Yamada, Tsuyoshi; Kanda, Yutaka; Takayama, Makoto; Hashimoto, Akitoshi; Sugihara, Tsutomu; Satoh-Kubota, Ai; Suzuki-Takanami, Eri; Yano, Keiichi; Iida, Shigeru; Satoh, Mitsuo
2016-01-01
The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood. PMID:26747427
Yamada, Tsuyoshi; Kanda, Yutaka; Takayama, Makoto; Hashimoto, Akitoshi; Sugihara, Tsutomu; Satoh-Kubota, Ai; Suzuki-Takanami, Eri; Yano, Keiichi; Iida, Shigeru; Satoh, Mitsuo
2016-05-01
The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood. © The Author 2016. Published by Oxford University Press.
Brown, P H; Hickman, S
1986-02-25
Processing of the asparagine-linked oligosaccharides at the known glycosylation sites on the mu-chain of IgM secreted by MOPC 104E murine plasmacytoma cells was investigated. Oligosaccharides present on intracellular mu-chain precursors were of the high mannose type, remaining susceptible to endo-beta-N-acetylglucosaminidase H. However, only 26% of the radioactivity was released from [3H]mannose-labeled secreted IgM glycopeptides, consistent with the presence of high mannose-type and complex-type oligosaccharides on the mature mu-chain. [3H]Mannose-labeled cyanogen bromide glycopeptides derived from mu-chains of secreted IgM were isolated and analyzed to identify the glycopeptide containing the high mannose-type oligosaccharide from those containing complex-type structures. [3H]Mannose-labeled intracellular mu-chain cyanogen bromide glycopeptides corresponding to those from secreted IgM were isolated also, and the time courses of oligosaccharide processing at the individual glycosylation sites were determined. The major oligosaccharides on all intracellular mu-chain glycopeptides after 20 min of pulse labeling with [3H]mannose were identified as Man8GlcNAc2, Man9GlcNAc2, and Glc1Man9GlcNAc2. Processing of the oligosaccharide destined to become the high mannose-type structure on the mature protein was rapid. After 30 min of chase incubation the predominant structures of this oligosaccharide were Man5GlcNAc2 and Man6GlcNAc2 which were also identified on the high mannose-type oligosaccharide of the secreted mu-chain. In contrast, processing of oligosaccharides destined to become complex type was considerably slower. Even after 180 min of chase incubation, Man7GlcNAc2 and Man8GlcNAc2 were the predominant structures at some of these glycosylation sites. The isomeric structures of Man8GlcNAc2 obtained from all of the glycosylation sites were identical. Thus, the different rates of processing were not the result of a different sequence of alpha 1,2-mannose removal.
Self-recognition of high-mannose type glycans mediating adhesion of embryonal fibroblasts.
Yoon, Seon-Joo; Utkina, Natalia; Sadilek, Martin; Yagi, Hirokazu; Kato, Koichi; Hakomori, Sen-itiroh
2013-07-01
High-mannose type N-linked glycan with 6 mannosyl residues, termed "M6Gn2", displayed clear binding to the same M6Gn2, conjugated with ceramide mimetic (cer-m) and incorporated in liposome, or coated on polystyrene plates. However, the conjugate of M6Gn2-cer-m did not interact with complex-type N-linked glycan with various structures having multiple GlcNAc termini, conjugated with cer-m. The following observations indicate that hamster embryonic fibroblast NIL-2 K cells display homotypic autoadhesion, mediated through the self-recognition capability of high-mannose type glycans expressed on these cells: (i) NIL-2 K cells display clear binding to lectins capable of binding to high-mannose type glycans (e.g., ConA), but not to other lectins capable of binding to other carbohydrates (e.g. GS-II). (ii) NIL-2 K cells adhere strongly to plates coated with M6Gn2-cer-m, but not to plates coated with complex-type N-linked glycans having multiple GlcNAc termini, conjugated with cer-m; (iii) degree of NIL-2 K cell adhesion to plates coated with M6Gn2-cer-m showed a clear dose-dependence on the amount of M6Gn2-cer-m; and (iv) the degree of NIL-2 K adhesion to plates coated with M6Gn2-cer-m was inhibited in a dose-dependent manner by α1,4-L-mannonolactone, the specific inhibitor in high-mannose type glycans addition. These data indicate that adhesion of NIL-2 K is mediated by self-aggregation of high mannose type glycan. Further studies are to be addressed on auto-adhesion of other types of cells based on self interaction of high mannose type glycans.
Tong, Xin; Li, Tiezheng; Orwenyo, Jared; Toonstra, Christian; Wang, Lai-Xi
2018-04-01
A facile, one-pot enzymatic glycan remodeling of antibody rituximab to produce homogeneous high-mannose and hybrid type antibody glycoforms is described. This method was based on the unique substrate specificity of the endoglycosidase S (Endo-S) from Streptococcus pyogenes. While Endo-S efficiently hydrolyzes the bi-antennary complex type IgG Fc N-glycans, we found that Endo-S did not hydrolyze the "ground state" high-mannose or hybrid glycoforms, and only slowly hydrolyzed the highly activated high-mannose or hybrid N-glycan oxazolines. Moreover, we found that wild-type Endo-S could efficiently use high-mannose or hybrid glycan oxazolines for transglycosylation without product hydrolysis. The combination of the remarkable difference in substrate specificity of Endo-S allows the deglycosylation of heterogeneous rituximab and the transglycosylation with glycan oxazoline to take place in one-pot without the need of isolating the deglycosylated intermediate or changing the enzyme to afford the high-mannose type, hybrid type, and some selectively modified truncated form of antibody glycoforms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Endocytosis of lysosomal acid phosphatase; involvement of mannose receptor and effect of lectins.
Imai, K; Yoshimura, T
1994-08-01
Acid phosphatase and beta-glucosidase are unique among lysosomal enzymes in that they have both high mannose and complex type sugasr chains, whereas oligosaccharide chains of lysosomal enzymes in matrix are of high mannose type. We have previously shown that beta-glucosidase was endocytosed into macrophages via an unidentified receptor different from a mannose/fucose receptor (K. Imai, Cell Struct. Funct. 13, 325-332, 1988). Here, we show that uptake of acid phosphatase purified from rat liver lysosomes into rat macrophages was inhibited by ligands for a mannose/fucose receptor and was mediated via an apparently single binding site with Kuptake of 24.7 nM. These results indicate that acid phosphatase and beta-glucosidase recognize different types of receptors even if they have similar sugar chains. Polyvalent concanavalin A which binds both to the enzyme and to macrophages specifically stimulated the uptake in a dose dependent manner, whereas wheat germ agglutinin and phytohaemagglutinin did not.
Muto, S; Takada, T; Matsumoto, K
2001-07-02
The biological activities of mannose-binding lectin (MBL) which binds to different ligands on mammalian cells were examined using two types of Colo205 cells, a human colon adenocarcinoma cell line: one naturally expressing Lewis A and Lewis B antigens as ligands for MBL (NT-Colo205), and the other modified to express high-mannose type oligosaccharides by treatment with benzyl-2-acetamide-2-deoxy-alpha-galactopyranoside and 1-deoxymannojirimycin (Bz+dMM-Colo205). Although the final lysis was not observed, the deposition of C4 and C3 was observed on both types of Colo205 cells after treatment with MBL and complements as a result of complement activation by MBL. MBL bound to Bz+dMM-Colo205 could also activate human peripheral blood leukocytes and induce superoxide production; however, MBL bound to NT-Colo205 could not. This may be explained by the lower affinity of MBL to Lewis A and Lewis B antigens than to high-mannose type oligosaccharides under physiological conditions, since MBL bound to NT-Colo205 was more easily released from the cell surface than that bound to Bz+dMM-Colo205 at 37 degrees C. These findings suggest that the difference in the affinity of MBL to its ligands could influence the expression of some biological activities of MBL.
Toonstra, Christian; Wu, Lisa; Li, Chao; Wang, Denong; Wang, Lai-Xi
2018-05-22
High-mannose-type N-glycans are an important component of neutralizing epitopes on HIV-1 envelope glycoprotein gp120. They also serve as signals for protein folding, trafficking, and degradation in protein quality control. A number of lectins and antibodies recognize high-mannose-type N-glycans, and glycan array technology has provided an avenue to probe these oligomannose-specific proteins. We describe in this paper a top-down chemoenzymatic approach to synthesize a library of high-mannose N-glycans and related neoglycoproteins for glycan microarray analysis. The method involves the sequential enzymatic trimming of two readily available natural N-glycans, the Man 9 GlcNAc 2 Asn prepared from soybean flour and the sialoglycopeptide (SGP) isolated from chicken egg yolks, coupled with chromatographic separation to obtain a collection of a full range of natural high-mannose N-glycans. The Asn-linked N-glycans were conjugated to bovine serum albumin (BSA) to provide neoglycoproteins containing the oligomannose moieties. The glycoepitopes displayed were characterized using an array of glycan-binding proteins, including the broadly virus-neutralizing agents, glycan-specific antibody 2G12, Galanthus nivalis lectin (GNA), and Narcissus pseudonarcissus lectin (NPA).
Dedola, Simone; Izumi, Masayuki; Makimura, Yutaka; Ito, Yukishige; Kajihara, Yasuhiro
2016-11-04
Glycoproteins are assembled and folded in the endoplasmic reticulum (ER) and transported to the Golgi for further processing of their oligosaccharides. During these processes, two types of oligosaccharides are used: that is, high mannose-type oligosaccharide in the ER and complex-type oligosaccharide in the Golgi. We were interested to know how two different types of oligosaccharides could influence the folding pathway or the final three-dimensional structure of the glycoproteins. For this purpose, we synthesized a new glycosyl crambin having complex-type oligosaccharide and evaluated the folding process, the final protein structure analyzed by NMR, and compared the CD spectra with previously synthesized glycosyl crambin bearing high mannose-type oligosaccharides. From our analysis, we found that the two different oligosaccharides do not influence the folding pathway in vitro and the final structure of the small glycoproteins. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 446-452, 2016. © 2015 Wiley Periodicals, Inc.
Structural approaches to the study of oligosaccharides in glycoprotein quality control.
Ito, Yukishige; Hagihara, Shinya; Matsuo, Ichiro; Totani, Kiichiro
2005-10-01
High-mannose-type oligosaccharides have been shown to play important roles in protein quality control. Several intracellular proteins, such as lectins, chaperones and glycan-processing enzymes, are involved in this process. These include calnexin/calreticulin, UDP-glucose:glycoprotein glucosyltransferase (UGGT), cargo receptors (such as VIP36 and ERGIC-53), mannosidase-like proteins (e.g. EDEM and Htm1p) and ubiquitin ligase (Fbs). They are thought to recognize high-mannose-type glycans with subtly different structures, although the precise specificities are yet to be clarified. In order to gain a clear understanding of these protein-carbohydrate interactions, comprehensive synthesis of high-mannose-type glycans was conducted. In addition, two approaches to the synthesis of artificial glycoproteins with homogeneous oligosaccharides were investigated. Furthermore, a novel substrate of UGGT was discovered.
McElduff, A; Watkinson, A; Hedo, J A; Gorden, P
1986-11-01
The insulin receptor is synthesized as a 190,000-Mr single-chain precursor that contains exclusively asparagine-N-linked high-mannose-type carbohydrate chains. In this study we have characterized the structure of the pro-receptor oligosaccharides. IM-9 lymphocytes were pulse-chase-labelled with [3H]mannose, and the insulin pro-receptor was isolated by immunoprecipitation and SDS/polyacrylamide-gel electrophoresis. The pro-receptor oligosaccharides were removed from the protein backbone with endoglycosidase H and analysed by h.p.l.c. Immediately after a [3H]mannose pulse the largest oligosaccharide found in the pro-receptor was Glc1Man9GlcNAc2; this structure represented only a small fraction (3%) of the total. The predominant oligosaccharides present in the pro-receptor were Man9GlcNAc2 (25%) and Man8GlcNAc2 (48%). Smaller oligosaccharides were also detected: Man7GlcNAc2 (18%), Man6GlcNAc2 (3%) and Man5GlcNAc2 (3%). The relative distribution of the different oligosaccharides did not change at 1, 2 or 3 h after the pulse with the exception of the rapid disappearance of the Glc1Man9GlcNAc2 component. The mature alpha- and beta-subunits of the insulin receptor are known to contain both high-mannose-type and complex-type oligosaccharides. We have also examined here the structure of the high-mannose chains of these subunits. The predominant species in the alpha-subunit was Man8GlcNAc2 whereas in the beta-subunit it was Man7GlcNAc2. These results demonstrate that most (approx. 75%) oligosaccharides of the insulin pro-receptor are chains of the type Man8GlcNAc2 or Man9GlcNAc2. Thus, assuming that a Glc3Man9GlcNAc2 species is transferred co-translationally, carbohydrate processing of the pro-receptor appears to be very rapid and limited to the removal of the three glucose residues and one mannose residue. Further mannose removal does not occur until the pro-receptor has been proteolytically cleaved. In addition, the degree of mannose trimming appears to be different in the alpha- and beta-subunits.
McElduff, A; Watkinson, A; Hedo, J A; Gorden, P
1986-01-01
The insulin receptor is synthesized as a 190,000-Mr single-chain precursor that contains exclusively asparagine-N-linked high-mannose-type carbohydrate chains. In this study we have characterized the structure of the pro-receptor oligosaccharides. IM-9 lymphocytes were pulse-chase-labelled with [3H]mannose, and the insulin pro-receptor was isolated by immunoprecipitation and SDS/polyacrylamide-gel electrophoresis. The pro-receptor oligosaccharides were removed from the protein backbone with endoglycosidase H and analysed by h.p.l.c. Immediately after a [3H]mannose pulse the largest oligosaccharide found in the pro-receptor was Glc1Man9GlcNAc2; this structure represented only a small fraction (3%) of the total. The predominant oligosaccharides present in the pro-receptor were Man9GlcNAc2 (25%) and Man8GlcNAc2 (48%). Smaller oligosaccharides were also detected: Man7GlcNAc2 (18%), Man6GlcNAc2 (3%) and Man5GlcNAc2 (3%). The relative distribution of the different oligosaccharides did not change at 1, 2 or 3 h after the pulse with the exception of the rapid disappearance of the Glc1Man9GlcNAc2 component. The mature alpha- and beta-subunits of the insulin receptor are known to contain both high-mannose-type and complex-type oligosaccharides. We have also examined here the structure of the high-mannose chains of these subunits. The predominant species in the alpha-subunit was Man8GlcNAc2 whereas in the beta-subunit it was Man7GlcNAc2. These results demonstrate that most (approx. 75%) oligosaccharides of the insulin pro-receptor are chains of the type Man8GlcNAc2 or Man9GlcNAc2. Thus, assuming that a Glc3Man9GlcNAc2 species is transferred co-translationally, carbohydrate processing of the pro-receptor appears to be very rapid and limited to the removal of the three glucose residues and one mannose residue. Further mannose removal does not occur until the pro-receptor has been proteolytically cleaved. In addition, the degree of mannose trimming appears to be different in the alpha- and beta-subunits. Images Fig. 1. PMID:3827820
Yamaguchi, Takumi; Sakae, Yoshitake; Zhang, Ying; Yamamoto, Sayoko; Okamoto, Yuko; Kato, Koichi
2014-10-06
Exploration of the conformational spaces of flexible biomacromolecules is essential for quantitatively understanding the energetics of their molecular recognition processes. We employed stable isotope- and lanthanide-assisted NMR approaches in conjunction with replica-exchange molecular dynamics (REMD) simulations to obtain atomic descriptions of the conformational dynamics of high-mannose-type oligosaccharides, which harbor intracellular glycoprotein-fate determinants in their triantennary structures. The experimentally validated REMD simulation provided quantitative views of the dynamic conformational ensembles of the complicated, branched oligosaccharides, and indicated significant expansion of the conformational space upon removal of a terminal mannose residue during the functional glycan-processing pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chen, Shu-Ting; Her, Guor-Rong
2012-08-01
A strategy based on negative ion electrospray ionization tandem mass spectrometry and closed-ring labeling with both 8-aminopyrene-1,3,6-trisulfonate (APTS) and p-aminobenzoic acid ethyl ester (ABEE) was developed for linkage and branch determination of high-mannose oligosaccharides. X-type cross-ring fragment ions obtained from APTS-labeled oligosaccharides by charge remote fragmentation provided information on linkages near the non-reducing terminus. In contrast, A-type cross-ring fragment ions observed from ABEE-labeled oligosaccharides yielded information on linkages near the reducing terminus. This complementary information provided by APTS- and ABEE-labeled oligosaccharides was utilized to delineate the structures of the high-mannose oligosaccharides. As a demonstration of this approach, the linkages and branches of high-mannose oligosaccharides Man5GlcNAc2, Man6GlcNAc2, Man8GlcNAc2, and Man9GlcNAc2 cleaved from the ribonuclease B were assigned from MS2 spectra of ABEE- and APTS-labeled derivatives.
Anti-HIV-1 activity of a tripodal receptor that recognizes mannose oligomers.
Rivero-Buceta, Eva; Carrero, Paula; Casanova, Elena; Doyagüez, Elisa G; Madrona, Andrés; Quesada, Ernesto; Peréz-Pérez, María Jesús; Mateos, Raquel; Bravo, Laura; Mathys, Leen; Noppen, Sam; Kiselev, Evgeny; Marchand, Christophe; Pommier, Yves; Liekens, Sandra; Balzarini, Jan; Camarasa, María José; San-Félix, Ana
2015-12-01
The glycoprotein gp120 of the HIV-1 viral envelope has a high content in mannose residues, particularly α-1,2-mannose oligomers. Compounds that interact with these high-mannose type glycans may disturb the interaction between gp120 and its (co)receptors and are considered potential anti-HIV agents. Previously, we demonstrated that a tripodal receptor (1), with a central scaffold of 1,3,5-triethylbenzene substituted with three 2,3,4-trihydroxybenzoyl groups, selectively recognizes α-1,2-mannose polysaccharides. Here we present additional studies to determine the anti-HIV-1 activity and the mechanism of antiviral activity of this compound. Our studies indicate that 1 shows anti-HIV-1 activity in the low micromolar range and has pronounced gp120 binding and HIV-1 integrase inhibitory capacity. However, gp120 binding rather than integrase inhibition seems to be the primary mechanism of antiviral activity of 1. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Siitonen, A; Martikainen, R; Ikäheimo, R; Palmgren, J; Mäkelä, P H
1993-07-01
The relative virulence (defined as odds ratio) associated with different O and K antigens, adhesins and hemolysin production of Escherichia coli strains was assessed by separate and multivariate logistic regression analyses comparing 383 strains isolated from urine of adults with a urinary tract infection with 287 fecal strains from healthy adults; special interest was paid to evaluating the role of type 1C fimbriation. Type 1C fimbriae, found on 14% of UTI and 7% of fecal strains, were associated with O groups O2, O6, O18, and O75, with capsular type K5, with mannose-resistant (both P and non-P) adhesins, and with hemolysin production. In separate analyses, O8 (odds ratio 5.9) and O75 (9.2), capsular types other than K1 (1.9-2.1), P (2.9) and non-P mannose-resistant (17.4) adhesins, and hemolysin production (3.1) were each associated with high relative virulence compared to O1, Rough, and K1 phenotypes or lack of mannose-resistant adhesins or hemolysin. All these virulence effects were independent of type 1C fimbriation. In multivariate analysis, joint variation between factors decreased the apparent virulence-promoting effect of type 1C fimbriae, O6 antigen and hemolysin but increased that of other adhesins. Especially high relative virulence (odds ratio 404.2) was associated with the combination of O75:K5:non-P mannose-resistant adhesin identified on seven UTI but no fecal strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, J.; Chassy, B.M.; Egan, W.
A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of (/sup 14/C)lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same.more » During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution /sup 31/P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM.« less
Mu, Jinmin; Hirayama, Makoto; Sato, Yuichiro; Morimoto, Kinjiro; Hori, Kanji
2017-01-01
We have isolated a novel lectin, named HRL40 from the green alga Halimeda renschii. In hemagglutination-inhibition test and oligosaccharide-binding experiment with 29 pyridylaminated oligosaccharides, HRL40 exhibited a strict binding specificity for high-mannose N-glycans having an exposed (α1-3) mannose residue in the D2 arm of branched mannosides, and did not have an affinity for monosaccharides and other oligosaccharides examined, including complex N-glycans, an N-glycan core pentasaccharide, and oligosaccharides from glycolipids. The carbohydrate binding profile of HRL40 resembled those of Type I high-mannose specific antiviral algal lectins, or the Oscillatoria agardhii agglutinin (OAA) family, which were previously isolated from red algae and a blue-green alga (cyanobacterium). HRL40 potently inhibited the infection of influenza virus (A/H3N2/Udorn/72) into NCI-H292 cells with half-maximal effective dose (ED50) of 2.45 nM through high-affinity binding to a viral envelope hemagglutinin (KD, 3.69 × 10−11 M). HRL40 consisted of two isolectins (HRL40-1 and HRL40-2), which could be separated by reverse-phase HPLC. Both isolectins had the same molecular weight of 46,564 Da and were a disulfide -linked tetrameric protein of a 11,641 Da polypeptide containing at least 13 half-cystines. Thus, HRL40, which is the first Type I high-mannose specific antiviral lectin from the green alga, had the same carbohydrate binding specificity as the OAA family, but a molecular structure distinct from the family. PMID:28813016
Point mutations abolishing the mannose-binding capability of boar spermadhesin AQN-1.
Ekhlasi-Hundrieser, Mahnaz; Calvete, Juan J; Von Rad, Bettina; Hettel, Christiane; Nimtz, Manfred; Töpfer-Petersen, Edda
2008-05-01
The mannose-binding capability of recombinant wild-type boar spermadhesin AQN-1 and of its site-directed mutants in the highly-conserved region around of the single glycosylation site (asparagine 50) of some spermadhesins, where the carbohydrate binding site has been proposed to be located, was checked using a solid-phase assay and a biotinylated mannose ligand. Substitution of glycine 54 by amino acids bearing an unipolar side chain did not cause significant decrease in the mannose-binding activity. However, amino acids with uncharged polar side chains or having a charged polar side chain abolished the binding of biotinylated mannose to the corresponding AQN-1 mutants. The results suggest that the higher surface accessibility of amino acids possessing polar side chains compared to those bearing nonpolar groups may sterically interfere with monosaccharide binding. The location of the mannose-binding site in AQN-1 appears to be topologically conserved in other heparin-binding boar spermadhesins, i.e., AQN-3 and AWN, but departs from the location of the mannose-6-phosphate-recognition site of PSP-II. This indicates that different spermadhesin molecules have evolved non-equivalent carbohydrate-binding capabilities, which may underlie their distinct patterns of biological activities.
Ilyas, Rebecca; Wallis, Russell; Soilleux, Elizabeth J; Townsend, Paul; Zehnder, Daniel; Tan, Bee K; Sim, Robert B; Lehnert, Hendrik; Randeva, Harpal S; Mitchell, Daniel A
2011-01-01
Diabetic complications include infection and cardiovascular disease. Within the immune system, host-pathogen and regulatory host-host interactions operate through binding of oligosaccharides by C-type lectin. A number of C-type lectins recognise oligosaccharides rich in mannose and fucose - sugars with similar structures to glucose. This raises the possibility that high glucose conditions in diabetes affect protein-oligosaccharide interactions via competitive inhibition. Mannose-binding lectin, soluble DC-SIGN and DC-SIGNR, and surfactant protein D, were tested for carbohydrate binding in the presence of glucose concentrations typical of diabetes, via surface plasmon resonance and affinity chromatography. Complement activation assays were performed in high glucose. DC-SIGN and DC-SIGNR expression in adipose tissues was examined via immunohistochemistry. High glucose inhibited C-type lectin binding to high-mannose glycoprotein and binding of DC-SIGN to fucosylated ligand (blood group B) was abrogated in high glucose. Complement activation via the lectin pathway was inhibited in high glucose and also in high trehalose - a nonreducing sugar with glucoside stereochemistry. DC-SIGN staining was seen on cells with DC morphology within omental and subcutaneous adipose tissues. We conclude that high glucose disrupts C-type lectin function, potentially illuminating new perspectives on susceptibility to infectious and inflammatory disease in diabetes. Mechanisms involve competitive inhibition of carbohydrate binding within sets of defined proteins, in contrast to broadly indiscriminate, irreversible glycation of proteins. Copyright © 2010 Elsevier GmbH. All rights reserved.
Versatile On-Resin Synthesis of High Mannose Glycosylated Asparagine with Functional Handles
Chen, Rui; Pawlicki, Mark A.; Tolbert, Thomas J.
2013-01-01
Here we present a synthetic route for solid phase synthesis of N-linked glycoconjugates containing high mannose oligosaccharides which allows the incorporation of useful functional handles on the N-terminus of asparagine. In this strategy, the C-terminus of an Fmoc protected aspartic acid residue is first attached to a solid phase support. The side chain of aspartic acid is protected by a 2-phenylisopropyl protecting group, which allows selective deprotection for the introduction of glycosylation. By using a convergent on-resin glycosylamine coupling strategy, an N-glycosidic linkage is successfully formed on the free side chain of the resin bound aspartic acid with a large high mannose oligosaccharide, Man8GlcNAc2, to yield N-linked high mannose glycosylated asparagine. The use of on-resin glycosylamine coupling provides excellent glycosylation yield, can be applied to couple other types of oligosaccharides, and also makes it possible to recover excess oligosaccharides conveniently after the on-resin coupling reaction. Useful functional handles including an alkene (p-vinylbenzoic acid), an alkyne (4-pentynoic acid), biotin, and 5-carboxyfluorescein are then conjugated onto the N-terminal amine of asparagine on-resin after the removal of the Fmoc protecting group. In this way, useful functional handles are introduced onto the glycosylated asparagine while maintaining the structural integrity of the reducing end of the oligosaccharide. The asparagine side chain also serves as a linker between the glycan and the functional group and preserves the native presentation of N-linked glycan which may aid in biochemical and structural studies. As an example of a biochemical study using functionalized high mannose glycosylated asparagine, a fluorescence polarization assay has been utilized to study the binding of the lectin Concanavalin A (ConA) using 5-carboxyfluorescein labeled high mannose glycosylated asparagine. PMID:24326091
Harvey, David J; Crispin, Max; Moffatt, Beryl E; Smith, Sylvia L; Sim, Robert B; Rudd, Pauline M; Dwek, Raymond A
2009-11-01
MALDI-TOF mass spectrometry, negative ion nano-electrospray MS/MS and exoglycosidase digestion were used to identify 36 N-linked glycans from 19S IgM heavy chain derived from the nurse shark (Ginglymostoma cirratum). The major glycan was the high-mannose compound, Man(6)GlcNAc(2) accompanied by small amounts of Man(5)GlcNAc(2), Man(7)GlcNAc(2) and Man(8)GlcNAc(2). Bi- and tri-antennary (isomer with a branched 3-antenna) complex-type glycans were also abundant, most contained a bisecting GlcNAc residue (beta1-->4-linked to the central mannose) and with varying numbers of alpha-galactose residues capping the antennae. Small amounts of monosialylated glycans were also found. This appears to be the first comprehensive study of glycosylation in this species of animal. The glycosylation pattern has implications for the mechanism of activation of the complement system by nurse shark IgM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouch, E.; Hartshorn, K; Horlacher, T
2009-01-01
Surfactant protein D (SP-D) plays important roles in antiviral host defense. Although SP-D shows a preference for glucose/maltose, the protein also recognizes d-mannose and a variety of mannose-rich microbial ligands. This latter preference prompted an examination of the mechanisms of mannose recognition, particularly as they relate to high-mannose viral glycans. Trimeric neck plus carbohydrate recognition domains from human SP-D (hNCRD) preferred ?1-2-linked dimannose (DM) over the branched trimannose (TM) core, ?1-3 or ?1-6 DM, or d-mannose. Previous studies have shown residues flanking the carbohydrate binding site can fine-tune ligand recognition. A mutant with valine at 343 (R343V) showed enhanced bindingmore » to mannan relative to wild type and R343A. No alteration in affinity was observed for d-mannose or for ?1-3- or ?1-6-linked DM; however, substantially increased affinity was observed for ?1-2 DM. Both proteins showed efficient recognition of linear and branched subdomains of high-mannose glycans on carbohydrate microarrays, and R343V showed increased binding to a subset of the oligosaccharides. Crystallographic analysis of an R343V complex with 1,2-DM showed a novel mode of binding. The disaccharide is bound to calcium by the reducing sugar ring, and a stabilizing H-bond is formed between the 2-OH of the nonreducing sugar ring and Arg349. Although hNCRDs show negligible binding to influenza A virus (IAV), R343V showed markedly enhanced viral neutralizing activity. Hydrophobic substitutions for Arg343 selectively blocked binding of a monoclonal antibody (Hyb 246-05) that inhibits IAV binding activity. Our findings demonstrate an extended ligand binding site for mannosylated ligands and the significant contribution of the 343 side chain to specific recognition of multivalent microbial ligands, including high-mannose viral glycans.« less
Analysis of glycoprotein processing in the endoplasmic reticulum using synthetic oligosaccharides.
Ito, Yukishige; Takeda, Yoichi
2012-01-01
Protein quality control (QC) in the endoplasmic reticulum (ER) comprises many steps, including folding and transport of nascent proteins as well as degradation of misfolded proteins. Recent studies have revealed that high-mannose-type glycans play a pivotal role in the QC process. To gain knowledge about the molecular basis of this process with well-defined homogeneous compounds, we achieved a convergent synthesis of high-mannose-type glycans and their functionalized derivatives. We focused on analyses of UDP-Glc: glycoprotein glucosyltransferase (UGGT) and ER Glucosidase II, which play crucial roles in glycoprotein QC; however, their specificities remain unclear. In addition, we established an in vitro assay system mimicking the in vivo condition which is highly crowded because of the presence of various biomacromolecules.
Moriuchi, Hiromi; Unno, Hideaki; Goda, Shuichiro; Tateno, Hiroaki; Hirabayashi, Jun; Hatakeyama, Tomomitsu
2015-07-01
CEL-I is a galactose/N-acetylgalactosamine-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. Its carbohydrate-binding site contains a QPD (Gln-Pro-Asp) motif, which is generally recognized as the galactose specificity-determining motif in the C-type lectins. In our previous study, replacement of the QPD motif by an EPN (Glu-Pro-Asn) motif led to a weak binding affinity for mannose. Therefore, we examined the effects of an additional mutation in the carbohydrate-binding site on the specificity of the lectin. Trp105 of EPN-CEL-I was replaced by a histidine residue using site-directed mutagenesis, and the binding affinity of the resulting mutant, EPNH-CEL-I, was examined by sugar-polyamidoamine dendrimer assay, isothermal titration calorimetry, and glycoconjugate microarray analysis. Tertiary structure of the EPNH-CEL-I/mannose complex was determined by X-ray crystallographic analysis. Sugar-polyamidoamine dendrimer assay and glycoconjugate microarray analysis revealed a drastic change in the specificity of EPNH-CEL-I from galactose/N-acetylgalactosamine to mannose. The association constant of EPNH-CEL-I for mannose was determined to be 3.17×10(3) M(-1) at 25°C. Mannose specificity of EPNH-CEL-I was achieved by stabilization of the binding of mannose in a correct orientation, in which the EPN motif can form proper hydrogen bonds with 3- and 4-hydroxy groups of the bound mannose. Specificity of CEL-I can be engineered by mutating a limited number of amino acid residues in addition to the QPD/EPN motifs. Versatility of the C-type carbohydrate-recognition domain structure in the recognition of various carbohydrate chains could become a promising platform to develop novel molecular recognition proteins. Copyright © 2015 Elsevier B.V. All rights reserved.
Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives.
Barras, Alexandre; Martin, Fernando Ariel; Bande, Omprakash; Baumann, Jean-Sébastien; Ghigo, Jean-Marc; Boukherroub, Rabah; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine
2013-03-21
Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with mannose moieties by a "click" chemistry approach, are able to efficiently inhibit E. coli type 1 fimbriae-mediated adhesion to eukaryotic cells with relative inhibitory potency (RIP) of as high as 9259 (bladder cell adhesion assay), which is unprecedented when compared with RIP values previously reported for alternate multivalent mannose-functionalized nanostructures designed to inhibit E. coli adhesion. Also remarkable is that these novel mannose-modified NDs reduce E. coli biofilm formation, a property previously not observed for multivalent glyco-nanoparticles and rarely demonstrated for other multivalent or monovalent mannose glycans. This work sets the stage for the further evaluation of these novel NDs as an anti-adhesive therapeutic strategy against E. coli-derived infections.
Sun, Yuan-yuan; Liu, Li; Li, Jun; Sun, Li
2016-02-01
Lectins are a group of sugar-binding proteins that are important factors of the innate immune system. In this study, we examined, in a comparative manner, the expression and function of three Bulb-type (B-type) mannose-specific lectins (named CsBML1, CsBML2, and CsBML3) from tongue sole. All three lectins possess three repeats of the conserved mannose binding motif QXDXNXVXY. Expression of CsBML1, CsBML2, and CsBML3 was most abundant in liver and upregulated by bacterial infection. Recombinant (r) CsBML1, CsBML2, and CsBML3 bound to a wide arrange of bacteria in a dose-dependent manner and with different affinities. All three lectins displayed mannose-specific and calcium-dependent agglutinating capacities but differed in agglutinating profiles. rCsBML1 and rCsBML2, but not rCsBML3, killed target bacteria in vitro and inhibited bacterial dissemination in fish tissues in vivo. These results indicate for the first time that in teleost, different members of B-type mannose-specific lectins likely play different roles in antibacterial immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hatakeyama, Tomomitsu; Ishimine, Tomohiro; Baba, Tomohiro; Kimura, Masanari; Unno, Hideaki; Goda, Shuichiro
2013-07-01
CEL-I is a Gal/GalNAc-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-recognition domains (CRDs) with the carbohydrate-recognition motif QPD (Gln-Pro- Asp), which is generally known to exist in galactose-specific C-type CRDs. In the present study, a mutant CEL-I with EPN (Glu-Pro-Asn) motif, which is thought to be responsible for the carbohydrate-recognition of mannose-specific Ctype CRDs, was produced in Escherichia coli, and its effects on the carbohydrate-binding specificity were examined using polyamidoamine dendrimer (PD) conjugated with carbohydrates. Although wild-type CEL-I effectively formed complexes with N-acetylgalactosamine (GalNAc)-PD but not with mannose-PD, the mutant CEL-I showed relatively weak but definite affinity for mannose-PD. These results indicated that the QPD and EPN motifs play a significant role in the carbohydrate-recognition mechanism of CEL-I, especially in the discrimination of galactose and mannose. Additional mutations in the recombinant CEL-I binding site may further increase its specificity for mannose, and should provide insights into designing novel carbohydrate-recognition proteins.
Mitsuda, Satoshi; Yokomichi, Tomonobu; Yokoigawa, Junpei; Kataoka, Takao
2014-01-01
Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) is a natural pentacyclic triterpenoid that is present in many plants, including medicinal herbs, and foods. Ursolic acid was initially identified as an inhibitor of the expression of intercellular adhesion molecule-1 (ICAM-1) in response to interleukin-1α (IL-1α). We report here a novel biological activity: ursolic acid inhibits intracellular trafficking of proteins. Ursolic acid markedly inhibited the IL-1α-induced cell-surface ICAM-1 expression in human cancer cell lines and human umbilical vein endothelial cells. By contrast, ursolic acid exerted weak inhibitory effects on the IL-1α-induced ICAM-1 expression at the protein level. Surprisingly, we found that ursolic acid decreased the apparent molecular weight of ICAM-1 and altered the structures of N-linked oligosaccharides bound to ICAM-1. Ursolic acid induced the accumulation of ICAM-1 in the endoplasmic reticulum, which was linked mainly to high-mannose-type glycans. Moreover, in ursolic-acid-treated cells, the Golgi apparatus was fragmented into pieces and distributed over the cells. Thus, our results reveal that ursolic acid inhibits intracellular trafficking of proteins and induces the accumulation of ICAM-1 linked to high-mannose-type glycans in the endoplasmic reticulum. PMID:24649404
Bhat, Ganapati; Hothpet, Vishwanath-Reddy; Lin, Ming-Fong; Cheng, Pi-Wan
2017-11-01
There is a pressing need for biomarkers that can distinguish indolent from aggressive prostate cancer to prevent over-treatment of patients with indolent tumor. Golgi targeting of glycosyltransferases was characterized by confocal microscopy after knockdown of GM130, giantin, or both. N-glycans on a trans-Golgi enzyme β4galactosyltransferase-1 isolated by immunoprecipitation from androgen-sensitive and independent prostate cancer cells were determined by matrix-assisted laser desorption-time of flight-mass spectrometry. In situ proximity ligation assay was employed to determine co-localization of (a) α-mannosidase IA, an enzyme required for processing Man 8 GlcNAc 2 down to Man 5 GlcNAc 2 to enable synthesis of complex-type N-glycans, with giantin, GM130, and GRASP65, and (b) trans-Golgi glycosyltransferases with high mannose N-glycans terminated with α3-mannose. Defective giantin in androgen-independent prostate cancer cells results in a shift of Golgi targeting of glycosyltransferases and α-mannosidase IA from giantin to GM130-GRASP65. Consequently, trans-Golgi enzymes and cell surface glycoproteins acquire high mannose N-glycans, which are absent in cells with functional giantin. In situ proximity ligation assays of co-localization of α-mannosidase IA with GM130 and GRASP65, and trans-Golgi glycosyltransferases with high mannose N-glycans are negative in androgen-sensitive LNCaP C-33 cells but positive in androgen-independent LNCaP C-81 and DU145 cells, and LNCaP C-33 cells devoid of giantin. In situ proximity ligation assays of Golgi localization of α-mannosidase IA at giantin versus GM130-GRASP65 site, and absence or presence of N-glycans terminated with α3-mannose on trans-Golgi glycosyltransferases may be useful for distinguishing indolent from aggressive prostate cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Bailey, D S; Burke, J; Sinclair, R; Mukherjee, B B
1981-01-01
Glycoprotein biosynthesis was studied with mouse L-cells grown in suspension culture. Glucose-deprived cells incorporated [3H]mannose into 'high-mannose' protein-bound oligosaccharides and a few relatively high-molecular-weight lipid-linked oligosaccharides. The latter were retained by DEAE-cellulose and turned over quite slowly during pulse--chase experiments. Increased heterogeneity in size of lipid-linked oligosaccharides developed during prolonged glucose deprivation. Sequential elongation of lipid-linked oligosaccharides was also observed, and conditions that prevented the assembly of the higher lipid-linked oligosaccharides also prevented the formation of the larger protein-bound 'high-mannose' oligosaccharides. In parallel experiments, [3H]mannose was incorporated into a total polyribosome fraction, suggesting that mannose residues were transferred co-translationally to nascent protein. Membrane preparations from these cells catalysed the assembly from UDP-N-acetyl-D-[6-3H]glucosamine and GDP-D-[U-14C]mannose of polyisoprenyl diphosphate derivatives whose oligosaccharide moieties were heterogeneous in size. Elongation of the N-acetyl-D-[6-3H]glucosamine-initiated glycolipids with mannose residues produced several higher lipid-linked oligosaccharides similar to those seen during glucose deprivation in vivo. Glucosylation of these mannose-containing oligosaccharides from UDP-D-[6-3H]glucose was restricted to those of a relatively high molecular weight. Protein-bound saccharides formed in vitro were mainly smaller in size than those assembled on the lipid acceptors. These results support the involvement of lipid-linked saccharides in the synthesis of asparagine-linked glycoproteins, but show both in vivo and in vitro that protein-bound 'high-mannose' oligosaccharide formation can occur independently of higher lipid-linked oligosaccharide synthesis. PMID:7306042
Studies on the asparagine-linked oligosaccharides from cartilage-specific proteoglycan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cioffi, L.C.
1987-01-01
Chondrocytes synthesize and secrete a cartilage-specific proteoglycan (PG-H) as one of their major products. This proteoglycan has attached to it several types of carbohydrate chains, including chondroitin sulfate, keratan sulfate, O-linked oligosaccharides, and asparagine-linked oligosaccharides. The asparagine-linked oligosaccharides found on PG-H were investigated in these studies. Methodology was developed for the isolation and separation of standard of standard complex and high mannose type oligosaccharides. This included digesting glycoproteins with N-glycanase and separation of the oligosaccharides according to type by concanavalin-A lectin chromatography. The different oligosaccharide types were then analyzed by high pressure liquid chromatography. This methodology was used in themore » subsequent studies on the PG-H asparagine-linked oligosaccharides. Initially, the asparagine-linked oligosaccharides recovered from the culture medium (CM) and cell-associated (Ma) fractions of PG-H from of tibial chondrocytes were labeled with (/sup 3/H)-mannose and the oligosaccharides were isolated and analyzed.« less
Dowdle, John; Ishikawa, Takahiro; Gatzek, Stephan; Rolinski, Susanne; Smirnoff, Nicholas
2007-11-01
Plants synthesize ascorbate from guanosine diphosphate (GDP)-mannose via L-galactose/L-gulose, although uronic acids have also been proposed as precursors. Genes encoding all the enzymes of the GDP-mannose pathway have previously been identified, with the exception of the step that converts GDP-L-galactose to L-galactose 1-P. We show that a GDP-L-galactose phosphorylase, encoded by the Arabidopsis thaliana VTC2 gene, catalyses this step in the ascorbate biosynthetic pathway. Furthermore, a homologue of VTC2, At5g55120, encodes a second GDP-L-galactose phosphorylase with similar properties to VTC2. Two At5g55120 T-DNA insertion mutants (vtc5-1 and vtc5-2) have 80% of the wild-type ascorbate level. Double mutants were produced by crossing the loss-of-function vtc2-1 mutant with each of the two vtc5 alleles. These show growth arrest immediately upon germination and the cotyledons subsequently bleach. Normal growth was restored by supplementation with ascorbate or L-galactose, indicating that both enzymes are necessary for ascorbate generation. vtc2-1 leaves contain more mannose 6-P than wild-type. We conclude that the GDP-mannose pathway is the only significant source of ascorbate in A. thaliana seedlings, and that ascorbate is essential for seedling growth. A. thaliana leaves accumulate more ascorbate after acclimatization to high light intensity. VTC2 expression and GDP-L-galactose phosphorylase activity rapidly increase on transfer to high light, but the activity of other enzymes in the GDP-mannose pathway is little affected. VTC2 and At5g55120 (VTC5) expression also peak in at the beginning of the light cycle and are controlled by the circadian clock. The GDP-L-galactose phosphorylase step may therefore play an important role in controlling ascorbate biosynthesis.
Naidu, Rayapati A; Ingle, Caroline J; Deom, Carl M; Sherwood, John L
2004-02-05
Tomato spotted wilt virus (TSWV, Genus: Tospovirus, Family: Bunyaviridae) is a major constraint to the production of several different crops of agronomic and horticultural importance worldwide. The amino acid sequence of the two envelope membrane glycoproteins, designated as G(N) (N-terminal) and G(C) (C-terminal), of TSWV contain several tripeptide sequences, Asn-Xaa-Ser/Thr, suggesting that the proteins are N-glycosylated. In this study, the lectin-binding properties of the viral glycoproteins and their sensitivities to glycosidases were examined to obtain information on the nature of potential oligosaccharide moieties present on G(N) and G(C). The viral proteins were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and probed by affinoblotting using a battery of biotinylated lectins with specificity to different oligosaccharide structures. G(C) showed strong binding with five mannose-binding lectins, four N-acetyllactosamine-binding lectins and one fucose-binding lectin. G(N) was resolved into two molecular masses and only the slow migrating form showed binding, albeit to a lesser extent than G(C), with three of the five mannose-binding lectins. The N-acetyllactosamine- and fucose-specific lectins did not bind to either molecular mass form of G(N). None of the galactose-, N-acetylgalactosamine-, or sialic acid-binding lectins tested showed binding specificity to G(C) or G(N). Treatment of the denatured virions with endoglycosidase H and peptide:N-glycosidase F (PNGase F) resulted in a significant decrease in the binding of G(C) to high mannose- and N-acetyllactosamine-specific lectins. However, no such differences in lectin binding were apparent with G(N). These results indicate the presence of N-linked oligosaccharides of high mannose- and complex-type on G(C) and possibly high mannose-type on G(N). Differences in the extent of binding of the two envelope glycoproteins to different lectins suggest that G(C) is likely to be more heavily N-glycosylated than G(N). No evidence was observed for the presence of O-linked oligosaccharides on G(N) or G(C).
Mechanism of pathogen recognition by human dectin-2.
Feinberg, Hadar; Jégouzo, Sabine A F; Rex, Maximus J; Drickamer, Kurt; Weis, William I; Taylor, Maureen E
2017-08-11
Dectin-2, a C-type lectin on macrophages and other cells of the innate immune system, functions in response to pathogens, particularly fungi. The carbohydrate-recognition domain (CRD) in dectin-2 is linked to a transmembrane sequence that interacts with the common Fc receptor γ subunit to initiate immune signaling. The molecular mechanism by which dectin-2 selectively binds to pathogens has been investigated by characterizing the CRD expressed in a bacterial system. Competition binding studies indicated that the CRD binds to monosaccharides with modest affinity and that affinity was greatly enhanced for mannose-linked α1-2 or α1-4 to a second mannose residue. Glycan array analysis confirmed selective binding of the CRD to glycans that contain Manα1-2Man epitopes. Crystals of the CRD in complex with a mammalian-type high-mannose Man 9 GlcNAc 2 oligosaccharide exhibited interaction with Manα1-2Man on two different termini of the glycan, with the reducing-end mannose residue ligated to Ca 2+ in a primary binding site and the nonreducing terminal mannose residue occupying an adjacent secondary site. Comparison of the binding sites in DC-SIGN and langerin, two other pathogen-binding receptors of the innate immune system, revealed why these two binding sites accommodate only terminal Manα1-2Man structures, whereas dectin-2 can bind Manα1-2Man in internal positions in mannans and other polysaccharides. The specificity and geometry of the dectin-2-binding site provide the molecular mechanism for binding of dectin-2 to fungal mannans and also to bacterial lipopolysaccharides, capsular polysaccharides, and lipoarabinomannans that contain the Manα1-2Man disaccharide unit. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Chin, Young-Wook; Park, Jin-Byung; Park, Yong-Cheol; Kim, Kyoung Heon; Seo, Jin-Ho
2013-06-01
Wild-type Corynebacterium glutamicum was metabolically engineered to convert glucose and mannose into guanosine 5'-diphosphate (GDP)-L-fucose, a precursor of fucosyl-oligosaccharides, which are involved in various biological and pathological functions. This was done by introducing the gmd and wcaG genes of Escherichia coli encoding GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase, respectively, which are known as key enzymes in the production of GDP-L-fucose from GDP-D-mannose. Coexpression of the genes allowed the recombinant C. glutamicum cells to produce GDP-L-fucose in a minimal medium containing glucose and mannose as carbon sources. The specific product formation rate was much higher during growth on mannose than on glucose. In addition, the specific product formation rate was further increased by coexpressing the endogenous phosphomanno-mutase gene (manB) and GTP-mannose-1-phosphate guanylyl-transferase gene (manC), which are involved in the conversion of mannose-6-phosphate into GDP-D-mannose. However, the overexpression of manA encoding mannose-6-phosphate isomerase, catalyzing interconversion of mannose-6-phosphate and fructose-6-phosphate showed a negative effect on formation of the target product. Overall, coexpression of gmd, wcaG, manB and manC in C. glutamicum enabled production of GDP-L-fucose at the specific rate of 0.11 mg g cell(-1) h(-1). The specific GDP-L-fucose content reached 5.5 mg g cell(-1), which is a 2.4-fold higher than that of the recombinant E. coli overexpressing gmd, wcaG, manB and manC under comparable conditions. Well-established metabolic engineering tools may permit optimization of the carbon and cofactor metabolisms of C. glutamicum to further improve their production capacity.
Hemagglutinin Typing as an Aid in Identification of Biochemically Atypical Escherichia coli Strains
Crichton, Pamela B.; Ip, S. M.; Old, D. C.
1981-01-01
Tests for the presence of mannose-sensitive and mannose-resistant, eluting hemagglutinins and fimbriae were helpful in indicating whether biochemically atypical strains of the tribe Escherichieae might be escherichiae or shigellae. PMID:7334072
Klebsiella pneumoniae type 3 fimbriae agglutinate yeast in a mannose-resistant manner.
Stahlhut, Steen G; Struve, Carsten; Krogfelt, Karen A
2012-03-01
The ability of bacterial pathogens to express different fimbrial adhesins plays a significant role in virulence. Thus, specific detection of fimbrial expression is an important task in virulence characterization and epidemiological studies. Most clinical Klebsiella pneumoniae isolates express type 1 and type 3 fimbriae, which are characterized by mediation of mannose-sensitive agglutination of yeast cells and agglutination of tannic acid-treated ox red blood cells (RBCs), respectively. It has been observed that K. pneumoniae isolates agglutinate yeast cells and commercially available sheep RBCs in a mannose-resistant manner. Thus, this study was initiated to identify the adhesin involved. Screening of a mutant library surprisingly revealed that the mannose-resistant agglutination of yeast and sheep RBCs was mediated by type 3 fimbriae. Specific detection of type 1 fimbriae expression in K. pneumoniae was feasible only by the use of guinea pig RBCs. This was further verified by the use of isogenic fimbriae mutants and by cloning and expressing K. pneumoniae fimbrial gene clusters in Escherichia coli. Yeast agglutination assays are commonly used to detect type 1 fimbriae expression but should not be used for bacterial species able to express type 3 fimbriae. For these species, the use of guinea pig blood for specific type 1 fimbriae detection is essential. The use of commercially available sheep RBCs or yeast is an easy alternative to traditional methods to detect type 3 fimbriae expression. Easy and specific detection of expression of type 1 and type 3 fimbriae is essential in the continuous characterization of these important adhesive virulence factors present in members of the Enterobacteriaceae.
Chen, Huanhuan; Deng, Zaian; Huang, Chuncui; Wu, Hongmei; Zhao, Xia; Li, Yan
2017-07-01
Aberrant changes of N-glycan modifications on proteins have been linked to various diseases including different cancers, suggesting possible avenue for exploring their etiologies based on N-glycomic analysis. Changes in N-glycan patterns during epithelial ovarian cancer development have so far been investigated mainly using serum, plasma, ascites, and cell lines. However, changes in patterns of N-glycans in tumor tissues during epithelial ovarian cancer progression have remained largely undefined. To investigate whether changes in N-glycan patterns correlate with oncogenesis and progression of epithelial ovarian cancer, we profiled N-glycans from formalin-fixed paraffin-embedded tissue slides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and quantitatively compared among different pathological grades of epithelial ovarian cancer and healthy controls. Our results show that among the 80 compositions of N-glycan detected, expression levels of high-mannose type were higher in epithelial ovarian cancer samples than that observed in healthy controls, accompanied by reduced levels of hybrid-type glycans. By applying receiver operating characteristic analysis, we show that a combined panel composed of four high-mannose and three fucosylated neutral complex N-glycans allows for good discrimination of epithelial ovarian cancer from healthy controls. Furthermore, using a statistical analysis of variance assay, we found that different N-glycan patterns, including 2 high-mannose-type, 2 fucosylated and sialylated complex structures, and 10 fucosylated neutral complex N-glycans, exhibited specific changes in N-glycan abundance across epithelial ovarian cancer grades. Together, our results provide strong evidence that N-glycomic changes are a strong indicator for epithelial ovarian cancer pathological grades and should provide avenues to identify novel biomarkers for epithelial ovarian cancer diagnosis and monitoring.
Gross, V; Tran-Thi, T A; Vosbeck, K; Heinrich, P C
1983-03-25
The biosynthesis of the proteinase inhibitor alpha 1-antitrypsin has been studied in rat hepatocyte primary cultures. Newly synthesized alpha 1-antitrypsin was found in hepatocytes as a glycoprotein of an apparent molecular weight of 49,000 carrying oligosaccharide side chains of the high mannose type. In the hepatocyte medium a secreted alpha 1-antitrypsin of an apparent molecular weight of 54,000 could be identified as a glycoprotein with carbohydrate chains of the complex type. Pulse-chase experiments revealed a precursor-product relationship for the two forms of alpha 1-antitrypsin. When the hepatocytes were treated with swainsonine, an intracellular form of alpha 1-antitrypsin with an apparent molecular weight of 49,000 indistinguishable from that of control cells was found. However, the alpha 1-antitrypsin secreted from swainsonine-treated hepatocytes was different from that present in control media. It was characterized by a lower apparent molecular weight (51,000), a higher amount of [3H]mannose incorporation, half as much incorporation of [3H]galactose, and the same amount of [3H]fucose incorporation compared to alpha 1-antitrypsin of control media. In contrast to the 54,000 complex type alpha 1-antitrypsin from control media the 51,000 alpha 1-antitrypsin from the medium of swainsonine-treated cells was found to be susceptible to the action of endoglucosaminidase H, even when fucose was attached to the proximal GlcNAc residue. alpha 1-Antitrypsin secreted from swainsonine-treated cells combines features usually associated with either high mannose or complex type oligosaccharides and therefore represents a hybrid structure. In spite of its effect on the carbohydrate part of alpha 1-antitrypsin swainsonine did not impair the secretion of the incompletely processed glycoprotein.
Stability of Curcuma longa rhizome lectin: Role of N-linked glycosylation.
Biswas, Himadri; Chattopadhyaya, Rajagopal
2016-04-01
Curcuma longa rhizome lectin, a mannose-binding protein of non-seed portions of turmeric, is known to have antifungal, antibacterial and α-glucosidase inhibitory activities. We studied the role of complex-type glycans attached to asparagine (Asn) 66 and Asn 110 to elucidate the role of carbohydrates in lectin activity and stability. Apart from the native lectin, the characteristics of a deglycosylated Escherichia coli expressed lectin, high-mannose oligosaccharides at both asparagines and its glycosylation mutants N66Q and N110Q expressed in Pichia pastoris, were compared to understand the relationship between glycosylation and activity. Far UV circular dichroism (CD) spectra, fluorescence emission maximum, hemagglutination assay show no change in secondary or tertiary structures or sugar-binding properties between wild-type and aforementioned recombinant lectins under physiological pH. But reduced agglutination activity and loss of tertiary structure are observed in the acidic pH range for the deglycosylated and the N110Q protein. In thermal and guanidine hydrochloride (GdnCl)-induced unfolding, the wild-type and high-mannose lectins possess higher stability compared with the deglycosylated recombinant lectin and both mutants, as measured by a higher Tm of denaturation or a greater free energy change, respectively. Reversibility experiments after thermal denaturation reveal that deglycosylated proteins tend to aggregate during thermal inactivation but the wild type shows a much greater recovery to the native state upon refolding. These results suggest that N-glycosylation in turmeric lectin is important for the maintenance of its proper folding upon changes in pH, and that the oligosaccharides help in maintaining the active conformation and prevent aggregation in unfolded or partially folded molecules. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
1984-01-01
The processing of asparagine-linked oligosaccharides on the alpha- chains of an immunoglobulin A (IgA) has been investigated using MOPC 315 murine plasmacytoma cells. These cells secrete IgA containing complex-type oligosaccharides that were not sensitive to endo-beta-N- acetylglucosaminidase H. In contrast, oligosaccharides present on the intracellular alpha-chain precursor were of the high mannose-type, remaining sensitive to endo-beta-N-acetylglucosaminidase H despite a long intracellular half-life of 2-3 h. The major [3H]mannose-labeled alpha-chain oligosaccharides identified after a 20-min pulse were Man8GlcNAc2 and Man9GlcNAc2. Following chase incubations, the major oligosaccharide accumulating intracellularly was Man6GlcNAc2, which was shown to contain a single alpha 1,2-linked mannose residue. Conversion of Man6GlcNAc2 to complex-type oligosaccharides occurred at the time of secretion since appreciable amounts of Man5GlcNAc2 or further processed structures could not be detected intracellularly. The subcellular locations of the alpha 1,2-mannosidase activities were studied using carbonyl cyanide m-chlorophenylhydrazone and monensin. Despite inhibiting the secretion of IgA, these inhibitors of protein migration did not effect the initial processing of Man9GlcNAc2 to Man6GlcNAc2. Furthermore, no large accumulation of Man5GlcNAc2 occurred, indicating the presence of two subcellular locations of alpha 1,2-mannosidase activity involved in oligosaccharide processing in MOPC 315 cells. Thus, the first three alpha 1,2-linked mannose residues were removed shortly after the alpha-chain was glycosylated, most likely in rough endoplasmic reticulum, since this processing occurred in the presence of carbonyl cyanide m-chlorophenylhydrazone. However, the removal of the final alpha 1,2-linked mannose residue as well as subsequent carbohydrate processing occurred just before IgA secretion, most likely in the trans Golgi complex since processing of Man6GlcNAc2 to Man5GlcNAc2 was greatly inhibited in the presence of monensin. PMID:6420419
Hickman, S; Theodorakis, J L; Greco, J M; Brown, P H
1984-02-01
The processing of asparagine-linked oligosaccharides on the alpha-chains of an immunoglobulin A (IgA) has been investigated using MOPC 315 murine plasmacytoma cells. These cells secrete IgA containing complex-type oligosaccharides that were not sensitive to endo-beta-N-acetylglucosaminidase H. In contrast, oligosaccharides present on the intracellular alpha-chain precursor were of the high mannose-type, remaining sensitive to endo-beta-N-acetylglucosaminidase H despite a long intracellular half-life of 2-3 h. The major [3H]mannose-labeled alpha-chain oligosaccharides identified after a 20-min pulse were Man8GlcNAc2 and Man9GlcNAc2. Following chase incubations, the major oligosaccharide accumulating intracellularly was Man6GlcNAc2, which was shown to contain a single alpha 1,2-linked mannose residue. Conversion of Man6GlcNAc2 to complex-type oligosaccharides occurred at the time of secretion since appreciable amounts of Man5GlcNAc2 or further processed structures could not be detected intracellularly. The subcellular locations of the alpha 1,2-mannosidase activities were studied using carbonyl cyanide m-chlorophenylhydrazone and monensin. Despite inhibiting the secretion of IgA, these inhibitors of protein migration did not effect the initial processing of Man9GlcNAc2 to Man6GlcNAc2. Furthermore, no large accumulation of Man5GlcNAc2 occurred, indicating the presence of two subcellular locations of alpha 1,2-mannosidase activity involved in oligosaccharide processing in MOPC 315 cells. Thus, the first three alpha 1,2-linked mannose residues were removed shortly after the alpha-chain was glycosylated, most likely in rough endoplasmic reticulum, since this processing occurred in the presence of carbonyl cyanide m-chlorophenylhydrazone. However, the removal of the final alpha 1,2-linked mannose residue as well as subsequent carbohydrate processing occurred just before IgA secretion, most likely in the trans Golgi complex since processing of Man6GlcNAc2 to Man5GlcNAc2 was greatly inhibited in the presence of monensin.
Weldon, S K; Su, H K; Fetherston, J D; Courtney, R J
1990-01-01
Translation of in vitro-synthesized herpes simplex virus type 2 (HSV-2) gG-2 mRNA in a reticulocyte lysate system was used to study the processing of HSV-2 gG-2. In the presence of canine pancreatic microsomal membranes, a single species that is protected from trypsin digestion was detected. This product comigrates with the 104,000-Mr (104K) high mannose intermediate seen in HSV-2-infected-cell lysates. Endo-beta-N-acetylglucosaminidase H treatment of the in vitro-synthesized 104K protein yielded a single product migrating at 100 K. The 72K and 31K cleavage products of gG-2 were not observed in the in vitro system. These data show that the molecular weight of the nonglycosylated form of the gG-2 protein is 100,000 and that the cotranslational processing of this protein in the endoplasmic reticulum yields the 104K high-mannose intermediate. Images PMID:2154614
Chemoenzymatic assembly of mammalian O-mannose glycans.
Cao, Hongzhi; Meng, Caicai; Sasmal, Aniruddha; Zhang, Yan; Gao, Tian; Liu, Chang-Cheng; Khan, Naazneen; Varki, Ajit; Wang, Fengshan
2018-05-26
O-Mannose glycans account up to 30% of total O-glycans in brain. Previous synthesis and functional studies only focused on the Core M3 O-mannose glycans of α-dystroglycan which are a causative factor for various muscular diseases. In this study, a highly efficient chemoenzymatic strategy was developed that enabled the first collective synthesis of 63 Core M1 and Core M2 O-mannose glycans. This chemoenzymatic strategy features the gram-scale chemical synthesis of 5 judiciously designed core structures, and the diversity-oriented modification of the core structures with 3 enzyme modules to provide 58 complex O-mannose glycans in a linear sequence that does not exceed 4 steps. The binding profiles of synthetic O-mannose glycans with a panel of lectins, antibodies and brain proteins were also explored using the printed O-mannose glycan array. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carss, Keren J; Stevens, Elizabeth; Foley, A Reghan; Cirak, Sebahattin; Riemersma, Moniek; Torelli, Silvia; Hoischen, Alexander; Willer, Tobias; van Scherpenzeel, Monique; Moore, Steven A; Messina, Sonia; Bertini, Enrico; Bönnemann, Carsten G; Abdenur, Jose E; Grosmann, Carla M; Kesari, Akanchha; Punetha, Jaya; Quinlivan, Ros; Waddell, Leigh B; Young, Helen K; Wraige, Elizabeth; Yau, Shu; Brodd, Lina; Feng, Lucy; Sewry, Caroline; MacArthur, Daniel G; North, Kathryn N; Hoffman, Eric; Stemple, Derek L; Hurles, Matthew E; van Bokhoven, Hans; Campbell, Kevin P; Lefeber, Dirk J; Lin, Yung-Yao; Muntoni, Francesco
2013-07-11
Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Gross, G; Snel, J; Boekhorst, J; Smits, M A; Kleerebezem, M
2010-03-01
Recently, we have identified the mannose-specific adhesin encoding gene (msa) of Lactobacillus plantarum. In the current study, structure and function of this potentially probiotic effector gene were further investigated, exploring genetic diversity of msa in L. plantarum in relation to mannose adhesion capacity. The results demonstrate that there is considerable variation in quantitative in vitro mannose adhesion capacity, which is paralleled by msa gene sequence variation. The msa genes of different L. plantarum strains encode proteins with variable domain composition. Construction of L. plantarum 299v mutant strains revealed that the msa gene product is the key-protein for mannose adhesion, also in a strain with high mannose adhering capacity. However, no straightforward correlation between adhesion capacity and domain composition of Msa in L. plantarum could be identified. Nevertheless, differences in Msa sequences in combination with variable genetic background of specific bacterial strains appears to determine mannose adhesion capacity and potentially affects probiotic properties. These findings exemplify the strain-specificity of probiotic characteristics and illustrate the need for careful and molecular selection of new candidate probiotics.
Wang, Haisong; Cheng, Xiangrong; Shi, Yonghui; Le, Guowei
2015-05-05
Poly-mannose with molecular weight of 2.457 kDa was synthesized using d-mannose as substrate and phosphoric acid as catalyst under the condition of microwave irradiation for the first time. The optimum reaction conditions were microwave output power of 900 W, temperature 115°C, proton concentration 2.5 mol/L, and microwave irradiation time 5 min. The actual maximum yield was 91.46%. After purified by Sepherdex G-25 column chromatography, the structural features of poly-mannose were investigated by high-performance anion-exchange chromatography (HPAEC), high-performance gel-permeation chromatography (HPGPC), infrared (IR) spectroscopy, methylation analysis and NMR spectroscopy analysis ((1)H, (13)C, COSY, TOCSY, HMQC, and HMBC). HPAEC analysis showed that the composition of synthetic polysaccharides was d-mannose, its purity was demonstrated by HPGPC as a single symmetrical sharp peak, and additionally IR spectra demonstrated the polymerization of d-mannose. Methylation analysis and NMR spectroscopy revealed that the backbone of poly-mannose consisting of (1→3)-linked β-d-Manp, (1→3)-linked α-d-Manp, and (1→6)-linked α-d-Manp residues, and the main chain were branched at the O-2, O-3, O-4, O-6 position. Copyright © 2014 Elsevier Ltd. All rights reserved.
Biosynthesis and processing of a human T lymphocyte antigen.
Bergman, Y; Levy, R
1982-03-01
The biosynthesis and processing of Leu-1, a human T lymphocyte antigen, has been studied with the use of a monoclonal antibody. This molecule exists on the cell surface as a 67,000 m.w. glycoprotein. Through a series of pulse-labeling studies, in conjunction with the use of the antibiotic tunicamycin and the enzyme Endo-H, the details of glycosylation, processing, and deposition at the cell membrane were examined. The protein backbone of the molecule is 58,000 m.w. High-mannose sugars are added to asparagine residues during synthesis. Within 20 min, these high mannose sugars are converted to complex type carbohydrates, including fucose. The fully processed glycoprotein appears at the cell surface within 30 min after synthesis. This sequence of events is similar to that for other cell surface glycoproteins, including HLA and vesicular stomatitus virus glycoprotein.
King, Sheryl S; Speiser, Stephanie A; Jones, Karen L; Apgar, Gary A; Wessels, Sarah E
2006-04-01
Mannose is capable of decreasing bacterial attachment to the uterine mucosa in mares. Bacteria gain entry into the mare's uterus during breeding; therefore, a practical method to deliver mannose to the uterus is to incorporate it into semen extenders. The effect of mannose on spermatozoal motility and subsequent sperm fertilizing capability is unknown. The present study evaluated progressive spermatozoal motility in semen extender formulations incorporating mannose and assessed the fertility of mares inseminated with a mannose-containing semen extender. In Experiment 1, progressive spermatozoal motility in extender mixtures containing 0 mannose (control), 25, 37 or 49 mg/mL mannose was evaluated at 20 degrees C or 5 degrees C holding temperatures for 0, 12, 24 and 48 h post-dilution. Measures were repeated three times using five stallions of proven fertility. High concentrations of mannose in the extender affected progressive motility beyond the time and temperature effects noted in the controls. Extender containing only mannose sugar (49 mg/mL) displayed an immediate depression in progressive motility compared with controls (45.5% versus 62.9%, respectively; P<0.001). The 37 mg/mL mannose extender had a less dramatic decrease in motility (P<0.05) and only after storage at 5 degrees C for > or =12h (48.7% versus 58.0%, respectively). Extender with 25 mg/mL mannose performed no differently than the control formulation under all conditions. In Experiment 2, two groups of mares (n=11 each) were inseminated with 500 x 10(6) progressively motile spermatozoa extended in a traditional skim milk (control) extender or the 37 mg/mL mannose extender preparation. A single-cycle pregnancy rate of 72% was achieved by both groups. Present data suggest that a semen extender containing up to 37 mg/mL mannose could maintain motile spermatozoa for on-farm use and 25 mg/mL mannose concentrations preserved motility during long-term cooling. Likewise, sperm extended with up to 37 mg/mL of mannose had the same fertilizing capability as sperm in traditional extender mixtures.
Kim, Moo Woong; Rhee, Sang Ki; Kim, Jeong-Yoon; Shimma, Yoh-ichi; Chiba, Yasunori; Jigami, Yoshifumi; Kang, Hyun Ah
2004-03-01
Presently almost no information is available on the oligosaccharide structure of the glycoproteins secreted from the methylotrophic yeast Hansenula polymorpha, a promising host for the production of recombinant proteins. In this study, we analyze the size distribution and structure of N-linked oligosaccharides attached to the recombinant glycoprotein glucose oxidase (GOD) and the cell wall mannoproteins obtained from H. polymorpha. Oligosaccharide profiling showed that the major oligosaccharide species derived from the H. polymorpha-secreted recombinant GOD (rGOD) had core-type structures (Man(8-12)GlcNAc(2)). Analyses using anti-alpha 1,3-mannose antibody and exoglycosidases specific for alpha 1,2- or alpha 1,6-mannose linkages revealed that the mannose outer chains of N-glycans on the rGOD have very short alpha 1,6 extensions and are mainly elongated in alpha 1,2-linkages without a terminal alpha 1,3-linked mannose addition. The N-glycans released from the H. polymorpha mannoproteins were shown to contain mostly mannose in their outer chains, which displayed almost identical size distribution and structure to those of H. polymorpha-derived rGOD. These results strongly indicate that the outer chain processing of N-glycans by H. polymorpha significantly differs from that by Saccharomyces cerevisiae, thus generating much shorter mannose outer chains devoid of terminal alpha 1,3-linked mannoses.
A Novel Functional Role of Collagen Glycosylation
Jürgensen, Henrik J.; Madsen, Daniel H.; Ingvarsen, Signe; Melander, Maria C.; Gårdsvoll, Henrik; Patthy, Laszlo; Engelholm, Lars H.; Behrendt, Niels
2011-01-01
Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation. PMID:21768090
C-Type Lectin Receptor Dectin-2 Binds to an Endogenous Protein β-Glucuronidase on Dendritic Cells
Mori, Daiki; Shibata, Kensuke; Yamasaki, Sho
2017-01-01
C-type lectin receptors (CLRs) recognize pathogen-derived ligands and abnormal self that trigger protective immune responses. However, the precise nature of self ligands recognized by CLRs remains to be determined. Here, we found that Dectin-2 recognizes bone marrow-derived dendritic cells (BMDCs) using Dectin-2-expressing reporter cells. This activity was inhibited by an excessive amount of mannose, and by the mutation of mannose-binding motif in Dectin-2. β-glucuronidase (Gusb) was identified as a protein bound to Dectin-2 and mutations of N-glycosylation sites in Gusb impaired the binding of Gusb to Dectin-2. Overexpression of Gusb in a macrophage cell line conferred an ability to stimulate Dectin-2-expressing reporter cells. Our study suggests that a glycosylated protein with mannose-related structure is recognized by Dectin-2. PMID:28046067
C-Type Lectin Receptor Dectin-2 Binds to an Endogenous Protein β-Glucuronidase on Dendritic Cells.
Mori, Daiki; Shibata, Kensuke; Yamasaki, Sho
2017-01-01
C-type lectin receptors (CLRs) recognize pathogen-derived ligands and abnormal self that trigger protective immune responses. However, the precise nature of self ligands recognized by CLRs remains to be determined. Here, we found that Dectin-2 recognizes bone marrow-derived dendritic cells (BMDCs) using Dectin-2-expressing reporter cells. This activity was inhibited by an excessive amount of mannose, and by the mutation of mannose-binding motif in Dectin-2. β-glucuronidase (Gusb) was identified as a protein bound to Dectin-2 and mutations of N-glycosylation sites in Gusb impaired the binding of Gusb to Dectin-2. Overexpression of Gusb in a macrophage cell line conferred an ability to stimulate Dectin-2-expressing reporter cells. Our study suggests that a glycosylated protein with mannose-related structure is recognized by Dectin-2.
Lee, Reiko T; Hsu, Tsui-Ling; Huang, Shau Ku; Hsieh, Shie-Liang; Wong, Chi-Huey; Lee, Yuan C
2011-01-01
C-type lectins (CTLs) are proteins that contain one or more carbohydrate-recognition domains (CRDs) that require calcium for sugar binding and share high degree of sequence homology and tertiary structure. CTLs whose CRD contain EPN (Glu-Pro-Asn) tripeptide motifs have potential to bind mannose (Man), N-acetylglucosamine (GlcNAc), glucose (Glc) and l-fucose (Fuc), whereas those with QPD (Glu-Pro-Asp) tripeptide motifs bind galactose (Gal) and N-acetylgalactosamine (GalNAc). We report here for the first time a direct comparison of monosaccharide (and some di- and trisaccharides)-binding characteristics of 11 EPX-containing (X = N, S or D) immune-related CTLs using a competition assay and an enzyme-linked immunosorbent assay, and neoglycoproteins as ligand. The EPX CTLs studied are DC-SIGN, L-SIGN, mSIGNR1, human and mouse mannose receptors, Langerin, BDCA-2, DCIR, dectin-2, MCL and MINCLE. We found that: (1) they all bound Man and Fuc; (2) binding of Glc and GlcNAc varied considerably among these lectins, but was always less than Man and Fuc; (3) in general, Gal and GalNAc were not bound. However, dectin-2, DCIR and MINCLE showed ability to bind Gal/GalNAc; (4) DC-SIGN, L-SIGN, mSIGNR1 and Langerin showed enhanced binding of Manα2Man over Man, whereas all others showed no enhancement; (5) DC-SIGN bound Lex trisaccharide structure, which has terminal Gal and Fuc residues, more avidly than Fuc, whereas L-SIGN, mSIGNR1, DCIR and MINCLE bound Lex less avidly than Fuc. BDCA-2, dectin-2, Langerin, MCL and mannose receptor did not bind Lex at all. PMID:21112966
Lee, Reiko T; Hsu, Tsui-Ling; Huang, Shau Ku; Hsieh, Shie-Liang; Wong, Chi-Huey; Lee, Yuan C
2011-04-01
C-type lectins (CTLs) are proteins that contain one or more carbohydrate-recognition domains (CRDs) that require calcium for sugar binding and share high degree of sequence homology and tertiary structure. CTLs whose CRD contain EPN (Glu-Pro-Asn) tripeptide motifs have potential to bind mannose (Man), N-acetylglucosamine (GlcNAc), glucose (Glc) and l-fucose (Fuc), whereas those with QPD (Glu-Pro-Asp) tripeptide motifs bind galactose (Gal) and N-acetylgalactosamine (GalNAc). We report here for the first time a direct comparison of monosaccharide (and some di- and trisaccharides)-binding characteristics of 11 EPX-containing (X = N, S or D) immune-related CTLs using a competition assay and an enzyme-linked immunosorbent assay, and neoglycoproteins as ligand. The EPX CTLs studied are DC-SIGN, L-SIGN, mSIGNR1, human and mouse mannose receptors, Langerin, BDCA-2, DCIR, dectin-2, MCL and MINCLE. We found that: (1) they all bound Man and Fuc; (2) binding of Glc and GlcNAc varied considerably among these lectins, but was always less than Man and Fuc; (3) in general, Gal and GalNAc were not bound. However, dectin-2, DCIR and MINCLE showed ability to bind Gal/GalNAc; (4) DC-SIGN, L-SIGN, mSIGNR1 and Langerin showed enhanced binding of Manα2Man over Man, whereas all others showed no enhancement; (5) DC-SIGN bound Le(x) trisaccharide structure, which has terminal Gal and Fuc residues, more avidly than Fuc, whereas L-SIGN, mSIGNR1, DCIR and MINCLE bound Le(x) less avidly than Fuc. BDCA-2, dectin-2, Langerin, MCL and mannose receptor did not bind Le(x) at all.
Deciphering Dorin M glycosylation by mass spectrometry.
Man, Petr; Kovár, Vojtech; Sterba, Ján; Strohalm, Martin; Kavan, Daniel; Kopácek, Petr; Grubhoffer, Libor; Havlícek, Vladimír
2008-01-01
The soft tick, Ornithodoros moubata, is a vector of several bacterial and viral pathogens including Borrelia duttoni, a causative agent of relapsing fever and African swine fever virus. Previously, a sialic acid-specific lectin Dorin M was isolated from its hemolymph. Here, we report on the complete characterization of the primary sequence of Dorin M. Using liquid chromatography coupled to mass spectrometry, we identified three different glycopeptides in the tryptic digest of Dorin M. The peptide, as well as the glycan part of all glycopeptides, were further fully sequenced by means of tandem mass spectrometry (MS2) and multiple-stage mass spectrometry (MS3). Two classical N-glycosylation sites were modified by high-mannose-type glycans containing up to nine mannose residues. The third site bore a glycan with four to five mannose residues and a deoxyhexose (fucose) attached to the proximal N-acetylglycosamine. The microheterogeneity at each site was estimated based on chromatographic behavior of different glycoforms. The fourth, a non-classical N-glycosylation site (Asn-Asn-Cys), was not glycosylated, probably due to the involvement of the cysteine residue in a disulfide bridge.
Isolation and characterization of Escherichia coli pili from diverse clinical sources.
Salit, I E; Vavougios, J; Hofmann, T
1983-11-01
Bacteria which attach to different mucous membranes should have differing specificities of adherence in vitro. Human Escherichia coli isolates from blood and urine (pathogens) and from stool and throat (commensals) were characterized as to the patterns of hemagglutination (HA), as well as the structure and function of their pili. Bacterial HA was done in microtiter plates and on slides after bacterial growth in broth or agar. Human erythrocytes were agglutinated by 95% of the pathogens and 65 to 70% of the commensals grown in broth or agar. Mannose-resistant HA was characteristically caused by pathogens, and commensals characteristically caused mannose-sensitive HA of guinea pig cells. Strains often had both mannose-resistant and mannose-sensitive reactions, or even a mannose-paradoxical reaction. Pathogens more often caused HA, but titers were lower than those for commensals. Slide HA was less sensitive than the microtiter method. All isolates were piliated. Commensals also had more pili than pathogens when grown in broth (117.8 versus 38.3 pili per bacterium), but pathogens had more pili after growth on agar (32.1 versus 8.1 pili per bacterium). Isolates causing high-titer HA had large numbers of pili (greater than 85 pili per bacterium), but some well-piliated strains were non-hemagglutinating. Pili were purified from seven E. coli strains from different sites of isolation and with different erythrocyte-binding specificity. Pili usually migrated as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, more than one type of pilus could be copurified from some strains since there were two or more bands after separation in octyl-glucoside and two different amino terminal sequences. Protein sequencing was done on five different pili: four resembled type 1 pili and one was a P fimbria. The type 1-like pili (strains 2239 and 9353) had an initial variable sequence of 1 to 5 residues, followed by a common region of 21 residues. The P fimbria (strain 7714) had different erythrocyte-binding specificity but was still 27% homologous with 2239 and 9353. E. coli strains from different body sites have characteristic attachments to erythrocytes. Pili derived from these different sources may also have different binding specificity, but they are similar in primary structure.
Isolation and characterization of Escherichia coli pili from diverse clinical sources.
Salit, I E; Vavougios, J; Hofmann, T
1983-01-01
Bacteria which attach to different mucous membranes should have differing specificities of adherence in vitro. Human Escherichia coli isolates from blood and urine (pathogens) and from stool and throat (commensals) were characterized as to the patterns of hemagglutination (HA), as well as the structure and function of their pili. Bacterial HA was done in microtiter plates and on slides after bacterial growth in broth or agar. Human erythrocytes were agglutinated by 95% of the pathogens and 65 to 70% of the commensals grown in broth or agar. Mannose-resistant HA was characteristically caused by pathogens, and commensals characteristically caused mannose-sensitive HA of guinea pig cells. Strains often had both mannose-resistant and mannose-sensitive reactions, or even a mannose-paradoxical reaction. Pathogens more often caused HA, but titers were lower than those for commensals. Slide HA was less sensitive than the microtiter method. All isolates were piliated. Commensals also had more pili than pathogens when grown in broth (117.8 versus 38.3 pili per bacterium), but pathogens had more pili after growth on agar (32.1 versus 8.1 pili per bacterium). Isolates causing high-titer HA had large numbers of pili (greater than 85 pili per bacterium), but some well-piliated strains were non-hemagglutinating. Pili were purified from seven E. coli strains from different sites of isolation and with different erythrocyte-binding specificity. Pili usually migrated as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, more than one type of pilus could be copurified from some strains since there were two or more bands after separation in octyl-glucoside and two different amino terminal sequences. Protein sequencing was done on five different pili: four resembled type 1 pili and one was a P fimbria. The type 1-like pili (strains 2239 and 9353) had an initial variable sequence of 1 to 5 residues, followed by a common region of 21 residues. The P fimbria (strain 7714) had different erythrocyte-binding specificity but was still 27% homologous with 2239 and 9353. E. coli strains from different body sites have characteristic attachments to erythrocytes. Pili derived from these different sources may also have different binding specificity, but they are similar in primary structure. Images PMID:6139339
Shivatare, Sachin S; Huang, Lin-Ya; Zeng, Yi-Fang; Liao, Jung-Yu; You, Tsai-Hong; Wang, Shi-Yun; Cheng, Ting; Chiu, Chih-Wei; Chao, Ping; Chen, Li-Tzu; Tsai, Tsung-I; Huang, Chiu-Chen; Wu, Chung-Yi; Lin, Nan-Horng; Wong, Chi-Huey
2018-06-12
The first systematic investigation of the effect of high mannose, hybrid, and bi- and tri-antennary complex type glycans on the effector functions of antibodies was achieved by the discovery of novel Endo-S2 mutants generated by site-directed mutagenesis as glycosynthases with broad substrate specificity.
Intravascular optical imaging of high-risk plaques in vivo by targeting macrophage mannose receptors
NASA Astrophysics Data System (ADS)
Kim, Ji Bak; Park, Kyeongsoon; Ryu, Jiheun; Lee, Jae Joong; Lee, Min Woo; Cho, Han Saem; Nam, Hyeong Soo; Park, Ok Kyu; Song, Joon Woo; Kim, Tae Shik; Oh, Dong Joo; Gweon, Daegab; Oh, Wang-Yuhl; Yoo, Hongki; Kim, Jin Won
2016-03-01
Macrophages mediate atheroma expansion and disruption, and denote high-risk arterial plaques. Therefore, they are substantially gaining importance as a diagnostic imaging target for the detection of rupture-prone plaques. Here, we developed an injectable near-infrared fluorescence (NIRF) probe by chemically conjugating thiolated glycol chitosan with cholesteryl chloroformate, NIRF dye (cyanine 5.5 or 7), and maleimide-polyethylene glycol-mannose as mannose receptor binding ligands to specifically target a subset of macrophages abundant in high-risk plaques. This probe showed high affinity to mannose receptors, low toxicity, and allowed the direct visualization of plaque macrophages in murine carotid atheroma. After the scale-up of the MMR-NIRF probe, the administration of the probe facilitated in vivo intravascular imaging of plaque inflammation in coronary-sized vessels of atheromatous rabbits using a custom-built dual-modal optical coherence tomography (OCT)-NIRF catheter-based imaging system. This novel imaging approach represents a potential imaging strategy enabling the identification of high-risk plaques in vivo and holds promise for future clinical implications.
Cell culture media supplemented with raffinose reproducibly enhances high mannose glycan formation.
Brühlmann, David; Muhr, Anais; Parker, Rebecca; Vuillemin, Thomas; Bucsella, Blanka; Kalman, Franka; Torre, Serena; La Neve, Fabio; Lembo, Antonio; Haas, Tobias; Sauer, Markus; Souquet, Jonathan; Broly, Hervé; Hemberger, Jürgen; Jordan, Martin
2017-06-20
Glycosylation plays a pivotal role in pharmacokinetics and protein physiochemical characteristics. In particular, effector functions including antibody-dependent cell-mediated cytotoxicity (ADCC) can be desired, and it has been described that high-mannose species exhibited enhanced ADCC. In this work we present the trisaccharide raffinose as a novel cell culture medium supplement to promote high mannose N-glycans in fed-batch cultures, which is sought after in the development of biosimilars to match the quality profile of the reference medicinal product (RMP) also. Up to six-fold increases of high mannose species were observed with increasing raffinose concentrations in the medium of shaken 96-deepwell plates and shake tubes when culturing two different CHO cell lines in two different media. The findings were confirmed in a pH-, oxygen- and CO 2 -controlled environment in lab-scale 3.5-L bioreactors. To circumvent detrimental effects on cell growth and productivity at high raffinose concentrations, the media osmolality was adjusted to reach the same value independently of the supplement concentration. Interestingly, raffinose predominantly enhanced mannose 5 glycans, and to a considerably smaller degree, mannose 6. While the underlying mechanism is still not fully understood, minor effects on the nucleotide sugar levels have been observed and transcriptomics analysis revealed that raffinose supplementation altered the expression levels of a number of glycosylation related genes. Among many genes, galactosyltransferase was downregulated and sialyltransferase upregulated. Our results highlight the potential of cell culture medium supplementation to modulate product quality. Copyright © 2017 Elsevier B.V. All rights reserved.
Shalel Levanon, Sagit; Aharonovitz, Orit; Maor-Shoshani, Ayelet; Abraham, Gita; Kenett, Dan; Aloni, Yehoshua
2018-06-20
Glycosylation on the Fc region of recombinant Immunoglobulin G (IgG) therapeutic antibodies is a critical protein quality attribute which may affect the efficacy and safety of the molecule. During the development of biosimilar therapeutics, adjustment of the glycosylation profile is required in order to match the reference innovator profile. Deoxymannojirimycin (DMJ), a known inhibitor of mannosidase, was used in this study to modulate the glycosylation pattern of antibodies. The effect of DMJ, at concentrations of 5 μM - 500 μM, on non-fucosylated glycoform levels was tested in the biosynthesis processes of two different IgG1 (IgG1 #A and IgG1 #B) using two Chinese hamster ovary (CHO) cell lines (CHO-DXB-11 and CHOK1SV, respectively) in Erlenmeyer flasks and in lab scale bioreactors. DMJ affected glycan forms in a dose response manner. At the highest concentration tested, DMJ reduced N-linked complex glycoform and core fucose levels by 15 and 14 fold, respectively, and increased high mannose level by 21 fold. 10 μM DMJ decreased IgG1 #A core fucose level in CHO-DXB-11 from 92% to 73% and increased high mannose level from 4% to 22% in Erlenmeyer flasks. Furthermore, in lab scale bioreactors, 15 μM DMJ decreased IgG1 #A core fucose level from 95% to 84% and increased high mannose level from 3% to 13%. Core fucose level of IgG1 #B in CHOK1SV was decreased from 81% to 73% using 10 μM DMJ in lab scale bioreactors while high mannose was increased from 6% to 15%. While affecting core fucose and high mannose levels, DMJ decreased maximum viable cell concentration by 16% and did not significantly affect cell productivity (less than 10%). This study demonstrated that DMJ can enable the control of core fucosylated and high mannose levels of IgG1 antibodies in a defined range. Copyright © 2018 Elsevier B.V. All rights reserved.
Biosynthetic processing of the oligosaccharide chains of cellular fibronectin.
Olden, K; Hunter, V A; Yamada, K M
1980-10-15
We have examined the maturation or processing of the oligosaccharides of cellular fibronectin in cultured chick embryo fibroblasts. Fibronectin was pulse-labeled with [2-3H]mannose of [35S]methionine, and the turnover rates of carbohydrate and polypeptide portions of immunoprecipitated fibronectin were compared. The oligosaccharides on fibronectin were analyzed by gel electrophoresis for alterations in sensitivity to the enzyme endo-beta-N-acetylgluosaminidase H, which specifically cleaves the 'high-mannose' class of asparagine-linked oligosaccharide. Incorporated mannose was removed only at early time points, suggesting that the structure of fibronectin oligosaccharides was altered due to processing. This possibility was confirmed by the analysis of glycopeptides generated by exhaustive pronase digestion. Two major glycopeptide structures were detected; their properties correspond to a 'high-mannose' oligosaccharide precursor and a 'complex' carbohydrate product. The precursor-product relationship of these two forms of oligosaccharide chains was demonstrated by pulse-chase labeling experiments. The precursor glycopeptide had an apparent size (Mr 2100) comparable to (Man)9GlcNAc (Mr 2080), and was sensitive to endo-beta-N-acetylglucosaminidase H; nearly all of the labeled mannose incorporated in a 10 min pulse was released from fibronectin glycopeptides by this enzyme. During a 90 min chase period, the glycopeptides became larger and increasingly resistant to endo-beta-N-acetylglucosaminidase H cleavage. The final 'complex' or processed oligosaccharide structure contained approximately two-thirds less [3H]mannose, was insensitive to endo-beta-N-acetylglucosaminidase H and had an apparent Mr of 2300 as estimated by gel filtration. We conclude that the carbohydrate portion of fibronectin is synthesized as a 'high-mannose' intermediate and is subsequently processed to give the characteristic 'complex' oligosaccharide chains of fibronectin.
Narasaki, Craig T; Mertens, Katja; Samuel, James E
2011-01-01
Coxiella burnetii, the etiologic agent of human Q fever, is a gram-negative and naturally obligate intracellular bacterium. The O-specific polysaccharide chain (O-PS) of the lipopolysaccharide (LPS) of C. burnetii is considered a heteropolymer of the two unusual sugars β-D-virenose and dihydrohydroxystreptose and mannose. We hypothesize that GDP-D-mannose is a metabolic intermediate to GDP-β-D-virenose. GDP-D-mannose is synthesized from fructose-6-phosphate in 3 successive reactions; Isomerization to mannose-6-phosphate catalyzed by a phosphomannose isomerase (PMI), followed by conversion to mannose-1-phosphate mediated by a phosphomannomutase (PMM) and addition of GDP by a GDP-mannose pyrophosphorylase (GMP). GDP-D-mannose is then likely converted to GDP-6-deoxy-D-lyxo-hex-4-ulopyranose (GDP-Sug), a virenose intermediate, by a GDP-mannose-4,6-dehydratase (GMD). To test the validity of this pathway in C. burnetii, three open reading frames (CBU0671, CBU0294 and CBU0689) annotated as bifunctional type II PMI, as PMM or GMD were functionally characterized by complementation of corresponding E. coli mutant strains and in enzymatic assays. CBU0671, failed to complement an Escherichia coli manA (PMM) mutant strain. However, complementation of an E. coli manC (GMP) mutant strain restored capsular polysaccharide biosynthesis. CBU0294 complemented a Pseudomonas aeruginosa algC (GMP) mutant strain and showed phosphoglucomutase activity (PGM) in a pgm E. coli mutant strain. Despite the inability to complement a manA mutant, recombinant C. burnetii PMI protein showed PMM enzymatic activity in biochemical assays. CBU0689 showed dehydratase activity and determined kinetic parameters were consistent with previously reported data from other organisms. These results show the biological function of three C. burnetii LPS biosynthesis enzymes required for the formation of GDP-D-mannose and GDP-Sug. A fundamental understanding of C. burnetii genes that encode PMI, PMM and GMP is critical to fully understand the biosynthesic pathway of GDP-β-D-virenose and LPS structure in C. burnetii.
Bales, Patrick M; Renke, Emilija Miljkovic; May, Sarah L; Shen, Yang; Nelson, Daniel C
2013-01-01
In bacterial biofilms, high molecular weight, secreted exopolysaccharides can serve as a scaffold to which additional carbohydrates, proteins, lipids, and nucleic acids adhere, forming the matrix of the developing biofilm. Here we report methods to extract and purify high molecular weight (>15 kDa) exopolysaccharides from biofilms of eight human pathogens, including species of Staphylcococcus, Klebsiella, Acinetobacter, Pseudomonas, and a toxigenic strain of Escherichia coli O157:H7. Glycosyl composition analysis indicated a high total mannose content across all strains with P. aeruginosa and A. baumannii exopolysaccharides comprised of 80-90% mannose, K. pneumoniae and S. epidermidis strains containing 40-50% mannose, and E. coli with ∼10% mannose. Galactose and glucose were also present in all eight strains, usually as the second and third most abundant carbohydrates. N-acetyl-glucosamine and galacturonic acid were found in 6 of 8 strains, while arabinose, fucose, rhamnose, and xylose were found in 5 of 8 strains. For linkage analysis, 33 distinct residue-linkage combinations were detected with the most abundant being mannose-linked moieties, in line with the composition analysis. The exopolysaccharides of two P. aeruginosa strains analyzed were consistent with the Psl carbohydrate, but not Pel or alginate. The S. epidermidis strain had a composition rich in mannose and glucose, which is consistent with the previously described slime associated antigen (SAA) and the extracellular slime substance (ESS), respectively, but no polysaccharide intracellular adhesion (PIA) was detected. The high molecular weight exopolysaccharides from E. coli, K. pneumoniae, and A. baumannii appear to be novel, based on composition and/or ratio analysis of carbohydrates.
Van Damme, Els J. M.; Nakamura-Tsuruta, Sachiko; Smith, David F.; Ongenaert, Maté; Winter, Harry C.; Rougé, Pierre; Goldstein, Irwin J.; Mo, Hanqing; Kominami, Junko; Culerrier, Raphaël; Barre, Annick; Hirabayashi, Jun; Peumans, Willy J.
2007-01-01
A re-investigation of the occurrence and taxonomic distribution of proteins built up of protomers consisting of two tandem arrayed domains equivalent to the GNA [Galanthus nivalis (snowdrop) agglutinin] revealed that these are widespread among monotyledonous plants. Phylogenetic analysis of the available sequences indicated that these proteins do not represent a monophylogenetic group but most probably result from multiple independent domain duplication/in tandem insertion events. To corroborate the relationship between inter-domain sequence divergence and the widening of specificity range, a detailed comparative analysis was made of the sequences and specificity of a set of two-domain GNA-related lectins. Glycan microarray analyses, frontal affinity chromatography and surface plasmon resonance measurements demonstrated that the two-domain GNA-related lectins acquired a marked diversity in carbohydrate-binding specificity that strikingly contrasts the canonical exclusive specificity of their single domain counterparts towards mannose. Moreover, it appears that most two-domain GNA-related lectins interact with both high mannose and complex N-glycans and that this dual specificity relies on the simultaneous presence of at least two different independently acting binding sites. The combined phylogenetic, specificity and structural data strongly suggest that plants used domain duplication followed by divergent evolution as a mechanism to generate multispecific lectins from a single mannose-binding domain. Taking into account that the shift in specificity of some binding sites from high mannose to complex type N-glycans implies that the two-domain GNA-related lectins are primarily directed against typical animal glycans, it is tempting to speculate that plants developed two-domain GNA-related lectins for defence purposes. PMID:17288538
Intravascular optical imaging of high-risk plaques in vivo by targeting macrophage mannose receptors
Kim, Ji Bak; Park, Kyeongsoon; Ryu, Jiheun; Lee, Jae Joong; Lee, Min Woo; Cho, Han Saem; Nam, Hyeong Soo; Park, Ok Kyu; Song, Joon Woo; Kim, Tae Shik; Oh, Dong Joo; Gweon, DaeGab; Oh, Wang-Yuhl; Yoo, Hongki; Kim, Jin Won
2016-01-01
Macrophages mediate atheroma expansion and disruption, and denote high-risk arterial plaques. Therefore, they are substantially gaining importance as a diagnostic imaging target for the detection of rupture-prone plaques. Here, we developed an injectable near-infrared fluorescence (NIRF) probe by chemically conjugating thiolated glycol chitosan with cholesteryl chloroformate, NIRF dye (cyanine 5.5 or 7), and maleimide-polyethylene glycol-mannose as mannose receptor binding ligands to specifically target a subset of macrophages abundant in high-risk plaques. This probe showed high affinity to mannose receptors, low toxicity, and allowed the direct visualization of plaque macrophages in murine carotid atheroma. After the scale-up of the MMR-NIRF probe, the administration of the probe facilitated in vivo intravascular imaging of plaque inflammation in coronary-sized vessels of atheromatous rabbits using a custom-built dual-modal optical coherence tomography (OCT)-NIRF catheter-based imaging system. This novel imaging approach represents a potential imaging strategy enabling the identification of high-risk plaques in vivo and holds promise for future clinical implications. PMID:26948523
Microchip assays for screening monoclonal antibody product quality.
Chen, Xiaoyu; Tang, Kaiyan; Lee, Maximilian; Flynn, Gregory C
2008-12-01
Microchip CE-SDS was evaluated as a high-throughput alternative to conventional CE-SDS for monitoring monoclonal antibody protein quality. A commercial instrument (LabChip) 90) was used to separate dodecyl sulfate coated proteins through a sieving polymer based on the proteins' sizes. Under reducing conditions, the microchip CE-SDS separation was similar to that of conventional CE-SDS, providing reasonable resolution of the non-glycosylated and the glycosylated heavy chains. The fluorescence detection on LabChip 90 using non-covalent fluorescent labeling method was about as sensitive as the 220 nm UV detection used in a conventional CE instrument. A simple glycan typing assay was developed for the reducing microchip CE-SDS format. Antibodies, either pure or in crude cell culture media are treated with Endoglycosidase H, which specifically cleaves the hybrid and high mannose type glycans. A heavy chain migration shift on reducing CE-SDS resulting from the loss of glycan is used to measure the level of high mannose/hybrid type glycans as a percentage of the total glycans. Microchip CE-SDS, under both non-reducing and reducing conditions, can be used in a variety of antibody product screening assays. The microchip analyses provide sufficient resolution and sensitivity for this purpose but on a time scale approximately 70 times faster (41 s versus 50 min per sample) than conventional CE separation under typical operational conditions.
Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis
Conklin, Patricia L.; Norris, Susan R.; Wheeler, Glen L.; Williams, Elizabeth H.; Smirnoff, Nicholas; Last, Robert L.
1999-01-01
Vitamin C (l-ascorbic acid; AsA) acts as a potent antioxidant and cellular reductant in plants and animals. AsA has long been known to have many critical physiological roles in plants, yet its biosynthesis is only currently being defined. A pathway for AsA biosynthesis that features GDP-mannose and l-galactose has recently been proposed for plants. We have isolated a collection of AsA-deficient mutants of Arabidopsis thaliana that are valuable tools for testing of an AsA biosynthetic pathway. The best-characterized of these mutants (vtc1) contains ≈25% of wild-type AsA and is defective in AsA biosynthesis. By using a combination of biochemical, molecular, and genetic techniques, we have demonstrated that the VTC1 locus encodes a GDP-mannose pyrophosphorylase (mannose-1-P guanyltransferase). This enzyme provides GDP-mannose, which is used for cell wall carbohydrate biosynthesis and protein glycosylation as well as for AsA biosynthesis. In addition to genetically defining the first locus involved in AsA biosynthesis, this work highlights the power of using traditional mutagenesis techniques coupled with the Arabidopsis Genome Initiative to rapidly clone physiologically important genes. PMID:10097187
Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium.
Gross, Gabriele; van der Meulen, Jan; Snel, Johannes; van der Meer, Roelof; Kleerebezem, Michiel; Niewold, Theo A; Hulst, Marcel M; Smits, Mari A
2008-11-01
Host-microorganism interactions in the intestinal tract are complex, and little is known about specific nonpathogenic microbial factors triggering host responses in the gut. In this study, mannose-specific interactions of Lactobacillus plantarum 299v with jejunal epithelium were investigated using an in situ pig Small Intestinal Segment Perfusion model. The effects of L. plantarum 299v wild-type strain were compared with those of two corresponding mutant strains either lacking the gene encoding for the mannose-specific adhesin (msa) or sortase (srtA; responsible for anchoring of cell surface proteins like Msa to the cell wall). A slight enrichment of the wild-type strain associated with the intestinal surface could be observed after 8 h of perfusion when a mixture of wild-type and msa-mutant strain had been applied. In contrast to the mutant strains, the L. plantarum wild-type strain tended to induce a decrease in jejunal net fluid absorption compared with control conditions. Furthermore, after 8 h of perfusion expression of the host gene encoding pancreatitis-associated protein, a protein with proposed bactericidal properties, was found to be upregulated by the wild-type strain only. These observations suggest a role of Msa in the induction of host responses in the pig intestine.
An, Hyun Joo; Gip, Phung; Kim, Jaehan; Wu, Shuai; Park, Kun Wook; McVaugh, Cheryl T.; Schaffer, David V.; Bertozzi, Carolyn R.; Lebrilla, Carlito B.
2012-01-01
Most cell membrane proteins are known or predicted to be glycosylated in eukaryotic organisms, where surface glycans are essential in many biological processes including cell development and differentiation. Nonetheless, the glycosylation on cell membranes remains not well characterized because of the lack of sensitive analytical methods. This study introduces a technique for the rapid profiling and quantitation of N- and O-glycans on cell membranes using membrane enrichment and nanoflow liquid chromatography/mass spectrometry of native structures. Using this new method, the glycome analysis of cell membranes isolated from human embryonic stem cells and somatic cell lines was performed. Human embryonic stem cells were found to have high levels of high mannose glycans, which contrasts with IMR-90 fibroblasts and a human normal breast cell line, where complex glycans are by far the most abundant and high mannose glycans are minor components. O-Glycosylation affects relatively minor components of cell surfaces. To verify the quantitation and localization of glycans on the human embryonic stem cell membranes, flow cytometry and immunocytochemistry were performed. Proteomics analyses were also performed and confirmed enrichment of plasma membrane proteins with some contamination from endoplasmic reticulum and other membranes. These findings suggest that high mannose glycans are the major component of cell surface glycosylation with even terminal glucoses. High mannose glycans are not commonly presented on the surfaces of mammalian cells or in serum yet may play important roles in stem cell biology. The results also mean that distinguishing stem cells from other mammalian cells may be facilitated by the major difference in the glycosylation of the cell membrane. The deep structural analysis enabled by this new method will enable future mechanistic studies on the biological significance of high mannose glycans on stem cell membranes and provide a general tool to examine cell surface glycosylation. PMID:22147732
Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji
2016-02-01
We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and complementary DNA (cDNA) cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per liter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48 - 1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).
Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji
2016-04-01
We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and cDNA cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per a litter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide-binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48-1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).
Bidart, Gonzalo N.; Rodríguez-Díaz, Jesús
2015-01-01
Human milk oligosaccharides (HMOs) are considered to play a key role in establishing and maintaining the infant gut microbiota. Lacto-N-triose forms part of both type 1 and type 2 HMOs and also of the glycan moieties of glycoproteins. Upstream of the previously characterized gene cluster involved in lacto-N-biose and galacto-N-biose metabolism from Lactobacillus casei BL23, there are two genes, bnaG and manA, encoding a β-N-acetylglucosaminidase precursor and a mannose-6-phosphate isomerase, respectively. In this work, we show that L. casei is able to grow in the presence of lacto-N-triose as a carbon source. Inactivation of bnaG abolished the growth of L. casei on this oligosaccharide, demonstrating that BnaG is involved in its metabolism. Interestingly, whole cells of a bnaG mutant were totally devoid of β-N-acetylglucosaminidase activity, suggesting that BnaG is an extracellular wall-attached enzyme. In addition to hydrolyzing lacto-N-triose into N-acetylglucosamine and lactose, the purified BnaG enzyme also catalyzed the hydrolysis of 3′-N-acetylglucosaminyl-mannose and 3′-N-acetylgalactosaminyl-galactose. L. casei can be cultured in the presence of 3′-N-acetylglucosaminyl-mannose as a carbon source, but, curiously, the bnaG mutant strain was not impaired in its utilization. These results indicate that the assimilation of 3′-N-acetylglucosaminyl-mannose is independent of BnaG. Enzyme activity and growth analysis with a manA-knockout mutant showed that ManA is involved in the utilization of the mannose moiety of 3′-N-acetylglucosaminyl-mannose. Here we describe the physiological role of a β-N-acetylglucosaminidase in lactobacilli, and it supports the metabolic adaptation of L. casei to the N-acetylglucosaminide-rich gut niche. PMID:26546429
Interlandi, Gianluca; Thomas, Wendy E
2016-07-01
The bacterial adhesin FimH consists of an allosterically regulated mannose-binding lectin domain and a covalently linked inhibitory pilin domain. Under normal conditions, the two domains are bound to each other, and FimH interacts weakly with mannose. However, under tensile force, the domains separate and the lectin domain undergoes conformational changes that strengthen its bond with mannose. Comparison of the crystallographic structures of the low and the high affinity state of the lectin domain reveals conformational changes mainly in the regulatory inter-domain region, the mannose binding site and a large β sheet that connects the two distally located regions. Here, molecular dynamics simulations investigated how conformational changes are propagated within and between different regions of the lectin domain. It was found that the inter-domain region moves towards the high affinity conformation as it becomes more compact and buries exposed hydrophobic surface after separation of the pilin domain. The mannose binding site was more rigid in the high affinity state, which prevented water penetration into the pocket. The large central β sheet demonstrated a soft spring-like twisting. Its twisting motion was moderately correlated to fluctuations in both the regulatory and the binding region, whereas a weak correlation was seen in a direct comparison of these two distal sites. The results suggest a so called "population shift" model whereby binding of the lectin domain to either the pilin domain or mannose locks the β sheet in a rather twisted or flat conformation, stabilizing the low or the high affinity state, respectively. Proteins 2016; 84:990-1008. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
MacLeod, Daniel T; Choi, Nancy M; Briney, Bryan; Garces, Fernando; Ver, Lorena S; Landais, Elise; Murrell, Ben; Wrin, Terri; Kilembe, William; Liang, Chi-Hui; Ramos, Alejandra; Bian, Chaoran B; Wickramasinghe, Lalinda; Kong, Leopold; Eren, Kemal; Wu, Chung-Yi; Wong, Chi-Huey; Kosakovsky Pond, Sergei L; Wilson, Ian A; Burton, Dennis R; Poignard, Pascal
2016-05-17
The high-mannose patch on HIV Env is a preferred target for broadly neutralizing antibodies (bnAbs), but to date, no vaccination regimen has elicited bnAbs against this region. Here, we present the development of a bnAb lineage targeting the high-mannose patch in an HIV-1 subtype-C-infected donor from sub-Saharan Africa. The Abs first acquired autologous neutralization, then gradually matured to achieve breadth. One Ab neutralized >47% of HIV-1 strains with only ∼11% somatic hypermutation and no insertions or deletions. By sequencing autologous env, we determined key residues that triggered the lineage and participated in Ab-Env coevolution. Next-generation sequencing of the Ab repertoire showed an early expansive diversification of the lineage followed by independent maturation of individual limbs, several of them developing notable breadth and potency. Overall, the findings are encouraging from a vaccine standpoint and suggest immunization strategies mimicking the evolution of the entire high-mannose patch and promoting maturation of multiple diverse Ab pathways. Copyright © 2016 Elsevier Inc. All rights reserved.
Schwartz, Drew J; Kalas, Vasilios; Pinkner, Jerome S; Chen, Swaine L; Spaulding, Caitlin N; Dodson, Karen W; Hultgren, Scott J
2013-09-24
Chaperone-usher pathway pili are a widespread family of extracellular, Gram-negative bacterial fibers with important roles in bacterial pathogenesis. Type 1 pili are important virulence factors in uropathogenic Escherichia coli (UPEC), which cause the majority of urinary tract infections (UTI). FimH, the type 1 adhesin, binds mannosylated glycoproteins on the surface of human and murine bladder cells, facilitating bacterial colonization, invasion, and formation of biofilm-like intracellular bacterial communities. The mannose-binding pocket of FimH is invariant among UPEC. We discovered that pathoadaptive alleles of FimH with variant residues outside the binding pocket affect FimH-mediated acute and chronic pathogenesis of two commonly studied UPEC strains, UTI89 and CFT073. In vitro binding studies revealed that, whereas all pathoadaptive variants tested displayed the same high affinity for mannose when bound by the chaperone FimC, affinities varied when FimH was incorporated into pilus tip-like, FimCGH complexes. Structural studies have shown that FimH adopts an elongated conformation when complexed with FimC, but, when incorporated into the pilus tip, FimH can adopt a compact conformation. We hypothesize that the propensity of FimH to adopt the elongated conformation in the tip corresponds to its mannose binding affinity. Interestingly, FimH variants, which maintain a high-affinity conformation in the FimCGH tip-like structure, were attenuated during chronic bladder infection, implying that FimH's ability to switch between conformations is important in pathogenesis. Our studies argue that positively selected residues modulate fitness during UTI by affecting FimH conformation and function, providing an example of evolutionary tuning of structural dynamics impacting in vivo survival.
Kim, Hee-Kwon; Wei, Huiling; Kulkarni, Aditya; Pogranichniy, Roman M.; Thompson, David H.
2012-01-01
The efficient delivery of plasmids encoding antigenic determinants into dendritic cells (DCs) that control immune response is a promising strategy for rapid development of new vaccines. In this study, we prepared a series of targeted cationic lipoplex based on two synthetic lipid components, mannose-poly(ethylene glycol, MW3000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (Mannose-PEG3000-DSPE) and O-(2R-1,2-di-O-(1'Z,9'Z-octadecadienyl)-glycerol)-3-N-(bis-2-aminoethyl)-carbamate (BCAT), that were formulated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) for evaluation as non-viral vectors for transgene expression in DCs. First, we optimized the N:P ratio for maximum transfection and then screened the effects of mannose targeting for further enhancement of transfection levels. Our results indicate that efficient delivery of gWIZ GFP plasmid into DCs was observed for mannose compositions of ~10%, whereas low transfection efficiencies were observed with non-targeted formulations. Mannose-targeted lipofectamine complexes also showed high GFP expression levels in DCs relative to non-targeted lipofectamine controls. The best transfection performance was observed using 10 mol % Mannose-PEG3000-DSPE, 60 mol% BCAT, and 30 mol % DOPE, indicating that the most efficient delivery into DCs occurs via synergistic interaction between mannose targeting and acid-labile, fusogenic BCAT:DOPE formulations. Our data suggest that mannose-PEG3000-DSPE:BCAT:DOPE formulations may be effective gene delivery vehicles for the development of DC-based vaccines. PMID:22229467
He, Chunmei; Yu, Zhenming; Teixeira da Silva, Jaime A.; Zhang, Jianxia; Liu, Xuncheng; Wang, Xiaojuan; Zhang, Xinhua; Zeng, Songjun; Wu, Kunlin; Tan, Jianwen; Ma, Guohua; Luo, Jianping; Duan, Jun
2017-01-01
GDP-mannose pyrophosphorylase (GMP) catalyzed the formation of GDP-mannose, which serves as a donor for the biosynthesis of mannose-containing polysaccharides. In this study, three GMP genes from Dendrobium officinale (i.e., DoGMPs) were cloned and analyzed. The putative 1000 bp upstream regulatory region of these DoGMPs was isolated and cis-elements were identified, which indicates their possible role in responses to abiotic stresses. The DoGMP1 protein was shown to be localized in the cytoplasm. To further study the function of the DoGMP1 gene, 35S:DoGMP1 transgenic A. thaliana plants with an enhanced expression level of DoGMP1 were generated. Transgenic plants were indistinguishable from wild-type (WT) plants in tissue culture or in soil. However, the mannose content of the extracted water-soluble polysaccharides increased 67%, 96% and 92% in transgenic lines #1, #2 and #3, respectively more than WT levels. Germination percentage of seeds from transgenic lines was higher than WT seeds and the growth of seedlings from transgenic lines was better than WT seedlings under salinity stress (150 mM NaCl). Our results provide genetic evidence for the involvement of GMP genes in the biosynthesis of mannose-containing polysaccharides and the mediation of GMP genes in the response to salt stress during seed germination and seedling growth. PMID:28176760
Stoop, JMH.; Pharr, D. M.
1993-01-01
Little information exists concerning the biochemical route of mannitol catabolism in higher plant cells. In this study, the role of a recently discovered mannitol 1-oxidoreductase (MDH) in mannitol catabolism was investigated. Suspension cultures of celery (Apium graveolens L. var dulce [Mill.] Pers.) were successfully grown on nutrient media with either mannitol, mannose, or sucrose as the sole carbon source. Cell cultures grown on any of the three carbon sources did not differ in relative growth rate, as measured by packed cell volume, but differed drastically in internal carbohydrate concentration. Mannitol-grown cells contained high concentrations of mannitol and extremely low concentrations of sucrose, fructose, glucose, and mannose. Sucrose-grown cells had high concentrations of sucrose early in the growth cycle and contained a substantial hexose pool. Mannose-grown cells had a high mannose concentration early in the cycle, which decreased during the growth cycle, whereas their internal sucrose concentrations remained relatively constant during the entire growth cycle. Celery suspension cultures on all three carbon substrates contained an NAD-dependent MDH. Throughout the growth cycle, MDH activity was 2- to 4-fold higher in mannitol-grown cells compared with sucrose- or mannose-grown cells, which did not contain detectable levels of mannitol, indicating that MDH functions pre-dominantly in an oxidative capacity in situ. The MDH activity observed in celery cells was 3-fold higher than the minimum amount required to account for the observed rate of mannitol utilization from the media. Cultures transferred from mannitol to mannose underwent a decrease in MDH activity over a period of days, and transfer from mannose to mannitol resulted in an increase in MDH activity. These data provide strong evidence that MDH plays an important role in mannitol utilization in celery suspension cultures. PMID:12231996
Eisenstein, Barry I.; Ofek, Itzhak; Beachey, Edwin H.
1979-01-01
When Escherichia coli was grown in sublethal concentrations of streptomycin, mannose binding activity and epithelial cell adherence of the E. coli cultures at stationary phase were significantly reduced in the drug-grown organisms. In a strain whose minimal inhibitory concentrations was 30 μg/ml, the percentage of reduction in mannose binding activity was dose related over a range of concentrations between 0.5 and 10 μg/ml streptomycin. Concomitant with the drug-induced suppression of mannose binding activity, antigenic and ultrastructural alterations on the surface of the drug-grown organisms were observed by agglutination tests and electron microscopy, respectively. The streptomycin effect was reversible, required actively growing organisms, and was most apparent in the early log-phase of growth. High doses of antibiotic were ineffective when added to cultures which had acquired mannose binding activity. An isogenic derivative with high-level resistance to streptomycin was obtained as a single-step mutation from the test E. coli strain. Whereas the isogenic mutant possessed mannose binding activity and adhering ability similar to the parent strain, it was resistant to the streptomycin-induced suppression of the two activities at enormous concentrations (up to 10,000 μg/ml) of streptomycin. Taken together the results suggest that the suppression of epithelial cell adherence and mannose binding activity of E. coli grown in sublethal concentrations of streptomycin is a result of classic mechanisms of drug action upon the bacterial ribosome. The results support the possibility that antibiotics may act through mechanisms other than inhibition of growth and bacterial killing to eradicate bacteria from mucosal surfaces. Images PMID:376556
EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step
Ninagawa, Satoshi; Okada, Tetsuya; Sumitomo, Yoshiki; Kamiya, Yukiko; Kato, Koichi; Horimoto, Satoshi; Ishikawa, Tokiro; Takeda, Shunichi; Sakuma, Tetsushi; Yamamoto, Takashi
2014-01-01
Glycoproteins misfolded in the endoplasmic reticulum (ER) are subjected to ER-associated glycoprotein degradation (gpERAD) in which Htm1-mediated mannose trimming from the oligosaccharide Man8GlcNAc2 to Man7GlcNAc2 is the rate-limiting step in yeast. In contrast, the roles of the three Htm1 homologues (EDEM1/2/3) in mammalian gpERAD have remained elusive, with a key controversy being whether EDEMs function as mannosidases or as lectins. We therefore conducted transcription activator-like effector nuclease–mediated gene knockout analysis in human cell line and found that all endogenous EDEMs possess mannosidase activity. Mannose trimming from Man8GlcNAc2 to Man7GlcNAc2 is performed mainly by EDEM3 and to a lesser extent by EDEM1. Most surprisingly, the upstream mannose trimming from Man9GlcNAc2 to Man8GlcNAc2 is conducted mainly by EDEM2, which was previously considered to lack enzymatic activity. Based on the presence of two rate-limiting steps in mammalian gpERAD, we propose that mammalian cells double check gpERAD substrates before destruction by evolving EDEM2, a novel-type Htm1 homologue that catalyzes the first mannose trimming step from Man9GlcNAc2. PMID:25092655
Jadid, Nurul; Mialoundama, Alexis Samba; Heintz, Dimitri; Ayoub, Daniel; Erhardt, Mathieu; Mutterer, Jérôme; Meyer, Denise; Alioua, Abdelmalek; Van Dorsselaer, Alain; Rahier, Alain; Camara, Bilal; Bouvier, Florence
2011-01-01
The most abundant posttranslational modification in nature is the attachment of preassembled high-mannose-type glycans, which determines the fate and localization of the modified protein and modulates the biological functions of glycosylphosphatidylinositol-anchored and N-glycosylated proteins. In eukaryotes, all mannose residues attached to glycoproteins from the luminal side of the endoplasmic reticulum (ER) derive from the polyprenyl monosaccharide carrier, dolichol P-mannose (Dol-P-Man), which is flipped across the ER membrane to the lumen. We show that in plants, Dol-P-Man is synthesized when Dol-P-Man synthase1 (DPMS1), the catalytic core, interacts with two binding proteins, DPMS2 and DPMS3, that may serve as membrane anchors for DPMS1 or provide catalytic assistance. This configuration is reminiscent of that observed in mammals but is distinct from the single DPMS protein catalyzing Dol-P-Man biosynthesis in bakers’ yeast and protozoan parasites. Overexpression of DPMS1 in Arabidopsis thaliana results in disorganized stem morphology and vascular bundle arrangements, wrinkled seed coat, and constitutive ER stress response. Loss-of-function mutations and RNA interference–mediated reduction of DPMS1 expression in Arabidopsis also caused a wrinkled seed coat phenotype and most remarkably enhanced hypersensitivity to ammonium that was manifested by extensive chlorosis and a strong reduction of root growth. Collectively, these data reveal a previously unsuspected role of the prenyl-linked carrier pathway for plant development and physiology that may help integrate several aspects of candidate susceptibility genes to ammonium stress. PMID:21558543
Evers, D L; Hung, R L; Thomas, V H; Rice, K G
1998-12-15
The N-linked oligosaccharide from soy bean agglutinin (Man9) was isolated on a preparative scale following derivatization with Boc-tyrosine. The procedure utilized preparative hydrazinolysis to release the oligosaccharide and yielded multi-micromol quantities of Boc-tyrosine-Man9 which was characterized by 1H NMR and ES-MS. Copyright 1998 Academic Press.
Serafini-Cessi, F; Dall'Olio, F; Pereira, L; Campadelli-Fiume, G
1984-09-01
Immature and mature forms of glycoprotein gC were purified by immunoadsorbent from herpes simplex virus type 1-infected BHK cells labeled with [3H]mannose for a 20-min pulse or for 11 h followed by a 3-h chase. The nature of N-asparagine-linked oligosaccharides carried by the immature form, pgC (molecular weight = 92,000), and the mature gC (molecular weight = 120,000) has been investigated. All pronase-digested glycopeptides of pgC were susceptible to endo-beta-N-acetylglucosaminidase H treatment; thus they have a high-mannose structure. Using thin-layer chromatography to separate endo-beta-N-acetylglucosaminidase H-cleaved oligosaccharides, polymannosyl chains of different sizes, ranging from Man9GlcNAc to Man5GlcNAc, were separated. The major components were Man8GlcNAc and Man7GlcNAc, suggesting that pgC labeled in a 20-min pulse represents the form of glycoprotein already routed to the Golgi apparatus. Analysis of glycopeptides of mature gC showed that the majority (95%) of N-linked glycans were converted to complex-type glycans. Ion-exchange chromatography and affinity chromatography on concanavalin A-Sepharose and leucoagglutinin-agarose revealed that diantennary and triantennary glycans predominated, whereas tetrantennary chains were not present. Parts of the di- and triantennary chains were not fully sialylated. The high heterogeneity of complex-type chains found in mature gC may be related to the high number of N-glycosylation sites of the glycoprotein as predicted by DNA sequencing studies (Frink et al., J. Virol. 45:634-647, 1983).
Global site-specific analysis of glycoprotein N-glycan processing.
Cao, Liwei; Diedrich, Jolene K; Ma, Yuanhui; Wang, Nianshuang; Pauthner, Matthias; Park, Sung-Kyu Robin; Delahunty, Claire M; McLellan, Jason S; Burton, Dennis R; Yates, John R; Paulson, James C
2018-06-01
N-glycans contribute to the folding, stability and functions of the proteins they decorate. They are produced by transfer of the glycan precursor to the sequon Asn-X-Thr/Ser, followed by enzymatic trimming to a high-mannose-type core and sequential addition of monosaccharides to generate complex-type and hybrid glycans. This process, mediated by the concerted action of multiple enzymes, produces a mixture of related glycoforms at each glycosite, making analysis of glycosylation difficult. To address this analytical challenge, we developed a robust semiquantitative mass spectrometry (MS)-based method that determines the degree of glycan occupancy at each glycosite and the proportion of N-glycans processed from high-mannose type to complex type. It is applicable to virtually any glycoprotein, and a complete analysis can be conducted with 30 μg of protein. Here, we provide a detailed description of the method that includes procedures for (i) proteolytic digestion of glycoprotein(s) with specific and nonspecific proteases; (ii) denaturation of proteases by heating; (iii) sequential treatment of the glycopeptide mixture with two endoglycosidases, Endo H and PNGase F, to create unique mass signatures for the three glycosylation states; (iv) LC-MS/MS analysis; and (v) data analysis for identification and quantitation of peptides for the three glycosylation states. Full coverage of site-specific glycosylation of glycoproteins is achieved, with up to thousands of high-confidence spectra hits for each glycosite. The protocol can be performed by an experienced technician or student/postdoc with basic skills for proteomics experiments and takes ∼7 d to complete.
Efficient adhesion-based plasma membrane isolation for cell surface N-glycan analysis.
Mun, Ji-Young; Lee, Kyung Jin; Seo, Hoon; Sung, Min-Sun; Cho, Yee Sook; Lee, Seung-Goo; Kwon, Ohsuk; Oh, Doo-Byoung
2013-08-06
Glycans, which decorate cell surfaces, play crucial roles in various physiological events involving cell surface recognition. Despite the importance of surface glycans, most analyses have been performed using total cells or whole membranes rather than plasma membranes due to difficulties related to isolation. In the present study, we employed an adhesion-based method for plasma membrane isolation to analyze N-glycans on cell surfaces. Cells were attached to polylysine-coated glass plates and then ruptured by hypotonic pressure. After washing to remove intracellular organelles, only a plasma membrane fraction remained attached to the plates, as confirmed by fluorescence imaging using organelle-specific probes. The plate was directly treated with trypsin to digest and detach the glycoproteins from the plasma membrane. From the resulting glycopeptides, N-glycans were released and analyzed using MALDI-TOF mass spectrometry and HPLC. When N-glycan profiles obtained by this method were compared to those by other methods, the amount of high-mannose type glycans mainly contaminated from the endoplasmic reticulum was dramatically reduced, which enabled the efficient detection of complex type glycans present on the cell surface. Moreover, this method was successfully used to analyze the increase of high-mannose glycans on the surface as induced by a mannosidase inhibitor treatment.
West, Anthony P; Schamber, Michael; Gazumyan, Anna; Golijanin, Jovana; Seaman, Michael S; Fätkenheuer, Gerd; Klein, Florian; Nussenzweig, Michel C; Bjorkman, Pamela J
2016-01-01
HIV-1 vaccine design is informed by structural studies elucidating mechanisms by which broadly neutralizing antibodies (bNAbs) recognize and/or accommodate N-glycans on the trimeric envelope glycoprotein (Env). Variability in high-mannose and complex-type Env glycoforms leads to heterogeneity that usually precludes visualization of the native glycan shield. We present 3.5-Å- and 3.9-Å-resolution crystal structures of the HIV-1 Env trimer with fully processed and native glycosylation, revealing a glycan shield of high-mannose and complex-type N-glycans, which we used to define complete epitopes of two bNAbs. Env trimer was complexed with 10-1074 (against the V3-loop) and IOMA, a new CD4-binding site (CD4bs) antibody. Although IOMA derives from VH1-2*02, the germline gene of CD4bs-targeting VRC01-class bNAbs, its light chain lacks the short CDRL3 that defines VRC01-class bNAbs. Thus IOMA resembles 8ANC131-class/VH1-46–derived CD4bs bNAbs, which have normal-length CDRL3s. The existence of bNAbs that combine features of VRC01-class and 8ANC131-class antibodies has implications for immunization strategies targeting VRC01-like bNAbs. PMID:27617431
Pan, Y T; Xu, B; Rice, K; Smith, S; Jackson, R; Elbein, A D
1997-01-01
Enterobacter cloacae has been implicated as one of the causative agents in neonatal infection and causes a septicemia thought to be initiated via the gastrointestinal tract. The adhesion of radiolabeled E. cloacae to HT-29 cells was concentration and temperature dependent and was effectively blocked by unlabeled bacteria or by millimolar concentrations of alpha-mannosides and micromolar concentrations of high-mannose oligosaccharides. A variety of well-characterized mannose oligosaccharides were tested as inhibitors of adhesion. The best inhibitor was the Man9(GlcNAc)2-tyrosinamide, which was considerably better than other tyrosinamide-linked oligosaccharides such as Man7(GlcNAc)2, Man6(GlcNAc)2 or Man5(GlcNAc)2. Further evidence that the bacteria preferred Man9(GlcNAc)2 structures was obtained by growing HT-29 cells in the presence of glycoprotein processing inhibitors that block mannosidase I and increase the amount of protein-bound Man9(GlcNAc)2 at the cell surface. Such cells bound 1.5- to 2-fold more bacteria than did control cells. The adhesin involved in binding to high-mannose structures was purified from isolated pili. On sodium dodecyl sulfate-gels, a 35-kDa protein was identified by its specific binding to a mannose-containing biotinylated albumin. The amino acid sequences of several peptides from the 35-kDa subunit showed over 85% identity to FimH, the mannose-specific adhesin of Salmonella typhimurium. Pili were labeled with 125I and examined for the ability to bind to HT-29 cells. Binding showed saturation kinetics and was inhibited by the addition of Man9(GlcNAc)2-tyrosinamide but not by oligosaccharides with fewer mannose residues. Polyclonal antibody against this 35-kDa protein also effectively blocked adhesion of pili or E. cloacae, but no effect was observed with nonspecific antibody. These studies demonstrate that the 35-kDa pilus subunit is a lectin whose specificity is directed toward Man, (GlcNAc)2 oligosaccharides. PMID:9317027
Purification of a d-Mannose Isomerase from Mycobacterium smegmatis1
Hey-Ferguson, Ann; Elbein, Alan D.
1970-01-01
An enzyme, d-mannose ketol isomerase, catalyzing the isomerization of d-mannose and d-fructose was purified approximately 60-fold from cells of Mycobacterium smegmatis grown on mannose as the sole carbon source. This enzyme was shown to catalyze the conversion of d-mannose and d-lyxose to ketoses. The ketose produced from mannose was identified as fructose by chemical and chromatographic methods. The reaction was shown to be reversible, the equilibrium ratio of fructose to mannose being approximately 65 to 35. The pH optimum was about 7.5, and the Km for mannose was estimated to be 7 × 10−3m. Mannose isomerase activity was greatest in cells grown on mannose, whereas cells grown on fructose had about 30% as much activity. Very low levels of activity were detected in cells grown on other substrates. There was an immediate increase in enzyme activity on transfer of cells from nutrient broth to a mannose mineral salts medium. PMID:5438047
Liu, Lin; Lee, Wang-Sik; Doray, Balraj; Kornfeld, Stuart
2017-06-16
Several lysosomal enzymes currently used for enzyme replacement therapy in patients with lysosomal storage diseases contain very low levels of mannose 6-phosphate, limiting their uptake via mannose 6-phosphate receptors on the surface of the deficient cells. These enzymes are produced at high levels by mammalian cells and depend on endogenous GlcNAc-1-phosphotransferase α/β precursor to phosphorylate the mannose residues on their glycan chains. We show that co-expression of an engineered truncated GlcNAc-1-phosphotransferase α/β precursor and the lysosomal enzyme of interest in the producing cells resulted in markedly increased phosphorylation and cellular uptake of the secreted lysosomal enzyme. This method also results in the production of highly phosphorylated acid β-glucocerebrosidase, a lysosomal enzyme that normally has just trace amounts of this modification.
Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin
Kisiela, Dagmara I.; Chattopadhyay, Sujay; Libby, Stephen J.; Karlinsey, Joyce E.; Fang, Ferric C.; Tchesnokova, Veronika; Kramer, Jeremy J.; Beskhlebnaya, Viktoriya; Samadpour, Mansour; Grzymajlo, Krzysztof; Ugorski, Maciej; Lankau, Emily W.; Mackie, Roderick I.; Clegg, Steven; Sokurenko, Evgeni V.
2012-01-01
Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella. PMID:22685400
Serafini-Cessi, F; Dall'Olio, F; Pereira, L; Campadelli-Fiume, G
1984-01-01
Immature and mature forms of glycoprotein gC were purified by immunoadsorbent from herpes simplex virus type 1-infected BHK cells labeled with [3H]mannose for a 20-min pulse or for 11 h followed by a 3-h chase. The nature of N-asparagine-linked oligosaccharides carried by the immature form, pgC (molecular weight = 92,000), and the mature gC (molecular weight = 120,000) has been investigated. All pronase-digested glycopeptides of pgC were susceptible to endo-beta-N-acetylglucosaminidase H treatment; thus they have a high-mannose structure. Using thin-layer chromatography to separate endo-beta-N-acetylglucosaminidase H-cleaved oligosaccharides, polymannosyl chains of different sizes, ranging from Man9GlcNAc to Man5GlcNAc, were separated. The major components were Man8GlcNAc and Man7GlcNAc, suggesting that pgC labeled in a 20-min pulse represents the form of glycoprotein already routed to the Golgi apparatus. Analysis of glycopeptides of mature gC showed that the majority (95%) of N-linked glycans were converted to complex-type glycans. Ion-exchange chromatography and affinity chromatography on concanavalin A-Sepharose and leucoagglutinin-agarose revealed that diantennary and triantennary glycans predominated, whereas tetrantennary chains were not present. Parts of the di- and triantennary chains were not fully sialylated. The high heterogeneity of complex-type chains found in mature gC may be related to the high number of N-glycosylation sites of the glycoprotein as predicted by DNA sequencing studies (Frink et al., J. Virol. 45:634-647, 1983). Images PMID:6088806
Highly conserved type 1 pili promote enterotoxigenic E. coli pathogen-host interactions
Rashu, Rasheduzzaman; Begum, Yasmin Ara; Ciorba, Matthew A.; Hultgren, Scott J.; Qadri, Firdausi
2017-01-01
Enterotoxigenic Escherichia coli (ETEC), defined by their elaboration of heat-labile (LT) and/or heat-stable (ST) enterotoxins, are a common cause of diarrheal illness in developing countries. Efficient delivery of these toxins requires ETEC to engage target host enterocytes. This engagement is accomplished using a variety of pathovar-specific and conserved E. coli adhesin molecules as well as plasmid encoded colonization factors. Some of these adhesins undergo significant transcriptional modulation as ETEC encounter intestinal epithelia, perhaps suggesting that they cooperatively facilitate interaction with the host. Among genes significantly upregulated on cell contact are those encoding type 1 pili. We therefore investigated the role played by these pili in facilitating ETEC adhesion, and toxin delivery to model intestinal epithelia. We demonstrate that type 1 pili, encoded in the E. coli core genome, play an essential role in ETEC virulence, acting in concert with plasmid-encoded pathovar specific colonization factor (CF) fimbriae to promote optimal bacterial adhesion to cultured intestinal epithelium (CIE) and to epithelial monolayers differentiated from human small intestinal stem cells. Type 1 pili are tipped with the FimH adhesin which recognizes mannose with stereochemical specificity. Thus, enhanced production of highly mannosylated proteins on intestinal epithelia promoted FimH-mediated ETEC adhesion, while conversely, interruption of FimH lectin-epithelial interactions with soluble mannose, anti-FimH antibodies or mutagenesis of fimH effectively blocked ETEC adhesion. Moreover, fimH mutants were significantly impaired in delivery of both heat-stable and heat-labile toxins to the target epithelial cells in vitro, and these mutants were substantially less virulent in rabbit ileal loop assays, a classical model of ETEC pathogenesis. Collectively, our data suggest that these highly conserved pili play an essential role in virulence of these diverse pathogens. PMID:28531220
Bunyaviridae and Their Replication. Part 2. Replication of Bunyaviridae
1990-01-01
Ivatt RJ. Synthesis and processing of asparagine- mulates intracellularly: cellular process of the large glycopro- linked oligosaccharides . Anna Rev...the high-mannose rather than complex type, and no evidence for the presence of 0-linked oligosaccharides A- has been obtained (86,87,93,120,146). AA ’U...and Pulse -chase experiments revealed no precursor/prod- G2 has not been identified. However, an intergenic uct relationship between the 78- and 14-kd
Singh, Richa; Pacheco-Andrade, Romario; Almiahuob, Mohamed Y. Mahmoud
2015-01-01
The Na+K+2Cl− cotransporter-1 (Slc12a2, NKCC1) is widely distributed and involved in cell volume/ion regulation. Functional NKCC1 locates in the plasma membrane of all cells studied, particularly in the basolateral membrane of most polarized cells. Although the mechanisms involved in plasma membrane sorting of NKCC1 are poorly understood, it is assumed that N-glycosylation is necessary. Here, we characterize expression, N-glycosylation, and distribution of NKCC1 in COS7 cells. We show that ~25% of NKCC1 is complex N-glycosylated whereas the rest of it corresponds to core/high-mannose and hybrid-type N-glycosylated forms. Further, ~10% of NKCC1 reaches the plasma membrane, mostly as core/high-mannose type, whereas ~90% of NKCC1 is distributed in defined intracellular compartments. In addition, inhibition of the first step of N-glycan biosynthesis with tunicamycin decreases total and plasma membrane located NKCC1 resulting in almost undetectable cotransport function. Moreover, inhibition of N-glycan maturation with swainsonine or kifunensine increased core/hybrid-type NKCC1 expression but eliminated plasma membrane complex N-glycosylated NKCC1 and transport function. Together, these results suggest that (i) NKCC1 is delivered to the plasma membrane of COS7 cells independently of its N-glycan nature, (ii) most of NKCC1 in the plasma membrane is core/hybrid-type N-glycosylated, and (iii) the minimal proportion of complex N-glycosylated NKCC1 is functionally active. PMID:26351455
Rodríguez, Ernesto; Kalay, Hakan; Noya, Verónica; Brossard, Natalie; Giacomini, Cecilia; van Kooyk, Yvette; García-Vallejo, Juan J.; Freire, Teresa
2017-01-01
Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) expressed on a variety of DCs, is a C-type lectin receptor that recognizes glycans on a diverse range of pathogens, including parasites. The interaction of DC-SIGN with pathogens triggers specific signaling events that modulate DC-maturation and activity and regulate T-cell activation by DCs. In this work we evaluate whether F. hepatica glycans can immune modulate DCs via DC-SIGN. We demonstrate that DC-SIGN interacts with F. hepatica glycoconjugates through mannose and fucose residues. We also show that mannose is present in high-mannose structures, hybrid and trimannosyl N-glycans with terminal GlcNAc. Furthermore, we demonstrate that F. hepatica glycans induce DC-SIGN triggering leading to a strong production of TLR-induced IL-10 and IL-27p28. In addition, parasite glycans induced regulatory DCs via DC-SIGN that decrease allogeneic T cell proliferation, via the induction of anergic/regulatory T cells, highlighting the role of DC-SIGN in the regulation of innate and adaptive immune responses by F. hepatica. Our data confirm the immunomodulatory properties of DC-SIGN triggered by pathogen-derived glycans and contribute to the identification of immunomodulatory glyans of helminths that might eventually be useful for the design of vaccines against fasciolosis. PMID:28436457
Rodríguez, Ernesto; Kalay, Hakan; Noya, Verónica; Brossard, Natalie; Giacomini, Cecilia; van Kooyk, Yvette; García-Vallejo, Juan J; Freire, Teresa
2017-04-24
Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) expressed on a variety of DCs, is a C-type lectin receptor that recognizes glycans on a diverse range of pathogens, including parasites. The interaction of DC-SIGN with pathogens triggers specific signaling events that modulate DC-maturation and activity and regulate T-cell activation by DCs. In this work we evaluate whether F. hepatica glycans can immune modulate DCs via DC-SIGN. We demonstrate that DC-SIGN interacts with F. hepatica glycoconjugates through mannose and fucose residues. We also show that mannose is present in high-mannose structures, hybrid and trimannosyl N-glycans with terminal GlcNAc. Furthermore, we demonstrate that F. hepatica glycans induce DC-SIGN triggering leading to a strong production of TLR-induced IL-10 and IL-27p28. In addition, parasite glycans induced regulatory DCs via DC-SIGN that decrease allogeneic T cell proliferation, via the induction of anergic/regulatory T cells, highlighting the role of DC-SIGN in the regulation of innate and adaptive immune responses by F. hepatica. Our data confirm the immunomodulatory properties of DC-SIGN triggered by pathogen-derived glycans and contribute to the identification of immunomodulatory glyans of helminths that might eventually be useful for the design of vaccines against fasciolosis.
Franc, J L; Hovsepian, S; Fayet, G; Bouchilloux, S
1986-05-15
The effects of two drugs, swainsonine (SW) and deoxynojirimycin (dNM), on synthesis and export of thyroglobulin were studied in folliculized porcine thyroid cells cultured in a serum-free medium. These drugs were expected to alter N-linked glycans in thyroglobulin. Newly synthesized thyroglobulin labeled with [2-3H]mannose or [4,5-3H]leucine was obtained by immunoprecipitation from the follicular contents, culture media and cell extracts; the first two compartments, containing secreted thyroglobulin, were sometimes analyzed together. Leucine incorporation was not inhibited by SW and only slightly by dNM. In contrast dNM strongly decreased mannose incorporation (by up to 50-75% at 1-3 mM). However after 16-h mannose labelings, SW and/or dNM at 2.5 microM and 3 mM respectively did not significantly modify the relative proportions of radioactive thyroglobulin in the above-mentioned compartments. Pronase glycopeptides prepared from these thyroglobulins were examined with respect to behaviour on concanavalin-A-Sepharose and position on Bio-Gel P-4. Oligosaccharides released by endoglucosaminidase H and with high affinity for the lectin, i.e. high-mannose and certain hybrids, were further characterized by various exoglycosidase treatments. Thyroglobulin from control cells displayed complex and high-mannose glycans comparable in size and proportion to those attributed to tissue-extracted porcine thyroglobulin. After treatment with SW (an inhibitor of alpha-mannosidase II), complex glycans were almost totally replaced by sialylated hybrid glycans. In contrast to this nearly total suppression, dNM (an inhibitor of the trimming glucosidases) caused only a 30% decrease in labeling of complex units and an about 50% increase in high-mannose glycans, covered to some degree by glucose. Finally a [3H]leucine pulse-chase study was performed on thyroglobulin secretion in the absence or presence of both SW and dNM. Though a slowdown was detectable in the first few hours, this study revealed no change in the long-term export of thyroglobulin.
Leteux, Christine; Chai, Wengang; Loveless, R. Wendy; Yuen, Chun-Ting; Uhlin-Hansen, Lars; Combarnous, Yves; Jankovic, Mila; Maric, Svetlana C.; Misulovin, Ziva; Nussenzweig, Michel C.; Ten Feizi
2000-01-01
The mannose receptor (MR) is an endocytic protein on macrophages and dendritic cells, as well as on hepatic endothelial, kidney mesangial, tracheal smooth muscle, and retinal pigment epithelial cells. The extracellular portion contains two types of carbohydrate-recognition domain (CRD): eight membrane-proximal C-type CRDs and a membrane-distal cysteine-rich domain (Cys-MR). The former bind mannose-, N-acetylglucosamine-, and fucose-terminating oligosaccharides, and may be important in innate immunity towards microbial pathogens, and in antigen trapping for processing and presentation in adaptive immunity. Cys-MR binds to the sulfated carbohydrate chains of pituitary hormones and may have a role in hormonal clearance. A second feature of Cys-MR is binding to macrophages in marginal zones of the spleen, and to B cell areas in germinal centers which may help direct MR-bearing cells toward germinal centers during the immune response. Here we describe two novel classes of carbohydrate ligand for Cys-MR: chondroitin-4 sulfate chains of the type found on proteoglycans produced by cells of the immune system, and sulfated blood group chains. We further demonstrate that Cys-MR interacts with cells in the spleen via the binding site for sulfated carbohydrates. Our data suggest that the three classes of sulfated carbohydrate ligands may variously regulate the trafficking and function of MR-bearing cells. PMID:10748230
Struwe, W B; Benesch, J L; Harvey, D J; Pagel, K
2015-10-21
We report collision cross sections (CCS) of high-mannose N-glycans as [M + Na](+), [M + K](+), [M + H](+), [M + Cl](-), [M + H2PO4](-) and [M - H](-) ions, measured by drift tube (DT) ion mobility-mass spectrometry (IM-MS) in helium and nitrogen gases. Further analysis using traveling wave (TW) IM-MS reveal the existence of distinct conformers exclusive to [M - H](-) ions.
Sharma, Anjali; Porterfield, Joshua E; Smith, Elizabeth; Sharma, Rishi; Kannan, Sujatha; Kannan, Rangaramanujam M
2018-06-05
Neurotherapeutics for the treatment of central nervous system (CNS) disorders must overcome challenges relating to the blood-brain barrier (BBB), brain tissue penetration, and the targeting of specific cells. Neuroinflammation mediated by activated microglia is a major hallmark of several neurological disorders, making these cells a desirable therapeutic target. Building on the promise of hydroxyl-terminated generation four polyamidoamine (PAMAM) dendrimers (D4-OH) for penetrating the injured BBB and targeting activated glia, we explored if conjugation of targeting ligands would enhance and modify brain and organ uptake. Since mannose receptors [cluster of differentiation (CD) 206] are typically over-expressed on injured microglia, we conjugated mannose to the surface of multifunctional D4-OH using highly efficient, atom-economical, and orthogonal Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click chemistry and evaluated the effect of mannose conjugation on the specific cell uptake of targeted and non-targeted dendrimers both in vitro and in vivo. In vitro results indicate that the conjugation of mannose as a targeting ligand significantly changes the mechanism of dendrimer internalization, giving mannosylated dendrimer a preference for mannose receptor-mediated endocytosis as opposed to non-specific fluid phase endocytosis. We further investigated the brain uptake and biodistribution of targeted and non-targeted fluorescently labeled dendrimers in a maternal intrauterine inflammation-induced cerebral palsy (CP) rabbit model using quantification methods based on fluorescence spectroscopy and confocal microscopy. We found that the conjugation of mannose modified the distribution of D4-OH throughout the body in this neonatal rabbit CP model without lowering the amount of dendrimer delivered to injured glia in the brain, even though significantly higher glial uptake was not observed in this model. Mannose conjugation to the dendrimer modifies the dendrimer's interaction with cells, but does not minimize its inherent inflammation-targeting abilities. Copyright © 2018 Elsevier B.V. All rights reserved.
Park, Dayoung; Brune, Kristin A.; Mitra, Anupam; Marusina, Alina I.; Maverakis, Emanual; Lebrilla, Carlito B.
2015-01-01
Changes in cell surface glycosylation occur during the development and differentiation of cells and have been widely correlated with the progression of several diseases. Because of their structural diversity and sensitivity to intra- and extracellular conditions, glycans are an indispensable tool for analyzing cellular transformations. Glycans present on the surface of intestinal epithelial cells (IEC) mediate interactions with billions of native microorganisms, which continuously populate the mammalian gut. A distinct feature of IECs is that they differentiate as they migrate upwards from the crypt base to the villus tip. In this study, nano-LC/ESI QTOF MS profiling was used to characterize the changes in glycosylation that correspond to Caco-2 cell differentiation. As Caco-2 cells differentiate to form a brush border membrane, a decrease in high mannose type glycans and a concurrent increase in fucosylated and sialylated complex/hybrid type glycans were observed. At day 21, when cells appear to be completely differentiated, remodeling of the cell surface glycome ceases. Differential expression of glycans during IEC maturation appears to play a key functional role in regulating the membrane-associated hydrolases and contributes to the mucosal surface innate defense mechanisms. Developing methodologies to rapidly identify changes in IEC surface glycans may lead to a rapid screening approach for a variety of disease states affecting the GI tract. PMID:26355101
Chandra, N R; Ramachandraiah, G; Bachhawat, K; Dam, T K; Surolia, A; Vijayan, M
1999-01-22
A mannose-specific agglutinin, isolated from garlic bulbs, has been crystallized in the presence of a large excess of alpha-d-mannose, in space group C2 and cell dimensions, a=203.24, b=43.78, c=79.27 A, beta=112.4 degrees, with two dimers in the asymmetric unit. X-ray diffraction data were collected up to a nominal resolution of 2.4 A and the structure was solved by molecular replacement. The structure, refined to an R-factor of 22.6 % and an Rfree of 27.8 % reveals a beta-prism II fold, similar to that in the snowdrop lectin, comprising three antiparallel four-stranded beta-sheets arranged as a 12-stranded beta-barrel, with an approximate internal 3-fold symmetry. This agglutinin is, however, a dimer unlike snowdrop lectin which exists as a tetramer, despite a high degree of sequence similarity between them. A comparison of the two structures reveals a few substitutions in the garlic lectin which stabilise it into a dimer and prevent tetramer formation. Three mannose molecules have been identified on each subunit. In addition, electron density is observed for another possible mannose molecule per dimer resulting in a total of seven mannose molecules in each dimer. Although the mannose binding sites and the overall structure are similar in the subunits of snowdrop and garlic lectin, their specificities to glycoproteins such as GP120 vary considerably. These differences appear, in part, to be a direct consequence of the differences in oligomerisation, implying that variation in quaternary association may be a mode of achieving oligosaccharide specificity in bulb lectins. Copyright 1998 Academic Press.
Zolodz, Melissa D; Herberg, John T; Narepekha, Halyna E; Raleigh, Emily; Farber, Matthew R; Dufield, Robert L; Boyle, Denis M
2010-01-08
Obtaining sufficient amounts of pure glycoprotein variants to characterize their structures is an important goal in both functional biology and the biotechnology industry. We have developed preparative HIC conditions that resolve glycoform variants on the basis of overall carbohydrate content for a recombinant transferrin-exendin-4 fusion protein. The fusion protein was expressed from the yeast Saccharomyces cerevisiae from high density fermentation and is post-translationally modified with mannose sugars through O-glycosidic linkages. Overall hydrophobic behavior appeared to be dominated by the N-terminal 39 amino acids from the exendin-4 and linker peptide sequences as compared to the less hydrophobic behavior of human transferrin alone. In addition, using LC techniques that measure total glycans released from the pure protein combined with new high resolution technologies using mass spectrometry, we have determined the locations and chain lengths of mannose residues on specific peptides derived from tryptic maps of the transferrin-exendin-4 protein. Though the protein is large (80,488kDa) and contains 78 possible serine and threonine residues as potential sites for sugar addition, mannosylation was observed on only two tryptic peptides located within the first 55 amino acids of the N-terminus. These glycopeptides were highly heterogeneous and contained between 1 and 10 mannose residues scattered among the various serine and threonine sites which were identified by electron transfer dissociation mass spectrometry. Glycan sequences from 1 to 6 linear mannose residues were detected, but mannose chain lengths of 3 or 4 were more common and formed 80% of the total oligosaccharides. This work introduces new technological capabilities for the purification and characterization of glycosylated variants of therapeutic recombinant proteins. Copyright 2009 Elsevier B.V. All rights reserved.
Xu, Xuan-Li; Zhang, Pei; Shen, Yi-Hong; Li, He-Quan; Wang, Yue-Hong; Lu, Guo-Hua; Zhou, Jian-Ying
2015-01-01
Mannose has been reported to prevent acute lung injury (ALI), and mannose receptor (MR) has been demonstrated to have a role. The rationale for this study is to characterize the mechanism by which mannose and MR prevent lipopolysaccharide (LPS)-induced ALI. Male ICR mice were pretreated mannose by intravenous injection 5 min before and 3 h after intratracheal instillation of LPS. Pathological changes, proinflammatory mediator, peroxisome proliferator activated receptor gamma (PPARγ), MR, and transforming growth factor β1 (TGF-β1) levels were determined. The RAW264.7 cells were pretreated with mannose and stimulated with LPS for 3 h. Proinflammatory mediator and TGF-β1 in the culture media, PPARγ, MR, and TGF-β1 expression in RAW 264.7 cells were measured. Mannose markedly attenuated the LPS-induced histological alterations and inhibited the production of proinflammatory mediator in mice and in RAW 264.7 cells. Mannose increased PPARγ and MR expression, and inhibited TGF-β1 stimulated by LPS. Interestingly, competitive inhibition of MR with mannan was associated with elimination of the anti-inflammatory effects of mannose, and reversed effects of mannose of regulation to PPARγ and TGF-β1. MR is important in increasing PPARγ and decreasing TGF-β1 expression and plays a critical role in mannose’s protection against ALI. PMID:26261498
Nairn, Alison V; Aoki, Kazuhiro; dela Rosa, Mitche; Porterfield, Mindy; Lim, Jae-Min; Kulik, Michael; Pierce, J Michael; Wells, Lance; Dalton, Stephen; Tiemeyer, Michael; Moremen, Kelley W
2012-11-02
The abundance and structural diversity of glycans on glycoproteins and glycolipids are highly regulated and play important roles during vertebrate development. Because of the challenges associated with studying glycan regulation in vertebrate embryos, we have chosen to study mouse embryonic stem (ES) cells as they differentiate into embryoid bodies (EBs) or into extraembryonic endodermal (ExE) cells as a model for cellular differentiation. We profiled N- and O-glycan structures isolated from these cell populations and examined transcripts encoding the corresponding enzymatic machinery for glycan biosynthesis in an effort to probe the mechanisms that drive the regulation of glycan diversity. During differentiation from mouse ES cells to either EBs or ExE cells, general trends were detected. The predominance of high mannose N-glycans in ES cells shifted to an equal abundance of complex and high mannose structures, increased sialylation, and increased α-Gal termination in the differentiated cell populations. Whereas core 1 O-glycan structures predominated in all three cell populations, increased sialylation and increased core diversity characterized the O-glycans of both differentiated cell types. Increased polysialylation was also found in both differentiated cell types. Differences between the two differentiated cell types included greater sialylation of N-glycans in EBs, whereas α-Gal-capped structures were more prevalent in ExE cells. Changes in glycan structures generally, but not uniformly, correlated with alterations in transcript abundance for the corresponding biosynthetic enzymes, suggesting that transcriptional regulation contributes significantly to the regulation of glycan expression. Knowledge of glycan structural diversity and transcript regulation should provide greater understanding of the roles of protein glycosylation in vertebrate development.
Sugar epitopes as potential universal disease transmission blocking targets.
Dinglasan, Rhoel R; Valenzuela, Jesús G; Azad, Abdu F
2005-01-01
One promising method to prevent vector-borne diseases is through the use of transmission blocking vaccines (TBVs). However, developing several anti-pathogen TBVs may be impractical. In this study, we have identified a conserved candidate carbohydrate target in the midguts of several Arthropod vectors. A screen of the novel GlycoChip glycan array found that the anti-carbohydrate malaria transmission blocking monoclonal antibody (MG96) preferentially recognized D-mannose (alpha) and the type II lactosamine disaccharide. The specificity for D-mannose was confirmed by competition ELISA using alpha-methyl mannoside as inhibitor. Con A, which identifies terminal mannose residues, did not inhibit MG96 reactivity with mosquito midgut lysates, suggesting that Con A has differential recognition of this monosaccharide. However, the jack bean lectin, Jacalin, which recognizes D-mannose (alpha), d-galactose (alpha/beta) and the T antigen, not only displays a similar banding profile to that recognized by MG96 on immunoblot but was also shown to effectively inhibit MG96. Wheat-germ agglutinin, which recognizes N-acetyllactosamine units, only partially inhibited MG96 reactivity. This highlights the contribution of both glycan moieties to the MG96 epitope or glycotope. Enzyme deglycosylation results suggest that MG96 recognizes a mannose alpha1-6 substitution on an O-linked oligosaccharide. Taken together, the data suggest that MG96 recognizes a discontinuous glycotope composed of Manalpha1-6 proximal to Galbeta1-4GlcNAc-alpha-O-R glycans on arthropod vector midguts. As such, these glycotopes may represent potential transmission blocking vaccine targets for a wide range of vector-borne pathogens.
Arce, Eva; Nieto, Pedro M; Díaz, Vicente; Castro, Rossana García; Bernad, Antonio; Rojo, Javier
2003-01-01
Multivalent scaffolds bearing carbohydrates have been prepared to mediate biological processes where carbohydrates are involved. These systems consist of dendritic structures based on Boltorn H20 and H30 hyperbranched polymers to which carbohydrates are linked through a convenient spacer. Mannose has been chosen as a sugar unit to test the viability of this strategy. These glycodendritic compounds have been prepared in a few steps with good yields, showing a high solubility in physiological media and low toxicity. The binding of these dendritic polymers to the mannose-binding lectin Lens culinaris (LCA) was studied using STD-NMR experiments and quantitative precipitation assays. The results demonstrate the existence of a clear interaction between the mannose derivative systems and the Lens lectin where the dendritic scaffold does not have an important role in mannose binding but supplies the necessary multivalence for lectin cluster formation. These glycodendritic structures are able to interact with a receptor, and therefore they can be considered as promising tools for biological studies.
Diltemiz, Sibel Emir; Hür, Deniz; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan
2013-03-07
Quartz crystal microbalance (QCM) sensors coated with molecularly imprinted polymers (MIP) have been developed for the recognition of immunoglobulin M (IgM) and mannose. In this method, methacryloylamidophenylboronic acid (MAPBA) was used as a monomer and mannose was used as a template. For this purpose, initially, QCM electrodes were modified with 2-propene-1-thiol to form mannose-binding regions on the QCM sensor surface. In the second step, the methacryloylamidophenylboronic acid-mannose [MAPBA-mannose], pre-organized monomer system, was prepared using the MAPBA monomer. Then, a molecularly imprinted film was coated on to the QCM electrode surface under UV light using ethylene glycol dimethacrylate (EDMA), and azobisisobutyronitrile (AIBN) as a cross-linking agent and an initiator, respectively. The mannose can be simultaneously bound to MAPBA and fitted into the shape-selective cavities. The binding affinity of the mannose-imprinted sensors was investigated using the Langmuir isotherm. The mannose-imprinted QCM electrodes have shown homogeneous binding sites for mannose (K(a): 3.3 × 10(4) M(-1)) and heterogeneous binding sites for IgM (K(a1): 1.0 × 10(4) M(-1); K(a2): 3.3 × 10(3) M(-1)).
Glaffig, Markus; Stergiou, Natascha; Hartmann, Sebastian; Schmitt, Edgar; Kunz, Horst
2018-01-08
A MUC1 anticancer vaccine equipped with covalently linked divalent mannose ligands was found to improve the antigen uptake and presentation by targeting mannose-receptor-positive macrophages and dendritic cells. It induced much stronger specific IgG immune responses in mice than the non-mannosylated reference vaccine. Mannose coupling also led to increased numbers of macrophages, dendritic cells, and CD4 + T cells in the local lymph organs. Comparison of di- and tetravalent mannose ligands revealed an increased binding of the tetravalent version, suggesting that higher valency improves binding to the mannose receptor. The mannose-coupled vaccine and the non-mannosylated reference vaccine induced IgG antibodies that exhibited similar binding to human breast tumor cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mondal, S K; Ray, B; Thakur, S; Ghosal, P K
2001-03-01
The water-soluble polysaccharides isolated from the vascular gel of Musa paradisiaca, were fractionated via anion exchange chromatography into four fractions. Fractionated polymers contained arabinose, xylose and galacturonic acid as major sugars, together with traces of galactose, rhamnose, mannose and glucose residues. Methylation analysis revealed the presence of a highly branched arabinoxylan with a significant amount of terminal arabinopyranosyl units and an arabinogalactan type I pectin. Periodate oxidation studies supported the results of methylation analysis.
Biosynthesis and maturation of cellular membrane glycoproteins.
Hunt, L A
1979-01-01
The biosynthesis and the processing of asparagine-linked oligosaccharides of cellular membrane glycoproteins were examined in monolayer cultures of BHK21 cells and human diploid fibroblasts after pulse- and pulse-chase labeling with [2-3H]mannose. After pronase digestion, radiolabeled glycopeptides were characterized by high-resolution gel filtration, with or without additional digestion with various exoglycosidases and endoglycosidases. Pulse-labeled glycoproteins contained a relatively homogenous population of neutral oligosaccharides (major species: Man9GlcNAc2ASN). The vast majority of these asparagine-linked oligosaccharides was smaller than the major fraction of lipid-linked oligosaccharides from the cell and was apparently devoid of terminal glucose. After pulse-chase or long labeling periods, a significant fraction of the large oligomannosyl cores was processed by removal of mannose units and addition of branch sugars (NeuNAc-Gal-GlcNAc), resulting in complex acidic structures containing three and possibly five mannoses. In addition, some of the large oligomannosyl cores were processed by the removal of only several mannoses, resulting in a mixture of neutral structures with 5-9 mannoses. This oligomannosyl core heterogeneity in both neutral and acidic oligosaccharides linked to asparagine in cellular membrane glycoproteins was analogous to the heterogeneity reported for the oligosaccharides of avian RNA tumor virus glycoproteins (Hunt LA, Wright SE, Etchison JR, Summers DF: J Virol 29:336, 1979).
Howlett, Robert; Anttonen, Katri; Read, Nicholas; Smith, Margaret C M
2018-04-01
Actinomycete bacteria use polyprenol phosphate mannose as a lipid linked sugar donor for extra-cytoplasmic glycosyl transferases that transfer mannose to cell envelope polymers, including glycoproteins and glycolipids. We showed recently that strains of Streptomyces coelicolor with mutations in the gene ppm1 encoding polyprenol phosphate mannose synthase were both resistant to phage φC31 and have greatly increased susceptibility to antibiotics that mostly act on cell wall biogenesis. Here we show that mutations in the genes encoding enzymes that act upstream of Ppm1 in the polyprenol phosphate mannose synthesis pathway can also confer phage resistance and antibiotic hyper-susceptibility. GDP-mannose is a substrate for Ppm1 and is synthesised by GDP-mannose pyrophosphorylase (GMP; ManC) which uses GTP and mannose-1-phosphate as substrates. Phosphomannomutase (PMM; ManB) converts mannose-6-phosphate to mannose-1-phosphate. S. coelicolor strains with knocked down GMP activity or with a mutation in sco3028 encoding PMM acquire phenotypes that resemble those of the ppm1 - mutants i.e. φC31 resistant and susceptible to antibiotics. Differences in the phenotypes of the strains were observed, however. While the ppm1 - strains have a small colony phenotype, the sco3028 :: Tn5062 mutants had an extremely small colony phenotype indicative of an even greater growth defect. Moreover we were unable to generate a strain in which GMP activity encoded by sco3039 and sco4238 is completely knocked out, indicating that GMP is also an important enzyme for growth. Possibly GDP-mannose is at a metabolic branch point that supplies alternative nucleotide sugar donors.
Park, Dayoung; Brune, Kristin A; Mitra, Anupam; Marusina, Alina I; Maverakis, Emanual; Lebrilla, Carlito B
2015-11-01
Changes in cell surface glycosylation occur during the development and differentiation of cells and have been widely correlated with the progression of several diseases. Because of their structural diversity and sensitivity to intra- and extracellular conditions, glycans are an indispensable tool for analyzing cellular transformations. Glycans present on the surface of intestinal epithelial cells (IEC) mediate interactions with billions of native microorganisms, which continuously populate the mammalian gut. A distinct feature of IECs is that they differentiate as they migrate upwards from the crypt base to the villus tip. In this study, nano-LC/ESI QTOF MS profiling was used to characterize the changes in glycosylation that correspond to Caco-2 cell differentiation. As Caco-2 cells differentiate to form a brush border membrane, a decrease in high mannose type glycans and a concurrent increase in fucosylated and sialylated complex/hybrid type glycans were observed. At day 21, when cells appear to be completely differentiated, remodeling of the cell surface glycome ceases. Differential expression of glycans during IEC maturation appears to play a key functional role in regulating the membrane-associated hydrolases and contributes to the mucosal surface innate defense mechanisms. Developing methodologies to rapidly identify changes in IEC surface glycans may lead to a rapid screening approach for a variety of disease states affecting the GI tract. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Lei, Y; Yu, H; Dong, Y; Yang, J; Ye, W; Wang, Y; Chen, W; Jia, Z; Xu, Z; Li, Z; Zhang, F
2015-01-01
DENV envelope glycoprotein (E) is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies. It is well known that DENV E glycoprotein has two potential N-linked glycosylation sites at Asn67 and Asn153. The N-glycans of E glycoprotein have been shown to influence the proper folding of the protein, its cellular localization, its interactions with receptors and its immunogenicity. However, the precise structures of the N-glycans that are attached to E glycoprotein remain elusive, although the crystal structure of DENV E has been determined. This study characterized the structures of envelope protein N-linked glycans on mature DENV-2 particles derived from insect cells via an integrated method that used both lectin microarray and MALDI-TOF-MS. By combining these methods, a high heterogeneity of DENV N-glycans was found. Five types of N-glycan were identified on DENV-2, including mannose, GalNAc, GlcNAc, fucose and sialic acid; high mannose-type N-linked oligosaccharides and the galactosylation of N-glycans were the major structures that were found. Furthermore, a complex between a glycan on DENV and the carbohydrate recognition domain (CRD) of DC-SIGN was mimicked with computational docking experiments. For the first time, this study provides a comprehensive understanding of the N-linked glycan profile of whole DENV-2 particles derived from insect cells.
Reina, José J; Maldonado, Olivia S; Tabarani, Georges; Fieschi, Franck; Rojo, Javier
2007-01-01
The design of glycoconjugates to allow the generation of multivalent ligands capable of interacting with the receptor DC-SIGN is a topic of high interest due to the role played by this lectin in pathogen infections. Mannose, a ligand of this lectin, could be conjugated at two different positions, 1 and 6, not implicated in the binding process. We have prepared mannose conjugates at these two positions with a long spacer to allow their attachment to a biosensor chip surface. Analysis of the interaction between these surfaces and the tetravalent extracellular domain (ECD) of DC-SIGN by SPR biosensor has demonstrated that both positions are available for this conjugation without affecting the protein binding process. These results emphasize the possibility to conjugate mannose at position 6, allowing the incorporation of hydrophobic groups at the anomeric position to interact with hydrophobic residues in the carbohydrate recognition domain of DC-SIGN, increasing binding affinities. This fact is relevant for the future design of new ligands and the corresponding multivalent systems for DC-SIGN.
Goossens, Katty V. Y.; Stassen, Catherine; Stals, Ingeborg; Donohue, Dagmara S.; Devreese, Bart; De Greve, Henri; Willaert, Ronnie G.
2011-01-01
Saccharomyces cerevisiae cells possess a remarkable capacity to adhere to other yeast cells, which is called flocculation. Flocculation is defined as the phenomenon wherein yeast cells adhere in clumps and sediment rapidly from the medium in which they are suspended. These cell-cell interactions are mediated by a class of specific cell wall proteins, called flocculins, that stick out of the cell walls of flocculent cells. The N-terminal part of the three-domain protein is responsible for carbohydrate binding. We studied the N-terminal domain of the Flo1 protein (N-Flo1p), which is the most important flocculin responsible for flocculation of yeast cells. It was shown that this domain is both O and N glycosylated and is structurally composed mainly of β-sheets. The binding of N-Flo1p to d-mannose, α-methyl-d-mannoside, various dimannoses, and mannan confirmed that the N-terminal domain of Flo1p is indeed responsible for the sugar-binding activity of the protein. Moreover, fluorescence spectroscopy data suggest that N-Flo1p contains two mannose carbohydrate binding sites with different affinities. The carbohydrate dissociation constants show that the affinity of N-Flo1p for mono- and dimannoses is in the millimolar range for the binding site with low affinity and in the micromolar range for the binding site with high affinity. The high-affinity binding site has a higher affinity for low-molecular-weight (low-MW) mannose carbohydrates and no affinity for mannan. However, mannan as well as low-MW mannose carbohydrates can bind to the low-affinity binding site. These results extend the cellular flocculation model on the molecular level. PMID:21076009
Tenhaken, Raimund; Voglas, Elena; Cock, J Mark; Neu, Volker; Huber, Christian G
2011-05-13
Alginate is a major cell wall polymer of brown algae. The precursor for the polymer is GDP-mannuronic acid, which is believed to be derived from a four-electron oxidation of GDP-mannose through the enzyme GDP-mannose dehydrogenase (GMD). So far no eukaryotic GMD has been biochemically characterized. We have identified a candidate gene in the Ectocarpus siliculosus genome and expressed it as a recombinant protein in Escherichia coli. The GMD from Ectocarpus differs strongly from related enzymes in bacteria and is as distant to the bacterial proteins as it is to the group of UDP-glucose dehydrogenases. It lacks the C-terminal ∼120 amino acid domain present in bacterial GMDs, which is believed to be involved in catalysis. The GMD from brown algae is highly active at alkaline pH and contains a catalytic Cys residue, sensitive to heavy metals. The product GDP-mannuronic acid was analyzed by HPLC and mass spectroscopy. The K(m) for GDP-mannose was 95 μM, and 86 μM for NAD(+). No substrate other than GDP-mannose was oxidized by the enzyme. In gel filtration experiments the enzyme behaved as a dimer. The Ectocarpus GMD is stimulated by salts even at low molar concentrations as a possible adaptation to marine life. It is rapidly inactivated at temperatures above 30 °C.
Ogier-Denis, E; Codogno, P; Chantret, I; Trugnan, G
1988-05-05
Studies on the regulation of the enterocytic differentiation of the human colon cancer cell line HT-29, which is differentiated in the absence (Glc-) but not in the presence of glucose (Glc+), have recently shown that the post-translational processing of sucrase-isomaltase and particularly its glycosylation vary as a function of cell differentiation (Trugnan G., Rousset, M., Chantret, I., Barbat, A., and Zweibaum, A. (1987) J. Cell Biol. 104, 1199-1205). Other studies indicate that in undifferentiated HT-29 Glc+ cells there is an accumulation of UDP-N-acetylhexosamine, which is involved in the glycosylation process (Wice, B. M., Trugnan, G., Pinto, M., Rousset, M., Chevalier, G., Dussaulx, E., Lacroix, B., and Zweibaum, A. (1985) J. Biol. Chem. 260, 139-146). The purpose of the present work is to investigate whether an overall alteration of protein glycosylation is associated with the inability of HT-29 cells to differentiate. At least three alterations are detected: (i) after a 10-min pulse, the incorporation of D-[2-3H]mannose in undifferentiated cells is severely reduced, compared to differentiated cells. (ii) After a 24-h period of labeling with D-[2-3H]mannose, undifferentiated cells accumulate more than 60% of the radioactivity in the high mannose glycopeptides, whereas differentiated HT-29 Glc- cells accumulate only 38%. (iii) The analysis of the high mannose oligosaccharides transferred "en bloc" from the lipid precursor shows that Man9,8-GlcNAc2 species accumulate in undifferentiated cells, whereas no such accumulation can be detected in differentiated cells. This glycosylation pattern is consistent with an impairment of the trimming of high mannose into complex glycans. It is concluded that N-glycan processing is correlated with the state of enterocytic differentiation of HT-29 cells.
Innate immunity in renal transplantation: the role of mannose-binding lectin.
Ibernon, Meritxell; Moreso, Francesc; Serón, Daniel
2014-01-01
Innate immune system plays an important role in the modulation of the inflammatory response during infection and tissue injury/repair. Mannose-binding lectin (MBL) is a component of the innate immune system that activates complement via the lectin pathway. Different polymorphisms of the MBL gene are associated with MBL levels and MBL function. The relationship between MBL and disease is rather complex because MBL behaves as a double-edged sword. In the general population, low serum MBL levels are associated with higher risk of infection, type 2 diabetes, autoimmune and cardiovascular disease. However, in patients with diabetes or autoimmune disease, high MBL levels are associated with more severe renal and cardiovascular comorbidities. In renal transplantation, low MBL serum levels constitute a risk factor for infection, low grade inflammation, new onset diabetes after transplantation and subclinical rejection. Despite these associations suggest that low MBL levels should be associated with poorer renal allograft outcome, epidemiological studies evaluating the predictive value of MBL levels on graft survival are controversial. Taken together, these observations suggest that low MBL serum levels modulate chronic inflammatory response that may influence transplant outcome. © 2013.
Mannose and fructose metabolism in red blood cells during cold storage in SAGM.
Rolfsson, Óttar; Johannsson, Freyr; Magnusdottir, Manuela; Paglia, Giuseppe; Sigurjonsson, Ólafur E; Bordbar, Aarash; Palsson, Sirus; Brynjólfsson, Sigurður; Guðmundsson, Sveinn; Palsson, Bernhard
2017-11-01
Alternate sugar metabolism during red blood cell (RBC) storage is not well understood. Here we report fructose and mannose metabolism in RBCs during cold storage in SAGM and the impact that these monosaccharides have on metabolic biomarkers of RBC storage lesion. RBCs were stored in SAGM containing uniformly labeled 13 C-fructose or 13 C-mannose at 9 or 18 mmol/L concentration for 25 days. RBCs and media were sampled at 14 time points during storage and analyzed using ultraperformance liquid chromatography-mass spectrometry. Blood banking quality assurance measurements were performed. Red blood cells incorporated fructose and mannose during cold storage in the presence of glucose. Mannose was metabolized in preference to glucose via glycolysis. Fructose lowered adenosine triphosphate (ATP) levels and contributed little to ATP maintenance when added to SAGM. Both monosaccharides form the advanced glycation end product glycerate. Mannose activates enzymes in the RBC that take part in glycan synthesis. Fructose or mannose addition to RBC SAGM concentrates may not offset the shift in metabolism of RBCs that occurs after 10 days of storage. Fructose and mannose metabolism at 4°C in SAGM reflects their metabolism at physiologic temperature. Glycerate excretion is a measure of protein deglycosylation activity in stored RBCs. No cytoprotective effect was observed upon the addition of either fructose or mannose to SAGM. © 2017 AABB.
Data for analysis of mannose-6-phosphate glycans labeled with fluorescent tags
Kang, Ji-Yeon; Kwon, Ohsuk; Gil, Jin Young; Oh, Doo-Byoung
2016-01-01
Mannose-6-phosphate (M-6-P) glycan plays an important role in lysosomal targeting of most therapeutic enzymes for treatment of lysosomal storage diseases. This article provides data for the analysis of M-6-P glycans by high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The identities of M-6-P glycan peaks in HPLC profile were confirmed by measuring the masses of the collected peak eluates. The performances of three fluorescent tags (2-aminobenzoic acid [2-AA], 2-aminobenzamide [2-AB], and 3-(acetyl-amino)-6-aminoacridine [AA-Ac]) were compared focusing on the analysis of bi-phosphorylated glycan (containing two M-6-Ps). The bi-phosphorylated glycan analysis is highly affected by the attached fluorescent tag and the hydrophilicity of elution solvent used in HPLC. The data in this article is associated with the research article published in “Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans” (Kang et al., 2016 [1]). PMID:27222848
Data for analysis of mannose-6-phosphate glycans labeled with fluorescent tags.
Kang, Ji-Yeon; Kwon, Ohsuk; Gil, Jin Young; Oh, Doo-Byoung
2016-06-01
Mannose-6-phosphate (M-6-P) glycan plays an important role in lysosomal targeting of most therapeutic enzymes for treatment of lysosomal storage diseases. This article provides data for the analysis of M-6-P glycans by high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The identities of M-6-P glycan peaks in HPLC profile were confirmed by measuring the masses of the collected peak eluates. The performances of three fluorescent tags (2-aminobenzoic acid [2-AA], 2-aminobenzamide [2-AB], and 3-(acetyl-amino)-6-aminoacridine [AA-Ac]) were compared focusing on the analysis of bi-phosphorylated glycan (containing two M-6-Ps). The bi-phosphorylated glycan analysis is highly affected by the attached fluorescent tag and the hydrophilicity of elution solvent used in HPLC. The data in this article is associated with the research article published in "Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans" (Kang et al., 2016 [1]).
Kang, Choong Mo; An, Gwang Il; Choe, Yearn Seong
2015-10-01
Human serum albumin (HSA), which has 58 Lys residues, one Cys residue, and indocyanine green (ICG) adsorption sites, can be used as a multifunctional platform for the development of hybrid imaging probes. In this study, we prepared 64Cu-labeled mannose-conjugated HSA with and without ICG ([64Cu]1-ICG and [64Cu]1, respectively) and compared hybrid PET/near-infrared fluorescence (NIRF) imaging with positron emission tomography (PET)/Cerenkov luminescence (CL) imaging of lymph nodes (LNs). 1,4,7,10-Tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)/mannose-conjugated HSA (1) was synthesized by conjugating mannose molecules to Lys residues and a DOTA molecule to a Cys residue of HSA. Compound 1 was then labeled with Cu ([64Cu]1), and the resulting [64Cu]1 was adsorbed with ICG ([64Cu]1-ICG). PET/NIRF or PET/CL imaging and subsequent biodistribution studies were performed in ICR mice after injection of the probes into the foot pads. The numbers of mannose and DOTA molecules conjugated to HSA were 7.17 ± 0.49 and 0.95 ± 0.18, respectively. The site-specific conjugation of one DOTA molecule to HSA was sufficient for 64Cu-labeling with high efficiency (96.0 ± 1.1%). PET/NIRF and PET/CL imaging and subsequent biodistribution studies demonstrated that the probes were avidly taken up by the popliteal LNs (PO), with a slightly higher uptake ratio of the PO to the lumbar LNs by [64Cu]1. In-vivo studies suggest that [64Cu]1 has more specific and selective binding to mannose receptors in the PO than [64Cu]1-ICG.
Rexer, Thomas F T; Schildbach, Anna; Klapproth, Jan; Schierhorn, Angelika; Mahour, Reza; Pietzsch, Markus; Rapp, Erdmann; Reichl, Udo
2018-01-01
Glycosylation of proteins is a key function of the biosynthetic-secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Glycosylated proteins play a crucial role in cell trafficking and signaling, cell-cell adhesion, blood-group antigenicity, and immune response. In addition, the glycosylation of proteins is an important parameter in the optimization of many glycoprotein-based drugs such as monoclonal antibodies. In vitro glycoengineering of proteins requires glycosyltransferases as well as expensive nucleotide sugars. Here, we present a designed pathway consisting of five enzymes, glucokinase (Glk), phosphomannomutase (ManB), mannose-1-phosphate-guanyltransferase (ManC), inorganic pyrophosphatase (PmPpA), and 1-domain polyphosphate kinase 2 (1D-Ppk2) expressed in E. coli for the cell-free production and regeneration of GDP-mannose from mannose and polyphosphate with catalytic amounts of GDP and ADP. It was shown that GDP-mannose is produced at various conditions, that is pH 7-8, temperature 25-35°C and co-factor concentrations of 5-20 mM MgCl 2 . The maximum reaction rate of GDP-mannose achieved was 2.7 μM/min at 30°C and 10 mM MgCl 2 producing 566 nmol GDP-mannose after a reaction time of 240 min. With respect to the initial GDP concentration (0.8 mM) this is equivalent to a yield of 71%. Additionally, the cascade was coupled to purified, transmembrane-deleted Alg1 (ALG1ΔTM), the first mannosyltransferase in the ER-associated lipid-linked oligosaccharide (LLO) assembly. Thereby, in a one-pot reaction, phytanyl-PP-(GlcNAc) 2 -Man 1 was produced with efficient nucleotide sugar regeneration for the first time. Phytanyl-PP-(GlcNAc) 2 -Man 1 can serve as a substrate for the synthesis of LLO for the cell-free in vitro glycosylation of proteins. A high-performance anion exchange chromatography method with UV and conductivity detection (HPAEC-UV/CD) assay was optimized and validated to determine the enzyme kinetics. The established kinetic model enabled the optimization of the GDP-mannose regenerating cascade and can further be used to study coupling of the GDP-mannose cascade with glycosyltransferases. Overall, the study envisages a first step towards the development of a platform for the cell-free production of LLOs as precursors for in vitro glycoengineering of proteins. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Dubayle, Jean; Vialle, Sandrine; Schneider, Diane; Pontvianne, Jérémy; Mantel, Nathalie; Adam, Olivier; Guy, Bruno; Talaga, Philippe
2015-03-10
Recently, several virus studies have shown that protein glycosylation play a fundamental role in the virus-host cell interaction. Glycosylation characterization of the envelope proteins in both insect and mammalian cell-derived dengue virus (DENV) has established that two potential glycosylation residues, the asparagine 67 and 153 can potentially be glycosylated. Moreover, it appears that the glycosylation of these two residues can influence dramatically the virus production and the infection spreading in either mosquito or mammalian cells. The Sanofi Pasteur tetravalent dengue vaccine (CYD) consists of four chimeric viruses produced in mammalian vero cells. As DENV, the CYDs are able to infect human monocyte-derived dendritic cells in vitro via C-type lectins cell-surface molecules. Despite the importance of this interaction, the specific glycosylation pattern of the DENV has not been clearly documented so far. In this paper, we investigated the structure of the N-linked glycans in the four CYD serotypes. Using MALDI-TOF analysis, the N-linked glycans of CYDs were found to be a mix of high-mannose, hybrid and complex glycans. Site-specific N-glycosylation analysis of CYDs using nanoLC-ESI-MS/MS demonstrates that both asparagine residues 67 and 153 are glycosylated. Predominant glycoforms at asparagine 67 are high mannose-type structures while mainly complex- and hybrid-type structures are detected at asparagine 153. In vitro studies have shown that the immunological consequences of infection by the CYD dengue viruses 1-4 versus the wild type parents are comparable in human monocyte-derived dendritic cells. Our E-protein glycan characterizations of CYD are consistent with those observations from the wild type parents and thus support in vitro studies. In addition, these data provide new insights for the role of glycans in the dengue virus-host cell interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Davidson, S K; Hunt, L A
1985-07-01
We have previously demonstrated that Sindbis virus infection of Chinese hamster ovary (CHO) cells altered the protein glycosylation machinery of the cell, so that both normal, full-size (nine mannose-containing) oligosaccharides and abnormal, "truncated' (five mannose-containing) oligosaccharides are transferred from lipid-linked precursors to newly synthesized viral membrane glycoproteins. In the present studies, we have examined the precursor oligosaccharides on viral glycoproteins that were pulse-labelled with [3H]mannose in the presence or absence of glucose, since glucose starvation of uninfected CHO cells has been reported to induce synthesis of truncated precursor oligosaccharides. Pulse-labelling in the absence of glucose led to a greater than 10-fold increase in the relative amount of the truncated precursor oligosaccharides being transferred to the newly synthesized viral glycoproteins and to an apparent underglycosylation of some precursor viral polypeptides, with some asparaginyl sites not acquiring covalently linked oligosaccharides. The mature virion glycoproteins from CHO cells which were pulse-labelled in the absence of glucose and then 'chased' in the presence of glucose contained proportionately more unusual Man3GlcNAc2-size oligosaccharides. These small neutral-type oligosaccharides were apparently not as good a substrate for further processing into complex acidic-type oligosaccharides as the normal Man5GlcNAc2 intermediate that results from the full-size precursor oligosaccharides.
EPR dosimetry in a mixed neutron and gamma radiation field.
Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C
2004-01-01
Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques.
Histochemical Characterization of Oocytes in the Pink Cuskeel (Genypterus blacodes).
Cohen, Stefanía; Petcoff, Gladys; Freijo, Roberto O; Portiansky, Enrique L; Barbeito, Claudio G; Macchi, Gustavo J; Díaz, Alcira O
2015-08-01
In the present study we histochemically and lectinhistochemically characterized the growing oocytes of the pink cuskeel (Genypterus blacodes). We used histochemical methods for the localization and characterization of glycoconjugates (GCs) and lectin histochemical techniques for the identification of specific sugar residues. We analyzed presence and distribution of GCs in the different structures of the growing follicles (cortical alveoli, globules, yolk granules and zona radiata). During the initial stage of vitellogenesis, the oocytes presented small yolk granules composed of GCs that gradually increased during exogenous vitellogenesis. These GCs contained moderate quantities of α-D-mannose, D-glucose, N-acetylglucosamine and N-acetyl-neuraminic acid. The cortical alveoli contained both neutral and carboxylated GCs, and lectin techniques detected N-acetylgalactosamine, galactose and L-fucose. The zona radiata showed a strong positive reaction to PAS and it reacted weakly with more specific techniques, such as KOH/PA*S and PA/Bh/KOH/PAS. This structure showed GCs with oxidizable vicinal diols, O-acyl sugars and sialic acid residues with different substitution types and presented N-acetylgalactosamine and L-fucose specific residues. The oocytes follicular envelope evidenced neutral and acidic non-sulfated GCs and high concentrations of α-D-mannose, D-glucose, galactose and N-acetylgalactosamine. The intergranular cytoplasmic GCs were mainly rich in α-D-mannose, D-glucose, N-acetylgalactosamine, N-acetylglucosamine and N-acetyl-neuraminic acid. These results enhance the comprehension of the structure and functionality of the pink cuskeel ovarian follicles, and provide a useful tool for the study of this tissue in other teleost species.
Synthesis and characterization of mannosylated pegylated polyethylenimine as a carrier for siRNA
Kim, NaJung; Jiang, Dahai; Jacobi, Ashley; Lennox, Kim A.; Rose, Scott; Behlke, Mark A.; Salem, Aliasger K.
2011-01-01
Regulation of gene expression using small interfering RNA (siRNA) is a promising strategy for research and treatment of numerous diseases. In this study, we develop and characterize a delivery system for siRNA composed of polyethylenimine (PEI), polyethylene glycol (PEG), and mannose (Man). Cationic PEI complexes and compacts siRNA, PEG forms a hydrophilic layer outside of the polyplex for steric stabilization, and mannose serves as a cell binding ligand for macrophages. The PEI-PEG-mannose delivery system was constructed in two different ways. In the first approach, mannose and PEG chains are directly conjugated to the PEI backbone. In the second approach, mannose is conjugated to one end of the PEG chain and the other end of the PEG chain is conjugated to the PEI backbone. The PEI-PEG-mannose delivery systems were synthesized with 3.45 – 13.3 PEG chains and 4.7 – 3.0 mannose molecules per PEI. The PEI-PEG-Man-siRNA polyplexes displayed a coarse surface in Scanning Electron Microscopy (SEM) images. Polyplex sizes were found to range from 169nm to 357nm. Gel retardation assays showed that the PEI-PEG-mannose polymers are able to efficiently complex with siRNA at low N/P ratios. Confocal microscope images showed that the PEI-PEG-Man-siRNA polyplexes could enter cells and localized in the lysosomes at 2 hours post-incubation. Pegylation of the PEI reduced toxicity without any adverse reduction in knockdown efficiency relative to PEI alone. Mannosylation of the PEI-PEG could be carried out without any significant reduction in knockdown efficiency relative to PEI alone. Conjugating mannose to PEI via the PEG spacer generated superior toxicity and gene knockdown activity relative to conjugating mannose and PEG directly onto the PEI backbone. PMID:21864664
Ruiz-Baca, Estela; Villagómez-Castro, Julio C; Leal-Morales, Carlos A; Sabanero-López, Myrna; Flores-Carreón, Arturo; López-Romero, Everardo
2005-01-01
A membrane fraction obtained from the filamentous form of Sporothrix schenckii was able to transfer mannose from GDP-Mannose into dolichol phosphate mannose and from this inTermediate into mannoproteins in coupled reactions catalyzed by dolichol phosphate mannose synthase and protein mannosyl transferase(s), respectively. Although the transfer reaction depended on exogenous dolichol monophosphate, membranes failed to use exogenous dolichol phosphate mannose for protein mannosylation to a substantial extent. Over 95% of the sugar was transferred to proteins via dolichol phosphate mannose and the reaction was stimulated several fold by Mg2+ and Mn2+. Incubation of membranes with detergents such as Brij 35 and Lubrol PX released soluble fractions that transferred the sugar from GDP-Mannose mostly into mannoproteins, which were separated by affinity chromatography on Concanavilin A-Sepharose 4B into lectin-reacting and non-reacting fractions. All proteins mannosylated in vitro eluted with the lectin-reacting proteins and analytical electrophoresis of this fraction revealed the presence of at least nine putative mannoproteins with molecular masses in the range of 26-112 kDa. The experimental approach described here can be used to identify and isolate specific glycoproteins mannosylated in vitro in studies of O-glycosylation.
He, Yongning; Bjorkman, Pamela J.
2011-01-01
Fc receptors transport maternal antibodies across epithelial cell barriers to passively immunize newborns. FcRY, the functional counterpart of mammalian FcRn (a major histocompatibility complex homolog), transfers IgY across the avian yolk sac, and represents a new class of Fc receptor related to the mammalian mannose receptor family. FcRY and FcRn bind immunoglobulins at pH ≤6.5, but not pH ≥7, allowing receptor–ligand association inside intracellular vesicles and release at the pH of blood. We obtained structures of monomeric and dimeric FcRY and an FcRY–IgY complex and explored FcRY's pH-dependent binding mechanism using electron cryomicroscopy (cryoEM) and small-angle X-ray scattering. The cryoEM structure of FcRY at pH 6 revealed a compact double-ring “head,” in which the N-terminal cysteine-rich and fibronectin II domains were folded back to contact C-type lectin-like domains 1–6, and a “tail” comprising C-type lectin-like domains 7–8. Conformational changes at pH 8 created a more elongated structure that cannot bind IgY. CryoEM reconstruction of FcRY dimers at pH 6 and small-angle X-ray scattering analysis at both pH values confirmed both structures. The cryoEM structure of the FcRY–IgY revealed symmetric binding of two FcRY heads to the dimeric FcY, each head contacting the CH4 domain of one FcY chain. FcRY shares structural properties with mannose receptor family members, including a head and tail domain organization, multimerization that may regulate ligand binding, and pH-dependent conformational changes. Our results facilitate understanding of immune recognition by the structurally related mannose receptor family and comparison of diverse methods of Ig transport across evolution. PMID:21746914
Soprano, Luciana L; Parente, Juliana E; Landoni, Malena; Couto, Alicia S; Duschak, Vilma G
2018-04-01
In this work, the presence of sulfated N-glycans was studied in a high-mannose-type glycoprotein of Trypanosoma cruzi with serinecarboxipeptidase (TcSCP) activity. The immune cross-reactivity between purified SCP and Cruzipain (Cz) was evidenced using rabbit sera specific for both glycoproteins. Taking advantage that SCP co-purifies with Cz from Concanavalin-A affinity columns, the Cz-SCP mixture was desulfated, ascribing the cross-reactivity to the presence of sulfate groups in both molecules. Therefore, knowing that Cz is a sulfated glycoprotein, with antigenic sulfated epitopes (sulfotopes), SCP was excised from SDS-PAGE and the N-glycosydic chains were analyzed by UV-MALDI-TOF-MS, confirming the presence of short-sulfated high-mannose-type oligosaccharidic chains. Besides, the presence of sulfotopes was analyzed in lysates of the different parasite stages demonstrating that a band with apparent molecular weight similar to SCP was highly recognized in trypomastigotes. In addition, SCP was confronted with sera of infected people with different degrees of cardiac dysfunction. Although most sera recognized it in different groups, no statistical association was found between sera antibodies specific for SCP and the severity of the disease. In summary, our findings demonstrate (1) the presence of sulfate groups in the N-glycosidic short chains of native TcSCP, (2) the existence of immune cross-reactivity between Cz and SCP, purified from epimastigotes, (3) the presence of common sulfotopes between both parasite glycoproteins, and (4) the enhanced presence of sulfotopes in trypomastigotes, probably involved in parasite-host relationship and/or infection. Interestingly, we show for the first time that SCP is a minor antigen recognized by most of chronic Chagas disease patient's sera.
Advances in analytical methodologies to guide bioprocess engineering for bio-therapeutics.
Saldova, Radka; Kilcoyne, Michelle; Stöckmann, Henning; Millán Martín, Silvia; Lewis, Amanda M; Tuite, Catherine M E; Gerlach, Jared Q; Le Berre, Marie; Borys, Michael C; Li, Zheng Jian; Abu-Absi, Nicholas R; Leister, Kirk; Joshi, Lokesh; Rudd, Pauline M
2017-03-01
This study was performed to monitor the glycoform distribution of a recombinant antibody fusion protein expressed in CHO cells over the course of fed-batch bioreactor runs using high-throughput methods to accurately determine the glycosylation status of the cell culture and its product. Three different bioreactors running similar conditions were analysed at the same five time-points using the advanced methods described here. N-glycans from cell and secreted glycoproteins from CHO cells were analysed by HILIC-UPLC and MS, and the total glycosylation (both N- and O-linked glycans) secreted from the CHO cells were analysed by lectin microarrays. Cell glycoproteins contained mostly high mannose type N-linked glycans with some complex glycans; sialic acid was α-(2,3)-linked, galactose β-(1,4)-linked, with core fucose. Glycans attached to secreted glycoproteins were mostly complex with sialic acid α-(2,3)-linked, galactose β-(1,4)-linked, with mostly core fucose. There were no significant differences noted among the bioreactors in either the cell pellets or supernatants using the HILIC-UPLC method and only minor differences at the early time-points of days 1 and 3 by the lectin microarray method. In comparing different time-points, significant decreases in sialylation and branching with time were observed for glycans attached to both cell and secreted glycoproteins. Additionally, there was a significant decrease over time in high mannose type N-glycans from the cell glycoproteins. A combination of the complementary methods HILIC-UPLC and lectin microarrays could provide a powerful and rapid HTP profiling tool capable of yielding qualitative and quantitative data for a defined biopharmaceutical process, which would allow valuable near 'real-time' monitoring of the biopharmaceutical product. Copyright © 2016 Elsevier Inc. All rights reserved.
Chill, Liat; Trinh, Loc; Azadi, Parastoo; Ishihara, Mayumi; Sonon, Roberto; Karnaukhova, Elena; Ophir, Yakir; Golding, Basil; Shiloach, Joseph
2009-02-15
Human alpha one proteinase inhibitor (alpha1-PI) was cloned and expressed in Aspergillus niger, filamentious fungus that can grow in defined media and can perform glycosylation. Submerged culture conditions were established using starch as carbon source, 30% dissolved oxygen concentration, pH 7.0 and 28 degrees C. Eight milligrams per liter of active alpha1-PI were secreted to the growth media in about 40 h. Controlling the protein proteolysis was found to be an important factor in the production. The effects of various carbon sources, pH and temperature on the production and stability of the protein were tested and the product was purified and characterized. Two molecular weights variants of the recombinant alpha1-PI were produced by the fungus; the difference is attributed to the glycosylated part of the molecule. The two glycoproteins were treated with PNGAse F and the released glycans were analyzed by HPAEC, MALDI/TOF-MS, NSI-MS(n), and GC-MS. The MALDI and NSI- full MS spectra of permethylated N-glycans revealed that the N-glycans of both variants contain a series of high-mannose type glycans with 5-20 hexose units. Monosaccharide analysis showed that these were composed of N-acetylglucos-amine, mannose, and galactose. Linkage analysis revealed that the galactosyl component was in the furanoic conformation, which was attaching in a terminal non-reducing position. The Galactofuranose-containing high-mannnose type N-glycans are typical structures, which recently have been found as part of several glycoproteins produced by Aspergillus niger.
Developing the IVIG biomimetic, Hexa-Fc, for drug and vaccine applications
Czajkowsky, Daniel M.; Andersen, Jan Terje; Fuchs, Anja; Wilson, Timothy J.; Mekhaiel, David; Colonna, Marco; He, Jianfeng; Shao, Zhifeng; Mitchell, Daniel A.; Wu, Gang; Dell, Anne; Haslam, Stuart; Lloyd, Katy A.; Moore, Shona C.; Sandlie, Inger; Blundell, Patricia A.; Pleass, Richard J.
2015-01-01
The remarkable clinical success of Fc-fusion proteins has driven intense investigation for even more potent replacements. Using quality-by-design (QbD) approaches, we generated hexameric-Fc (hexa-Fc), a ~20 nm oligomeric Fc-based scaffold that we here show binds low-affinity inhibitory receptors (FcRL5, FcγRIIb, and DC-SIGN) with high avidity and specificity, whilst eliminating significant clinical limitations of monomeric Fc-fusions for vaccine and/or cancer therapies, in particular their poor ability to activate complement. Mass spectroscopy of hexa-Fc reveals high-mannose, low-sialic acid content, suggesting that interactions with these receptors are influenced by the mannose-containing Fc. Molecular dynamics (MD) simulations provides insight into the mechanisms of hexa-Fc interaction with these receptors and reveals an unexpected orientation of high-mannose glycans on the human Fc that provides greater accessibility to potential binding partners. Finally, we show that this biosynthetic nanoparticle can be engineered to enhance interactions with the human neonatal Fc receptor (FcRn) without loss of the oligomeric structure, a crucial modification for these molecules in therapy and/or vaccine strategies where a long plasma half-life is critical. PMID:25912958
Hagert, Cecilia; Sareila, Outi; Kelkka, Tiina; Jalkanen, Sirpa; Holmdahl, Rikard
2018-01-01
The injection of mannan into mice can result in the development of psoriasis (Ps) and psoriatic arthritis (PsA), whereas co-injection with antibodies toward collagen type II leads to a chronic rheumatoid-like arthritis. The critical event in all these diseases is mannan-mediated activation of macrophages, causing more severe disease if the macrophages are deficient in neutrophil cytosolic factor 1 (Ncf1), i.e., lack the capacity to make a reactive oxygen species (ROS) burst. In this study, we investigated the role of one of the receptors binding mannan; the macrophage mannose receptor (MR, CD206). MR is a C-type lectin present on myeloid cells and lymphatics. We found that mice deficient in MR expression had more severe mannan-induced Ps, PsA as well as rheumatoid-like arthritis. Interestingly, the MR-mediated protection was partly lost in Ncf1 mutated mice and was associated with an type 2 macrophage expansion. In conclusion, these results show that MR protects against a pathogenic inflammatory macrophage response induced by mannan and is associated with induction of ROS. PMID:29467756
Role of the Mannose Receptor (CD206) in Innate Immunity to Ricin Toxin
Gage, Emily; Hernandez, Maria O.; O’Hara, Joanne M.; McCarthy, Elizabeth A.; Mantis, Nicholas J.
2011-01-01
The entry of ricin toxin into macrophages and certain other cell types in the spleen and liver results in toxin-induced inflammation, tissue damage and organ failure. It has been proposed that uptake of ricin into macrophages is facilitated by the mannose receptor (MR; CD206), a C-type lectin known to recognize the oligosaccharide side chains on ricin’s A (RTA) and B (RTB) subunits. In this study, we confirmed that the MR does indeed promote ricin binding, uptake and killing of monocytes in vitro. To assess the role of MR in the pathogenesis of ricin in vivo, MR knockout (MR−/−) mice were challenged with the equivalent of 2.5× or 5× LD50 of ricin by intraperitoneal injection. We found that MR−/− mice were significantly more susceptible to toxin-induced death than their age-matched, wild-type control counterparts. These data are consistent with a role for the MR in scavenging and degradation of ricin, not facilitating its uptake and toxicity in vivo. PMID:22069759
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gowda, Giri; Sagurthi, Someswar Rao; Savithri, H. S.
2008-02-01
The cloning, expression, purification, crystallization and preliminary X-ray crystallographic studies of mannose 6-phosphate isomerase from S. typhimurium are reported. Mannose 6-phosphate isomerase (MPI; EC 5.3.1.8) catalyzes the reversible isomerization of d-mannose 6-phosphate (M6P) and d-fructose 6-phosphate (F6P). In the eukaryotes and prokaryotes investigated to date, the enzyme has been reported to play a crucial role in d-mannose metabolism and supply of the activated mannose donor guanosine diphosphate d-mannose (GDP-d-mannose). In the present study, MPI was cloned from Salmonella typhimurium, overexpressed in Escherichia coli and purified using Ni–NTA affinity column chromatography. Purified MPI crystallized in space group P2{sub 1}2{sub 1}2{sub 1},more » with unit-cell parameters a = 36.03, b = 92.2, c = 111.01 Å. A data set extending to 1.66 Å resolution was collected with 98.8% completeness using an image-plate detector system mounted on a rotating-anode X-ray generator. The asymmetric unit of the crystal cell was compatible with the presence of a monomer of MPI. A preliminary structure solution of the enzyme has been obtained by molecular replacement using Candida albicans MPI as the phasing model and the program Phaser. Further refinement and model building are in progress.« less
Photochemotherapeutic Strategy against Acanthamoeba Infections
Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza; Khoja, Shahrukh
2015-01-01
Acanthamoeba is a protist pathogen that can cause serious human infections, including blinding keratitis and a granulomatous amoebic encephalitis that almost always results in death. The current treatment for these infections includes a mixture of drugs, and even then, a recurrence can occur. Photochemotherapy has shown promise in the treatment of Acanthamoeba infections; however, the selective targeting of pathogenic Acanthamoeba has remained a major concern. The mannose-binding protein is an important adhesin expressed on the surface membranes of pathogenic Acanthamoeba organisms. To specifically target Acanthamoeba, the overall aim of this study was to synthesize a photosensitizing compound (porphyrin) conjugated with mannose and test its efficacy in vitro. The synthesis of mannose-conjugated porphyrin was achieved by mixing benzaldehyde and pyrrole, yielding tetraphenylporphyrin. Tetraphenylporphyrin was then converted into mono-nitrophenylporphyrin by selectively nitrating the para position of the phenyl rings, as confirmed by nuclear magnetic resonance (NMR) spectroscopy. The mono-nitrophenylporphyrin was reduced to mono-aminophenylporphyrin in the presence of tin dichloride and confirmed by a peak at m/z 629. Finally, mono-aminoporphyrin was conjugated with mannose, resulting in the formation of an imine bond. Mannose-conjugated porphyrin was confirmed through spectroscopic analysis and showed that it absorbed light of wavelengths ranging from 425 to 475 nm. To determine the antiacanthamoebic effects of the derived product, amoebae were incubated with mannose-conjugated porphyrin for 1 h and washed 3 times to remove extracellular compound. Next, the amoebae were exposed to light of the appropriate wavelength for 1 h. The results revealed that mannose-conjugated porphyrin produced potent trophicidal effects and blocked excystation. In contrast, Acanthamoeba castellanii incubated with mannose alone and porphyrin alone did not exhibit an antiamoebic effect. Consistently, pretreatment with mannose-conjugated porphyrin reduced the A. castellanii-mediated host cell cytotoxicity from 97% to 4.9%. In contrast, treatment with porphyrin, mannose, or solvent alone had no protective effects on the host cells. These data suggest that mannose-conjugated porphyrin has application for the targeted photodynamic therapy of Acanthamoeba infections and may serve as a model in the development of therapeutic interventions against other eukaryotic infections. PMID:25753633
Incorporation of carbohydrate residues into peroxidase isoenzymes in horseradish roots.
Lew, J Y; Shannon, L M
1973-11-01
Sliced root tissue of the horseradish plant (Armoracia rusticana), when incubated with mannose-U-(14)C, incorporated radioactivity into peroxidase isoenzymes. Over 90% of the radioactivity in the highly purified peroxidase isoenzymes was present in the neutral sugar residues of the molecule, i.e. fucose, arabinose, xylose, mannose. When the root slices were incubated simultaneously with leucine-4,5-(3)H and mannose-U-(14)C, cycloheximide strongly inhibited leucine incorporation into the peptide portion of peroxidase isoenzymes but had little effect on the incorporation of (14)C into the neutral sugars. These results indicated that synthesis of the peptide portion of peroxidase was completed before the monosaccharide residues were attached to the molecule. This temporal relationship between the synthesis of protein and the attachment of carbohydrate residues in the plant glycoprotein, horseradish peroxidase, appears to be similar to that reported for glycoprotein biosynthesis in many mammalian systems.
Incorporation of Carbohydrate Residues into Peroxidase Isoenzymes in Horseradish Roots
Lew, Jow Y.; Shannon, Leland M.
1973-01-01
Sliced root tissue of the horseradish plant (Armoracia rusticana), when incubated with mannose-U-14C, incorporated radioactivity into peroxidase isoenzymes. Over 90% of the radioactivity in the highly purified peroxidase isoenzymes was present in the neutral sugar residues of the molecule, i.e. fucose, arabinose, xylose, mannose. When the root slices were incubated simultaneously with leucine-4,5-3H and mannose-U-14C, cycloheximide strongly inhibited leucine incorporation into the peptide portion of peroxidase isoenzymes but had little effect on the incorporation of 14C into the neutral sugars. These results indicated that synthesis of the peptide portion of peroxidase was completed before the monosaccharide residues were attached to the molecule. This temporal relationship between the synthesis of protein and the attachment of carbohydrate residues in the plant glycoprotein, horseradish peroxidase, appears to be similar to that reported for glycoprotein biosynthesis in many mammalian systems. PMID:16658584
A simple and rapid microplate assay for glycoprotein-processing glycosidases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, M.S.; Zwolshen, J.H.; Harry, B.S.
1989-08-15
A simple and convenient microplate assay for glycosidases involved in the glycoprotein-processing reactions is described. The assay is based on specific binding of high-mannose-type oligosaccharide substrates to concanavalin A-Sepharose, while monosaccharides liberated by enzymatic hydrolysis do not bind to concanavalin A-Sepharose. By the use of radiolabeled substrates (( 3H)glucose for glucosidases and (3H)mannose for mannosidases), the radioactivity in the liberated monosaccharides can be determined as a measure of the enzymatic activity. This principle was employed earlier for developing assays for glycosidases previously reported. These authors have reported the separation of substrate from the product by concanavalin A-Sepharose column chromatography. Thismore » procedure is handicapped by the fact that it cannot be used for a large number of samples and is time consuming. We have simplified this procedure and adapted it to the use of a microplate (96-well plate). This would help in processing a large number of samples in a short time. In this report we show that the assay is comparable to the column assay previously reported. It is linear with time and enzyme concentration and shows expected kinetics with castanospermine, a known inhibitor of alpha-glucosidase I.« less
Satoh, Tadashi; Yamaguchi, Takumi; Kato, Koichi
2015-01-30
In the endoplasmic reticulum (ER), the sugar chain is initially introduced onto newly synthesized proteins as a triantennary tetradecasaccharide (Glc3Man9GlcNAc2). The attached oligosaccharide chain is subjected to stepwise trimming by the actions of specific glucosidases and mannosidases. In these processes, the transiently expressed N-glycans, as processing intermediates, function as signals for the determination of glycoprotein fates, i.e., folding, transport, or degradation through interactions of a series of intracellular lectins. The monoglucosylated glycoforms are hallmarks of incompletely folded states of glycoproteins in this system, whereas the outer mannose trimming leads to ER-associated glycoprotein degradation. This review outlines the recently emerging evidence regarding the molecular and structural basis of this glycoprotein quality control system, which is regulated through dynamic interplay among intracellular lectins, glycosidases, and glycosyltransferase. Structural snapshots of carbohydrate-lectin interactions have been provided at the atomic level using X-ray crystallographic analyses. Conformational ensembles of uncomplexed triantennary high-mannose-type oligosaccharides have been characterized in a quantitative manner using molecular dynamics simulation in conjunction with nuclear magnetic resonance spectroscopy. These complementary views provide new insights into glycoprotein recognition in quality control coupled with N-glycan processing.
Rajaram, Murugesan V S; Arnett, Eusondia; Azad, Abul K; Guirado, Evelyn; Ni, Bin; Gerberick, Abigail D; He, Li-Zhen; Keler, Tibor; Thomas, Lawrence J; Lafuse, William P; Schlesinger, Larry S
2017-10-03
Despite its prominent role as a C-type lectin (CTL) pattern recognition receptor, mannose receptor (MR, CD206)-specific signaling molecules and pathways are unknown. The MR is highly expressed on human macrophages, regulating endocytosis, phagocytosis, and immune responses and mediating Mycobacterium tuberculosis (M.tb) phagocytosis by human macrophages, thereby limiting phagosome-lysosome (P-L) fusion. We identified human MR-associated proteins using phosphorylated and non-phosphorylated MR cytoplasmic tail peptides. We found that MR binds FcRγ-chain, which is required for MR plasma membrane localization and M.tb cell association. Additionally, we discovered that MR-mediated M.tb association triggers immediate MR tyrosine residue phosphorylation and Grb2 recruitment, activating the Rac/Pak/Cdc-42 signaling cascade important for M.tb uptake. MR activation subsequently recruits SHP-1 to the M.tb-containing phagosome, where its activity limits PI(3)P generation at the phagosome and M.tb P-L fusion and promotes M.tb growth. In sum, we identify human MR signaling pathways that temporally regulate phagocytosis and P-L fusion during M.tb infection. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Štimac, Adela; Cvitaš, Jelena TrmĿiĿ; Frkanec, Leo; Vugrek, Oliver; Frkanec, Ruža
2016-09-10
Multivalent mannosyl-lipoconjugates may be of interest for glycosylation of liposomes and targeted drug delivery because the mannose specifically binds to C-type lectin receptors on the particular cells. In this paper syntheses of two types of novel O-mannosides are presented. Conjugates 1 and 2 with a COOH- and NH2-functionalized spacer and the connection to a lysine and FmocNH-PEG-COOH, are described. The coupling reactions of prepared intermediates 6 and 4 with a PEGylated-DSPE or palmitic acid, respectively, are presented. Compounds 5, mono-, 8, di- and 12, tetravalent mannosyl-lipoconjugates, were synthesized. The synthesized compounds were incorporated into liposomes and liposomal preparations featuring exposed mannose units were characterized. Carbohydrate liposomal quartz crystal microbalance based assay has been established for studying carbohydrate-lectin binding. It was demonstrated that liposomes with incorporated mannosyl-lipoconjugates were effectively recognized by Con A and have great potential to be used for targeted liposomal drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.
He, Chunmei; Zeng, Songjun; Teixeira da Silva, Jaime A; Yu, Zhenming; Tan, Jianwen; Duan, Jun
2017-07-01
Phosphomannomutase (PMM, EC 5.4.2.8) catalyzes the interconversion of mannose-6-phosphate to mannose-1-phosphate, the precursor for the synthesis of GDP-mannose. In this study, the complementary DNA (cDNA) of the Phosphomannomutase (PMM) gene was initially cloned from Dendrobium officinale by RACE method. Transient transform result showed that the DoPMM protein was localized in the cytoplasm. The DoPMM gene was highly expressed in the stems of D. officinale both in vegetative and reproductive developmental stages. The putative promoter was cloned by TAIL-PCR and used for searched cis-elements. Stress-related cis-elements like ABRE, TCA-element, and MBS were found in the promoter regions. The DoPMM gene was up-regulated after treatment with abscisic acid, salicylic acid, cold, polyethylene glycol, and NaCl. The total ascorbic acid (AsA) and polysaccharide content in all of the 35S::DoPMM Arabidopsis thaliana transgenic lines #1, #2, and #5 showed a 40, 39, and 31% increase in AsA and a 77, 22, and 39% increase in polysaccharides, respectively more than wild-type (WT) levels. All three 35S::DoPMM transgenic lines exhibited a higher germination percentage than WT plants when seeded on half-strength MS medium supplemented with 150 mM NaCl or 300 mM mannitol. These results provide genetic evidence for the involvement of PMM genes in the biosynthesis of AsA and polysaccharides and the mediation of PMM genes in abiotic stress tolerance during seed germination in A. thaliana.
CO2-H2O based pretreatment and enzyme hydrolysis of soybean hulls.
Islam, S M Mahfuzul; Li, Qian; Loman, Abdullah Al; Ju, Lu-Kwang
2017-11-01
The high carbohydrate content of soybean hull makes it an attractive biorefinery resource. But hydrolyzing its complex structure requires concerted enzyme activities, at least cellulase, xylanase, pectinase and α-galactosidase. Effective pretreatment that generates minimal inhibitory products is important to facilitate enzymatic hydrolysis. Combined CO 2 -H 2 O pretreatment and enzymatic hydrolysis by Aspergillus niger and Trichoderma reesei enzyme broths was studied here. The pretreatment was evaluated at 80°C-180°C temperature and 750psi-1800psi pressure, with fixed moisture content (66.7%) and pretreatment time (30min). Ground hulls without and with different pretreatments were hydrolyzed by enzyme at 50°C and pH 4.8 and compared for glucose, xylose, galactose, arabinose, mannose and total reducing sugar release. CO 2 -H 2 O pretreatment at 1250psi and 130°C was found to be optimal. Compared to the unpretreated hulls hydrolyzed with 2.5-fold more enzyme, this pretreatment improved glucose, xylose, galactose, arabinose and mannose releases by 55%, 35%, 105%, 683% and 52%, respectively. Conversions of 97% for glucose, 98% for xylose, 41% for galactose, 59% for arabinose, 87% for mannose and 89% for total reducing sugar were achieved with Spezyme CP at 18FPU/g hull. Monomerization of all carbohydrate types was demonstrated. At the optimum pretreatment condition, generation of inhibitors acetic acid, furfural and hydroxymethylfurfural (HMF) was negligible, 1.5mg/g hull in total. The results confirmed the effective CO 2 -H 2 O pretreatment of soybean hulls at much lower pressure and temperature than those reported for biomass of higher lignin contents. The lower pressure requirement reduces the reactor cost and makes this new pretreatment method more practical and economical. Copyright © 2017 Elsevier Inc. All rights reserved.
Tsutsui, Shigeyuki; Komatsu, Yukie; Sugiura, Takaya; Araki, Kyosuke; Nakamura, Osamu
2011-11-01
The present study reports a new type of skin mucus lectin found in catfish Silurus asotus. The lectin exhibited calcium-dependent mannose-binding activity. When mannose eluate from chromatography with mannose-conjugated agarose was analysed by SDS-PAGE, the lectin appeared as a single 35-kDa band. Gel filtration showed that the lectin forms monomers and dimers. A 1216-bp cDNA sequence obtained by RACE-PCR from the skin encoded a 308 amino acid secretory protein with homology to mammalian and fish intelectins. RT-PCR demonstrated that the lectin gene was expressed in the gill, kidney and skin. Subsequent sequencing revealed the presence of an isoform in the gills. Antiserum detected the intelectin protein in club cells in the skin and gill, renal tubules and blood plasma. Although intelectin gene expression was not induced by in vivo bacterial stimulation, the intelectin showed agglutination activity against the pathogenic bacterium Aeromonas salmonicida, suggesting that the lectin plays an important role in self-defence against bacteria in the skin surface of the catfish. These findings represent one of the few examples of characterization and functional analysis of a fish intelectin protein.
Vorontsov, Ivan I; Miyashita, Osamu
2011-04-30
Complexes of two Cyanovirin-N (CVN) mutants, m4-CVN and P51G-m4-CVN, with deoxy di-mannose analogs were employed as models to generate conformational ensembles using explicit water Molecular Dynamics (MD) simulations in solution and in crystal environment. The results were utilized for evaluation of binding free energies with the molecular mechanics Poisson-Boltzmann (or Generalized Born) surface area, MM/PB(GB)SA, methods. The calculations provided the ranking of deoxy di-mannose ligands affinity in agreement with available qualitative experimental evidences. This confirms the importance of the hydrogen-bond network between di-mannose 3'- and 4'-hydroxyl groups and the protein binding site B(M) as a basis of the CVN activity as an effective HIV fusion inhibitor. Comparison of binding free energies averaged over snapshots from the solution and crystal simulations showed high promises in the use of the crystal matrix for acceleration of the conformational ensemble generation, the most time consuming step in MM/PB(GB)SA approach. Correlation between energy values based on solution versus crystal ensembles is 0.95 for both MM/PBSA and MM/GBSA methods. Copyright © 2010 Wiley Periodicals, Inc.
Duronio, V; Jacobs, S; Romero, P A; Herscovics, A
1988-04-15
We have used specific inhibitors of oligosaccharide processing enzymes as probes to determine the involvement of oligosaccharide residues in the biosynthesis and function of insulin and insulin-like growth factor-I receptors. In a previous study (Duronio, V., Jacobs, S., and Cuatrecasas, P. (1986) J. Biol. Chem. 261, 970-975) swainsonine was used to inhibit mannosidase II, resulting in the production of receptors containing only hybrid-type oligosaccharides. These receptors had a slightly lower molecular weight and were much more sensitive to endoglycosidase H, but otherwise behaved identically to normal receptors. In this study, we used two compounds that inhibit oligosaccharide processing at earlier steps: (i) N-methyl-1-deoxynojirimycin (MedJN), which inhibits glucosidases I and II and yields glucosylated, high mannose oligosaccharides, and (ii) manno-1-deoxynojirimycin (MandJN), which inhibits mannosidase I and yields high mannose oligosaccharides. In the presence of MandJN, HepG2 cells synthesized receptors of lower molecular weight, which were cleaved into alpha and beta subunits and were able to bind hormone and autophosphorylate. These receptors were as sensitive to endoglycosidase H as receptors made in the presence of swainsonine. In the presence of MedJN, receptors of only slightly lower molecular weight than normal were synthesized and were shown to contain some glucosylated high mannose oligosaccharides. These receptors were able to bind hormone and retained hormone-sensitive autophosphorylation activity. In both cases, the incompletely processed receptors could be detected at the cell surface by cross-linking of iodinated hormone and susceptibility to trypsin digestion, although less receptor was present in cells treated with MedJN. Studies of receptor synthesis using pulse-chase labeling showed that the receptor precursors synthesized in the presence of MedJN were cleaved into alpha and beta subunits at a slower rate than normal receptors or those made in the presence of MandJN. Inhibition of oligosaccharide processing had no effect on the association of the receptor subunits into disulfide-linked oligomeric complexes.
An investigation into IgE-facilitated allergen recognition and presentation by human dendritic cells
2013-01-01
Background Allergen recognition by dendritic cells (DCs) is a key event in the allergic cascade leading to production of IgE antibodies. C-type lectins, such as the mannose receptor and DC-SIGN, were recently shown to play an important role in the uptake of the house dust mite glycoallergen Der p 1 by DCs. In addition to mannose receptor (MR) and DC-SIGN the high and low affinity IgE receptors, namely FcϵRI and FcϵRII (CD23), respectively, have been shown to be involved in allergen uptake and presentation by DCs. Objectives This study aims at understanding the extent to which IgE- and IgG-facilitated Der p 1 uptake by DCs influence T cell polarisation and in particular potential bias in favour of Th2. We have addressed this issue by using two chimaeric monoclonal antibodies produced in our laboratory and directed against a previously defined epitope on Der p 1, namely human IgE 2C7 and IgG1 2C7. Results Flow cytometry was used to establish the expression patterns of IgE (FcϵRI and FcϵRII) and IgG (FcγRI) receptors in relation to MR on DCs. The impact of FcϵRI, FcϵRII, FcγRI and mannose receptor mediated allergen uptake on Th1/Th2 cell differentiation was investigated using DC/T cell co-culture experiments. Myeloid DCs showed high levels of FcϵRI and FcγRI expression, but low levels of CD23 and MR, and this has therefore enabled us to assess the role of IgE and IgG-facilitated allergen presentation in T cell polarisation with minimal interference by CD23 and MR. Our data demonstrate that DCs that have taken up Der p 1 via surface IgE support a Th2 response. However, no such effect was demonstrable via surface IgG. Conclusions IgE bound to its high affinity receptor plays an important role in Der p 1 uptake and processing by peripheral blood DCs and in Th2 polarisation of T cells. PMID:24330349
Sharquie, Inas K; Al-Ghouleh, Abeer; Fitton, Patricia; Clark, Mike R; Armour, Kathryn L; Sewell, Herb F; Shakib, Farouk; Ghaemmaghami, Amir M
2013-12-13
Allergen recognition by dendritic cells (DCs) is a key event in the allergic cascade leading to production of IgE antibodies. C-type lectins, such as the mannose receptor and DC-SIGN, were recently shown to play an important role in the uptake of the house dust mite glycoallergen Der p 1 by DCs. In addition to mannose receptor (MR) and DC-SIGN the high and low affinity IgE receptors, namely FcεRI and FcεRII (CD23), respectively, have been shown to be involved in allergen uptake and presentation by DCs. This study aims at understanding the extent to which IgE- and IgG-facilitated Der p 1 uptake by DCs influence T cell polarisation and in particular potential bias in favour of Th2. We have addressed this issue by using two chimaeric monoclonal antibodies produced in our laboratory and directed against a previously defined epitope on Der p 1, namely human IgE 2C7 and IgG1 2C7. Flow cytometry was used to establish the expression patterns of IgE (FcεRI and FcεRII) and IgG (FcγRI) receptors in relation to MR on DCs. The impact of FcεRI, FcεRII, FcγRI and mannose receptor mediated allergen uptake on Th1/Th2 cell differentiation was investigated using DC/T cell co-culture experiments. Myeloid DCs showed high levels of FcεRI and FcγRI expression, but low levels of CD23 and MR, and this has therefore enabled us to assess the role of IgE and IgG-facilitated allergen presentation in T cell polarisation with minimal interference by CD23 and MR. Our data demonstrate that DCs that have taken up Der p 1 via surface IgE support a Th2 response. However, no such effect was demonstrable via surface IgG. IgE bound to its high affinity receptor plays an important role in Der p 1 uptake and processing by peripheral blood DCs and in Th2 polarisation of T cells.
Stannard, B S; Gesundheit, N; Thotakura, N R; Gyves, P W; Ronin, C; Weintraub, B D
1989-12-15
We examined the effect of various inhibitors of oligosaccharide processing on the content and secretion of newly synthesized thyroid-stimulating hormone (TSH) from dispersed hypothyroid rodent pituitary cells. 1-deoxynojirimycin and N-methyl-1-deoxynojirimycin, both inhibitors of glucosidases I and II, decreased intracellular TSH (to 60-76% of control) and secreted TSH (to 60-63% of control) after a 1-hour incubation (pulse) with [35S]methionine and an 8-hour incubation (chase) in isotope-free media. In contrast, deoxymannojirimycin and swainsonine, inhibitors of mannosidase I and II, respectively, increased both intracellular TSH (to 267-309% of control) and secreted TSH (to 192% of control) at 8 hours. TSH oligosaccharides synthesized in the presence of these glucosidase and mannosidase inhibitors were largely sensitive to endo-beta-N-acetylglucosaminidase H (endo H), confirming inhibition of processing. Despite differences in oligosaccharide structure, the in vitro bioactivities of these secreted TSH isoforms were nearly identical. These data confirm and extend previous work performed with 1-deoxynojirimycin suggesting that glucosylated high mannose forms of TSH are more susceptible to intracellular degradation. The novel finding that deoxymannojirimycin and swainsonine increase secreted and total TSH above control levels suggests that non-glucosylated high mannose forms as well as hybrid-type oligosaccharides may facilitate secretion and direct TSH away from a natural degradation pathway.
Metabolism of Mannose in Cultured Primary Rat Neurons.
Rastedt, Wiebke; Blumrich, Eva-Maria; Dringen, Ralf
2017-08-01
Glucose is the main peripheral substrate for energy production in the brain. However, as other hexoses are present in blood and cerebrospinal fluid, we have investigated whether neurons have the potential to metabolize, in addition to glucose, also the hexoses mannose, fructose or galactose. Incubation of primary cerebellar granule neurons in the absence of glucose caused severe cell toxicity within 24 h, which could not be prevented by application of galactose or fructose, while the cells remained viable during incubation in the presence of either mannose or glucose. In addition, cultured neurons produced substantial and almost identical amounts of lactate after exposure to either glucose or mannose, while lactate production was low in the presence of fructose and hardly detectable during incubations without hexoses or with galactose as carbon source. Determination of the K M values of hexokinase in lysates of cultured neurons for the hexoses revealed values in the micromolar range for mannose (32 ± 2 µM) and glucose (59 ± 10 µM) and in the millimolar range for fructose (4.4 ± 2.3 mM), demonstrating that mannose is efficiently phosphorylated by neuronal hexokinase. Finally, cultured neurons contained reasonable specific activity of the enzyme phosphomannose isomerase, which is required for isomerization of the hexokinase product mannose-6-phosphate into the glycolysis intermediate fructose-6-phosphate. These data demonstrate that cultured cerebellar granule neurons have the potential and express the required enzymes to efficiently metabolize mannose, while galactose and fructose serve at best poorly as extracellular carbon sources for neurons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ran; Li, Hong; Gao, Xiangqian
Despite numerous studies that report the glucose derived glycoconjugates as antitumor candidates, using mannose as sugar motif for specific tumor targeting remains less studied. In this research, two novel mannose-conjugated platinum complexes 4a and 4b that target the Warburg effect were designed, synthesized and evaluated for their antitumor activities in vitro and in vivo. Compared with oxaliplatin, both complexes exhibited substantial enhancement in water solubility as well as excellent or comparative cytotoxicity in six human cancer cell lines. Cytotoxicity assessments on Glucose transporter 1 (GLUT1) down-regulated or overexpressed cells and platinum accumulation study demonstrated that cellular uptake of compound 4a was regulatedmore » by GLUT1. In particular, 4a induced apoptosis in HT29 cells by suppressing expression of Bcl-2 and Bcl-XL, which preliminary explained the mechanism origin of antitumor effect. As indicated by its maximum tolerated dose-finding assay and in vivo anticancer activity, compound 4a exhibits better safety and efficacy profile than oxaliplatin. The findings of this study indicate the possibility of subjecting mannose-conjugated platinum complexes as lead compounds for further preclinical evaluation. - Highlights: • Mannose-conjugated platinum complexes were designed and synthesized to target glucose transporter 1(GLUT1). • Mannose-conjugated platinum complex 4a transport across cancer cells through GLUT1. • Mannose-conjugated platinum complex 4a induce apoptosis in HT29 cells. • Mannose-conjugated platinum complex 4a antitumor activities were more potent than those of oxaliplatin.« less
Puccia, R; Grondin, B; Herscovics, A
1993-02-15
Processing of N-linked oligosaccharides in Saccharomyces cerevisiae begins with the removal of glucose and mannose residues from Glc3Man9GlcNAc2 to form a single isomer of Man8GlcNAc2. The importance of mannose removal for subsequent outer chain synthesis was examined in strains of S. cerevisiae disrupted in the MNS1 gene encoding a specific alpha 1,2-mannosidase responsible for Man8GlcNAc2 synthesis [Camirand, Heysen, Grondin and Herscovics (1991) J. Biol. Chem. 266, 15120-15127]. Both MNS1 transcripts of 1.85 kb and 1.7 kb were not observed in Northern blots of mns1 cells (i.e. cells containing the disrupted gene). Analysis on Bio-Gel P-6 of endo-beta-N-acetylglucosaminidase-H-sensitive oligosaccharides following a 10 min pulse with [2-3H]mannose revealed similar amounts of labelled outer chains excluded from the gel in both control and mns1 cells. H.p.l.c. of the included oligosaccharides showed that a Man9GlcNAc, rather than a Man8GlcNAc, intermediate was formed in mns1 cells. Analysis of [3H]mannose-labelled core oligosaccharides from immunoprecipitated CPY and invertase by h.p.l.c. showed a similar size distribution in mns1 and control cells. Invertase immunoprecipitated from [35S]methionine-labelled mns1 cells was highly glycosylated, but migrated slightly faster than that from control cells on denaturing PAGE, indicating a small difference in glycosylation. A similar difference in mobility was observed for invertase activity stain following non-denaturing gel electrophoresis. It is concluded that the alpha-mannosidase encoded by MNS1 is the only enzyme responsible for mannose removal in vivo, and that this processing step is not essential for outer chain synthesis.
Esquenazi, Daniele; de Souza, Wanderley; Alviano, Celuta Sales; Rozental, Sonia
2003-03-20
The presence of carbohydrate-binding adhesins on the microconidia of Trichophyton mentagrophytes surface and their role on cellular interactions were investigated. Flow cytometry showed that this fungus recognizes the sugars mannose and galactose. The binding was inhibited by the addition of methyl alpha-D-mannopyranoside and methyl alpha-D-galactopyranoside, and showed higher fluorescence intensity at 37 degrees C than 28 degrees C. Trypsin treatment and heating of the cells reduced the binding, suggesting a (glyco) protein nature of the microconidia adhesin. The interaction of the fungus to Chinese hamster ovary epithelial cells and its glycosylation-deficient mutants demonstrated a higher adhesion index in Lec1 and Lec2 mutants, which express mannose and galactose, respectively, as the terminal carbohydrate on the cell surface. Endocytosed fungi were shown preferentially in Lec2 cells. Addition of the carbohydrates methyl alpha-D-mannopyranoside and methyl alpha-D-galactopyranoside to the interaction medium, pretreatment of Lec1 and Lec2 cells with lectins Concanavalina A and Arachis hypogaea and pretreatment with sodium periodate decreased the adhesion and the endocytic index. Examination of thin section by transmission electron microscopy showed that after fungal ingestion by Lec2 cells the fungi are enclosed in a 'loose'-type vacuole while the other cells are found within a 'tight'-type membrane-bound cytoplasmic vacuole. Our results suggest the occurrence of carbohydrate-specific adhesins on microconidia surface that recognize mannose and galactose. This may have a role in the adhesion process during the infectious process of dermatophytosis.
Bonin, Christopher P; Freshour, Glenn; Hahn, Michael G; Vanzin, Gary F; Reiter, Wolf-Dieter
2003-06-01
l-Fucose (l-Fuc) is a monosaccharide constituent of plant cell wall polysaccharides and glycoproteins. The committing step in the de novo synthesis of l-Fuc is catalyzed by GDP-d-mannose 4,6-dehydratase, which, in Arabidopsis, is encoded by the GMD1 and GMD2 (MUR1) genes. To determine the functional significance of this genetic redundancy, the expression patterns of both genes were investigated via promoter-beta-glucuronidase fusions and immunolocalization of a Fuc-containing epitope. GMD2 is expressed in most cell types of the root, with the notable exception of the root tip where strong expression of GMD1 is observed. Within shoot organs, GMD1::GUS expression is confined to stipules and pollen grains leading to fucosylation of the walls of these cell types in the mur1 mutant. These results suggest that GMD2 represents the major housekeeping gene for the de novo synthesis of GDP-l-Fuc, whereas GMD1 expression is limited to a number of specialized cell types. We conclude that the synthesis of GDP-l-Fuc is controlled in a cell-autonomous manner by differential expression of two isoforms of the same enzyme.
Effects of mannose-binding lectin polymorphisms on irinotecan-induced febrile neutropenia.
van der Bol, Jessica M; de Jong, Floris A; van Schaik, Ron H; Sparreboom, Alex; van Fessem, Marianne A; van de Geijn, Fleur E; van Daele, Paul L; Verweij, Jaap; Sleijfer, Stefan; Mathijssen, Ron H
2010-01-01
Mannose-binding lectin (MBL) is important in the innate immune response. MBL2 gene polymorphisms affect MBL expression, and genotypes yielding low MBL levels have been associated with an elevated risk for infections in hematological cancer patients undergoing chemotherapy. However, these reported associations are inconsistent, and data on patients with solid tumors are lacking. Here, we investigated the effects of MBL2 genotypes on irinotecan-induced febrile neutropenia in patients with solid tumors. Irinotecan-treated patients were genotyped for the MBL2 gene. Two promoter (-550 H/L and -221 X/Y) and three exon polymorphisms (52 A/D, 54 A/B, and 57 A/C) were determined, together with known risk factors for irinotecan-induced toxicity. Neutropenia and febrile neutropenia were recorded during the first course. Of the 133 patients, 28% experienced severe neutropenia and 10% experienced febrile neutropenia. No associations were found between exon polymorphisms and febrile neutropenia. However, patients with the H/H promoter genotype, associated with high MBL levels, experienced significantly more febrile neutropenia than patients with the H/L and L/L genotypes (20% versus 13% versus 5%). Moreover, patients with the HYA haplotype encountered significantly more febrile neutropenia than patients without this high MBL-producing haplotype (16% versus 4%). In the subgroup with wild-type exon polymorphisms (A/A), patients with the high MBL promoter phenotype had the highest incidence of febrile neutropenia, regardless of known risk factors. Patients with high MBL2 promoter genotypes and haplotypes seem more at risk for developing febrile neutropenia. If confirmed, these preliminary findings may contribute to more individualized approaches of irinotecan treatment.
Li, Xiaoling; Zhang, Hongbo; Xu, Haibo
2009-11-01
The shiitake polysaccharides were obtained from shiitake mushroom. Four fractions were isolated from the polysaccharides using a Sephadex G-100 gel column. Chemical components of the two main fractions were determined by thin layer chromatography (TLC), and high performance liquid chromatography (HPLC). F1 was composed of rhamnose, glucose, and mannose. F3 was composed of xylose, mannose, arabinose and galactose. The obtained results still showed that administration of shiitake polysaccharides could improve muscle's comfortability of animals under a long period of vibration. The above findings might be applicable to studies of vibration ergonomics.
Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji
2015-01-01
The influence of water-miscible alcohols (methanol, 1-propanol, 2-propanol, and t-butyl alcohol) on the isomerization of glucose to fructose and mannose was investigated under subcritical aqueous conditions (180-200 °C). Primary and secondary alcohols promoted the conversion and isomerization of glucose to afford fructose and mannose with high and low selectivity, respectively. On the other hand, the decomposition (side-reaction) of glucose was suppressed in the presence of the primary and secondary alcohols compared with that in subcritical water. The yield of fructose increased with increasing concentration of the primary and secondary alcohols, and the species of the primary and secondary alcohols tested had little effect on the isomerization behavior of glucose. In contrast, the isomerization of glucose was suppressed in subcritical aqueous t-butyl alcohol. Both the conversion of glucose and the yield of fructose decreased with increasing concentration of t-butyl alcohol. In addition, mannose was not detected in reactions using subcritical aqueous t-butyl alcohol.
Organic Electrochemical Transistors for the Detection of Cell Surface Glycans.
Chen, Lizhen; Fu, Ying; Wang, Naixiang; Yang, Anneng; Li, Yuanzhe; Wu, Jie; Ju, Huangxian; Yan, Feng
2018-05-23
Cell surface glycans play critical roles in diverse biological processes, such as cell-cell communication, immunity, infection, development, and differentiation. Their expressions are closely related to cancer growth and metastasis. This work demonstrates an organic electrochemical transistor (OECT)-based biosensor for the detection of glycan expression on living cancer cells. Herein, mannose on human breast cancer cells (MCF-7) as the target glycan model, poly dimethyl diallyl ammonium chloride-multiwall carbon nanotubes (PDDA-MWCNTs) as the loading interface, concanavalin A (Con A) with active mannose binding sites, aptamer and horseradish peroxidase co-immobilized gold nanoparticles (HRP-aptamer-Au NPs) as specific nanoprobes are used to fabricate the OECT biosensor. In this strategy, PDDA-MWCNT interfaces can enhance the loading of Con A, and the target cells can be captured through Con A via active mannose binding sites. Thus, the expression of cell surface can be reflected by the amount of cells captured on the gate. Specific nanoprobes are introduced to the captured cells to produce an OECT signal because of the reduction of hydrogen peroxide catalyzed by HRP conjugated on Au nanoparticles, while the aptamer on nanoprobes can selectively recognize the MCF-7 cells. It is reasonable that more target cells are captured on the gate electrode, more HRP-nanoprobes are loaded thus a larger signal response. The device shows an obvious response to MCF-7 cells down to 10 cells/μL and can be used to selectively monitor the change of mannose expression on cell surfaces upon a treatment with the N-glycan inhibitor. The OECT-based biosensor is promising for the analysis of glycan expressions on the surfaces of different types of cells.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false D-Glucuronic acid, polymer with 6...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...
Kuźmińska-Bajor, Marta; Grzymajło, Krzysztof; Ugorski, Maciej
2015-01-01
We have recently shown that Salmonella Gallinarum type 1 fimbriae with endogenous mannose-resistant (MR) variant of the FimH protein increase systemic dissemination of S. Gallinarum and colonization of internal organs in comparison to the S. Gallinarum fimH knockout strain or the mutant expressing mannose-sensitive (MS) FimH variant from S. Enteritidis. Elaborating from these studies, we proposed that MS variants of FimH are advantageous in gastrointestinal infections, in contrast to MR FimH variants which decrease intestinal colonization and promote their systemic spreading. To support our hypothesis, we carried out in vivo studies using mice infected with wild-type S. Enteritidis and its fimH knockout strain (S. Enteritidis), which was characterized by significantly lower adhesion and invasiveness of murine ICE-1 intestinal cells. Using bioluminescence imaging, we observed that the loss of MS FimH adhesin correlates well with the highly increased colonization of mice by these bacteria. The appearance of the mutant strain was observed much earlier than wild-type Salmonella, and mice infected with 104–107 S. Enteritidis fimH::kan CFUs had significantly (P < 0.05) shorter infection-free time than animals inoculated with wild-type S. Enteritidis. Infections caused by non-typhoid Salmonella, such as S. Enteritidis, are associated with massive inflammation of the lamina propria and lymph nodes in the intestinal tract. Therefore, we evaluated the role of MS type 1 fimbriae in the induction of cytokine expression and secretion, using murine ICE-1 intestinal cells. We showed that the expression, as well as secretion, of Il-1b, Il-6, Il-10, and Il-12b was significantly higher in cells infected with wild-type S. Enteritidis compared to cells infected with the mutant strain. Based on our results, we propose that type 1 fimbriae may play an important role in the pathogenicity of S. Enteritidis and may contribute to an intestinal inflammatory response. PMID:25914682
Byrd, J C; Tarentino, A L; Maley, F; Atkinson, P H; Trimble, R B
1982-12-25
Synthesis of the N-linked oligosaccharides of Saccharomyces cerevisiae glycoproteins has been studied in vivo by labeling with [2-3H]mannose and gel filtration analysis of the products released by endoglycosidase H. Both small oligosaccharides, Man8-14GlcNAc, and larger products, Man greater than 20GlcNAc, were labeled. The kinetics of continuous and pulse-chase labeling demonstrated that Glc3Man9GlcNAc2, the initial product transferred to protein, was rapidly (t1/2 congruent to 3 min) trimmed to Man8GlcNAc2 and then more slowly (t1/2 = 10-20 min) elongated to larger oligosaccharides. No oligosaccharides smaller than Man8GlcNAc2 were evident with either labeling procedure. In confirmation of the trimming reaction observed in vivo, 3H-labeled Man9-N-acetylglucosaminitol from bovine thyroglobulin and [14C]Man9GlcNAc2 from yeast oligosaccharide-lipid were converted in vitro by broken yeast cells to 3H-labeled Man8-N-acetylglucosaminitol and [14C]Man8GlcNAc2. Man8GlcNAc and Man9GlcNAc from yeast invertase and from bovine thyroglobulin were purified by gel filtration and examined by high field 1H-NMR analysis. Invertase Man8GlcNAc (B) and Man9GlcNAc (C) were homogeneous compounds, which differed from the Man9GlcNAc (A) of thyroglobulin by the absence of a specific terminal alpha 1,2-linked mannose residue. The Man9GlcNAc of invertase (C) had an additional terminal alpha 1,6-linked mannose and appeared identical in structure with that isolated from yeast containing the mnn1 and mnn2 mutations (Cohen, R. E., Zhang, W.-j., and Ballou, C. E. (1982) J. Biol. Chem. 257, 5730-5737). It is concluded that Man8GlcNAc2, formed by removal of glucose and a single mannose from Glc3Man9GlcNAc2, is the ultimate product of trimming and the minimal precursor for elongation of the oligosaccharides on yeast glycoproteins. The results suggest that removal of a particular terminal alpha 1,2-linked mannose from Man9GlcNAc2 by a highly specific alpha-mannosidase exposes the nascent Man-alpha 1,6-Man backbone for elongation with additional alpha 1,6-linked mannose residues, according to the following scheme: (formula, see text).
Neth, O; Jack, D L; Dodds, A W; Holzel, H; Klein, N J; Turner, M W
2000-02-01
Mannose-binding lectin (MBL) is a collagenous serum lectin believed to be of importance in innate immunity. Genetically determined low levels of the protein are known to predispose to infections. In this study the binding of purified MBL to pathogens isolated from immunocompromised children was investigated by flow cytometry. Diverse Candida species, Aspergillus fumigatus, Staphylococcus aureus, and beta-hemolytic group A streptococci exhibited strong binding of MBL, whereas Escherichia coli, Klebsiella species, and Haemophilus influenzae type b were characterized by heterogeneous binding patterns. In contrast, beta-hemolytic group B streptococci, Streptococcus pneumoniae, and Staphylococcus epidermidis showed low levels of binding. Bound MBL was able to promote C4 deposition in a concentration-dependent manner. We conclude that MBL may be of importance in first-line immune defense against several important pathogens.
Düllmann, Jochen; Van Damme, Els J M; Peumans, Willy J; Ziesenitz, Maike; Schumacher, Udo
2002-01-01
The lectin Chelidonium majus agglutinin (CMA) was previously shown to visualise endothelia of all blood vessels and those lining sinuses of red pulp, stromal reticular meshwok (RM) and dendritic cells of lymphatic follicles in white pulp of the spleen in rats. The aim of the present study was the analysis of CMA and some other lectins in labelling RM, vascular structures and macrophages in lymph nodes of rats. It appeared that CMA stained the entire RM, dendritic cells, lining cells of sinuses and all types of blood vessels. Sinus-lining cells of lymph nodes were labelled with CMA and mannose-, GalNac-, and sialic acid-specific lectins. Moreover, lymph node macrophages were labelled above all by mannose specific lectins. The broad lectin-binding pattern of sinuses--not observed in rat spleen- and CMA-reactivity of both sinus-lining and dendritic cells corroborates the hypothesis that lymph node sinus-lining endothelia are precursors or a special type of immune accessory cells.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for the...
Code of Federal Regulations, 2012 CFR
2012-07-01
...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for the...
Code of Federal Regulations, 2011 CFR
2011-07-01
...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for the...
Code of Federal Regulations, 2013 CFR
2013-07-01
...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for the...
Kim, Seokkyun; Song, Jinsu; Park, Seungkyu; Ham, Sunyoung; Paek, Kyungyeol; Kang, Minjung; Chae, Yunjung; Seo, Heewon; Kim, Hyung-Chan; Flores, Michael
A biosimilar product needs to demonstrate biosimilarity to the originator reference product, and the quality profile of the latter should be monitored throughout the period of the biosimilar's development to match the quality attributes of the 2 products that relate to efficacy and safety. For the development of a biosimilar version of trastuzumab, the reference product, Herceptin®, was extensively characterized for the main physicochemical and biologic properties by standard or state-of-the-art analytical methods, using multiple lots expiring between March 2015 and December 2019. For lots with expiry dates up to July 2018, a high degree of consistency was observed for all the tested properties. However, among the lots expiring in August 2018 or later, a downward drift was observed in %afucose (G0+G1+G2). Furthermore, the upward drift of %high mannose (M5+M6) was observed in the lots with expiry dates from June 2019 to December 2019. As a result, the combination of %afucose and %high mannose showed 2 marked drifts in the lots with expiry dates from August 2018 to December 2019, which was supported by the similar trend of biologic data, such as FcγRIIIa binding and antibody-dependent cell-mediated cytotoxicity (ADCC) activity. Considering that ADCC is one of the clinically relevant mechanisms of action for trastuzumab, the levels of %afucose and %high mannose should be tightly monitored as critical quality attributes for biosimilar development of trastuzumab.
Kim, Seokkyun; Song, Jinsu; Park, Seungkyu; Ham, Sunyoung; Paek, Kyungyeol; Kang, Minjung; Chae, Yunjung; Seo, Heewon; Kim, Hyung-Chan; Flores, Michael
2017-01-01
ABSTRACT A biosimilar product needs to demonstrate biosimilarity to the originator reference product, and the quality profile of the latter should be monitored throughout the period of the biosimilar's development to match the quality attributes of the 2 products that relate to efficacy and safety. For the development of a biosimilar version of trastuzumab, the reference product, Herceptin®, was extensively characterized for the main physicochemical and biologic properties by standard or state-of-the-art analytical methods, using multiple lots expiring between March 2015 and December 2019. For lots with expiry dates up to July 2018, a high degree of consistency was observed for all the tested properties. However, among the lots expiring in August 2018 or later, a downward drift was observed in %afucose (G0+G1+G2). Furthermore, the upward drift of %high mannose (M5+M6) was observed in the lots with expiry dates from June 2019 to December 2019. As a result, the combination of %afucose and %high mannose showed 2 marked drifts in the lots with expiry dates from August 2018 to December 2019, which was supported by the similar trend of biologic data, such as FcγRIIIa binding and antibody-dependent cell-mediated cytotoxicity (ADCC) activity. Considering that ADCC is one of the clinically relevant mechanisms of action for trastuzumab, the levels of %afucose and %high mannose should be tightly monitored as critical quality attributes for biosimilar development of trastuzumab. PMID:28296619
Nic Lochlainn, Laura; Caffrey, Patrick
2009-01-01
Streptomycetes synthesise several bioactive natural products that are modified with sugar residues derived from GDP-mannose. These include the antifungal polyenes, the antibacterial antibiotics hygromycin A and mannopeptimycins, and the anticancer agent bleomycin. Three enzymes function in biosynthesis of GDP-mannose from the glycolytic intermediate fructose 6-phosphate: phosphomannose isomerase (PMI), phosphomannomutase (PMM) and GDP-mannose pyrophosphorylase (GMPP). Synthesis of GDP-mannose from exogenous mannose requires hexokinase or phosphotransferase enzymes together with PMM and GMPP. In this study, a region containing genes for PMI, PMM and GMPP was cloned from Streptomyces nodosus, producer of the polyenes amphotericins A and B. Inactivation of the manA gene for PMI resulted in production of amphotericins and their aglycones, 8-deoxyamphoteronolides. A double mutant lacking the PMI and PMM genes produced 8-deoxyamphoteronolides in good yields along with trace levels of glycosylated amphotericins. With further genetic engineering these mutants may activate alternative hexoses as GDP-sugars for transfer to aglycones in vivo.
Qin, Hui-Min; Li, Songtao; Zhang, Yu-Fu; Wang, Jian-Wen; Li, Jixuan; Song, Shiyi; Lu, Fuping; Li, Yu
2016-10-01
To achieve multienzymatic cascade synthesis of fucosyl oligosaccharide from D-mannose by two-step fermentation pathway in Escherichia coli. E. coli BL21(DE3) harboring pET-22b(+) vectors with six genes, i.e., glucokinase (Glk), phosphomannomutase (ManB), mannose-1-phosphate guanylytransferase (ManC), GDP-mannose 4,6-dehydratase (Gmd), GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase/4-reductase (WcaG), and α-1,2-fucosyltransferase (Fuct) were co-inoculated, and the multienzyme synthetic pathway was constructed to produce fucosyloligosaccharide using D-mannose as substrate. The product, analyzed by LC/MS, fucosyloligosaccharide was formed under the catalysis of Fuct using GDP-fucose as donor substrate and lactose as acceptor substrate. Fucosyloligosaccharides reached 22 mM by a two-step fermentation compared to 3.7 mM with a one-pot fermentation. Fucosyloligosaccharide was produced by a two-step fermentation to avoid the inhibitory effect of GDP-fucose on Gmd. Two-step fermentation is a rational synthetic pathway for accumulating fucosyloligosaccharide.
Becker, S; Klenk, H D; Mühlberger, E
1996-11-01
The surface protein (GP) of Marburg virus (MBG) is synthesized as a 90-kDa precursor protein which is cotranslationally modified by the addition of high-mannose sugars (140 kDa). This step is followed by the conversion of the N-linked sugars to endoglycosidase H (endo H)-resistant species and the addition of O-linked oliosaccharides leading to a mature protein of 170-200 kDa approximately 30 min after pulse labelling. The mature form of GP is efficiently transported to the plasma membrane. GP synthesized using the T7 polymerase-driven vaccinia virus expression system was transported with essentially the same kinetics as the authentic GP. However, the protein that is shown to appear 30 min after pulse labeling at the plasma membrane was slighly smaller (160 kDa) than GP incorporated into the virions (170 kDa). Using a recombinant baculovirus, GP was expressed at high levels in insect cells. Three different species could be identified: a 90-kDa unglycosylated GP localized in the cytoplasm and two 140-kDa glycosylated proteins. Characterization of the glycosylated GPs revealed that processing of the oligosaccharides of GP was less efficient in insect cells than in mammalian cells. The majority of GP remained endo H sensitive containing high-mannose type N-linked glycans, whereas only a small fraction became endo H resistant carrying processed N-glycans and O-glycans. Tunicamycin treatment of the GP-expressing cells demonstrated that N-glycosylation is essential for the transport of the MBG surface protein.
Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans.
Kang, Ji-Yeon; Kwon, Ohsuk; Gil, Jin Young; Oh, Doo-Byoung
2016-05-15
Mannose-6-phosphate (M-6-P) glycan analysis is important for quality control of therapeutic enzymes for lysosomal storage diseases. Here, we found that the analysis of glycans containing two M-6-Ps was highly affected by the hydrophilicity of the elution solvent used in high-performance liquid chromatography (HPLC). In addition, the performances of three fluorescent tags--2-aminobenzoic acid (2-AA), 2-aminobenzamide (2-AB), and 3-(acetyl-amino)-6-aminoacridine (AA-Ac)--were compared with each other for M-6-P glycan analysis using HPLC and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The best performance for analyzing M-6-P glycans was shown by 2-AA labeling in both analyses. Copyright © 2016 Elsevier Inc. All rights reserved.
Biosynthesis and processing of platelet GPIIb-IIIa in human megakaryocytes.
Duperray, A; Berthier, R; Chagnon, E; Ryckewaert, J J; Ginsberg, M; Plow, E; Marguerie, G
1987-06-01
Platelet membrane glycoprotein IIb-IIIa forms a calcium-dependent heterodimer and constitutes the fibrinogen receptor on stimulated platelets. GPIIb is a two-chain protein containing disulfide-linked alpha and beta subunits. GPIIIa is a single chain protein. These proteins are synthesized in the bone marrow by megakaryocytes, but the study of their synthesis has been hampered by the difficulty in obtaining enriched population of megakaryocytes in large numbers. To examine the biosynthesis and processing of GPIIb-IIIa, purified human megakaryocytes were isolated from liquid cultures of cryopreserved leukocytes stem cell concentrates from patients with chronic myelogenous leukemia. Immunoprecipitation of [35S]methionine pulse-chase-labeled cell extracts by antibodies specific for the alpha or beta subunits of GPIIb indicated that GPIIb was derived from a precursor of Mr 130,000 that contains the alpha and beta subunits. This precursor was converted to GPIIb with a half-life of 4-5 h. No precursor form of GPIIIa was detected. The glycosylation of GPIIb-IIIa was examined in megakaryocytes by metabolic labeling in the presence of tunicamycin, monensin, or treatment with endoglycosidase H. The polypeptide backbones of the GPIIb and the GPIIIa have molecular masses of 120 and 90 kD, respectively. High-mannose oligosaccharides are added to these polypeptide backbones co-translationally. The GPIIb precursor is then processed with conversion of high-mannose to complex type carbohydrates yielding the mature subunits GPIIb alpha (Mr 116,000) and GPIIb beta (Mr 25,000). No posttranslational processing of GPIIIa was detected.
Benevides, Raquel Guimarães; Ganne, Géraldine; Simões, Rafael da Conceição; Schubert, Volker; Niemietz, Mathäus; Unverzagt, Carlo; Chazalet, Valérie; Breton, Christelle; Varrot, Annabelle; Cavada, Benildo Sousa; Imberty, Anne
2012-01-01
Lectin activity with specificity for mannose and glucose has been detected in the seed of Platypodium elegans, a legume plant from the Dalbergieae tribe. The gene of Platypodium elegans lectin A has been cloned, and the resulting 261-amino acid protein belongs to the legume lectin family with similarity with Pterocarpus angolensis agglutinin from the same tribe. The recombinant lectin has been expressed in Escherichia coli and refolded from inclusion bodies. Analysis of specificity by glycan array evidenced a very unusual preference for complex type N-glycans with asymmetrical branches. A short branch consisting of one mannose residue is preferred on the 6-arm of the N-glycan, whereas extensions by GlcNAc, Gal, and NeuAc are favorable on the 3-arm. Affinities have been obtained by microcalorimetry using symmetrical and asymmetrical Asn-linked heptasaccharides prepared by the semi-synthetic method. Strong affinity with Kd of 4.5 μm was obtained for both ligands. Crystal structures of Platypodium elegans lectin A complexed with branched trimannose and symmetrical complex-type Asn-linked heptasaccharide have been solved at 2.1 and 1.65 Å resolution, respectively. The lectin adopts the canonical dimeric organization of legume lectins. The trimannose bridges the binding sites of two neighboring dimers, resulting in the formation of infinite chains in the crystal. The Asn-linked heptasaccharide binds with the 6-arm in the primary binding site with extensive additional contacts on both arms. The GlcNAc on the 6-arm is bound in a constrained conformation that may rationalize the higher affinity observed on the glycan array for N-glycans with only a mannose on the 6-arm. PMID:22692206
Wang, Caihong; Luo, Huiying; Niu, Canfang; Shi, Pengjun; Huang, Huoqing; Meng, Kun; Bai, Yingguo; Wang, Kun; Hua, Huifang; Yao, Bin
2015-02-01
Thermophilic β-mannanases are of increasing importance for wide industrial applications. In the current study, gene cloning, functional expression in Pichia pastoris, and characterization of a thermophilic β-mannanase (Man5A) from thermophilic Talaromyces leycettanus JCM12802 are reported. Deduced Man5A exhibits the highest identity with a putative β-mannanase from Talaromyces stipitatus ATCC10500 (70.3 %) and is composed of an N-terminal signal peptide, a fungal-type carbohydrate-binding module (CBM) of family 1, and a catalytic domain of glycosyl hydrolase (GH) family 5 at the C-terminus. Two recombinant proteins with different glycosylation levels, termed Man5A1 (72 kDa) and Man5A2 (60 kDa), were identified after purification. Both enzymes were thermophilic, exhibiting optimal activity at 85-90 °C, and were highly stable at 70 °C. Man5A1 and Man5A2 had a pH optimum of 4.5 and 4.0, respectively, and were highly stable over the broad pH range of 3.0-10.0. Most metal ions and sodium dodecyl sulfate (SDS) had no effect on the enzymatic activities. Man5A1 and Man5A2 exhibited high specific activity (2,160 and 1,800 U/mg, respectively) when using locust bean gum as the substrate. The CBM1 and two key residues D191 and R286 were found to affect Man5A thermostability. Man5A displays a classical four-site-binding mode, hydrolyzing mannooligosaccharides into smaller units, galactomannan into mannose and mannobiose, and glucomanman into mannose, mannobiose, and mannopentaose, respectively. All these properties make Man5A a good candidate for extensive applications in the bioconversion, pulp bleaching, textile, food, and feed industries.
Effects of Mannose-Binding Lectin Polymorphisms on Irinotecan-Induced Febrile Neutropenia
de Jong, Floris A.; van Schaik, Ron H.; Sparreboom, Alex; van Fessem, Marianne A.; van de Geijn, Fleur E.; van Daele, Paul L.; Verweij, Jaap; Sleijfer, Stefan; Mathijssen, Ron H.
2010-01-01
Objective. Mannose-binding lectin (MBL) is important in the innate immune response. MBL2 gene polymorphisms affect MBL expression, and genotypes yielding low MBL levels have been associated with an elevated risk for infections in hematological cancer patients undergoing chemotherapy. However, these reported associations are inconsistent, and data on patients with solid tumors are lacking. Here, we investigated the effects of MBL2 genotypes on irinotecan-induced febrile neutropenia in patients with solid tumors. Patients and Methods. Irinotecan-treated patients were genotyped for the MBL2 gene. Two promoter (−550 H/L and −221 X/Y) and three exon polymorphisms (52 A/D, 54 A/B, and 57 A/C) were determined, together with known risk factors for irinotecan-induced toxicity. Neutropenia and febrile neutropenia were recorded during the first course. Results. Of the 133 patients, 28% experienced severe neutropenia and 10% experienced febrile neutropenia. No associations were found between exon polymorphisms and febrile neutropenia. However, patients with the H/H promoter genotype, associated with high MBL levels, experienced significantly more febrile neutropenia than patients with the H/L and L/L genotypes (20% versus 13% versus 5%). Moreover, patients with the HYA haplotype encountered significantly more febrile neutropenia than patients without this high MBL-producing haplotype (16% versus 4%). In the subgroup with wild-type exon polymorphisms (A/A), patients with the high MBL promoter phenotype had the highest incidence of febrile neutropenia, regardless of known risk factors. Conclusion. Patients with high MBL2 promoter genotypes and haplotypes seem more at risk for developing febrile neutropenia. If confirmed, these preliminary findings may contribute to more individualized approaches of irinotecan treatment. PMID:20930093
Alenton, Rod Russel R; Koiwai, Keiichiro; Miyaguchi, Kohei; Kondo, Hidehiro; Hirono, Ikuo
2017-04-04
C-type lectins (CTLs) are calcium-dependent carbohydrate-binding proteins known to assist the innate immune system as pattern recognition receptors (PRRs). The binding specificity of CTLs lies in the motif of their carbohydrate recognition domain (CRD), the tripeptide motifs EPN and QPD bind to mannose and galactose, respectively. However, variants of these motifs were discovered including a QAP sequence reported in shrimp believed to have the same carbohydrate specificity as QPD. Here, we characterized a novel C-type lectin (MjGCTL) possessing a CRD with a QAP motif. The recombinant MjGCTL has a calcium-dependent agglutinating capability against both Gram-negative and Gram-positive bacteria, and its sugar specificity did not involve either mannose or galactose. In an encapsulation assay, agarose beads coated with rMjGCTL were immediately encapsulated from 0 h followed by melanization at 4 h post-incubation with hemocytes. These results confirm that MjGCTL functions as a classical CTL. The structure of QAP motif and carbohydrate-specificity of rMjGCTL was found to be different to both EPN and QPD, suggesting that QAP is a new motif. Furthermore, MjGCTL acts as a PRR binding to hemocytes to activate their adherent state and initiate encapsulation.
Alenton, Rod Russel R.; Koiwai, Keiichiro; Miyaguchi, Kohei; Kondo, Hidehiro; Hirono, Ikuo
2017-01-01
C-type lectins (CTLs) are calcium-dependent carbohydrate-binding proteins known to assist the innate immune system as pattern recognition receptors (PRRs). The binding specificity of CTLs lies in the motif of their carbohydrate recognition domain (CRD), the tripeptide motifs EPN and QPD bind to mannose and galactose, respectively. However, variants of these motifs were discovered including a QAP sequence reported in shrimp believed to have the same carbohydrate specificity as QPD. Here, we characterized a novel C-type lectin (MjGCTL) possessing a CRD with a QAP motif. The recombinant MjGCTL has a calcium-dependent agglutinating capability against both Gram-negative and Gram-positive bacteria, and its sugar specificity did not involve either mannose or galactose. In an encapsulation assay, agarose beads coated with rMjGCTL were immediately encapsulated from 0 h followed by melanization at 4 h post-incubation with hemocytes. These results confirm that MjGCTL functions as a classical CTL. The structure of QAP motif and carbohydrate-specificity of rMjGCTL was found to be different to both EPN and QPD, suggesting that QAP is a new motif. Furthermore, MjGCTL acts as a PRR binding to hemocytes to activate their adherent state and initiate encapsulation. PMID:28374848
Del Mar Rojas-Molina, María; Rubiales, Diego; Prats, Elena; Sillero, Josefina Carmen
2007-01-01
ABSTRACT Effects on penetration and hypersensitive resistance of the cinnamyl acid dehydrogenase (CAD) suicide inhibitor ([(2-hydroxyphenyl) amino] sulphinyl) acetic acid, 1.1 dimethyl ester, which suppresses phenylpro-panoid biosynthesis, and of D-mannose, which sequesters phosphate and reduces energy available in host cells, were studied in faba bean (Vicia faba) genotypes with differing resistance mechanisms to faba bean rust (Uromyces viciae-fabae). Inhibition of CAD reduced penetration resistance in lines 2N-34, 2N-52, V-1271, and V-1272, revealing an important role for phenylpropanoid biosynthesis in the resistance of these lines. Inhibition of CAD also inhibited hypersensitive cell death in these lines. D-mannose had little or no effect on resistance. By contrast, CAD inhibition did not affect penetration resistance of line BPL-261, which has a high degree of penetration resistance not associated with hypersensitive cell death. In BPL-261, D-mannose inhibited penetration resistance. The parallelism between the faba bean genotype responses to rust observed here and the response of barley genotypes with differing resistance mechanisms to powdery mildew after similar inhibitor treatments is analyzed and discussed.
Cervantes-Sandoval, Isaac; Jesús Serrano-Luna, José; Pacheco-Yépez, Judith; Silva-Olivares, Angélica; Tsutsumi, Víctor; Shibayama, Mineko
2010-02-01
Naegleria fowleri is the etiologic agent of primary amoebic meningoencephalitis, a rapidly fatal parasitic disease of humans. The adherence of Naegleria trophozoites to the host cell is one of the most important steps in the establishment and invasiveness of this infectious disease. Currently, little is known about the surface molecules that may participate in the interaction of N. fowleri with their target cells. In the present study, we investigated the composition of glycoconjugates present on the surface of trophozoites of the pathogenic N. fowleri and the nonpathogenic Naegleria gruberi. With the use of biotinylated lectins in western blot and flow cytometric analysis, we showed that N. fowleri trophozoites present high levels of surface glycoconjugates that contain alpha-D-mannose, alpha-D-glucose, and terminal alpha-L-fucose residues. A significant difference in the expression of these glycoconjugates was observed between N. fowleri and the nonpathogenic N. gruberi. Furthermore, we suggest that glycoconjugates that contain D-mannose and L-fucose residues participate in the adhesion of N. fowleri and subsequent damage to MDCK cells.
Kim, Minsun; Kim, Ki-Yeon; Lee, Kyung Min; Youn, Sung Hun; Lee, Sun-Mi; Woo, Han Min; Oh, Min-Kyu; Um, Youngsoon
2016-10-01
The aim of this work was to study the butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1. Results showed that Clostridium sp. S1 produced butyric acid by simultaneously utilizing glucose and mannose in softwood hydrolysate and, more remarkably, it consumed acetic acid in hydrolysate. Clostridium sp. S1 utilized each of glucose, mannose, and xylose as well as mixed sugars simultaneously with partially repressed xylose utilization. When softwood (Japanese larch) hydrolysate containing glucose and mannose as the main sugars was used, Clostridium sp. S1 produced 21.17g/L butyric acid with the yield of 0.47g/g sugar and the selectivity of 1 (g butyric acid/g total acids) owing to the consumption of acetic acid in hydrolysate. The results demonstrate potential of Clostridium sp. S1 to produce butyric acid selectively and effectively from hydrolysate not only by utilizing mixed sugars simultaneously but also by converting acetic acid to butyric acid. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, H.; Grubb, J.H.; Sly, W.S.
1990-10-01
The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human {beta}-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3{percent} of the total functionalmore » receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of {beta}-glucuronidase. At pH 7.5, the rate of endocytosis was only 14{percent} the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized {beta}-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized {beta}-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor.« less
2013-01-01
Background Mannan is one of the primary polysaccharides in hemicellulose and is widely distributed in plants. β-Mannosidase is an important constituent of the mannan-degrading enzyme system and it plays an important role in many industrial applications, such as food, feed and pulp/paper industries as well as the production of second generation bio-fuel. Therefore, the mannose-tolerant β-mannosidase with high catalytic efficiency for bioconversion of mannan has a great potential in the fields as above. Results A β-mannosidase gene (Tth man5) of 1,827 bp was cloned from the extremely thermophilic bacterium Thermotoga thermarum DSM 5069 that encodes a protein containing 608 amino acid residues, and was over-expressed in Escherichia coli BL21 (DE3). The results of phylogenetic analysis, amino acid alignment and biochemical properties indicate that the Tth Man5 is a novel β-mannosidase of glycoside hydrolase family 5. The optimal activity of the Tth Man5 β-mannosidase was obtained at pH 5.5 and 85°C and was stable over a pH range of 5.0 to 8.5 and exhibited 2 h half-life at 90°C. The kinetic parameters Km and Vmax values for p-nitrophenyl-β-D-mannopyranoside and 1,4-β-D-mannan were 4.36±0.5 mM and 227.27±1.59 μmol min-1 mg-1, 58.34±1.75 mg mL-1 and 285.71±10.86 μmol min-1 mg-1, respectively. The kcat/Km values for p-nitrophenyl-β-D-mannopyranoside and 1,4-β-D-mannan were 441.35±0.04 mM-1 s-1 and 41.47±1.58 s-1 mg-1 mL, respectively. It displayed high tolerance to mannose, with a Ki value of approximately 900 mM. Conclusions This work provides a novel and useful β-mannosidase with high mannose tolerance, thermostability and catalytic efficiency, and these characteristics constitute a powerful tool for improving the enzymatic conversion of mannan through synergetic action with other mannan-degrading enzymes. PMID:24099409
Shinoda, Yo; Takahashi, Tsutomu; Akimoto, Jiro; Ichikawa, Megumi; Yamazaki, Hiromi; Narumi, Atsushi; Yano, Shigenobu; Fujiwara, Yasuyuki
2017-01-01
Photodynamic therapy (PDT) is a Food and Drug Administration authorized method for cancer treatment, which uses photosensitizer and laser photo-irradiation to generate reactive oxygen species to induce cell death in tumors. Photosensitizers have been progressively developed, from first to third generation, with improvements in cell specificity, reduced side effects and toxicity, increased sensitivity for irradiation and reduced persistence of photosensitizer in healthy cells. These improvements have been achieved by basic comparative experiments between current and novel photosensitizers using cell lines; however, photosensitizers should be carefully evaluated because they may have cell type specificity. In the present study, we compared a third-generation photosensitizer, β-mannose-conjugated chlorin (β-M-chlorin), with the second generation, talaporfin sodium (NPe6), using seven different rat and human cell lines and a neuronal/glial primary culture prepared from rat embryos. NPe6 was more effective than β-M-chlorin in human-derived cell lines, and β-M-chlorin was more effective than NPe6 in rat primary cultures and rat-derived cell lines, except for the rat pheochromocytoma cell line, PC12. These differences of phototoxicity in different cell types are not because of differences in photosensitivity between the photosensitizers, but rather are associated with different distribution and accumulation rates in the different cell types. These data suggest that evaluation of photosensitizers for PDT should be carried out using as large a variety of cell types as possible because each photosensitizer may have cell type specificity.
Puccia, R; Grondin, B; Herscovics, A
1993-01-01
Processing of N-linked oligosaccharides in Saccharomyces cerevisiae begins with the removal of glucose and mannose residues from Glc3Man9GlcNAc2 to form a single isomer of Man8GlcNAc2. The importance of mannose removal for subsequent outer chain synthesis was examined in strains of S. cerevisiae disrupted in the MNS1 gene encoding a specific alpha 1,2-mannosidase responsible for Man8GlcNAc2 synthesis [Camirand, Heysen, Grondin and Herscovics (1991) J. Biol. Chem. 266, 15120-15127]. Both MNS1 transcripts of 1.85 kb and 1.7 kb were not observed in Northern blots of mns1 cells (i.e. cells containing the disrupted gene). Analysis on Bio-Gel P-6 of endo-beta-N-acetylglucosaminidase-H-sensitive oligosaccharides following a 10 min pulse with [2-3H]mannose revealed similar amounts of labelled outer chains excluded from the gel in both control and mns1 cells. H.p.l.c. of the included oligosaccharides showed that a Man9GlcNAc, rather than a Man8GlcNAc, intermediate was formed in mns1 cells. Analysis of [3H]mannose-labelled core oligosaccharides from immunoprecipitated CPY and invertase by h.p.l.c. showed a similar size distribution in mns1 and control cells. Invertase immunoprecipitated from [35S]methionine-labelled mns1 cells was highly glycosylated, but migrated slightly faster than that from control cells on denaturing PAGE, indicating a small difference in glycosylation. A similar difference in mobility was observed for invertase activity stain following non-denaturing gel electrophoresis. It is concluded that the alpha-mannosidase encoded by MNS1 is the only enzyme responsible for mannose removal in vivo, and that this processing step is not essential for outer chain synthesis. Images Figure 1 Figure 4 PMID:8439291
Biosynthesis of Novel Exopolymers by Aureobasidium pullulans
Lee, Jin W.; Yeomans, Walter G.; Allen, Alfred L.; Deng, Fang; Gross, Richard A.; Kaplan, David L.
1999-01-01
Aureobasidium pullulans ATCC 42023 was cultured under aerobic conditions with glucose, mannose, and glucose analogs as energy sources. The exopolymer extracts produced under these conditions were composed of glucose and mannose. The molar ratio of glucose to mannose in the exopolymer extract and the molecular weight of the exopolymer varied depending on the energy source and culture time. The glucose content of exopolymer extracts formed with glucose and mannose as the carbon sources was between 91 and 87%. The molecular weight decreased from 3.5 × 106 to 2.12 × 106 to 0.85 × 106 to 0.77 × 106 with culture time. As the culture time increased, the glucose content of the exopolymer extract formed with glucosamine decreased from 55 ± 3 to 29 ± 2 mol%, and the molecular weight increased from 2.73 × 106 to 4.86 × 106. There was no evidence that glucosamine was directly incorporated into exopolymers. The molar ratios of glucose to mannose in exopolymer extracts ranged from 87 ± 3:13 ± 3 to 28 ± 2:72 ± 2 and were affected by the energy source added. On the basis of the results of an enzyme hydrolysis analysis of the exopolymer extracts and the compositional changes observed, mannose (a repeating unit) was substituted for glucose, which gave rise to a new family of exopolymer analogs. PMID:10583975
Neco, Antonio Hadson Bastos; Pinto-Junior, Vanir Reis; Araripe, David Alencar; Santiago, Mayara Queiroz; Osterne, Vinicius Jose Silva; Lossio, Claudia Figueiredo; Nobre, Clareane Avelino Simplicio; Oliveira, Messias Vital; Silva, Mayara Torquato Lima; Martins, Maria Gleiciane Queiroz; Cajazeiras, Joao Batista; Marques, Gabriela Fernandes Oliveira; Costa, Diego Rabelo; Nascimento, Kyria Santiago; Assreuy, Ana Maria Sampaio; Cavada, Benildo Sousa
2018-05-24
Lectins represent a class of proteins or glycoproteins capable of reversibly binding to carbohydrates. Seed lectins from the Dalbergieae tribe (Leguminosae) have structural variability, carbohydrate specificity, and biological effects, such as inflammation, vasorelaxation and cancer antigen binding. To comprehensively address these factors, the present work aimed to establish and characterize the three-dimensional structure of Centrolobium microchaete lectin (CML) by homology modeling, investigate protein-carbohydrate interactions and evaluate its inflammatory effect on mice. Molecular docking was performed to analyze interactions of the lectin with monosaccharides, disaccharides and N-glycans. Two dimannosides, methyl mannose-1,3-α-D-mannose (MDM) and mannose-1,3-α-D-mannose (M13), were used in molecular dynamics (MD) simulations to study the behavior of the carbohydrate-recognition domain (CRD) over time. Results showed an expanded domain within which hydrophobic interactions with the methyl group in the MDM molecule were established, thus revealing novel interactions for mannose-specific Dalbergieae lectins. To examine its biological activities, CML was purified in a single step by affinity chromatography on Sepharose-mannose matrix. The lectin demonstrated inflammatory response in the paw edema model and stimulated leukocyte migration to the animal peritoneal cavities, an effect elicited by CRD. For the first time, this work reports the molecular dynamics of a lectin from the Dalbergieae tribe. Copyright © 2018 Elsevier B.V. All rights reserved.
Collier, Alice; Wagner, Gerd K
2017-11-27
We have previously developed a new class of inhibitors and chemical probes for glycosyltransferases through base-modification of the sugar-nucleotide donor. The key feature of these donor analogues is the presence of an additional substituent at the nucleobase. To date, the application of this general concept has been limited to UDP-sugars and UDP-sugar-dependent glycosyltransferases. Herein, we report for the first time the application of our approach to a GDP-mannose-dependent mannosyltransferase. We have prepared four GDP-mannose derivatives with an additional substituent at either position 6 or 8 of the nucleobase. These donor analogues were recognised as donor substrates by the mannosyltransferase Kre2p from yeast, albeit with significantly lower turnover rates than the natural donor GDP-mannose. The presence of the additional substituent also redirected enzyme activity from glycosyl transfer to donor hydrolysis. Taken together, our results suggest that modification of the donor nucleobase is, in principle, a viable strategy for probe and inhibitor development against GDP-mannose-dependent GTs. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Study on suitable harvest time of Dendrobium officinale in Yunnan province].
Zhang, Shan-bao; Zhou, Ke-jun; Zhang, Zhen; Lu, Rui-rui; Li, Xian; Li, Xiao-hua
2015-09-01
In order to determine the suitable harvest time of Dendrobium officinale from different regions in Yunnan province, the drying rate, mannose and glucose peak area ratio, extract, contents of polysaccharide and mannose of D. officinale samples collected from six producing areas in Ynnnan province were determined. The results indicate that drying rate and the contents of polysaccharide and mannose arrived the peak from January to April, extract reached a higher content from September to December, and mannose and glucose peak area ratio from October to February of the coming met the requirment of the Chinese Pharmacopoeia. Hence, the suitable harvesting time of D. officinale in Yunnan province is from December to February of the coming year,according to the experimental results and the request of the Chinese Pharmacopoeia.
Zhu, Yuyang; Yan, Maomao; Lasanajak, Yi; Smith, David F; Song, Xuezheng
2018-07-15
Despite the important advances in chemical and chemoenzymatic synthesis of glycans, access to large quantities of complex natural glycans remains a major impediment to progress in Glycoscience. Here we report a large-scale preparation of N-glycans from a kilogram of commercial soy proteins using oxidative release of natural glycans (ORNG). The high mannose and paucimannose N-glycans were labeled with a fluorescent tag and purified by size exclusion and multidimensional preparative HPLC. Side products are identified and potential mechanisms for the oxidative release of natural N-glycans from glycoproteins are proposed. This study demonstrates the potential for using the ORNG approach as a complementary route to synthetic approaches for the preparation of multi-milligram quantities of biomedically relevant complex glycans. Copyright © 2018 Elsevier Ltd. All rights reserved.
Travelling-wave ion mobility and negative ion fragmentation of high mannose N-glycans
Harvey, David J.; Scarff, Charlotte A.; Edgeworth, Matthew; Struwe, Weston B.; Pagel, Kevin; Thalassinos, Konstantinos; Crispin, Max; Scrivens, Jim
2016-01-01
The isomeric structure of high-mannose N-glycans can significantly impact biological recognition events. Here, the utility of travelling-wave ion mobility-mass spectrometry (TW IM-MS)for isomer separation of high-mannose N-glycans is investigated. Negative ion fragmentation using collision-induced dissociation (CID) gave more informative spectra than positive ion spectra with mass-different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers were being separated. Collision cross sections (CCSs) of the isomers in positive and negative fragmentation mode were estimated from TW IM-MS data using dextran glycans as calibrant. More complete CCS data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N-glycans released from the well-characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross sectional data, details of the negative ion collision-induced dissociation (CID) spectra of all resolved isomers are discussed. PMID:26956389
Sandoval, José Raul; Madsen, Hans O.; De Stefano, Gianfranco; Descailleaux-Dulanto, Jaime; Velazquez-Reinoso, Margarita; Ñique, Cesar; Fujita, Ricardo; Garred, Peter
2014-01-01
Mannose-binding lectin (MBL) is one of the five recognition molecules in the lectin complement pathway. Common variant alleles in the promoter and structural regions of the human MBL gene (MBL2) influence the stability and serum concentration of the protein. Epidemiological studies have shown that MBL2 variant alleles are associated with susceptibility to and the course of different types of infectious and inflammatory conditions. However, it has been suggested that these alleles are maintained in different populations due to selected advantages for carriers. We investigated the MBL2 allelic variation in indigenous individuals from 12 different West Central South America localities spanning from the desert coast, high altitude Andean plates and the Amazon tropical forest within the territories of Peru (n = 249) (Departments of Loreto, Ucayali, Lambayeque, Junin, Ayacucho, Huancayo and Puno), and Ecuador (n = 182) (Region of Esmeraldas and Santo Domingo de los Colorados). The distribution of MBL2 genotypes among the populations showed that the defective variant LYPB haplotype was very common. It showed the highest frequencies in Puno (Taquile (0.80), Amantani (0.80) and Anapia (0.58) islander communities of the Lake Titicaca), but lower frequencies of 0.22 in Junin (Central Andean highland) and Ucayali (Central Amazonian forest), as well as 0.27 and 0.24 in the Congoma and Cayapa/Chachis populations in the Amazonian forest in Ecuador were also observed. Our results suggest that the high prevalence of the MBL2 LYPB variant causing low levels of functional MBL in serum may mainly reflect a random distribution due to a population bottleneck in the founder populations. PMID:25313559
Sandoval, José Raul; Madsen, Hans O; De Stefano, Gianfranco; Descailleaux-Dulanto, Jaime; Velazquez-Reinoso, Margarita; Ñique, Cesar; Fujita, Ricardo; Garred, Peter
2014-01-01
Mannose-binding lectin (MBL) is one of the five recognition molecules in the lectin complement pathway. Common variant alleles in the promoter and structural regions of the human MBL gene (MBL2) influence the stability and serum concentration of the protein. Epidemiological studies have shown that MBL2 variant alleles are associated with susceptibility to and the course of different types of infectious and inflammatory conditions. However, it has been suggested that these alleles are maintained in different populations due to selected advantages for carriers. We investigated the MBL2 allelic variation in indigenous individuals from 12 different West Central South America localities spanning from the desert coast, high altitude Andean plates and the Amazon tropical forest within the territories of Peru (n = 249) (Departments of Loreto, Ucayali, Lambayeque, Junin, Ayacucho, Huancayo and Puno), and Ecuador (n = 182) (Region of Esmeraldas and Santo Domingo de los Colorados). The distribution of MBL2 genotypes among the populations showed that the defective variant LYPB haplotype was very common. It showed the highest frequencies in Puno (Taquile (0.80), Amantani (0.80) and Anapia (0.58) islander communities of the Lake Titicaca), but lower frequencies of 0.22 in Junin (Central Andean highland) and Ucayali (Central Amazonian forest), as well as 0.27 and 0.24 in the Congoma and Cayapa/Chachis populations in the Amazonian forest in Ecuador were also observed. Our results suggest that the high prevalence of the MBL2 LYPB variant causing low levels of functional MBL in serum may mainly reflect a random distribution due to a population bottleneck in the founder populations.
Chen, Minyong; Shi, Xiaofeng; Duke, Rebecca M.; Ruse, Cristian I.; Dai, Nan; Taron, Christopher H.; Samuelson, James C.
2017-01-01
A method for selective and comprehensive enrichment of N-linked glycopeptides was developed to facilitate detection of micro-heterogeneity of N-glycosylation. The method takes advantage of the inherent properties of Fbs1, which functions within the ubiquitin-mediated degradation system to recognize the common core pentasaccharide motif (Man3GlcNAc2) of N-linked glycoproteins. We show that Fbs1 is able to bind diverse types of N-linked glycomolecules; however, wild-type Fbs1 preferentially binds high-mannose-containing glycans. We identified Fbs1 variants through mutagenesis and plasmid display selection, which possess higher affinity and improved recovery of complex N-glycomolecules. In particular, we demonstrate that the Fbs1 GYR variant may be employed for substantially unbiased enrichment of N-linked glycopeptides from human serum. Most importantly, this highly efficient N-glycopeptide enrichment method enables the simultaneous determination of N-glycan composition and N-glycosites with a deeper coverage (compared to lectin enrichment) and improves large-scale N-glycoproteomics studies due to greatly reduced sample complexity. PMID:28534482
Biosynthesis and processing of the mannose receptor in human macrophages.
Lennartz, M R; Cole, F S; Stahl, P D
1989-02-05
The biosynthesis and processing of the human mannose receptor has been studied in monocyte-derived macrophages. Adherent cells were labeled for 60 min with Trans35S (a mixture of 35S-labeled methionine and cysteine), chased, and subjected to immunoprecipitation by antibody raised against the human placental receptor. The antibody immunoprecipitated a single protein of molecular mass 162 kDa; precipitation of the labeled receptor could be inhibited by placental receptor. The results presented demonstrate that the receptor is synthesized as a 154-kDa precursor which is processed to 162 kDa in 90 min. The precursor is a glycoprotein bearing endoglycosidase H-sensitive oligosaccharides; the 162-kDa form is endoglycosidase H-resistant but peptide:N-glycanase-sensitive. Desialylation of the mannose receptor with neuraminidase generates a protein which is recognized by peanut agglutinin, a lectin that specifically binds desialylated O-linked oligosaccharides. Thus, the human macrophage mannose receptor bears both N- and O-linked oligosaccharide chains. Newly synthesized mannose receptor exhibits a half-life of 33 h as determined by pulse-chase studies. This indicates that on the average, each molecule of receptor recycles between the cell surface and endosomes hundreds of times before degradation.
Biofunctionalization on alkylated silicon substrate surfaces via "click" chemistry.
Qin, Guoting; Santos, Catherine; Zhang, Wen; Li, Yan; Kumar, Amit; Erasquin, Uriel J; Liu, Kai; Muradov, Pavel; Trautner, Barbara Wells; Cai, Chengzhi
2010-11-24
Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.
Glickman, J N; Conibear, E; Pearse, B M
1989-01-01
Adaptors mediate the interaction of clathrin with select groups of receptors. Two distinct types of adaptors, the HA-II adaptors (found in plasma membrane coated pits) and the HA-I adaptors (localized to Golgi coated pits) bind to the cytoplasmic portion of the 270 kd mannose 6-phosphate (M6P) receptor-a receptor which is concentrated in coated pits on both the plasma membrane and in the trans-Golgi network. Neither type of adaptor appears to compete with the other for binding, suggesting that each type recognizes a distinct site on the M6P receptor tail. Mutation of the two tyrosines in the tail essentially eliminates the interaction with the HA-II plasma membrane adaptor, which recognizes a 'tyrosine' signal on other endocytosed receptors (for example, the LDL receptor and the poly Ig receptor). In contrast, the wild type and the mutant M6P receptor tail (lacking tyrosines) are equally effective at binding HA-I adaptors. This suggests that there is an HA-I recognition signal in another region of the M6P receptor tail, C-terminal to the tyrosine residues, which remains intact in the mutant. This signal is presumably responsible for the concentration of the M6P receptor, with bound lysosomal enzymes, into coated pits which bud from the trans-Golgi network, thus mediating efficient transfer of these enzymes to lysosomes. Images PMID:2545438
Behrens, Anna-Janina; Harvey, David J.; Milne, Emilia; Cupo, Albert; Kumar, Abhinav; Zitzmann, Nicole; Struwe, Weston B.; Moore, John P.
2016-01-01
ABSTRACT The formation of a correctly folded and natively glycosylated HIV-1 viral spike is dependent on protease cleavage of the gp160 precursor protein in the Golgi apparatus. Cleavage induces a compact structure which not only renders the spike capable of fusion but also limits further maturation of its extensive glycosylation. The redirection of the glycosylation pathway to preserve underprocessed oligomannose-type glycans is an important feature in immunogen design, as glycans contribute to or influence the epitopes of numerous broadly neutralizing antibodies. Here we present a quantitative site-specific analysis of a recombinant, trimeric mimic of the native HIV-1 viral spike (BG505 SOSIP.664) compared to the corresponding uncleaved pseudotrimer and the matched gp120 monomer. We present a detailed molecular map of a trimer-associated glycan remodeling that forms a localized subdomain of the native mannose patch. The formation of native trimers is a critical design feature in shaping the glycan epitopes presented on recombinant vaccine candidates. IMPORTANCE The envelope spike of human immunodeficiency virus type 1 (HIV-1) is a target for antibody-based neutralization. For some patients infected with HIV-1, highly potent antibodies have been isolated that can neutralize a wide range of circulating viruses. It is a goal of HIV-1 vaccine research to elicit these antibodies by immunization with recombinant mimics of the viral spike. These antibodies have evolved to recognize the dense array of glycans that coat the surface of the viral molecule. We show how the structure of these glycans is shaped by steric constraints imposed upon them by the native folding of the viral spike. This information is important in guiding the development of vaccine candidates. PMID:27807235
Becerra-Arteaga, Alejandro; Shuler, Michael L
2007-08-15
We report for the first time that culture conditions, specifically culture medium supplementation with nucleotide-sugar precursors, can alter significantly the N-linked glycosylation of a recombinant protein in plant cell culture. Human secreted alkaline phosphatase produced in tobacco NT1 cell suspension cultures was used as a model system. Plant cell cultures were supplemented with ammonia (30 mM), galactose (1 mM) and glucosamine (10 mM) to improve the extent of N-linked glycosylation. The highest levels of cell density and active extracellular SEAP in supplemented cultures were on average 260 g/L and 0.21 U/mL, respectively, compared to 340 g/L and 0.4 U/mL in unsupplemented cultures. The glycosylation profile of SEAP produced in supplemented cultures was determined via electrospray ionization mass spectrometry with precursor ion scanning and compared to that of SEAP produced in unsupplemented cultures. In supplemented and unsupplemented cultures, two biantennary complex-type structures terminated with one or two N-acetylglucosamines and one paucimannosidic glycan structure comprised about 85% of the SEAP glycan pool. These three structures contained plant-specific xylose and fucose residues and their relative abundances were affected by each supplement. High mannose structures (6-9 mannose residues) accounted for the remaining 15% glycans in all cases. The highest proportion (approximately 66%) of a single complex-type biantennary glycan structure terminated in both antennae by N- acetylglucosamine was obtained with glucosamine supplementation versus only 6% in unsupplemented medium. This structure is amenable for in vitro modification to yield a more human-like glycan and could serve as a route to plant cell culture produced therapeutic glycoproteins. (c) 2007 Wiley Periodicals, Inc.
Oh, Doo-Byoung
2015-08-01
Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy.
C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia
Yamasaki, Sho; Matsumoto, Makoto; Takeuchi, Osamu; Matsuzawa, Tetsuhiro; Ishikawa, Eri; Sakuma, Machie; Tateno, Hiroaki; Uno, Jun; Hirabayashi, Jun; Mikami, Yuzuru; Takeda, Kiyoshi; Akira, Shizuo; Saito, Takashi
2009-01-01
Mincle (also called as Clec4e and Clecsf9) is a C-type lectin receptor expressed in activated phagocytes. Recently, we have demonstrated that Mincle is an FcRγ-associated activating receptor that senses damaged cells. To search an exogenous ligand(s), we screened pathogenic fungi using cell line expressing Mincle, FcRγ, and NFAT-GFP reporter. We found that Mincle specifically recognizes the Malassezia species among 50 different fungal species tested. Malassezia is a pathogenic fungus that causes skin diseases, such as tinea versicolor and atopic dermatitis, and fatal sepsis. However, the specific receptor on host cells has not been identified. Mutation of the putative mannose-binding motif within C-type lectin domain of Mincle abrogated Malassezia recognition. Analyses of glycoconjugate microarray revealed that Mincle selectively binds to α-mannose but not mannan. Thus, Mincle may recognize specific geometry of α-mannosyl residues on Malassezia species and use this to distinguish them from other fungi. Malassezia activated macrophages to produce inflammatory cytokines/chemokines. To elucidate the physiological function of Mincle, Mincle-deficient mice were established. Malassezia-induced cytokine/chemokine production by macrophages from Mincle−/− mice was significantly impaired. In vivo inflammatory responses against Malassezia was also impaired in Mincle−/− mice. These results indicate that Mincle is the first specific receptor for Malassezia species to be reported and plays a crucial role in immune responses to this fungus. PMID:19171887
Identification of the antigenic determinants of factors 8, 9, and 34 of genus Candida.
Kobayashi, H; Oyamada, H; Suzuki, A; Shibata, N; Suzuki, S; Okawa, Y
1996-10-21
We investigated the antigenic determinants of factors 8, 9, and 34 of the genus Candida among pathogenic yeasts by enzyme-linked immunosorbent assay (ELISA) using mannans of Saccharomyces cerevisiae wild type and mutant types, mnn 1-mnn 4 and mnn 2. Results of ELISA including antisera against the antigenic factors of genus Candida (Candida Check, latron; FAbs) indicated that these three types of mannan distinctly react with FAbs 34, 8 and 9, respectively. To identify the recognition sites of these FAbs, we compared the ability of various oligosaccharides to inhibit the binding of the mannans to FAbs. The results indicated that FAb 34 preferentially recognizes linear side chains containing a non-reducing terminal alpha-1,3-linked mannose residue, Man(alpha)1 --> 3Man(alpha)1 --> (2Man(alpha)1 --> )n(2Man) (n > or = 0), and that one of the recognition sites of FAb 9 is linear alpha-1,6-linked oligomannosyl series, Man(alpha)1 --> (6Man(alpha)1 --> )n(6Man) (n > or = 2). On the other hand, the recognition site of FAb 8 apparently consisted of two alpha-1,2-linked oligomannosyl side chains and an alpha-1,6-linked mannose residue that originated from the mannan backbone, Man(alpha)1 --> 2Man(alpha)1 --> 2(Man(alpha)1 -->2Man(alpha)1 --> 6)Man.
Boscariol, R L; Almeida, W A B; Derbyshire, M T V C; Mourão Filho, F A A; Mendes, B M J
2003-09-01
A new method for obtaining transgenic sweet orange plants was developed in which positive selection (Positech) based on the Escherichia coli phosphomannose-isomerase (PMI) gene as the selectable marker gene and mannose as the selective agent was used. Epicotyl segments from in vitro-germinated plants of Valencia, Hamlin, Natal and Pera sweet oranges were inoculated with Agrobacterium tumefaciens EHA101-pNOV2116 and subsequently selected on medium supplemented with different concentrations of mannose or with a combination of mannose and sucrose as a carbon source. Genetic transformation was confirmed by PCR and Southern blot. The transgene expression was evaluated using a chlorophenol red assay and isoenzymes. The transformation efficiency rate ranged from 3% to 23.8%, depending on cultivar. This system provides an efficient manner for selecting transgenic sweet orange plants without using antibiotics or herbicides.
Li, Pei; Liu, Qing; Huang, Chun; Zhao, Xinxin; Roland, Kenneth L; Kong, Qingke
2017-05-15
Colanic Acid (CA) and lipopolysaccharide (LPS) are two major mannose-containing extracellular polysaccharides of Salmonella. Their presence on the bacterial surface can mask conserved protective outer membrane proteins (OMPs) from the host immune system. The mannose moiety in these molecules is derived from GDP-mannose, which is synthesized in several steps. The first two steps require the action of phosphomannose isomerase, encoded by pmi (manA), followed by phosphomannomutase, encoded by manB. There are two copies of manB present in the Salmonella chromosome, one located in the cps gene cluster (cpsG) responsible for CA synthesis, and the other in the rfb gene cluster (rfbK) involved in LPS O-antigen synthesis. In this study, it was demonstrated that the products of cpsG and rfbK are isozymes. To evaluate the impact of these genes on O-antigen synthesis, virulence and immunogenicity, single mutations (Δpmi, ΔrfbK or ΔcpsG) and a double mutation (ΔrfbK ΔcpsG) were introduced into both wild-type Salmonella enterica and an attenuated Δcya Δcrp vaccine strain. The Δpmi, ΔrfbK and ΔcpsG ΔrfbK mutants were defective in LPS synthesis and attenuated for virulence. In orally inoculated mice, strain S122 (Δcrp Δcya ΔcpsG ΔrfbK) and its parent S738 (Δcrp Δcya) were both avirulent and colonized internal tissues. Strain S122 elicited higher levels of anti-S. Typhimurium OMP serum IgG than its parent strain. Mice immunized with S122 were completely protected against challenge with wild-type virulent S. Typhimurium and partially protected against challenge with either wild-type virulent S. Choleraesuis or S. Enteritidis. These data indicate that deletions in rfbK and cpsG are useful mutations for inclusion in future attenuated Salmonella vaccine strains to induce cross-protective immunity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kallemeijn, Wouter W.; Scheij, Saskia; Hoogendoorn, Sascha; Witte, Martin D.; Herrera Moro Chao, Daniela; van Roomen, Cindy P. A. A.; Ottenhoff, Roelof; Overkleeft, Herman S.; Boot, Rolf G.; Aerts, Johannes M. F. G.
2017-01-01
Deficiency of glucocerebrosidase (GBA) causes Gaucher disease (GD). In the common non-neuronopathic GD type I variant, glucosylceramide accumulates primarily in the lysosomes of visceral macrophages. Supplementing storage cells with lacking enzyme is accomplished via chronic intravenous administration of recombinant GBA containing mannose-terminated N-linked glycans, mediating the selective uptake by macrophages expressing mannose-binding lectin(s). Two recombinant GBA preparations with distinct N-linked glycans are registered in Europe for treatment of type I GD: imiglucerase (Genzyme), contains predominantly Man(3) glycans, and velaglucerase (Shire PLC) Man(9) glycans. Activity-based probes (ABPs) enable fluorescent labeling of recombinant GBA preparations through their covalent attachment to the catalytic nucleophile E340 of GBA. We comparatively studied binding and uptake of ABP-labeled imiglucerase and velaglucerase in isolated dendritic cells, cultured human macrophages and living mice, through simultaneous detection of different GBAs by paired measurements. Uptake of ABP-labeled rGBAs by dendritic cells was comparable, as well as the bio-distribution following equimolar intravenous administration to mice. ABP-labeled rGBAs were recovered largely in liver, white-blood cells, bone marrow and spleen. Lungs, brain and skin, affected tissues in severe GD types II and III, were only poorly supplemented. Small, but significant differences were noted in binding and uptake of rGBAs in cultured human macrophages, in the absence and presence of mannan. Mannan-competed binding and uptake were largest for velaglucerase, when determined with single enzymes or as equimolar mixtures of both enzymes. Vice versa, imiglucerase showed more prominent binding and uptake not competed by mannan. Uptake of recombinant GBAs by cultured macrophages seems to involve multiple receptors, including several mannose-binding lectins. Differences among cells from different donors (n = 12) were noted, but the same trends were always observed. Our study suggests that further insight in targeting and efficacy of enzyme therapy of individual Gaucher patients could be obtained by the use of recombinant GBA, trace-labeled with an ABP, preferably equipped with an infrared fluorophore or other reporter tag suitable for in vivo imaging. PMID:28207759
NASA Astrophysics Data System (ADS)
Thuy, Tran Thi; Thorsén, Gunnar
2013-07-01
The serum clearance rate of therapeutic antibodies is important as it affects the clinical efficacy, required dose, and dose frequency. The glycosylation of antibodies has in some studies been shown to have an impact on the elimination rates in vivo. Monitoring changes to the glycan profiles in pharmacokinetics studies can reveal whether the clearance rates of the therapeutic antibodies depend on the different glycoforms, thereby providing useful information for improvement of the drugs. In this paper, a novel method for glycosylation analysis of therapeutic antibodies in serum samples is presented. A microfluidic compact-disc (CD) platform in combination with MALDI-MS was used to monitor changes to the glycosylation profiles of samples incubated in vitro. Antibodies were selectively purified from serum using immunoaffinity capture on immobilized target antigens. The glycans were enzymatically released, purified, and finally analyzed by MALDI-TOF-MS. To simulate changes to glycan profiles after administration in vivo, a therapeutic antibody was incubated in serum with the enzyme α1-2,3 mannosidase to artificially reduce the amount of the high mannose glycoforms. Glycan profiles were monitored at specific intervals during the incubation. The relative abundance of the high mannose 5 glycoform was clearly found to decrease and, simultaneously, that of high mannose 4 increased over the incubation period. The method can be performed in a rapid, parallel, and automated fashion for glycosylation profiling consuming low amounts of samples and reagents. This can contribute to less labor work and reduced cost of the studies of therapeutic antibodies glycosylation in vitro and in vivo.
Cook, Paul D.; Kubiak, Rachel L.; Toomey, Daniel P.; Holden, Hazel M.
2009-01-01
l-colitose and d-perosamine are unusual sugars found in the O-antigens of some Gram-negative bacteria such as Escherichia coli, Vibrio cholerae, and Salmonella enterica, among others. The biosynthetic pathways for these two sugars begin with the formation of GDP-mannose from d-mannose-1-phosphate and GTP followed by the subsequent dehydration and oxidation of GDP-mannose to yield GDP-4-keto-6-deoxymannose. Following the production of GDP-4-keto-6-deoxymannose, the two pathways diverge. In the case of GDP-perosamine biosynthesis, the next step involves an amination reaction at the C-4′ position of the sugar, whereas in GDP-colitose production, the 3′-hydroxyl group is removed. The enzymes catalyzing these reactions are GDP-perosamine synthase and GDP-4-keto-6-deoxymannose-3-dehydratase (ColD), respectively. Both of these enzymes are pyridoxal-5′-phosphate (PLP)-dependent and their three-dimensional structures place them into the well-characterized aspartate aminotransferase superfamily. A comparison of the active site architecture of ColD from Escherichia coli (Strain 5a, type O55:H7) to that of GDP-perosamine synthase from Caulobacter crescentus CB15, suggested that only two mutations would be required to convert ColD into an aminotransferase. Here we present a combined structural and functional analysis of the ColD S187N/H188K mutant protein that, indeed, has been converted from a dehydratase into an aminotransferase. PMID:19402712
Tanaka, Hiroyuki; Maruta, Takanori; Ogawa, Takahisa; Tanabe, Noriaki; Tamoi, Masahiro; Yoshimura, Kazuya; Shigeoka, Shigeru
2015-01-01
GDP-d-mannose (GDP-d-Man) is an important intermediate in ascorbic acid (AsA) synthesis, cell wall synthesis, protein N-glycosylation, and glycosylphosphatidylinositol-anchoring in plants. Thus, the modulation of intracellular levels of GDP-d-Man could be important for maintaining various cellular processes. Here an Arabidopsis GDP-d-Man pyrophosphohydrolase, AtNUDX9 (AtNUDT9; At3g46200), which hydrolysed GDP-d-Man to GMP and mannose 1-phosphate, was identified. The K m and V max values for GDP-d-Man of AtNUDX9 were 376±24 μM and 1.61±0.15 μmol min–1 mg–1 protein, respectively. Among various tissues, the expression levels of AtNUDX9 and the total activity of GDP-d-Man pyrophosphohydrolase were the highest in the roots. The GDP-d-Man pyrophosphohydrolase activity was increased in the root of plants grown in the presence of ammonium. No difference was observed in the levels of AsA in the leaf and root tissues of the wild-type and knockout-nudx9 (KO-nudx9) plants, whereas a marked increase in N-glycoprotein levels and enhanced growth were detected in the roots of KO-nudx9 plants in the presence of ammonium. These results suggest that AtNUDX9 is involved in the regulation of GDP-d-Man levels affecting ammonium sensitivity via modulation of protein N-glycosylation in the roots. PMID:26049160
Shikata, Y; Ohe, H; Mano, N; Kuwada, M; Asakawa, N
1998-06-01
The structure of the N-linked carbohydrate chains of peptide isomerase from the venom of the funnel web spider (Agelenopsis aperta) has been analyzed. Carbohydrates were released from peptide isomerase by hydrazinolysis and reductively aminated with 2-aminopyridine. The fluorescent derivatives were purified by phenol/chloroform extraction, followed by size-exclusion HPLC. The structure of the purified pyridylamino (PA-) carbohydrate chains were analyzed by a combination of two-dimensional HPLC mapping, sugar composition analysis, sequential exoglycosidase digestions, and mass spectrometry. The peptide isomerase contains six kinds of N-linked carbohydrate chains of truncated high-mannose type, with a fucose alpha 1-6 linked to the reducing N-acetylglucosamine in approximately 80% of them.
Glycodendritic structures: promising new antiviral drugs.
Rojo, Javier; Delgado, Rafael
2004-09-01
DC-SIGN, a C-type lectin expressed by dendritic cells, is able to recognize high mannosylated glycoproteins at the surface of a broad range of pathogens including viruses, bacteria, fungi and parasites. For at least some of these agents this interaction appears to be an important part of the infection process. Therefore, this lectin might be considered in the design of new antiviral drugs. In this manner, multivalent carbohydrate systems based on dendrimers and dendritic polymers are promising candidates as antiviral drugs. Boltorn hyperbranched dendritic polymers functionalized with mannose have been used to inhibit DC-SIGN-mediated infection in an Ebola-pseudotyped viral model. Their physiological solubility, lack of toxicity and especially their low price suggest the application of these glycodendritic polymers for possible formulation as microbicides.
Chawla, D; Hughes, R C
1991-10-01
Brefeldin A (BFA), a drug that induces redistribution of Golgi-apparatus proteins into the endoplasmic reticulum, was used to determine the role of subcellular compartmentalization in the processing of asparagine-linked oligosaccharides. Baby-hamster kidney cells were pulse-labelled with [3H]mannose for 30-60 min and chased for up to several hours in the presence or in the absence of BFA or labelled continuously for several hours with and without the drug. Cellular glycoproteins were digested to glycopeptides with Pronase and either fractionated into glycan classes by lectin affinity chromatography or digested further by endoglycosidase H and endoglycosidase D. Released oligosaccharides obtained in the latter procedure were then separated from each other and from endoglycosidase-resistant glycopeptides by paper chromatography. The results show that BFA induces a very fast processing of protein-linked Glc3Man9GlcNAc2 oligosaccharide down to man5GlcNAc2 and conversion into complex-type and hybrid-type glycans. The major difference between untreated and BFA-treated cells is a large increase in bi-antennary and hybrid-type glycans in the latter cells. These results indicate that galactosylation of a mono-antennary GlcNAcMan5GlcNAc2 hybrid blocks subsequent action by mannosidase II and N-acetylglucosaminyl transferase II, producing galactosylated hybrid-type glycans. Similarly, galactosylation of the product of N-acetylglucosaminyltransferases I and II, i.e. a Man3GlcNAc2 core substituted with GlcNAc beta 1----2 on both alpha 1----3- and alpha 1----6-linked mannose residues, blocks branching N-acetylglucosaminyltransferases IV and V, thereby causing an increase in bi-antennary glycans and a decrease in tri- and tetra-antennary glycans.
Zou, Chenhui; La Bonte, Laura R.; Pavlov, Vasile I.; Stahl, Gregory L.
2012-01-01
Hyperglycemia, in the absence of type 1 or 2 diabetes, is an independent risk factor for cardiovascular disease. We have previously demonstrated a central role for mannose binding lectin (MBL)-mediated cardiac dysfunction in acute hyperglycemic mice. In this study, we applied whole-genome microarray data analysis to investigate MBL’s role in systematic gene expression changes. The data predict possible intracellular events taking place in multiple cellular compartments such as enhanced insulin signaling pathway sensitivity, promoted mitochondrial respiratory function, improved cellular energy expenditure and protein quality control, improved cytoskeleton structure, and facilitated intracellular trafficking, all of which may contribute to the organismal health of MBL null mice against acute hyperglycemia. Our data show a tight association between gene expression profile and tissue function which might be a very useful tool in predicting cellular targets and regulatory networks connected with in vivo observations, providing clues for further mechanistic studies. PMID:22375142
Fei, Xiang; Zavorka, Megan E; Malik, Guillaume; Connelly, Christopher M; MacDonald, Richard G; Berkowitz, David B
2017-08-18
A generalized strategy is presented for the rapid assembly of a set of bivalent ligands with a variety of linking functionalities from a common monomer. Herein, an array of phosphatase-inert mannose-6-phosphonate-presenting ligands for the cation-independent-mannose 6-phosphate receptor (CI-MPR) is constructed. Receptor binding affinity varies with linking functionality-the simple amide and 1,5-triazole(tetrazole) being preferred over the 1,4-triazole. This approach is expected to find application across chemical biology, particularly in glycoscience, wherein multivalency often governs molecular recognition.
Bakshi, Souvika; Saha, Bedabrata; Roy, Nand Kishor; Mishra, Sagarika; Panda, Sanjib Kumar; Sahoo, Lingaraj
2012-06-01
A new method for obtaining transgenic cowpea was developed using positive selection based on the Escherichia coli 6-phosphomannose isomerase gene as the selectable marker and mannose as the selective agent. Only transformed cells were capable of utilizing mannose as a carbon source. Cotyledonary node explants from 4-day-old in vitro-germinated seedlings of cultivar Pusa Komal were inoculated with Agrobacterium tumefaciens strain EHA105 carrying the vector pNOV2819. Regenerating transformed shoots were selected on medium supplemented with a combination of 20 g/l mannose and 5 g/l sucrose as carbon source. The transformed shoots were rooted on medium devoid of mannose. Transformation efficiency based on PCR analysis of individual putative transformed shoots was 3.6%. Southern blot analysis on five randomly chosen PCR-positive plants confirmed the integration of the pmi transgene. Qualitative reverse transcription (qRT-PCR) analysis demonstrated the expression of pmi in T₀ transgenic plants. Chlorophenol red (CPR) assays confirmed the activity of PMI in transgenic plants, and the gene was transmitted to progeny in a Mendelian fashion. The transformation method presented here for cowpea using mannose selection is efficient and reproducible, and could be used to introduce a desirable gene(s) into cowpea for biotic and abiotic stress tolerance.
Owen, P; Salton, M R
1975-10-06
The carbohydrate content of mesosomal membranes of Micrococcus lysodeikticus has been shown to be consistently higher (about four times) than that of corresponding plasma membrane preparations. Analysis of washed membrane fractions by gas-liquid chromatography indicated that mannose was the major neutral sugar of both types of membrane (accounting for 95 and 89%, respectively, of the mesosomal and plasma membrane carbohydrate). Small amounts of inositol, glucose and ribose were also detected. We have shown by polyacrylamide gel electrophoresis in sodium dodecylsulphate and by precipitation and agar gel diffusion experiments with concanavalin A that a mannan is the major carbohydrate component of both types of membrane. This polymer can be selectively released from mesosomal membranes by a simple procedure involving low ionic strength-shock and heating to 80 degrees C for 1 min, and purified by ultrafiltration and ethanol precipitation. The mannan contains mannose as the only neutral carbohydrate, is not phosphorylated and does not contain significant amounts of amino sugars or uronic acids. Agar gel electrophoresis experiments, however, indicate an anionic polymer whose acidic properties are eliminated upon mild base hydrolysis. Analysis of native mannan by infrared spectroscopy reveals absorption bands attributable to ester carbonyl groups and to carboxylate ions, consistent with the presence of succinyl residues in the polymer (Owen, P. and Salton, M.R.J. (1975) Biochem, Biophys. Res. Commun. 63, 875--800). A sedimentation coefficient of 1.39 S was obtained by analytical ultracentrifugation in 1.0 M NaCl and a value of one reducing equivalent per 50 mannose residues by reduction with NaB3H4. The polysaccharide was only slightly degraded (2%) by jack bean alpha-mannosidase and could precipitate 15 times its own weight of concanavalin A. The acidic polymers was also detected in the cell "periplasm" and was secreted from cells grown in defined media during the period of decelerating growth.
Ekhlasi-Hundrieser, Mahnaz; Gohr, Katrin; Wagner, Andrea; Tsolova, Miroslava; Petrunkina, Anna; Töpfer-Petersen, Edda
2005-09-01
Sperm are stored in the isthmic region of the oviduct under conditions that maintain viability and suppress early capacitation steps until ovulation occurs. The initial contact between sperm and oviductal epithelium is mediated by carbohydrate-protein interactions. In the pig, the carbohydrate recognition system has been shown to involve oligomannosyl structures. The spermadhesins AWN and AQN1 are the dominant porcine carbohydrate-binding sperm proteins. The objective of this study was to demonstrate that AQN1 contributes to sperm binding to the oviductal epithelium. AQN1 showed a broad carbohydrate-binding pattern as it recognizes both alpha- and beta-linked galactose as well as Manalpha1-3(Manalpha1-6)Man structures, whereas AWN bound only the galactose species. Binding of ejaculated sperm to oviductal epithelium was inhibited by addition of AQN1 but not by AWN. Mannose-binding sites were localized over the rostral region of the sperm head. Flow cytometry showed that, under capacitating conditions, the population of live sperm was shifted within 30 min toward an increase in the proportion of cells with low mannose- and high galactose-binding. The loss of mannose-binding sites was accompanied by the loss of AQN1 in sperm extracts and the significant reduction in the sperm-oviduct binding. The oviductal epithelium was shown by GNA-lectin histochemistry and by SDS-PAGE and lectin blotting of the apical membrane fraction to express mannose components that could be recognized by AQN1. These results demonstrate that the sperm lectin AQN1 fulfils the criteria for an oviduct receptor in the pig and may play a role in the formation of the oviductal sperm reservoir.
Hall, Rebecca A.; Bates, Steven; Lenardon, Megan D.; MacCallum, Donna M.; Wagener, Jeanette; Lowman, Douglas W.; Kruppa, Michael D.; Williams, David L.; Odds, Frank C.; Brown, Alistair J. P.; Gow, Neil A. R.
2013-01-01
The fungal cell wall is the first point of interaction between an invading fungal pathogen and the host immune system. The outer layer of the cell wall is comprised of GPI anchored proteins, which are post-translationally modified by both N- and O-linked glycans. These glycans are important pathogen associated molecular patterns (PAMPs) recognised by the innate immune system. Glycan synthesis is mediated by a series of glycosyl transferases, located in the endoplasmic reticulum and Golgi apparatus. Mnn2 is responsible for the addition of the initial α1,2-mannose residue onto the α1,6-mannose backbone, forming the N-mannan outer chain branches. In Candida albicans, the MNN2 gene family is comprised of six members (MNN2, MNN21, MNN22, MNN23, MNN24 and MNN26). Using a series of single, double, triple, quintuple and sextuple mutants, we show, for the first time, that addition of α1,2-mannose is required for stabilisation of the α1,6-mannose backbone and hence regulates mannan fibril length. Sequential deletion of members of the MNN2 gene family resulted in the synthesis of lower molecular weight, less complex and more uniform N-glycans, with the sextuple mutant displaying only un-substituted α1,6-mannose. TEM images confirmed that the sextuple mutant was completely devoid of the outer mannan fibril layer, while deletion of two MNN2 orthologues resulted in short mannan fibrils. These changes in cell wall architecture correlated with decreased proinflammatory cytokine induction from monocytes and a decrease in fungal virulence in two animal models. Therefore, α1,2-mannose of N-mannan is important for both immune recognition and virulence of C. albicans. PMID:23633946
Mannose-pepstatin conjugates as targeted inhibitors of antigen processing.
Free, Paul; Hurley, Christopher A; Kageyama, Takashi; Chain, Benjamin M; Tabor, Alethea B
2006-05-07
The molecular details of antigen processing, including the identity of the enzymes involved, their intracellular location and their substrate specificity, are still incompletely understood. Selective inhibition of proteolytic antigen processing enzymes such as cathepsins D and E, using small molecular inhibitors such as pepstatin, has proven to be a valuable tool in investigating these pathways. However, pepstatin is poorly soluble in water and has limited access to the antigen processing compartment in antigen presenting cells. We have synthesised mannose-pepstatin conjugates, and neomannosylated BSA-pepstatin conjugates, as tools for the in vivo study of the antigen processing pathway. Conjugation to mannose and to neomannosylated BSA substantially improved the solubility of the conjugates relative to pepstatin. The mannose-pepstatin conjugates showed no reduction in inhibition of cathepsin E, whereas the neomannosylated BSA-pepstatin conjugates showed some loss of inhibition, probably due to steric factors. However, a neomannosylated BSA-pepstatin conjugate incorporating a cleavable disulfide linkage between the pepstatin and the BSA showed the best uptake to dendritic cells and the best inhibition of antigen processing.
Induced Autolysis of Aspergillus oryzae (A. niger group)
Emiliani, Ezio; de Davie, I. Ucha
1962-01-01
The examination of substances formed during induced autolysis by Aspergillus niger was continued in this work, which dealt in particular with carbohydrates. The autolysate contained a large amount of d-glucose (14 to 20% dry wt) and traces of glycolic aldehyde, dihydroxyacetone, ribose, xylose, and fructose. It also contained glycopeptides (about 10% dry wt), which were split from the cell wall during autolysis and which differed from one another in their level of polymerization and their composition. They were constituted by glucose and mannose, glucose and galactose, or mannose, glucose, and galactose (mannose being the most abundant in this case), and amino acids (chiefly alanine, serine, glutamic acid, and aspartic acid). During autolysis, only a part of the cell wall was dissolved, since it retained its shape. Upon further chemical hydrolysis, it produced mostly glucose and glucosamine, and smaller amounts of mannose, galactose, and amino acids. Presumably, glucomannoproteins and glucogalactoproteins were present in the intact cell as a macromolecular complex, constituting, together with chitin, the major part of the cell wall of Aspergillus. PMID:16349623
Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng
2014-11-01
GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.
Oh, Doo-Byoung
2015-01-01
Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy. [BMB Reports 2015; 48(8): 438-444] PMID:25999178
Beck, P J; Orlean, P; Albright, C; Robbins, P W; Gething, M J; Sambrook, J F
1990-01-01
The Saccharomyces cerevisiae DPM1 gene product, dolichol-phosphate-mannose (Dol-P-Man) synthase, is involved in the coupled processes of synthesis and membrane translocation of Dol-P-Man. Dol-P-Man is the lipid-linked sugar donor of the last four mannose residues that are added to the core oligosaccharide transferred to protein during N-linked glycosylation in the endoplasmic reticulum. We present evidence that the S. cerevisiae gene DPM1, when stably transfected into a mutant Chinese hamster ovary cell line, B4-2-1, is able to correct the glycosylation defect of the cells. Evidence for complementation includes (i) fluorescence-activated cell sorter analysis of differential lectin binding to cell surface glycoproteins, (ii) restoration of Dol-P-Man synthase enzymatic activity in crude cell lysates, (iii) isolation and high-performance liquid chromatography fractionation of the lipid-linked oligosaccharides synthesized in the transfected and control cell lines, and (iv) the restoration of endoglycosidase H sensitivity to the oligosaccharides transferred to a specific glycoprotein synthesized in the DPM1 CHO transfectants. Indirect immunofluorescence with a primary antibody directed against the DPM1 protein shows a reticular staining pattern of protein localization in transfected hamster and monkey cell lines. Images PMID:2201896
Khatri, Kshitij; Klein, Joshua A; White, Mitchell R; Grant, Oliver C; Leymarie, Nancy; Woods, Robert J; Hartshorn, Kevan L; Zaia, Joseph
2016-06-01
Despite sustained biomedical research effort, influenza A virus remains an imminent threat to the world population and a major healthcare burden. The challenge in developing vaccines against influenza is the ability of the virus to mutate rapidly in response to selective immune pressure. Hemagglutinin is the predominant surface glycoprotein and the primary determinant of antigenicity, virulence and zoonotic potential. Mutations leading to changes in the number of HA glycosylation sites are often reported. Such genetic sequencing studies predict at best the disruption or creation of sequons for N-linked glycosylation; they do not reflect actual phenotypic changes in HA structure. Therefore, combined analysis of glycan micro and macro-heterogeneity and bioassays will better define the relationships among glycosylation, viral bioactivity and evolution. We present a study that integrates proteomics, glycomics and glycoproteomics of HA before and after adaptation to innate immune system pressure. We combined this information with glycan array and immune lectin binding data to correlate the phenotypic changes with biological activity. Underprocessed glycoforms predominated at the glycosylation sites found to be involved in viral evolution in response to selection pressures and interactions with innate immune-lectins. To understand the structural basis for site-specific glycan microheterogeneity at these sites, we performed structural modeling and molecular dynamics simulations. We observed that the presence of immature, high-mannose type glycans at a particular site correlated with reduced accessibility to glycan remodeling enzymes. Further, the high mannose glycans at sites implicated in immune lectin recognition were predicted to be capable of forming trimeric interactions with the immune-lectin surfactant protein-D. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Ferrero, Maximiliano R; Soprano, Luciana L; Acosta, Diana M; García, Gabriela A; Esteva, Mónica I; Couto, Alicia S; Duschak, Vilma G
2014-09-01
Sulfation, a post-translational modification which plays a key role in various biological processes, is inhibited by competition with chlorate. In Trypanosoma cruzi, the agent of Chagas' disease, sulfated structures have been described as part of glycolipids and we have reported sulfated high-mannose type oligosaccharides in the C-T domain of the cruzipain (Cz) glycoprotein. However, sulfation pathways have not been described yet in this parasite. Herein, we studied the effect of chlorate treatment on T. cruzi with the aim to gain some knowledge about sulfation metabolism and the role of sulfated molecules in this parasite. In chlorate-treated epimastigotes, immunoblotting with anti-sulfates enriched Cz IgGs (AS-enriched IgGs) showed Cz undersulfation. Accordingly, a Cz mobility shift toward higher isoelectric points was observed in 2D-PAGE probed with anti-Cz antibodies. Ultrastructural membrane abnormalities and a significant decrease of dark lipid reservosomes were shown by electron microscopy and a significant decrease in sulfatide levels was confirmed by TLC/UV-MALDI-TOF-MS analysis. Altogether, these results suggest T. cruzi sulfation occurs via PAPS. Sulfated epitopes in trypomastigote and amastigote forms were evidenced using AS-enriched IgGs by immunoblotting. Their presence on trypomastigotes surface was demonstrated by flow cytometry and IF with Cz/dCz specific antibodies. Interestingly, the percentage of infected cardiac HL-1 cells decreased 40% when using chlorate-treated trypomastigotes, suggesting sulfates are involved in the invasion process. The same effect was observed when cells were pre-incubated with dCz, dC-T or an anti-high mannose receptor (HMR) antibody, suggesting Cz sulfates and HMR are also involved in the infection process by T. cruzi. Copyright © 2014 Elsevier B.V. All rights reserved.
2015-01-01
Envelope protein gp120 of human immunodeficiency virus (HIV) is armored with a dense glycan shield, which plays critical roles in envelope folding, immune-evasion, infectivity, and immunogenicity. Site-specific glycosylation profiling of recombinant gp120 is very challenging. Therefore, glycoproteomic analysis of native viral gp120 is still formidable to date. This challenge promoted us to employ a Q-Exactive mass spectrometer to identify low abundant glycopeptides from virion-associated gp120. To search the HCD-MS data for glycopeptides, a novel spectral-aligning strategy was developed. This strategy depends on the observation that glycopeptides and the corresponding deglycosylated peptides share very similar MS/MS pattern in terms of b- and y-ions that do not contain the site of glycosylation. Moreover, glycopeptides with an identical peptide backbone show nearly resembling spectra regardless of the attached glycan structures. For the recombinant gp120, this “copy–paste” spectral pattern of glycopeptides facilitated identification of 2224 spectra using only 18 spectral templates, and after precursor mass correction, 1268 (57%) spectra were assigned to 460 unique glycopeptides accommodating 19 N-linked and one O-linked glycosylation sites (glycosites). Strikingly, we were able to observe five N- and one O-linked glycosites in native gp120. We further revealed that except for Asn276 in the C2 region, glycans were processed to contain both high mannose and hybrid/complex glycans; an additional four N-linked glycosites were decorated with high mannose type. Core 1 O-linked glycan Gal1GalNAc1 was seen for the O-linked glycosite at Thr499. This direct observation of site-specific glycosylation of virion-derived gp120 has implications in HIV glycobiology and vaccine design. PMID:24941220
Almond, Rachael J; Flanagan, Brian F; Kimber, Ian; Dearman, Rebecca J
2012-11-15
With increased interest in genetically modified (GM) crop plants there is an important need to understand the properties that contribute to the ability of such novel proteins to provoke immune and/or allergic responses. One characteristic that may be relevant is glycosylation, particularly as novel expression systems (e.g. bacterial to plant) will impact on the protein glycoprofile. The allergenicity (IgE inducing) and immunogenicity (IgG inducing) properties of wild type native human lactoferrin (NLF) from human milk (hm) and neutrophil granules (n) and a recombinant molecule produced in rice (RLF) have been assessed. These forms of lactoferrin have identical amino acid sequences, but different glycosylation patterns: hmNLF and nNLF have complex glycoprofiles including Lewis (Le)(x) structures, with particularly high levels of Le(x) expressed by nNLF, whereas RLF is simpler and rich in mannose residues. Antibody responses induced in BALB/c strain mice by intraperitoneal exposure to the different forms of lactoferrin were characterised. Immunisation with both forms of NLF stimulated substantial IgG and IgE antibody responses. In contrast, the recombinant molecule was considerably less immunogenic and failed to stimulate detectable IgE, irrespective of endotoxin and iron content. The glycans did not contribute to epitope formation, with equivalent IgE and IgG binding recorded for high titre anti-NLF antisera regardless of whether the immunising NLF or the recombinant molecule were used substrates in the analyses. These data demonstrate that differential glycosylation profiles can have a profound impact on protein allergenicity and immunogenicity, with mannose and Le(x) exhibiting opposing effects. These results have clear relevance for characterising the allergenic hazards of novel proteins in GM crops. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Characterization of mannose binding lectin from channel catfish Ictalurus punctatus
USDA-ARS?s Scientific Manuscript database
Mannose-binding lectin (MBL) is an important component of innate immunity capable of activating the lectin pathway of the complement system. A MBL gene was isolated from channel catfish (Ictalurus punctatus). The deduced protein contains a canonical collagen-like domain, a carbohydrate recognition d...
Li, J; Quilty, J; Popov, M; Reithmeier, R A
2000-07-01
The human erythrocyte anion exchanger (AE)1 (Band 3) contains a single complex N-linked oligosaccharide that is attached to Asn(642) in the fourth extracellular loop of this polytopic membrane protein, while other isoforms (AE2, AE3 and trout AE1) are N-glycosylated on the preceding extracellular loop. Human AE1 expressed in transfected human embryonic kidney (HEK)-293 or COS-7 cells contained a high-mannose oligosaccharide. The lack of oligosaccharide processing was not due to retention of AE1 in the endoplasmic reticulum since biotinylation assays showed that approx. 30% of the protein was expressed at the cell surface. Moving the N-glycosylation site to the preceding extracellular loop in an AE1 glycosylation mutant (N555) resulted in processing of the oligosaccharide and production of a complex form of AE1. A double N-glycosylation mutant (N555/N642) contained both a high-mannose and a complex oligosaccharide chain. The complex form of the N555 mutant could be biotinylated showing that this form of the glycoprotein was at the cell surface. Pulse-chase experiments showed that the N555 mutant was efficiently converted from a high-mannose to a complex oligosaccharide with a half-time of approx. 4 h, which reflected the time course of trafficking of AE1 from the endoplasmic reticulum to the plasma membrane. The turnover of the complex form of the N555 mutant occurred with a half-life of approx. 15 h. The results show that the oligosaccharide attached to the endogenous site in extracellular loop 4 in human AE1 is not processed in HEK-293 or COS-7 cells, while the oligosaccharide attached to the preceding loop is converted into the complex form.
Wang, Linlin; Koppolu, Sujeethraj; Chappell, Catherine; Moncla, Bernard J.; Hillier, Sharon L.; Mahal, Lara K.
2015-01-01
The cervicovaginal fluid (CVF) coating the vaginal epithelium is an important immunological mediator, providing a barrier to infection. Glycosylation of CVF proteins, such as mucins, IgG and S-IgA, plays a critical role in their immunological functions. Although multiple factors, such as hormones and microflora, may influence glycosylation of the CVF, few studies have examined their impact on this important immunological fluid. Herein we analyzed the glycosylation of cervicovaginal lavage (CVL) samples collected from 165 women under different hormonal conditions including: (1) no contraceptive, post-menopausal, (2) no contraceptive, days 1-14 of the menstrual cycle, (3) no contraceptive, days 15-28 of the menstrual cycle, (4) combined-oral contraceptive pills for at least 6 months, (5) depo-medroxyprogesterone acetate (Depo-Provera) injections for at least 6 months, (6) levonorgestrel IUD for at least 1 month. Glycomic profiling was obtained using our lectin microarray system, a rapid method to analyze carbohydrate composition. Although some small effects were observed due to hormone levels, the major influence on the glycome was the presence of an altered bacterial cohort due to bacterial vaginosis (BV). Compared to normal women, samples from women with BV contained lower levels of sialic acid and high-mannose glycans in their CVL. The change in high mannose levels was unexpected and may be related to the increased risk of HIV-infection observed in women with BV, as high mannose receptors are a viral entry pathway. Changes in the glycome were also observed with hormonal contraceptive use, in a contraceptive-dependent manner. Overall, microflora had a greater impact on the glycome than hormonal levels, and both of these effects should be more closely examined in future studies given the importance of glycans in the innate immune system. PMID:25993513
Wang, Linlin; Koppolu, Sujeethraj; Chappell, Catherine; Moncla, Bernard J; Hillier, Sharon L; Mahal, Lara K
2015-01-01
The cervicovaginal fluid (CVF) coating the vaginal epithelium is an important immunological mediator, providing a barrier to infection. Glycosylation of CVF proteins, such as mucins, IgG and S-IgA, plays a critical role in their immunological functions. Although multiple factors, such as hormones and microflora, may influence glycosylation of the CVF, few studies have examined their impact on this important immunological fluid. Herein we analyzed the glycosylation of cervicovaginal lavage (CVL) samples collected from 165 women under different hormonal conditions including: (1) no contraceptive, post-menopausal, (2) no contraceptive, days 1-14 of the menstrual cycle, (3) no contraceptive, days 15-28 of the menstrual cycle, (4) combined-oral contraceptive pills for at least 6 months, (5) depo-medroxyprogesterone acetate (Depo-Provera) injections for at least 6 months, (6) levonorgestrel IUD for at least 1 month. Glycomic profiling was obtained using our lectin microarray system, a rapid method to analyze carbohydrate composition. Although some small effects were observed due to hormone levels, the major influence on the glycome was the presence of an altered bacterial cohort due to bacterial vaginosis (BV). Compared to normal women, samples from women with BV contained lower levels of sialic acid and high-mannose glycans in their CVL. The change in high mannose levels was unexpected and may be related to the increased risk of HIV-infection observed in women with BV, as high mannose receptors are a viral entry pathway. Changes in the glycome were also observed with hormonal contraceptive use, in a contraceptive-dependent manner. Overall, microflora had a greater impact on the glycome than hormonal levels, and both of these effects should be more closely examined in future studies given the importance of glycans in the innate immune system.
Schildbach, Anna; Klapproth, Jan; Schierhorn, Angelika; Mahour, Reza; Pietzsch, Markus; Rapp, Erdmann; Reichl, Udo
2017-01-01
Abstract Glycosylation of proteins is a key function of the biosynthetic‐secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Glycosylated proteins play a crucial role in cell trafficking and signaling, cell‐cell adhesion, blood‐group antigenicity, and immune response. In addition, the glycosylation of proteins is an important parameter in the optimization of many glycoprotein‐based drugs such as monoclonal antibodies. In vitro glycoengineering of proteins requires glycosyltransferases as well as expensive nucleotide sugars. Here, we present a designed pathway consisting of five enzymes, glucokinase (Glk), phosphomannomutase (ManB), mannose‐1‐phosphate‐guanyltransferase (ManC), inorganic pyrophosphatase (PmPpA), and 1‐domain polyphosphate kinase 2 (1D‐Ppk2) expressed in E. coli for the cell‐free production and regeneration of GDP‐mannose from mannose and polyphosphate with catalytic amounts of GDP and ADP. It was shown that GDP‐mannose is produced at various conditions, that is pH 7–8, temperature 25–35°C and co‐factor concentrations of 5–20 mM MgCl2. The maximum reaction rate of GDP‐mannose achieved was 2.7 μM/min at 30°C and 10 mM MgCl2 producing 566 nmol GDP‐mannose after a reaction time of 240 min. With respect to the initial GDP concentration (0.8 mM) this is equivalent to a yield of 71%. Additionally, the cascade was coupled to purified, transmembrane‐deleted Alg1 (ALG1ΔTM), the first mannosyltransferase in the ER‐associated lipid‐linked oligosaccharide (LLO) assembly. Thereby, in a one‐pot reaction, phytanyl‐PP‐(GlcNAc)2‐Man1 was produced with efficient nucleotide sugar regeneration for the first time. Phytanyl‐PP‐(GlcNAc)2‐Man1 can serve as a substrate for the synthesis of LLO for the cell‐free in vitro glycosylation of proteins. A high‐performance anion exchange chromatography method with UV and conductivity detection (HPAEC‐UV/CD) assay was optimized and validated to determine the enzyme kinetics. The established kinetic model enabled the optimization of the GDP‐mannose regenerating cascade and can further be used to study coupling of the GDP‐mannose cascade with glycosyltransferases. Overall, the study envisages a first step towards the development of a platform for the cell‐free production of LLOs as precursors for in vitro glycoengineering of proteins. PMID:28922469
Adlerberth, I; Ahrne, S; Johansson, M L; Molin, G; Hanson, L A; Wold, A E
1996-07-01
Two Lactobacillus plantarum strains of human intestinal origin, strains 299 (= DSM 6595) and 299v (= DSM 9843), have proved to be efficient colonizers of the human intestine under experimental conditions. These strains and 17 other L. plantarum strains were tested for the ability to adhere to cells of the human colonic cell line HT-29.L.plantarum 299 and 299v and nine other L. plantarum strains, including all six strains that belong to the same genetic subgroup as L. plantarum 299 and 299v, adhered to HT-29 cells in a manner that could be inhibited by methyl-alpha-D-mannoside. The ability to adhere to HT-29 cells correlated with an ability to agglutinate cells of Saccharomyces cerevisiae and erythrocytes in a mannose-sensitive manner and with adherence to D-mannose-coated agarose beads. L. plantarum 299 and 299v adhered to freshly isolated human colonic and ileal enterocytes, but the binding was not significantly inhibited by methyl-alpha-D-mannoside. Periodate treatment of HT-29 cells abolished mannose-sensitive adherence, confirming that the cell-bound receptor was of carbohydrate nature. Proteinase K treatment of the bacteria also abolished adherence, indicating that the binding involved protein structures on the bacterial cell surface. Thus, a mannose-specific adhesin has been identified in L. plantarum; this adhesin could be involved in the ability to colonize the intestine.
Nigou, J; Vercellone, A; Puzo, G
2000-06-23
Lipoarabinomannans are key molecules of the mycobacterial envelopes involved in many steps of tuberculosis immunopathogenesis. Several of the biological activities of lipoarabinomannans are mediated by their ability to bind human C-type lectins, such as the macrophage mannose receptor, the mannose-binding protein and the surfactant proteins A and D. The lipoarabinomannan mannooligosaccharide caps have been demonstrated to be involved in the binding to the lectin carbohydrate recognition domains. We report an original analytical approach, based on capillary electrophoresis monitored by laser-induced fluorescence, allowing the absolute quantification, in nanomole quantities of lipoarabinomannan, of the number of mannooligosaccharide units per lipoarabinomannan molecule. Moreover, this analytical approach was successful for the glycosidic linkage determination of the mannooligosaccharide motifs and has been applied to the comparative analysis of parietal and cellular lipoarabinomannans of Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Rv, H37Ra and Erdman strains. Significant differences were observed in the amounts of the various mannooligosaccharide units between lipoarabinomannans of different strains and between parietal and cellular lipoarabinomannans of the same strain. Nevertheless, no relationship was found between the number of mannooligosaccharide caps and the virulence of the corresponding strain. The results of the present study should help us to gain more understanding of the molecular basis of lipoarabinomannan discrimination in the process of binding to C-type lectins. Copyright 2000 Academic Press.
Mannose Receptor 2 Attenuates Renal Fibrosis
López-Guisa, Jesús M.; Cai, Xiaohe; Collins, Sarah J.; Yamaguchi, Ikuyo; Okamura, Daryl M.; Bugge, Thomas H.; Isacke, Clare M.; Emson, Claire L.; Turner, Scott M.; Shankland, Stuart J.
2012-01-01
Mannose receptor 2 (Mrc2) expresses an extracellular fibronectin type II domain that binds to and internalizes collagen, suggesting that it may play a role in modulating renal fibrosis. Here, we found that Mrc2 levels were very low in normal kidneys but subsets of interstitial myofibroblasts and macrophages upregulated Mrc2 after unilateral ureteral obstruction (UUO). Renal fibrosis and renal parenchymal damage were significantly worse in Mrc2-deficient mice. Similarly, Mrc2-deficient Col4α3−/− mice with hereditary nephritis had significantly higher levels of total kidney collagen, serum BUN, and urinary protein than Mrc2-sufficient Col4α3−/− mice. The more severe phenotype seemed to be the result of reduced collagen turnover, because procollagen III (α1) mRNA levels and fractional collagen synthesis in the wild-type and Mrc2-deficient kidneys were similar after UUO. Although Mrc2 associates with the urokinase receptor, differences in renal urokinase activity did not account for the increased fibrosis in the Mrc2-deficient mice. Treating wild-type mice with a cathepsin inhibitor, which blocks proteases implicated in Mrc2-mediated collagen degradation, worsened UUO-induced renal fibrosis. Cathepsin mRNA profiles were similar in Mrc2-positive fibroblasts and macrophages, and Mrc2 genotype did not alter relative cathepsin mRNA levels. Taken together, these data establish an important fibrosis-attenuating role for Mrc2-expressing renal interstitial cells and suggest the involvement of a lysosomal collagen turnover pathway. PMID:22095946
Wong, Michelle; Öhrmalm, Lars; Broliden, Kristina; Aust, Carl; Hibberd, Martin; Tolfvenstam, Thomas
2012-01-01
Mannose-binding Lectin protein (MBL) has been suggested to be relevant in the defence against infections in immunosuppressed individuals. In a Swedish adult cohort immunosuppressed from both the underlying disease and from iatrogenic treatments for their underlying disease we investigated the role of MBL in susceptibility to infection. In this cross sectional, prospective study, blood samples obtained from 96 neutropaenic febrile episodes, representing 82 individuals were analysed for single nucleotide polymorphism (SNP) in the MBL2 gene. Concurrent measurement of plasma MBL protein concentrations was also performed for observation of acute response during febrile episodes. No association was observed between MBL2 genotype or plasma MBL concentrations, and the type or frequency of infection. Adding to the literature, we found no evidence that viral infections or co-infections with virus and bacteria would be predisposed by MBL deficiency. We further saw no correlation between MBL2 genotype and the risk of fever. However, fever duration in febrile neutropaenic episodes was negatively associated with MBL2 SNP mutations (p<0.05). Patients with MBL2 SNP mutations presented a median febrile duration of 1.8 days compared with 3 days amongst patients with wildtype MBL2 genotype. We found no clear association between infection, or infection type to MBL2 genotypes or plasma MBL concentration, and add to the reports casting doubts on the benefit of recombinant MBL replacement therapy use during iatrogenic neutropaenia.
Wong, Michelle; Öhrmalm, Lars; Broliden, Kristina; Aust, Carl; Hibberd, Martin; Tolfvenstam, Thomas
2012-01-01
Background Mannose-binding Lectin protein (MBL) has been suggested to be relevant in the defence against infections in immunosuppressed individuals. In a Swedish adult cohort immunosuppressed from both the underlying disease and from iatrogenic treatments for their underlying disease we investigated the role of MBL in susceptibility to infection. Methods In this cross sectional, prospective study, blood samples obtained from 96 neutropaenic febrile episodes, representing 82 individuals were analysed for single nucleotide polymorphism (SNP) in the MBL2 gene. Concurrent measurement of plasma MBL protein concentrations was also performed for observation of acute response during febrile episodes. Findings No association was observed between MBL2 genotype or plasma MBL concentrations, and the type or frequency of infection. Adding to the literature, we found no evidence that viral infections or co-infections with virus and bacteria would be predisposed by MBL deficiency. We further saw no correlation between MBL2 genotype and the risk of fever. However, fever duration in febrile neutropaenic episodes was negatively associated with MBL2 SNP mutations (p<0.05). Patients with MBL2 SNP mutations presented a median febrile duration of 1.8 days compared with 3 days amongst patients with wildtype MBL2 genotype. Interpretation We found no clear association between infection, or infection type to MBL2 genotypes or plasma MBL concentration, and add to the reports casting doubts on the benefit of recombinant MBL replacement therapy use during iatrogenic neutropaenia. PMID:22363494
Tanaka, Hiroyuki; Maruta, Takanori; Ogawa, Takahisa; Tanabe, Noriaki; Tamoi, Masahiro; Yoshimura, Kazuya; Shigeoka, Shigeru
2015-09-01
GDP-d-mannose (GDP-d-Man) is an important intermediate in ascorbic acid (AsA) synthesis, cell wall synthesis, protein N-glycosylation, and glycosylphosphatidylinositol-anchoring in plants. Thus, the modulation of intracellular levels of GDP-d-Man could be important for maintaining various cellular processes. Here an Arabidopsis GDP-d-Man pyrophosphohydrolase, AtNUDX9 (AtNUDT9; At3g46200), which hydrolysed GDP-d-Man to GMP and mannose 1-phosphate, was identified. The K m and V max values for GDP-d-Man of AtNUDX9 were 376±24 μM and 1.61±0.15 μmol min(-1) mg(-1) protein, respectively. Among various tissues, the expression levels of AtNUDX9 and the total activity of GDP-d-Man pyrophosphohydrolase were the highest in the roots. The GDP-d-Man pyrophosphohydrolase activity was increased in the root of plants grown in the presence of ammonium. No difference was observed in the levels of AsA in the leaf and root tissues of the wild-type and knockout-nudx9 (KO-nudx9) plants, whereas a marked increase in N-glycoprotein levels and enhanced growth were detected in the roots of KO-nudx9 plants in the presence of ammonium. These results suggest that AtNUDX9 is involved in the regulation of GDP-d-Man levels affecting ammonium sensitivity via modulation of protein N-glycosylation in the roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Torres-Tirado, David; Knabb, Maureen; Castaño, Irene; Patrón-Soberano, Araceli; De Las Peñas, Alejandro; Rubio, Rafael
2016-01-01
Candida glabrata (CG) is an opportunistic fungal pathogen that initiates infection by binding to host cells via specific lectin-like adhesin proteins. We have previously shown the importance of lectin-oligosaccharide binding in cardiac responses to flow and agonists. Because of the lectinic-oligosaccharide nature of CG binding, we tested the ability of CG to alter the agonist- and flow-induced changes in cardiac function in isolated perfused guinea pig hearts. Both transmission and scanning electron microscopy showed strong attachment of CG to the coronary endothelium, even after extensive washing. CG shifted the coronary flow vs. auricular-ventricular (AV) delay relationship upward, indicating that greater flow was required to achieve the same AV delay. This effect was completely reversed with mannose, partially reversed with galactose and N-acetylgalactosamine, but hyaluronan had no effect. Western blot analysis was used to determine binding of CG to isolated coronary endothelial luminal membrane (CELM) receptors, and the results indicate that flow-sensitive CELM receptors, ANG II type I, α-adrenergic 1A receptor, endothelin-2, and VCAM-1 bind to CG. In addition, CG inhibited agonist-induced effects of bradykinin, angiotensin, and phenylephrine on AV delay, coronary perfusion pressure, and left ventricular pressure. Mannose reversed the inhibitory effects of CG on the agonist responses. These results suggest that CG directly binds to flow-sensitive CELM receptors via lectinic-oligosaccharide interactions with mannose and disrupts the lectin-oligosaccharide binding necessary for flow-induced cardiac responses. Copyright © 2016 the American Physiological Society.
Isomer Information from Ion Mobility Separation of High-Mannose Glycan Fragments.
Harvey, David J; Seabright, Gemma E; Vasiljevic, Snezana; Crispin, Max; Struwe, Weston B
2018-05-01
Extracted arrival time distributions of negative ion CID-derived fragments produced prior to traveling-wave ion mobility separation were evaluated for their ability to provide structural information on N-linked glycans. Fragmentation of high-mannose glycans released from several glycoproteins, including those from viral sources, provided over 50 fragments, many of which gave unique collisional cross-sections and provided additional information used to assign structural isomers. For example, cross-ring fragments arising from cleavage of the reducing terminal GlcNAc residue on Man 8 GlcNAc 2 isomers have unique collision cross-sections enabling isomers to be differentiated in mixtures. Specific fragment collision cross-sections enabled identification of glycans, the antennae of which terminated in the antigenic α-galactose residue, and ions defining the composition of the 6-antenna of several of the glycans were also found to have different cross-sections from isomeric ions produced in the same spectra. Potential mechanisms for the formation of the various ions are discussed and the estimated collisional cross-sections are tabulated. Graphical Abstract ᅟ.
Immunochemical characterization of the "native" type III polysaccharide of group B Streptococcus
1976-01-01
The type III polysaccharide of -roup B Streptococcus has been isolated and purified by a method that employs washing of intact cells at neutral pH. That the polysaccharide prepared by this procedure is the "native" type III antigen is suggested by its molecular size in excess of 10(6) daltons, its degradation by acid and heat treatment to a fragment with immunologic characteristics of the classical HCl antigen, and its type-specific serologic activity. The type III polysaccharide in native form contains sialic acid, galactose, glucose, glucosamine, heptose, and mannose. It is acidic in nature, is resistant to neuramindiase degradation, contains no O-acetyl groups, and does not share antigenic determinants with capsular type K1 antigen of Escherichia coli or Group B polysaccharide antigen of Neiserria meningitidis. PMID:55450
Direct demonstration of the lectin activity of gp90MEL, a lymphocyte homing receptor
1990-01-01
Considerable evidence implicates gp90MEL as a lymphocyte homing receptor mediating lymphocyte attachment to high endothelial venules of lymph nodes in mouse. The protein appears to function as a calcium- dependent, lectin-like receptor as inferred primarily by the ability of specific carbohydrates to block its function and by the presence of a calcium-type lectin domain in its primary sequence. An ELISA assay is described which provides the first demonstration that the isolated protein has lectin activity and allows a further definition of its carbohydrate specificity. In addition to the monosaccharides mannose-6- phosphate and fructose-1-phosphate, ligand activity is shown for the sulfated glycolipid, sulfatide, and for two sulfated fucose-containing polysaccharides (fucoidin and egg jelly coat) from nonmammalian sources. PMID:2202735
NASA Astrophysics Data System (ADS)
Michalcová, Alena; Machado, Larissa; Marek, Ivo; Martinec, Marek; Sluková, Marcela; Vojtěch, Dalibor
2018-02-01
Silver nanoparticles are well known for their catalytic and antimicrobial properties. In their production, the modified Tollens' process using saccharides as reduction agents is very popular. In this paper, the possibility of silver nanoparticles reduction by fructose, glucose, galactose, mannose, maltose, lactose and saccharose is shown. The size of successfully prepared nanoparticles was 16-70 nm depending on the saccharide type. The influence of NaOH and NH3 presence in reaction mixture on size of nanoparticles was described. Surprisingly good results were obtained using saccharose that is, however, known as non-reducing disaccharide.
Guo, Shou-Dong; Cui, Ying-Jie; Wang, Ren-Zhong; Wang, Ren-Yuan; Wu, Wen-Xue; Ma, Teng
2014-09-01
The authors designed to separate, purify and determine the monosaccharide composition of the polysaccharide from Cordyceps militaris, and study its effect on reverse cholesterol transport in vivo by isotope tracing assay. Polysaccharides were separate and purify by ion exchange column Q-sepharose Fast Flow and size exclusion column Sephacryl S200HR; the molecular weight and monosaccharide composition of the polysaccharides were determined by high performance gel permeation chromatography and high performance liquid chromatography coming with pre-column derivation, respectively. Finally, three purified polysaccharides CMBW1, CMBW2 and CMYW1 were obtained, their total carbohydrate contents were 87%, 89%, 95%, respectively; their protein contents were 6.5%, 1.3%, 2.8%, respectively; their molecular weights were 772.1, 20.9, 13.2 kDa, respectively; CMBW1 was composed of mannose, glucosamine, rhamnose, glucuronic acid, glucose, galactose and arabinose with a molar ratio of 7.25: 0.17: 1.29: 0.23: 6.30: 11.08: 0.79; CMBW2 was composed of mannose, glucosamine, galactose and arabinose with a molar ratio of 2.40: 0.16: 2.92: 0.24; CMYW1 was composed of mannose, glucosamine, glucuronic acid and glucose with a molar ratio of 0.59: 0.57: 0.45: 25.61. Polysaccharide at 50 mg x kg(-1) could significantly improve the transport of 3H- cholesterol to blood and excretion from feces. All of the three purified polysaccharides CMBW1, CMBW2 and CMYW1 were heteropolysaccharide; and they could improve reverse cholesterol transport in vivo, the underlying mechanisms are being studied.
Dietrich, Karolin; Dumont, Marie-Josée; Schwinghamer, Timothy; Orsat, Valérie; Del Rio, Luis F
2018-01-08
Softwood hemicellulose hydrolysates are a cheap source of sugars that can be used as a feedstock to produce polyhydroxybutyrates (PHB), which are biobased and compostable bacterial polyesters. To assess the potential of the hemicellulosic sugars as a carbon source for PHB production, synthetic media containing softwood hemicellulose sugars (glucose, mannose, galactose, xylose, arabinose) and the potentially inhibitory lignocellulose degradation products (acetic acid, 5-hydroxymethylfurfural (HMF), furfural, and vanillin) were fermented with the model strain Paraburkholderia sacchari IPT 101. Relative to pure glucose, individual fermentation for 24 h with 20 g/L mannose or galactose exhibited maximum specific growth rates of 97% and 60%, respectively. On the other hand, with sugar mixtures of glucose, mannose, galactose, xylose, and arabinose, the strain converted all sugars simultaneously to reach a maximum PHB concentration of 5.72 g/L and 80.5% PHB after 51 h. The addition of the inhibitor mixture at the following concentration, sodium acetate (2.11 g/L), HMF (0.67 g/L), furfural (0.66 g/L), and vanillin (0.93 g/L), to the sugar mixture stopped the growth entirely within 24 h. Individually, the inhibitors either had no effect or only reduced growth. Moreover, it was found that a bacterial inoculum with high initial cell density (optical density, OD ≥ 5.6) could overcome the growth inhibition to yield an OD of 13 within 24 h. Therefore, softwood hemicellulose sugars are viable carbon sources for PHB production. Nevertheless, real softwood hemicellulose hydrolysates need detoxification or a high inoculum to overcome inhibitory effects and allow bacterial growth.
Frutapin, a lectin from Artocarpus incisa (breadfruit): cloning, expression and molecular insights
da Silva, Bruno Bezerra; Furtado, Gilvan Pessoa; Carneiro, Igor de Sa; Lobo, Marina Duarte Pinto; Guan, Yiwei; Guo, Jingxu; Coker, Alun R.; Lourenzoni, Marcos Roberto; Guedes, Maria Izabel Florindo; Owen, James S.; Abraham, David J.; Monteiro-Moreira, Ana Cristina de Oliveira; Moreira, Renato de Azevedo
2017-01-01
Artocarpus incisa (breadfruit) seeds contain three different lectins (Frutalin, Frutapin (FTP) and Frutackin) with distinct carbohydrate specificities. The most abundant lectin is Frutalin, an α-D-galactose-specific carbohydrate-binding glycoprotein with antitumour properties and potential for tumour biomarker discovery as already reported. FTP is the second most abundant, but proved difficult to purify with very low yields and contamination with Frutalin frustrating its characterization. Here, we report for the first time high-level production and isolation of biologically active recombinant FTP in Escherichia coli BL21, optimizing conditions with the best set yielding >40 mg/l culture of soluble active FTP. The minimal concentration for agglutination of red blood cells was 62.5 µg/ml of FTP, a process effectively inhibited by mannose. Apo-FTP, FTP–mannose and FTP–glucose crystals were obtained, and they diffracted X-rays to a resolution of 1.58 (P212121), 1.70 (P3121) and 1.60 (P3121) Å respectively. The best solution showed four monomers per asymmetric unit. Molecular dynamics (MD) simulation suggested that FTP displays higher affinity for mannose than glucose. Cell studies revealed that FTP was non-cytotoxic to cultured mouse fibroblast 3T3 cells below 0.5 mg/ml and was also capable of stimulating cell migration at 50 µg/ml. In conclusion, our optimized expression system allowed high amounts of correctly folded soluble FTP to be isolated. This recombinant bioactive lectin will now be tested in future studies for therapeutic potential; for example in wound healing and tissue regeneration. PMID:28684550
Frutapin, a lectin from Artocarpus incisa (breadfruit): cloning, expression and molecular insights.
de Sousa, Felipe Domingos; da Silva, Bruno Bezerra; Furtado, Gilvan Pessoa; Carneiro, Igor de Sa; Lobo, Marina Duarte Pinto; Guan, Yiwei; Guo, Jingxu; Coker, Alun R; Lourenzoni, Marcos Roberto; Guedes, Maria Izabel Florindo; Owen, James S; Abraham, David J; Monteiro-Moreira, Ana Cristina de Oliveira; Moreira, Renato de Azevedo
2017-08-31
Artocarpus incisa (breadfruit) seeds contain three different lectins (Frutalin, Frutapin (FTP) and Frutackin) with distinct carbohydrate specificities. The most abundant lectin is Frutalin, an α-D-galactose-specific carbohydrate-binding glycoprotein with antitumour properties and potential for tumour biomarker discovery as already reported. FTP is the second most abundant, but proved difficult to purify with very low yields and contamination with Frutalin frustrating its characterization. Here, we report for the first time high-level production and isolation of biologically active recombinant FTP in Escherichia coli BL21, optimizing conditions with the best set yielding >40 mg/l culture of soluble active FTP. The minimal concentration for agglutination of red blood cells was 62.5 µg/ml of FTP, a process effectively inhibited by mannose. Apo-FTP, FTP-mannose and FTP-glucose crystals were obtained, and they diffracted X-rays to a resolution of 1.58 (P2 1 2 1 2 1 ), 1.70 (P3 1 21) and 1.60 (P3 1 21) Å respectively. The best solution showed four monomers per asymmetric unit. Molecular dynamics (MD) simulation suggested that FTP displays higher affinity for mannose than glucose. Cell studies revealed that FTP was non-cytotoxic to cultured mouse fibroblast 3T3 cells below 0.5 mg/ml and was also capable of stimulating cell migration at 50 µg/ml. In conclusion, our optimized expression system allowed high amounts of correctly folded soluble FTP to be isolated. This recombinant bioactive lectin will now be tested in future studies for therapeutic potential; for example in wound healing and tissue regeneration. © 2017 The Author(s).
USDA-ARS?s Scientific Manuscript database
The channel catfish virus (CCV) is a pathogenic herpesvirus that infects channel catfish (Ictalurus punctatus) in pond aquaculture in the Southeast USA. The innate immune protein mannose-binding lectin (MBL) could play an important role in the innate response of channel catfish by binding to the CC...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
... Status; Danisco USA, Inc., Sweeteners Division (Xylitol, Xylose, Galactose and Mannose); Thomson, IL...., Sweeteners Division, located in Thomson, Illinois, (FTZ Docket 4-2009, filed 2/4/2009); Whereas, notice... xylitol, xylose, galactose and mannose at the facility of Danisco USA, Inc., Sweeteners Division, located...
O'Mary, Hannah L; Aldayel, Abdulaziz M; Valdes, Solange A; Naguib, Youssef W; Li, Xu; Salvady, Karun; Cui, Zhengrong
2017-06-05
Inflammation is implicated in a host of chronic illnesses. Within these inflamed tissues, the pH of the microenvironment is decreased and immune cells, particularly macrophages, infiltrate the area. Additionally, the vascular integrity of these sites is altered with increased fenestrations between endothelial cells. These distinctive properties may be exploited to enhance targeted delivery of anti-inflammatory therapies. Using a mouse model of chronic inflammation, we previously showed that acid-sensitive sheddable PEGylation increases the distribution and retention of nanoparticles in chronic inflammation sites. Here we demonstrated that surface modification of the acid-sensitive sheddable PEGylated nanoparticles with mannose, a ligand to mannose receptors present in chronic inflammation sites, significantly increases the targeted delivery of the nanoparticles to these areas. Furthermore, we showed that the acid-sensitive sheddable PEGylated, mannose-modified nanoparticles are able to significantly increase the delivery of betamethasone-21-acetate (BA), a model anti-inflammatory compound, to chronic inflammation sites as compared to free BA. These results highlight the ability to engineer formulations to target chronic inflammation sites by exploiting the microenvironment of these regions.
Carbon Sources Influence Fumonisin Production in Fusarium proliferatum.
Li, Taotao; Gong, Liang; Jiang, Guoxiang; Wang, Yong; Gupta, Vijai Kumar; Qu, Hongxia; Duan, Xuewu; Wang, Jiasheng; Jiang, Yueming
2017-10-01
Fusarium proliferatum is a worldwide fungal pathogen that produces fumonisins which are harmful to animal and human health. However, environmental factors affecting fumonisin biosynthesis in F. proliferatum are not well understood. Based on our preliminary results, in this study, we investigated the effect of sucrose or mannose as the sole carbon source on fumonisin B (FB) production by F. proliferatum and studied their underlying mechanisms via proteome and gene expression analysis. Our results showed that mannose, used as the sole carbon source, significantly blocked fumonisin B 1 and B 2 production by F. proliferatum as compared with the use of sucrose. Fifty-seven differentially expressed proteins were successfully identified. The downregulated proteins in the mannose-cultured strain were mainly involved in carbon metabolism, response to stress, and methionine metabolism, as compared with the sucrose-cultured strain. Moreover, quantitative real-time PCR analysis indicated that expression of several key genes involved in FB biosynthetic pathway and in transcription regulation were significantly downregulated in the mannose-cultured F. proliferatum, whereas expression of histone deacetylation-related genes were significantly upregulated. These results suggested that the blockage of FB biosynthesis by mannose was associated with the decreases in conversion of acetyl-CoA to polyketide, methionine biosynthesis, and NADPH regeneration. More importantly, milder oxidative stress, downregulated expression of genes involved in biosynthetic pathway and transcription regulation, and upregulated expression of genes with histone deacetylation possibly were responsible for the blockage of FB biosynthesis in F. proliferatum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Davidson, S K; Hunt, L A
1983-03-01
We have previously demonstrated the presence of unusual small asparaginyl-oligosaccharides [(Man)3GlcNAc2-ASN] in the mature glycoproteins of Sindbis virus released from both wild-type and lectin-resistant Chinese hamster ovary cells, but the mechanism of synthesis of these structures was not determined. Gel filtration and endo-beta-N-acetylglucosaminidase analyses of Pronase-digested glycopeptides from [3H]mannose-labelled Sindbis virus released at different times after infection of a phytohaemagglutinin-resistant line of Chinese hamster ovary cells demonstrated that these small asparaginyl-oligosaccharides were present in similar relative amounts in virus released throughout the virus infection, rather than arising primarily at late times when cytopathic effects were maximal. Similar analyses of pulse-labelled, cell-associated viral glycopeptides suggested that these small oligosaccharides on mature virus glycoprotein resulted from the normal alpha 1,2-mannosidase processing of truncated precursor oligosaccharides (containing five rather than nine mannoses), rather than from aberrant processing or degradation of the full-size precursor oligosaccharides or normal intermediates.
Madsen, Daniel H.; Leonard, Daniel; Masedunskas, Andrius; Moyer, Amanda; Jürgensen, Henrik Jessen; Peters, Diane E.; Amornphimoltham, Panomwat; Selvaraj, Arul; Yamada, Susan S.; Brenner, David A.; Burgdorf, Sven; Engelholm, Lars H.; Behrendt, Niels; Holmbeck, Kenn; Weigert, Roberto
2013-01-01
Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase–dependent manner and was subsequently routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor–associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies a key role of M2-like macrophages in this process. PMID:24019537
Zhang, Mengmeng; Wang, Guang; Lai, Furao; Wu, Hui
2016-03-09
A novel polysaccharide named as MC-1 was isolated from the roots of Lepidium meyenii using a water extraction method. Structural characterization revealed that MC-1 had an average molecular weight of 11.3 kDa and consisted of arabinose (26.21%), mannose (11.81%), glucose (53.66%), and galactose (8.32%). The main linkage types of MC-1 were proven to be (1 → 5)-α-L-Ara, (1 → 3)-α-L-Man, (1 → 2,6)-α-L-Man, (1 → )-α-D-Glc, (1 → 4)-α-D-Glc, (1 → 6)-α-D-Glc and (1 → 6)-β-D-Gal by methylation analysis, periodate oxidation-Smith degradation and NMR analysis. The immunostimulating assay indicated that MC-1 could significantly enhance the pinocytic and phagocytic capacity and promote the NO, TNF-α, and IL-6 secretion of RAW 264.7 cells, involving toll-like receptor 2, complement receptor 3, and mannose receptor mainly. These results suggested the potential utilization of MC-1 as an attractive functional food supplement candidate for hypoimmunity population.
Mardassi, H; Massie, B; Dea, S
1996-07-01
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), a small enveloped virus containing a positive-strand RNA genome, possesses at least three major structural proteins designated N, M, and E. The N protein is considered as the major component of the nucleocapsid, whereas M and E are membrane-associated. Previous studies using peptide-specific antibodies assigned these proteins to ORFs 7, 6, and 5, respectively. In the present report, monospecific antisera raised against Escherichia coli-expressed ORFs 5, 6, and 7 products were used to study the synthesis and processing of PRRSV structural proteins in the highly permissive MARC-145 cell line. Treatment of viral proteins with various glycosidases showed that only E was modified by N-linked glycans. Pulse-chase experiments revealed that intracellular transport of the major envelope glycoprotein was delayed in the premedial Golgi compartment. During the first 30 min of chase, E undergoes a gradual downward shift of its apparent molecular weight, thought to result from trimming of the mannose-rich glycan structures. Once E is transported to the medial Golgi or proximal elements, some molecules undergo complete processing of all their high-mannose N-linked oligosaccharides to complex type, while in other molecules only a fraction of N-linked glycans are terminally glycosylated. These two differentially glycosylated forms of E were found to be incorporated into extracellular virions. In cells and virions, both M and E were shown to occur in heterodimeric complexes linked by disulfide bonds. The oligomerization process, as analyzed from pulse-chase experiments, showed that M and E are incorporated into M-E complexes with different kinetics and efficiencies, in a fashion similar to their counterparts in equine arteritis virus. Apparently, all steps of E protein N-glycans processing proceed after its association with M which occurs in the endoplasmic reticulum (ER). In the infected cells, E and M appear highly membrane-associated, while N is predominantly cytosolic.
Some virulence characteristics of uropathogenic Escherichia coli in different patient groups.
Naveen, Rebecca; Mathai, Elizabeth
2005-08-01
Uropathogenic Escherichia coli have virulence properties, that are absent in non pathogenic E. coli. The distribution of these markers can vary according to patient populations. Hence, a study was undertaken to describe the presence of virulence factors like Pfimbriae, type 1 fimbriae and haemolysin in E.coli causing urinary infections in three groups of patients. Antibiogram was also recorded to determine differences, if any, between the groups. E. coli isolated from three groups of subjects, in counts of >10(5) CFU/ml and in pure growth were tested for mannose resistant haemagglutination (MRHA) to indicate P fimbriae and mannose sensitive haemagglutination (MSHA) to indicate type 1 fimbriae. Haemolysin production and antimicrobial susceptibility patterns were also recorded. Significantly more isolates from antenatal and postnatal women possessed P fimbriae compared to groups with urologic abnormalities (P=0.05). Haemolysin production was also significantly higher (P<0.001) in this group. Greater proportions of isolates from pregnant women were susceptible to commonly used antimicrobials. However, resistance to third generation cephalosporins was present even in these isolates from community infections. In patients with urological abnormality, E. coli with lower virulence can cause infections. Isolates from these patients exhibited greater drug resistance. In pregnant women and in community acquired infections, simple antimicrobial drugs like nitrofurantoin might still be useful. However, urgent and stringent policies for antimicrobial use and infection control in hospitals are required in India.
Braun, Graziela; Vidotto, Marilda Carlos
2004-12-01
Acinetobacter baumannii is a strictly aerobic bacterium which causes severe infections, however its pathogenic characteristics are not well defined. Thirteen A. baumannii strains isolated from urine of hospitalized and nonhospitalized patients with different ages were investigated for the presence of virulence factors. The isolates belonged to biotypes 2, 6, and 9 and were sensitive to imipenem. The majority of them showed resistance to amikacin, ceftazidime, ceftriaxone, ciprofloxacin, gentamicin, norfloxacin, and trimethoprim-sulfamethoxazole. None of A. baumannii strains presented genes codifying for 17 different virulence factors previously described in uropathogenic Escherichia coli, when tested by polymerase chain reaction (PCR). Nine isolates agglutinated human group AB erythrocytes, in presence of mannose, but none of them agglutinated group O erythrocytes. Adherence to polystyrene was observed in 7 isolates, and this result did not correlate with that obtained in hemagglutination assay. All the isolates were able to grow in iron-limiting conditions, showing that A. baumannii produces some type of siderophore. However, the genes iutA and fyuA, from iron uptake system of E. coli and Yersinia sp., respectively, were not present in the isolates, suggesting the presence of a different type of siderophore. The fimbriae of A. baumannii strains that mediates the adherence are possibly mannose-resistant, even though the mechanism of adherence to human epithelial cells still remains to be elucidated.
Chemical Characterization of Compounds Released by Marine Mammals.
1983-08-01
Glucose . . . 30 Lactose . . . 30 Mannose . . . 31 Xylose . . . 31 TOXICITY AND DISCUSSION OF COMPOUNDS WHICH ARE INSOLUBLE IN WATER AND/OR UNSAFE...glycine; urea; mannose; glycerol; inositol; arabitol; erythritol; mannitol; sorbitol; xylitol; . erythrose; galactose; glucose ; lactose; xylose...of marine mam- mals . 26 15. Summary of physical properties and toxicity information for compounds insoluble in water and/or considered unsafe . . . 27
78 FR 33354 - Xanthan Gum From Austria: Final Determination of Sales at Less Than Fair Value
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-04
..., sugars, minerals, and salts. Xanthan gum is a polysaccharide produced by aerobic fermentation of... backbone of two P-1,4-D- Glucose monosaccharide units, the second with a trisaccharide side chain consisting of P-D-Mannose-(1,4)-P-DGlucuronic acid-(1,2)-a-D- Mannose monosaccharide units. The terminal...
Sugar-Binding Profiles of Chitin-Binding Lectins from the Hevein Family: A Comprehensive Study
Itakura, Yoko; Nakamura-Tsuruta, Sachiko; Kominami, Junko; Tateno, Hiroaki; Hirabayashi, Jun
2017-01-01
Chitin-binding lectins form the hevein family in plants, which are defined by the presence of single or multiple structurally conserved GlcNAc (N-acetylglucosamine)-binding domains. Although they have been used as probes for chito-oligosaccharides, their detailed specificities remain to be investigated. In this study, we analyzed six chitin-binding lectins, DSA, LEL, PWM, STL, UDA, and WGA, by quantitative frontal affinity chromatography. Some novel features were evident: WGA showed almost comparable affinity for pyridylaminated chitotriose and chitotetraose, while LEL and UDA showed much weaker affinity, and DSA, PWM, and STL had no substantial affinity for the former. WGA showed selective affinity for hybrid-type N-glycans harboring a bisecting GlcNAc residue. UDA showed extensive binding to high-mannose type N-glycans, with affinity increasing with the number of Man residues. DSA showed the highest affinity for highly branched N-glycans consisting of type II LacNAc (N-acetyllactosamine). Further, multivalent features of these lectins were investigated by using glycoconjugate and lectin microarrays. The lectins showed substantial binding to immobilized LacNAc as well as chito-oligosaccharides, although the extents to which they bound varied among them. WGA showed strong binding to heavily sialylated glycoproteins. The above observations will help interpret lectin-glycoprotein interactions in histochemical studies and glyco-biomarker investigations. PMID:28556796
Garrido, Vanina V.; Dulgerian, Laura R.; Stempin, Cinthia C.; Cerbán, Fabio M.
2011-01-01
The macrophage mannose receptor (MR) is a pattern recognition receptor of the innate immune system that binds to microbial structures bearing mannose, fucose and N-acetylglucosamine on their surface. Trypanosoma cruzi antigen cruzipain (Cz) is found in the different developmental forms of the parasite. This glycoprotein has a highly mannosylated C-terminal domain that participates in the host-antigen contact. Our group previously demonstrated that Cz-macrophage (Mo) interaction could modulate the immune response against T. cruzi through the induction of a preferential metabolic pathway. In this work, we have studied in Mo the role of MR in arginase induction and in T. cruzi survival using different MR ligands. We have showed that pre-incubation of T. cruzi infected cells with mannose-Bovine Serum Albumin (Man-BSA, MR specific ligand) biased nitric oxide (NO)/urea balance towards urea production and increased intracellular amastigotes growth. The study of intracellular signals showed that pre-incubation with Man-BSA in T. cruzi J774 infected cells induced down-regulation of JNK and p44/p42 phosphorylation and increased of p38 MAPK phosphorylation. These results are coincident with previous data showing that Cz also modifies the MAPK phosphorylation profile induced by the parasite. In addition, we have showed by confocal microscopy that Cz and Man-BSA enhance MR recycling. Furthermore, we studied MR behavior during T. cruzi infection in vivo. MR was up-regulated in F4/80+ cells from T. cruzi infected mice at 13 and 15 days post infection. Besides, we investigated the effect of MR blocking antibody in T. cruzi infected peritoneal Mo. Arginase activity and parasite growth were decreased in infected cells pre-incubated with anti-MR antibody as compared with infected cells treated with control antibody. Therefore, we postulate that during T. cruzi infection, Cz may contact with MR, increasing MR recycling which leads to arginase activity up-regulation and intracellular parasite growth. PMID:22110379
Translocation of uranium from water to foodstuff while cooking.
Krishnapriya, K C; Baksi, Ananya; Chaudhari, Swathi; Gupta, Soujit Sen; Pradeep, T
2015-10-30
The present work report the unusual uranium uptake by foodstuff, especially those rich in carbohydrates like rice when they are cooked in water, contaminated with uranium. The major staple diet in South Asia, rice, was chosen to study its interaction with UO2(2+), the active uranium species in water, using inductively coupled plasma mass spectrometry. Highest uptake limit was checked by cooking rice at very high uranium concentration and it was found to be good scavenger of uranium. To gain insight into the mechanism of uptake, direct interaction of UO2(2+) with monosaccharides was also studied, using electrospray ionization mass spectrometry taking mannose as a model. The studies have been done with dissolved uranium salt, uranyl nitrate hexahydrate (UO2(NO3)2·6H2O), as well as the leachate of a stable oxide of uranium, UO2(s), both of which exist as UO2(2+) in water. Among the eight different rice varieties investigated, Karnataka Ponni showed the maximum uranium uptake whereas unpolished Basmati rice showed the minimum. Interaction with other foodstuffs (potato, carrot, peas, kidney beans and lentils) with and without NaCl affected the extent of chemical interaction but was not consistent with the carbohydrate content. Uranium interaction with D-mannose monitored through ESI-MS, under optimized instrumental parameters, identified the peaks corresponding to uranyl adduct with mannose monomer, dimer and trimer and the species were confirmed by MS/MS studies. The product ion mass spectra showed peaks illustrating water loss from the parent ion as the collision energy was increased, an evidence for the strong interaction of uranium with mannose. This study would constitute the essential background for understanding interaction of uranium with various foods. Extension of this work would involve identification of foodstuff as green heavy metal scavengers. Copyright © 2015. Published by Elsevier B.V.
Carlton, Jez G.; Bujny, Miriam V.; Peter, Brian J.; Oorschot, Viola M. J.; Rutherford, Anna; Arkell, Rebecca S.; Klumperman, Judith; McMahon, Harvey T.; Cullen, Peter J.
2006-01-01
Summary Sorting nexins are a large family of phox-homology-domain-containing proteins that have been implicated in the control of endosomal sorting. Sorting nexin-1 is a component of the mammalian retromer complex that regulates retrieval of the cation-independent mannose 6-phosphate receptor from endosomes to the trans-Golgi network. In yeast, retromer is composed of Vps5p (the orthologue of sorting nexin-1), Vps17p (a related sorting nexin) and a cargo selective subcomplex composed of Vps26p, Vps29p and Vps35p. With the exception of Vps17p, mammalian orthologues of all yeast retromer components have been identified. For Vps17p, one potential mammalian orthologue is sorting nexin-2. Here we show that, like sorting nexin-1, sorting nexin-2 binds phosphatidylinositol 3-monophosphate and phosphatidylinositol 3,5-bisphosphate, and possesses a Bin/Amphiphysin/Rvs domain that can sense membrane curvature. However, in contrast to sorting nexin-1, sorting nexin-2 could not induce membrane tubulation in vitro or in vivo. Functionally, we show that endogenous sorting nexin-1 and sorting nexin-2 co-localise on high curvature tubular elements of the 3-phosphoinositide-enriched early endosome, and that suppression of sorting nexin-2 does not perturb the degradative sorting of receptors for epidermal growth factor or transferrin, nor the steady-state distribution of the cation-independent mannose 6-phosphate receptor. However, suppression of sorting nexin-2 results in a subtle alteration in the kinetics of cation-independent mannose 6-phosphate receptor retrieval. These data suggest that although sorting nexin-2 may be a component of the retromer complex, its presence is not essential for the regulation of endosome-to-trans Golgi network retrieval of the cation-independent mannose 6-phosphate receptor. PMID:16179610
Favier, Anne-Laure; Gout, Evelyne; Reynard, Olivier; Ferraris, Olivier; Kleman, Jean-Philippe; Volchkov, Viktor; Peyrefitte, Christophe; Thielens, Nicole M
2016-06-01
Ebola virus infection requires the surface viral glycoprotein to initiate entry into the target cells. The trimeric glycoprotein is a highly glycosylated viral protein which has been shown to interact with host C-type lectin receptors and the soluble complement recognition protein mannose-binding lectin, thereby enhancing viral infection. Similarly to mannose-binding lectin, ficolins are soluble effectors of the innate immune system that recognize particular glycans at the pathogen surface. In this study, we demonstrate that ficolin-1 interacts with the Zaire Ebola virus (EBOV) glycoprotein, and we characterized this interaction by surface plasmon resonance spectroscopy. Ficolin-1 was shown to bind to the viral glycoprotein with a high affinity. This interaction was mediated by the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of the viral glycoprotein. Using a ficolin-1 control mutant devoid of sialic acid-binding capacity, we identified sialylated moieties of the mucin domain to be potential ligands on the glycoprotein. In cell culture, using both pseudotyped viruses and EBOV, ficolin-1 was shown to enhance EBOV infection independently of the serum complement. We also observed that ficolin-1 enhanced EBOV infection on human monocyte-derived macrophages, described to be major viral target cells,. Competition experiments suggested that although ficolin-1 and mannose-binding lectin recognized different carbohydrate moieties on the EBOV glycoprotein, the observed enhancement of the infection likely depended on a common cellular receptor/partner. In conclusion, ficolin-1 could provide an alternative receptor-mediated mechanism for enhancing EBOV infection, thereby contributing to viral subversion of the host innate immune system. A specific interaction involving ficolin-1 (M-ficolin), a soluble effector of the innate immune response, and the glycoprotein (GP) of EBOV was identified. Ficolin-1 enhanced virus infection instead of tipping the balance toward its elimination. An interaction between the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of Ebola virus GP occurred. In this model, the enhancement of infection was shown to be independent of the serum complement. The facilitation of EBOV entry into target host cells by the interaction with ficolin-1 and other host lectins shunts virus elimination, which likely facilitates the survival of the virus in infected host cells and contributes to the virus strategy to subvert the innate immune response. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Profile of Resistance of Human Immunodeficiency Virus to Mannose-Specific Plant Lectins
Balzarini, Jan; Van Laethem, Kristel; Hatse, Sigrid; Vermeire, Kurt; De Clercq, Erik; Peumans, Willy; Van Damme, Els; Vandamme, Anne-Mieke; Böhlmstedt, Anders; Schols, Dominique
2004-01-01
The mannose-specific plant lectins from the Amaryllidaceae family (e.g., Hippeastrum sp. hybrid and Galanthus nivalis) inhibit human immunodeficiency virus (HIV) infection of human lymphocytic cells in the higher nanogram per milliliter range and suppress syncytium formation between persistently HIV type 1 (HIV-1)-infected cells and uninfected CD4+ T cells. These lectins inhibit virus entry. When exposed to escalating concentrations of G. nivalis and Hippeastrum sp. hybrid agglutinin, a variety of HIV-1(IIIB) strains were isolated after 20 to 40 subcultivations which showed a decreased sensitivity to the plant lectins. Several amino acid changes in the envelope glycoprotein gp120, but not in gp41, of the mutant virus isolates were observed. The vast majority of the amino acid changes occurred at the N glycosylation sites and at the S or T residues that are part of the N glycosylation motif. The degree of resistance to the plant lectins was invariably correlated with an increasing number of mutated glycosylation sites in gp120. The nature of these mutations was entirely different from that of mutations that are known to appear in HIV-1 gp120 under the pressure of other viral entry inhibitors such as dextran sulfate, bicyclams (i.e., AMD3100), and chicoric acid, which also explains the lack of cross-resistance of plant lectin-resistant viruses to any other HIV inhibitor including T-20 and the blue-green algae (cyanobacteria)-derived mannose-specific cyanovirin. The plant lectins represent a well-defined class of anti-HIV (microbicidal) drugs with a novel HIV drug resistance profile different from those of other existing anti-HIV drugs. PMID:15367629
1992-01-01
Serum mannose-binding protein (MBP) is a C-type lectin that binds to terminal mannose and N-acetylglucosamine moieties present on surfaces of certain pathogens and activates the classical complement pathway. In the present study, we describe the mechanism underlying the activation triggered by MBP. The human serum MBP fraction was obtained by sequential affinity chromatography on mannan-Sepharose, anti-IgM- Sepharose and anti-MBP-Sepharose in the presence of calcium ions. This fraction contained a C1s-like serine protease as assessed by C4 consumption. The C1s-like serine protease, designated MBP-associated serine protease (MASP), was separated from MBP by rechromatography on anti-MBP-Sepharose in the presence of ethylenediaminetetraacetic acid. MASP exhibited both C4- and C2-consuming activities. The molecular mass of MASP was estimated to be 83 kD with two polypeptides of heavy (66 kD) and light (L) (31 kD) chains linked by disulfide bonds. The serine residue responsible for protease activity is located on the L chain. Reconstitution experiments using MASP and MBP revealed that combination of the two components restores C4- and C2-activating capacity on mannan. Based on analyses of molecular size, antigenicity, and 11 NH2- terminal amino acid sequences of the L chain, we conclude that MASP is a novel protein different from C1r or C1s. Our findings are not in accord with a proposed mechanism by which MBP utilizes the C1r2-C1s2 complex to initiate the classical complement pathway. PMID:1460414
Accommodation of GDP-Linked Sugars in the Active Site of GDP-Perosamine Synthase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Paul D.; Carney, Amanda E.; Holden, Hazel M.
2009-01-12
Perosamine (4-amino-4,6-dideoxy-d-mannose), or its N-acetylated form, is one of several dideoxy sugars found in the O-antigens of such infamous Gram-negative bacteria as Vibrio cholerae O1 and Escherichia coli O157:H7. It is added to the bacterial O-antigen via a nucleotide-linked version, namely GDP-perosamine. Three enzymes are required for the biosynthesis of GDP-perosamine starting from mannose 1-phosphate. The focus of this investigation is GDP-perosamine synthase from Caulobacter crescentus, which catalyzes the final step in GDP-perosamine synthesis, the conversion of GDP-4-keto-6-deoxymannose to GDP-perosamine. The enzyme is PLP-dependent and belongs to the aspartate aminotransferase superfamily. It contains the typically conserved active site lysine residue,more » which forms a Schiff base with the PLP cofactor. Two crystal structures were determined for this investigation: a site-directed mutant protein (K186A) complexed with GDP-perosamine and the wild-type enzyme complexed with an unnatural ligand, GDP-3-deoxyperosamine. These structures, determined to 1.6 and 1.7 {angstrom} resolution, respectively, revealed the manner in which products, and presumably substrates, are accommodated within the active site pocket of GDP-perosamine synthase. Additional kinetic analyses using both the natural and unnatural substrates revealed that the K{sub m} for the unnatural substrate was unperturbed relative to that of the natural substrate, but the k{sub cat} was lowered by a factor of approximately 200. Taken together, these studies shed light on why GDP-perosamine synthase functions as an aminotransferase whereas another very similar PLP-dependent enzyme, GDP-4-keto-6-deoxy-d-mannose 3-dehydratase or ColD, catalyzes a dehydration reaction using the same substrate.« less
Senior, D F; deMan, P; Svanborg, C
1992-04-01
Virulence factors were studied in 82 strains of Escherichia coli isolated from the urine of dogs with urinary tract infections. The most frequently expressed O antigens were 2, 4, 6, 25, and 22/83. Most strains were K nontypeable. Mannose-sensitive hemagglutination (MSH) with canine erythrocytes was observed in 71 strains and mannose-resistant hemagglutination (MRH) was observed in 32 strains. Strains that caused MSH of erythrocytes from dogs also caused MSH of erythrocytes from guinea pigs. Most strains that caused MRH of human A1P1 erythrocytes also reacted with erythrocytes of dogs. Of 22 strains (27%) that agglutinated human A1P1 erythrocytes, but not A1p erythrocytes, 17 (77%) had specificity for globo A, but did not react with the galactose alpha 1----4galactose beta disaccharide receptor. The remaining 5 strains and 2 others that simultaneously expressed an X adhesin agglutinated galactose alpha 1----4galactose beta-coated latex beads. Bacterial adherence to canine uroepithelial cells from the bladder was most often observed in strains expressing MSH, less often observed in strains expressing MRH, and least often observed in strains that failed to induce hemagglutination. Adherence of MSH strains to canine uroepithelial cells was inhibited by alpha-methyl-D-mannoside. As a group, MRH strains expressing globo-A- and galactose alpha 1----4galactose beta-specific adhesins did not have strong adherence. Strains of E coli isolated from dogs with urinary tract infections most commonly expressed type-1 fimbriae, and the main mechanism of in vitro adherence to canine uroepithelial cells involved a mannose-sensitive mechanism. Overrepresentation of globo-A-specific adhesins did not appear to be related to adherence of canine uroepithelial cells.
Discovery of a nucleocytoplasmic O-mannose glycoproteome in yeast
Halim, Adnan; Larsen, Ida Signe Bohse; Neubert, Patrick; Joshi, Hiren Jitendra; Petersen, Bent Larsen; Vakhrushev, Sergey Y.; Strahl, Sabine; Clausen, Henrik
2015-01-01
Dynamic cycling of N-Acetylglucosamine (GlcNAc) on serine and threonine residues (O-GlcNAcylation) is an essential process in all eukaryotic cells except yeast, including Saccharomyces cerevisiae and Schizosaccharomyces pombe. O-GlcNAcylation modulates signaling and cellular processes in an intricate interplay with protein phosphorylation and serves as a key sensor of nutrients by linking the hexosamine biosynthetic pathway to cellular signaling. A longstanding conundrum has been how yeast survives without O-GlcNAcylation in light of its similar phosphorylation signaling system. We previously developed a sensitive lectin enrichment and mass spectrometry workflow for identification of the human O-linked mannose (O-Man) glycoproteome and used this to identify a pleothora of O-Man glycoproteins in human cell lines including the large family of cadherins and protocadherins. Here, we applied the workflow to yeast with the aim to characterize the yeast O-Man glycoproteome, and in doing so, we discovered hitherto unknown O-Man glycosites on nuclear, cytoplasmic, and mitochondrial proteins in S. cerevisiae and S. pombe. Such O-Man glycoproteins were not found in our analysis of human cell lines. However, the type of yeast O-Man nucleocytoplasmic proteins and the localization of identified O-Man residues mirror that of the O-GlcNAc glycoproteome found in other eukaryotic cells, indicating that the two different types of O-glycosylations serve the same important biological functions. The discovery opens for exploration of the enzymatic machinery that is predicted to regulate the nucleocytoplasmic O-Man glycosylations. It is likely that manipulation of this type of O-Man glycosylation will have wide applications for yeast bioprocessing. PMID:26644575
Mapping the O-Mannose Glycoproteome in Saccharomyces cerevisiae *
Neubert, Patrick; Halim, Adnan; Zauser, Martin; Essig, Andreas; Joshi, Hiren J.; Zatorska, Ewa; Larsen, Ida Signe Bohse; Loibl, Martin; Castells-Ballester, Joan; Aebi, Markus; Clausen, Henrik; Strahl, Sabine
2016-01-01
O-Mannosylation is a vital protein modification conserved from fungi to humans. Yeast is a perfect model to study this post-translational modification, because in contrast to mammals O-mannosylation is the only type of O-glycosylation. In an essential step toward the full understanding of protein O-mannosylation we mapped the O-mannose glycoproteome in baker's yeast. Taking advantage of an O-glycan elongation deficient yeast strain to simplify sample complexity, we identified over 500 O-glycoproteins from all subcellular compartments for which over 2300 O-mannosylation sites were mapped by electron-transfer dissociation (ETD)-based MS/MS. In this study, we focus on the 293 O-glycoproteins (over 1900 glycosylation sites identified by ETD-MS/MS) that enter the secretory pathway and are targets of ER-localized protein O-mannosyltransferases. We find that O-mannosylation is not only a prominent modification of cell wall and plasma membrane proteins, but also of a large number of proteins from the secretory pathway with crucial functions in protein glycosylation, folding, quality control, and trafficking. The analysis of glycosylation sites revealed that O-mannosylation is favored in unstructured regions and β-strands. Furthermore, O-mannosylation is impeded in the proximity of N-glycosylation sites suggesting the interplay of these types of post-translational modifications. The detailed knowledge of the target proteins and their O-mannosylation sites opens for discovery of new roles of this essential modification in eukaryotes, and for a first glance on the evolution of different types of O-glycosylation from yeast to mammals. PMID:26764011
Targeting the C-type lectins-mediated host-pathogen interactions with dextran.
Pustylnikov, Sergey; Sagar, Divya; Jain, Pooja; Khan, Zafar K
2014-01-01
Dextran, the α-1,6-linked glucose polymer widely used in biology and medicine, promises new applications. Linear dextran applied as a blood plasma substitute demonstrates a high rate of biocompatibility. Dextran is present in foods, drugs, and vaccines and in most cases is applied as a biologically inert substance. In this review we analyze dextran's cellular uptake principles, receptor specificity and, therefore, its ability to interfere with pathogen-lectin interactions: a promising basis for new antimicrobial strategies. Dextran-binding receptors in humans include the DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) family receptors: DC-SIGN (CD209) and L-SIGN (the liver and lymphatic endothelium homologue of DC-SIGN), the mannose receptor (CD206), and langerin. These receptors take part in the uptake of pathogens by dendritic cells and macrophages and may also participate in the modulation of immune responses, mostly shown to be beneficial for pathogens per se rather than host(s). It is logical to predict that owing to receptor-specific interactions, dextran or its derivatives can interfere with these immune responses and improve infection outcome. Recent data support this hypothesis. We consider dextran a promising molecule for the development of lectin-glycan interaction-blocking molecules (such as DC-SIGN inhibitors) that could be applied in the treatment of diseases including tuberculosis, influenza, hepatitis B and C, human immunodeficiency virus infection and AIDS, etc. Dextran derivatives indeed change the pathology of infections dependent on DC-SIGN and mannose receptors. Complete knowledge of specific dextran-lectin interactions may also be important for development of future dextran applications in biological research and medicine.
Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harada, Y.; Li, H.; Li, Hua
2009-04-28
Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of {approx}1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings,more » we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes.« less
Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site
Harada, Yoichiro; Li, Hua; Li, Huilin; Lennarz, William J.
2009-01-01
Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of ≈1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings, we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes. PMID:19365066
Resistant-hemicelluloses toward successive chemical treatment during cellulose fibre extraction
NASA Astrophysics Data System (ADS)
Naqiya, F. M. Z.; Ahmad, I.; Airianah, O. B.
2018-04-01
Lignocellulosic materials have high demand bio-polymers industries as it is rich in cellulose but other residues that still remain in the extracted cellulose might influence the ability of cellulose-rich material to interact with other polymers. In this study, cellulose fibre was extracted from oil palm frond (OPF) using alkali and bleaching treatment. The morphological changes of each sample after every treatment was observed using Scanning Electron Microscope (SEM) and was further chemically extracted and quantitatively evaluated via spectrophotometric method. The non-cellulosic component was found predominantly contained hemicelluloses and these remaining hemicelluloses were hydrolysed and the monosaccharides of hemicelluloses were visualised by Thin Layer Chromatography (TLC). Xylose, arabinose, mannose and glucose were detected and therefore, it is suggested that the plausible type of resistant-hemicelluloses in OPF extracted fibre are arabinoxylan, glucomannan and/or glucan.
Generation of a transgenic rice seed-based edible vaccine against house dust mite allergy.
Yang, Lijun; Kajiura, Hiroyuki; Suzuki, Kazuya; Hirose, Sakiko; Fujiyama, Kazuhito; Takaiwa, Fumio
2008-01-11
As an alternative approach to conventional allergen-specific immunotherapy, transgenic rice seed expressing a major house dust mite (HDM) allergen, Der p 1, was developed as an edible vaccine. The C-terminal KDEL-tagged Der p 1 allergen specifically accumulated in seed endosperm tissue under the control of the endosperm-specific GluB1 promoter. Der p 1 reached a maximum concentration of 58 microg/grain and was deposited in the endoplasmic reticulum (ER)-derived protein body I (PB-I). Plant-derived Der p 1 was posttranslationally modified with high-mannose-type glycan structures. Glycosylated Der p 1 displayed reduced IgE binding capacity in comparison with its unglycosylated counterpart in vitro. Our results indicate that transgenic Der p 1 rice seeds are a safe, potential oral delivery vaccine for the treatment of HDM allergy.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-27
..., sugars, minerals, and salts. Xanthan gum is a polysaccharide produced by aerobic fermentation of... backbone of two P-1,4-D- Glucose monosaccharide units, the second with a trisaccharide side chain consisting of P-D-Mannose-(1,4)-P-DGlucuronic acid-(1,2)-a-D- Mannose monosaccharide units. The terminal...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-10
... limited to, sugars, minerals, and salts. Xanthan gum is a polysaccharide produced by aerobic fermentation... consists of a backbone of two P-1,4-D- Glucose monosaccharide units, the second with a trisaccharide side chain consisting of P-D-Mannose-(1,4)- P-DGlucuronic acid-(1,2) - a-D- Mannose monosaccharide units. The...
O’Mary, Hannah L.; Aldayel, Abdulaziz M.; Valdes, Solange A.; Naguib, Youssef W.; Li, Xu; Salvady, Karun; Cui, Zhengrong
2017-01-01
Inflammation is implicated in a host of chronic illnesses. Within these inflamed tissues, the pH of the microenvironment is decreased and immune cells, particularly macrophages, infiltrate the area. Additionally, the vascular integrity of these sites is altered with increased fenestrations between endothelial cells. These distinctive properties may be exploited to enhance targeted delivery of anti-inflammatory therapies. Using a mouse model of chronic inflammation, we previously showed that acid-sensitive sheddable PEGylation increases the distribution and retention of nanoparticles in chronic inflammation sites. Here we demonstrated that surface modification of the acid-sensitive sheddable PEGylated nanoparticles with mannose, a ligand to mannose receptors present in chronic inflammation sites, significantly increases the targeted delivery of the nanoparticles to these areas. Furthermore, we showed that the acid-sensitive sheddable PEGylated, mannose-modified nanoparticles are able to significantly increase the delivery of betamethasone-21-acetate (BA), a model anti-inflammatory compound, to chronic inflammation sites as compared to free BA. These results highlight the ability to engineer formulations to target chronic inflammation sites by exploiting the microenvironment of these regions. PMID:28463518
What we can learn about hereditary dystonia from HSDI of the glottis
NASA Astrophysics Data System (ADS)
Pedersen, Mette; Eeg, Martin
2012-02-01
This study examined efficacy of the innate immune defence via the mannose binding lectin (MBL) in a cohort of 55 dystonic patients prospectively referred to the clinic with laryngeal mucosal complaints, who were placed on local steroids (budesonid inhaler, 400 μg 2 times daily) and antihistamines (fexofenadin 180 mg mostly 3 times daily) with adjuvant lifestyle corrections. Treatment efficacy of the larynx was assessed based on mucosal findings of the vocal folds examined with High speed mucosa studies comprising simultaneous high speed digital imagines (HSDI), kymography, electroglottography (EGG) and voice acoustics combined with a visual score of arytenoids oedema, as these measures are indicative of the magnitude of laryngitis. Lactose and gluten intolerance and immunological analyses of the innate system were made systematically. Results showed that the genetic aspects of immunology did not reveal a role for the innate immune system, represented by the mannose binding lectin (MBL). An unexpected positive effect of the larynx treatment on dystonia symptoms was found evidenced by reduction of dystonic complaints and more normative results of High speed mucosa, and a reduction of oedema of the inter arytenoids region. Symptoms relieve and better quality of life was observed on follow up for the dystonia complaints.
Shahnaz, Gul; Edagwa, Benson J; McMillan, JoEllyn; Akhtar, Sohail; Raza, Abida; Qureshi, Naveeda A; Yasinzai, Masoom; Gendelman, Howard E
2017-01-01
Our goal was to improve treatment outcomes for visceral leishmaniasis by designing nanocarriers that improve drug biodistribution and half-life. Thus, long-acting mannose-anchored thiolated chitosan amphotericin B nanocarrier complexes (MTC AmB) were developed and characterized. A mannose-anchored thiolated chitosan nanocarrier was manufactured and characterized. MTC AmB was examined for cytotoxicity, biocompatibility, uptake and antimicrobial activities. MTC AmB was rod shaped with a size of 362 nm. MTC AmB elicited 90% macrophage viability and 71-fold enhancement in drug uptake compared with native drug. The antileishmanial IC 50 for MTC AmB was 0.02 μg/ml compared with 0.26 μg/ml for native drug. These studies show that MTC can serve as a platform for clearance of Leishmania in macrophages.
Isomer Information from Ion Mobility Separation of High-Mannose Glycan Fragments
NASA Astrophysics Data System (ADS)
Harvey, David J.; Seabright, Gemma E.; Vasiljevic, Snezana; Crispin, Max; Struwe, Weston B.
2018-05-01
Extracted arrival time distributions of negative ion CID-derived fragments produced prior to traveling-wave ion mobility separation were evaluated for their ability to provide structural information on N-linked glycans. Fragmentation of high-mannose glycans released from several glycoproteins, including those from viral sources, provided over 50 fragments, many of which gave unique collisional cross-sections and provided additional information used to assign structural isomers. For example, cross-ring fragments arising from cleavage of the reducing terminal GlcNAc residue on Man8GlcNAc2 isomers have unique collision cross-sections enabling isomers to be differentiated in mixtures. Specific fragment collision cross-sections enabled identification of glycans, the antennae of which terminated in the antigenic α-galactose residue, and ions defining the composition of the 6-antenna of several of the glycans were also found to have different cross-sections from isomeric ions produced in the same spectra. Potential mechanisms for the formation of the various ions are discussed and the estimated collisional cross-sections are tabulated. [Figure not available: see fulltext.
Tomiya, N; Suzuki, T; Awaya, J; Mizuno, K; Matsubara, A; Nakano, K; Kurono, M
1992-10-01
A sensitive and simple high-performance liquid chromatographic method has been developed to determine the concentration of monosaccharides and sugar alcohols in animal tissues. Five neutral monosaccharides (D-glucose, D-galactose, D-mannose, D-fructose, and D-ribose) and three neutral sugar alcohols (myo-inositol, glycerol, and D-sorbitol) predominate in the renal cortices and sciatic nerves of rats. These monosaccharides and sugar alcohols were extracted with distilled water, purified by deproteinization with ethanol, a Sep-Pak C18 cartridge, and columns of Dowex 50W-X8 and Amberlite CG-400, then separated on Ca2+ and Pb2+ cation-exchange columns, eluted with deionized distilled water at 80 degrees C, and detected using integrated pulsed amperometry. About 10 pmol of each sugar was detectable with a signal-to-noise ratio of 10:1. D-Glucose, D-fructose, D-sorbitol, and D-mannose were higher in both the renal and sciatic tissues of diabetic rats than in those of normal animals. D-Ribose and glycerol were higher in the renal cortex of diabetic animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cioffi, L.; Conrad, H.E.
1986-05-01
Tibial chondrocytes were labeled metabolically with /sup 3/H-man and the PCS-H was isolated from the culture medium (CM) and the cell matrix (Ma) pools. Equal amounts of /sup 3/H were incorporated into the PCS-H of the CM and Ma pools. The PCS-H pools were digested with thermolysin, Chondroitinase, and then N-glycanase, and the N-linked oligosaccharides were chromatographed on Con-A Sepharose. The ratios of complex to high mannose oligosaccharides for the CM and Ma were 6.1 and 2.6, respectively. More than 60% of the complex CM N-linked oligosaccharides were charged species whereas only 40% of the Ma N-linked oligosaccharides were charged.more » The oligosaccharides were analyzed by HPLC. Both complex and high mannose oligosaccharides found in the PCS-H of the CM and Ma pools were mixtures of identical structures but the amounts of each structure in the two pools showed marked differences. These observations indicate that distinct PCS-H species are found in the CM and Ma pools.« less
Steps in the development of a Vibrio cholerae El Tor biofilm
Watnick, Paula I.; Kolter, Roberto
2010-01-01
Summary We report that, in a simple, static culture system, wild-type Vibrio cholerae El Tor forms a three-dimensional biofilm with characteristic water channels and pillars of bacteria. Furthermore, we have isolated and characterized transposon insertion mutants of V. cholerae that are defective in biofilm development. The transposons were localized to genes involved in (i) the biosynthesis and secretion of the mannose-sensitive haemagglutinin type IV pilus (MSHA); (ii) the synthesis of exopolysaccharide; and (iii) flagellar motility. The phenotypes of these three groups suggest that the type IV pilus and flagellum accelerate attachment to the abiotic surface, the flagellum mediates spread along the abiotic surface, and exopolysaccharide is involved in the formation of three-dimensional biofilm architecture. PMID:10564499
Structures of the Oligosaccharides of the Glycoprotein Coded by Early Region E3 of Adenovirus 2
Kornfeld, Rosalind; Wold, William S. M.
1981-01-01
Early region E3 of adenovirus 2 encodes a glycoprotein, E3-gp25K, that is a good model with which to study structure-function relationships in transmembrane glycoproteins. We have determined the structures of the oligosaccharides linked to E3-gp25K. The oligosaccharides were labeled with [2-3H]mannose in adenovirus 2-early infected KB cells for 5.5h (pulse) or for 5.5 h followed by a 3-h chase (pulse-chase). E3-gp25K was extracted and purified by chromatography on DEAE-Sephacel in 7 M urea, followed by gel filtration on a column of Bio-Gel A-1.5m in 6 M guanidine hydrochloride. An analysis of the purified protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that it was >95% pure. The oligosaccharides were isolated by pronase digestion followed by gel filtration on a column of Bio-Gel P-6, then by digestion with endo-β-N-acetylglucosaminidase H, followed by gel filtration on Bio-Gel P-6, and finally by paper chromatography. The pulse sample contained equal amounts of Man9GlcNAc and Man8GlcNAc and small amounts of Man7GlcNAc and Man6GlcNAc. The pulse-chase sample had predominantly Man8GlcNAc and much less Man9GlcNAc, indicating that processing of the Man9GlcNAc to Man8GlcNAc had occurred during the chase period. Thus, Man8GlcNAc is the major oligosaccharide on mature E3-gp25K. The structures of these oligosaccharides were established by digestion with α-mannosidase, methylation analysis, and acetolysis. The oligosaccharides found had typical high-mannose structures that have been observed in other membrane and soluble glycoproteins, and the branching patterns and linkages of the mannose residues of Man9GlcNAc were identical to those of the lipid-linked Glc3Man9GlcNAc2 donor. Thus, adenovirus 2 infection (early stages) apparently does not affect the usual cellular high-mannose glycosylation pathways, and despite being virus coded, E3-gp25K is glycosylated in the same manner as a typical mammalian cell-coded glycoprotein. Images PMID:7321093
Structures of the oligosaccharides of the glycoprotein coded by early region E3 of adenovirus 2.
Kornfeld, R; Wold, W S
1981-11-01
Early region E3 of adenovirus 2 encodes a glycoprotein, E3-gp25K, that is a good model with which to study structure-function relationships in transmembrane glycoproteins. We have determined the structures of the oligosaccharides linked to E3-gp25K. The oligosaccharides were labeled with [2-(3)H]mannose in adenovirus 2-early infected KB cells for 5.5h (pulse) or for 5.5 h followed by a 3-h chase (pulse-chase). E3-gp25K was extracted and purified by chromatography on DEAE-Sephacel in 7 M urea, followed by gel filtration on a column of Bio-Gel A-1.5m in 6 M guanidine hydrochloride. An analysis of the purified protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that it was >95% pure. The oligosaccharides were isolated by pronase digestion followed by gel filtration on a column of Bio-Gel P-6, then by digestion with endo-beta-N-acetylglucosaminidase H, followed by gel filtration on Bio-Gel P-6, and finally by paper chromatography. The pulse sample contained equal amounts of Man(9)GlcNAc and Man(8)GlcNAc and small amounts of Man(7)GlcNAc and Man(6)GlcNAc. The pulse-chase sample had predominantly Man(8)GlcNAc and much less Man(9)GlcNAc, indicating that processing of the Man(9)GlcNAc to Man(8)GlcNAc had occurred during the chase period. Thus, Man(8)GlcNAc is the major oligosaccharide on mature E3-gp25K. The structures of these oligosaccharides were established by digestion with alpha-mannosidase, methylation analysis, and acetolysis. The oligosaccharides found had typical high-mannose structures that have been observed in other membrane and soluble glycoproteins, and the branching patterns and linkages of the mannose residues of Man(9)GlcNAc were identical to those of the lipid-linked Glc(3)Man(9)GlcNAc(2) donor. Thus, adenovirus 2 infection (early stages) apparently does not affect the usual cellular high-mannose glycosylation pathways, and despite being virus coded, E3-gp25K is glycosylated in the same manner as a typical mammalian cell-coded glycoprotein.
Tao, Yi; Chen, Xi; Cai, Hao; Li, Weidong; Cai, Baochang; Chai, Chuan; Di, Liuqing; Shi, Liyun; Hu, Lihong
2017-01-01
Fu-Zhu-Jiang-Tang tablet, a six-herb preparation, was proved to show beneficial effects on type II diabetes patients in clinical. This study aims to optimize the component proportion of the six-herb preparation and explore the serum metabolic signatures of type II diabetes rats after treatment with Fu-Zhu-Jiang-Tang tablet and its optimal combination. The component proportion of the preparation was optimized using uniform experimental design and machine learning techniques. Untargeted GC-MS metabolomic experiments were carried out with serum samples from model group and treatment groups. Data were normalized, multivariate and univariate statistical analysis performed and metabolites of interest putatively identified. 23 metabolites were significantly changed by Fu-Zhu-Jiang-Tang tablet treatment and the majority of these were decreased, including various carbohydrates (glucose, mannose, fructose, allose and gluconic acid), unsaturated fatty acids (palmitic acid, 9-octadecenoic acid, oleic acid, arachidonic acid), alanine, valine, propanoic acid, 3-hydroxybutyrate, along with pyrimidine and cholesterol. Increased concentrations of oxalic acid, leucine, glycine, serine, threonine, proline, lysine and citrate were observed. In the optimal combination-fed group, 21 metabolites were significantly affected and strikingly, the magnitudes of changes here were generally much greater than that of Fu-Zhu-Jiang-Tang tablet treated rats. 18 metabolites affected in both groups included various carbohydrates (mannose, glucose, allose, fructose and gluconic acid), unsaturated fatty acids (palmitic acid, 9-octadecenoic acid, oleic acid and arachidonic acid), short-chain fatty acids (oxalic acid, 3-hydroxybutyrate), and amino acids (alanine, valine, leucine, glycine, proline and lysine), as well as pyrimidine. Metabolites exclusively affected in optimal combination treated rat included succinic acid, cysteine and phenylalanine, whilst four metabolites (propanoic acid, citrate, serine and threonine) were only altered in Fu-Zhu-Jiang-Tang tablet treated rat. Our investigation demonstrated Fu-Zhu-Jiang-Tang tablet and its optimal combination treatments were able to ameliorate impaired glucose and lipid metabolism, down- regulate the high level of glucose to a lower level and reverse abnormal levels of metabolites in serum of type II diabetes rats. However, the optimal combination treatment was able to maximize the magnitudes of changes in some metabolites. These findings may be helpful in clarifying the anti-diabetic mechanism of FZJT tablet and its optimal combination. Copyright © 2016 Elsevier B.V. All rights reserved.
List, Cornelia; Grutsch, Andreas; Radler, Claudia; Cakar, Fatih; Zingl, Franz G; Schild-Prüfert, Kristina; Schild, Stefan
2018-01-01
During its life cycle, the facultative human pathogen Vibrio cholerae , which is the causative agent of the diarrheal disease cholera, needs to adapt to a variety of different conditions, such as the human host or the aquatic environment. Importantly, cholera infections originate from the aquatic reservoir where V. cholerae persists between the outbreaks. In the aquatic environment, bacteria are constantly threatened by predatory protozoa and nematodes, but our knowledge of the response pathways and adaptation strategies of V. cholerae to such stressors is limited. Using a temporally controlled reporter system of transcription, we identified more than 100 genes of V. cholerae induced upon exposure to the nematode Caenorhabditis elegans , which emerged recently as a valuable model for environmental predation during the aquatic lifestyle of V. cholerae Besides others, we identified and validated the genes encoding the mannose-sensitive hemagglutinin (MSHA) type IV pilus to be significantly induced upon exposure to the nematode. Subsequent analyses demonstrated that the mannose-sensitive hemagglutinin is crucial for attachment of V. cholerae in the pharynx of the worm and initiation of colonization, which results in growth retardation and developmental delay of C. elegans Thus, the surface adhesion factor MSHA could be linked to a fitness advantage of V. cholerae upon contact with bacterium-grazing nematodes. IMPORTANCE The waterborne diarrheal disease cholera is caused by the bacterium Vibrio cholerae The facultative human pathogen persists as a natural inhabitant in the aquatic ecosystem between outbreaks. In contrast to the human host, V. cholerae requires a different set of genes to survive in this hostile environment. For example, predatory micrograzers are commonly found in the aquatic environment and use bacteria as a nutrient source, but knowledge of the interaction between bacterivorous grazers and V. cholerae is limited. In this study, we successfully adapted a genetic reporter technology and identified more than 100 genes activated by V. cholerae upon exposure to the bacterium-grazing nematode Caenorhabditis elegans This screen provides a first glimpse into responses and adaptational strategies of the bacterial pathogen against such natural predators. Subsequent phenotypic characterization revealed the mannose-sensitive hemagglutinin to be crucial for colonization of the worm, which causes developmental delay and growth retardation. Copyright © 2018 List et al.
Reversal of infectious mononucleosis-associated suppressor T cell activity by D-mannose
1983-01-01
Epstein-Barr virus-induced infectious mononucleosis (IM) is associated with the activation of suppressor T lymphocytes that profoundly inhibit immunoglobulin (Ig) production in vitro. We have examined the nature of signals operating in the interaction between IM suppressor T cells and their targets, and explored the possibility that a lectin-like receptor molecule and its specific sugar might provide specificity to this interaction. When D-mannose or some of its derivatives, including alpha- methyl-D-mannoside, mannose-6-phosphate, and mannan, were added to suppressed cultures containing IM T lymphocytes and pokeweed mitogen (PWM)-stimulated normal mononuclear cells, a significant enhancement of Ig production was observed. These sugars had little or no effect on Ig production by the PWM-stimulated responder cells alone and thus the enhanced Ig production could be attributed to the reversal of suppression in the co-cultures by these sugars. This was further confirmed by the observation that the sugars were effective only if present during the first 24 h of culture, a time when IM suppressor T cells exert their principal effect. The effect of sugars on Ig production by suppressed cultures was similar to that achieved by decreasing by about fourfold the number of IM T cells in culture. The effect of the sugars is unlikely to represent a form of nonspecific toxicity, since inhibited cultures become responders in the presence of the sugar. Furthermore, toxicity restricted to the suppressor T cells is unlikely, since preincubation of the T cells with the sugars did not reduce their subsequent ability to suppress in secondary indicator cultures. In addition, there was no correlation between the effect of the sugars on T cell proliferation and their effect on T cell-mediated suppression. The reversal of suppression by sugars was dose dependent and demonstrated stereo-specificity in that L-mannose was without effect while D-mannose reversed suppression. These data indicate that D- mannose and some of its derivatives consistently reverse suppression of Ig production by IM T cells and strongly suggest a role for saccharides as critical components in the cellular receptors involved in certain physiologic immune cell interactions. PMID:6225821
The Impact of O-Glycan Chemistry on the Stability of Intrinsically Disordered Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckham, Gregg T; Prates, Erica T; Crowley, Michael F
2018-03-02
Protein glycosylation is a diverse post-translational modification that serves myriad biological functions. O-linked glycans in particular vary widely in extent and chemistry in eukaryotes, with secreted proteins from fungi and yeast commonly exhibiting O-mannosylation in intrinsically disordered regions of proteins, likely for proteolysis protection, among other functions. However, it is not well understood why mannose is often the preferred glycan, and more generally, if the neighboring protein sequence and glycan have coevolved to protect against proteolysis in glycosylated intrinsically disordered proteins (IDPs). Here, we synthesized variants of a model IDP, specifically a natively O-mannosylated linker from a fungal enzyme, withmore » a-O-linked mannose, glucose, and galactose moieties, along with a non-glycosylated linker. Upon exposure to thermolysin, O-mannosylation, by far, provides the highest extent of proteolysis protection. To explain this observation, extensive molecular dynamics simulations were conducted, revealing that the axial configuration of the C2-hydroxyl group (2-OH) of a-mannose adjacent to the glycan-peptide bond strongly influences the conformational features of the linker. Specifically, a-mannose restricts the torsions of the IDP main chain more than other glycans whose equatorial 2-OH groups exhibit interactions that favor perpendicular glycan-protein backbone orientation. We suggest that IDP stiffening due to O-mannosylation impairs protease action, with contributions from protein-glycan interactions, protein flexibility, and protein stability. Our results further imply that resistance to proteolysis is an important driving force for evolutionary selection of a-mannose in eukaryotic IDPs, and more broadly, that glycan motifs for proteolysis protection likely coevolve with the protein sequence to which they attach.« less
Shahnaz, Gul; Edagwa, Benson J; McMillan, JoEllyn; Akhtar, Sohail; Raza, Abida; Qureshi, Naveeda A; Yasinzai, Masoom; Gendelman, Howard E
2017-01-01
Aim: Our goal was to improve treatment outcomes for visceral leishmaniasis by designing nanocarriers that improve drug biodistribution and half-life. Thus, long-acting mannose-anchored thiolated chitosan amphotericin B nanocarrier complexes (MTC AmB) were developed and characterized. Materials & methods: A mannose-anchored thiolated chitosan nanocarrier was manufactured and characterized. MTC AmB was examined for cytotoxicity, biocompatibility, uptake and antimicrobial activities. Results: MTC AmB was rod shaped with a size of 362 nm. MTC AmB elicited 90% macrophage viability and 71-fold enhancement in drug uptake compared with native drug. The antileishmanial IC50 for MTC AmB was 0.02 μg/ml compared with 0.26 μg/ml for native drug. Conclusion: These studies show that MTC can serve as a platform for clearance of Leishmania in macrophages. PMID:27879160
Monoglycoconjugated phthalocyanines: effect of sugar and linkage on photodynamic activity.
Lafont, Dominique; Zorlu, Yunus; Savoie, Huguette; Albrieux, Florian; Ahsen, Vefa; Boyle, Ross W; Dumoulin, Fabienne
2013-09-01
Click chemistry can be advantageously used to graft carbohydrates on phthalocyanines which are potent photosensitisers, but the effect of the presence of triazole moieties on photodynamic efficiency was not investigated systematically to date. The nature and linkage of the sugar were investigated in order to define structure-activity relationships. Two sets of monoglycoconjugated water-soluble phthalocyanines have been designed and their photodynamic activity and uptake investigated in HT-29 human colon adenocarcinoma cells. Carbohydrates: galactose, mannose or lactose were grafted onto Zn(II) phthalocyanines either by glycosylation or by click reaction. The triazole linkage formed by click conjugation lowered the biological efficiency for mannose and galactose, compared to classical glycosylation grafting. The mannose conjugate formed by glycosylation was the most photodynamically active, without correlation with the photosensitiser cell uptake. Copyright © 2012 Elsevier B.V. All rights reserved.
Daligaux, Pierre; Bernadat, Guillaume; Tran, Linh; Cavé, Christian; Loiseau, Philippe M; Pomel, Sébastien; Ha-Duong, Tâp
2016-01-01
Leishmania is the parasite responsible for the neglected disease leishmaniasis. Its virulence and survival require biosynthesis of glycoconjugates, whose guanosine diphospho-d-mannose pyrophosphorylase (GDP-MP) is a key player. However, experimentally resolved structures of this enzyme are still lacking. We herein propose structural models of the GDP-MP from human and Leishmania donovani. Based on a multiple sequences alignment, the models were built with MODELLER and then carefully refined with all atom molecular dynamics simulations in explicit solvent. Their quality was evaluated against several standard criteria, including their ability to bind GDP-mannose assessed by redocking calculations. Special attention was given in this study to interactions of the catalytic site residues with the enzyme substrate and competitive inhibitors, opening the perspective of medicinal chemistry developments. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Pomel, S; Rodrigo, J; Hendra, F; Cavé, C; Loiseau, P M
2012-02-01
Leishmaniases are tropical and sub-tropical diseases for which classical drugs (i.e. antimonials) exhibit toxicity and drug resistance. Such a situation requires to find new chemical series with antileishmanial activity. This work consists in analyzing the structure of a validated target in Leishmania: the GDP-mannose pyrophosphorylase (GDP-MP), an enzyme involved in glycosylation and essential for amastigote survival. By comparing both human and L. infantum GDP-MP 3D homology models, we identified (i) a common motif of amino acids that binds to the mannose moiety of the substrate and, interestingly, (ii) a motif that is specific to the catalytic site of the parasite enzyme. This motif could then be used to design compounds that specifically inhibit the leishmanial GDP-MP, without any effect on the human homolog.
Wright, A; Sato, Y; Okada, T; Chang, K; Endo, T; Morrison, S
2000-12-01
We have now produced mouse-human chimeric IgG1 in wild-type Chinese hamster ovary (CHO) cell lines Pro-5 as well as in the glycosylation mutants Lec 2, Lec 8, and Lec 1. Analysis of the attached carbohydrates shows those present on IgG1-Lec 1 were mannose terminated. Carbohydrate present on IgG1-Lec8 was uniformly biantennary terminating in N-acetylglucosamine. The glycosylation profiles of IgG1-Lec 2 and IgG1-Pro-5 were heterogeneous. Only IgG1-Pro-5 was sialylated with sialic acid present on only a small percentage of the carbohydrate structures. When the in vivo fate of antibodies labeled with (125)I-lactotyramine was determined, it was found that the majority of all of the antibodies, irrespective of the structure of their attached carbohydrate, is catabolized in the skin and muscle. However, the attached carbohydrate structure does influence the amount that is catabolized in the liver and the liver serves as a major site for the catabolism of proteins bearing carbohydrate with the Lec2 (with terminal galactose) or Lec1(with terminal mannose) structure.
Chai, Yangyang; Zhao, Min
2016-09-20
Three polysaccharides, VCP1, VCP2 and VCP3 were isolated from Viscum coloratum (Kom.) Nakai using DEAE-cellulose chromatography. VCP1 (32KDa) was composed of glucose, galactose, arabinose, rhamnose and mannose, while VCP2 (280KDa) and VCP3 (21KDa) were consisted of glucose, galactose, arabinose, rhamnose, mannose, glucuronic acid and galacturonic acid. The optical rotation was measured at 20+1°C. The characteristic absorptive bands of purified fraction were determined by FT-IR. (13)C NMR spectroscopy analysis showed that VCP1 was a neutral polysaccharide, and VCP2 and VCP3 were RG-I type pectin. The linkage patterns of VCP2 were evaluated by methylation analysis: 1,5-linked Araf, 1,4-linked Galp, 1,2-linked Rhap, and 1,2,4-linked Rhap. The degree of esterification was 50%. The anti-proliferation ability against HepG2 cells and HepG2.2.15 cells of VCP2 was stronger than VCP1 and VCP3. So the polysaccharides from Viscum coloratum (Kom.) Nakai could be used as potential natural sources with inhibiting tumor cells proliferation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Møller-Kristensen, Mette; Eddie Ip, W. K.; Shi, Lei; Gowda, Lakshmi D.; Hamblin, Michael R.; Thiel, Steffen; Jensenius, Jens Chr.; Ezekowitz, R. Alan B.; Takahashi, Kazue
2011-01-01
Burn injury disrupts the mechanical and biological barrier that the skin presents against infection by symbionts like the Pseudomonas aeruginosa, a Gram-negative bacteria. A combination of local factors, antimicrobial peptides, and resident effector cells form the initial response to mechanical injury of the skin. This activity is followed by an inflammatory response that includes influx of phagocytes and serum factors, such as complement and mannose-binding lectin (MBL), which is a broad-spectrum pattern recognition molecule that plays a key role in innate immunity. A growing consensus from studies in humans and mice suggests that lack of MBL together with other comorbid factors predisposes the host to infection. In this study we examined whether MBL deficiency increases the risk of P. aeruginosa infection in a burned host. We found that both wild-type and MBL null mice were resistant to a 5% total body surface area burn alone or s.c. infection with P. aeruginosa alone. However, when mice were burned then inoculated s.c. with P. aeruginosa at the burn site, all MBL null mice died by 42 h from septicemia, whereas only one-third of wild-type mice succumbed (p = 0.0005). This result indicates that MBL plays a key role in containing and preventing a systemic spread of P. aeruginosa infection following burn injury and suggests that MBL deficiency in humans maybe a premorbid variable in the predisposition to infection in burn victims. PMID:16424207
USDA-ARS?s Scientific Manuscript database
Two major problems in the channel catfish (Ictalurus punctatus) aquaculture industry have been high disease losses to enteric septicemia of catfish (ESC), caused by the bacterium Edwardsiella ictaluri and columnaris disease, caused by the bacterium Flavobacterium columnare. Methods to control these...
A neutral mannan from Ceratocystis fagacearum culture filtrate
P. McWain; G.F. Gregory
1972-01-01
The culture filtrate of Ceratocystis fagacearum contains a mannan that produces some symptoms similar to oak wilt in red oak seedlings and cuttings. The mannan has a high molecular weight and a skeleton of α- (1 â 6) linked mannose units with considerable branching. Some similarities to commercial yeast mannan have been observed.
Bari, Alfa U; Silva, Helton C; Silva, Mayara T L; Pereira Júnior, Francisco N; Cajazeiras, João B; Sampaio, Alexandre H; Leal, Rodrigo B; Teixeira, Edson H; Rocha, Bruno A M; Nascimento, Kyria S; Nagano, Celso S; Cavada, Benildo S
2013-08-01
A new mannose/glucose-specific lectin, named DigL, was purified from seeds of Dialium guineense by a single step using a Sepharose 4b-Mannose affinity chromatography column. DigL strongly agglutinated rabbit erythrocytes and was inhibited by d-mannose, d-glucose, and derived sugars, especially α-methyl-d-mannopyranoside and N-acetyl-d-glucosamine. DigL has been shown to be a stable protein, maintaining its hemagglutinating activity after incubation at a wide range of temperature and pH values and after incubation with EDTA. DigL is a glycoprotein composite by approximately 2.9% of carbohydrates by weight. By sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis, the purified DigL exhibited an electrophoretic profile consisting of a broad band of 28-30 kDa. Analysis using electrospray ionization mass spectrometry indicated that purified DigL possesses a molecular average mass of 28 452 ± 2 Da and shows the presence of possible glycoforms. In addition, DigL exhibited an intermediary toxic effect on Artemia sp. nauplii, and this effect was both dependent on native structure and mediated by a carbohydrate-binding site. Copyright © 2013 John Wiley & Sons, Ltd.
Lin, Shan; Liu, Zhi-Qiang; Baker, Peter James; Yi, Ming; Wu, Hui; Xu, Feng; Teng, Yi; Zheng, Yu-Guo
2016-11-01
The addition of various sulfates for enhanced cordyceps polysaccharide (CP) production in submerged cultivation of H. sinensis was investigated, and manganese sulfate was found the most effective. 2mM of manganese sulfate on 0day (d) was investigated as the optimal adding condition, and the CP production reached optimum with 5.33%, increasing by 93.3% compared with the control. Furthermore, the consumption of three main precursors of CP was studied over cultivation under two conditions. Intracellular mannose content decreased by 43.1% throughout 6days cultivation, which corresponded to CP accumulation rate sharply increased from 0 d to 6 d, and mannose was considered as the most preferred precursor for generating CP. Subsequently, mannose biosynthetic pathway was constructed and verified for the first time in H. sinensis, which constituted the important part of CP biosynthesis, and transcriptional levels of the biosynthetic genes were studied. Transcriptional level of gene cpsA was significantly up-regulated 5.35-fold and it was a key gene involved both in mannose and CP biosynthesis. This study demonstrated that manganese sulfate addition is an efficient and simple way to improve CP production. Transcriptional analysis based on biosynthetic pathway was helpful to find key genes and better understand CP biosynthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Orndorff, Paul E.; Devapali, Aditya; Palestrant, Sarah; Wyse, Aaron; Everett, Mary Lou; Bollinger, R. Randal; Parker, William
2004-01-01
The binding of human secretory immunoglobulin A (SIgA), the primary immunoglobulin in the gut, to Escherichia coli is thought to be dependent on type 1 pili. Type 1 pili are filamentous bacterial surface attachment organelles comprised principally of a single protein, the product of the fimA gene. A minor component of the pilus fiber (the product of the fimH gene, termed the adhesin) mediates attachment to a variety of host cell molecules in a mannose inhibitable interaction that has been extensively described. We found that the aggregation of E. coli K-12 by human secretory IgA (SIgA) was dependent on the presence of the pilus fiber, even in the absence of the mannose specific adhesin or in the presence of 25 mM α-CH3Man. The presence of pilus without adhesin also facilitated SIgA-mediated biofilm formation on polystyrene, although biofilm formation was stronger in the presence of the adhesin. IgM also mediated aggregation and biofilm formation in a manner dependent on pili with or without adhesin. These findings indicate that the pilus fiber, even in the absence of the adhesin, may play a role in biologically important processes. Under conditions in which E. coli was agglutinated by SIgA, the binding of SIgA to E. coli was not increased by the presence of the pili, with or without adhesin. This observation suggests that the pili, with or without adhesin, affect factors such as cell surface rigidity or electrostatic repulsion, which can affect agglutination but which do not necessarily determine the level of bound immunoglobulin. PMID:15039312
Mannose Binding Lectin Is Required for Alphavirus-Induced Arthritis/Myositis
Whitmore, Alan C.; Blevins, Lance K.; Hueston, Linda; Fraser, Robert J.; Herrero, Lara J.; Ramirez, Ruben; Smith, Paul N.; Mahalingam, Suresh; Heise, Mark T.
2012-01-01
Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3−/− mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis. PMID:22457620
Spotlight on taliglucerase alfa in the treatment of pediatric patients with type 1 Gaucher disease.
Gupta, Punita; Pastores, Gregory M
2017-01-01
Gaucher disease (GD) is a heritable storage disorder caused by functional defects of the lysosomal acid β-glucosidase and the accumulation of glucosylceramide within macrophages, resulting in multiple organ dysfunction. There are three commercially available enzyme replacement therapy (ERT) products for the treatment of GD type 1 (GD1): imiglucerase, velaglucerase alfa, and taliglucerase alfa. Imiglucerase and velaglucerase alfa are produced in different mammalian cell systems; imiglucerase requires postproduction deglycosylation to expose terminal α-mannose residues, which are required for mannose receptor-mediated uptake by target macrophages. These steps are critical to the success of ERT for the treatment of visceral and hematologic manifestations of GD. Taliglucerase alfa is the first US Food and Drug Administration-approved plant-cell-expressed recombinant human protein, using carrot root cell cultures. Furthermore, it does not require postproduction glycosidic modifications. It is indicated for treatment of adults with GD1 in the US, Israel, Australia, Canada, Chile, Brazil, and other countries, and it is additionally approved for the treatment of pediatric patients in the US, Australia, and Canada and for the treatment of hematologic manifestations in pediatric patients with Type 3 GD in Canada and other countries. Our review focuses on the role of taliglucerase alfa in the pediatric population. A literature search through PubMed (from 1995 up till November 2016) of English language articles was performed with the following terms: Gaucher disease, lysosomal storage disease, taliglucerase. Secondary and tertiary references were obtained by reviewing related articles as well as the website www.Clinicaltrials.gov. It has been demonstrated that taliglucerase alfa is efficacious, with a well-established safety profile in pediatric, ERT-naïve patients with symptomatic GD1, as well as for those patients previously treated with imiglucerase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wunschel, David S.; Kreuzer-Martin, Helen W.; Antolick, Kathryn C.
2009-12-01
This report describes method development and preliminary evaluation for analyzing castor samples for signatures of purifying ricin. Ricin purification from the source castor seeds is essentially a problem of protein purification using common biochemical methods. Indications of protein purification will likely manifest themselves as removal of the non-protein fractions of the seed. Two major, non-protein, types of biochemical constituents in the seed are the castor oil and various carbohydrates. The oil comprises roughly half the seed weight while the carbohydrate component comprises roughly half of the remaining “mash” left after oil and hull removal. Different castor oil and carbohydrate componentsmore » can serve as indicators of specific toxin processing steps. Ricinoleic acid is a relatively unique fatty acid in nature and is the most abundant component of castor oil. The loss of ricinoleic acid indicates a step to remove oil from the seeds. The relative amounts of carbohydrates and carbohydrate-like compounds, including arabinose, xylose, myo-inositol fucose, rhamnose, glucosamine and mannose detected in the sample can also indicate specific processing steps. For instance, the differential loss of arabinose relative to mannose and N-acetyl glucosamine indicates enrichment for the protein fraction of the seed using protein precipitation. The methods developed in this project center on fatty acid and carbohydrate extraction from castor samples followed by derivatization to permit analysis by gas chromatography-mass spectrometry (GC-MS). Method descriptions herein include: the source and preparation of castor materials used for method evaluation, the equipment and description of procedure required for chemical derivatization, and the instrument parameters used in the analysis. Two types of derivatization methods describe analysis of carbohydrates and one procedure for analysis of fatty acids. Two types of GC-MS analysis is included in the method development, one employing a quadrupole MS system for compound identification and an isotope ratio MS for measuring the stable isotope ratios of deuterium and hydrogen (D/H) in fatty acids. Finally, the method for analyzing the compound abundance data is included. This study indicates that removal of ricinoleic acid is a conserved consequence of each processing step we tested. Furthermore, the stable isotope D/H ratio of ricinoleic acid distinguished between two of the three castor seed sources. Concentrations of arabinose, xylose, mannose, glucosamine and myo-inositol differentiated between crude or acetone extracted samples and samples produced by protein precipitation. Taken together these data illustrate the ability to distinguish between processes used to purify a ricin sample as well as potentially the source seeds.« less
Zheng, Yafeng; Zhang, Shuai; Wang, Qi; Lu, Xu; Lin, Liangmei; Tian, Yuting; Xiao, Jianbo; Zheng, Baodong
2016-06-25
The bamboo shoot (Leleba oldhami Nakal) shell is a by-product during bamboo shoot processing. It is a cheap and available resource for dietary polysaccharides. Herein, a novel polysaccharide BSSP2a was isolated and characterized from the bamboo shoot shell polysaccharides, and it was identified as a homogeneous highly-branched beta type pyran polysaccharide with a molecular weight of 1.63×10(4)kDa, which consisted of arabinose, xylose, mannose, glucose and galactose at a molar ratio of 20.4:4.9:1:3.4:20.6. The crude polysaccharides (BSSP) from the bamboo shoots shell showed hypoglycemic activity on the high fat diet and streptozotocin induced diabetic mice in a dose-dependent manner. The administration of high dose BSSP (400mg/kg) improved body weight loss and serum insulin loss, and significantly decreased the blood glucose level, serum triglycerides as well as total cholesterol levels by 48.7%, 34.8% and 26.5%, respectively. The results highlight the potential of the bamboo shoot shell polysaccharides as a natural anti-diabetic agent. Copyright © 2016 Elsevier Ltd. All rights reserved.
Park, Youmie; Zhang, Zhenqing; Laremore, Tatiana N; Li, Boyangzi; Sim, Joon-Soo; Im, A-Rang; Ahn, Mi Young; Kim, Yeong Shik; Linhardt, Robert J
2008-12-01
Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide -->4)-alpha-D-GlcNpAc (1-->4)-alpha-L-IdoAp2S(1-->, analyzed by SAX (strong-anion exchange)-HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex(2-4)-HexNAc(2)), high mannose (Hex(5-9)-HexNAc(2)), and complex (Hex(3)-HexNAc(2-10)) types. None showed core fucosylation.
Purification of cynarases from artichoke (Cynara scolymus L.): enzymatic properties of cynarase A.
Sidrach, Lara; García-Cánovas, Francisco; Tudela, José; Rodríguez-López, José Neptuno
2005-01-01
Aspartic proteinases from flowers of Cynara cardunculus have been extensively studied and long used as coagulants in the manufacture of several traditional Spanish and Portuguese cheeses. These endopeptidases are called cardosins or cynarases, depending on the authors. However, the proteinases of another plant of the genus Cynara, the artichoke (Cynara scolymus), are less known, probably because the flower of this plant is usually consumed as a vegetable. In the study described here, three proteinases (cynarases A, B and C) with milk-clotting properties were purified from the stigma of artichoke. All three proteinases are glycoproteins and composed of a one large and one small subunit. The enzymatic properties of cynarase A, a glycoprotein containing N-linked high mannose type glycans, which express maximum activity at pH 5.0 and 70 degrees C, were studied in detail. Catalytic and inhibition studies indicated that this cynarase is of the aspartic acid type. The results indicate artichoke extract could also be used in the milk industry in the same way as the extract obtained from the flower of C. cardunculus.
Targeting the C-type Lectins-Mediated Host-Pathogen Interactions with Dextran
Pustylnikov, Sergey; Sagar, Divya; Jain, Pooja; Khan, Zafar K.
2017-01-01
Dextran, the α-1,6-linked glucose polymer widely used in biology and medicine, promises new applications. Linear dextran applied as a blood plasma substitute demonstrates a high rate of biocompatibility. Dextran is present in foods, drugs, and vaccines and in most cases is applied as a biologically inert substance. In this review we analyze dextran’s cellular uptake principles, receptor specificity and, therefore, its ability to interfere with pathogen–lectin interactions: a promising basis for new antimicrobial strategies. Dextran-binding receptors in humans include the DC-SIGN (dendritic cell–specific intercellular adhesion molecule 3-grabbing nonintegrin) family receptors: DC-SIGN (CD209) and L-SIGN (the liver and lymphatic endothelium homologue of DC-SIGN), the mannose receptor (CD206), and langerin. These receptors take part in the uptake of pathogens by dendritic cells and macrophages and may also participate in the modulation of immune responses, mostly shown to be beneficial for pathogens per se rather than host(s). It is logical to predict that owing to receptor-specific interactions, dextran or its derivatives can interfere with these immune responses and improve infection outcome. Recent data support this hypothesis. We consider dextran a promising molecule for the development of lectin–glycan interaction-blocking molecules (such as DC-SIGN inhibitors) that could be applied in the treatment of diseases including tuberculosis, influenza, hepatitis B and C, human immunodeficiency virus infection and AIDS, etc. Dextran derivatives indeed change the pathology of infections dependent on DC-SIGN and mannose receptors. Complete knowledge of specific dextran–lectin interactions may also be important for development of future dextran applications in biological research and medicine. PMID:25224349
Targeted delivery of anti-tuberculosis drugs to macrophages: targeting mannose receptors
NASA Astrophysics Data System (ADS)
Filatova, L. Yu; Klyachko, N. L.; Kudryashova, E. V.
2018-04-01
The development of systems for targeted delivery of anti-tuberculosis drugs is a challenge of modern biotechnology. Currently, these drugs are encapsulated in a variety of carriers such as liposomes, polymers, emulsions and so on. Despite successful in vitro testing of these systems, virtually no success was achieved in vivo, because of low accessibility of the foci of infection located in alveolar macrophage cells. A promising strategy for increasing the efficiency of therapeutic action of anti-tuberculosis drugs is to encapsulate the agents into mannosylated carriers targeting the mannose receptors of alveolar macrophages. The review addresses the methods for modification of drug substance carriers, such as liposomes and biodegradable polymers, with mannose residues. The use of mannosylated carriers to deliver anti-tuberculosis agents increases the drug circulation time in the blood stream and increases the drug concentration in alveolar macrophage cells. The bibliography includes 113 references.
Base catalysed isomerisation of aldoses of the arabino and lyxo series in the presence of aluminate.
Ekeberg, Dag; Morgenlie, Svein; Stenstrøm, Yngve
2002-04-30
Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects.
Lectins in fish skin: do they play a role in host-monogenean interactions?
Buchmann, K
2001-09-01
Mucus samples from rainbow trout skin with or without infections by Gyrodactylus derjavini were tested for the presence of lectins reacting with mannose, galactose and lactose. The samples inhibited the binding of biotinylated lectins (from Canavalia ensiformis, Artocarpus integrifolia and Erythrina corallodendron, respectively) to microtitre plates with covalently bound carbohydrates (mannopyranoside, galactopyranoside and lactose, respectively). However, the inhibition of C. ensiformis and A. integrifolia lectins was slightly greater when mucus from infected (but recovering) fish was used, suggesting an increase of mannose and galactose binding lectins in fish skin exposed to parasites. As mannose, galactose and lactose are present on the glycocalyx of Gyrodactylus derjavini, it is suggested that lectins could play a dual role in interactions between fish hosts and their monogenean parasites. Thus, recognition between parasite and host and also host responses towards parasite infections could both, at least partly, involve carbohydrate-lectin binding.
Sugary interfaces mitigate contact damage where stiff meets soft
Yoo, Hee Young; Iordachescu, Mihaela; Huang, Jun; Hennebert, Elise; Kim, Sangsik; Rho, Sangchul; Foo, Mathias; Flammang, Patrick; Zeng, Hongbo; Hwang, Daehee; Waite, J. Herbert; Hwang, Dong Soo
2016-01-01
The byssal threads of the fan shell Atrina pectinata are non-living functional materials intimately associated with living tissue, which provide an intriguing paradigm of bionic interface for robust load-bearing device. An interfacial load-bearing protein (A. pectinata foot protein-1, apfp-1) with L-3,4-dihydroxyphenylalanine (DOPA)-containing and mannose-binding domains has been characterized from Atrina's foot. apfp-1 was localized at the interface between stiff byssus and the soft tissue by immunochemical staining and confocal Raman imaging, implying that apfp-1 is an interfacial linker between the byssus and soft tissue, that is, the DOPA-containing domain interacts with itself and other byssal proteins via Fe3+–DOPA complexes, and the mannose-binding domain interacts with the soft tissue and cell membranes. Both DOPA- and sugar-mediated bindings are reversible and robust under wet conditions. This work shows the combination of DOPA and sugar chemistry at asymmetric interfaces is unprecedented and highly relevant to bionic interface design for tissue engineering and bionic devices. PMID:27305949
Sugary interfaces mitigate contact damage where stiff meets soft
NASA Astrophysics Data System (ADS)
Yoo, Hee Young; Iordachescu, Mihaela; Huang, Jun; Hennebert, Elise; Kim, Sangsik; Rho, Sangchul; Foo, Mathias; Flammang, Patrick; Zeng, Hongbo; Hwang, Daehee; Waite, J. Herbert; Hwang, Dong Soo
2016-06-01
The byssal threads of the fan shell Atrina pectinata are non-living functional materials intimately associated with living tissue, which provide an intriguing paradigm of bionic interface for robust load-bearing device. An interfacial load-bearing protein (A. pectinata foot protein-1, apfp-1) with L-3,4-dihydroxyphenylalanine (DOPA)-containing and mannose-binding domains has been characterized from Atrina's foot. apfp-1 was localized at the interface between stiff byssus and the soft tissue by immunochemical staining and confocal Raman imaging, implying that apfp-1 is an interfacial linker between the byssus and soft tissue, that is, the DOPA-containing domain interacts with itself and other byssal proteins via Fe3+-DOPA complexes, and the mannose-binding domain interacts with the soft tissue and cell membranes. Both DOPA- and sugar-mediated bindings are reversible and robust under wet conditions. This work shows the combination of DOPA and sugar chemistry at asymmetric interfaces is unprecedented and highly relevant to bionic interface design for tissue engineering and bionic devices.
Marchese, Maria; Pappalardo, Andrea; Baldacci, Jacopo; Verri, Tiziano; Doccini, Stefano; Cassandrini, Denise; Bruno, Claudio; Fiorillo, Chiara; Garcia-Gil, Mercedes; Bertini, Enrico; Pitto, Letizia; Santorelli, Filippo M
2016-08-12
Defective dolichol-phosphate mannose synthase (DPMS) complex is a rare cause of congenital muscular dystrophy associated with hypoglycosylation of alpha-dystroglycan (α-DG) in skeletal muscle. We used the zebrafish (Danio rerio) to model muscle abnormalities due to defects in the subunits of DPMS. The three zebrafish ortholog subunits (encoded by the dpm1, dpm2 and dpm3 genes, respectively) showed high similarity to the human proteins, and their expression displayed localization in the midbrain/hindbrain area and somites. Antisense morpholino oligonucleotides targeting each subunit were used to transiently deplete the dpm genes. The resulting morphant embryos showed early death, muscle disorganization, low DPMS complex activity, and increased levels of apoptotic nuclei, together with hypoglycosylated α-DG in muscle fibers, thus recapitulating most of the characteristics seen in patients with mutations in DPMS. Our results in zebrafish suggest that DPMS plays a role in stabilizing muscle structures and in apoptotic cell death. Copyright © 2016 Elsevier Inc. All rights reserved.
A Cu-free clickable fluorescent probe for intracellular targeting of small biomolecules.
Yamagishi, Kento; Sawaki, Kazuaki; Murata, Atsushi; Takeoka, Shinji
2015-05-07
We synthesized a novel cyclooctyne-based clickable fluorescent probe with versatile properties such as high cell-membrane permeability and free diffusibility in the cell. Our probe "FC-DBCO" was conjugated to an azide-modified mannose via a Cu-free click reaction in living HeLa cells and displayed intracellular specific fluorescence imaging with low background signals.
Dynamics of Model Hydraulic Fracturing Liquid Studied by Two-Dimensional Infrared Spectroscopy
NASA Astrophysics Data System (ADS)
Daley, Kim; Kubarych, Kevin J.
2014-06-01
The technique of two-dimensional infrared (2DIR) spectroscopy is used to expose the chemical dynamics of various concentrations of polymers and their monomers in heterogeneous mixtures. An environmentally relevant heterogeneous mixture, which inspires this study, is hydraulic fracturing liquid (HFL). Hydraulic fracking is a technique used to extract natural gas from shale deposits. HFL consists of mostly water, proppant (sand), an emulsifier (guar), and other chemicals specific to the drilling site. Utilizing a metal carbonyl as a probe, we observe the spectral dynamics of the polymer, guar, and its monomer, mannose, and compare the results to see how hydration dynamics change with varying concentration. Another polymer, Ficoll, and its monomer, sucrose, are also compared to see how polymer size affects hydration dynamics. The two results are as follows: (1) Guar experiences collective hydration at high concentrations, where as mannose experiences independent hydration; (2) no collective hydration is observed for Ficoll in the same concentration range as guar, possibly due to polymer shape and size. HFL experiences extremely high pressure during natural gas removal, so future studies will focus on how increased pressure affects the hydration dynamics of polymers and monomers.
Mortazavi, Elnaz; Eslami, Behnaz; Aghahosseini, Parisa; Ahron, Fatemeh; Amininejad, Armagan; Mahmoodi, Sepideh; Satarpour, Hadis; Radmanesh, Nilofar; Rassi, Hossein
2017-10-01
Type II diabetes mellitus (T2DM) is the prevalent type of diabetes, including 90% of the cases world-wide. Helicobacter pylori plays a pathogenic role in the development of T2DM. The host genetic factors have a significant impact on the clinical outcome and anatomical distribution of H. pylori infection and polymorphisms in several genes such as tumor necrotic factor (TNF)-α and mannose-binding lectin (MBL) and are considered to increase the risk for the development of T2DM. In this study, we investigate the prevalence rate of H. pylori infection and its relationship to MBL rs1800450 and TNF-α rs1800620 polymorphism in T2DM. In this case-control study, 174 patients with type II diabetes and 185 healthy controls were studied. Also, demographics, physical, and biochemical parameters were performed in all patients. The DNA extracted from blood specimens was amplified by H. pylori cagA-specific primers. The MBL rs1800450 and TNF-α rs1800620 genotyping were detected by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). The results show that H. pylori cagA positivity was detected in 42.82% of the diabetic patients and in 22.16% of the control group, and H. pylori infection was closely correlated with MBL rs1800450 AA genotype and TNF-α rs1800620 GG genotype when compared with healthy controls. Furthermore, these two genotypes were strongly associated with H. pylori cagA(+) samples when compared with cagA(-) samples. In addition, the presence of H. pylori cagA(+) infection was significantly associated with the elevated serum levels of total cholesterol and low-density lipoprotein cholesterol. In general, it can be concluded that molecular analysis of MBL rs1800450 AA genotype and TNF-α rs1800620 AA genotype is important in the early detection and treatment of T2DM with H. pylori cagA(+) infection.
Hamrick, Terri S.; Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Horton, John R.; Russell, Perry W.; Orndorff, Paul E.
2000-01-01
Five Escherichia coli type 1 pilus mutants that had point mutations in fimH, the gene encoding the type 1 pilus adhesin FimH, were characterized. FimH is a minor component of type 1 pili that is required for the pili to bind and agglutinate guinea pig erythrocytes in a mannose-inhibitable manner. Point mutations were located by DNA sequencing and deletion mapping. All mutations mapped within the signal sequence or in the first 28% of the predicted mature protein. All mutations were missense mutations except for one, a frameshift lesion that was predicted to cause the loss of approximately 60% of the mature FimH protein. Bacterial agglutination tests with polyclonal antiserum raised to a LacZ-FimH fusion protein failed to confirm that parental amounts of FimH cross-reacting material were expressed in four of the five mutants. The remaining mutant, a temperature-sensitive (ts) fimH mutant that agglutinated guinea pig erythrocytes after growth at 31°C but not at 42°C, reacted with antiserum at both temperatures in a manner similar to the parent. Consequently, this mutant was chosen for further study. Temperature shift experiments revealed that new FimH biosynthesis was required for the phenotypic change. Guinea pig erythrocyte and mouse macrophage binding experiments using the ts mutant grown at the restrictive and permissive temperatures revealed that whereas erythrocyte binding was reduced to a level comparable to that of a fimH insertion mutant at the restrictive temperature, mouse peritoneal macrophages were bound with parental efficiency at both the permissive and restrictive temperatures. Also, macrophage binding by the ts mutant was insensitive to mannose inhibition after growth at 42°C but sensitive after growth at 31°C. The ts mutant thus binds macrophages with one receptor specificity at 31°C and another at 42°C. PMID:10869080
The structure of the cutaneous pedal glands in the banded snail Cepaea hortensis (Müller, 1774).
von Byern, Janek; Cyran, Norbert; Klepal, Waltraud; Rudoll, Livia; Suppan, Johannes; Greistorfer, Sophie
2018-02-01
Although gastropods have been crawling through the ocean and on the land for 60 million years, we still know very little about the sticky mucus produced in their foot. Most research has been focused on marine species in particular and, to a lesser extent, on the well-known terrestrial species Arion vulgaris and Cornu aspersum. Within this study, we aim to characterize the foot anatomy of a smaller representative of the family Helicidae, the banded snail Cepaea hortensis. We are particularly interested in the microanatomy of the foot glands, their position, and the histochemical nature of their secretory content. Characterization of the dorsal foot region of Cepaea hortensis reveals four glands, differing in their size and in the granules produced. Histochemically, three of them react positively for sugars (PAS staining and lectin affinity tests for mannose, glucose and N-acetyl-d-glucosamine) and acidic proteins (positive Alcian blue and Toluidine blue staining), indicating the presence of acidic glycosaminoglycans. The fourth gland type does not react to any of these dyes. The ventral pedal region includes two different gland types, which are positive for the presence of acidic glycoproteins, with a lectin affinity for mannose only. A comparison with Helix pomatia indicates differences regarding the number of glands and their contents. In Helix, only three gland types are described in the dorsal region of the foot, which show a similar granular appearance but nevertheless differ in their chemical composition. Congruently, there are two gland types in the ventral region in both species, whereas in Helix an additional sugar moiety is found. This raises the question whether these differences between the pedal glandular systems of both helicid species are the result of protection or size-related adaptations, as they occur in the same habitat. © 2017 Wiley Periodicals, Inc.
Scanlan, Christopher N.; Pantophlet, Ralph; Wormald, Mark R.; Ollmann Saphire, Erica; Stanfield, Robyn; Wilson, Ian A.; Katinger, Hermann; Dwek, Raymond A.; Rudd, Pauline M.; Burton, Dennis R.
2002-01-01
2G12 is a broadly neutralizing human monoclonal antibody against human immunodeficiency virus type-1 (HIV-1) that has previously been shown to bind to a carbohydrate-dependent epitope on gp120. Here, site-directed mutagenesis and carbohydrate analysis were used to define further the 2G12 epitope. Extensive alanine scanning mutagenesis showed that elimination of the N-linked carbohydrate attachment sequences associated with residues N295, N332, N339, N386, and N392 by N→A substitution produced significant decreases in 2G12 binding affinity to gp120JR-CSF. Further mutagenesis suggested that the glycans at N339 and N386 were not critical for 2G12 binding to gp120JR-CSF. Comparison of the sequences of isolates neutralized by 2G12 was also consistent with a lesser role for glycans attached at these positions. The mutagenesis studies provided no convincing evidence for the involvement of gp120 amino acid side chains in 2G12 binding. Antibody binding was inhibited when gp120 was treated with Aspergillus saitoi mannosidase, Jack Bean mannosidase, or endoglycosidase H, indicating that Manα1→2Man-linked sugars of oligomannose glycans on gp120 are required for 2G12 binding. Consistent with this finding, the binding of 2G12 to gp120 could be inhibited by monomeric mannose but not by galactose, glucose, or N-acetylglucosamine. The inability of 2G12 to bind to gp120 produced in the presence of the glucose analogue N-butyl-deoxynojirimycin similarly implicated Manα1→2Man-linked sugars in 2G12 binding. Competition experiments between 2G12 and the lectin cyanovirin for binding to gp120 showed that 2G12 only interacts with a subset of available Manα1→2Man-linked sugars. Consideration of all the data, together with inspection of a molecular model of gp120, suggests that the most likely epitope for 2G12 is formed from mannose residues contributed by the glycans attached to N295 and N332, with the other glycans playing an indirect role in maintaining epitope conformation. PMID:12072529
Secret, Emilie; Maynadier, Marie; Gallud, Audrey; Chaix, Arnaud; Bouffard, Elise; Gary-Bobo, Magali; Marcotte, Nathalie; Mongin, Olivier; El Cheikh, Khaled; Hugues, Vincent; Auffan, Mélanie; Frochot, Céline; Morère, Alain; Maillard, Philippe; Blanchard-Desce, Mireille; Sailor, Michael J; Garcia, Marcel; Durand, Jean-Olivier; Cunin, Frédérique
2014-12-03
Porous silicon nanoparticles (pSiNPs) act as a sensitizer for the 2-photon excitation of a pendant porphyrin using NIR laser light, for imaging and photodynamic therapy. Mannose-functionalized pSiNPs can be vectorized to MCF-7 human breast cancer cells through a mannose receptor-mediated endocytosis mechanism to provide a 3-fold enhancement of the 2-photon PDT effect. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stealth Biocompatible Si-Based Nanoparticles for Biomedical Applications
Chaix, Arnaud; Gary-Bobo, Magali; Angeletti, Bernard; Masion, Armand; Da Silva, Afitz; Daurat, Morgane; Lichon, Laure; Garcia, Marcel; Morère, Alain; El Cheikh, Khaled; Durand, Jean-Olivier; Cunin, Frédérique; Auffan, Mélanie
2017-01-01
A challenge regarding the design of nanocarriers for drug delivery is to prevent their recognition by the immune system. To improve the blood residence time and prevent their capture by organs, nanoparticles can be designed with stealth properties using polymeric coating. In this study, we focused on the influence of surface modification with polyethylene glycol and/or mannose on the stealth behavior of porous silicon nanoparticles (pSiNP, ~200 nm). In vivo biodistribution of pSiNPs formulations were evaluated in mice 5 h after intravenous injection. Results indicated that the distribution in the organs was surface functionalization-dependent. Pristine pSiNPs and PEGylated pSiNPs were distributed mainly in the liver and spleen, while mannose-functionalized pSiNPs escaped capture by the spleen, and had higher blood retention. The most efficient stealth behavior was observed with PEGylated pSiNPs anchored with mannose that were the most excreted in urine at 5 h. The biodegradation kinetics evaluated in vitro were in agreement with these in vivo observations. The biocompatibility of the pristine and functionalized pSiNPs was confirmed in vitro on human cell lines and in vivo by cytotoxic and systemic inflammation investigations, respectively. With their biocompatibility, biodegradability, and stealth properties, the pSiNPs functionalized with mannose and PEG show promising potential for biomedical applications. PMID:28946628
Zhang, Chanjuan; Ouyang, Bo; Yang, Changxian; Zhang, Xiaohui; Liu, Hui; Zhang, Yuyang; Zhang, Junhong; Li, Hanxia; Ye, Zhibiao
2013-01-01
As a vital antioxidant, L-ascorbic acid (AsA) affects diverse biological processes in higher plants. Lack of AsA in cell impairs plant development. In the present study, we manipulated a gene of GDP-mannose pyrophosphorylase which catalyzes the conversion of D-mannose-1-P to GDP-D-mannose in AsA biosynthetic pathway and found out the phenotype alteration of tomato. In the tomato genome, there are four members of GMP gene family and they constitutively expressed in various tissues in distinct expression patterns. As expected, over-expression of SlGMP3 increased total AsA contents and enhanced the tolerance to oxidative stress in tomato. On the contrary, knock-down of SlGMP3 significantly decreased AsA contents below the threshold level and altered the phenotype of tomato plants with lesions and further senescence. Further analysis indicated the causes for this symptom could result from failing to instantly deplete the reactive oxygen species (ROS) as decline of free radical scavenging activity. More ROS accumulated in the leaves and then triggered expressions of defence-related genes and mimic symptom occurred on the leaves similar to hypersensitive responses against pathogens. Consequently, the photosynthesis of leaves was dramatically fallen. These results suggested the vital roles of AsA as an antioxidant in leaf function and defence response of tomato.
Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P
2016-05-01
Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moncla, Bernard J; Chappell, Catherine A; Debo, Brian M; Meyn, Leslie A
2016-01-01
In this study, we characterized the glycome of cervical-vaginal fluid, collected with a Catamenial cup. We quantified: glycosidase levels; sialic acid and high mannose specific lectin binding; mucins, MUC1, MUC4, MUC5AC, MUC7; and albumin in the samples collected. These data were analyzed in the context of hormonal status (day of menstrual cycle, hormonal contraception use) and role, if any, of the type of the vaginal microflora present. When the Nugent score was used to stratify the subjects by microflora as normal, intermediate, or bacterial vaginosis, several important differences were observed. The activities of four of six glycosidases in the samples from women with bacterial vaginosis were significantly increased when compared to normal or intermediate women: sialidase, P = <0.001; α-galactosidase, P = 0.006; β-galactosidase, P = 0.005; α-glucosidase, P = 0.056. Sialic acid binding sites as measured by two lectins, Maackia amurensis and Sambucus nigra binding, were significantly lower in women with BV compared to women with normal and intermediate scores (P = <0.0001 and 0.008 respectively). High mannose binding sites, a measure of innate immunity were also significantly lower in women with BV (P = <0.001). Additionally, we observed significant increases in MUC1, MUC4, MUC5AC, and MUC7 concentrations in women with BV (P = <0.001, 0.001, <0.001, 0.02 respectively). Among normal women we found that the membrane bound mucin MUC4 and the secreted MUC5AC were decreased in postmenopausal women (P = 0.02 and 0.07 respectively), while MUC7 (secreted) was decreased in women using levonorgestrel-containing IUDs (P = 0.02). The number of sialic acid binding sites was lower in the postmenopausal group (P = 0.04), but the number of high mannose binding sites, measured with Griffithsin, was not significantly different among the 6 hormonal groups. The glycosidase levels in the cervical-vaginal mucus were rather low in the groups, with exception of α-glucosidase activity that was much lower in the postmenopausal group (P<0.001). These studies present compelling evidence that the vaginal ecosystem responds to the presence of different vaginal microorganisms. These effects were so influential that it required us to remove subjects with BV for data interpretation of the impact of hormones. We also suggest that certain changes occurring in vaginal/cervical proteins are due to bacteria or their products. Therefore, the quantitation of vaginal mucins and lectin binding offers a new method to monitor bacteria-host interactions in the female reproductive tract. The data suggest that some of the changes in these components are the result of host processing, such as the increases in mucin content, while the microflora is responsible for the increases in glycosidases and the decreases in lectin binding. The methods should be considered a valid marker for insult to the female genital tract.
Song, Yajian; Xue, Yanfen; Ma, Yanhe
2013-01-01
The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose) and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose) using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources. PMID:23326578
Vitved, L; Holmskov, U; Koch, C; Teisner, B; Hansen, S; Salomonsen, J; Skjødt, K
2000-09-01
Mannose-binding lectin (MBL) participates in the innate immune system as an activator of the complement system and as an opsonin after binding to certain carbohydrate structures on microorganisms. We isolated and characterized cDNA transcripts encoding an MBL homologue from three members of the carp family Cyprinidae, the zebrafish Danio rerio, the goldfish Carassius auratus, and the carp Cyprinus carpio. The carp and zebrafish transcripts contain two polyadenylation sites and RT-PCR on mRNA from carp tissues revealed the carp transcript to be most prominently expressed in the spleen. The deduced mature proteins contain 228 or 233 amino acids with a short N-terminal segment containing a single conserved cysteine expected to form interchain disulfide bridges, a collagen domain interrupted by four amino acids between two glycine residues, a neck region predicted to form an alpha-helical coiled-coil structure, and a C-terminal carbohydrate recognition domain (CRD). Several of the structurally important residues in the CRD are conserved, but the residues known to interact with the calcium ion and hydroxyl groups of the carbohydrate ligand are different. The amino acid motif EPN, important for mannose specificity, was QPD in the Cyprinidae homologue, suggesting specificity for galactose instead. The identity between the deduced amino acid sequences is more than 90% between the carp and the goldfish and 68% and 65% between these two species, respectively, and the zebrafish. The identity with bird and mammalian MBLs ranges from 28 to 33%.
Reiding, Karli R; Ruhaak, L Renee; Uh, Hae-Won; El Bouhaddani, Said; van den Akker, Erik B; Plomp, Rosina; McDonnell, Liam A; Houwing-Duistermaat, Jeanine J; Slagboom, P Eline; Beekman, Marian; Wuhrer, Manfred
2017-02-01
Glycosylation is an abundant co- and post-translational protein modification of importance to protein processing and activity. Although not template-defined, glycosylation does reflect the biological state of an organism and is a high-potential biomarker for disease and patient stratification. However, to interpret a complex but informative sample like the total plasma N-glycome, it is important to establish its baseline association with plasma protein levels and systemic processes. Thus far, large-scale studies (n >200) of the total plasma N-glycome have been performed with methods of chromatographic and electrophoretic separation, which, although being informative, are limited in resolving the structural complexity of plasma N-glycans. MS has the opportunity to contribute additional information on, among others, antennarity, sialylation, and the identity of high-mannose type species.Here, we have used matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR)-MS to study the total plasma N-glycome of 2144 healthy middle-aged individuals from the Leiden Longevity Study, to allow association analysis with markers of metabolic health and inflammation. To achieve this, N-glycans were enzymatically released from their protein backbones, labeled at the reducing end with 2-aminobenzoic acid, and following purification analyzed by negative ion mode intermediate pressure MALDI-FTICR-MS. In doing so, we achieved the relative quantification of 61 glycan compositions, ranging from Hex 4 HexNAc 2 to Hex 7 HexNAc 6 dHex 1 Neu5Ac 4 , as well as that of 39 glycosylation traits derived thereof. Next to confirming known associations of glycosylation with age and sex by MALDI-FTICR-MS, we report novel associations with C-reactive protein (CRP), interleukin 6 (IL-6), body mass index (BMI), leptin, adiponectin, HDL cholesterol, triglycerides (TG), insulin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and smoking. Overall, the bisection, galactosylation, and sialylation of diantennary species, the sialylation of tetraantennary species, and the size of high-mannose species proved to be important plasma characteristics associated with inflammation and metabolic health. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Reiding, Karli R.; Ruhaak, L. Renee; Uh, Hae-Won; el Bouhaddani, Said; van den Akker, Erik B.; Plomp, Rosina; McDonnell, Liam A.; Houwing-Duistermaat, Jeanine J.; Slagboom, P. Eline; Beekman, Marian; Wuhrer, Manfred
2017-01-01
Glycosylation is an abundant co- and post-translational protein modification of importance to protein processing and activity. Although not template-defined, glycosylation does reflect the biological state of an organism and is a high-potential biomarker for disease and patient stratification. However, to interpret a complex but informative sample like the total plasma N-glycome, it is important to establish its baseline association with plasma protein levels and systemic processes. Thus far, large-scale studies (n >200) of the total plasma N-glycome have been performed with methods of chromatographic and electrophoretic separation, which, although being informative, are limited in resolving the structural complexity of plasma N-glycans. MS has the opportunity to contribute additional information on, among others, antennarity, sialylation, and the identity of high-mannose type species. Here, we have used matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR)-MS to study the total plasma N-glycome of 2144 healthy middle-aged individuals from the Leiden Longevity Study, to allow association analysis with markers of metabolic health and inflammation. To achieve this, N-glycans were enzymatically released from their protein backbones, labeled at the reducing end with 2-aminobenzoic acid, and following purification analyzed by negative ion mode intermediate pressure MALDI-FTICR-MS. In doing so, we achieved the relative quantification of 61 glycan compositions, ranging from Hex4HexNAc2 to Hex7HexNAc6dHex1Neu5Ac4, as well as that of 39 glycosylation traits derived thereof. Next to confirming known associations of glycosylation with age and sex by MALDI-FTICR-MS, we report novel associations with C-reactive protein (CRP), interleukin 6 (IL-6), body mass index (BMI), leptin, adiponectin, HDL cholesterol, triglycerides (TG), insulin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and smoking. Overall, the bisection, galactosylation, and sialylation of diantennary species, the sialylation of tetraantennary species, and the size of high-mannose species proved to be important plasma characteristics associated with inflammation and metabolic health. PMID:27932526
Biosynthesis, processing, and subcellular localization of rat spermbeta-D-galactosidase.
Chayko, C A; Orgebin-Crist, M C; Skudlarek, M D; Tulsiani, D R
2000-09-01
During spermatogenesis, spermatids synthesize constituent proteins present in mature spermatozoa; however, little information exists on the molecular processes involved. In previous studies, this laboratory reported the characterization of rat sperm beta-D-galactosidase. In this paper, we report the localization of this enzyme along with its biosynthesis and processing. An antibody against rat luminal fluid beta-D-galactosidase was used to immunolocalize the enzyme in the testis and in epididymal spermatozoa. We found that beta-D-galactosidase is localized within the acrosomal cap of spermatids and in the acrosome and cytoplasmic droplet of epididymal spermatozoa. A combination of germ cell radiolabeling, immunoprecipitation, SDS-PAGE, and autoradiography revealed that spermatids produce two forms of beta-D-galactosidase, 90 and 88 kDa. During pulse-chase analysis, a 56-kDa form appeared. Treatment of beta-D-galactosidase immunoprecipitates from testicular spermatozoa with N-glycanase or Endo H revealed that both the 90- and 88-kDa forms become a 70-kDa polypeptide on SDS-PAGE. Since Endo H or N-glycanase treatment provided similar results, the presence of extensive N-linked high mannose/hybrid-type glycans on these proteins is indicated. Treatment of the 56-kDa form of beta-D-galactosidase with Endo H or N-glycanase resulted in the appearance of 52- and 50-kDa forms, respectively. This result suggests that the 56-kDa form contains N-linked high mannose/hybrid as well as complex oligosaccharides. During epididymal maturation, the 90-kDa form of beta-D-galactosidase persists in caput epididymal spermatozoa and is gradually converted to a major 74-kDa form in cauda spermatozoa. In addition to the 90- to 74-kDa forms, cauda spermatozoa show a 56- to 52-kDa form on Western immunoblots. Since only the high-molecular weight forms of beta-D-galactosidase are present on immunoblots of isolated sperm heads, we suggest that they are acrosomal in origin and that the 56-kDa form, which is processed to 52 kDa in cauda spermatozoa, is associated with the cytoplasmic droplet.
Biosynthetic Origin of Hygromycin A
Habib, El-Sayed E.; Scarsdale, J. Neel; Reynolds, Kevin A.
2003-01-01
Hygromycin A, an antibiotic produced by Streptomyces hygroscopicus, is an inhibitor of bacterial ribosomal peptidyl transferase. The antibiotic binds to the ribosome in a distinct but overlapping manner with other antibiotics and offers a different template for generation of new agents effective against multidrug-resistant pathogens. Reported herein are the results from a series of stable-isotope-incorporation studies demonstrating the biosynthetic origins of the three distinct structural moieties which comprise hygromycin A. Incorporation of [1-13C]mannose and intact incorporation of d-[1,2-13C2]glucose into the 6-deoxy-5-keto-d-arabino-hexofuranose moiety are consistent with a pathway in which mannose is converted to an activated l-fucose, via a 4-keto-6-deoxy-d-mannose intermediate, with a subsequent unusual mutation of the pyranose to the corresponding furanose. The aminocyclitol moiety was labeled by d-[1,2-13C2]glucose in a manner consistent with formation of myo-inositol and a subsequent unprecedented oxidation and transamination of the C-2 hydroxyl group to generate neo-inosamine-2. Incorporation of [carboxy-13C]-4-hydroxybenzoic acid and intact incorporation of [2,3-13C2]propionate are consistent with a polyketide synthase-type decarboxylation condensation to generate the 3,4-dihydroxy-α-methylcinnamic acid moiety of hygromycin A. No labeling of hygromycin A was observed when [3-13C]tyrosine, [3-13C]phenylalanine, or [carboxy-13C]benzoic acid was used, suggesting that the 4-hydroxybenzoic acid is derived directly from chorismic acid. Consistent with this hypothesis was the observation that hygromycin A titers could be reduced by addition of N-(phosphonomethyl)-glycine (an inhibitor of chorismic acid biosynthesis) and restored by coaddition of 4-hydroxybenzoic acid. The convergent biosynthetic pathway established for hygromycin A offers significant versatility for applying the techniques of combinatorial and directed biosynthesis to production of new antibiotics which target the ribosomal peptidyl transferase activity. PMID:12821448
Banda, Nirmal K.; Takahashi, Minoru; Takahashi, Kazue; Stahl, Gregory L.; Hyatt, Stephanie; Glogowska, Magdalena; Wiles, Timothy A.; Endo, Yuichi; Fujita, Teizo; Holers, V. Michael; Arend, William P.
2011-01-01
Mannose-binding lectin-associated serine proteases-1/3 (MASP-1/3) are essential in activating the alternative pathway (AP) of complement through cleaving pro-factor D (pro-Df) into mature Df. MASP are believed to require binding to mannose binding lectins (MBL) or ficolins (FCN) to carry out their biological activities. Murine sera have been reported to contain MBL-A, MBL-C, and FCN-A, but not FCN-B that exists endogenously in monocytes and is thought not to bind MASP-1. We examined some possible mechanisms whereby MASP-1/3 might activate the AP. Collagen antibody-induced arthritis, a murine model of inflammatory arthritis dependent on the AP, was unchanged in mice lacking MBL-A, MBL-C, and FCN-A (MBL−/−/FCN A−/− mice) in comparison to wild-type mice. The in vitro induction of the AP by adherent mAb to collagen II was intact using sera from MBL−/−/FCN A−/− mice. Furthermore, sera from MBL−/−/FCN A−/− mice lacked pro-Df and possessed only mature Df. Gel filtration of sera from MBL−/−/FCN A−/− mice showed the presence of MASP-1 protein in fractions containing proteins smaller than the migration of MBL-A and MBL-C in sera from C4−/− mice, suggesting possible binding of MASP-1 to an unknown protein. Lastly, we show that FCN-B was present in the sera of MBL−/−/FCN A−/−mice and that it was bound to MASP-1. We conclude that MASP-1 does not require binding to MBL-A, MBL-C, or FCN-A to activate the AP. MASP-1 may cleave pro-Df into mature Df through binding to FCN-B or to an unknown protein, or may function as an unbound soluble protein. PMID:21943708
NASA Astrophysics Data System (ADS)
Du, Yi; May, Kimberly; Xu, Wei; Liu, Hongcheng
2012-07-01
The presence of N-linked oligosaccharides in the CH2 domain has a significant impact on the structure, stability, and biological functions of recombinant monoclonal antibodies. The impact is also highly dependent on the specific oligosaccharide structures. The absence of core-fucose has been demonstrated to result in increased binding affinity to Fcγ receptors and, thus, enhanced antibody-dependent cellular cytotoxicity (ADCC). Therefore, a method that can specifically determine the level of oligosaccharides without the core-fucose (afucosylation) is highly desired. In the current study, recombinant monoclonal antibodies and tryptic peptides from the antibodies were digested using endoglycosidases F2 and H, which cleaves the glycosidic bond between the two primary GlcNAc residues. As a result, various oligosaccharides of either complex type or high mannose type that are commonly observed for recombinant monoclonal antibodies are converted to either GlcNAc residue only or GlcNAc with the core-fucose. The level of GlcNAc represents the sum of all afucosylated oligosaccharides, whereas the level of GlcNAc with the core-fucose represents the sum of all fucosylated oligosaccharides. LC-MS analysis of the enzymatically digested antibodies after reduction provided a quick estimate of the levels of afucosylation. An accurate determination of the level of afucosylation was obtained by LC-MS analysis of glycopeptides after trypsin digestion.
Ling, Man To; Tu, Wenwei; Han, Yan; Mao, Huawei; Chong, Wai Po; Guan, Jing; Liu, Ming; Lam, Kwok Tai; Law, Helen K W; Peiris, J S Malik; Takahashi, K; Lau, Yu Lung
2012-01-01
Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response.
1-.sup.11 C-D-Glucose and related compounds
Shiue, Chyng-Yann; Wolf, Alfred P.
1984-03-27
The novel compounds 1-.sup.11 C-D-glucose, 1-.sup.11 C-D-mannose, 1-.sup.11 C-D-galactose, 2-.sup.11 C-D-glucose, 2-.sup.11 C-D-mannose and 2-.sup.11 C-D-galactose which can be used in nuclear medicine to monitor the metabolism of glucose and galactose can be rapidly prepared by reaction of the appropriate aldose substrate with an alkali metal .sup.11 C-labeled cyanide followed by reduction with a Raney alloy in formic acid.
NASA Astrophysics Data System (ADS)
Khanal, Manakamana; Larsonneur, Fanny; Raks, Victoriia; Barras, Alexandre; Baumann, Jean-Sébastien; Martin, Fernando Ariel; Boukherroub, Rabah; Ghigo, Jean-Marc; Ortiz Mellet, Carmen; Zaitsev, Vladimir; Garcia Fernandez, Jose M.; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine
2015-01-01
Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding ND-conjugates behaving as effective inhibitors of E. coli type 1 fimbriae-mediated adhesion as well as of biofilm formation. The required trimeric thiosugar clusters were obtained through a convenient thiol-ene ``click'' strategy and were subsequently conjugated to alkynyl-functionalized NDs using a Cu(i)-catalysed ``click'' reaction. We demonstrated that the tri-thiomannoside cluster-conjugated NDs (ND-Man3) show potent inhibition of type 1 fimbriae-mediated E. coli adhesion to yeast and T24 bladder cells as well as of biofilm formation. The biofilm disrupting effects demonstrated here have only rarely been reported in the past for analogues featuring such simple glycosidic motifs. Moreover, the finding that the tri-thiomannoside cluster (Man3N3) is itself a relatively efficient inhibitor, even when not conjugated to any ND edifice, suggests that alternative mono- or multivalent sugar-derived analogues might also be usefully explored for E. coli-mediated biofilm disrupting properties.Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding ND-conjugates behaving as effective inhibitors of E. coli type 1 fimbriae-mediated adhesion as well as of biofilm formation. The required trimeric thiosugar clusters were obtained through a convenient thiol-ene ``click'' strategy and were subsequently conjugated to alkynyl-functionalized NDs using a Cu(i)-catalysed ``click'' reaction. We demonstrated that the tri-thiomannoside cluster-conjugated NDs (ND-Man3) show potent inhibition of type 1 fimbriae-mediated E. coli adhesion to yeast and T24 bladder cells as well as of biofilm formation. The biofilm disrupting effects demonstrated here have only rarely been reported in the past for analogues featuring such simple glycosidic motifs. Moreover, the finding that the tri-thiomannoside cluster (Man3N3) is itself a relatively efficient inhibitor, even when not conjugated to any ND edifice, suggests that alternative mono- or multivalent sugar-derived analogues might also be usefully explored for E. coli-mediated biofilm disrupting properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05906a
Sun, Qing; Zhao, Lixiang; Song, Qingqing; Wang, Zheng; Qiu, Xusheng; Zhang, Wenjun; Zhao, Mingjun; Zhao, Guo; Liu, Wenbo; Liu, Haiyan; Li, Yunsen; Liu, Xiufan
2012-03-01
N-linked glycans are composed of three major types: high-mannose (Man), hybrid or complex. The functional role of hybrid- and complex-type N-glycans in Newcastle disease virus (NDV) infection and fusion was examined in N-acetylglucosaminyltransferase I (GnT I)-deficient Lec1 cells, a mutant Chinese hamster ovary (CHO) cell incapable of synthesizing hybrid- and complex-type N-glycans. We used recombinant NDV expressing green fluorescence protein or red fluorescence protein to monitor NDV infection, syncytium formation and viral yield. Flow cytometry showed that CHO-K1 and Lec1 cells had essentially the same degree of NDV infection. In contrast, Lec2 cells were found to be resistant to NDV infection. Compared with CHO-K1 cells, Lec1 cells were shown to more sensitive to fusion induced by NDV. Viral attachment was found to be comparable in both lines. We found that there were no significant differences in the yield of progeny virus produced by both CHO-K1 and Lec1 cells. Quantitative analysis revealed that NDV infection and fusion in Lec1 cells were also inhibited by treatment with sialidase. Pretreatment of Lec1 cells with Galanthus nivalis agglutinin specific for terminal α1-3-linked Man prior to inoculation with NDV rendered Lec1 cells less sensitive to cell-to-cell fusion compared with mock-treated Lec1 cells. Treatment of CHO-K1 and Lec1 cells with tunicamycin, an inhibitor of N-glycosylation, significantly blocked fusion and infection. In conclusion, our results suggest that hybrid- and complex-type N-glycans are not required for NDV infection and fusion. We propose that high-Man-type N-glycans could play an important role in the cell-to-cell fusion induced by NDV.
Silva, Giovanna B; Ionashiro, Mari; Carrara, Thalita B; Crivellari, Augusto C; Tiné, Marco A S; Prado, Jefferson; Carpita, Nicholas C; Buckeridge, Marcos S
2011-12-01
Primary cell walls from plants are composites of cellulose tethered by cross-linking glycans and embedded in a matrix of pectins. Cell wall composition varies between plant species, reflecting in some instances the evolutionary distance between them. In this work the monosaccharide compositions of isolated primary cell walls of nine fern species and one lycophyte were characterized and compared with those from Equisetum and an angiosperm dicot. The relatively high abundance of mannose in these plants suggests that mannans may constitute the major cross-linking glycan in the primary walls of pteridophytes and lycophytes. Pectin-related polysaccharides contained mostly rhamnose and uronic acids, indicating the presence of rhamnogalacturonan I highly substituted with galactose and arabinose. Structural and fine-structural analyses of the hemicellulose fraction of leaves of Adiantum raddianum confirmed this hypothesis. Linkage analysis showed that the mannan contains mostly 4-Man with very little 4,6-Man, indicating a low percentage of branching with galactose. Treatment of the mannan-rich fractions with endo-β-mannanase produced characteristic mannan oligosaccharides. Minor amounts of xyloglucan and xylans were also detected. These data and those of others suggest that all vascular plants contain xyloglucans, arabinoxylans, and (gluco)mannans, but in different proportions that define cell wall types. Whereas xyloglucan and pectin-rich walls define Type I walls of dicots and many monocots, arabinoxylans and lower proportion of pectin define the Type II walls of commelinoid monocots. The mannan-rich primary walls with low pectins of many ferns and a lycopod indicate a fundamentally different wall type among land plants, the Type III wall. Copyright © 2011 Elsevier Ltd. All rights reserved.
Method for Making High Molecular Weight, Extended pi-Conjugated Polymers
2001-05-04
derivatized poly(terephthalates)s as coatings for electronics components, and as construction materials for field- effect transistors, both applications...mannose, dulose, idose, galactose and talose; ketoses such as erythrulose, ribulose, xylulose, psicose, fructose, sorbose, tagatose ; di-, tri-, 12...show that Sc(OTr)3 alone was not effective as a 15 polymerization catalyst. When the organic salt was introduced, Sc(OTr)3 became marginally
High-Dose Mannose-Binding Lectin Therapy for Ebola Virus Infection
2010-06-01
viruses . N-glycosylation of viral envelopes is an important such target shared between in- fluenza, HIV, HCV, West Nile virus , SARS-CoV, Hendra virus ...host cells. Therefore, MBL preferentially recognizes glycosylated viruses including influenza virus , human immunodeficiency virus , severe acute...respiratory syndrome coronovirus (SARS-CoV), Ebola virus , and Marburg virus . It also recognizes many glycosylated gram- positive and gram-negative bacteria [1
Truszczyński, M; Osek, J
1987-01-01
Three-hundred and fifty-eight E. coli strains isolated from piglets were tested for the presence of hemagglutinins by the use of the active hemagglutination test with or without mannose. Additionally 86 strains from the mentioned number of strains were investigated for the presence of common fimbriae using the same method but growing the strains in media especially suited for the development of this kind of fimbriae. These 358 strains and additionally 202 E. coli strains were tested using antisera for 987P and K88 antigens. It was found, using the active hemagglutination test, that 51.4% of the strains were hemagglutinating. The hemagglutinating strains carried the K88 antigen. All these strains were isolated from new-born and weaned piglets with enterotoxic form of colibacillosis, called also E. coli diarrhea. From cases of this form of colibacillosis originated also 26.7% of the strains in which common fimbriae (type 1) were detected. This result was obtained when the BHI medium was used for cultivation. In case of TSA medium only 2.3% of strains were positive. No specific or common fimbriae were found in strains recovered from septic form of colibacillosis and oedema disease (called also enterotoxaemic form of colibacillosis). No strain of 560 examined showed the presence of fimbrial 987P antigen.
CROSS-REACTIONS OF ANTITYPHOID AND ANTIPARATYPHOID B HORSE SERA WITH VARIOUS POLYSACCHARIDES
Heidelberger, Michael; Cordoba, Felix
1956-01-01
A study was made of cross-reactions of synthetic polyglucose and of numerous plant and bacterial gums in an antityphoid and an antiparatyphoid B horse serum. The observed differences permit conclusions to be drawn regarding certain of the linkages likely to be found in the fine structures of each of the corresponding Salmonella polysaccharides:— 1. Cross-reactions of the antityphoid serum with the specific polysaccharide of Type II pneumococcus and with tamarind seed polysaccharide, glycogen and synthetic polyglucose indicate that the acetic acid-degraded O-polysaccharide of S. typhi, strain O 901, may contain part, at least, of its glucose as 1,4,6-branch points or in 1,6-linkage, perhaps adjacent to a terminal, non-reducing, galactopyranose unit. 2. Cross-reactions of both antisera with arabogalactans point to the existence of (probably β-) 1,3-, 1,6-, and/or 1,3,6-linkages of galactose in both the typhoid and paratyphoid B polysaccharides. 3. The differential reactivities of the galactomannans and yeast mannan suggest that the mannose in the typhoid polysaccharide is linked 1,2- or 1,3- with possible non-reducing mannopyranose end groups attached 1,6-. In the paratyphoid B polysaccharide the linkages are probably galacto-oligomannose 1,4-, or 1,4,6-, or the corresponding linkages of mannose alone. PMID:13357691
Kurogochi, Masaki; Mori, Masako; Osumi, Kenji; Tojino, Mami; Sugawara, Shu-Ichi; Takashima, Shou; Hirose, Yuriko; Tsukimura, Wataru; Mizuno, Mamoru; Amano, Junko; Matsuda, Akio; Tomita, Masahiro; Takayanagi, Atsushi; Shoda, Shin-Ichiro; Shirai, Takashi
2015-01-01
Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells, and revealed that the glycoform influenced ADCC activity.
Simple Approach for De Novo Structural Identification of Mannose Trisaccharides
NASA Astrophysics Data System (ADS)
Hsu, Hsu Chen; Liew, Chia Yen; Huang, Shih-Pei; Tsai, Shang-Ting; Ni, Chi-Kung
2018-03-01
Oligosaccharides have diverse functions in biological systems. However, the structural determination of oligosaccharides remains difficult and has created a bottleneck in carbohydrate research. In this study, a new approach for the de novo structural determination of underivatized oligosaccharides is demonstrated. A low-energy collision-induced dissociation (CID) of sodium ion adducts was used to facilitate the cleavage of desired chemical bonds during the dissociation. The selection of fragments for the subsequent CID was guided using a procedure that we built from the understanding of the saccharide dissociation mechanism. The linkages, anomeric configurations, and branch locations of oligosaccharides were determined by comparing the CID spectra of oligosaccharide with the fragmentation patterns based on the dissociation mechanism and our specially prepared disaccharide CID spectrum database. The usefulness of this method was demonstrated to determine the structures of several mannose trisaccharides. This method can also be applied in the structural determination of oligosaccharides larger than trisaccharides and containing hexose other than mannose if authentic standards are available. [Figure not available: see fulltext.
Simple Approach for De Novo Structural Identification of Mannose Trisaccharides
NASA Astrophysics Data System (ADS)
Hsu, Hsu Chen; Liew, Chia Yen; Huang, Shih-Pei; Tsai, Shang-Ting; Ni, Chi-Kung
2017-12-01
Oligosaccharides have diverse functions in biological systems. However, the structural determination of oligosaccharides remains difficult and has created a bottleneck in carbohydrate research. In this study, a new approach for the de novo structural determination of underivatized oligosaccharides is demonstrated. A low-energy collision-induced dissociation (CID) of sodium ion adducts was used to facilitate the cleavage of desired chemical bonds during the dissociation. The selection of fragments for the subsequent CID was guided using a procedure that we built from the understanding of the saccharide dissociation mechanism. The linkages, anomeric configurations, and branch locations of oligosaccharides were determined by comparing the CID spectra of oligosaccharide with the fragmentation patterns based on the dissociation mechanism and our specially prepared disaccharide CID spectrum database. The usefulness of this method was demonstrated to determine the structures of several mannose trisaccharides. This method can also be applied in the structural determination of oligosaccharides larger than trisaccharides and containing hexose other than mannose if authentic standards are available. [Figure not available: see fulltext.
Peng, Lin; Qiao, Shuangkui; Xu, Zhenghong; Guan, Feng; Ding, Zhongyang; Gu, Zhenghua; Zhang, Liang; Shi, Guiyang
2015-11-20
We investigated the relationship between monosaccharide composition of Ganoderma lucidum exopolysaccharide (EPS) and activities of EPS synthesis enzymes under various culture temperatures and initial pH values. The mole percentages of three major EPS monosaccharides, glucose, galactose and mannose, varied depending on culture conditions and the resulting EPS displayed differing anti-tumor activities. In nine tested enzymes, higher enzyme activities were correlated with higher temperature and lower initial pH. Altered mole percentages of galactose and mannose under various culture conditions were associated with activities of α-phosphoglucomutase (PGM) and phosphoglucose isomerase (PGI), respectively, and that of mannose was also associated with phosphomannose isomerase (PMI) activity only under various pH. Our findings suggest that mole percentages of G. lucidum EPS monosaccharides can be manipulated by changes of culture conditions that affect enzyme activities, and that novel fermentation strategies based on this approach may enhance production and biological activity of EPS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhao, Shun; Liu, Lin
2016-10-01
GDP-D-mannose pyrophosphorylase catalyzes the production of GDP-D-mannose, an intermediate product in the plant ascorbic acid (AsA) biosynthetic pathway. This enzyme is a key regulatory target in AsA biosynthesis and is encoded by VITAMIN C DEFECTIVE 1 (VTC1) in the Arabidopsis thaliana genome. Here, recombinant VTC1 was expressed, purified and crystallized. Diffraction data were obtained from VTC1 crystals grown in the absence and presence of substrate using X-rays. The ligand-free VTC1 crystal diffracted X-rays to 3.3 Å resolution and belonged to space group R32, with unit-cell parameters a = b = 183.6, c = 368.5 Å, α = β = 90, γ = 120°; the crystal of VTC1 in the presence of substrate diffracted X-rays to 1.75 Å resolution and belonged to space group P2 1 , with unit-cell parameters a = 70.8, b = 83.9, c = 74.5 Å, α = γ = 90.0, β = 114.9°.
Qi, Tiancong; Liu, Zhipeng; Fan, Meng; Chen, Yan; Tian, Haixia; Wu, Dewei; Gao, Hua; Ren, Chunmei; Song, Susheng; Xie, Daoxin
2017-09-04
Plant GDP-D-mannose epimerase (GME) converts GDP-D-mannose to GDP-L-galactose, a precursor of both L-ascorbate (vitamin C) and cell wall polysaccharides. However, the genetic functions of GME in Arabidopsis are unclear. In this study, we found that mutations in Arabidopsis GME affect pollen germination, pollen tube elongation, and transmission and development of the male gametophyte through analysis of the heterozygous GME/gme plants and the homozygous gme plants. Arabidopsis gme mutants also exhibit severe growth defects and early leaf senescence. Surprisingly, the defects in male gametophyte in the gme plants are not restored by L-ascorbate, boric acid or GDP-L-galactose, though boric acid rescues the growth defects of the mutants, indicating that GME may regulate male gametophyte development independent of L-ascorbate and GDP-L-galactose. These results reveal key roles for Arabidopsis GME in reproductive development, vegetative growth and leaf senescence, and suggest that GME regulates plant growth and controls male gametophyte development in different manners.
Pinheiro, Pedro F.; Leitão, Jorge H.
2013-01-01
This work reports the biochemical and functional analysis of the Burkholderia cenocepacia J2315 bceN gene, encoding a protein with GDP-D-mannose 4,6-dehydratase enzyme activity (E.C.4.2.1.47). Data presented indicate that the protein is active when in the tetrameric form, catalyzing the conversion of GDP-D-mannose into GDP-4-keto-6-deoxy-D-mannose. This sugar nucleotide is the intermediary necessary for the biosynthesis of GDP-D-rhamnose, one of the sugar residues of cepacian, the major exopolysaccharide produced by environmental and human, animal and plant pathogenic isolates of the Burkholderia cepacia complex species. Vmax and Km values of 1.5±0.2 µmol.min−1.mg−1 and 1024±123 µM, respectively, were obtained from the kinetic characterization of the B. cenocepacia J2315 BceN protein by NMR spectroscopy, at 25°C and in the presence of 1 mol MgCl2 per mol of protein. The enzyme activity was strongly inhibited by the substrate, with an estimated Ki of 2913±350 µM. The lack of a functional bceN gene in a mutant derived from B. cepacia IST408 slightly reduced cepacian production. However, in the B. multivorans ATCC17616 with bceN as the single gene in its genome with predicted GMD activity, a bceN mutant did not produce cepacian, indicating that this gene product is required for cepacian biosynthesis. PMID:23460819
Miura, Y; Perkel, V S; Magner, J A
1988-09-01
We have determined the structures of high mannose (Man) oligosaccharide units at individual glycosylation sites of mouse TSH. Mouse thyrotropic tumor tissue was incubated with D-[2-3H]Man with or without [14C]tyrosine ([14C] Tyr) for 2, 3, or 6 h, and for a 3-h pulse followed by a 2-h chase. TSH heterodimers or free alpha-subunits were obtained from homogenates using specific antisera. After reduction and alkylation, subunits were treated with trypsin. The tryptic fragments were then loaded on a reverse phase HPLC column to separate tryptic fragments bearing labeled oligosaccharides. The N-linked oligosaccharides were released with endoglycosidase-H and analyzed by paper chromatography. Man9GlcNac2 and Man8GlcNac2 units predominated at each time point and at each specific glycosylation site, but the processing of high Man oligosaccharides differed at each glycosylation site. The processing at Asn23 of TSH beta-subunits was slower than that at Asn56 or Asn82 of alpha-subunits. The processing at Asn82 was slightly faster than that at Asn56 for both alpha-subunits of TSH heterodimers and free alpha-subunits. The present study demonstrates that the early processing of oligosaccharides differs at the individual glycosylation sites of TSH and free alpha-subunits, perhaps because of local conformational differences.
Xue, Cuihua; Jog, Sonali P; Murthy, Pushpalatha; Liu, Haiying
2006-09-01
Two facile, convenient, and versatile synthetic approaches are used to covalently attach carbohydrate residues to conjugated poly(p-phenylene)s (PPPs) for highly water-soluble PPPs bearing alpha-mannopyranosyl and beta-glucopyranosyl pendants (polymers A and B), which highly fluoresce in phosphate buffer (pH 7.0). The post-polymerization functionalization approach is to treat bromo-bearing PPP (polymer 1) with 1-thiolethyl-alpha-D-mannose tetraacetate or 1-thiol-beta-D-glucose tetraacetate in THF solution in the presence of K(2)CO(3) at room temperature through formation of thioether bridges, affording polymer 2a or 2b. The prepolymerization functionalization approach is to polymerize a well-defined sugar-carrying monomer, affording polymer 2a. Polymers 2a and 2b were deacetylated under Zemplén conditions in methanol and methylene chloride containing sodium methoxide, affording polymers A and B, respectively. The multivalent display of carbohydrates on the fluorescent conjugated glycopolymer overcomes the characteristic low binding affinity of the individual carbohydrates to their receptor proteins. Titration of concanavalin A (Con A) to alpha-mannose-bearing polymer A resulted in significant fluorescent quenching of the polymer with Stern-Volmer quenching constant of 4.5 x 10(7). Incubation of polymer A with Escherichia coli (E. coli) lead to formation of fluorescently stained bacterial clusters. Beta-glucose-bearing polymer B displayed no response to Con A and E. coli.
Carbohydrates and activity of natural and recombinant tissue factor.
Krudysz-Amblo, Jolanta; Jennings, Mark E; Mann, Kenneth G; Butenas, Saulius
2010-01-29
The effect of glycosylation on tissue factor (TF) activity was evaluated, and site-specific glycosylation of full-length recombinant TF (rTF) and that of natural TF from human placenta (pTF) were studied by liquid chromatography-tandem mass spectrometry. The amidolytic activity of the TF.factor VIIa (FVIIa) complex toward a fluorogenic substrate showed that the catalytic efficiency (V(max)) of the complex increased in the order rTF(1-243) (Escherichia coli) < rTF(1-263) (Sf9 insect cells) < pTF for the glycosylated and deglycosylated forms. Substrate hydrolysis was unaltered by deglycosylation. In FXase, the K(m) of FX for rTF(1-263)-FVIIa remained unchanged after deglycosylation, whereas the k(cat) decreased slightly. A pronounced decrease, 4-fold, in k(cat) was observed for pTF.FVIIa upon deglycosylation, whereas the K(m) was minimally altered. The parameters of FX activation by both rTF(1-263D)-FVIIa and pTF(D)-FVIIa were identical and similar to those for rTF(1-243)-FVIIa. In conclusion, carbohydrates significantly influence the activity of TF proteins. Carbohydrate analysis revealed glycosylation on asparagines 11, 124, and 137 in both rTF(1-263) and pTF. The carbohydrates of rTF(1-263) contain high mannose, hybrid, and fucosylated glycans. Natural pTF contains no high mannose glycans but is modified with hybrid, highly fucosylated, and sialylated sugars.
O-GLYCBASE Version 3.0: a revised database of O-glycosylated proteins.
Hansen, J E; Lund, O; Nilsson, J; Rapacki, K; Brunak, S
1998-01-01
O-GLYCBASE is a revised database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the sequence databases. Entries include information about species, sequence, glycosylation sites and glycan type and is fully cross-referenced. Compared to version 2.0 the number of entries has increased by 20%. Sequence logos displaying the acceptor specificity patterns for the GalNAc, mannose and GlcNAc transferases are shown. The O-GLYCBASE database is available through the WWW at http://www.cbs.dtu. dk/databases/OGLYCBASE/ PMID:9399880
Genome-wide screen of Saccharomyces cerevisiae for killer toxin HM-1 resistance.
Miyamoto, Masahiko; Furuichi, Yasuhiro; Komiyama, Tadazumi
2011-01-01
We screened a set of Saccharomyces cerevisiae deletion mutants for resistance to killer toxin HM-1, which kills susceptible yeasts through inhibiting 1,3-beta-glucan synthase. By using HM-1 plate assay, we found that eight gene-deletion mutants had higher HM-1-resistance compared with the wild-type. Among these eight genes, five--ALG3, CAX4, MNS1, OST6 and YBL083C--were associated with N-glycan formation and maturation. The ALG3 gene has been shown before to be highly resistant to HM-1. The YBL083C gene may be a dubious open reading frame that overlaps partially the ALG3 gene. The deletion mutant of the MNS1 gene that encodes 1,2-alpha-mannosidase showed with a 13-fold higher HM-1 resistance compared with the wild-type. By HM-1 binding assay, the yeast plasma membrane fraction of alg3 and mns1 cells had less binding ability compared with wild-type cells. These results indicate that the presence of the terminal 1,3-alpha-linked mannose residue of the B-chain of the N-glycan structure is essential for interaction with HM-1. A deletion mutant of aquaglyceroporin Fps1p also showed increased HM-1 resistance. A deletion mutant of osmoregulatory mitogen-activated protein kinase Hog1p was more sensitive to HM-1, suggesting that high-osmolarity glycerol pathways plays an important role in the compensatory response to HM-1 action. Copyright © 2010 John Wiley & Sons, Ltd.
Loaiza, Oscar A; Lamas-Ardisana, Pedro J; Jubete, Elena; Ochoteco, Estibalitz; Loinaz, Iraida; Cabañero, Germán; García, Isabel; Penadés, Soledad
2011-04-15
The development of sensors to detect specific weak biological interactions is still today a challenging topic. Characteristics of carbohydrate-protein (lectin) interactions include high specificity and low affinity. This work describes the development of nanostructured impedimetric sensors for the detection of concanavalin A (Con A) binding to immobilized thiolated carbohydrate derivatives (D-mannose or D-glucose) onto screen-printed carbon electrodes (SPCEs) modified with gold nanoparticles. Thiolated D-galactose derivative was employed as negative control to evaluate the selectivity of the proposed methodology. After binding the thiolated carbohydrate to the nanostructured SPCEs, different functionalized thiols were employed to form mixed self-assembled monolayers (SAM). Electrochemical impedance spectroscopy (EIS) was employed as a technique to evaluate the binding of Con A to selected carbohydrates through the increase of electron transfer resistance of the ferri/ferrocyanide redox probe at the differently SAM modified electrodes. Different variables of the assay protocol were studied in order to optimize the sensor performance. Selective Con A determinations were only achieved by the formation of mixed SAMs with adequate functionalized thiols. Important differences were obtained depending on the chain lengths and functional groups of these thiols. For the 3-mercapto-1-propanesulfonate mixed SAMs, the electron transfer resistance varied linearly with the Con A concentration in the 2.2-40.0 μg mL(-1) range for D-mannose and D-glucose modified sensors. Low detection limits (0.099 and 0.078 pmol) and good reproducibility (6.9 and 6.1%, n=10) were obtained for the D-glucose and D-mannose modified sensors, respectively, without any amplification strategy. © 2011 American Chemical Society
Nishikawa, Akiko; Poster, Jay B.; Jigami, Yoshifumi; Dean, Neta
2002-01-01
Cell surface mannan is implicated in almost every aspect of pathogenicity of Candida albicans. In Saccharomyces cerevisiae, the Vrg4 protein acts as a master regulator of mannan synthesis through its role in substrate provision. The substrate for mannosylation of proteins and lipids in the Golgi apparatus is GDP-mannose, whose lumenal transport is catalyzed by Vrg4p. This nucleotide sugar is synthesized in the cytoplasm by pathways that are highly conserved in all eukaryotes, but its lumenal transport (and hence Golgi apparatus-specific mannosylation) is a fungus-specific process. To begin to study the role of Golgi mannosylation in C. albicans, we isolated the CaVRG4 gene and analyzed the effects of loss of its function. CaVRG4 encodes a functional homologue of the S. cerevisiae GDP-mannose transporter. CaVrg4p localized to punctate spots within the cytoplasm of C. albicans in a pattern reminiscent of localization of Vrg4p in the Golgi apparatus in S. cerevisiae. Like partial loss of ScVRG4 function, partial loss of CaVRG4 function resulted in mannosylation defects, which in turn led to a number of cell wall-associated phenotypes. While heterozygotes displayed no growth phenotypes, a hemizygous strain, containing a single copy of CaVRG4 under control of the methionine-repressible MET3 promoter, did not grow in the presence of methionine and cysteine, demonstrating that CaVRG4 is essential for viability. Mutant Candida vrg4 strains were defective in hyphal formation but exhibited a constitutive polarized mode of pseudohyphal growth. Because the VRG4 gene is essential for yeast viability but does not have a mammalian homologue, it is a particularly attractive target for development of antifungal therapies. PMID:11741841
Alves, Claudia A; Pedroso, Mariele M; de Moraes, Marcela C; Souza, Dulce H F; Cass, Quezia B; Faria, Ronaldo C
2011-05-20
Xylella fastidiosa is a gram-negative bacterium that causes serious diseases in economically important crops, including grapevine, coffee, and citrus fruits. X. fastidiosa colonizes the xylem vessels of the infected plants, thereby blocking water and nutrient transport. The genome sequence of X. fastidiosa has revealed an operon containing nine genes possibly involved in the synthesis of an exopolisaccharide (EPS) named fastidian gum that can be related with the pathogenicity of this bacterium. The α-1,3-mannosyltransferase (GumH) enzyme from X. fastidiosa is involved in fastidian gum production. GumH is responsible for the transfer of mannose from guanosine diphosphate mannose (GDP-man) to the cellobiose-pyrophosphate-polyprenol carrier lipid (CPP-Lip) during the assembly and biosynthesis of EPS. In this work, a method for real-time detection of recombinant GumH enzymatic activity was successfully developed using a Quartz Crystal Microbalance with dissipation monitoring (QCM-D). The QCM-D transducer was strategically modified with CPP-Lip by using a solid-supported lipid bilayer that makes use of a self-assembled monolayer of 1-undecanethiol. Monitoring the real-time CPP-Lip QCM-D transducer in the presence of GDP-man and GumH enzyme shows a mass increase, indicating the transfer of mannose. The real-time QCM-D determination of mannosyltransferase function was validated by a High Performance Liquid Chromatography (LC) method developed for determination of GDP produced by enzymatic reaction. LC results confirmed the activity of recombinant GumH protein, which is the first enzyme involved in the biosynthesis of the EPS from X. fastidiosa enzymatically characterized. Copyright © 2011 Elsevier Inc. All rights reserved.
Webb, Nicole A.; Mulichak, Anne M.; Lam, Joseph S.; Rocchetta, Heather L.; Garavito, R. Michael
2004-01-01
d-Rhamnose is a rare 6-deoxy monosaccharide primarily found in the lipopolysaccharide of pathogenic bacteria, where it is involved in host–bacterium interactions and the establishment of infection. The biosynthesis of d-rhamnose proceeds through the conversion of GDP-d-mannose by GDP-d-mannose 4,6-dehydratase (GMD) to GDP-4-keto-6-deoxymannose, which is subsequently reduced to GDP-d-rhamnose by a reductase. We have determined the crystal structure of GMD from Pseudomonas aeruginosa in complex with NADPH and GDP. GMD belongs to the NDP-sugar modifying subfamily of the short-chain dehydrogenase/reductase (SDR) enzymes, all of which exhibit bidomain structures and a conserved catalytic triad (Tyr-XXX-Lys and Ser/Thr). Although most members of this enzyme subfamily display homodimeric structures, this bacterial GMD forms a tetramer in the same fashion as the plant MUR1 from Arabidopsis thaliana. The cofactor binding sites are adjoined across the tetramer interface, which brings the adenosyl phosphate moieties of the adjacent NADPH molecules to within 7 Å of each other. A short peptide segment (Arg35–Arg43) stretches into the neighboring monomer, making not only protein–protein interactions but also hydrogen bonding interactions with the neighboring cofactor. The interface hydrogen bonds made by the Arg35–Arg43 segment are generally conserved in GMD and MUR1, and the interacting residues are highly conserved among the sequences of bacterial and eukaryotic GMDs. Outside of the Arg35–Arg43 segment, residues involved in tetrameric contacts are also quite conserved across different species. These observations suggest that a tetramer is the preferred, and perhaps functionally relevant, oligomeric state for most bacterial and eukaryotic GMDs. PMID:14739333
Yandell, C A; Dunbar, A J; Wheldrake, J F; Upton, Z
1999-09-17
The mammalian cation-independent mannose 6-phosphate receptor (CI-MPR) binds mannose 6-phosphate-bearing glycoproteins and insulin-like growth factor (IGF)-II. However, the CI-MPR from the opossum has been reported to bind bovine IGF-II with low affinity (Dahms, N. M., Brzycki-Wessell, M. A., Ramanujam, K. S., and Seetharam, B. (1993) Endocrinology 133, 440-446). This may reflect the use of a heterologous ligand, or it may represent the intrinsic binding affinity of this receptor. To examine the binding of IGF-II to a marsupial CI-MPR in a homologous system, we have previously purified kangaroo IGF-II (Yandell, C. A., Francis, G. L., Wheldrake, J. F., and Upton, Z. (1998) J. Endocrinol. 156, 195-204), and we now report the purification and characterization of the CI-MPR from kangaroo liver. The interaction of the kangaroo CI-MPR with IGF-II has been examined by ligand blotting, radioreceptor assay, and real-time biomolecular interaction analysis. Using both a heterologous and homologous approach, we have demonstrated that the kangaroo CI-MPR has a lower binding affinity for IGF-II than its eutherian (placental mammal) counterparts. Furthermore, real-time biomolecular interaction analysis revealed that the kangaroo CI-MPR has a higher affinity for kangaroo IGF-II than for human IGF-II. The cDNA sequence of the kangaroo CI-MPR indicates that there is considerable divergence in the area corresponding to the IGF-II binding site of the eutherian receptor. Thus, the acquisition of a high-affinity binding site for regulating IGF-II appears to be a recent event specific to the eutherian lineage.
New exopolysaccharides produced by Aureobasidium pullulans grown on glucosamine.
Cescutti, Paola; Pupulin, Raffaella; Delben, Franco; Abbate, Maria; Dentini, Mariella; Sparapano, Lorenzo; Rizzo, Roberto; Crescenzi, Vittorio
2002-07-16
The polysaccharides produced by Aureobasidium pullulans, grown using glucosamine as the carbon source, were investigated by means of methylation analysis, affinity chromatography and NMR spectroscopy. The results indicated that, besides a small amount of pullulan, this micro-organism was capable of producing-in low yields-mixtures of at least two different complex polysaccharides containing mainly mannose and galactose. (1)H NMR spectra of two fractions obtained by lectin affinity chromatography indicated that one polymer was constituted exclusively of mannose residues while the other contained both galactofuranosyl and mannopyranosyl residues.
Jørgensen, Henning; Sanadi, Anand R; Felby, Claus; Lange, Niels Erik Krebs; Fischer, Morten; Ernst, Steffen
2010-05-01
Palm kernel press cake (PKC) is a residue from palm oil extraction presently only used as a low protein feed supplement. PKC contains 50% fermentable hexose sugars present in the form of glucan and mainly galactomannan. This makes PKC an interesting feedstock for processing into bioethanol or in other biorefinery processes. Using a combination of mannanase, beta-mannosidase, and cellulases, it was possible without any pretreatment to hydrolyze PKC at solid concentrations of 35% dry matter with mannose yields up to 88% of theoretical. Fermentation was tested using Saccharomyces cerevisiae in both a separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) setup. The hydrolysates could readily be fermented without addition of nutrients and with average fermentation yields of 0.43 +/- 0.02 g/g based on consumed mannose and glucose. Employing SSF, final ethanol concentrations of 70 g/kg was achieved in 216 h, corresponding to an ethanol yield of 70% of theoretical or 200 g ethanol/kg PKC. Testing various enzyme mixtures revealed that including cellulases in combination with mannanases significantly improved ethanol yields. Processing PKC to ethanol resulted in a solid residue enriched in protein from 17% to 28%, a 70% increase, thereby potentially making a high-protein containing feed supplement.
Liping, Sun; Xuejiao, Su; Yongliang, Zhuang
2016-11-01
Boletus snicus (BS) is one of the commercially important mushroom species. Two polysaccharides (BSP-1b and BSP-2b) were extracted and purified from the body of BS by DEAE-cellulose and Sephadex G-100 column chromatography. The average of molecular weight of BSP-1b and BSP-2b were 59.21kDa and 128.74kDa. BSP-1b is a heteropolysaccharide with a large number of glucose and a small amount of mannose, glucosamine hydrochloride and arabinose. The monosaccharide compositions of BSP-2b contain mannose, glucuronic acid, glucosamine hydrochloride, glucose, galactose, arabinose with the molar ratio of 10.70:6.95:12.05:12.57:1.83:1.00. The FTIR spectra and NMR analysis demonstrated that BSP-1b and BSP-2b existed pyranose ring structure and BSP-2b had high content of uronic acid. The antiglycation activities of BSP-1b and BSP-2b were investigated. The results showed BSP-1b and BSP-2b had high inhibitory effects on glycation and exhibited dose-dependent responses. BSP-2b showed stronger antiglycation activity than BSP-1b. This study indicated that the BSP-2b could effectively inhibit the formation of advanced glycation end-products. Copyright © 2016 Elsevier B.V. All rights reserved.
Islam, S M Mahfuzul; Loman, Abdullah A; Ju, Lu-Kwang
2018-05-01
Defatted soybean meal has 30-35% oligo-/polymeric carbohydrates and approximately 50% proteins. Enzymatic carbohydrate monomerization enables easy separation to enrich protein content, reduces indigestibility concerns, and facilitates use of carbohydrate as fermentation feedstock. Among soybean carbohydrates, pectin and glucan are more recalcitrant to hydrolyze. To destabilize Ca 2+ -bridged junctures in pectin, effects of 3 chelators ethylenediaminetetraacetic acid (EDTA), sodium hexametaphosphate (HMP) and citric acid under 2-h 90 °C pretreatments were investigated here. Citric acid was the most effective while EDTA decreased enzymatic hydrolysis. In a 3-factor 2-level factorial study, heat (90 °C, 2 h) and citric acid (10 g/L) pretreatments and cellulase supplementation (10 FPU/g) were found to increase yields of all monosaccharides, to 86.8 ± 5.2% glucose, 98.1 ± 1.6% xylose, 87.5 ± 5.2% galactose, 83.6 ± 1.6% arabinose, and 91.4 ± 3.1% fructose + mannose. The largest percentage improvements were for arabinose (382%), mannose (113%) and glucose (51%). Achieving high monosaccharide yields greatly increases value of soybean carbohydrate as fermentation feedstock. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sequential microwave superheated water extraction of mannans from spent coffee grounds.
Passos, Cláudia P; Moreira, Ana S P; Domingues, M Rosário M; Evtuguin, Dmitry V; Coimbra, Manuel A
2014-03-15
The feasibility of using sequential microwave superheated water extraction (MAE) for the recovery of mannans from spent coffee grounds (SCG) was studied. Due to the high contents of mannose still present in the SCG residue left after two consecutive MAE, the unextracted material was re-suspended in water and submitted to a third microwave irradiation (MAE3) at 200 °C for 3 min. With MAE3, mannose recovery achieved 48%, increasing to 56% by MAE4, and reaching a maximum of 69% with MAE5. Glycosidic-linkage analysis showed that in MAE3 mainly galactomannans were recovered, while debranched galactomannans were recovered with MAE4 and MAE5. With increasing the number of extractions, the average degree of polymerization of the mannans decreased, as observed by size-exclusion chromatography and by methylation analysis. Scanning electron microscopy images showed a decrease on cell walls thickness. After final MAE5, the remaining un-extracted insoluble material, representing 22% of the initial SCG, was composed mainly by cellulose (84%). Copyright © 2013 Elsevier Ltd. All rights reserved.
Sequential hydrolysis of waste newspaper and bioethanol production from the hydrolysate.
Wu, Fang-Chen; Huang, Shu-Sing; Shih, Ing-Lung
2014-09-01
A practical process was developed for production of a high quality hydrolysate of waste newspaper that ensured its complete fermentability to bioethanol. After pretreatment with 0.1N NaOH for 12h and sequential acid and enzyme hydrolysis, 10.1g/L of glucose (50.5%), 1.38 g/L of mannose (6.9%) and 0.28 g/L of galactose (1.4%), a total of 11.76 g/L of fermentable sugars was obtained, which accounts for 88.7% of saccharification efficiency. The Saccharomyces cerevisiae BCRC20271 showed excellent co-fermentability of glucose, mannose and galactose in hydrolysate of waste newspaper. After cultivation of the hydrolysate at 24°C in static culture for 48 h, the final ethanol concentration of 5.72 g/L (96% conversion efficiency) was produced. Overall, 1000 kg of waste newspaper will produce 286 kg (362 L) of ethanol by the process developed, which reveals that waste newspaper has higher potential than many other lignocellulosic and seaweed feedstocks for bioethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaindl, T.; Oelke, J.; Pasc, A.; Kaufmann, S.; Konovalov, O. V.; Funari, S. S.; Engel, U.; Wixforth, A.; Tanaka, M.
2010-07-01
Highly uniform, strongly correlated domains of synthetically designed lipids can be incorporated into supported lipid membranes. The systematic characterization of membranes displaying a variety of domains revealed that the equilibrium size of domains significantly depends on the length of fluorocarbon chains, which can be quantitatively interpreted within the framework of an equivalent dipole model. A mono-dispersive, narrow size distribution of the domains enables us to treat the inter-domain correlations as two-dimensional colloidal crystallization and calculate the potentials of mean force. The obtained results demonstrated that both size and inter-domain correlation can precisely be controlled by the molecular structures. By coupling α-D-mannose to lipid head groups, we studied the adhesion behavior of the murine macrophage (J774A.1) on supported membranes. Specific adhesion and spreading of macrophages showed a clear dependence on the density of functional lipids. The obtained results suggest that such synthetic lipid domains can be used as a defined platform to study how cells sense the size and distribution of functional molecules during adhesion and spreading.
Ma, Lay-Sun; Wang, Lei; Trippel, Christine; Mendoza-Mendoza, Artemio; Ullmann, Steffen; Moretti, Marino; Carsten, Alexander; Kahnt, Jörg; Reissmann, Stefanie; Zechmann, Bernd; Bange, Gert; Kahmann, Regine
2018-04-27
To cause disease in maize, the biotrophic fungus Ustilago maydis secretes a large arsenal of effector proteins. Here, we functionally characterize the repetitive effector Rsp3 (repetitive secreted protein 3), which shows length polymorphisms in field isolates and is highly expressed during biotrophic stages. Rsp3 is required for virulence and anthocyanin accumulation. During biotrophic growth, Rsp3 decorates the hyphal surface and interacts with at least two secreted maize DUF26-domain family proteins (designated AFP1 and AFP2). AFP1 binds mannose and displays antifungal activity against the rsp3 mutant but not against a strain constitutively expressing rsp3. Maize plants silenced for AFP1 and AFP2 partially rescue the virulence defect of rsp3 mutants, suggesting that blocking the antifungal activity of AFP1 and AFP2 by the Rsp3 effector is an important virulence function. Rsp3 orthologs are present in all sequenced smut fungi, and the ortholog from Sporisorium reilianum can complement the rsp3 mutant of U. maydis, suggesting a novel widespread fungal protection mechanism.
Zhai, Rui; Hu, Jinguang; Saddler, Jack N
2018-06-01
In this study, the influence of major hemicellulosic sugars (mannose and xylose) on cellulose hydrolysis and major enzyme activities were evaluated by using both commercial enzyme cocktail and purified cellulase monocomponents over a "library" of cellulosic substrates. Surprisingly, the results showed that unlike glucose, mannose/xylose did not inhibit individual cellulase activities but significantly decreased their hydrolytic performance on cellulose substrates. When various enzyme-substrate interactions (e.g. adsorption/desorption, productive binding, and processive moving) were evaluated, it appeared that these hemicellulosic sugars significantly reduced the productive binding and processivity of Cel7A, which in turn limited cellulase hydrolytic efficacy. Among a range of major cellulose characteristics (e.g. crystallinity, degree of polymerization, accessibility, and surface charges), the acid group content of the cellulosic substrates seemed to be the main driver that determined the extent of hemicellulosic sugar inhibition. Our results provided new insights for better understanding the sugar inhibition mechanisms of cellulose hydrolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rheological properties of kuzu starch pastes with galactomannans.
Jóźwiak, Bertrand; Orczykowska, Magdalena; Dziubiński, Marek
2018-04-01
The paper describes the effects of galactomannans on viscoelastic properties of commercial Japanese white kuzu starch pastes. The study included morphological, thermal and rheological analyses of the biopolymer. The results obtained in the form of storage modulus G '( ω ) and loss modulus G ″( ω ) were described by the modified fractional Kelvin-Voigt model with two springpot-type elements, created on the basis of differential calculus of fractional order and Fourier transform. It allowed to determine 17 material parameters providing a lot of additional information about structure and viscoelastic properties of the biopolymer in comparison to the classical analysis of oscillatory and creep tests. The study led to the conclusion that commercial Japanese white kuzu starch was so-called type II starch with a high pasting temperature of 75 °C and an average granule diameter equal to 10.9 μm. Rheological properties of the pastes depended on the galactose-to-mannose ratio in galactomannan molecule. The larger substitution degree, the higher viscosity, characteristic relaxation times, polydispersity index, gel stiffness, and the lower cross-linking density and average molecular weights. The presence of galactose side groups favored the hydration and immobilization of water molecules.
Park, Youmie; Zhang, Zhenqing; Laremore, Tatiana N.; Li, Boyangzi; Sim, Joon-Soo; Im, A-Rang; Ahn, Mi Young
2009-01-01
Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide →4)-α-d-GlcNpAc (1→4)-α-l-IdoAp2S(1→, analyzed by SAX (strong-anion exchange)–HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex2–4-Hex-NAc2), high mannose (Hex5–9-HexNAc2), and complex (Hex3-HexNAc2–10) types. None showed core fucosylation. PMID:18670878
Bravo Portela, I.; Martinez-Zorzano, V. S.; Molist- Perez, I.; Molist García, P.
2012-01-01
The foot epithelium of the gastropod Haliotis tuberculata is studied by light and electron microscopy in order to contribute to the understanding of the anatomy and functional morphology of the mollusks integument. Study of the external surface by scanning electron microscopy reveals that the side foot epithelium is characterized by a microvillus border with a very scant presence of small ciliary tufts, but the sole foot epithelium bears a dense field of long cilia. Ultrastructural examination by transmission electron microscopy of the side epithelial cells shows deeply pigmented cells with high electron-dense granular content which are not observed in the epithelial sole cells. Along the pedal epithelium, seven types of secretory cells are present; furthermore, two types of subepithelial glands are located just in the sole foot. The presence and composition of glycoconjugates in the secretory cells and subepithelial glands are analyzed by conventional and lectin histochemistry. Subepithelial glands contain mainly N-glycoproteins rich in fucose and mannose whereas secretory cells present mostly acidic sulphated glycoconjugates such as glycosaminoglycans and mucins, which are rich in galactose, N-acetyl-galactosamine, and N-acetyl-glucosamine. No sialic acid is present in the foot epithelium. PMID:22645482
Effect of soil sieving on respiration induced by low-molecular-weight substrates
NASA Astrophysics Data System (ADS)
Datta, Rahul; Vranová, Valerie; Pavelka, Marian; Rejšek, Klement; Formánek, Pavel
2014-03-01
The mesh size of sieves has a significant impact upon soil disturbance, affecting pore structure, fungal hyphae, proportion of fungi to bacteria, and organic matter fractions. The effects are dependent upon soil type and plant coverage. Sieving through a 2 mm mesh increases mineralization of exogenously supplied carbohydrates and phenolics compared to a 5 mm mesh and the effect is significant (p<0.05), especially in organic horizons, due to increased microbial metabolism and alteration of other soil properties. Finer mesh size particularly increases arabinose, mannose, galactose, ferulic and pthalic acid metabolism, whereas maltose mineralization is less affected. Sieving through a 5 mm mesh size is suggested for all type of experiments where enhanced mineralization of low-molecular-weight organic compounds needs to be minimalized.
Characterization of Eubacterium coprostanoligenes sp. nov., a cholesterol-reducing anaerobe.
Freier, T A; Beitz, D C; Li, L; Hartman, P A
1994-01-01
A small, anaerobic, gram-positive coccobacillus that reduces cholesterol to coprostanol was isolated from a hog sewage lagoon. This isolate, strain HLT (T = type strain) does not require cholesterol for growth, but it requires lecithin and has phospholipase activity. Much acid is produced by the fermentation of amygdalin, lactose, and salicin. Arabinose, cellobiose, fructose, glucose, mannose, and melibiose are fermented weakly. Acetic, formic, and succinic acids are produced, as is hydrogen. The isolate does not reduce nitrate, produce indole, or hydrolyze starch and gelatin. Esculin is hydrolyzed. The properties of strain HLT are most similar to those of members of the genus Eubacterium. Because strain HL (= ATCC 51222) has unique morphological and physiological properties, we propose that it should be the type strain of a new species in the genus Eubacterium, Eubacterium coprostanoligenes.
Trichuris suis-induced modulation of human dendritic cell function is glycan-mediated.
Klaver, Elsenoor J; Kuijk, Loes M; Laan, Lisa C; Kringel, Helene; van Vliet, Sandra J; Bouma, Gerd; Cummings, Richard D; Kraal, Georg; van Die, Irma
2013-03-01
Human monocyte-derived dendritic cells (DCs) show remarkable phenotypic changes upon direct contact with soluble products (SPs) of Trichuris suis, a pig whipworm that is experimentally used in therapies to ameliorate inflammation in patients with Crohn's disease and multiple sclerosis. These changes may contribute to the observed induction of a T helper 2 (Th2) response and the suppression of Toll-like receptor (TLR)-induced Th1 and Th17 responses by human DCs primed with T. suis SPs. Here it is demonstrated that glycans of T. suis SPs contribute significantly to the suppression of the lipopolysaccharide (LPS)-induced expression in DCs of a broad variety of cytokines and chemokines, including important pro-inflammatory mediators such as TNF-α, IL-6, IL-12, lymphotoxin α (LTA), C-C Motif Ligand (CCL)2, C-X-C Motif Ligands (CXCL)9 and CXCL10. In addition, the data show that human DCs strongly bind T. suis SP-glycans via the C-type lectin receptors (CLRs) mannose receptor (MR) and DC-specific ICAM-3-grabbing non-integrin (DC-SIGN). The interaction of DCs with T. suis glycans likely involves mannose-type glycans, rather than fucosylated glycans, which differs from DC binding to soluble egg antigens of the human worm parasite, Schistosoma mansoni. In addition, macrophage galactose-type lectin (MGL) recognises T. suis SPs, which may contribute to the interaction with immature DCs or other MGL-expressing immune cells such as macrophages. The interaction of T. suis glycans with CLRs of human DCs may be essential for the ability of T. suis to suppress a pro-inflammatory phenotype of human DCs. The finding that the T. suis-induced modulation of human DC function is glycan-mediated is novel and indicates that helminth glycans contribute to the dampening of inflammation in a wide range of human inflammatory diseases. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Sialoglycoproteins and N-glycans from secreted exosomes of ovarian carcinoma cells.
Escrevente, Cristina; Grammel, Nicolas; Kandzia, Sebastian; Zeiser, Johannes; Tranfield, Erin M; Conradt, Harald S; Costa, Júlia
2013-01-01
Exosomes consist of vesicles that are secreted by several human cells, including tumor cells and neurons, and they are found in several biological fluids. Exosomes have characteristic protein and lipid composition, however, the results concerning glycoprotein composition and glycosylation are scarce. Here, protein glycosylation of exosomes from ovarian carcinoma SKOV3 cells has been studied by lectin blotting, NP-HPLC analysis of 2-aminobenzamide labeled glycans and mass spectrometry. An abundant sialoglycoprotein was found enriched in exosomes and it was identified by peptide mass fingerprinting and immunoblot as the galectin-3-binding protein (LGALS3BP). Exosomes were found to contain predominantly complex glycans of the di-, tri-, and tetraantennary type with or without proximal fucose and also high mannose glycans. Diantennary glycans containing bisecting N-acetylglucosamine were also detected. This work provides detailed information about glycoprotein and N-glycan composition of exosomes from ovarian cancer cells, furthermore it opens novel perspectives to further explore the functional role of glycans in the biology of exosomes.
NASA Astrophysics Data System (ADS)
Utada, Andrew S.; Bennett, Rachel R.; Fong, Jiunn C. N.; Gibiansky, Maxsim L.; Yildiz, Fitnat H.; Golestanian, Ramin; Wong, Gerard C. L.
2014-09-01
We show that Vibrio cholerae, the causative agent of cholera, use their flagella and mannose-sensitive hemagglutinin (MSHA) type IV pili synergistically to switch between two complementary motility states that together facilitate surface selection and attachment. Flagellar rotation counter-rotates the cell body, causing MSHA pili to have periodic mechanical contact with the surface for surface-skimming cells. Using tracking algorithms at 5 ms resolution we observe two motility behaviours: ‘roaming', characterized by meandering trajectories, and ‘orbiting’, characterized by repetitive high-curvature orbits. We develop a hydrodynamic model showing that these phenotypes result from a nonlinear relationship between trajectory shape and frictional forces between pili and the surface: strong pili-surface interactions generate orbiting motion, increasing the local bacterial loiter time. Time-lapse imaging reveals how only orbiting mode cells can attach irreversibly and form microcolonies. These observations suggest that MSHA pili are crucial for surface selection, irreversible attachment, and ultimately microcolony formation.
Harvey, David J
2005-01-01
Negative ion electrospray mass spectra of high-mannose N-linked glycans derivatised with 2-aminobenzoic acids and ionised from solutions containing ammonium hydroxide gave prominent [M-H](-) ions accompanied by weaker [M-2H](2-) ions. Fragmentation of both types of ions gave prominent singly charged glycosidic cleavage ions containing the derivatised reducing terminus and ions from the non-reducing terminus that appeared to be products of cross-ring cleavages. Differentiation of these two groups of ions was conveniently achieved in a single spectrum by use of chloro- or bromo-substituted benzoic acids in order to label ions containing the derivative with an atom with a distinctive isotope pattern. Fragmentation of the doubly charged ions gave more abundant fragments, both singly and doubly charged, than did fragmentation of the singly charged ions, but information of chain branching was masked by the appearance of prominent ions produced by internal cleavages. Copyright (c) 2005 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Xia, Dandan; Ma, Aijun; Huang, Zhihui; Shang, Xiaomei; Cui, Wenxiao; Yang, Zhi; Qu, Jiangbo
2018-03-01
A full-length lily-type lectin ( SmLTL) was identified from turbot ( Scophthalmus maximus) in this study. By searching database for protein identification and function prediction, SmLTL were confirmed. The full-length cDNA of SmLTL is composed of 569 bp and contains a 339 bp ORF that encodes 112 amino acid residues. The SmLTL peptide is characterized by a specific β-prism architecture and contains three mannose binding sites in a three-fold internal repeat between amino acids 30-99; two of the repeats share the classical mannose binding domain (QxDxNxVxY) while the third binding site was similar to other fish-specific binding motifs (TxTxGxRxV). The primary, secondary, and tertiary structures of SmLTL were predicted and analyzed, indicating that the SmLTL protein was hydrophilic, contained 5.36% α-helices, 39.29% extended strands, 16.07% β-folds, and 39.29% random coils, and three β-folds. Quantitative realtime polymerase chain reaction (qPCR) analysis revealed that the SmLTL mRNA was abundantly expressed in skin, gill, and intestine. Low levels of SmLTL expression were observed in other tissues. The expression of SmLTL in gill, skin and intestine increased at mRNA level after stimulation of Vibrio anguillarum, our results suggest that SmLTL serve as the first line of defence against microbial infections and play a pivotal role in the innate mucosal immune system. The current study indicates that SmLTL is a member of the lilytype lectin family and the information reported here will provide an important foundation for future research on the role of this protein.
Frakking, F N J; Israëls, J; Kremer, L C M; Kuijpers, T W; Caron, H N; van de Wetering, M D
2011-07-15
We determined whether mannose-binding lectin (MBL) deficiency is associated with an increased risk of febrile neutropenia (FN) and/or infection in pediatric oncology patients. We systematically searched and reviewed all the literature on MBL and infections in children with cancer, identified from a literature search of Medline, Embase, and Central (1966-April 2010). We extracted information on the type of study, patient characteristics, definition of MBL deficiency, definition of infection and method of detection, follow-up period and the results of the outcome in different groups. The validity of each study was assessed. Six cohort studies were retrieved, consisting of 581 children with leukemia (n = 2) or varying types of cancer (n = 4). Many different outcome definitions were used. In only one out of three genotype studies, variant MBL2 genotypes, as well as MBL levels < 1,000 µg/L, were associated with an increased duration of FN. In one additional MBL level study the number of FN episodes, bacteremia and severe bacterial infection were increased in patients with MBL levels < 100 µg/L as compared to those with MBL levels of 100-999 µg/L. Sepsis, pneumonia, viral infection, and fungal infection were not associated with either MBL levels or genotypes in any of the studies. MBL deficiency could not be identified as an independent risk factor for FN or infection in pediatric oncology patients. A multicenter study of children with comparable chemotherapy regimens, relevant and equal outcome definitions and measuring both MBL levels and genotypes, will be required to avoid clinical and methodological inconsistencies. Copyright © 2010 Wiley-Liss, Inc.
Ling, Man To; Tu, Wenwei; Han, Yan; Mao, Huawei; Chong, Wai Po; Guan, Jing; Liu, Ming; Lam, Kwok Tai; Law, Helen K. W.; Peiris, J. S. Malik; Takahashi, K.
2012-01-01
Background. Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. Methods. In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. Results. Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. Conclusions. Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response. PMID:22080095
Fendt, Sarah-Maria; Sauer, Uwe
2010-02-18
Depending on the carbon source, Saccharomyces cerevisiae displays various degrees of respiration. These range from complete respiration as in the case of ethanol, to almost complete fermentation, and thus very low degrees of respiration on glucose. While many key regulators are known for these extreme cases, we focus here on regulators that are relevant at intermediate levels of respiration. We address this question by linking the functional degree of respiration to transcriptional regulation via enzyme abundances. Specifically, we investigated aerobic batch cultures with the differently repressive carbon sources glucose, mannose, galactose and pyruvate. Based on 13C flux analysis, we found that the respiratory contribution to cellular energy production was largely absent on glucose and mannose, intermediate on galactose and highest on pyruvate. In vivo abundances of 40 respiratory enzymes were quantified by GFP-fusions under each condition. During growth on the partly and fully respired substrates galactose and pyruvate, several TCA cycle and respiratory chain enzymes were significantly up-regulated. From these enzyme levels and the known regulatory network structure, we determined the probability for a given transcription factor to cause the coordinated expression changes. The most probable transcription factors to regulate the different degrees of respiration were Gcr1p, Cat8p, the Rtg-proteins and the Hap-complex. For the latter three ones we confirmed their importance for respiration by quantifying the degree of respiration and biomass yields in the corresponding deletion strains. Cat8p is required for wild-type like respiration, independent of its known activation of gluconeogenic genes. The Rtg-proteins and the Hap-complex are essential for wild-type like respiration under partially respiratory conditions. Under fully respiratory conditions, the Hap-complex, but not the Rtg-proteins are essential for respiration.
Bisecting GlcNAc restricts conformations of branches in model N-glycans with GlcNAc termini.
Hanashima, Shinya; Suga, Akitsugu; Yamaguchi, Yoshiki
2018-02-01
Bisected N-glycans play significant roles in tumor migration and Alzheimer's disease through modulating the action and localization of their carrier proteins. Such biological functions are often discussed in terms of the conformation of the attached N-glycans with or without bisecting GlcNAc. To obtain insights into the effects of bisecting GlcNAc on glycan conformation, a systematic NMR structural analysis was performed on two pairs of synthetic N-glycans, with and without bisecting GlcNAc. The analysis reveals that terminal GlcNAcs and bisecting GlcNAc cooperate to restrict the conformations of both the α1-3 and α1-6 branches of N-glycans. 1 H and 13 C chemical shift comparisons suggest that bisecting GlcNAc directly modulates local conformation. Unique NOE correlations between core-mannose and the α1-3 branch mannose as well as the 3 J C-H constant of the glycoside linkage indicate that bisecting GlcNAc restricts the conformation of the 1-3 branch. The angles of the glycosidic bonds between core-mannose and α1-6 branch mannose derived from 3 J C-H and 3 J H-H coupling constants show that terminal GlcNAcs restrict the distribution of the ψ angle to 180° and the bisecting GlcNAc increases the distribution of the ω angle +60° in the presence of terminal GlcNAcs. It is feasible that restriction of branch conformations by bisecting GlcNAc has important consequences for protein-glycan interplay and following biological events. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pan, Qin; Wang, Qilong; Sun, Xiaoming; Xia, Xianru; Wu, Shimin; Luo, Fengling; Zhang, Xiao-Lian
2014-01-01
The major surface lipoglycan of Mycobacterium tuberculosis (M. tb), mannose-capped lipoarabinomannan (ManLAM), is an immunosuppressive epitope of M. tb. We used systematic evolution of ligands by exponential enrichment (SELEX) to generate an aptamer (ZXL1) that specifically bound to ManLAM from the virulent M. tb strain H37Rv. Aptamer ZXL1 had the highest binding affinity, with an equilibrium dissociation constant (Kd) of 436.3 ± 37.84 nmol/l, and competed with the mannose receptor for binding to ManLAM and M. tb H37Rv. ZXL1 significantly inhibited the ManLAM-induced immunosuppression of CD11c+ dendritic cells (DCs) and enhanced the M. tb antigen–presenting activity of DCs for naive CD4+ Th1 cell activation. More importantly, we demonstrated that injection of aptamer ZXL1 significantly reduced the progression of M. tb H37Rv infections and bacterial loads in lungs of mice and rhesus monkeys. These results suggest that the aptamer ZXL1 is a new potential antimycobacterial agent and tuberculosis vaccine immune adjuvant. PMID:24572295
Pai, Priyadarshini P; Mondal, Sukanta
2016-10-01
Proteins interact with carbohydrates to perform various cellular interactions. Of the many carbohydrate ligands that proteins bind with, mannose constitute an important class, playing important roles in host defense mechanisms. Accurate identification of mannose-interacting residues (MIR) may provide important clues to decipher the underlying mechanisms of protein-mannose interactions during infections. This study proposes an approach using an ensemble of base classifiers for prediction of MIR using their evolutionary information in the form of position-specific scoring matrix. The base classifiers are random forests trained by different subsets of training data set Dset128 using 10-fold cross-validation. The optimized ensemble of base classifiers, MOWGLI, is then used to predict MIR on protein chains of the test data set Dtestset29 which showed a promising performance with 92.0% accurate prediction. An overall improvement of 26.6% in precision was observed upon comparison with the state-of-art. It is hoped that this approach, yielding enhanced predictions, could be eventually used for applications in drug design and vaccine development.
Roy, Amit; Das, Sampa
2015-01-01
Colocasia esculenta tuber agglutinin (CEA), a mannose binding lectin, exhibits insecticidal efficacy against different hemipteran pests. Dysdercus cingulatus, red cotton bug (RCB), has also shown significant susceptibility to CEA intoxication. However, the molecular basis behind such entomotoxicity of CEA has not been addressed adequately. The present study elucidates the mechanism of insecticidal efficacy of CEA against RCB. Confocal and scanning electron microscopic analyses documented CEA binding to insect midgut tissue, resulting in an alteration of perimicrovillar membrane (PMM) morphology. Internalization of CEA into insect haemolymph and ovary was documented by western blotting analyses. Ligand blot followed by mass spectrometric identification revealed the cognate binding partners of CEA as actin, ATPase and cytochrome P450. Deglycosylation and mannose inhibition assays indicated the interaction to probably be mannose mediated. Bioinformatic identification of putative glycosylation or mannosylation sites in the binding partners further supports the sugar mediated interaction. Correlating entomotoxicity of CEA with immune histological and binding assays to the insect gut contributes to a better understanding of the insecticidal potential of CEA and endorses its future biotechnological application.
Liu, Donghong; Liao, Ningbo; Ye, Xingqian; Hu, Yaqin; Wu, Dan; Guo, Xin; Zhong, Jianjun; Wu, Jianyong; Chen, Shiguo
2013-11-11
Bullacta exarata is one of the most economically important aquatic species in China, noted for not only its delicious taste and nutritional value, but also for its pharmacological activities. In order to explore its potential in medical applications, a mannoglucan designated as BEPS-IB was isolated and purified from the foot muscle of B. exarata after papain digestion. Chemical composition analysis indicated BEPS-IB contained mainly D-glucose and D-mannose in a molar ratio of 1:0.52, with an average molecular weight of about 94 kDa. The linkage information was determined by methylation analysis, and the anomeric configuration and chain linkage were confirmed by IR and 2D NMR. The results indicated BEPS-IB was composed of Glcp₆Manp heptasaccharide repeating unit in the backbone, with occasional branch chains of mannose residues (14%) occurring in the backbone mannose. Further antioxidant assay indicated BEPS-IB exhibited positive antioxidant activity in scavenging superoxide radicals and reducing power. This is the first report on the structure and bioactivity of the mannoglucan from the B. exarata.
Liu, Donghong; Liao, Ningbo; Ye, Xingqian; Hu, Yaqin; Wu, Dan; Guo, Xin; Zhong, Jianjun; Wu, Jianyong; Chen, Shiguo
2013-01-01
Bullacta exarata is one of the most economically important aquatic species in China, noted for not only its delicious taste and nutritional value, but also for its pharmacological activities. In order to explore its potential in medical applications, a mannoglucan designated as BEPS-IB was isolated and purified from the foot muscle of B. exarata after papain digestion. Chemical composition analysis indicated BEPS-IB contained mainly d-glucose and d-mannose in a molar ratio of 1:0.52, with an average molecular weight of about 94 kDa. The linkage information was determined by methylation analysis, and the anomeric configuration and chain linkage were confirmed by IR and 2D NMR. The results indicated BEPS-IB was composed of Glcp6Manp heptasaccharide repeating unit in the backbone, with occasional branch chains of mannose residues (14%) occurring in the backbone mannose. Further antioxidant assay indicated BEPS-IB exhibited positive antioxidant activity in scavenging superoxide radicals and reducing power. This is the first report on the structure and bioactivity of the mannoglucan from the B. exarata. PMID:24284423
Lysosome sorting of β-glucocerebrosidase by LIMP-2 is targeted by the mannose 6-phosphate receptor.
Zhao, Yuguang; Ren, Jingshan; Padilla-Parra, Sergi; Fry, Elizabeth E; Stuart, David I
2014-07-14
The integral membrane protein LIMP-2 has been a paradigm for mannose 6-phosphate receptor (MPR) independent lysosomal targeting, binding to β-glucocerebrosidase (β-GCase) and directing it to the lysosome, before dissociating in the late-endosomal/lysosomal compartments. Here we report structural results illuminating how LIMP-2 binds and releases β-GCase according to changes in pH, via a histidine trigger, and suggesting that LIMP-2 localizes the ceramide portion of the substrate adjacent to the β-GCase catalytic site. Remarkably, we find that LIMP-2 bears P-Man9GlcNAc2 covalently attached to residue N325, and that it binds MPR, via mannose 6-phosphate, with a similar affinity to that observed between LIMP-2 and β-GCase. The binding sites for β-GCase and the MPR are functionally separate, so that a stable ternary complex can be formed. By fluorescence lifetime imaging microscopy, we also demonstrate that LIMP-2 interacts with MPR in living cells. These results revise the accepted view of LIMP-2-β-GCase lysosomal targeting.
Genetics of digalactoside-binding adhesin from a uropathogenic Escherichia coli strain.
Normark, S; Lark, D; Hull, R; Norgren, M; Båga, M; O'Hanley, P; Schoolnik, G; Falkow, S
1983-01-01
The uropathogenic strain Escherichia coli J96 mediates mannose-resistant hemagglutination owing to production of a digalactoside-binding adhesin. A cosmid clone from this strain has been isolated that, when harbored in E. coli K-12, expressed Pap pili and this adhesin (R. Hull et al., Infect. Immun. 33:933-938, 1981). By transposon mutagenesis and by the construction of a number of hybrid plasmid derivatives, we have demonstrated that about 8.5 kilobases of DNA is required to generate a mannose-resistant hemagglutination-positive phenotype in E. coli K-12 strain P678-54. The structural gene for the Pap pili monomer, papA, has been identified and mapped close to the promotor-proximal end of the Pap operon. Although strain P678-54 that harbored a Tn5 insertion within papA showed a mannose-resistant hemagglutination-positive phenotype, it was negative in a competitive enzyme-linked immunosorbent assay with anti-Pap pilus serum. This could mean that a Pap adhesin is encoded by a region on the Pap operon that is distinct from papA. Images PMID:6136465
Biochemical characterization of an isoform of GDP-D-mannose-4,6-dehydratase from Mortierella alpina.
Wang, Hongchao; Zhang, Chen; Chen, Haiqin; Yang, Qin; Zhou, Xin; Gu, Zhennan; Zhang, Hao; Chen, Wei; Chen, Yong Q
2016-10-01
To clarify the molecular mechanism of GDP-L-fucose biosynthesis in Mortierella alpina. Analysis of the M. alpina genome suggests that there were two isofunctional GDP-D-mannose-4,6-dehydratase genes (GMD1 and GMD2) that have never been found in a microorganism before. GMD2 was expressed heterologously in Escherichia coli and purified to homogeneity. The addition of exogenous NAD(+) or NADP(+) was not essential for GMD2 activity. GMD2 may have considerable importance for GDP-L-fucose biosynthesis under nitrogen starvation. The transcriptional regulation of GMD1 may be more susceptible to GDP and GTP than that of GMD2. Significant changes were observed in the concentration of GDP-L-fucose (30 and 36 % inhibition respectively) and total fatty acids (18 and 12 % inhibition respectively) in M. alpina grown on GMD inhibitors medium, which suggests that GDP-L-fucose is functionally significant in lipid metabolism. This is the first time that an isofunctional GDP-D-mannose-4,6-dehydratase has been characterized in a microorganism.
Biosynthesis of the fungal cell wall polysaccharide galactomannan requires intraluminal GDP-mannose.
Engel, Jakob; Schmalhorst, Philipp S; Routier, Françoise H
2012-12-28
Fungal cell walls frequently contain a polymer of mannose and galactose called galactomannan. In the pathogenic filamentous fungus Aspergillus fumigatus, this polysaccharide is made of a linear mannan backbone with side chains of galactofuran and is anchored to the plasma membrane via a glycosylphosphatidylinositol or is covalently linked to the cell wall. To date, the biosynthesis and significance of this polysaccharide are unknown. The present data demonstrate that deletion of the Golgi UDP-galactofuranose transporter GlfB or the GDP-mannose transporter GmtA leads to the absence of galactofuran or galactomannan, respectively. This indicates that the biosynthesis of galactomannan probably occurs in the lumen of the Golgi apparatus and thus contrasts with the biosynthesis of other fungal cell wall polysaccharides studied to date that takes place at the plasma membrane. Transglycosylation of galactomannan from the membrane to the cell wall is hypothesized because both the cell wall-bound and membrane-bound polysaccharide forms are affected in the generated mutants. Considering the severe growth defect of the A. fumigatus GmtA-deficient mutant, proving this paradigm might provide new targets for antifungal therapy.
Hsieh, P; Robbins, P W
1984-02-25
We have examined the synthesis and processing of asparagine-linked oligosaccharides from Aedes albopictus C6/36 mosquito cells. These cells synthesized a glucose-containing lipid-linked oligosaccharide with properties identical to that of Glc3Man9GlcNAc2-PP-dolichol. Results of brief pulse label experiments with [3H]mannose were consistent with the transfer of Glc3Man9GlcNAc2 to protein followed by the rapid removal of glucose residues. Pulse-chase experiments established that further processing of oligosaccharides in C6/36 cells resulted in the removal of up to six alpha-linked mannose residues yielding Man3GlcNAc2 whose structure is identical to that of the trimannosyl "core" of N-linked oligosaccharides of vertebrate cells and yeast. Complex-type oligosaccharides were not observed in C6/36 cells. When Sindbis virus was grown in mosquito cells, Man3GlcNAc2 glycans were preferentially located at the two glycosylation sites which were previously shown to have complex glycans in virus grown in vertebrate cells. These Man3GlcNAc2 structures are the most extensively processed oligosaccharides in A. albopictus, and as such, are analogous to the complex glycans of vertebrate cells. We suggest that determinants of oligosaccharide processing which reside in the polypeptide are universally recognized despite evolutionary divergence of the oligosaccharide-processing pathway between insects and vertebrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Y.T.; Elbein, A.D.
1985-11-01
Madin-Darby canine kidney (MDCK) cells normally form lipid-linked oligosaccharides having mostly the Glc3Man9GlcNAc2 oligosaccharide. However, when MDCK cells are incubated in 1 to 10 mM mannosamine and labeled with (2-/sup 3/H)mannose, the major oligosaccharides associated with the dolichol were Man5GlcNAc2 and Man6GlcNAc2 structures. Since both of these oligosaccharides were susceptible to digestion by endo-beta-N-acetylglucosaminidase H, the Man5GlcNAc2 must be different in structure than the Man5GlcNAc2 usually found as a biosynthetic intermediate in the lipid-linked oligosaccharides. Since pulse chase studies indicated that the lesion was in biosynthesis, it appears that mannosamine inhibits the in vivo formation of lipid-linked oligosaccharides perhaps bymore » inhibiting the alpha-1,2-mannosyl transferases. Although the lipid-linked oligosaccharides produced in the presence of mannosamine were smaller in size than those of control cells and did not contain glucose, the oligosaccharides were still transferred in vivo to protein. Furthermore, the oligosaccharide portions of the glycoproteins were still processed as shown by the fact that the glycopeptides were of the complex and hybrid types and were labeled with (/sup 3/H)mannose or (/sup 3/H)galactose.« less
Nedovic, Bojan; Posteraro, Brunella; Leoncini, Emanuele; Amore, Rosarita; Sanguinetti, Maurizio; Boccia, Stefania
2014-01-01
Mannose-binding lectin (MBL) plays a key role in the human innate immune response. It has been shown that polymorphisms in the MBL2 gene, particularly at codon 54 (variant allele B; wild-type allele designated as A), impact upon host susceptibility to Candida infection. This systematic review and meta-analysis were performed to assess the association between MBL2 codon 54 genotype and vulvovaginal candidiasis (VVC) or recurrent VVC (RVVC). Studies were searched in MEDLINE, SCOPUS, and ISI Web of Science until April 2013. Five studies including 704 women (386 cases and 318 controls) were part of the meta-analysis, and pooled ORs were calculated using the random effects model. For subjects with RVVC, ORs of AB versus AA and of BB versus AA were 4.84 (95% CI 2.10–11.15; P for heterogeneity = 0.013; I 2 = 68.6%) and 12.68 (95% CI 3.74–42.92; P for heterogeneity = 0.932, I 2 = 0.0%), respectively. For subjects with VVC, OR of AB versus AA was 2.57 (95% CI 1.29–5.12; P for heterogeneity = 0.897; I 2 = 0.0%). This analysis indicates that heterozygosity for the MBL2 allele B increases significantly the risk for both diseases, suggesting that MBL may influence the women's innate immunity in response to Candida. PMID:25143944
Rowan, Daniel J.; Tomatsu, Shunji; Grubb, Jeffrey H.; Haupt, Bisong; Montaño, Adriana M.; Oikawa, Hirotaka; Sosa, Catalina; Chen, Anping; Sly, William S.
2012-01-01
Mucopolysaccharidosis (MPS) type VII is a lysosomal storage disease caused by deficiency of the lysosomal enzyme β-glucuronidase (GUS), leading to accumulation of glycosaminoglycans (GAGs). Enzyme replacement therapy (ERT) effectively clears GAG storage in the viscera. Recent studies showed that a chemically modified form of GUS (PerT-GUS), which escaped clearance by mannose 6-phosphate and mannose receptors and showed prolonged circulation, reduced CNS storage more effectively than native GUS. Clearance of storage in bone has been limited due to the avascularity of the growth plate. To evaluate the effectiveness of long-circulating PerT-GUS in reducing the skeletal pathology, we treated MPS VII mice for 12 weeks beginning at 5 weeks of age with PerT-GUS or native GUS and used micro-CT, radiographs, and quantitative histopathological analysis for assessment of bones. Micro-CT findings showed PerT-GUS treated mice had a significantly lower BMD. Histopathological analysis also showed reduced storage material and a more organized growth plate in PerT-GUS treated mice compared with native GUS treated mice. Long term treatment with PerT-GUS from birth up to 57 weeks also significantly improved bone lesions demonstrated by micro-CT, radiographs and quantitative histopathological assay. In conclusion, long-circulating PerT-GUS provides a significant impact to rescue of bone lesions and CNS involvement. PMID:22902520
Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins
NASA Astrophysics Data System (ADS)
Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team
The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.
Histochemical analysis of glycoconjugates in the skin of a catfish (arius tenuispinis, day).
Al-Banaw, A; Kenngott, R; Al-Hassan, J M; Mehana, N; Sinowatz, F
2010-02-01
A histochemical study using conventional carbohydrate histochemistry (periodic-acid staining including diastase controls, alcian blue staining at pH 1 and 2.5) as well as using a battery of 14 fluorescein isothiocyanate (FITC)-labelled lectins to identify glycoconjugates present in 10 different areas of the skin of a catfish (Arius tenuispinis) was carried out. The lectins used were: mannose-binding lectins (Con A, LCA and PSA), galactose-binding lectins (PNA, RCA), N-acetylgalactosamine-binding lectins (DBA, SBA, SJA and GSL I), N-acetylglucosamine-binding lectins (WGA and WGAs), fucose-binding lectins (UEA) and lectins which bind to complex carbohydrate configurations (PHA E, PHA L). Conventional glycoconjugate staining (PAS staining, alcian blue at pH 1 and 2.5) showed that the mucous goblet cells contain a considerable amount of glycoconjugates in all locations of the skin, whereas the other unicellular gland type, the club cells, lacked these glycoconjugates. The glycoproteins found in goblet cells are neutral and therefore stain magenta when subjected to PAS staining. Alcian blue staining indicating acid glycoproteins was distinctly positive at pH 1, but gave only a comparable staining at pH 2.5. The mucus of the goblet cells therefore also contains acid glycoproteins rich in sulphate groups. Using FITC-labelled lectins, the carbohydrate composition of the glycoproteins of goblet cells could be more fully characterized. A distinct staining of the mucus of goblet cells was found with the mannose-binding lectins LCA and PSA; the galactosamine-binding lectins DBA, SBA and GLS I; the glucosamine-binding lectin WGA; and PHA E which stains glycoproteins with complex carbohydrate configurations. No reaction occurred with the fucose-binding lectin UEA and the sialic acid-specific lectin SNA. In addition, the galactose-binding lectins PNA and RCA showed only a weak or completely negative staining of the mucus in the goblet cells. The specificity of the lectin staining could be proved by inhibiting binding of the lectins by competitive inhibition with the corresponding sugars. From these data, we can conclude that the mucus produced by the epidermal goblet cells of A. tenuispinis is rich in mannose, N-acetylgalactosamine and N-acetylglucosamine residues.
A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doores, Katie J.; Fulton, Zara; Hong, Vu
2011-08-24
Antibody 2G12 uniquely neutralizes a broad range of HIV-1 isolates by binding the high-mannose glycans on the HIV-1 surface glycoprotein, gp120. Antigens that resemble these natural epitopes of 2G12 would be highly desirable components for an HIV-1 vaccine. However, host-produced (self)-carbohydrate motifs have been unsuccessful so far at eliciting 2G12-like antibodies that cross-react with gp120. Based on the surprising observation that 2G12 binds nonproteinaceous monosaccharide D-fructose with higher affinity than D-mannose, we show here that a designed set of nonself, synthetic monosaccharides are potent antigens. When introduced to the terminus of the D1 arm of protein glycans recognized by 2G12,more » their antigenicity is significantly enhanced. Logical variation of these unnatural sugars pinpointed key modifications, and the molecular basis of this increased antigenicity was elucidated using high-resolution crystallographic analyses. Virus-like particle protein conjugates containing such nonself glycans are bound more tightly by 2G12. As immunogens they elicit higher titers of antibodies than those immunogenic conjugates containing the self D1 glycan motif. These antibodies generated from nonself immunogens also cross-react with this self motif, which is found in the glycan shield, when it is presented in a range of different conjugates and glycans. However, these antibodies did not bind this glycan motif when present on gp120.« less
Khanal, Manakamana; Larsonneur, Fanny; Raks, Victoriia; Barras, Alexandre; Baumann, Jean-Sébastien; Martin, Fernando Ariel; Boukherroub, Rabah; Ghigo, Jean-Marc; Ortiz Mellet, Carmen; Zaitsev, Vladimir; Garcia Fernandez, Jose M; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine
2015-02-14
Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding ND-conjugates behaving as effective inhibitors of E. coli type 1 fimbriae-mediated adhesion as well as of biofilm formation. The required trimeric thiosugar clusters were obtained through a convenient thiol-ene "click" strategy and were subsequently conjugated to alkynyl-functionalized NDs using a Cu(I)-catalysed "click" reaction. We demonstrated that the tri-thiomannoside cluster-conjugated NDs (ND-Man3) show potent inhibition of type 1 fimbriae-mediated E. coli adhesion to yeast and T24 bladder cells as well as of biofilm formation. The biofilm disrupting effects demonstrated here have only rarely been reported in the past for analogues featuring such simple glycosidic motifs. Moreover, the finding that the tri-thiomannoside cluster (Man3N3) is itself a relatively efficient inhibitor, even when not conjugated to any ND edifice, suggests that alternative mono- or multivalent sugar-derived analogues might also be usefully explored for E. coli-mediated biofilm disrupting properties.
Wang, Ting; Hu, Xiao-Chun; Cai, Zhi-Peng; Voglmeir, Josef; Liu, Li
2017-09-06
Recent progress in the relationship between carbohydrate cross-reactive determinants (CCDs) and allergic response highlights the importance of carbohydrate moieties in the innate immune system. Previous research pointed out that the protein allergen in Ginkgo biloba seeds is glycosylated, and the oligosaccharides conjugated to these proteins might also contribute to the allergy. The aim of this study was to analyze carbohydrate moieties, especially N-linked glycans, of glycoproteins from Ginkgo seeds originating from different places for detailed structures, to enable further research on the role played by N-glycans in Ginkgo-caused allergy. Results of monosaccharide composition and immunoblotting assays indicated the existence of N-glycans. Detailed structural elucidation of the N-glycans was further carried out by means of hydrophilic interaction ultraperformance liquid chromatography (HILIC-UPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In total, 14 out of 16 structures detected by UPLC were confirmed by MALDI-TOF-MS and tandem mass spectrometry, among which complex-type N-glycans bearing Lewis A determinants and high-mannose-type N-glycans were identified from Ginkgo seeds for the first time. Precise quantification of N-glycans was performed by use of an external standard, and both the absolute amount of each N-glycan and the percentage of different types of N-glycan showed significant diversity among the samples without any pattern of geographic variation.
Vanfossen, Amy L; Verhaart, Marcel R A; Kengen, Servé M W; Kelly, Robert M
2009-12-01
Coutilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H(2)-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on individual monosaccharides (arabinose, fructose, galactose, glucose, mannose, and xylose), mixtures of these sugars, as well as on xylan and xylogluco-oligosacchrides. C. saccharolyticus grew at approximately the same rate (t(d), approximately 95 min) and to the same final cell density (1 x 10(8) to 3 x 10(8) cells/ml) on all sugars and sugar mixtures tested. In the monosaccharide mixture, although simultaneous consumption of all monosaccharides was observed, not all were utilized to the same extent (fructose > xylose/arabinose > mannose/glucose/galactose). Transcriptome contrasts for monosaccharide growth revealed minimal changes in some cases (e.g., 32 open reading frames [ORFs] changed >/=2-fold for glucose versus galactose), while substantial changes occurred for cases involving mannose (e.g., 353 ORFs changed >/=2-fold for glucose versus mannose). Evidence for catabolite repression was not noted for either growth on multisugar mixtures or the corresponding transcriptomes. Based on the whole-genome transcriptional response analysis and comparative genomics, carbohydrate specificities for transport systems could be proposed for most of the 24 putative carbohydrate ATP-binding cassette transporters and single phosphotransferase system identified in C. saccharolyticus. Although most transporter genes responded to individual monosaccharides and polysaccharides, the genes Csac_0692 to Csac_0694 were upregulated only in the monosaccharide mixture. The results presented here affirm the broad growth substrate preferences of C. saccharolyticus on carbohydrates representative of lignocellulosic biomass and suggest that this bacterium holds promise for biofuel applications.
Mannosylated polyion complexes for in vivo gene delivery into CD11c(+) dendritic cells.
Raviv, Lior; Jaron-Mendelson, Michal; David, Ayelet
2015-02-02
Dendritic cells (DCs) possess unique abilities in initiating primary immune responses and thus represent prime targets for DNA-based vaccinations. Here, we describe the design and synthesis of mannosylated polyion complexes (PICs) composed of cationic polyethylenimine (PEI) and hydrophilic polyethylene glycol (PEG) segments, and bearing mono- and trivalent mannose as a ligand for targeting mannose receptor (MR/CD206)-positive DCs. Amino-terminated mannose (Man)-containing ligands in mono- and trivalent presentations (Man- and Man3-, respectively) were prepared and conjugated to PEG via an N-hydroxysuccinimide (NHS)-activated terminal. Thiolated PEI was conjugated to the mannosylated PEG via the maleimide (MAL)-activated terminal. The resulting positively charged diblock copolymers bearing mannoses (Man-PEG-b-PEI and Man3-PEG-b-PEI) were self-assembled with DNA to form PICs with lower surface charge than did their PEI building block and mean hydrodynamic diameters in the range of 100-450 nm, depending on the N/P ratio. Man3-PEG-b-PEI demonstrated a 3-4-fold greater transfection efficiency in MR-positive dendritic cell lines (THP-1, DC2.4), relative to Man-PEG-b-PEI, exhibited low cytotoxicity when compared with PEI, and showed low transfection efficiency in nondendritic HeLa cells. In preliminary in vivo experiments, Man-PEG-b-PEI/DNA and Man3-PEG-b-PEI/DNA demonstrated 2-3-fold higher gene delivery efficiency into CD11c(+) DCs collected from inguinal lymph nodes of C57/BL6 mice, when compared to PEI/DNA complexes, as shown by GFP expression measurements, 24 h post subcutaneous injection. The results indicate that the mannosylated PICs are a safe and effective gene delivery system, showing in vivo specificity toward CD11c(+) DCs.
He, Hongliang; Yuan, Quan; Bie, Jinghua; Wallace, Ryan L; Yannie, Paul J; Wang, Jing; Lancina, Michael G; Zolotarskaya, Olga Yu; Korzun, William; Yang, Hu; Ghosh, Shobha
2018-03-01
Dysfunctional macrophages underlie the development of several diseases including atherosclerosis where accumulation of cholesteryl esters and persistent inflammation are 2 of the critical macrophage processes that regulate the progression as well as stability of atherosclerotic plaques. Ligand-dependent activation of liver-x-receptor (LXR) not only enhances mobilization of stored cholesteryl ester but also exerts anti-inflammatory effects mediated via trans-repression of proinflammatory transcription factor nuclear factor kappa B. However, increased hepatic lipogenesis by systemic administration of LXR ligands (LXR-L) has precluded their therapeutic use. The objective of the present study was to devise a strategy to selectively deliver LXR-L to atherosclerotic plaque-associated macrophages while limiting hepatic uptake. Mannose-functionalized dendrimeric nanoparticles (mDNP) were synthesized to facilitate active uptake via the mannose receptor expressed exclusively by macrophages using polyamidoamine dendrimer. Terminal amine groups were used to conjugate mannose and LXR-L T091317 via polyethylene glycol spacers. mDNP-LXR-L was effectively taken up by macrophages (and not by hepatocytes), increased expression of LXR target genes (ABCA1/ABCG1), and enhanced cholesterol efflux. When administered intravenously to LDLR-/- mice with established plaques, significant accumulation of fluorescently labeled mDNP-LXR-L was seen in atherosclerotic plaque-associated macrophages. Four weekly injections of mDNP-LXR-L led to significant reduction in atherosclerotic plaque progression, plaque necrosis, and plaque inflammation as assessed by expression of nuclear factor kappa B target gene matrix metalloproteinase 9; no increase in hepatic lipogenic genes or plasma lipids was observed. These studies validate the development of a macrophage-specific delivery platform for the delivery of anti-atherosclerotic agents directly to the plaque-associated macrophages to attenuate plaque burden. Copyright © 2017 Elsevier Inc. All rights reserved.
Biosynthesis of GDP-fucose and Other Sugar Nucleotides in the Blood Stages of Plasmodium falciparum*
Sanz, Sílvia; Bandini, Giulia; Ospina, Diego; Bernabeu, Maria; Mariño, Karina; Fernández-Becerra, Carmen; Izquierdo, Luis
2013-01-01
Carbohydrate structures play important roles in many biological processes, including cell adhesion, cell-cell communication, and host-pathogen interactions. Sugar nucleotides are activated forms of sugars used by the cell as donors for most glycosylation reactions. Using a liquid chromatography-tandem mass spectrometry-based method, we identified and quantified the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in Plasmodium falciparum intraerythrocytic life stages. We assembled these data with the in silico functional reconstruction of the parasite metabolic pathways obtained from the P. falciparum annotated genome, exposing new active biosynthetic routes crucial for further glycosylation reactions. Fucose is a sugar present in glycoconjugates often associated with recognition and adhesion events. Thus, the GDP-fucose precursor is essential in a wide variety of organisms. P. falciparum presents homologues of GDP-mannose 4,6-dehydratase and GDP-l-fucose synthase enzymes that are active in vitro, indicating that most GDP-fucose is formed by a de novo pathway that involves the bioconversion of GDP-mannose. Homologues for enzymes involved in a fucose salvage pathway are apparently absent in the P. falciparum genome. This is in agreement with in vivo metabolic labeling experiments showing that fucose is not significantly incorporated by the parasite. Fluorescence microscopy of epitope-tagged versions of P. falciparum GDP-mannose 4,6-dehydratase and GDP-l-fucose synthase expressed in transgenic 3D7 parasites shows that these enzymes localize in the cytoplasm of P. falciparum during the intraerythrocytic developmental cycle. Although the function of fucose in the parasite is not known, the presence of GDP-fucose suggests that the metabolite may be used for further fucosylation reactions. PMID:23615908
Biosynthesis of GDP-fucose and other sugar nucleotides in the blood stages of Plasmodium falciparum.
Sanz, Sílvia; Bandini, Giulia; Ospina, Diego; Bernabeu, Maria; Mariño, Karina; Fernández-Becerra, Carmen; Izquierdo, Luis
2013-06-07
Carbohydrate structures play important roles in many biological processes, including cell adhesion, cell-cell communication, and host-pathogen interactions. Sugar nucleotides are activated forms of sugars used by the cell as donors for most glycosylation reactions. Using a liquid chromatography-tandem mass spectrometry-based method, we identified and quantified the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in Plasmodium falciparum intraerythrocytic life stages. We assembled these data with the in silico functional reconstruction of the parasite metabolic pathways obtained from the P. falciparum annotated genome, exposing new active biosynthetic routes crucial for further glycosylation reactions. Fucose is a sugar present in glycoconjugates often associated with recognition and adhesion events. Thus, the GDP-fucose precursor is essential in a wide variety of organisms. P. falciparum presents homologues of GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase enzymes that are active in vitro, indicating that most GDP-fucose is formed by a de novo pathway that involves the bioconversion of GDP-mannose. Homologues for enzymes involved in a fucose salvage pathway are apparently absent in the P. falciparum genome. This is in agreement with in vivo metabolic labeling experiments showing that fucose is not significantly incorporated by the parasite. Fluorescence microscopy of epitope-tagged versions of P. falciparum GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase expressed in transgenic 3D7 parasites shows that these enzymes localize in the cytoplasm of P. falciparum during the intraerythrocytic developmental cycle. Although the function of fucose in the parasite is not known, the presence of GDP-fucose suggests that the metabolite may be used for further fucosylation reactions.
Cabanillas, Beatriz; Maleki, Soheila J; Cheng, Hsiaopo; Novak, Natalija
2018-06-07
Roasting has been implicated in the increase of peanut allergenicity due to the chemical reactions that occur during the process. However, this increase is not fully understood, and little information is available regarding the role of roasted peanut allergens in the initial phase of allergy, where dendritic cells (DCs) play a key role. We sought to analyze differences in the internalization of Ara h 3 from raw and roasted peanut by immature monocyte-derived DCs (MDDCs) and the implication of the mannose receptor in the uptake. Ara h 3 was purified from raw and roasted peanut (Ara h 3-raw and Ara h 3-roas) and labeled with a fluorescent dye. The labeled allergens were added to MDDCs obtained from 7 donors and internalization was analyzed after 10, 30, and 120 min by flow cytometry. In parallel, mannan, which blocks the mannose receptor, was added 30 min before adding the labeled allergens. Results showed that the internalization of Ara h 3-roas by MDDCs was significantly increased at every time point. However, the increase in the internalization of Ara h 3-raw was only significant after 2 h of incubation. Ara h 3-roas had an enhanced capacity to be internalized by MDDCs in comparison with Ara h 3-raw at every time point. Blocking the mannose receptor decreased the internalization of Ara h 3-roas but not Ara h 3-raw. In conclusion, the internalization of Ara h 3-roas by the MDDCs is enhanced when compared to Ara h 3-raw, and the mannose receptor might be implicated in this enhancement. © 2018 S. Karger AG, Basel.
Mechanisms of escape from the PGT128 family of anti-HIV broadly neutralizing antibodies.
Krumm, Stefanie A; Mohammed, Hajer; Le, Khoa M; Crispin, Max; Wrin, Terri; Poignard, Pascal; Burton, Dennis R; Doores, Katie J
2016-02-02
Broadly neutralizing antibodies (bnAbs) directed against the mannose-patch on the HIV envelope glycoprotein gp120 have several features that make them desirable targets for vaccine design. The PGT125-131 bnAb family is of particular interest due to its superior breadth and potency. The overlapping epitopes recognized by this family are intricate and neutralization requires interaction with at least two N-linked glycans (N332/N334, N295 or N301) in addition to backbone-mediated contact with the (323)IGDIR(327) motif of the V3 loop. We have recently shown that this bnAb family consists of two distinct antibody classes that can bind alternate arrangements of glycans in the mannose-patch in the absence of N332 thereby limiting viral escape. This led us to further investigate viral resistance and escape mechanisms to the PGT125-131 bnAb family. Using an escape virus isolated from the PGT125-131 donor as a guide, we show that mutating both the V3 core protein epitope and repositioning critical N-linked glycosylation sites are required to restore neutralization sensitivity. Interestingly, neutralization sensitivity could be restored via different routes for the two distinct bnAb classes within the PGT125-131 family, which may have been important in generating the divergence in recognition. We demonstrate that the observed V3 mutations confer neutralization resistance in other virus strains through both gain-of-function and escape studies. Furthermore, we show that the V3 loop is important in facilitating promiscuous binding to glycans within the mannose-patch. These data highlight the importance of the V3 loop in the design of immunogens aimed at inducing broad and potent bnAbs that can bind promiscuously to the mannose-patch.
Knolle, P A; Uhrig, A; Hegenbarth, S; Löser, E; Schmitt, E; Gerken, G; Lohse, A W
1998-12-01
Our study demonstrates that antigen-presenting liver sinusoidal endothelial cells (LSEC) induce production of interferon-gamma (IFN-gamma) from cloned Th1 CD4+ T cells. We show that LSEC used the mannose receptor for antigen uptake, which further strengthened the role of LSEC as antigen-presenting cell (APC) population in the liver. The ability of LSEC to activate cloned CD4+ T cells antigen-specifically was down-regulated by exogenous prostaglandin E2 (PGE2) and by IL-10. We identify two separate mechanisms by which IL-10 down-regulated T cell activation through LSEC. IL-10 decreased the constitutive surface expression of MHC class II as well as of the accessory molecules CD80 and CD86 on LSEC. Furthermore, IL-10 diminished mannose receptor activity in LSEC. Decreased antigen uptake via the mannose receptor and decreased expression of accessory molecules may explain the down-regulation of T cell activation through IL-10. Importantly, the expression of low numbers of antigen on MHC II in the absence of accessory signals on LSEC may lead to induction of anergy in T cells. Because PGE2 and IL-10 are released from LSEC or Kupffer cells (KC) in response to those concentrations of endotoxin found physiologically in portal venous blood, it is possible that the continuous presence of these mediators and their negative effect on the local APC may explain the inability of the liver to induce T cell activation and to clear chronic infections. Our results support the notion that antigen presentation by LSEC in the hepatic microenvironment contributes to the observed inability to mount an effective cell-mediated immune response in the liver.
Pan, Yuxiang; Wang, Cong; Chen, Zhongqin; Li, Weiwei; Yuan, Guoqi; Chen, Haixia
2017-05-15
This study aimed to investigate the physicochemical properties and antidiabetic effects of a polysaccharide obtained from corn silk (PCS2). PCS2 was isolated and the physicochemical properties were characterized. The hypoglycemic effects were determined using the high-fat diet and streptozocin induced type 2 diabetic mellitus (T2DM) insulin resistance mice. The results showed that PCS2 was a heteropolysaccharide with the average molecular weight of 45.5kDa. PCS2 was composed of d-galactose, d-mannose, d-(+)-glucose, d-(+)-xylose, l-arabinose and l-rhamnose. PCS2 treatment significantly reduced the body weight loss, decreased blood glucose and serum insulin levels, and improved glucose intolerance (P<0.05). The levels of serum lipid profile were regulated and the levels of glycated serum protein, non-esterified fatty acid were decreased significantly (P<0.01). The activities of superoxide dismutase, glutathione peroxidase and catalase were notably improved (P<0.05). PCS2 also exerted cytoprotective action from histopathological observation. These results suggested that PCS2 could be a good candidate of functional food or medicine for T2DM treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oligolysine-based saccharide clusters: synthesis and specificity.
Frison, Natacha; Marceau, Philippe; Roche, Annie-Claude; Monsigny, Michel; Mayer, Roger
2002-01-01
In search of specific and highly selective sugar clusters for cell receptors, such as membrane lectins, various disaccharides were coupled to small peptide cores through an amide bond. In a first step, the reducing disaccharides, i.e. lactose and three different dimannoses, were converted into glycosyl-pyroglutamyl-beta-alanine derivatives. The free carboxylic group of these conjugates was then coupled to the alpha and epsilon amino groups of the core peptide (Lys( n )-Ala-Cys-NH2) with n =1 to 5, with complete substitution leading to homogeneous glycoclusters. The thiol group of the cysteine residue was used to tag the glycosylated oligolysines upon reaction with fluorescein iodoacetamide. The affinity of these glycoclusters towards two plant lectins was assessed by surface plasmon resonance. The selectivity of their cell uptake was investigated by flow cytometry using two types of cells: a human hepatoma cell line (HepG2 cells) expressing the plasma membrane galactose-specific lectin, and monocyte-derived dendritic cells expressing the plasma membrane mannose-specific lectin. The glycoclusters containing four or five disaccharides were shown to bind plant lectins and cell surface membrane lectins with a narrow selectivity and with a high affinity. PMID:12119048
Biological role of mannose binding lectin: From newborns to centenarians.
Scorza, Manuela; Liguori, Renato; Elce, Ausilia; Salvatore, Francesco; Castaldo, Giuseppe
2015-12-07
Mannose binding lectin (MBL) is a protein of innate immunity that activates the complement and promotes opsonophagocytosis. The deficiency of MBL due to several common gene polymorphisms significantly enhances the risk of severe infections, particularly in the neonatal age and in childhood. On the contrary, the role of the protein in carcinogenesis and atherogenesis is still debated: MBL has a relevant role against neoplastic cells, but some studies described a protective effect of low levels of MBL toward breast cancer and a longer survival of lung cancer patients with a reduced MBL activity. Similarly, some studies concluded on the protective role of low levels of MBL toward cardiovascular diseases while other focused on a higher risk of myocardial infarction in subjects with a deficient activity of the protein. More recently, a role of MBL in the clearance of senescent cells emerged, and a study in two large cohorts of centenarians demonstrated that a high biological activity of the protein enhances the risk of autoimmune diseases. This body of data strongly suggests that the optimal levels of MBL activity depend on the age and on the environmental context of each subject. Copyright © 2015 Elsevier B.V. All rights reserved.
Luo, Qiu-Lian; Tang, Zhuan-Hui; Zhang, Xue-Feng; Zhong, Yong-Hong; Yao, Su-Zhi; Wang, Li-Sheng; Lin, Cui-Wu; Luo, Xuan
2016-08-01
In this report, a water-soluble polysaccharide was obtained from the dried stems of Dendrobium officinale Kimura et Migo by hot-water (70-75°C) extraction and 85% ethanol precipitation, and successively purification by DEAE-cellulose anion-exchange chromatography and gel-permeation chromatography. The D. officinale polysaccharide (DOP) has a molecular weight of 8500Da. Monosaccharide composition analysis reveals that DOP is composed of mannose, glucose, and arabinose with a trace of galacturonic acid in a molar ratio of 6.2:2.3:2.1:0.1. Periodate oxidation-smith degradation and 1D and 2D NMR spectroscopy analysis suggest the predominance of mannose and glucose, and it contains a 2-O-acetylglucomannan and (1→4)-linked-β-d-mannopyranosyl and (1→4)-linked-β-d-glucopyranosyl residues. Atomic force microscope shows that DOP mainly exists as rod-shaped chains, supporting high degrees of polymerization. The antioxidant activities of the polysaccharide in vitro assay indicate that DOP has good scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, higher scavenging activity of hydroxyl radical, and metal chelating activities. Copyright © 2016 Elsevier B.V. All rights reserved.
Determination of 3-O- and 4-O-methylated monosaccharide constituents in snail glycans.
Stepan, Herwig; Bleckmann, Christina; Geyer, Hildegard; Geyer, Rudolf; Staudacher, Erika
2010-07-02
The N- and O-glycans of Arianta arbustorum, Achatina fulica, Arion lusitanicus and Planorbarius corneus were analysed for their monosaccharide pattern by reversed-phase HPLC after labelling with 2-aminobenzoic acid or 3-methyl-1-phenyl-2-pyrazolin-5-one and by gas chromatography-mass spectrometry. Glucosamine, galactosamine, mannose, galactose, glucose, fucose and xylose were identified. Furthermore, three different methylated sugars were detected: 3-O-methyl-mannose and 3-O-methyl-galactose were confirmed to be a common snail feature; 4-O-methyl-galactose was detected for the first time in snails. Copyright 2010 Elsevier Ltd. All rights reserved.
Quantitative assessment of the multivalent protein-carbohydrate interactions on silicon.
Yang, Jie; Chazalviel, Jean-Noël; Siriwardena, Aloysius; Boukherroub, Rabah; Ozanam, François; Szunerits, Sabine; Gouget-Laemmel, Anne Chantal
2014-10-21
A key challenge in the development of glycan arrays is that the sensing interface be fabricated reliably so as to ensure the sensitive and accurate analysis of the protein-carbohydrate interaction of interest, reproducibly. These goals are complicated in the case of glycan arrays as surface sugar density can influence dramatically the strength and mode of interaction of the sugar ligand at any interface with lectin partners. In this Article, we describe the preparation of carboxydecyl-terminated crystalline silicon (111) surfaces onto which are grafted either mannosyl moieties or a mixture of mannose and spacer alcohol molecules to provide "diluted" surfaces. The fabrication of the silicon surfaces was achieved efficiently through a strategy implicating a "click" coupling step. The interactions of these newly fabricated glycan interfaces with the lectin, Lens culinaris, have been characterized using quantitative infrared (IR) spectroscopy in the attenuated total geometry (ATR). The density of mannose probes and lectin targets was precisely determined for the first time by the aid of special IR calibration experiments, thus allowing for the interpretation of the distribution of mannose and its multivalent binding with lectins. These experimental findings were accounted for by numerical simulations of lectin adsorption.
Zeng, Hongjuan; Yu, Junsheng; Jiang, Yadong; Zeng, Xiangqun
2014-05-15
A complex thiolated mannose (TM)/quinone functionalised polythiophene (QFPT) thin film was modified on EQCM/Au electrode for recognition of specific carbohydrate-proteins. Different lectins such as those from Sambucus nigra (elder berry), Arachis hypogaea (peanut), Ulex europaeus (gorse, furze), Triticum vulgaris and Concanavalin A (ConA) was used for probes to evaluate bio-sensing performance of the TM/QFPT film. A specific response was observed for ConA from lectins when using the TM/QFPT film as sensing material and employing either elelctrochemical or the QCM method. No response was detected between thiolated mannose and other lectins. The linear relationship between current and ConA concentration is in the range of 0.5-17.5 nM by the elelctrochemical method and the linear relationship between frequency change and ConA concentration is in the range of 0.5-4.5 nM by the QCM method. This shows that the TM/QFPT-modified EQCM biosensor presents a paralleled determination by using electrochemical and the QCM method. The elelctrochemical method of the biosensor can be applicable in a large concentration range and its frequency change can be more precise. © 2013 Published by Elsevier B.V.
Ottinger, C.A.; Johnson, S.C.; Ewart, K.V.; Brown, L.L.; Ross, N.W.
1999-01-01
We investigated the effects of a calcium-dependent mannose-binding lectin isolated from the serum of Atlantic salmon on Aeromonassalmonicida viability and the anti-A. salmonicida activity of Atlantic salmon macrophages. In the absence of other factors, binding of this lectin at concentrations of 0.8, 4.0 and 20.0 ng ml−1 to virulent A. salmonicida failed to significantly reduce (P>0.05) cell viability. However, binding of the lectin to A. salmonicida did result in significant (P≤0.05) dose-dependent increases in phagocytosis, and bactericidal activity. Significant increases (P≤0.05) were also observed in phagocyte respiratory burst activity within the lectin concentration range of 4.0–20.0 ng ml−1 but the stimulation was not dose dependent at these lectin concentrations. At the lowest lectin concentration tested (0.32 ng ml−1), a significant decrease (P≤0.05) in respiratory burst was observed. The structure and activity of this lectin are similar to that of mammalian mannose-binding lectins, which are known to play a pivotal role in innate immunity. The presence of this lectin may be an important defense mechanism against Gram-negative bacteria such as A. salmonicida.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moers, M.E.C.; Larter, S.R.
1993-07-01
Surficial and buried sediment samples from a hypersaline lagoon-sabkha system (Abu Dhabi, United Arab Emirates) were analyzed for carbohydrates (as neutral monosaccharides) to distinguish and characterize various types of recent and ancient tropical ecosystems on a molecular level. The samples consisted of surficial and buried microbial mats, lagoonal sediments containing seagrass (Halodule uninervis), and mangrove (Avicennia marine) paleosoils and handpicked mangrove leaves, ranging in age from contemporary to ca. 6000 yr BP. Analysis of quantitative neutral monosaccharide data by multivariate techniques shows that various groups can be distinguished: intact vascular plant material (mangrove leaf) contains high amounts of arabinose andmore » glucose and hardly any partially methylated monosaccharides, whereas microbial mats in general and lagoonal seagrass sediments show high contributions of fucose, ribose, mannose, galactose, and partially methylated monosaccharides. Moreover, surficial microbial mats consisting of filamentous cyanobacteria (Microcoleus chtonoplastes, Lyngbya aestuarii) can be distinguished from other mats and sediments containing coccoid cyanobacteria (Entophysalis major) and/or fermenting, sulphate reducing, and methanogenic bacteria on the basis of high contributions of specific groups of partially methylated monosaccharides and other [open quotes]minor[close quotes] saccharides. The neutral monosaccharides present in mangrove paleosoils are for a substantial part derived from microorganisms. 22 refs., 4 figs., 4 tabs.« less
D'souza, Yvonne B; Jones, Carolyn J P; Short, Colin D; Roberts, Ian S D; Bonshek, Richard E
2009-04-01
Drusen are a feature of age-related macular degeneration (AMD). Lesions similar in appearance to drusen are also found in the fundi of patients with membranoproliferative glomerulonephritis type II (dense deposit disease, DDD). The lamina densa of the glomerular basement membrane, in DDD, is transformed into an electron-dense structure by deposition of microscopically homogeneous material. Our study sought to compare the saccharide composition of drusen and dense deposits in the formalin-fixed, paraffin-embedded tissue from the eye and kidney. Six eye specimens were obtained from patients diagnosed with AMD but another eye was obtained from a patient with partial lipodystrophy, who died after renal failure presumably because of DDD. The kidney specimens were from three biopsy-proven cases of DDD. Glycosylation patterns were measured by the binding of 19 biotinylated lectins before and after neuraminidase pre-treatment. High mannose, bi/tri-antennary non-bisected and bisected complex N-glycan, N-acetyl glucosamine, galactose, and sialic acid residues were found in both drusen and dense deposits. Treatment with neuraminidase exposed subterminal galactose in both sites and sparse N-acetyl galactosamine residues in drusen alone. Our study found similar pathologic oligosaccharide structures in the eye and kidney, suggesting that drusen may be a common end result of retinal and glomerular disease.
Xing, Xiaohui; Cui, Steve W; Nie, Shaoping; Phillips, Glyn O; Goff, H Douglas; Wang, Qi
2015-03-06
Main objective of this study was to investigate the detailed structural information about O-acetylated sugar residues in Dendronan(®). A water solution (2%, w/w) of Dendronan(®) was treated with endo-β-mannanase to produce oligosaccharides rich in O-acetylated sugar residues. The oligosaccharides were partly recovered by ethanol precipitation (70%, w/w). The recovered sample (designated Hydrolyzed Dendrobium officinale Polysaccharide, HDOP) had a yield of 24.7% based on the dry weight of Dendronan(®) and was highly O-acetylated. A D2O solution of HDOP (6%, w/w) generated strong signals in (1)H, (13)C, 2D (1)H-(1)H COSY, 2D (1)H-(1)H TOCSY, 2D (1)H-(1)H NOESY, 2D (1)H-(13)C HMQC, and 2D (1)H-(13)C HMBC NMR spectra. Results of NMR analyses showed that the majority of O-acetylated mannoses were mono-substituted with acetyl groups at O-2 or O-3 position. There were small amounts of mannose residues with di-O-acetyl substitution at both O-2 and O-3 positions. Minor levels of mannoses with 6-O-acetyl, 2,6-di-O-acetyl, and 3,6-di-O-acetyl substitutions were also identified. Much information about sugar residue sequence was extracted from 2D (1)H-(13)C HMBC and 2D (1)H-(1)H NOESY spectra. (1)J(C-H) coupling constants of major sugar residues were obtained. Evidences for the existence of branches or O-acetylated glucoses in HDOP were not found. The major structure of Dendronan(®) is shown as follows: [Formula: see text] M: β-D-mannopyranose; G: β-D-glucopyranose; a: O-acetyl group. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Regional differences in lectin binding patterns of vestibular hair cells
NASA Technical Reports Server (NTRS)
Baird, Richard A.; Schuff, N. R.; Bancroft, J.
1994-01-01
Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not stain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type 1 hair cells while labeling, as in the bullfrog, Type 2 hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.
Site-Specific N-Glycosylation of Recombinant Pentameric and Hexameric Human IgM
NASA Astrophysics Data System (ADS)
Moh, Edward S. X.; Lin, Chi-Hung; Thaysen-Andersen, Morten; Packer, Nicolle H.
2016-07-01
Glycosylation is known to play an important role in IgG antibody structure and function. Polymeric IgM, the largest known antibody in humans, displays five potential N-glycosylation sites on each heavy chain monomer. IgM can exist as a pentamer with a connecting singly N-glycosylated J-chain (with a total of 51 glycosylation sites) or as a hexamer (60 glycosylation sites). In this study, the N-glycosylation of recombinant pentameric and hexameric IgM produced by the same human cell type and culture conditions was site-specifically profiled by RP-LC-CID/ETD-MS/MS using HILIC-enriched tryptic and GluC glycopeptides. The occupancy of all putative N-glycosylation sites on the pentameric and hexameric IgM were able to be determined. Distinct glycosylation differences were observed between each of the five N-linked sites on the IgM heavy chains. While Asn171, Asn332, and Asn395 all had predominantly complex type glycans, differences in glycan branching and sialylation were observed between the sites. Asn563, a high mannose-rich glycosylation site that locates in the center of the IgM polymer, was only approximately 60% occupied in both the pentameric and hexameric IgM forms, with a difference in relative abundance of the glycan structures between the pentamer and hexamer. This study highlights the information obtained by characterization of the site-heterogeneity of a highly glycosylated protein of high molecular mass with quaternary structure, revealing differences that would not be seen by global glycan or deglycosylated peptide profiling.
Zhang, Mengmeng; Wu, Wenjia; Ren, Yao; Li, Xiaofeng; Tang, Yuqian; Min, Tian; Lai, Furao; Wu, Hui
2017-02-15
In our previous study, three novel polysaccharides, named MC-1, MC-2, and MC-3, were separated from the roots of maca (Lepidium meyenii), which is a food source from the Andes region. The structural information and immunomodulatory activity of MC-1 were then investigated. The structure and activity of MC-2 are still unknown. In this study, structural characterization revealed that MC-2 has an average molecular weight of 9.83 kDa and is composed of arabinose (20.9%), mannose (4.5%), glucose (71.9%), and galactose (2.7%). The main linkage types of MC-2 were proven to be (1→5)-α-l-Ara, (1→3)-α-l-Man, (1→)-α-d-Glc, (1→4)-α-d-Glc, (1→6)-α-d-Glc, and (1→6)-β-d-Gal by methylation and NMR analyses. Congo red assay showed that MC-2 possesses a triple-helix conformation. Immunostimulating assays indicated that MC-2 could induce M1 polarization of original macrophages and convert M2 macrophages into M1 phenotype. Although MC-2 could not shift M1 macrophages into M2, it could still inhibit inflammatory reactions induced by lipopolysaccharide. Furthermore, Toll-like receptor 2, tTll-like receptor 4, complement receptor 3, and mannose receptor were confirmed as the membrane receptors for MC-2 on macrophages. These results indicate that MC-2 could potentially be used toward hypoimmunity and tumor therapies.
Kasanmoentalib, E Soemirien; Valls Seron, Mercedes; Ferwerda, Bart; Tanck, Michael W; Zwinderman, Aeilko H; Baas, Frank; van der Ende, Arie; Brouwer, Matthijs C; van de Beek, Diederik
2017-01-03
Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Fatality rates are substantial, and long-term sequelae develop in about half of survivors. Disease outcome has been related to the severity of the pro-inflammatory response in the subarachnoid space. The complement system, which mediates key inflammatory processes, has been implicated as a modulator of pneumococcal meningitis disease severity in animal studies. We investigated mannose-binding lectin-associated serine protease (MASP-2) levels in cerebrospinal fluid (CSF) samples derived from the diagnostic lumbar puncture, which was available for 307 of 792 pneumococcal meningitis episodes included in our prospective nationwide cohort study (39%), and the association between these levels and clinical outcome. Subsequently, we studied the role of MASP-2 in our experimental pneumococcal meningitis mouse model using Masp2 -/- mice and evaluated the potential of adjuvant treatment with MASP-2-specific monoclonal antibodies in wild-type (WT) mice. MASP-2 levels in cerebrospinal fluid of patients with bacterial meningitis were correlated with poor functional outcome. Consistent with these human data, Masp2-deficient mice with pneumococcal meningitis had lower cytokine levels and increased survival compared to WT mice. Adjuvant treatment with MASP-2-specific monoclonal antibodies led to reduced complement activation and decreased disease severity. MASP-2 contributes to poor disease outcome in human and mice with pneumococcal meningitis. MASP-2-specific monoclonal antibodies can be used to attenuate the inflammatory response in pneumococcal meningitis.
Yao, Wenjun; Peng, Yixing; Du, Mingzhu; Luo, Juan; Zong, Li
2013-08-05
Chitosan (CS) has been extensively used as a protein drug and gene delivery carrier, but its delivery efficiency is unsatisfactory. In this study, a mannose ligand was used to modify CS, which could enhance the delivery efficiency of CS via mannose receptor-mediated endocytosis. A preventative anti-GRP DNA vaccine (pCR3.1-VS-HSP65-TP-GRP6-M2, pGRP) was condensed with mannosylated chitosan (MCS) to form MCS/pGRP nanoparticles. Nanoparticles were intranasally administered in a subcutaneous mice prostate carcinoma model to evaluate the efficacy on inhibition of the growth of tumor cells. The titers of anti-GRP IgG that lasted for 11 weeks were significantly higher than that for administration of CS/pGRP nanoparticles (p < 0.01) and intramuscular administration of a pGRP solution (p < 0.05) to mice. In addition, immunization with MCS/pGRP nanoparticles could suppress the growth of tumor cells. The average tumor weight (0.79 ± 0.30 g) was significantly lower than that in the CS/pGRP nanoparticle group (1.69 ± 0.15 g) (p < 0.01) or that in the pGRP group (1.12 ± 0.37 g) (p < 0.05). Cell binding and cellular uptake results indicated that MCS/pGRP nanoparticles bound with C-type lectin receptors on macrophages. MCS was an efficient targeting gene delivery carrier and could be used in antitumor immunotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawake, Shota; Tajima, Noriaki; Mortimer, Jenny C.
Humans are unable to synthesize L-ascorbic acid (AsA), yet it is required as a cofactor in many critical biochemical reactions. The majority of human dietary AsA is obtained from plants. In Arabidopsis thaliana, a GDP-mannose pyrophosphorylase (GMPP), VITAMIN C DEFECTIVE1 (VTC1), catalyzes a rate-limiting step in AsA synthesis: the formation of GDP-Man. In this study, we identified two nucleotide sugar pyrophosphorylase-like proteins, KONJAC1 (KJC1) and KJC2, which stimulate the activity of VTC1. The kjc1kjc2 double mutant exhibited severe dwarfism, indicating that KJC proteins are important for growth and development. The kjc1 mutation reduced GMPP activity to 10% of wild-type levels,more » leading to a 60% reduction in AsA levels. On the contrary, overexpression of KJC1 significantly increased GMPP activity. The kjc1 and kjc1kjc2 mutants also exhibited significantly reduced levels of glucomannan, which is also synthesized from GDP-Man. Recombinant KJC1 and KJC2 enhanced the GMPP activity of recombinant VTC1 in vitro, while KJCs did not show GMPP activity. Yeast two-hybrid assays suggested that the stimulation of GMPP activity occurs via interaction of KJCs with VTC1. These results suggest that KJCs are key factors for the generation of GDP-Man and affect AsA level and glucomannan accumulation through the stimulation of VTC1 GMPP activity.« less
Sawake, Shota; Tajima, Noriaki; Lao, Jeemeng; Ishikawa, Toshiki; Yu, Xiaolan; Yamanashi, Yukiko; Yoshimi, Yoshihisa; Kawai-Yamada, Maki
2015-01-01
Humans are unable to synthesize l-ascorbic acid (AsA), yet it is required as a cofactor in many critical biochemical reactions. The majority of human dietary AsA is obtained from plants. In Arabidopsis thaliana, a GDP-mannose pyrophosphorylase (GMPP), VITAMIN C DEFECTIVE1 (VTC1), catalyzes a rate-limiting step in AsA synthesis: the formation of GDP-Man. In this study, we identified two nucleotide sugar pyrophosphorylase-like proteins, KONJAC1 (KJC1) and KJC2, which stimulate the activity of VTC1. The kjc1kjc2 double mutant exhibited severe dwarfism, indicating that KJC proteins are important for growth and development. The kjc1 mutation reduced GMPP activity to 10% of wild-type levels, leading to a 60% reduction in AsA levels. On the contrary, overexpression of KJC1 significantly increased GMPP activity. The kjc1 and kjc1kjc2 mutants also exhibited significantly reduced levels of glucomannan, which is also synthesized from GDP-Man. Recombinant KJC1 and KJC2 enhanced the GMPP activity of recombinant VTC1 in vitro, while KJCs did not show GMPP activity. Yeast two-hybrid assays suggested that the stimulation of GMPP activity occurs via interaction of KJCs with VTC1. These results suggest that KJCs are key factors for the generation of GDP-Man and affect AsA level and glucomannan accumulation through the stimulation of VTC1 GMPP activity. PMID:26672069
Effect of Phosphodiesterase in Regulating the Activity of Lysosomes in the HeLa Cell Line.
Hong, Eun-Seon; Kim, Bit-Na; Kim, Yang-Hoon; Min, Jiho
2017-02-28
The transport of lysosomal enzymes into the lysosomes depends on the phosphorylation of their chains and the binding of the phosphorylated residues to mannose-6-phosphate receptors. The efficiency of separation depends more on the phosphodiesterases (PDEs) than on the activity of the phosphorylation of mannose residues and can be determined in vitro. PDEs play important roles in regulation of the activation of lysosomes. The expression of proteins was confirmed by western blotting. All PDE4 series protein expression was reduced in high concentrations of rolipram. As a result of observing the fluorescence intensity after rolipram treatment, the lysosomal enzyme was activated at low concentrations and suppressed at high concentrations. High concentrations of rolipram recovered the original function. Antimicrobial activity was not shown in either 10 or 100 µ concentrations of rolipram in treated HeLa cells in vitro. However, the higher anticancer activity at lower rolipram concentration was shown in lysosomal enzyme treated with 10 µ of rolipram. The anticancer activity was confirmed through cathepsin B and D assay. Tranfection allowed examination of the relationship between PDE4 and lysosomal activity in more detail. Protein expression was confirmed to be reduced. Fluorescence intensity showed decreased activity of lysosomes and ROS in cells transfected with the antisense sequences of PDE4 A, B, C, and D. PDE4A showed anticancer activity, whereas lysosome from cells transfected with the antisense sequences of PDE4 B, C, and D had decreased anticancer activity. These results showed the PDE4 A, B, C, and D are conjunctly related with lysosomal activity.
Pacis, Efren; Yu, Marcella; Autsen, Jennifer; Bayer, Robert; Li, Feng
2011-10-01
The glycosylation profile of therapeutic antibodies is routinely analyzed throughout development to monitor the impact of process parameters and to ensure consistency, efficacy, and safety for clinical and commercial batches of therapeutic products. In this study, unusually high levels of the mannose-5 (Man5) glycoform were observed during the early development of a therapeutic antibody produced from a Chinese hamster ovary (CHO) cell line, model cell line A. Follow up studies indicated that the antibody Man5 level was increased throughout the course of cell culture production as a result of increasing cell culture medium osmolality levels and extending culture duration. With model cell line A, Man5 glycosylation increased more than twofold from 12% to 28% in the fed-batch process through a combination of high basal and feed media osmolality and increased run duration. The osmolality and culture duration effects were also observed for four other CHO antibody producing cell lines by adding NaCl in both basal and feed media and extending the culture duration of the cell culture process. Moreover, reduction of Man5 level from model cell line A was achieved by supplementing MnCl2 at appropriate concentrations. To further understand the role of glycosyltransferases in Man5 level, N-acetylglucosaminyltransferase I GnT-I mRNA levels at different osmolality conditions were measured. It has been hypothesized that specific enzyme activity in the glycosylation pathway could have been altered in this fed-batch process. Copyright © 2011 Wiley Periodicals, Inc.
Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol.
Bura, Renata; Vajzovic, Azra; Doty, Sharon L
2012-07-01
An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.
Villanueva-Suárez, M J; Redondo-Cuenca, A; Rodríguez-Sevilla, M D; de las Heras Martínez, M
2003-09-24
Content and composition of dietary fiber as nonstarch polysaccharides (NSP) was determined in vegetables belonging to different types of edible organs, using GC and HPLC. Samples analyzed were subterranean organs (radish and leek), leaves (celery, swiss chard, and lettuce), stalks (celery, swiss chard, and asparagus), inflorescence (broccoli), and fruits (tomato, green pepper, and marrow). The results indicate that though the monomeric profile is similar in all these samples quantitative differences were found for neutral sugars and uronic acids among samples of the same type of vegetal organ. The NSP values determined using CG method were in good agreement with HPLC method (R(2) = 0.9005). However, arabinose, mannose, and galactose plus rhamnose are more influenced by the analytical method used than the rest of the monomers in nearly all the samples analyzed. Final values of NSP depend on the method used in celery stalks, broccoli, and green pepper.
Mid-infrared spectroscopic analysis of saccharides in aqueous solutions with sodium chloride.
Kanou, Mikihito; Kameoka, Takaharu; Suehara, Ken-Ichiro; Hashimoto, Atsushi
2017-04-01
The infrared spectral characteristics of three different types of disaccharides (trehalose, maltose, and sucrose) and four different types of monosaccharides (glucose, mannose, galactose, and fructose) in aqueous solutions with sodium chloride (NaCl) were determined. The infrared spectra were obtained using the FT-IR/ATR method and the absorption intensities respected the interaction between the saccharide and water with NaCl were determined. This study also focused on not only the glycosidic linkage position and the constituent monosaccharides, but also the concentration of the saccharides and NaCl and found that they have a significant influence on the infrared spectroscopic characterization of the disaccharides in an aqueous solution with NaCl. The absorption intensities representing the interaction between a saccharide and water with NaCl were spectroscopically determined. Additionally, the applications of MIR spectroscopy to obtain information about saccharide-NaCl interactions in foods and biosystems were suggested.
Bush, J M; Ebert, D L; Cardelli, J A
1990-11-15
The importance of N-linked oligosaccharides and their associated modifications in the transport, sorting, and secretion of lysosomal acid phosphatase was investigated using three mutant Dictyostelium cell lines. These mutants synthesize altered N-linked oligosaccharides with the following properties: (i) in strain HL244 carbohydrate side chains lack mannose 6-sulfate residues, (ii) in strain M31 the side chains retain the two alpha-1,3-linked glucose residues resulting in less sulfate and methylphosphate modifications, and (iii) in strain HL243 the nonglucosylated branches are missing three of the outer mannose sugars and the oligosaccharides contain fewer sulfate and phosphate modifications. Lysosomal enzymes in both HL243 and HL244 are also missing a shared epitope termed common antigen-1 (CA-1), which consists in part of mannose 6-sulfate moieties. No increases were observed in the secretion of radiolabeled acid phosphatase or acid phosphatase activity during growth in any of the mutant cell lines, suggesting that the enzyme was correctly sorted to lysosomes. In support of this, Percoll gradient fractionations and indirect immunofluorescence microscopy indicated that acid phosphatase was transported to lysosomes in all cell lines. However, radiolabel pulse chase protocols indicated that newly synthesized acid phosphatase was transported out of the endoplasmic reticulum (ER) and into lysosomes at a two- to threefold slower rate in HL243 and at a sixfold slower rate in M31. The rate of transport of acid phosphatase from the ER to the Golgi was reduced only twofold in M31 as determined by digestion of newly synthesized enzyme with endoglycosidose H. This suggests that certain alterations in carbohydrate structure may only slightly affect transport of the enzyme from the ER to the Golgi but these alterations may greatly delay transport from the Golgi or post-Golgi compartments to lysosomes. Finally all three mutants secreted acid phosphatase at significantly lower rates than the wild-type strain when growing cells were placed in a buffered salt solution (conditions which stimulate the secretion of mature lysosomally localized enzymes). In contrast, alpha-mannosidase was secreted with similar kinetics from the mutant and wild-type strains. Together, these results suggest that the mechanism(s) operating to sort acid phosphatase in Dictyostelium can tolerate a wide range of changes in N-linked oligosaccharides including a reduction in phosphate and the absence of CA-1 and sulfate, while in contrast, these same alterations can profoundly influence the rate of transport of acid phosphatase from the ER and post-ER compartments to lysosomes as well as the secr
A Role for the Mannose-Sensitive Hemagglutinin in Biofilm Formation by Vibrio cholerae El Tor
Watnick, Paula I.; Fullner, Karla Jean; Kolter, Roberto
1999-01-01
While much has been learned regarding the genetic basis of host-pathogen interactions, less is known about the molecular basis of a pathogen’s survival in the environment. Biofilm formation on abiotic surfaces represents a survival strategy utilized by many microbes. Here it is shown that Vibrio cholerae El Tor does not use the virulence-associated toxin-coregulated pilus to form biofilms on borosilicate but rather uses the mannose-sensitive hemagglutinin (MSHA) pilus, which plays no role in pathogenicity. In contrast, attachment of V. cholerae to chitin is shown to be independent of the MSHA pilus, suggesting divergent pathways for biofilm formation on nutritive and nonnutritive abiotic surfaces. PMID:10348878
Synthesis of β-C-Glycopyranosyl Aldehydes and 2,6-Anhydro-heptitols.
Khatri, Vinod; Kumar, Amit; Singh, Balram; Malhotra, Shashwat; Prasad, Ashok K
2015-11-06
A convenient route has been developed for the diastereoselective synthesis of β-C-glycopyranosyl aldehydes from D-glucose, D-mannose, and D-galactose. The key step in the synthesis of C-glycosyl aldehydes is the aryl driven reductive dehydration on 1-phenyl-2-(2',3',4',6'-tetra-O-acetyl-β-D-glycopyranosyl)ethanone to afford alkenes, which on oxidation afford the desired compounds in good yield. β-C-Glycopyranosyl aldehydes have been converted to 2,6-anhydro-heptitols in quantitative yields. The 2,6-anhydro-heptitols derived from D-mannose and D-galactose are enantiomeric and are useful linkers for the synthesis of macrocycles/amphiphiles of complementary chirality.
Affinity entrapment of oligosaccharides and glycopeptides using free lectin solution.
Yodoshi, Masahiro; Oyama, Takehiro; Masaki, Ken; Kakehi, Kazuaki; Hayakawa, Takao; Suzuki, Shigeo
2011-01-01
Two procedures were proposed for the specific recovery of fluorescent derivatives of glycoprotein-derived oligosaccharides and tryptic glycopeptides using certain plant lectins. The first was based on the salting out of oligosaccharide-lectin conjugates with ammonium sulfate. Oligosaccharides specifically bound to lectins were recovered free from lectins using ethanol precipitation after dissolution in water. This method enabled group separation of 2-aminopyridine-labeled oligosaccharides derived from ovalbumin to galacto-oligosaccharides and agalacto-oligosaccharides by Ricinus communis agglutinin, and to high mannose- and hybrid-type oligosaccharides by wheat-germ agglutinin. Fractional precipitation based on differences in affinity for concanavalin A was accomplished by adding an appropriate concentration of methyl α-mannoside as an inhibitor. In the second method, tryptic digests of glycoproteins were mixed with a lectin solution, and the glycopeptide-lectin conjugates were specifically trapped on a centrifugal ultrafiltration membrane with cut-off of 10 kD. Trapped glycopeptides, as retentates, were passed through membranes by resuspension in diluted acid. This method is particularly useful for the enrichment of glycopeptides in protease digestion mixtures for glycosylation analyses by liquid chromatography-mass spectrometry.
The Cell-Surface N-Glycome of Human Embryonic Stem Cells and Differentiated Hepatic Cells thereof.
Montacir, Houda; Freyer, Nora; Knöspel, Fanny; Urbaniak, Thomas; Dedova, Tereza; Berger, Markus; Damm, Georg; Tauber, Rudolf; Zeilinger, Katrin; Blanchard, Véronique
2017-07-04
Human embryonic stem cells (hESCs) are pluripotent stem cells that offer a wide range of applications in regenerative medicine. In addition, they have been proposed as an appropriate alternative source of hepatocytes. In this work, hESCs were differentiated into definitive endodermal cells (DECs), followed by maturation into hepatocyte-like cells (HLCs). Their cell-surface N-glycome was profiled and also compared with that of primary human hepatocytes (PHHs). Undifferentiated hESCs contained large amounts of high-mannose N-glycans. In contrast, complex-type N-glycans such as asialylated or monosialylated biantennary and triantennary N-glycans were dominant in HLCs, and fully galactosylated structures were significantly more abundant than in undifferentiated hESCs. The cell-surface N-glycosylation of PHHs was more biologically processed than that of HLCs, with bisialylated biantennary and trisialylated triantennary structures predominant. This is the first report of the cell surface N-glycome of PHHs and of HLCs being directly generated from hESCs without embryoid body formation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Infrared spectroscopy as a screening technique for colitis
NASA Astrophysics Data System (ADS)
Titus, Jitto; Ghimire, Hemendra; Viennois, Emilie; Merlin, Didier; Perera, A. G. Unil
2017-05-01
There remains a great need for diagnosis of inflammatory bowel disease (IBD), for which the current technique, colonoscopy, is not cost-effective and presents a non-negligible risk for complications. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy is a new screening technique to evaluate colitis. Comparing infrared spectra of sera to study the differences between them can prove challenging due to the complexity of its biological constituents giving rise to a plethora of vibrational modes. Overcoming these inherent infrared spectral analysis difficulties involving highly overlapping absorbance peaks and the analysis of the data by curve fitting to improve the resolution is discussed. The proposed technique uses colitic and normal wild type mice dried serum to obtain ATR/FTIR spectra to effectively differentiate colitic mice from normal mice. Using this method, Amide I group frequency (specifically, alpha helix to beta sheet ratio of the protein secondary structure) was identified as disease associated spectral signature in addition to the previously reported glucose and mannose signatures in sera of chronic and acute mice models of colitis. Hence, this technique will be able to identify changes in the sera due to various diseases.
Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies
NASA Astrophysics Data System (ADS)
Shivatare, Sachin S.; Chang, Shih-Huang; Tsai, Tsung-I.; Tseng, Susan Yu; Shivatare, Vidya S.; Lin, Yih-Shyan; Cheng, Yang-Yu; Ren, Chien-Tai; Lee, Chang-Chun David; Pawar, Sujeet; Tsai, Charng-Sheng; Shih, Hao-Wei; Zeng, Yi-Fang; Liang, Chi-Hui; Kwong, Peter D.; Burton, Dennis R.; Wu, Chung-Yi; Wong, Chi-Huey
2016-04-01
A new class of broadly neutralizing antibodies (bNAbs) from HIV donors has been reported to target the glycans on gp120—a glycoprotein found on the surface of the virus envelope—thus renewing hope of developing carbohydrate-based HIV vaccines. However, the version of gp120 used in previous studies was not from human T cells and so the glycosylation pattern could be somewhat different to that found in the native system. Moreover, some antibodies recognized two different glycans simultaneously and this cannot be detected with the commonly used glycan microarrays on glass slides. Here, we have developed a glycan microarray on an aluminium-oxide-coated glass slide containing a diverse set of glycans, including homo- and mixed N-glycans (high-mannose, hybrid and complex types) that were prepared by modular chemo-enzymatic methods to detect the presence of hetero-glycan binding behaviours. This new approach allows rapid screening and identification of optimal glycans recognized by neutralizing antibodies, and could speed up the development of HIV-1 vaccines targeting cell surface glycans.
Comparison of N- and O-linked glycosylation patterns of ebolavirus glycoproteins.
Collar, Amanda L; Clarke, Elizabeth C; Anaya, Eduardo; Merrill, Denise; Yarborough, Sarah; Anthony, Scott M; Kuhn, Jens H; Merle, Christine; Theisen, Manfred; Bradfute, Steven B
2017-02-01
Ebolaviruses are emerging pathogens that cause severe and often fatal viral hemorrhagic fevers. Four distinct ebolaviruses are known to cause Ebola virus disease in humans. The ebolavirus envelope glycoprotein (GP 1,2 ) is heavily glycosylated, but the precise glycosylation patterns of ebolaviruses are largely unknown. Here we demonstrate that approximately 50 different N-glycan structures are present in GP 1,2 derived from the four pathogenic ebolaviruses, including high mannose, hybrid, and bi-, tri-, and tetra-antennary complex glycans with and without fucose and sialic acid. The overall N-glycan composition is similar between the different ebolavirus GP 1,2 s. In contrast, the amount and type of O-glycan structures varies widely between ebolavirus GP 1,2 s. Notably, this O-glycan dissimilarity is also present between two variants of Ebola virus, the original Yambuku variant and the Makona variant responsible for the most recent Western African epidemic. The data presented here should serve as the foundation for future ebolaviral entry and immunogenicity studies. Copyright © 2016 Elsevier Inc. All rights reserved.
1995-01-01
Oligosaccharyltransferase mediates the transfer of a preassembled high mannose oligosaccharide from a lipid-linked oligosaccharide donor to consensus glycosylation acceptor sites in newly synthesized proteins in the lumen of the rough endoplasmic reticulum. The Saccharomyces cerevisiae oligosaccharyltransferase is an oligomeric complex composed of six nonidentical subunits (alpha-zeta), two of which are glycoproteins (alpha and beta). The beta and delta subunits of the oligosaccharyltransferase are encoded by the WBP1 and SWP1 genes. Here we describe the functional characterization of the OST1 gene that encodes the alpha subunit of the oligosaccharyltransferase. Protein sequence analysis revealed a significant sequence identity between the Saccharomyces cerevisiae Ost1 protein and ribophorin I, a previously identified subunit of the mammalian oligosaccharyltransferase. A disruption of the OST1 locus was not tolerated in haploid yeast showing that expression of the Ost1 protein is essential for vegetative growth of yeast. An analysis of a series of conditional ost1 mutants demonstrated that defects in the Ost1 protein cause pleiotropic underglycosylation of soluble and membrane-bound glycoproteins at both the permissive and restrictive growth temperatures. Microsomal membranes isolated from ost1 mutant yeast showed marked reductions in the in vitro transfer of high mannose oligosaccharide from exogenous lipid-linked oligosaccharide to a glycosylation site acceptor tripeptide. Microsomal membranes isolated from the ost1 mutants contained elevated amounts of the Kar2 stress-response protein. PMID:7860628
Klostergaard, Anja; Steffensen, Rudi; Møller, Jens K; Peterslund, Niels; Juhl-Christensen, Caroline; Mølle, Ingolf
2010-07-01
Infections after chemotherapy often cause significant morbidity in patients with acute myeloid leukaemia (AML). Chitotriosidase (CHIT) and mannose-binding lectin (MBL) are part of the innate immune system. Polymorphism in the CHIT-coding gene (CHIT1) may be associated with Gram-negative sepsis in children with AML, and polymorphism in the MBL-coding gene (MBL2) seems to modify the risk of infections in several patient groups. The purpose of this study was to investigate the possible associations between polymorphisms in CHIT1, MBL2 and sepsis in adult patients treated with high-dose chemotherapy for AML. We included 190 patients treated with 526 cycles of chemotherapy. The follow-up period was 6 months from the diagnosis of AML. Prophylactic antibiotics were not used. We identified 604 febrile episodes with 246 episodes of sepsis. Thirty-two patients (17%) either died from infection or infection was a major concomitant factor for death. No significant associations between CHIT1 polymorphism and sepsis (P = 0.85) or death caused by sepsis (P = 0.14) were found. Furthermore, no significant associations between MBL2 polymorphism and sepsis (P = 0.76) or death caused by sepsis (P = 0.24) were observed. The severe and long-lasting neutropenia and mucositis after chemotherapy may explain why the MBL system does not protect against sepsis in patients with AML. Replacement therapy with recombinant MBL is not likely to decrease the risk of sepsis in patients with AML.
Shia, Michael A.; Lodish, Harvey F.
1989-01-01
Two related polypeptides, H1 and H2, comprise the human asialoglycoprotein receptor (ASGP-R). Stable lines of murine NIH 3T3 fibroblasts expressing H1 alone or H2 alone do not bind or internalize the ligand asialoorosomucoid (ASOR), which contains triantennary oligosaccharides. In contrast, cells expressing H1 and H2 together bind and degrade ASOR with properties indistinguishable from those of the ASPG-R in human hepatoma HepG2 cells. Whether or not H2 is coexpressed, H1 is synthesized as a 40-kDa precursor bearing high-mannose oligosaccharides, processed to its mature 46-kDa form, and transported to the cell surface. In cells expressing only H1, homodimers and -trimers of H1 are formed. In contrast, when expressed in 3T3 cells without H1, H2 is synthesized as its 43-kDa precursor, bearing high-mannose oligosaccharides, but is rapidly degraded. When H1 and H2 are coexpressed in the same cell, the H1 polypeptide “rescues” the H2 polypeptide; H2 is processed to its characteristic 50-kDa mature form and is transported to the surface. We conclude that the human ASGP-R is a multichain heterooligomer, probably a trimer of H1 molecules in noncovalent association with one, two, or three H2 molecules, and that the two polypeptides normally interact early in biosynthesis. Images PMID:2919187
Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis
Pinheiro, Marina; Ribeiro, Ricardo; Vieira, Alexandre; Andrade, Fernanda; Reis, Salette
2016-01-01
This work aimed to design, develop, and characterize a lipid nanocarrier system for the selective delivery of rifabutin (RFB) to alveolar macrophages. Lipid nanoparticles, specifically nanostructured lipid carriers (NLC), were synthetized by the high-shear homogenization and ultrasonication techniques. These nanoparticles were designed to exhibit both passive and active targeting strategies to be efficiently internalized by the alveolar macrophages, traffic to the acidified phagosomes and phagolysosomes, and release bactericidal concentrations of the antituberculosis drug intracellularly. NLC that could entrap RFB were prepared, characterized, and further functionalized with mannose. Particles’ diameter, zeta potential, morphology, drug% entrapping efficiency, and drug release kinetics were evaluated. The mannose coating process was confirmed by Fourier transform infrared. Further, the cytotoxicity of the formulations was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay in A549, Calu-3, and Raw 264.7 cells. The diameter of NLC formulations was found to be in the range of 175–213 nm, and drug entrapping efficiency was found to be above 80%. In addition, high storage stability for the formulations was expected since they maintained the initial characteristics for 6 months. Moreover, the drug release was pH-sensitive, with a faster drug release at acidic pH than at neutral pH. These results pose a strong argument that the developed nanocarrier can be explored as a promising carrier for safer and more efficient management of tuberculosis by exploiting the pulmonary route of administration. PMID:27536067
Sato, Yuichiro; Morimoto, Kinjiro; Kubo, Takanori; Sakaguchi, Takemasa; Nishizono, Akira; Hirayama, Makoto; Hori, Kanji
2015-01-01
Lectin sensitivity of the recent pandemic influenza A virus (H1N1-2009) was screened for 12 lectins with various carbohydrate specificity by a neutral red dye uptake assay with MDCK cells. Among them, a high mannose (HM)-binding anti-HIV lectin, ESA-2 from the red alga Eucheuma serra, showed the highest inhibition against infection with an EC50 of 12.4 nM. Moreover, ESA-2 exhibited a wide range of antiviral spectrum against various influenza strains with EC50s of pico molar to low nanomolar levels. Besides ESA-2, HM-binding plant lectin ConA, fucose-binding lectins such as fungal AOL from Aspergillus oryzae and AAL from Aleuria aurantia were active against H1N1-2009, but the potency of inhibition was of less magnitude compared with ESA-2. Direct interaction between ESA-2 and a viral envelope glycoprotein, hemagglutinin (HA), was demonstrated by ELISA assay. This interaction was effectively suppressed by glycoproteins bearing HM-glycans, indicating that ESA-2 binds to the HA of influenza virus through HM-glycans. Upon treatment with ESA-2, no viral antigens were detected in the host cells, indicating that ESA-2 inhibited the initial steps of virus entry into the cells. ESA-2 would thus be useful as a novel microbicide to prevent penetration of viruses such as HIV and influenza viruses to the host cells. PMID:26035023
Glycoconjugate sugar residues in the chick embryo developing lung: a lectin histochemical study.
Gheri, G; Sgambati, E; Bryk, S G
2000-03-01
A lectin histochemical study was performed to investigate the distribution and changes of the oligosaccharidic component of the glycoconjugates in the lung of chick embryos, of 1-day-old chick, and of the adult animal. For this purpose, a battery of seven horseradish peroxidase-conjugated lectins (PNA, SBA, DBA, WGA, Con A, LTA, and UEA I) were employed. During the first phase of parabronchi and atria formation, D-galactose-(beta1-->3)-N-acetyl-D-galactosamine, beta-N-acetyl-D-galactosamine, D-glucosamine, alpha-D-mannose, and sialic acid, present at the level of the surface and of cytoplasmic granules of the lining epithelial cells, seem to play a role in regulating morphogenetic phenomena. In the subsequent phases, the parabronchial lumen and the atrial cavities were characterized by the presence of lectin-reactive material rich in terminal D-galactose-(beta1-->3)-N-acetyl-D-galactosamine, beta-N-acetyl-D-galactosamine, D-glucosamine and alpha-D-mannose. From day 18 onwards and immediately after hatching, the free border of the cells lining the air capillaries was characterized by the presence of beta-N-acetyl-D-galactosamine and alpha-D-mannose. The appearance of these sugar residues was concomitant with the beginning of respiratory activity. Copyright 2000 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaehs, Philipp; Weidinger, Petra; Probst, Olivia C.
2008-10-01
Cellular repressor of E1A-stimulated genes (CREG) has been reported to be a secretory glycoprotein implicated in cellular growth and differentiation. We now show that CREG is predominantly localized within intracellular compartments. Intracellular CREG was found to lack an N-terminal peptide present in the secreted form of the protein. In contrast to normal cells, CREG is largely secreted by fibroblasts missing both mannose 6-phosphate receptors. This is not observed in cells lacking only one of them. Mass spectrometric analysis of recombinant CREG revealed that the protein contains phosphorylated oligosaccharides at either of its two N-glycosylation sites. Cellular CREG was found tomore » cosediment with lysosomal markers upon subcellular fractionation by density-gradient centrifugation. In fibroblasts expressing a CREG-GFP fusion construct, the heterologous protein was detected in compartments containing lysosomal proteins. Immunolocalization of endogenous CREG confirmed that intracellular CREG is localized in lysosomes. Proteolytic processing of intracellular CREG involves the action of lysosomal cysteine proteinases. These results establish that CREG is a lysosomal protein that undergoes proteolytic maturation in the course of its biosynthesis, carries the mannose 6-phosphate recognition marker and depends on the interaction with mannose 6-phosphate receptors for efficient delivery to lysosomes.« less
Guan, Jia; Yang, Feng-Qing; Li, Shao-Ping
2010-06-11
Free and polymeric carbohydrates in Cordyceps, a valued edible mushroom and well-known traditional Chinese medicine, were determined using stepwise pressurized liquid extraction (PLE) extraction and GC-MS. Based on the optimized PLE conditions, acid hydrolysis and derivatization, ten monosaccharides, namely rhamnose, ribose, arabinose, xylose, mannose, glucose, galactose, mannitol, fructose and sorbose in 13 samples of natural and cultured Cordyceps were qualitatively and quantitatively analyzed and compared with myo-inositol hexaacetate as internal standard. The results showed that natural C. sinensis contained more than 7.99% free mannitol and a small amount of glucose, while its polysaccharides were usually composed of mannose, glucose and galactose with a molar ratio of 1.00:16.61-3.82:1.60-1.28. However, mannitol in cultured C. sinensis and cultured C. militaris were less than 5.83%, and free glucose was only detected in a few samples, while their polysaccharides were mainly composed of mannose, glucose and galactose with molar ratios of 1.00:3.01-1.09:3.30-1.05 and 1.00:2.86-1.28:1.07-0.78, respectively. Natural and cultured Cordyceps could be discriminated by hierarchical clustering analysis based on its free carbohydrate contents.
Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination.
Fievez, Virginie; Plapied, Laurence; des Rieux, Anne; Pourcelle, Vincent; Freichels, Hélène; Wascotte, Valentine; Vanderhaeghen, Marie-Lyse; Jerôme, Christine; Vanderplasschen, Alain; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique
2009-09-01
The presence of RGD on nanoparticles allows the targeting of beta1 integrins at the apical surface of human M cells and the enhancement of an immune response after oral immunization. To check the hypothesis that non-peptidic ligands targeting intestinal M cells or APCs would be more efficient for oral immunization than RGD, novel non-peptidic and peptidic analogs (RGD peptidomimitic (RGDp), LDV derivative (LDVd) and LDV peptidomimetic (LDVp)) as well as mannose were grafted on the PEG chain of PCL-PEG and incorporated in PLGA-based nanoparticles. RGD and RGDp significantly increased the transport of nanoparticles across an in vitro model of human M cells as compared to enterocytes. RGD, LDVp, LDVd and mannose enhanced nanoparticle uptake by macrophages in vitro. The intraduodenal immunization with RGDp-, LDVd- or mannose-labeled nanoparticles elicited a higher production of IgG antibodies than the intramuscular injection of free ovalbumin or intraduodenal administration of either non-targeted or RGD-nanoparticles. Targeted formulations were also able to induce a cellular immune response. In conclusion, the in vitro transport of nanoparticles, uptake by macrophages and the immune response were positively influenced by the presence of ligands at the surface of nanoparticles. These targeted-nanoparticles could thus represent a promising delivery system for oral immunization.
Concordant gene regulation related to perturbations of three GDP-mannose-related genes.
Törmä, Anssi; Pitkänen, Juha-Pekka; Huopaniemi, Laura; Mattila, Pirkko; Renkonen, Risto
2009-02-01
Glycosylation of proteins is one of the most crucial post-translational modifications. In order to access system-level and state-dependent data related to the regulation of glycosylation events, we cultivated yeast cell strains each harboring a selected conditional knockdown construct for a gene (either SEC53, VRG4 or DPM1) related to GDP-mannose synthesis or its utilization in glycan biosynthesis. In order to carry this out efficiently, we developed automated sampling from bioreactor cultivations, a collection of in silico workflows for data analysis as well as their integration into a large data warehouse. Using the above-mentioned approaches, we could show that conditional knocking down of transcripts related to GDP-mannose synthesis or transportation led to altered levels of over 300 transcripts. These transcripts and their corresponding proteins were characterized by their gene ontology (GO) annotations, and their putative transcriptional regulation was analyzed. Furthermore, novel pathways were generated indicating interactions between GO categories with common proteins, putative transcriptional regulators of such induced GO categories, and the large protein-protein interaction network among the proteins whose transcripts indicated altered expression levels. When these results are always added to an ever-expanding data warehouse as annotations, they will incrementally increase the knowledge of biological systems.
SP-A binding sites on bovine alveolar macrophages.
Plaga, S; Plattner, H; Schlepper-Schaefer, J
1998-11-25
Surfactant protein A (SP-A) binding to bovine alveolar macrophages was examined in order to characterize SP-A binding proteins on the cell surface and to isolate putative receptors from these cells that could be obtained in large amounts. Human SP-A, unlabeled or labeled with gold particles, was bound to freshly isolated macrophages and analyzed with ELISA or the transmission electron microscope. Binding of SP-A was inhibited by Ca2+ chelation, by an excess of unlabeled SP-A, or by the presence of 20 mg/ml mannan. We conclude that bovine alveolar macrophages expose binding sites for SP-A that are specific and that depend on Ca2+ and on mannose residues. For isolation of SP-A receptors with homologous SP-A as ligand we isolated SP-A from bovine lung lavage. SDS-PAGE analysis of the purified SP-A showed a protein of 32-36 kDa. Functional integrity of the protein was demonstrated. Bovine SP-A bound to Dynabeads was used to isolate SP-A binding proteins. From the fractionated and blotted proteins of the receptor preparation two proteins bound SP-A in a Ca2+-dependent manner, a 40-kDa protein showing mannose dependency and a 210-kDa protein, showing no mannose sensitivity. Copyright 1998 Academic Press.
Intracellular Mannose Binding Lectin Mediates Subcellular Trafficking of HIV-1 gp120 in Neurons
Teodorof, C; Divakar, S; Soontornniyomkij, B; Achim, CL; Kaul, M; Singh, KK
2014-01-01
Human immunodeficiency virus -1 (HIV-1) enters the brain early during infection and leads to severe neuronal damage and central nervous system impairment. HIV-1 envelope glycoprotein 120 (gp120), a neurotoxin, undergoes intracellular trafficking and transport across neurons; however mechanisms of gp120 trafficking in neurons are unclear. Our results show that mannose binding lectin (MBL) that binds to the N-linked mannose residues on gp120, participates in intravesicular packaging of gp120 in neuronal subcellular organelles and also in subcellular trafficking of these vesicles in neuronal cells. Perinuclear MBL:gp120 vesicular complexes were observed and MBL facilitated the subcellular trafficking of gp120 via the endoplasmic reticulum (ER) and Golgi vesicles. The functional carbohydrate recognition domain of MBL was required for perinuclear organization, distribution and subcellular trafficking of MBL:gp120 vesicular complexes. Nocodazole, an agent that depolymerizes the microtubule network, abolished the trafficking of MBL:gp120 vesicles, suggesting that these vesicular complexes were transported along the microtubule network. Live cell imaging confirmed the association of the MBL:gp120 complexes with dynamic subcellular vesicles that underwent trafficking in neuronal soma and along the neurites. Thus, our findings suggest that intracellular MBL mediates subcellular trafficking and transport of viral glycoproteins in a microtubule-dependent mechanism in the neurons. PMID:24825317
Intracellular mannose binding lectin mediates subcellular trafficking of HIV-1 gp120 in neurons.
Teodorof, C; Divakar, S; Soontornniyomkij, B; Achim, C L; Kaul, M; Singh, K K
2014-09-01
Human immunodeficiency virus-1 (HIV-1) enters the brain early during infection and leads to severe neuronal damage and central nervous system impairment. HIV-1 envelope glycoprotein 120 (gp120), a neurotoxin, undergoes intracellular trafficking and transport across neurons; however mechanisms of gp120 trafficking in neurons are unclear. Our results show that mannose binding lectin (MBL) that binds to the N-linked mannose residues on gp120, participates in intravesicular packaging of gp120 in neuronal subcellular organelles and also in subcellular trafficking of these vesicles in neuronal cells. Perinuclear MBL:gp120 vesicular complexes were observed and MBL facilitated the subcellular trafficking of gp120 via the endoplasmic reticulum (ER) and Golgi vesicles. The functional carbohydrate recognition domain of MBL was required for perinuclear organization, distribution and subcellular trafficking of MBL:gp120 vesicular complexes. Nocodazole, an agent that depolymerizes the microtubule network, abolished the trafficking of MBL:gp120 vesicles, suggesting that these vesicular complexes were transported along the microtubule network. Live cell imaging confirmed the association of the MBL:gp120 complexes with dynamic subcellular vesicles that underwent trafficking in neuronal soma and along the neurites. Thus, our findings suggest that intracellular MBL mediates subcellular trafficking and transport of viral glycoproteins in a microtubule-dependent mechanism in the neurons. Published by Elsevier Inc.
One-pot synthesis of GDP-l-fucose by a four-enzyme cascade expressed in Lactococcus lactis.
Li, Ling; Kim, Seul-Ah; Heo, Ji Eun; Kim, Tae-Jip; Seo, Jin-Ho; Han, Nam Soo
2017-12-20
GDP-l-fucose is an l-fucose donor to synthesize fucosylated compounds such as human milk oligosaccharides or Lewis antigen. In this study, we used Lactococcus lactis subsp. cremoris NZ9000 to express 4 enzymes, ManB, ManC, Gmd, and WcaG and produced GDP-l-fucose by using one-pot synthesis method with mannose-6-phosphate as substrate and the enzymes as biocatalyst. For preparation of enzyme mixture, 4 genes (manB, manC, gmd, and wcaG) cloned from Escherichia coli were transformed into L. lactis strains using pNZ8008 and the recombinant cell lysates were obtained after cultivation. When mannose-6-phosphate was used as the substrate, the consecutive reactions with ManB, ManC, Gmd, and WcaG resulted in the successful production of GDP-l-fucose (0.13mM). When GDP-d-mannose was used as the substrate, it was entirely converted to GDP-l-fucose (0.2mM; 0.12g/L) via 2 enzymatic reactions mediated by Gmd and WcaG. This is the first report of GDP-l-fucose production by using multiple enzymes expressed in lactic acid bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.
Paixão, Laura; Oliveira, Joana; Veríssimo, André; Vinga, Susana; Lourenço, Eva C.; Ventura, M. Rita; Kjos, Morten; Veening, Jan-Willem; Fernandes, Vitor E.; Andrew, Peter W.; Yesilkaya, Hasan; Neves, Ana Rute
2015-01-01
The human pathogen Streptococcus pneumoniae is a strictly fermentative organism that relies on glycolytic metabolism to obtain energy. In the human nasopharynx S. pneumoniae encounters glycoconjugates composed of a variety of monosaccharides, which can potentially be used as nutrients once depolymerized by glycosidases. Therefore, it is reasonable to hypothesise that the pneumococcus would rely on these glycan-derived sugars to grow. Here, we identified the sugar-specific catabolic pathways used by S. pneumoniae during growth on mucin. Transcriptome analysis of cells grown on mucin showed specific upregulation of genes likely to be involved in deglycosylation, transport and catabolism of galactose, mannose and N acetylglucosamine. In contrast to growth on mannose and N-acetylglucosamine, S. pneumoniae grown on galactose re-route their metabolic pathway from homolactic fermentation to a truly mixed acid fermentation regime. By measuring intracellular metabolites, enzymatic activities and mutant analysis, we provide an accurate map of the biochemical pathways for galactose, mannose and N-acetylglucosamine catabolism in S. pneumoniae. Intranasal mouse infection models of pneumococcal colonisation and disease showed that only mutants in galactose catabolic genes were attenuated. Our data pinpoint galactose as a key nutrient for growth in the respiratory tract and highlights the importance of central carbon metabolism for pneumococcal pathogenesis. PMID:25826206
Penn, E J; Hobson, C; Rees, D A; Magee, A I
1987-07-01
Extracts of metabolically labeled cultured epithelial cells have been analyzed by immunoprecipitation followed by SDS-PAGE, using antisera to the major high molecular mass proteins and glycoproteins (greater than 100 kD) from desmosomes of bovine muzzle epidermis. For nonstratifying cells (Madin-Darby canine kidney [MDCK] and Madin-Darby bovine kidney), and A431 cells that have lost the ability to stratify through transformation, and a stratifying cell type (primary human keratinocytes) apparently similar polypeptides were immunoprecipitated with our antisera. These comprised three glycoproteins (DGI, DGII, and DGIII) and one major nonglycosylated protein (DPI). DPII, which has already been characterized by others in stratifying tissues, appeared to be absent or present in greatly reduced amounts in the nonstratifying cell types. The desmosome glycoproteins were further characterized in MDCK cells. Pulse-chase studies showed all three DGs were separate translation products. The two major glycoprotein families (DGI and DGII/III) were both found to be synthesized with co-translational addition of 2-4 high mannose cores later processed into complex type chains. However, they became endo-beta-N-acetylglucosaminidase H resistant at different times (DGII/III being slower). None of the DGs were found to have O-linked oligosaccharides unlike bovine muzzle DGI. Transport to the cell surface was rapid for all glycoproteins (60-120 min) as demonstrated by the rate at which they became sensitive to trypsin in intact cells. This also indicated that they were exposed at the outer cell surface. DGII/III, but not DGI, underwent a proteolytic processing step, losing 10 kD of carbohydrate-free peptide, during transport to the cell surface suggesting a possible regulatory mechanism in desmosome assembly.
Microglial Lectins in Health and Neurological Diseases
Siew, Jian Jing; Chern, Yijuang
2018-01-01
Microglia are the innate sentinels of the central nervous system (CNS) and are responsible for the homeostasis and immune defense of the CNS. Under the influence of the local environment and cell-cell interaction, microglia exhibit a multidimensional and context-dependent phenotypes that can be cytotoxic and neuroprotective. Recent studies suggest that microglia express multitudinous types of lectins, including galectins, Siglecs, mannose-binding lectins (MBLs) and other glycan binding proteins. Because most studies that examine lectins focus on the peripheral system, the functions of lectins have not been critically investigated in the CNS. In addition, the types of brain cells that contribute to the altered levels of lectins present in diseases are often unclear. In this review, we will discuss how galectins, Siglecs, selectins and MBLs contribute to the dynamic functions of microglia. The interacting ligands of these lectins are complex glycoconjugates, which consist of glycoproteins and glycolipids that are expressed on microglia or surrounding cells. The current understanding of the heterogeneity and functions of glycans in the brain is limited. Galectins are a group of pleotropic proteins that recognize both β-galactoside-containing glycans and non- β-galactoside-containing proteins. The function and regulation of galectins have been implicated in immunomodulation, neuroinflammation, apoptosis, phagocytosis and oxidative bursts. Most Siglecs are expressed at a low level on the plasma membrane and bind to sialic acid residues for immunosurveillance and cell-cell communication. Siglecs are classified based on their inhibitory and activatory downstream signaling properties. Inhibitory Siglecs negatively regulate microglia activation upon recognizing the intact sialic acid patterns and vice versa. MBLs are expressed upon infection in cytoplasm and can be secreted in order to recognize molecules containing terminal mannose as an innate immune defense machinery. Most importantly, multiple studies have reported dysregulation of lectins in neurological disorders. Here, we reviewed recent studies on microglial lectins and their functions in CNS health and disease, and suggest that these lectin families are novel, potent therapeutic targets for neurological diseases. PMID:29867350
Bourand, A.; Yebra, M. J.; Boël, G.; Mazé, A.
2013-01-01
Lactobacillus casei strains 64H and BL23, but not ATCC 334, are able to ferment d-ribitol (also called d-adonitol). However, a BL23-derived ptsI mutant lacking enzyme I of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was not able to utilize this pentitol, suggesting that strain BL23 transports and phosphorylates d-ribitol via a PTS. We identified an 11-kb region in the genome sequence of L. casei strain BL23 (LCABL_29160 to LCABL_29270) which is absent from strain ATCC 334 and which contains the genes for a GlpR/IolR-like repressor, the four components of a mannose-type PTS, and six metabolic enzymes potentially involved in d-ribitol metabolism. Deletion of the gene encoding the EIIB component of the presumed ribitol PTS indeed prevented d-ribitol fermentation. In addition, we overexpressed the six catabolic genes, purified the encoded enzymes, and determined the activities of four of them. They encode a d-ribitol-5-phosphate (d-ribitol-5-P) 2-dehydrogenase, a d-ribulose-5-P 3-epimerase, a d-ribose-5-P isomerase, and a d-xylulose-5-P phosphoketolase. In the first catabolic step, the protein d-ribitol-5-P 2-dehydrogenase uses NAD+ to oxidize d-ribitol-5-P formed during PTS-catalyzed transport to d-ribulose-5-P, which, in turn, is converted to d-xylulose-5-P by the enzyme d-ribulose-5-P 3-epimerase. Finally, the resulting d-xylulose-5-P is split by d-xylulose-5-P phosphoketolase in an inorganic phosphate-requiring reaction into acetylphosphate and the glycolytic intermediate d-glyceraldehyde-3-P. The three remaining enzymes, one of which was identified as d-ribose-5-P-isomerase, probably catalyze an alternative ribitol degradation pathway, which might be functional in L. casei strain 64H but not in BL23, because one of the BL23 genes carries a frameshift mutation. PMID:23564164
Rafsanjany, Nasli; Senker, Jandirk; Brandt, Simone; Dobrindt, Ulrich; Hensel, Andreas
2015-10-14
For investigation of the molecular interaction of cranberry extract with adhesins of uropathogenic Escherichia coli (UPEC), urine from four volunteers consuming standardized cranberry extract (proanthocyanidin content = 1.24%) was analyzed within ex vivo experiments, indicating time-dependent significant inhibition of 40-50% of bacterial adhesion of UPEC strain NU14 to human T24 bladder cells. Under in vitro conditions a dose-dependent increase in bacterial adhesion was observed with proanthocyanidin-enriched cranberry Vaccinium macrocarpon extract (proanthocyanidin content = 21%). Confocal laser scanning microscopy and scanning electron microscopy proved that V.m. extract led to the formation of bacterial clusters on the outer plasma membrane of the host cells without subsequent internalization. This agglomerating activity was not observed when a PAC-depleted extract (V.m. extract(≠PAC)) was used, which showed significant inhibition of bacterial adhesion in cases where type 1 fimbriae dominated and mannose-sensitive UPEC strain NU14 was used. V.m. extract(≠PAC) had no inhibitory activity against P- and F1C-fimbriae dominated strain 2980. Quantitative gene expression analysis indicated that PAC-containing as well as PAC-depleted cranberry extracts increased the fimH expression in NU14 as part of a feedback mechanism after blocking FimH. For strain 2980 the PAC-containing extract led to up-regulation of P- and F1C-fimbriae, whereas the PAC-depleted extract had no influence on gene expression. V.m. and V.m. extract(≠PAC) did not influence biofilm and curli formation in UPEC strains NU14 and 2980. These data lead to the conclusion that also proanthocyanidin-free cranberry extracts exert antiadhesive activity by interaction with mannose-sensitive type 1 fimbriae of UPEC.
Prasanna, Vaddi K; Venkatesh, Yeldur P
2015-06-01
Onion (Allium cepa), a bulb crop of economic importance, is known to have many health benefits. The major objective of the present study is to address the immunomodulatory properties of onion lectin (A. cepa agglutinin; ACA). ACA was purified from onion extract by D-mannose-agarose chromatography (yield: ~1 mg/kg). ACA is non-glycosylated and showed a molecular mass of ~12 kDa under reducing/non-reducing SDS-PAGE; glutaraldehyde cross-linking indicated that ACA is a non-covalent tetramer of ~12 kDa subunits. Its N-terminal sequence (RNVLLNNEGL; UniProt KB Accn. C0HJM8) showed 70-90% homology to mannose-specific Allium agglutinins. ACA showed specific hemagglutination activity of 8200 units/mg and is stable in the pH range 6-10 and up to 45° C. The immunomodulatory activity of ACA was assessed using the macrophage cell line, RAW264.7 and rat peritoneal macrophages; at 0.1 μg/well, it showed a significant increase (6-8-fold vs. control) in the production of nitric oxide at 24h, and significantly stimulated (2-4-fold vs. control) the production of pro-inflammatory cytokines (TNF-α and IL-12) at 24h. ACA (0.1 μg/well) enhanced the proliferation of murine thymocytes by ~4 fold (vs. control) at 24h; however, ACA does not proliferate B cell-enriched rat splenocytes. Further, it significantly elevated the expression levels of cytokines (IFN-γ and IL-2) over the control in murine thymocytes. Taken together, purified ACA induces a Th1-type immune response in vitro. Though present in low amounts, ACA may contribute to the immune-boosting potential of the popular spice onion since considerable amounts are consumed on a daily basis universally. Copyright © 2015 Elsevier B.V. All rights reserved.
Dolichol phosphate mannose synthase: a Glycosyltransferase with Unity in molecular diversities.
Banerjee, Dipak K; Zhang, Zhenbo; Baksi, Krishna; Serrano-Negrón, Jesús E
2017-08-01
N-glycans provide structural and functional stability to asparagine-linked (N-linked) glycoproteins, and add flexibility. Glycan biosynthesis is elaborative, multi-compartmental and involves many glycosyltransferases. Failure to assemble N-glycans leads to phenotypic changes developing infection, cancer, congenital disorders of glycosylation (CDGs) among others. Biosynthesis of N-glycans begins at the endoplasmic reticulum (ER) with the assembly of dolichol-linked tetra-decasaccharide (Glc 3 Man 9 GlcNAc 2 -PP-Dol) where dolichol phosphate mannose synthase (DPMS) plays a central role. DPMS is also essential for GPI anchor biosynthesis as well as for O- and C-mannosylation of proteins in yeast and in mammalian cells. DPMS has been purified from several sources and its gene has been cloned from 39 species (e.g., from protozoan parasite to human). It is an inverting GT-A folded enzyme and classified as GT2 by CAZy (carbohydrate active enZyme; http://www.cazy.org ). The sequence alignment detects the presence of a metal binding DAD signature in DPMS from all 39 species but finds cAMP-dependent protein phosphorylation motif (PKA motif) in only 38 species. DPMS also has hydrophobic region(s). Hydropathy analysis of amino acid sequences from bovine, human, S. crevisiae and A. thaliana DPMS show PKA motif is present between the hydrophobic domains. The location of PKA motif as well as the hydrophobic domain(s) in the DPMS sequence vary from species to species. For example, the domain(s) could be located at the center or more towards the C-terminus. Irrespective of their catalytic similarity, the DNA sequence, the amino acid identity, and the lack of a stretch of hydrophobic amino acid residues at the C-terminus, DPMS is still classified as Type I and Type II enzyme. Because of an apparent bio-sensing ability, extracellular signaling and microenvironment regulate DPMS catalytic activity. In this review, we highlight some important features and the molecular diversities of DPMS.
Hydrogen bonding in the mechanism of GDP-mannose mannosyl hydrolase
NASA Astrophysics Data System (ADS)
Mildvan, A. S.; Xia, Z.; Azurmendi, H. F.; Legler, P. M.; Balfour, M. R.; Lairson, L. L.; Withers, S. G.; Gabelli, S. B.; Bianchet, M. A.; Amzel, L. M.
2006-06-01
GDP-mannose mannosyl hydrolase (GDPMH) from E. coli catalyzes the hydrolysis of GDP-α- D-sugars to GDP and β- D-sugars by nucleophilic substitution with inversion at the anomeric C1 of the sugar, with general base catalysis by His-124. The 1.3 Å X-ray structure of the GDPMH-Mg 2+-GDP complex was used to model the complete substrate, GDP-mannose into the active site. The substrate is linked to the enzyme by 12 hydrogen bonds, as well as by the essential Mg 2+. In addition, His-124 was found to participate in a hydrogen bonded triad: His-124-NδH⋯Tyr-127-OH⋯Pro-120(C dbnd6 O). The contributions of these hydrogen bonds to substrate binding and to catalysis were investigated by site-directed mutagenesis. The hydrogen bonded triad detected in the X-ray structure was found to contribute little to catalysis since the Y127F mutation of the central residue shows only 2-fold decreases in both kcat and Km. The GDP leaving group is activated by the essential Mg 2+ which contributes at least 10 5-fold to kcat, and by nine hydrogen bonds, including those from Tyr-103, Arg-37, Arg-52, and Arg-65 (via an intervening water), each of which contribute factors to kcat ranging from 24- to 309-fold. Both Arg-37 and Tyr-103 bind the β-phosphate of the leaving GDP and are only 5.0 Å apart. Accordingly, the R37Q/Y103F double mutant shows partially additive effects of the two single mutants on kcat, indicating cooperativity of Arg-37 and Tyr-103 in promoting catalysis. The extensive activation of the GDP leaving group suggests a mechanism with dissociative character with a cationic oxocarbenium-like transition state and a half-chair conformation of the sugar ring, as found with glycosidase enzymes. Accordingly, Asp-22 which contributes 10 2.1- to 10 2.6-fold to kcat, is positioned to both stabilize a developing cationic center at C1 and to accept a hydrogen bond from the C2-OH of the mannosyl group, and His-88, which contributes 10 2.3-fold to kcat, is positioned to accept a hydrogen bond from the C3-OH of the mannose facilitating its distortion to a half-chair conformation. Also, the fluorinated substrate GDP-2-fluoro-α- D-mannose, for which the oxocarbenium ion-like transition state centered at C1 would be destabilized by electron withdrawal, shows a 16-fold lower kcat and a 2.5-fold greater Km than does GDP-α- D-mannose. The product of the contributions to catalysis of Arg-37 and Tyr-103 (taking their cooperativity into account), Arg-52, Arg-65, Mg 2+, Asp-22, His-124, and His-88 is ≥10 19, which exceeds the 10 12-fold rate acceleration produced by GDPMH by a factor ≥10 7. Hence, additional pairs or groups of catalytic residues must act cooperatively to promote catalysis.
NASA Astrophysics Data System (ADS)
Parviainen, Ville; Joenväärä, Sakari; Peltoniemi, Hannu; Mattila, Pirkko; Renkonen, Risto
2009-04-01
Mass spectrometry-based proteomic research has become one of the main methods in protein-protein interaction research. Several high throughput studies have established an interaction landscape of exponentially growing Baker's yeast culture. However, many of the protein-protein interactions are likely to change in different environmental conditions. In order to examine the dynamic nature of the protein interactions we isolated the protein complexes of mannose-1-phosphate guanyltransferase PSA1 from Saccharomyces cerevisiae at four different time points during batch cultivation. We used the tandem affinity purification (TAP)-method to purify the complexes and subjected the tryptic peptides to LC-MS/MS. The resulting peak lists were analyzed with two different methods: the database related protein identification program X!Tandem and the de novo sequencing program Lutefisk. We observed significant changes in the interactome of PSA1 during the batch cultivation and identified altogether 74 proteins interacting with PSA1 of which only six were found to interact during all time points. All the other proteins showed a more dynamic nature of binding activity. In this study we also demonstrate the benefit of using both database related and de novo methods in the protein interaction research to enhance both the quality and the quantity of observations.
Su, Chenghao; Lin, Yong; Mao, Qianguo; Wu, Daitze; Zhu, Lina; Najera, Isabel; Garcia-Alcalde, Fernando; Niu, Jianjun
2016-11-07
Mannose binding lectin (MBL) plays important role in the innate immunity of human. Mutations in the MBL2 gene can significantly change the serum level of MBL, and consequently alter the susceptibility and progression of infectious disease. However, the association between the MBL2 profile and the HBV mutation and quasispecies complexity has not yet been reported. Our approach includes the study of the MBL2 gene genotype as well as ultra-deep sequencing of the HBV viruses obtained from the plasma of 50 treatment naïve patients with chronic HBV infection. We found that the liver function was better among patients within the high MBL2 group with respect to those within the medium/low MBL2 group. Likewise, the number of mutations in the HBV X gene as well as the viral quasispecies complexity were significantly higher in medium/low MBL2 production group. Nucleotide substitution rates were also higher within the medium/low MBL2 production group in all positions described to have an influence in liver cancer development, except for A1499G. In this work we show that the MBL2 profile may have an impact on the HBV X gene mutations as well as on viral quasispecies complexity.
Mondal, Hossain Ali; Chakraborti, Dipankar; Majumder, Pralay; Roy, Pampa; Roy, Amit; Bhattacharya, Swati Gupta; Das, Sampa
2011-01-01
Background Mannose-binding Allium sativum leaf agglutinin (ASAL) is highly antinutritional and toxic to various phloem-feeding hemipteran insects. ASAL has been expressed in a number of agriculturally important crops to develop resistance against those insects. Awareness of the safety aspect of ASAL is absolutely essential for developing ASAL transgenic plants. Methodology/Principal Findings Following the guidelines framed by the Food and Agriculture Organization/World Health Organization, the source of the gene, its sequence homology with potent allergens, clinical tests on mammalian systems, and the pepsin resistance and thermostability of the protein were considered to address the issue. No significant homology to the ASAL sequence was detected when compared to known allergenic proteins. The ELISA of blood sera collected from known allergy patients also failed to show significant evidence of cross-reactivity. In vitro and in vivo assays both indicated the digestibility of ASAL in the presence of pepsin in a minimum time period. Conclusions/Significance With these experiments, we concluded that ASAL does not possess any apparent features of an allergen. This is the first report regarding the monitoring of the allergenicity of any mannose-binding monocot lectin having insecticidal efficacy against hemipteran insects. PMID:22110739
Zhao, Xin; Chen, Yun-Xia; Li, Chun-Sheng
2015-01-01
To investigate the prognostic performance of complement components in septic patients, complement 3, membrane attack complex (MAC) and mannose-binding lectin were measured and compared among adult patients with sepsis, severe sepsis and septic shock, as well as between in-hospital nonsurvivors and survivors. The prognostic value of complement components was compared with mortality in emergency department sepsis (MEDS) score. Median complement 3, MAC and mannose-binding lectin increased directly with the sepsis, severe sepsis and septic shock groups, and were significantly higher in nonsurvivors than in survivors. MEDS and MAC independently predicted in-hospital mortality. The prognostic performance of MAC was superior to MEDS as analyzed by receiver operating characteristic curve and area under the curve.
Kong, Xianming; Yu, Qian; Lv, Zhongpeng; Du, Xuezhong
2013-10-11
Tandem assays of protein and glucose in combination with mannose-functionalized Fe3 O4 @SiO2 and Ag@SiO2 tag particles have promising potential in effective magnetic separation and highly sensitive and selective SERS assays of biomaterials. It is for the first time that tandem assay of glucose is developed using SERS based on the Con A-sandwiched microstructures between the functionalized magnetic and tag particles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biosynthesis in vitro of Caenorhabditis elegans phosphorylcholine oligosaccharides
Cipollo, John F.; Awad, Antoine; Costello, Catherine E.; Robbins, Phillips W.; Hirschberg, Carlos B.
2004-01-01
The biosynthesis in vitro of phosphorylcholine oligosaccharides in Caenorhabditis elegans has been investigated. Here we show that extracts of C. elegans' microsomes transfer phosphorylcholine from L-α-dipalmitoyl phosphatidylcholine to hybrid and complex type N-linked oligosaccharides containing mannose residues disubstituted with N-acetylglucosamine. The reaction products are consistent with structures reported for C. elegans as well those found in the filarial nematodes Acanthocheilonema viteae, Onchocerca volvulus, and Brugia malayi, strongly supporting the concept that the phosphorylcholine oligosaccharide biosynthetic enzymes are conserved in this group of organisms. Because it is thought that phosphorylcholine substitution of oligosaccharides modulates host immune response in filarial infections, this in vitro system may help in gaining an understanding of the basis for this response. PMID:14993596
Yang, Qiang; Wang, Lai-Xi
2016-01-01
Understanding the biosynthetic pathway of protein glycosylation in various expression cell lines is important for controlling and modulating the glycosylation profiles of recombinant glycoproteins. We found that expression of erythropoietin (EPO) in a HEK293S N-acetylglucosaminyltransferase I (GnT I)−/− cell line resulted in production of the Man5GlcNAc2 glycoforms, in which more than 50% were core-fucosylated, implicating a clear GnT I-independent core fucosylation pathway. Expression of GM-CSF and the ectodomain of FcγIIIA receptor led to ∼30% and 3% core fucosylation, suggesting that the level of core fucosylation also depends on the nature of the recombinant proteins. To elucidate the GnT I-independent core fucosylation pathway, we generated a stable HEK293S GnT I−/− cell line with either knockdown or overexpression of FUT8 by a highly efficient lentivirus-mediated gene transfer approach. We found that the EPO produced from the FUT8 knockdown cell line was the pure Man5GlcNAc2 glycoform, whereas that produced from the FUT8-overexpressing cell line was found to be fully core-fucosylated oligomannose glycan (Man5GlcNAc2Fuc). These results provide direct evidence that FUT8, the mammalian α1,6-fucosyltransferase, is the sole enzyme responsible for the GnT I-independent core fucosylation pathway. The production of the homogeneous core-fucosylated Man5GlcNAc2 glycoform of EPO in the FUT8-overexpressed HEK293S GnT I−/− cell line represents the first example of production of fully core-fucosylated high-mannose glycoforms. PMID:27008861
Markmann, Sandra; Krambeck, Svenja; Hughes, Christopher J; Mirzaian, Mina; Aerts, Johannes M F G; Saftig, Paul; Schweizer, Michaela; Vissers, Johannes P C; Braulke, Thomas; Damme, Markus
2017-03-01
The efficient receptor-mediated targeting of soluble lysosomal proteins to lysosomes requires the modification with mannose 6-phosphate (M6P) residues. Although the absence of M6P results in misrouting and hypersecretion of lysosomal enzymes in many cells, normal levels of lysosomal enzymes have been reported in liver of patients lacking the M6P-generating phosphotransferase (PT). The identity of lysosomal proteins depending on M6P has not yet been comprehensively analyzed. In this study we purified lysosomes from liver of PT-defective mice and 67 known soluble lysosomal proteins were identified that illustrated quantitative changes using an ion mobility-assisted data-independent label-free LC-MS approach. After validation of various differentially expressed lysosomal components by Western blotting and enzyme activity assays, the data revealed a small number of lysosomal proteins depending on M6P, including neuraminidase 1, cathepsin F, Npc2, and cathepsin L, whereas the majority reach lysosomes by alternative pathways. These data were compared with findings on cultured hepatocytes and liver sinusoid endothelial cells isolated from the liver of wild-type and PT-defective mice. Our findings show that the relative expression, targeting efficiency and lysosomal localization of lysosomal proteins tested in cultured hepatic cells resemble their proportion in isolated liver lysosomes. Hypersecretion of newly synthesized nonphosphorylated lysosomal proteins suggest that secretion-recapture mechanisms contribute to maintain major lysosomal functions in liver. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
van Till, J. W. Olivier; Modderman, Piet W.; de Boer, Martin; Hart, Margreet H. L.; Beld, Marcel G. H. M.; Boermeester, Marja A.
2008-01-01
Mannose-binding lectin (MBL) deficiency due to variations in the MBL gene is associated with increased susceptibility to infections. In this study, the association between MBL deficiency and the occurrence of abdominal yeast infection (AYI) in peritonitis patients was examined. Eighty-eight patients with secondary peritonitis requiring emergency laparotomy were included. MBL genotype (wild type [WT] versus patients with variant genotypes), MBL plasma concentrations, and Candida risk factors were examined in patients with and those without AYI (positive abdominal yeast cultures during [re]laparotomy). A variant MBL genotype was found in 53% of patients with AYI and 38% of those without AYI (P = 0.18). A significantly higher proportion of variant patients had an AYI during early peritonitis (during first laparotomy) than WT patients (39% versus 16%, respectively; P = 0.012). Patients with AYI had lower MBL levels than did patients without AYI (0.16 μg/ml [0.0 to 0.65 μg/ml] versus 0.65 μg/ml (0.19 to 1.95 μg/ml); P = 0.007). Intensity of colonization (odds ratio [OR], 1.1; 95% confidence interval [CI], 1.0 to 1.1), MBL plasma concentrations of <0.5 μg/ml (OR, 4.5; 95% CI, 1.2 to 16.3), and numbers of relaparotomies (OR, 1.7; 95% CI, 1.0 to 2.8) were independently associated with AYI. In summary, deficient MBL plasma levels were independently associated with the development of AYI in patients with secondary peritonitis and seemed to facilitate early infection. PMID:17978009
Lee, Karen; Jin, Xiaoying; Zhang, Kate; Copertino, Lorraine; Andrews, Laura; Baker-Malcolm, Jennifer; Geagan, Laura; Qiu, Huawei; Seiger, Keirsten; Barngrover, Debra; McPherson, John M; Edmunds, Tim
2003-04-01
Fabry disease is a lysosomal storage disease arising from deficiency of the enzyme alpha-galactosidase A. Two recombinant protein therapeutics, Fabrazyme (agalsidase beta) and Replagal (agalsidase alfa), have been approved in Europe as enzyme replacement therapies for Fabry disease. Both contain the same human enzyme, alpha-galactosidase A, but they are produced using different protein expression systems and have been approved for administration at different doses. To determine if there is recognizable biochemical basis for the different doses, we performed a comparison of the two drugs, focusing on factors that are likely to influence biological activity and availability. The two drugs have similar glycosylation, both in the type and location of the oligosaccharide structures present. Differences in glycosylation were mainly limited to the levels of sialic acid and mannose-6-phosphate present, with Fabrazyme having a higher percentage of fully sialylated oligosaccharides and a higher level of phosphorylation. The higher levels of phosphorylated oligomannose residues correlated with increased binding to mannose-6-phosphate receptors and uptake into Fabry fibroblasts in vitro. Biodistribution studies in a mouse model of Fabry disease showed similar organ uptake. Likewise, antigenicity studies using antisera from Fabry patients demonstrated that both drugs were indistinguishable in terms of antibody cross-reactivity. Based on these studies and present knowledge regarding the influence of glycosylation on protein biodistribution and cellular uptake, the two protein preparations appear to be functionally indistinguishable. Therefore, the data from these studies provide no rationale for the use of these proteins at different therapeutic doses.
Toivonen, Laura; Vuononvirta, Juho; Mertsola, Jussi; Waris, Matti; He, Qiushui; Peltola, Ville
2017-05-01
Mannose-binding lectin (MBL) and toll-like receptors (TLRs) are important components of the innate immune system. We assessed the susceptibility of children with genetic variants in these factors to respiratory infections, rhinovirus infections and acute otitis media. In a prospective cohort study, blood samples from 381 Finnish children were analyzed for polymorphisms in MBL2 at codons 52, 54 and 57, TLR2 Arg753Gln, TLR3 Leu412Phe, TLR4 Asp299Gly, TLR7 Gln11Leu and TLR8 Leu651Leu. Children were followed up for respiratory infections until 24 months of age with daily diaries. Polymerase chain reaction and antigen tests were used for detection of respiratory viruses from nasal swabs. Children with MBL variant genotype had a mean of 59 days with symptoms of respiratory infection per year, compared with 49 days in those with wild-type (P = 0.01). TLR8 polymorphisms were associated with an increased risk and TLR7 polymorphisms with a decreased risk of recurrent rhinovirus infections (P = 0.02 for both). TLR2 polymorphisms were associated with recurrent acute otitis media (P = 0.02). MBL polymorphisms were associated with an increased and TLR7 polymorphisms with a decreased risk of rhinovirus-associated acute otitis media (P = 0.03 and P = 0.006, respectively). Genetic polymorphisms in MBL and TLRs promote susceptibility to or protection against respiratory infections. In addition to environmental factors, genetic variations may explain why some children are more prone to respiratory infections.
Sawake, Shota; Tajima, Noriaki; Mortimer, Jenny C; Lao, Jeemeng; Ishikawa, Toshiki; Yu, Xiaolan; Yamanashi, Yukiko; Yoshimi, Yoshihisa; Kawai-Yamada, Maki; Dupree, Paul; Tsumuraya, Yoichi; Kotake, Toshihisa
2015-12-01
Humans are unable to synthesize l-ascorbic acid (AsA), yet it is required as a cofactor in many critical biochemical reactions. The majority of human dietary AsA is obtained from plants. In Arabidopsis thaliana, a GDP-mannose pyrophosphorylase (GMPP), VITAMIN C DEFECTIVE1 (VTC1), catalyzes a rate-limiting step in AsA synthesis: the formation of GDP-Man. In this study, we identified two nucleotide sugar pyrophosphorylase-like proteins, KONJAC1 (KJC1) and KJC2, which stimulate the activity of VTC1. The kjc1kjc2 double mutant exhibited severe dwarfism, indicating that KJC proteins are important for growth and development. The kjc1 mutation reduced GMPP activity to 10% of wild-type levels, leading to a 60% reduction in AsA levels. On the contrary, overexpression of KJC1 significantly increased GMPP activity. The kjc1 and kjc1kjc2 mutants also exhibited significantly reduced levels of glucomannan, which is also synthesized from GDP-Man. Recombinant KJC1 and KJC2 enhanced the GMPP activity of recombinant VTC1 in vitro, while KJCs did not show GMPP activity. Yeast two-hybrid assays suggested that the stimulation of GMPP activity occurs via interaction of KJCs with VTC1. These results suggest that KJCs are key factors for the generation of GDP-Man and affect AsA level and glucomannan accumulation through the stimulation of VTC1 GMPP activity. © 2015 American Society of Plant Biologists. All rights reserved.
Urayama, Akihiko; Grubb, Jeffrey H; Sly, William S; Banks, William A
2010-01-01
Mucopolysaccharidosis type IIIA (MPS IIIA), which is a lysosomal storage disorder (LSD) caused by inherited deficiency of sulfamidase, is characterized by severe, progressive central nervous system (CNS) dysfunction. Enzyme replacement therapy (ERT) to treat CNS storage is challenging, because the access of enzymes to the brain is restricted by the blood–brain barrier (BBB). In a prior study, we found that phosphorylated β-glucuronidase (P-GUS) could be transcytosed across the BBB in newborn mice by the mannose 6-phosphate (M6P) receptor. In order to determine whether sulfamidase can utilize this pathway, we examined brain influx and the specificity of uptake of sulfamidase after intravenous (IV) injection in 2-day-old and 8-week-old mice. [131I]Sulfamidase was transported across the BBB in neonates at rates higher than that of simultaneously injected [125I]albumin. In contrast, the transport of [131I]sulfamidase was negligible in 8-week-old mice, thereby showing that the BBB transport mechanism is developmentally downregulated. Capillary depletion revealed that 83.7% of the [131I]sulfamidase taken up by the brain was in the parenchyma, demonstrating transfer across the capillary wall. The uptake of [131I]sulfamidase into the brain was significantly reduced by co-injections of M6P and P-GUS. That is, the transport of sulfamidase into the brain parenchyma in early postnatal life is mediated by the M6P receptor, which is shared with P-GUS and is likely accessible to other M6P-containing lysosomal enzymes. PMID:18443601
West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection.
Davis, Carl W; Nguyen, Hai-Yen; Hanna, Sheri L; Sánchez, Melissa D; Doms, Robert W; Pierson, Theodore C
2006-02-01
The C-type lectins DC-SIGN and DC-SIGNR bind mannose-rich glycans with high affinity. In vitro, cells expressing these attachment factors efficiently capture, and are infected by, a diverse array of appropriately glycosylated pathogens, including dengue virus. In this study, we investigated whether these lectins could enhance cellular infection by West Nile virus (WNV), a mosquito-borne flavivirus related to dengue virus. We discovered that DC-SIGNR promoted WNV infection much more efficiently than did DC-SIGN, particularly when the virus was grown in human cell types. The presence of a single N-linked glycosylation site on either the prM or E glycoprotein of WNV was sufficient to allow DC-SIGNR-mediated infection, demonstrating that uncleaved prM protein present on a flavivirus virion can influence viral tropism under certain circumstances. Preferential utilization of DC-SIGNR was a specific property conferred by the WNV envelope glycoproteins. Chimeras between DC-SIGN and DC-SIGNR demonstrated that the ability of DC-SIGNR to promote WNV infection maps to its carbohydrate recognition domain. WNV virions and subviral particles bound to DC-SIGNR with much greater affinity than DC-SIGN. We believe this is the first report of a pathogen interacting more efficiently with DC-SIGNR than with DC-SIGN. Our results should lead to the discovery of new mechanisms by which these well-studied lectins discriminate among ligands.
Figueiredo, Gabriela G; Cezar, Renata D; Freire, Naishe M; Teixeira, Vanessa G; Baptista, Paulo; Cordeiro, Marli; Carmo, Rodrigo F; Vasconcelos, Luydson Richardson Silva; Moura, Patrícia
2016-07-01
Dengue is the main arbovirosis in the tropical and subtropical areas of the world. The majority of infected individuals present an asymptomatic outcome while others progress to dengue fever (DF) or dengue haemorrhagic fever (DHF). Dengue infection evolution to severe outcomes is in part, related to innate immunity response. The MBL2 gene encodes for a pathogen recognition pattern molecule, the mannose-binding lectin (MBL). Variant alleles at promoter and structural regions of the MBL2 are related to serum MBL levels and function. Due to the important inflammatory modulation role of MBL, MBL2 polymorphisms could influence dengue progression. Therefore, this study investigated associations of MBL2 polymorphisms and serum MBL levels in patients with dengue. Genotyping of promoter and structural regions of MBL2 was performed by real-time PCR using Taqman® probes in 161 patients presenting DF or DHF outcome. For the serum MBL determination a commercial ELISA kit was used. The variant OO genotype and O allele were associated with DHF (p=0.008 and p=0.009 respectively). Haplotypes correlated to MBL low levels were associated with DHF (p=0.04). Our results support the hypothesis that patients carrying genotypes or haplotypes of low production of MBL would be more susceptible to DHF. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Arroyo-Flores, Blanca L; Calvo-Méndez, Carlos; Flores-Carreón, Arturo; López-Romero, Everardo
2004-04-01
Incubation of a mixed membrane fraction of C. albicans with the nonionic detergents Nonidet P-40 or Lubrol solubilized a fraction that catalyzed the transfer of mannose either from endogenously generated or exogenously added dolichol-P-[14C]Man onto endogenous protein acceptors. The protein mannosyl transferase solubilized with Nonidet P-40 was partially purified by a single step of preparative nondenaturing electrophoresis and some of its properties were investigated. Although transfer activity occurred in the absence of exogenous mannose acceptors and thus depended on acceptor proteins isolated along with the enzyme, addition of the protein fraction obtained after chemical de-mannosylation of glycoproteins synthesized in vitro stimulated mannoprotein labeling in a concentration-dependent manner. Other de-mannosylated glycoproteins, such as yeast invertase or glycoproteins extracted from C. albicans, failed to increase the amount of labeled mannoproteins. Mannosyl transfer activity was not influenced by common metal ions such as Mg(2+), Mn(2+) and Ca(2+), but it was stimulated up to 3-fold by EDTA. Common phosphoglycerides such as phosphatidylglycerol and, to a lower extent, phosphatidylinositol and phosphatidylcholine enhanced transfer activity. Interestingly, coupled transfer activity between dolichol phosphate mannose synthase, i.e., the enzyme responsible for Dol-P-Man synthesis, and protein mannosyl transferase could be reconstituted in vitro from the partially purified transferases, indicating that this process can occur in the absence of cell membranes.
Histochemical study of lymphocystis disease in skin of gilthead seabream, Sparus aurata L.
Sarasquete, C; González de Canales, M L; Arellano, J; Pérez-Prieto, S; García-Rosado, E; Borrego, J J
1998-01-01
A battery of horseradish peroxidase-conjugated lectins (Con A, WGA and DBA), as well as conventional histochemical techniques (PAS, saponification, Alcian Blue pH 0.1, 1, 2.5, chlorhydric hydrolisis, sialidase, Bromophenol blue, Tioglycollate reduction and Ferric-ferricyanide-FeIII) were used to study the content and distribution of carbohydrates, proteins and glycoconjugate sugar residues on the skin and on the lymphocystis-infected cells of gilthead seabream, Sparus aurata. Variable amounts of glycoproteins containing sialic acid, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, mannose and/or glucose residues were observed in the cuticle and mucous cells of the corporal skin, tails and fins. Germinative and epithelial cells of the epidermis contained glycogen, proteins, carboxylated groups, as well as glycoproteins with mannose and/or glucose and N-acetyl-D-galactosamine residues. Hyaline capsule of the mature lymphocystis-infected cells was strongly stained with PAS, Alcian Blue (pH 0.5 and 2.5) and weakly positive with Alcian Blue (pH 1). Con A reacted with the granular cytoplasm, specially around hyaline capsule, and with the basophilic intracytoplasmic inclusions developed in mature lymphocystis-infected cells of Sparus aurata skin. These sugar residues (mannose and/or glucose), as well as N-acetyl-D-glucosamine and/or sialic acid and N-acetyl-D-galactosamine were not detected in the hyaline capsule of the lymphocystis disease.
Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation.
Shime-Hattori, Akiko; Iida, Tetsuya; Arita, Michiko; Park, Kwon-Sam; Kodama, Toshio; Honda, Takeshi
2006-11-01
Vibrio parahaemolyticus RIMD2210633 has two sets of type IV-A pilus genes. One set is similar to that found in other Gram-negative bacteria, such as Pseudomonas aeruginosa, Vibrio cholerae (chitin-regulated pilus; ChiRP), and Vibrio vulnificus. The other is homologous to the genes for the mannose-sensitive hemagglutinin (MSHA) pilus. In this study, we analyzed the effects of the deletions in the pilin genes for each type IV pilus (the ChiRP and the MSHA pilus) on biofilm formation. Although the MSHA pilin mutant formed aggregates, the number of bacteria that attached directly to the coverslip was reduced, suggesting that this pilus contributes to the bacterial attachment to the surface of the coverslip. In contrast, the ChiRP mutant attached to the surface of the coverslip, but did not form aggregates, suggesting that ChiRP plays a role in bacterial agglutination during biofilm formation. These results suggest that the two type IV pili of V. parahaemolyticus contribute to biofilm formation in different ways. Both mutants showed a lower fitness for adsorption onto chitin particles than that of the wild type. Collectively, these data suggest that the use of two type IV pili is a refined strategy of V. parahaemolyticus for survival in natural environments.
Regional differences in lectin binding patterns of vestibular hair cells
NASA Technical Reports Server (NTRS)
Baird, R. A.; Schuff, N. R.; Bancroft, J.
1993-01-01
Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylglucosamine (WGA), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not strain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type I hair cells while labeling, as in the bullfrog, Type II hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.
Ishihara, Takeshi; Kakiya, Kiyoshi; Takahashi, Koji; Miwa, Hiroto; Rokushima, Masatomo; Yoshinaga, Tomoyo; Tanaka, Yoshikazu; Ito, Takaomi; Togame, Hiroko; Takemoto, Hiroshi; Amano, Maho; Iwasaki, Norimasa; Minami, Akio; Nishimura, Shin-Ichiro
2014-01-01
Osteoarthritis (OA) is one of the most common chronic diseases among adults, especially the elderly, which is characterized by destruction of the articular cartilage. Despite affecting more than 100 million individuals all over the world, therapy is currently limited to treating pain, which is a principal symptom of OA. New approaches to the treatment of OA that induce regeneration and repair of cartilage are strongly needed. To discover potent markers for chondrogenic differentiation, glycoform-focused reverse proteomics and genomics were performed on the basis of glycoblotting-based comprehensive approach. Expression levels of high-mannose type N-glycans were up-regulated significantly at the late stage of differentiation of the mouse chondroprogenitor cells. Among 246 glycoproteins carrying this glycotype identified by ConA affinity chromatography and LC/MS, it was demonstrated that 52% are classified as cell surface glycoproteins. Gene expression levels indicated that mRNAs for 15 glycoproteins increased distinctly in the earlier stages during differentiation compared with Type II collagen. The feasibility of mouse chondrocyte markers in human chondrogenesis model was demonstrated by testing gene expression levels of these 15 glycoproteins during differentiation in human mesenchymal stem cells. The results showed clearly an evidence of up-regulation of 5 genes, ectonucleotide pyrophosphatase/phosphodiesterase family member 1, collagen alpha-1(III) chain, collagen alpha-1(XI) chain, aquaporin-1, and netrin receptor UNC5B, in the early stages of differentiation. These cell surface 5 glycoproteins become highly sensitive differentiation markers of human chondrocytes that contribute to regenerative therapies, and development of novel therapeutic reagents. © 2013.
Silvestri, Elena; Glinni, Daniela; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; de Lange, Pieter; Senese, Rosalba; Ceccarelli, Michele; Salzano, Anna Maria; Scaloni, Andrea; Lanni, Antonia; Goglia, Fernando
2012-07-06
A novel functional iodothyronine analogue, TRC150094, which has a much lower potency toward thyroid hormone receptor (α1/β1) activation than triiodothyronine, has been shown to be effective at reducing adiposity in rats simultaneously receiving a high-fat diet (HFD). Here, by combining metabolic, functional and proteomic analysis, we studied how the hepatic and skeletal muscle phenotypes might respond to TRC150094 treatment in HFD-fed overweight rats. Drug treatment increased both the liver and skeletal muscle mitochondrial oxidative capacities without altering mitochondrial efficiency. Coherently, in terms of individual respiratory in-gel activity, blue-native analysis revealed an increased activity of complex V in the liver and of complexes II and V in tibialis muscle in TCR150094-treated animals. Subsequently, the identification of differentially expressed proteins and the analysis of their interrelations gave an integrated view of the phenotypic/metabolic adaptations occurring in the liver and muscle proteomes during drug treatment. TRC150094 significantly altered the expression of several proteins involved in key liver metabolic pathways, including amino acid and nitrogen metabolism, and fructose and mannose metabolism. The canonical pathways most strongly influenced by TRC150094 in tibialis muscle included glycolysis and gluconeogenesis, amino acid, fructose and mannose metabolism, and cell signaling. The phenotypic/metabolic influence of TRC150094 on the liver and skeletal muscle of HFD-fed overweight rats suggests the potential clinical application of this iodothyronine analogue in ameliorating metabolic risk parameters altered by diet regimens.
Ibernon, Meritxell; Moreso, Francesc; Serón, Daniel
2011-08-01
Surveillance biopsies have contributed to the understanding of the natural history of renal allograft lesions. Subclinical rejection, defined as the presence of histological lesions, indistinguishable from acute rejection in stable grafts, is associated with progression of interstitial fibrosis and tubular atrophy. The prevalence of subclinical rejection has decreased as more powerful immunosuppressive treatments have been introduced, suggesting that subclinical rejection represents the degree of control of the alloimmune response. However, non-immune factors such as donor age are also associated with the prevalence of subclinical rejection, suggesting that kidneys from older donors are more susceptible to insult and have a reduced capacity for tissue regeneration. Innate immunity has a crucial role in the modulation of the inflammatory response during infection and tissue damage. Mannose-binding lectin (MBL) is an innate immune protein, the polymorphisms of which are associated with infection, low-grade inflammation, diabetes, and cardiovascular disease. However, the relationship between MBL and disease is complex. For example, low MBL level is associated with higher risk for diabetes, whereas in patients with diabetes, high MBL level is associated with more severe renal damage. In renal transplant patients, low MBL levels are associated with an increased prevalence of infection and diabetes, whereas high MBL levels are associated with shortened graft survival. Although MBL is not clearly associated with prevalence of acute rejection, surveillance biopsy studies have shown that low MBL levels are associated with subclinical rejection in kidney and the heart, suggesting that MBL modulates the injury-repair process of the allograft.
Ibernon, Meritxell; Moreso, Francesc; Serón, Daniel
2011-01-01
Surveillance biopsies have contributed to the understanding of the natural history of renal allograft lesions. Subclinical rejection, defined as the presence of histological lesions, indistinguishable from acute rejection in stable grafts, is associated with progression of interstitial fibrosis and tubular atrophy. The prevalence of subclinical rejection has decreased as more powerful immunosuppressive treatments have been introduced, suggesting that subclinical rejection represents the degree of control of the alloimmune response. However, non-immune factors such as donor age are also associated with the prevalence of subclinical rejection, suggesting that kidneys from older donors are more susceptible to insult and have a reduced capacity for tissue regeneration. Innate immunity has a crucial role in the modulation of the inflammatory response during infection and tissue damage. Mannose-binding lectin (MBL) is an innate immune protein, the polymorphisms of which are associated with infection, low-grade inflammation, diabetes, and cardiovascular disease. However, the relationship between MBL and disease is complex. For example, low MBL level is associated with higher risk for diabetes, whereas in patients with diabetes, high MBL level is associated with more severe renal damage. In renal transplant patients, low MBL levels are associated with an increased prevalence of infection and diabetes, whereas high MBL levels are associated with shortened graft survival. Although MBL is not clearly associated with prevalence of acute rejection, surveillance biopsy studies have shown that low MBL levels are associated with subclinical rejection in kidney and the heart, suggesting that MBL modulates the injury–repair process of the allograft. PMID:25018901
Carbohydrate Recognition Specificity of Trans-sialidase Lectin Domain from Trypanosoma congolense
Waespy, Mario; Gbem, Thaddeus T.; Elenschneider, Leroy; Jeck, André-Philippe; Day, Christopher J.; Hartley-Tassell, Lauren; Bovin, Nicolai; Tiralongo, Joe; Haselhorst, Thomas; Kelm, Sørge
2015-01-01
Fourteen different active Trypanosoma congolense trans-sialidases (TconTS), 11 variants of TconTS1 besides TconTS2, TconTS3 and TconTS4, have been described. Notably, the specific transfer and sialidase activities of these TconTS differ by orders of magnitude. Surprisingly, phylogenetic analysis of the catalytic domains (CD) grouped each of the highly active TconTS together with the less active enzymes. In contrast, when aligning lectin-like domains (LD), the highly active TconTS grouped together, leading to the hypothesis that the LD of TconTS modulates its enzymatic activity. So far, little is known about the function and ligand specificity of these LDs. To explore their carbohydrate-binding potential, glycan array analysis was performed on the LD of TconTS1, TconTS2, TconTS3 and TconTS4. In addition, Saturation Transfer Difference (STD) NMR experiments were done on TconTS2-LD for a more detailed analysis of its lectin activity. Several mannose-containing oligosaccharides, such as mannobiose, mannotriose and higher mannosylated glycans, as well as Gal, GalNAc and LacNAc containing oligosaccharides were confirmed as binding partners of TconTS1-LD and TconTS2-LD. Interestingly, terminal mannose residues are not acceptor substrates for TconTS activity. This indicates a different, yet unknown biological function for TconTS-LD, including specific interactions with oligomannose-containing glycans on glycoproteins and GPI anchors found on the surface of the parasite, including the TconTS itself. Experimental evidence for such a scenario is presented. PMID:26474304
Quevedo-Hidalgo, Balkys; Monsalve-Marín, Felipe; Narváez-Rincón, Paulo César; Pedroza-Rodríguez, Aura Marina; Velásquez-Lozano, Mario Enrique
2013-03-01
Ethanol production derived from Saccharomyces cerevisiae fermentation of a hydrolysate from floriculture waste degradation was studied. The hydrolysate was produced from Chrysanthemum (Dendranthema grandiflora) waste degradation by Pleurotus ostreatus and characterized to determine the presence of compounds that may inhibit fermentation. The products of hydrolysis confirmed by HPLC were cellobiose, glucose, xylose and mannose. The hydrolysate was fermented by S. cerevisiae, and concentrations of biomass, ethanol, and glucose were determined as a function of time. Results were compared to YGC modified medium (yeast extract, glucose and chloramphenicol) fermentation. Ethanol yield was 0.45 g g(-1), 88 % of the maximal theoretical value. Crysanthemum waste hydrolysate was suitable for ethanol production, containing glucose and mannose with adequate nutrients for S. cerevisiae fermentation and low fermentation inhibitor levels.
Everts, Bart; Hussaarts, Leonie; Driessen, Nicole N.; Meevissen, Moniek H.J.; Schramm, Gabriele; van der Ham, Alwin J.; van der Hoeven, Barbara; Scholzen, Thomas; Burgdorf, Sven; Mohrs, Markus; Pearce, Edward J.; Hokke, Cornelis H.; Haas, Helmut; Smits, Hermelijn H.
2012-01-01
Omega-1, a glycosylated T2 ribonuclease (RNase) secreted by Schistosoma mansoni eggs and abundantly present in soluble egg antigen, has recently been shown to condition dendritic cells (DCs) to prime Th2 responses. However, the molecular mechanisms underlying this effect remain unknown. We show in this study by site-directed mutagenesis of omega-1 that both the glycosylation and the RNase activity are essential to condition DCs for Th2 polarization. Mechanistically, we demonstrate that omega-1 is bound and internalized via its glycans by the mannose receptor (MR) and subsequently impairs protein synthesis by degrading both ribosomal and messenger RNA. These experiments reveal an unrecognized pathway involving MR and interference with protein synthesis that conditions DCs for Th2 priming. PMID:22966004
Network analysis reveals the recognition mechanism for complex formation of mannose-binding lectins
NASA Astrophysics Data System (ADS)
Jian, Yiren; Zhao, Yunjie; Zeng, Chen
The specific carbohydrate binding of lectin makes the protein a powerful molecular tool for various applications including cancer cell detection due to its glycoprotein profile on the cell surface. Most biologically active lectins are dimeric. To understand the structure-function relation of lectin complex, it is essential to elucidate the short- and long-range driving forces behind the dimer formation. Here we report our molecular dynamics simulations and associated dynamical network analysis on a particular lectin, i.e., the mannose-binding lectin from garlic. Our results, further supported by sequence coevolution analysis, shed light on how different parts of the complex communicate with each other. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.
Influence of Niche-Specific Nutrients on Secondary Metabolism in Vibrionaceae.
Giubergia, Sonia; Phippen, Christopher; Gotfredsen, Charlotte H; Nielsen, Kristian Fog; Gram, Lone
2016-07-01
Many factors, such as the substrate and the growth phase, influence biosynthesis of secondary metabolites in microorganisms. Therefore, it is crucial to consider these factors when establishing a bioprospecting strategy. Mimicking the conditions of the natural environment has been suggested as a means of inducing or influencing microbial secondary metabolite production. The purpose of the present study was to determine how the bioactivity of Vibrionaceae was influenced by carbon sources typical of their natural environment. We determined how mannose and chitin, compared to glucose, influenced the antibacterial activity of a collection of Vibrionaceae strains isolated because of their ability to produce antibacterial compounds but that in subsequent screenings seemed to have lost this ability. The numbers of bioactive isolates were 2- and 3.5-fold higher when strains were grown on mannose and chitin, respectively, than on glucose. As secondary metabolites are typically produced during late growth, potential producers were also allowed 1 to 2 days of growth before exposure to the pathogen. This strategy led to a 3-fold increase in the number of bioactive strains on glucose and an 8-fold increase on both chitin and mannose. We selected two bioactive strains belonging to species for which antibacterial activity had not previously been identified. Using ultrahigh-performance liquid chromatography-high-resolution mass spectrometry and bioassay-guided fractionation, we found that the siderophore fluvibactin was responsible for the antibacterial activity of Vibrio furnissii and Vibrio fluvialis These results suggest a role of chitin in the regulation of secondary metabolism in vibrios and demonstrate that considering bacterial ecophysiology during development of screening strategies will facilitate bioprospecting. A challenge in microbial natural product discovery is the elicitation of the biosynthetic gene clusters that are silent when microorganisms are grown under standard laboratory conditions. We hypothesized that, since the clusters are not lost during proliferation in the natural niche of the microorganisms, they must, under such conditions, be functional. Here, we demonstrate that an ecology-based approach in which the producer organism is allowed a temporal advantage and where growth conditions are mimicking the natural niche remarkably increases the number of Vibrionaceae strains producing antibacterial compounds. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Sandal, Indra; Inzana, Thomas J; Molinaro, Antonio; De Castro, Christina; Shao, Jian Q; Apicella, Michael A; Cox, Andrew D; St Michael, Frank; Berg, Gretchen
2011-08-19
Histophilus somni, a gram-negative coccobacillus, is an obligate inhabitant of bovine and ovine mucosal surfaces, and an opportunistic pathogen responsible for respiratory disease and other systemic infections in cattle and sheep. Capsules are important virulence factors for many pathogenic bacteria, but a capsule has not been identified on H. somni. However, H. somni does form a biofilm in vitro and in vivo, and the biofilm matrix of most bacteria consists of a polysaccharide. Following incubation of H. somni under growth-restricting stress conditions, such as during anaerobiosis, stationary phase, or in hypertonic salt, a polysaccharide could be isolated from washed cells or culture supernatant. The polysaccharide was present in large amounts in broth culture sediment after H. somni was grown under low oxygen tension for 4-5 days (conditions favorable to biofilm formation), but not from planktonic cells during log phase growth. Immuno-transmission electron microscopy showed that the polysaccharide was not closely associated with the cell surface, and was of heterogeneous high molecular size by gel electrophoresis, indicating it was an exopolysaccharide (EPS). The EPS was a branched mannose polymer containing some galactose, as determined by structural analysis. The mannose-specific Moringa M lectin and antibodies to the EPS bound to the biofilm matrix, demonstrating that the EPS was a component of the biofilm. The addition of N-acetylneuraminic acid to the growth medium resulted in sialylation of the EPS, and increased biofilm formation. Real-time quantitative reverse transcription-polymerase chain reaction analyses indicated that genes previously identified in a putative polysaccharide locus were upregulated when the bacteria were grown under conditions favorable to a biofilm, compared to planktonic cells. H. somni is capable of producing a branching, mannose-galactose EPS polymer under growth conditions favorable to the biofilm phase of growth, and the EPS is a component of the biofilm matrix. The EPS can be sialylated in strains with sialyltransferase activity, resulting in enhanced density of the biofilm, and suggesting that EPS and biofilm formation may be important to persistence in the bovine host. The EPS may be critical to virulence if the biofilm state is required for H. somni to persist in systemic sites.
Ohta, M; Hamako, J; Yamamoto, S; Hatta, H; Kim, M; Yamamoto, T; Oka, S; Mizuochi, T; Matsuura, F
1991-10-01
Asparagine-linked oligosaccharides present on hen egg-yolk immunoglobulin, termed IgY, were liberated from the protein by hydrazinolysis. After N-acetylation, the oligosaccharides were labelled with a UV-absorbing compound, p-aminobenzoic acid ethyl ester (ABEE). The ABEE-derivatized oligosaccharides were fractionated by anion exchange, normal phase and reversed phase HPLC, and their structures were determined by a combination of sugar composition analysis, methylation analysis, negative ion FAB-MS, 500 MHz 1H-NMR and sequential exoglycosidase digestions. IgY contained monoglucosylated oligomannose type oligosaccharides with structures of Glc alpha 1-3Man7-9-GlcNAc-GlcNAc, oligomannose type oligosaccharides with the size range of Man5-9GlcNAc-GlcNAc, and biantennary complex type oligosaccharides with core region structure of Man alpha 1-6(+/- GlcNAc beta 1-4)(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4(+/- Fuc alpha 1-6)GlcNAc. The glucosylated oligosaccharides, Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2, have not previously been reported in mature glycoproteins from any source.
Datta, Pradip K.; Figueroa, Maria O. D. C. R.; Lajolo, Franco M.
1991-01-01
Two major lectins (lectin I and lectin II) were purified to homogeneity from the seeds of Araucaria brasiliensis (Gymnospermae). The purity of the lectins was confirmed by polyacrylamide gel electrophoresis, isoelectric focusing, and high performance liquid chromatography. They are glycoproteins in nature containing 6.3 and 2.9%, respectively, of neutral sugar and have absorption coefficients of 3.8 and 4.7, respectively, at 280 nanometers. The molecular weights of both lectins obtained by gel filtration on Sephacryl S-400 were equal: 200,000. After dissociation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, molecular weights were 20,000 and 34,000, respectively, for lectin I and lectin II, suggesting they are decameric and hexameric in nature. The amino acid composition of both lectins showed little difference, but both had high amounts of acidic amino acids and lacked methionine in their molecule. The carbohydrate binding specificity of lectins was directed towards mannose, glucose, and their oligomers. High inhibitory activity was also found with thyroglobulin. The erythroagglutinating activity of the lectins was enhanced in the presence of high-molecular-weight substances both at 37 and 4°C. Divalent cations do not appear to be essential for activity. They maintained their agglutinating activity over a broad but different range of pH: 5.5 to 7.5 and 6.5 to 7.5, respectively. Both lectins agglutinated erythrocytes of human ABO blood types equally well. ImagesFigure 2Figure 3 PMID:16668523