruct three-dimensional structures of <span class="hlt">lightning</span> flashes with great details. Location accuracy of FALMA is estimated by comparing the located striking points of successive RSs in cloud-to-ground flashes. Results show that distances between successive RSs are mainly below 25 m, indicating exceptionally <span class="hlt">high</span> location accuracy of FALMA.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRD..11811468M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRD..11811468M"><span>Interannual variability in tropical tropospheric ozone and OH: The role of <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murray, Lee T.; Logan, Jennifer A.; Jacob, Daniel J.</p> <p>2013-10-01</p> <p>Nitrogen oxide radicals (NOx) produced by <span class="hlt">lightning</span> are natural precursors for the production of the dominant tropospheric oxidants, OH and ozone. Observations of the interannual variability (IAV) of tropical ozone and of global mean OH (from the methyl chloroform proxy) offer a window for understanding the sensitivity of ozone and OH to environmental factors. We present the results of simulations for 1998-2006 using the GEOS-Chem chemical transport model (CTM) with IAV in tropical <span class="hlt">lightning</span> constrained by satellite observations from the <span class="hlt">Lightning</span> Imaging Sensor. We find that this imposed IAV in <span class="hlt">lightning</span> NOx improves the ability of the model to reproduce observed IAV in tropical ozone and OH. <span class="hlt">Lightning</span> is far more important than biomass burning in driving the IAV of tropical ozone, even though the IAV of NOx emissions from fires is greater than that from <span class="hlt">lightning</span>. Our results indicate that the IAV in tropospheric OH is <span class="hlt">highly</span> sensitive to <span class="hlt">lightning</span> relative to other emissions and suggest that <span class="hlt">lightning</span> contributes an important fraction of the observed IAV in OH inferred from the methyl chloroform proxy. <span class="hlt">Lightning</span> affects OH through the HO2+ NO reaction, an effect compounded by positive feedback from the resulting increase in ozone production and in CO loss. We can account in the model for the observed increase in OH in 1998-2004 and for its IAV, but the model fails to explain the OH decrease in 2004-2006. We find that stratospheric ozone plays little role in driving IAV in OH during 1998-2006, in contrast to previous studies that examined earlier periods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991agcl....2S....C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991agcl....2S....C"><span>Evaluating <span class="hlt">lightning</span> hazards to building environments using explicit numerical solutions of Maxwell's equations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Collier, Richard S.; McKenna, Paul M.; Perala, Rodney A.</p> <p>1991-08-01</p> <p>The objective here is to describe the <span class="hlt">lightning</span> hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the <span class="hlt">lightning</span> interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for <span class="hlt">lightning</span> protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly <span class="hlt">high</span> during a <span class="hlt">lightning</span> strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated <span class="hlt">lightning</span> strike.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023419','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023419"><span>Evaluating <span class="hlt">lightning</span> hazards to building environments using explicit numerical solutions of Maxwell's equations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Collier, Richard S.; Mckenna, Paul M.; Perala, Rodney A.</p> <p>1991-01-01</p> <p>The objective here is to describe the <span class="hlt">lightning</span> hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the <span class="hlt">lightning</span> interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for <span class="hlt">lightning</span> protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly <span class="hlt">high</span> during a <span class="hlt">lightning</span> strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated <span class="hlt">lightning</span> strike.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=MSFC-0202799&hterms=succession&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsuccession','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=MSFC-0202799&hterms=succession&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsuccession"><span>NASA Studies <span class="hlt">Lightning</span> Storms Using <span class="hlt">High</span>-Flying, Uninhabited Vehicle</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>A NASA team studying the causes of electrical storms and their effects on our home planet achieved a milestone on August 21, 2002, completing the study's longest-duration research flight and monitoring four thunderstorms in succession. Based at the Naval Air Station Key West, Florida, researchers with the Altus Cumulus Electrification Study (ACES) used the Altus II remotely-piloted aircraft to study thunderstorms in the Atlantic Ocean off Key West and the west of the Everglades. Using special equipment aboard the Altus II, scientists in ACES will gather electric, magnetic, and optical measurements of the thunderstorms, gauging elements such as <span class="hlt">lightning</span> <span class="hlt">activity</span> and the electrical environment in and around the storms. With dual goals of gathering weather data safely and testing the adaptability of the uninhabited aircraft, the ACES study is a collaboration among the Marshall Space Flight Center, the University of Alabama in Huntsville, NASA's Goddard Space Flight Center in Greenbelt, Maryland, Pernsylvania State University in University Park, and General Atomics Aeronautical Systems, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15...32P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15...32P"><span>Visual Analytics approach for <span class="hlt">Lightning</span> data analysis and cell nowcasting</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peters, Stefan; Meng, Liqiu; Betz, Hans-Dieter</p> <p>2013-04-01</p> <p>Thunderstorms and their ground effects, such as flash floods, hail, <span class="hlt">lightning</span>, strong wind and tornadoes, are responsible for most weather damages (Bonelli & Marcacci 2008). Thus to understand, identify, track and predict <span class="hlt">lightning</span> cells is essential. An important aspect for decision makers is an appropriate visualization of weather analysis results including the representation of dynamic <span class="hlt">lightning</span> cells. This work focuses on the visual analysis of <span class="hlt">lightning</span> data and <span class="hlt">lightning</span> cell nowcasting which aim to detect and understanding spatial-temporal patterns of moving thunderstorms. <span class="hlt">Lightnings</span> are described by 3D coordinates and the exact occurrence time of <span class="hlt">lightnings</span>. The three-dimensionally resolved total <span class="hlt">lightning</span> data used in our experiment are provided by the European <span class="hlt">lightning</span> detection network LINET (Betz et al. 2009). In all previous works, <span class="hlt">lightning</span> point data, detected <span class="hlt">lightning</span> cells and derived cell tracks are visualized in 2D. <span class="hlt">Lightning</span> cells are either displayed as 2D convex hulls with or without the underlying <span class="hlt">lightning</span> point data. Due to recent improvements of <span class="hlt">lightning</span> data detection and accuracy, there is a growing demand on multidimensional and interactive visualization in particular for decision makers. In a first step <span class="hlt">lightning</span> cells are identified and tracked. Then an interactive graphic user interface (GUI) is developed to investigate the dynamics of the <span class="hlt">lightning</span> cells: e.g. changes of cell density, location, extension as well as merging and splitting behavior in 3D over time. In particular a space time cube approach is highlighted along with statistical analysis. Furthermore a <span class="hlt">lightning</span> cell nowcasting is conducted and visualized. The idea thereby is to predict the following cell features for the next 10-60 minutes including location, centre, extension, density, area, volume, lifetime and cell feature probabilities. The main focus will be set to a suitable interactive visualization of the predicted featured within the GUI. The developed visual</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023411','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023411"><span>A simulated <span class="hlt">lightning</span> effects test facility for testing live and inert missiles and components</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Craven, Jeffery D.; Knaur, James A.; Moore, Truman W., Jr.; Shumpert, Thomas H.</p> <p>1991-01-01</p> <p>Details of a simulated <span class="hlt">lightning</span> effects test facility for testing live and inert missiles, motors, and explosive components are described. The test facility is designed to simulate the <span class="hlt">high</span> current, continuing current, and <span class="hlt">high</span> rate-of-rise current components of an idealized direct strike <span class="hlt">lightning</span> waveform. The <span class="hlt">Lightning</span> Test Facility was in operation since May, 1988, and consists of: 3 separate capacitor banks used to produce the <span class="hlt">lightning</span> test components; a permanently fixed large steel safety cage for retaining the item under test (should it be ignited during testing); an earth covered bunker housing the control/equipment room; a charge/discharge building containing the charging/discharging switching; a remotely located blockhouse from which the test personnel control hazardous testing; and interconnecting cables.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336118&keyword=air&subject=air%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=09/03/2012&dateendpublishedpresented=09/03/2017&sortby=pubdateyear','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336118&keyword=air&subject=air%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=09/03/2012&dateendpublishedpresented=09/03/2017&sortby=pubdateyear"><span>A simple <span class="hlt">lightning</span> assimilation technique for improving ...</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, <span class="hlt">lightning</span> assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: force KF deep convection where <span class="hlt">lightning</span> is observed and, optionally, suppress deep convection where <span class="hlt">lightning</span> is absent. WRF simulations were made with and without <span class="hlt">lightning</span> assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of <span class="hlt">lightning</span> assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly averaged bias of 6 h accumulated rainfall is reduced from 0.54 to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when <span class="hlt">lightning</span> assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this <span class="hlt">lightning</span> assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF applications. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=325491&keyword=air&subject=air%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=02/27/2012&dateendpublishedpresented=02/27/2017&sortby=pubdateyear','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=325491&keyword=air&subject=air%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=02/27/2012&dateendpublishedpresented=02/27/2017&sortby=pubdateyear"><span>A Simple <span class="hlt">Lightning</span> Assimilation Technique For Improving ...</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, <span class="hlt">lightning</span> assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: Force KF deep convection where <span class="hlt">lightning</span> is observed and, optionally, suppress deep convection where <span class="hlt">lightning</span> is absent. WRF simulations were made with and without <span class="hlt">lightning</span> assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of <span class="hlt">lightning</span> assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly-averaged bias of 6-h accumulated rainfall is reduced from 0.54 mm to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when <span class="hlt">lightning</span> assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this <span class="hlt">lightning</span> assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF appli</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050215341','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050215341"><span><span class="hlt">Lightning</span> Detection Efficiency Analysis Process: Modeling Based on Empirical Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rompala, John T.</p> <p>2005-01-01</p> <p>A ground based <span class="hlt">lightning</span> detection system employs a grid of sensors, which record and evaluate the electromagnetic signal produced by a <span class="hlt">lightning</span> strike. Several detectors gather information on that signal s strength, time of arrival, and behavior over time. By coordinating the information from several detectors, an event solution can be generated. That solution includes the signal s point of origin, strength and polarity. Determination of the location of the <span class="hlt">lightning</span> strike uses algorithms based on long used techniques of triangulation. Determination of the event s original signal strength relies on the behavior of the generated magnetic field over distance and time. In general the signal from the event undergoes geometric dispersion and environmental attenuation as it progresses. Our knowledge of that radial behavior together with the strength of the signal received by detecting sites permits an extrapolation and evaluation of the original strength of the <span class="hlt">lightning</span> strike. It also limits the detection efficiency (DE) of the network. For expansive grids and with a sparse density of detectors, the DE varies widely over the area served. This limits the utility of the network in gathering information on regional <span class="hlt">lightning</span> strike density and applying it to meteorological studies. A network of this type is a grid of four detectors in the Rondonian region of Brazil. The service area extends over a million square kilometers. Much of that area is covered by rain forests. Thus knowledge of <span class="hlt">lightning</span> strike characteristics over the expanse is of particular value. I have been developing a process that determines the DE over the region [3]. In turn, this provides a way to produce <span class="hlt">lightning</span> strike density maps, corrected for DE, over the entire region of interest. This report offers a survey of that development to date and a record of present <span class="hlt">activity</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21778092','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21778092"><span><span class="hlt">Lightning</span> safety awareness of visitors in three California national parks.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weichenthal, Lori; Allen, Jacoby; Davis, Kyle P; Campagne, Danielle; Snowden, Brandy; Hughes, Susan</p> <p>2011-09-01</p> <p>To assess the level of <span class="hlt">lightning</span> safety awareness among visitors at 3 national parks in the Sierra Nevada Mountains of California. A 12-question, short answer convenience sample survey was administered to participants 18 years of age and over concerning popular trails and points of interest with known <span class="hlt">lightning</span> <span class="hlt">activity</span>. There were 6 identifying questions and 5 knowledge-based questions pertaining to <span class="hlt">lightning</span> that were scored on a binary value of 0 or 1 for a total of 10 points for the survey instrument. Volunteers in Fresno, California, were used as a control group. Participants were categorized as Sequoia and Kings Canyon National Park (SEKI), frontcountry (FC), or backcountry (BC); Yosemite National Park (YNP) FC or BC; and Fresno. Analysis of variance (ANOVA) was used to test for differences between groups. 467 surveys were included for analysis: 77 in Fresno, 192 in SEKI, and 198 in YNP. National park participants demonstrated greater familiarity with <span class="hlt">lightning</span> safety than individuals from the metropolitan community (YNP 5.84 and SEKI 5.65 vs Fresno 5.14, P = .0032). There were also differences noted between the BC and FC subgroups (YNP FC 6.07 vs YNP BC 5.62, P = .02; YNP FC 6.07 vs SEKI FC 5.58, P = .02). Overall results showed that participants had certain basic <span class="hlt">lightning</span> knowledge but lacked familiarity with other key <span class="hlt">lightning</span> safety recommendations. While there are statistically significant differences in <span class="hlt">lightning</span> safety awareness between national parks and metropolitan participants, the clinical impact of these findings are debatable. This study provides a starting point for providing educational outreach to visitors in these national parks. Copyright © 2011 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRD..118.5176C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRD..118.5176C"><span>Three years of <span class="hlt">lightning</span> impulse charge moment change measurements in the United States</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cummer, Steven A.; Lyons, Walter A.; Stanley, Mark A.</p> <p>2013-06-01</p> <p>We report and analyze 3 years of <span class="hlt">lightning</span> impulse charge moment change (iCMC) measurements obtained from an automated, real time <span class="hlt">lightning</span> charge moment change network (CMCN). The CMCN combines U.S. National <span class="hlt">Lightning</span> Detection Network (NLDN) <span class="hlt">lightning</span> event geolocations with extremely low frequency (≲1 kHz) data from two stations to provide iCMC measurements across the entire United States. Almost 14 million <span class="hlt">lightning</span> events were measured in the 3 year period. We present the statistical distributions of iCMC versus polarity and NLDN-measured peak current, including corrections for the detection efficiency of the CMCN versus peak current. We find a broad distribution of iCMC for a given peak current, implying that these parameters are at best only weakly correlated. Curiously, the mean iCMC does not monotonically increase with peak current, and in fact, drops for positive CG strokes above +150 kA. For all positive strokes, there is a boundary near 20 C km that separates seemingly distinct populations of <span class="hlt">high</span> and low iCMC strokes. We also explore the geographic distribution of <span class="hlt">high</span> iCMC <span class="hlt">lightning</span> strokes. <span class="hlt">High</span> iCMC positive strokes occur predominantly in the northern midwest portion of the U.S., with a secondary peak over the gulf stream region just off the U.S. east coast. <span class="hlt">High</span> iCMC negative strokes are also clustered in the midwest, although somewhat south of most of the <span class="hlt">high</span> iCMC positive strokes. This is a region far from the locations of maximum occurrence of <span class="hlt">high</span> peak current negative strokes. Based on assumed iCMC thresholds for sprite production, we estimate that approximately 35,000 positive polarity and 350 negative polarity sprites occur per year over the U.S. land and near-coastal areas. Among other applications, this network is useful for the nowcasting of sprite-producing storms and storm regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130012450','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130012450"><span>Comparison of the KSC-ER Cloud-to-Ground <span class="hlt">Lightning</span> Surveillance System (CGLSS) and the U.S. National <span class="hlt">Lightning</span> Detection Network (NLDN)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ward, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip</p> <p>2008-01-01</p> <p>The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) are located in a region of Florida that experiences the highest area density of <span class="hlt">lightning</span> strikes to ground in the United States, with values approaching 16 fl/km 2/yr when accumulated in 10x10 km (100 sq km) grids (see Figure 1). Consequently, the KSC-ER use data derived from two cloud-to-ground (CG) <span class="hlt">lightning</span> detection networks to detect hazardous weather, the "Cloud-to-Ground <span class="hlt">Lightning</span> Surveillance System" (CGLSS) that is owned and operated by the Air Force and the U.S. National <span class="hlt">Lightning</span> Detection Network (NLDN) that is owned and operated by Vaisala, Inc. These systems are used to provide <span class="hlt">lightning</span> warnings for ground operations and to insure mission safety during space launches at the KSC-ER. In order to protect the rocket and shuttle fleets, NASA and the Air Force follow a set of <span class="hlt">lightning</span> safety guidelines that are called the <span class="hlt">Lightning</span> Launch Commit Criteria (LLCC). These rules are designed to insure that vehicles are not exposed to the hazards of natural or triggered <span class="hlt">lightning</span> that would in any way jeopardize a mission or cause harm to the shuttle astronauts. Also, if any CG <span class="hlt">lightning</span> strikes too close to a vehicle on a launch pad, it can cause time-consuming mission delays due to the extensive retests that are often required for vehicles and/or payloads when this occurs. If any CG <span class="hlt">lightning</span> strike is missed or mis-located by even a small amount, the result could have significant safety implications, require expensive retests, or create unnecessary delays or scrubs in launches. Therefore, it is important to understand the performance of each <span class="hlt">lightning</span> detection system in considerable detail.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001583','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001583"><span>Rationales for the <span class="hlt">Lightning</span> Launch Commit Criteria</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Willett, John C. (Editor); Merceret, Francis J. (Editor); Krider, E. Philip; O'Brien, T. Paul; Dye, James E.; Walterscheid, Richard L.; Stolzenburg, Maribeth; Cummins, Kenneth; Christian, Hugh J.; Madura, John T.</p> <p>2016-01-01</p> <p>Since natural and triggered <span class="hlt">lightning</span> are demonstrated hazards to launch vehicles, payloads, and spacecraft, NASA and the Department of Defense (DoD) follow the <span class="hlt">Lightning</span> Launch Commit Criteria (LLCC) for launches from Federal Ranges. The LLCC were developed to prevent future instances of a rocket intercepting natural <span class="hlt">lightning</span> or triggering a <span class="hlt">lightning</span> flash during launch from a Federal Range. NASA and DoD utilize the <span class="hlt">Lightning</span> Advisory Panel (LAP) to establish and develop robust rationale from which the criteria originate. The rationale document also contains appendices that provide additional scientific background, including detailed descriptions of the theory and observations behind the rationales. The LLCC in whole or part are used across the globe due to the rigor of the documented criteria and associated rationale. The Federal Aviation Administration (FAA) adopted the LLCC in 2006 for commercial space transportation and the criteria were codified in the FAA's Code of Federal Regulations (CFR) for Safety of an Expendable Launch Vehicle (Appendix G to 14 CFR Part 417, (G417)) and renamed <span class="hlt">Lightning</span> Flight Commit Criteria in G417.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMAE13A0368Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMAE13A0368Z"><span>Statistical Evolution of the <span class="hlt">Lightning</span> Flash</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zoghzoghy, F. G.; Cohen, M.; Said, R.; Inan, U. S.</p> <p>2012-12-01</p> <p>Natural <span class="hlt">lightning</span> is one of the most fascinating and powerful electrical processes on Earth. To date, the physics behind this natural phenomenon are not fully understood, due primarily to the difficulty of obtaining measurements inside thunderstorms and to the wide range of timescales involved (from nanoseconds to seconds). Our aim is to use accurate <span class="hlt">lightning</span> geo-location data from the National <span class="hlt">Lightning</span> Detection Network (NLDN) to study statistical patterns in <span class="hlt">lightning</span>, taking advantage of the fact that millions of <span class="hlt">lightning</span> flashes occur around the globe every day. We present two sets of results, one involving the patterns of flashes in a storm, and a second involving the patterns of strokes in a flash. These patterns can provide a surrogate measure of the timescales and the spatial extents of the underlying physical processes. First, we study the timescales of charge buildup inside thunderstorms. We find that, following a <span class="hlt">lightning</span> flash, the probability of another neighboring flash decreases and takes tens of seconds to recover. We find that this suppression effect is a function of flash type, stroke peak current, cloud-to-ground (CG) stroke multiplicity, and other <span class="hlt">lightning</span> and geographical parameters. We find that the probabilities of subsequent flashes are more suppressed following oceanic <span class="hlt">lightning</span>, or following flashes with higher peak currents and/or higher multiplicities (for CG flashes). Second, we use NLDN data to study the evolution of the strokes within a CG flash. A CG flash typically includes multiple return strokes, which can occur in the same channel or in multiple channels within a few kilometers. We cluster NLDN stroke data into flashes and produce the probability density function of subsequent strokes as a function of distance and time-delays relative to the previous stroke. Using this technique, we investigate processes which occur during the CG <span class="hlt">lightning</span> flash with nanosecond to millisecond timescales. For instance, our results suggest</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JASTP.102...81B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JASTP.102...81B"><span>Reconstruction of <span class="hlt">lightning</span> channel geometry by localizing thunder sources</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bodhika, J. A. P.; Dharmarathna, W. G. D.; Fernando, Mahendra; Cooray, Vernon</p> <p>2013-09-01</p> <p>Thunder is generated as a result of a shock wave created by sudden expansion of air in the <span class="hlt">lightning</span> channel due to <span class="hlt">high</span> temperature variations. Even though the highest amplitudes of thunder signatures are generated at the return stroke stage, thunder signals generated at other events such as preliminary breakdown pulses also can be of amplitudes which are large enough to record using a sensitive system. In this study, it was attempted to reconstruct the <span class="hlt">lightning</span> channel geometry of cloud and ground flashes by locating the temporal and spatial variations of thunder sources. Six <span class="hlt">lightning</span> flashes were reconstructed using the recorded thunder signatures. Possible effects due to atmospheric conditions were neglected. Numerical calculations suggest that the time resolution of the recorded signal and 10 ms-1error in speed of sound leads to 2% and 3% errors, respectively, in the calculated coordinates. Reconstructed channel geometries for cloud and ground flashes agreed with the visual observations. Results suggest that the <span class="hlt">lightning</span> channel can be successfully reconstructed using this technique.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRD..116.9103A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRD..116.9103A"><span>Acoustic localization of triggered <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arechiga, Rene O.; Johnson, Jeffrey B.; Edens, Harald E.; Thomas, Ronald J.; Rison, William</p> <p>2011-05-01</p> <p>We use acoustic (3.3-500 Hz) arrays to locate local (<20 km) thunder produced by triggered <span class="hlt">lightning</span> in the Magdalena Mountains of central New Mexico. The locations of the thunder sources are determined by the array back azimuth and the elapsed time since discharge of the <span class="hlt">lightning</span> flash. We compare the acoustic source locations with those obtained by the <span class="hlt">Lightning</span> Mapping Array (LMA) from Langmuir Laboratory, which is capable of accurately locating the <span class="hlt">lightning</span> channels. To estimate the location accuracy of the acoustic array we performed Monte Carlo simulations and measured the distance (nearest neighbors) between acoustic and LMA sources. For close sources (<5 km) the mean nearest-neighbors distance was 185 m compared to 100 m predicted by the Monte Carlo analysis. For far distances (>6 km) the error increases to 800 m for the nearest neighbors and 650 m for the Monte Carlo analysis. This work shows that thunder sources can be accurately located using acoustic signals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AnGeo..36..349S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AnGeo..36..349S"><span>Relationship between ionospheric plasma bubble occurrence and <span class="hlt">lightning</span> strikes over the Amazon region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sousasantos, Jonas; Sobral, José Humberto Andrade; Alam Kherani, Esfhan; Magalhães Fares Saba, Marcelo; Rodolfo de Campos, Diovane</p> <p>2018-03-01</p> <p>The vertical coupling between the troposphere and the ionosphere presents some remarkable features. Under intense tropospheric convection, gravity waves may be generated, and once they reach the ionosphere, these waves may seed instabilities and spread F and equatorial plasma bubble events may take place. Additionally, there is a close association between severe tropospheric convection and <span class="hlt">lightning</span> strikes. In this work an investigation covering an equinox period (September-October) during the deep solar minimum (2009) presents the relation between <span class="hlt">lightning</span> strike <span class="hlt">activity</span> and spread F (equatorial plasma bubble) detected over a low-latitude Brazilian region. The results show a considerable correlation between these two phenomena. The common element in the center of this conformity seems to be the gravity waves. Once gravity waves and <span class="hlt">lightning</span> strikes share the same source (intense tropospheric convection) and the effects of such gravity waves in the ionosphere include the seeding of instabilities according to the gravity waves magnitude, the monitoring of the <span class="hlt">lightning</span> strike <span class="hlt">activity</span> seems to offer some information about the subsequent development of spread F over the equatorial region.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>