Highly linear dual ring resonator modulator for wide bandwidth microwave photonic links.
Hosseinzadeh, Arash; Middlebrook, Christopher T
2016-11-28
A highly linear dual ring resonator modulator (DRRM) design is demonstrated to provide high spur-free dynamic range (SFDR) in a wide operational bandwidth. Harmonic and intermodulation distortions are theoretically analyzed in a single ring resonator modulator (RRM) with Lorentzian-shape transfer function and a strategy is proposed to enhance modulator linearity for wide bandwidth applications by utilizing DRRM. Third order intermodulation distortion is suppressed in a frequency independent process with proper splitting ratio of optical and RF power and proper dc biasing of the ring resonators. Operational bandwidth limits of the DRRM are compared to the RRM showing the capability of the DRRM in providing higher SFDR in an unlimited operational bandwidth. DRRM bandwidth limitations are a result of the modulation index from each RRM and their resonance characteristics that limit the gain and noise figure of the microwave photonic link. The impact of the modulator on microwave photonic link figure of merits is analyzed and compared to RRM and Mach-Zehnder Interference (MZI) modulators. Considering ± 5 GHz operational bandwidth around the resonance frequency imposed by the modulation index requirement the DRRM is capable of a ~15 dB SFDR improvement (1 Hz instantaneous bandwidth) versus RRM and MZI.
NASA Astrophysics Data System (ADS)
Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung
2017-02-01
Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.
Receiver bandwidth effects on complex modulation and detection using directly modulated lasers.
Yuan, Feng; Che, Di; Shieh, William
2016-05-01
Directly modulated lasers (DMLs) have long been employed for short- and medium-reach optical communications due to their low cost. Recently, a new modulation scheme called complex modulated DMLs has been demonstrated showing a significant optical signal to noise ratio sensitivity enhancement compared with the traditional intensity-only detection scheme. However, chirp-induced optical spectrum broadening is inevitable in complex modulated systems, which may imply a need for high-bandwidth receivers. In this Letter, we study the impact of receiver bandwidth effects on the performance of complex modulation and coherent detection systems based on DMLs. We experimentally demonstrate that such systems exhibit a reasonable tolerance for the reduced receiver bandwidth. For 10 Gbaud 4-level pulse amplitude modulation signals, the required electrical bandwidth is as low as 8.5 and 7.5 GHz for 7% and 20% forward error correction, respectively. Therefore, it is feasible to realize DML-based complex modulated systems using cost-effective receivers with narrow bandwidth.
High bandwidth electro-optic technology for intersatellite optical communications
NASA Technical Reports Server (NTRS)
Krainak, Michael A.
1992-01-01
The research and development of electronic and electro-optic components for geosynchronous and low earth orbiting satellite optical high bandwidth communications at the NASA-Goddard Space Flight Center is reviewed. Intersatellite optical communications retains a strong reliance on microwave circuit technology in several areas - the microwave to optical interface, the laser transmitter modulation driver and the optical receiver. A microwave to optical interface is described requiring high bandwidth electronic downconverters and demodulators. Electrical bandwidth and current drive requirements for the laser modulation driver for three laser alternatives are discussed. Bandwidth and noise requirements are presented for optical receiver architectures.
Linearity optimizations of analog ring resonator modulators through bias voltage adjustments
NASA Astrophysics Data System (ADS)
Hosseinzadeh, Arash; Middlebrook, Christopher T.
2018-03-01
The linearity of ring resonator modulator (RRM) in microwave photonic links is studied in terms of instantaneous bandwidth, fabrication tolerances, and operational bandwidth. A proposed bias voltage adjustment method is shown to maximize spur-free dynamic range (SFDR) at instantaneous bandwidths required by microwave photonic link (MPL) applications while also mitigating RRM fabrication tolerances effects. The proposed bias voltage adjustment method shows RRM SFDR improvement of ∼5.8 dB versus common Mach-Zehnder modulators at 500 MHz instantaneous bandwidth. Analyzing operational bandwidth effects on SFDR shows RRMs can be promising electro-optic modulators for MPL applications which require high operational frequencies while in a limited bandwidth such as radio-over-fiber 60 GHz wireless network access.
Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes
NASA Astrophysics Data System (ADS)
Monavarian, M.; Rashidi, A.; Aragon, A. A.; Oh, S. H.; Rishinaramangalam, A. K.; DenBaars, S. P.; Feezell, D.
2018-01-01
High-speed InGaN/GaN blue light-emitting diodes (LEDs) are needed for future gigabit-per-second visible-light communication systems. Large LED modulation bandwidths are typically achieved at high current densities, with reports close to 1 GHz bandwidth at current densities ranging from 5 to 10 kA/cm2. However, the internal quantum efficiency (IQE) of InGaN/GaN LEDs is quite low at high current densities due to the well-known efficiency droop phenomenon. Here, we show experimentally that nonpolar and semipolar orientations of GaN enable higher modulation bandwidths at low current densities where the IQE is expected to be higher and power dissipation is lower. We experimentally compare the modulation bandwidth vs. current density for LEDs on nonpolar (10 1 ¯ 0 ), semipolar (20 2 ¯ 1 ¯) , and polar (" separators="|0001 ) orientations. In agreement with wavefunction overlap considerations, the experimental results indicate a higher modulation bandwidth for the nonpolar and semipolar LEDs, especially at relatively low current densities. At 500 A/cm2, the nonpolar LED has a 3 dB bandwidth of ˜1 GHz, while the semipolar and polar LEDs exhibit bandwidths of 260 MHz and 75 MHz, respectively. A lower carrier density for a given current density is extracted from the RF measurements for the nonpolar and semipolar LEDs, consistent with the higher wavefunction overlaps in these orientations. At large current densities, the bandwidth of the polar LED approaches that of the nonpolar and semipolar LEDs due to coulomb screening of the polarization field. The results support using nonpolar and semipolar orientations to achieve high-speed LEDs at low current densities.
Plate-slot polymer waveguide modulator on silicon-on-insulator.
Qiu, Feng; Spring, Andrew M; Hong, Jianxun; Yokoyama, Shiyoshi
2018-04-30
Electro-optic (EO) modulators are vital for efficient "electrical to optical" transitions and high-speed optical interconnects. In this work, we applied an EO polymer to demonstrate modulators on silicon-on-insulator substrates. The fabricated Mach-Zehnder interferometer (MZI) and ring resonator consist of a Si and TiO 2 slot, in which the EO polymer was embedded to realize a low-driving and large bandwidth modulation. The designed optical and electrical constructions are able to provide a highly concentrated TM mode with low propagation loss and effective EO properties. The fabricated MZI modulator shows a π-voltage-length product of 0.66 V·cm and a 3-dB bandwidth of 31 GHz. The measured EO activity is advantageous to exploit the ring modulator with a resonant tunability of 0.065 nm/V and a 3-dB modulation bandwidth up to 13 GHz.
Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
Bandwidth efficient coding for satellite communications
NASA Technical Reports Server (NTRS)
Lin, Shu; Costello, Daniel J., Jr.; Miller, Warner H.; Morakis, James C.; Poland, William B., Jr.
1992-01-01
An error control coding scheme was devised to achieve large coding gain and high reliability by using coded modulation with reduced decoding complexity. To achieve a 3 to 5 dB coding gain and moderate reliability, the decoding complexity is quite modest. In fact, to achieve a 3 dB coding gain, the decoding complexity is quite simple, no matter whether trellis coded modulation or block coded modulation is used. However, to achieve coding gains exceeding 5 dB, the decoding complexity increases drastically, and the implementation of the decoder becomes very expensive and unpractical. The use is proposed of coded modulation in conjunction with concatenated (or cascaded) coding. A good short bandwidth efficient modulation code is used as the inner code and relatively powerful Reed-Solomon code is used as the outer code. With properly chosen inner and outer codes, a concatenated coded modulation scheme not only can achieve large coding gains and high reliability with good bandwidth efficiency but also can be practically implemented. This combination of coded modulation and concatenated coding really offers a way of achieving the best of three worlds, reliability and coding gain, bandwidth efficiency, and decoding complexity.
Cross-phase modulation bandwidth in ultrafast fiber wavelength converters
NASA Astrophysics Data System (ADS)
Luís, Ruben S.; Monteiro, Paulo; Teixeira, António
2006-12-01
We propose a novel analytical model for the characterization of fiber cross-phase modulation (XPM) in ultrafast all-optical fiber wavelength converters, operating at modulation frequencies higher than 1THz. The model is used to compare the XPM frequency limitations of a conventional and a highly nonlinear dispersion shifted fiber (HN-DSF) and a bismuth oxide-based fiber, introducing the XPM bandwidth as a design parameter. It is shown that the HN-DSF presents the highest XPM bandwidth, above 1THz, making it the most appropriate for ultrafast wavelength conversion.
Radiation Hardened, Modulator ASIC for High Data Rate Communications
NASA Technical Reports Server (NTRS)
McCallister, Ron; Putnam, Robert; Andro, Monty; Fujikawa, Gene
2000-01-01
Satellite-based telecommunication services are challenged by the need to generate down-link power levels adequate to support high quality (BER approx. equals 10(exp 12)) links required for modem broadband data services. Bandwidth-efficient Nyquist signaling, using low values of excess bandwidth (alpha), can exhibit large peak-to-average-power ratio (PAPR) values. High PAPR values necessitate high-power amplifier (HPA) backoff greater than the PAPR, resulting in unacceptably low HPA efficiency. Given the high cost of on-board prime power, this inefficiency represents both an economical burden, and a constraint on the rates and quality of data services supportable from satellite platforms. Constant-envelope signals offer improved power-efficiency, but only by imposing a severe bandwidth-efficiency penalty. This paper describes a radiation- hardened modulator which can improve satellite-based broadband data services by combining the bandwidth-efficiency of low-alpha Nyquist signals with high power-efficiency (negligible HPA backoff).
High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication
NASA Astrophysics Data System (ADS)
Westbergh, Petter; Safaisini, Rashid; Haglund, Erik; Gustavsson, Johan S.; Larsson, Anders; Joel, Andrew
2013-03-01
We present results from our new generation of high performance 850 nm oxide confined vertical cavity surface-emitting lasers (VCSELs). With devices optimized for high-speed operation under direct modulation, we achieve record high 3dB modulation bandwidths of 28 GHz for ~4 μm oxide aperture diameter VCSELs, and 27 GHz for devices with a ~7 μm oxide aperture diameter. Combined with a high-speed photoreceiver, the ~7 μm VCSEL enables error-free transmission at data rates up to 47 Gbit/s at room temperature, and up to 40 Gbit/s at 85°C.
High-speed electronic beam steering using injection locking of a laser-diode array
NASA Astrophysics Data System (ADS)
Swanson, E. A.; Abbas, G. L.; Yang, S.; Chan, V. W. S.; Fujimoto, J. G.
1987-01-01
High-speed electronic steering of the output beam of a 10-stripe laser-diode array is reported. The array was injection locked to a single-frequency laser diode. High-speed steering of the locked 0.5-deg-wide far-field lobe is demonstrated either by modulating the injection current of the array or by modulating the frequency of the master laser. Closed-loop tracking bandwidths of 70 kHz and 3 MHz, respectively, were obtained. The beam-steering bandwidths are limited by the FM responses of the modulated devices for both techniques.
Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers.
Meng, Bo; Wang, Qi Jie
2012-01-16
In this study, we report for the first time to our knowledge theoretical investigation of modulation responses of injection-locked mid-infrared quantum cascade lasers (QCLs) at wavelengths of 4.6 μm and 9 μm, respectively. It is shown through a three-level rate equations model that the direct intensity modulation of QCLs gives the maximum modulation bandwidths of ~7 GHz at 4.6 μm and ~20 GHz at 9 μm. By applying the injection locking scheme, we find that the modulation bandwidths of up to ~30 GHz and ~70 GHz can be achieved for QCLs at 4.6 μm and 9 μm, respectively, with an injection ratio of 5 dB. The result also shows that an ultrawide modulation bandwidth of more than 200 GHz is possible with a 10 dB injection ratio for QCLs at 9 μm. An important characteristic of injection-locked QCLs is the nonexistence of unstable locking region in the locking map, in contrast to their diode laser counterparts. We attribute this to the ultra-short upper laser state lifetimes of QCLs.
Plasma optical modulators for intense lasers
Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie
2016-01-01
Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369
Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators
NASA Astrophysics Data System (ADS)
Nagarjun, K. P.; Jeyaselvan, Vadivukarassi; Selvaraja, Shankar Kumar; Supradeepa, V. R.
2018-04-01
We experimentally demonstrate tunable, highly-stable frequency combs with high repetition-rates using a single, charge injection based silicon PN modulator. In this work, we demonstrate combs in the C-band with over 8 lines in a 20-dB bandwidth. We demonstrate continuous tuning of the center frequency in the C-band and tuning of the repetition-rate from 7.5GHz to 12.5GHz. We also demonstrate through simulations the potential for bandwidth scaling using an optimized silicon PIN modulator. We find that, the time varying free carrier absorption due to carrier injection, an undesirable effect in data modulators, assists here in enhancing flatness in the generated combs.
Bandwidth tunable microwave photonic filter based on digital and analog modulation
NASA Astrophysics Data System (ADS)
Zhang, Qi; Zhang, Jie; Li, Qiang; Wang, Yubing; Sun, Xian; Dong, Wei; Zhang, Xindong
2018-05-01
A bandwidth tunable microwave photonic filter based on digital and analog modulation is proposed and experimentally demonstrated. The digital modulation is used to broaden the effective gain spectrum and the analog modulation is to get optical lines. By changing the symbol rate of data pattern, the bandwidth is tunable from 50 MHz to 700 MHz. The interval of optical lines is set according to the bandwidth of gain spectrum which is related to the symbol rate. Several times of bandwidth increase are achieved compared to a single analog modulation and the selectivity of the response is increased by 3.7 dB compared to a single digital modulation.
Flexible All-Digital Receiver for Bandwidth Efficient Modulations
NASA Technical Reports Server (NTRS)
Gray, Andrew; Srinivasan, Meera; Simon, Marvin; Yan, Tsun-Yee
2000-01-01
An all-digital high data rate parallel receiver architecture developed jointly by Goddard Space Flight Center and the Jet Propulsion Laboratory is presented. This receiver utilizes only a small number of high speed components along with a majority of lower speed components operating in a parallel frequency domain structure implementable in CMOS, and can currently process up to 600 Mbps with standard QPSK modulation. Performance results for this receiver for bandwidth efficient QPSK modulation schemes such as square-root raised cosine pulse shaped QPSK and Feher's patented QPSK are presented, demonstrating the flexibility of the receiver architecture.
Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B
2011-04-25
We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.
Ge, Jia; Feng, Hanlin; Scott, Guy; Fok, Mable P
2015-01-01
A high-speed tunable microwave photonic notch filter with ultrahigh rejection ratio is presented, which is achieved by semiconductor optical amplifier (SOA)-based single-sideband modulation and optical spectral filtering with a phase modulator-incorporated Lyot (PM-Lyot) filter. By varying the birefringence of the phase modulator through electro-optic effect, electrically tuning of the microwave photonic notch filter is experimentally achieved at tens of gigahertz speed. The use of SOA-polarizer based single-sideband modulation scheme provides good sideband suppression over a wide frequency range, resulting in an ultrahigh rejection ratio of the microwave photonic notch filter. Stable filter spectrum with bandstop rejection ratio over 60 dB is observed over a frequency tuning range from 1.8 to 10 GHz. Compare with standard interferometric notch filter, narrower bandwidth and sharper notch profile are achieved with the unique PM-Lyot filter, resulting in better filter selectivity. Moreover, bandwidth tuning is also achieved through polarization adjustment inside the PM-Lyot filter, that the 10-dB filter bandwidth is tuned from 0.81 to 1.85 GHz.
Silicon optical modulators for optical digital and analog communications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yang, Lin; Ding, Jianfeng; Zhang, Lei; Shao, Sizu
2017-02-01
Silicon photonics is considered as a promising technology to overcome the difficulties of the existing digital and analog optical communication systems, such as low integration, high cost, and high power consumption. Silicon optical modulator, as a component to transfer data from electronic domain to optical one, has attracted extensive attentions in the past decade. In this paper, we review the statuses of the silicon optical modulators for digital and analog optical communications and introduce our efforts on these topics. We analyze the relationship between the performance and the structural parameters of the silicon optical modulator and present how to optimize its performance including electro-optical bandwidth, modulation efficiency, optical bandwidth and insertion loss. The fabricated silicon optical modulator has an electro-optical bandwidth of 30 GHz. Its extinction ratios are 14.0 dB, 11.2 dB and 9.0 dB at the speeds of 40 Gbps, 50 Gbps and 64 Gbps for OOK modulation. The high extinction ratio of the silicon optical modulator at the high speed makes it very appropriate for the application of optical coherent modulation, such as QPSK and 16-QAM. The fabricated silicon optical modulator also can be utilized for analog optical communication. With respect to a noise floor of -165 dBc, the dynamic ranges for the second-order harmonic and the third-order intermodulation distortion are 90.8 dB and 110.5 dB respectively. By adopting a differential driving structure, the dynamic range for the second-order harmonic can be further improved to 100.0 dB while the third-order intermodulation distortion remains the same level.
NASA Astrophysics Data System (ADS)
Sacher, Wesley David
Photonic integrated circuits implemented on silicon (Si) hold the potential for densely integrated electro-optic and passive devices manufactured by the high-volume fabrication and sophisticated assembly processes used for complementary metal-oxide-semiconductor (CMOS) electronics. However, high index contrast Si photonics has a number of functional limitations. In this thesis, several devices are proposed, designed, and experimentally demonstrated to overcome challenges in the areas of resonant modulation, waveguide loss, fiber-to-chip coupling, and polarization control. The devices were fabricated using foundry services at IBM and A*STAR Institute of Microelectronics (IME). First, we describe coupling modulated microrings, in which the coupler between a microring and the bus waveguide is modulated. The device circumvents the modulation bandwidth vs. resonator linewidth trade-off of conventional intracavity modulated microrings. We demonstrate a Si coupling modulated microring with a small-signal modulation response free of the parasitic resonator linewidth limitations at frequencies up to about 6x the linewidth. Comparisons of eye diagrams show that coupling modulation achieved data rates > 2x the rate attainable with intracavity modulation. Second, we demonstrate a silicon nitride (Si3N4)-on-Si photonic platform with independent Si3N4 and Si waveguides and taper transitions to couple light between the layers. The platform combines the excellent passive waveguide properties of Si3N4 and the compatibility of Si waveguides with electro-optic devices. Within the platform, we propose and demonstrate dual-level, Si3N 4-on-Si, fiber-to-chip grating couplers that simultaneously have wide bandwidths and high coupling efficiencies. Conventional Si and Si3N 4 grating couplers suffer from a trade-off between bandwidth and coupling efficiency. The dual-level grating coupler achieved a peak coupling efficiency of -1.3 dB and a 1-dB bandwidth of 80 nm, a record for the coupling efficiency-bandwidth product. Finally, we describe polarization rotator-splitters and controllers based on mode conversion between the fundamental transverse magnetic polarized mode and a high order transverse electric polarized mode in vertically asymmetric waveguides. We demonstrate the first polarization rotator-splitters and controllers that are fully compatible with standard active Si photonic platforms and extend the concept to our Si3N4-on-Si photonic platform.
The issue of FM to AM conversion on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browning, D F; Rothenberg, J E; Wilcox, R B
1998-08-13
The National Ignition Facility (NIF) baseline configuration for inertial confinement fusion requires phase modulation for two purposes. First, ~ 1Å of frequency modulation (FM) bandwidth at low modulation frequency is required to suppress buildup of Stimulated Brioullin Scattering (SBS) in the large aperture laser optics. Also ~ 3 Å or more bandwidth at high modulation frequency is required for smoothing of the speckle pattern illuminating the target by the smoothing by spectral dispersion method (SSD). Ideally, imposition of bandwidth by pure phase modulation does not affect the beam intensity. However, as a result of a large number of effects, themore » FM converts to amplitude modulation (AM). In general this adversely affects the laser performance, e.g. by reducing the margin against damage to the optics. In particular, very large conversion of FM to AM has been observed in the NIF all-fiber master oscillator and distribution systems. The various mechanisms leading to AM are analyzed and approaches to minimizing their effects are discussed.« less
NASA Astrophysics Data System (ADS)
Monavarian, M.; Rashidi, A.; Aragon, A. A.; Nami, M.; Oh, S. H.; DenBaars, S. P.; Feezell, D.
2018-05-01
InGaN/GaN light-emitting diodes (LEDs) with large modulation bandwidths are desirable for visible-light communication. Along with modulation speed, the consideration of the internal quantum efficiency (IQE) under operating conditions is also important. Here, we report the modulation characteristics of semipolar (20 2 ¯ 1 ¯ ) InGaN/GaN (LEDs) with single-quantum well (SQW) and multiple-quantum-well (MQW) active regions grown on free-standing semipolar GaN substrates with peak internal quantum efficiencies (IQEs) of 0.93 and 0.73, respectively. The MQW LEDs exhibit on average about 40-80% higher modulation bandwidth, reaching 1.5 GHz at 13 kA/cm2, but about 27% lower peak IQE than the SQW LEDs. We extract the differential carrier lifetimes (DLTs), RC parasitics, and carrier escape lifetimes and discuss their role in the bandwidth and IQE characteristics. A coulomb-enhanced capture process is shown to rapidly reduce the DLT of the MQW LED at high current densities. Auger recombination is also shown to play little role in increasing the speed of the LEDs. Finally, we investigate the trade-offs between the bandwidth and efficiency and introduce the bandwidth-IQE product as a potential figure of merit for optimizing speed and efficiency in InGaN/GaN LEDs.
Modulation bandwidth enhancement for coupled twin-square microcavity lasers.
Xiao, Zhi-Xiong; Huang, Yong-Zhen; Yang, Yue-De; Tang, Min; Xiao, Jin-Long
2017-08-15
Modulation bandwidth enhancements are investigated for coupled twin-square microcavity lasers due to photon-photon resonance effect. For a coupled twin-square microcavity laser with the square side length of 20 μm, we demonstrate the increase of 3-dB modulation bandwidth from 9.6 GHz to 19.5 GHz, by adjusting the resonance mode wavelength interval between two square microcavities. The enhanced modulation bandwidth is explained by rate equation analysis, and numerical simulations are conducted for large signal modulation with improved eye-diagrams at 40 Gbit/s.
Variable Bandwidth Filtering for Improved Sensitivity of Cross-Frequency Coupling Metrics
McDaniel, Jonathan; Liu, Song; Cornew, Lauren; Gaetz, William; Roberts, Timothy P.L.; Edgar, J. Christopher
2012-01-01
Abstract There is an increasing interest in examining cross-frequency coupling (CFC) between groups of oscillating neurons. Most CFC studies examine how the phase of lower-frequency brain activity modulates the amplitude of higher-frequency brain activity. This study focuses on the signal filtering that is required to isolate the higher-frequency neuronal activity which is hypothesized to be amplitude modulated. In particular, previous publications have used a filter bandwidth fixed to a constant for all assessed modulation frequencies. The present article demonstrates that fixed bandwidth filtering can destroy amplitude modulation and create false-negative CFC measures. To overcome this limitation, this study presents a variable bandwidth filter that ensures preservation of the amplitude modulation. Simulated time series data were created with theta-gamma, alpha-gamma, and beta-gamma phase-amplitude coupling. Comparisons between filtering methods indicate that the variable bandwidth approach presented in this article is preferred when examining amplitude modulations above the theta band. The variable bandwidth method of filtering an amplitude modulated signal is proposed to preserve amplitude modulation and enable accurate CFC measurements. PMID:22577870
Gürel, Kutan; Wittwer, Valentin J; Hakobyan, Sargis; Schilt, Stéphane; Südmeyer, Thomas
2017-03-15
We demonstrate the first diode-pumped Ti:sapphire laser frequency comb. It is pumped by two green laser diodes with a total pump power of 3 W. The Ti:sapphire laser generates 250 mW of average output power in 61-fs pulses at a repetition rate of 216 MHz. We generated an octave-spanning supercontinuum spectrum in a photonic-crystal fiber and detected the carrier envelope offset (CEO) frequency in a standard f-to-2f interferometer setup. We stabilized the CEO-frequency through direct current modulation of one of the green pump diodes with a feedback bandwidth of 55 kHz limited by the pump diode driver used in this experiment. We achieved a reduction of the CEO phase noise power spectral density by 140 dB at 1 Hz offset frequency. An advantage of diode pumping is the ability for high-bandwidth modulation of the pump power via direct current modulation. After this experiment, we studied the modulation capabilities and noise properties of green pump laser diodes with improved driver electronics. The current-to-output-power modulation transfer function shows a bandwidth larger than 1 MHz, which should be sufficient to fully exploit the modulation bandwidth of the Ti:sapphire gain for CEO stabilization in future experiments.
NASA Astrophysics Data System (ADS)
Fu, Enjin
Demand for more bandwidth is rapidly increasing, which is driven by data intensive applications such as high-definition (HD) video streaming, cloud storage, and terascale computing applications. Next-generation high-performance computing systems require power efficient chip-to-chip and intra-chip interconnect yielding densities on the order of 1Tbps/cm2. The performance requirements of such system are the driving force behind the development of silicon integrated optical interconnect, providing a cost-effective solution for fully integrated optical interconnect systems on a single substrate. Compared to conventional electrical interconnect, optical interconnects have several advantages, including frequency independent insertion loss resulting in ultra wide bandwidth and link latency reduction. For high-speed optical transmitter modules, the optical modulator is a key component of the optical I/O channel. This thesis presents a silicon integrated optical transmitter module design based on a novel silicon HBT-based carrier injection electroabsorption modulator (EAM), which has the merits of wide optical bandwidth, high speed, low power, low drive voltage, small footprint, and high modulation efficiency. The structure, mechanism, and fabrication of the modulator structure will be discussed which is followed by the electrical modeling of the post-processed modulator device. The design and realization of a 10Gbps monolithic optical transmitter module integrating the driver circuit architecture and the HBT-based EAM device in a 130nm BiCMOS process is discussed. For high power efficiency, a 6Gbps ultra-low power driver IC implemented in a 130nm BiCMOS process is presented. The driver IC incorporates an integrated 27-1 pseudo-random bit sequence (PRBS) generator for reliable high-speed testing, and a driver circuit featuring digitally-tuned pre-emphasis signal strength. With outstanding drive capability, the driver module can be applied to a wide range of carrier injection modulators and light-emitting diodes (LED) with drive voltage requirements below 1.5V. Measurement results show an optical link based on a 70MHz red LED work well at 300Mbps by using the pre-emphasis driver module. A traveling wave electrode (TWE) modulator structure is presented, including a novel design methodology to address process limitations imposed by a commercial silicon fabrication technology. Results from 3D full wave EM simulation demonstrate the application of the design methodology to achieve specifications, including phase velocity matching, insertion loss, and impedance matching. Results show the HBT-based TWE-EAM system has the bandwidth higher than 60GHz.
NASA Astrophysics Data System (ADS)
He, Huimin; Liu, Fengman; Li, Baoxia; Xue, Haiyun; Wang, Haidong; Qiu, Delong; Zhou, Yunyan; Cao, Liqiang
2016-11-01
With the development of the multicore processor, the bandwidth and capacity of the memory, rather than the memory area, are the key factors in server performance. At present, however, the new architectures, such as fully buffered DIMM (FBDIMM), hybrid memory cube (HMC), and high bandwidth memory (HBM), cannot be commercially applied in the server. Therefore, a new architecture for the server is proposed. CPU and memory are separated onto different boards, and optical interconnection is used for the communication between them. Each optical module corresponds to each dual inline memory module (DIMM) with 64 channels. Compared to the previous technology, not only can the architecture realize high-capacity and wide-bandwidth memory, it also can reduce power consumption and cost, and be compatible with the existing dynamic random access memory (DRAM). In this article, the proposed module with system-in-package (SiP) integration is demonstrated. In the optical module, the silicon photonic chip is included, which is a promising technology to be applied in the next-generation data exchanging centers. And due to the bandwidth-distance performance of the optical interconnection, SerDes chips are introduced to convert the 64-bit data at 800 Mbps from/to 4-channel data at 12.8 Gbps after/before they are transmitted though optical fiber. All the devices are packaged on cheap organic substrates. To ensure the performance of the whole system, several optimization efforts have been performed on the two modules. High-speed interconnection traces have been designed and simulated with electromagnetic simulation software. Steady-state thermal characteristics of the transceiver module have been evaluated by ANSYS APLD based on finite-element methodology (FEM). Heat sinks are placed at the hotspot area to ensure the reliability of all working chips. Finally, this transceiver system based on silicon photonics is measured, and the eye diagrams of data and clock signals are verified.
Method for efficient, narrow-bandwidth, laser compton x-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rey, D.; Ryan, W.; Ross, M.
A method for more efficiently utilizing the frequency bandwidth allocated for data transmission is presented. Current space and range communication systems use modulation and coding schemes that transmit 0.5 to 1.0 bits per second per Hertz of radio frequency bandwidth. The goal in this LDRD project is to increase the bandwidth utilization by employing advanced digital communications techniques. This is done with little or no increase in the transmit power which is usually very limited on airborne systems. Teaming with New Mexico State University, an implementation of trellis coded modulation (TCM), a coding and modulation scheme pioneered by Ungerboeck, wasmore » developed for this application and simulated on a computer. TCM provides a means for reliably transmitting data while simultaneously increasing bandwidth efficiency. The penalty is increased receiver complexity. In particular, the trellis decoder requires high-speed, application-specific digital signal processing (DSP) chips. A system solution based on the QualComm Viterbi decoder and the Graychip DSP receiver chips is presented.« less
Efficient green lasers for high-resolution scanning micro-projector displays
NASA Astrophysics Data System (ADS)
Bhatia, Vikram; Bauco, Anthony S.; Oubei, Hassan M.; Loeber, David A. S.
2010-02-01
Laser-based projectors are gaining increased acceptance in mobile device market due to their low power consumption, superior image quality and small size. The basic configuration of such micro-projectors is a miniature mirror that creates an image by raster scanning the collinear red, blue and green laser beams that are individually modulated on a pixel-bypixel basis. The image resolution of these displays can be limited by the modulation bandwidth of the laser sources, and the modulation speed of the green laser has been one of the key limitations in the development of these displays. We will discuss how this limitation is fundamental to the architecture of many laser designs and then present a green laser configuration which overcomes these difficulties. In this green laser architecture infra-red light from a distributed Bragg-reflector (DBR) laser diode undergoes conversion to green light in a waveguided second harmonic generator (SHG) crystal. The direct doubling in a single pass through the SHG crystal allows the device to operate at the large modulation bandwidth of the DBR laser. We demonstrate that the resultant product has a small footprint (<0.7 cc envelope volume), high efficiency (>9% electrical-to-optical conversion) and large modulation bandwidth (>100 MHz).
Structured Low-Density Parity-Check Codes with Bandwidth Efficient Modulation
NASA Technical Reports Server (NTRS)
Cheng, Michael K.; Divsalar, Dariush; Duy, Stephanie
2009-01-01
In this work, we study the performance of structured Low-Density Parity-Check (LDPC) Codes together with bandwidth efficient modulations. We consider protograph-based LDPC codes that facilitate high-speed hardware implementations and have minimum distances that grow linearly with block sizes. We cover various higher- order modulations such as 8-PSK, 16-APSK, and 16-QAM. During demodulation, a demapper transforms the received in-phase and quadrature samples into reliability information that feeds the binary LDPC decoder. We will compare various low-complexity demappers and provide simulation results for assorted coded-modulation combinations on the additive white Gaussian noise and independent Rayleigh fading channels.
Wu, Zhongwei; Xu, Yin
2018-04-20
The hybrid plasmonic effect with lower loss and comparable light confinement than surface plasmon polariton opens new avenues for strengthening light-matter interactions with low loss. Here, we propose and numerically analyze a graphene-based electro-absorption modulator (EAM) with high-modulation efficiency and broad optical bandwidth using a dual-slot hybrid plasmonic waveguide (HPW), which consists of a central dual-slot HPW connected with two taper transitions and two additional dual-slot HPWs for coupling it with the input and output silicon nanowires, where graphene layers are located at the bottom and top side of the whole dual-slot HPW region. By combining the huge light enhancement effect of the dual-slot HPW and graphene's tunable conductivity, we obtain a high-modulation efficiency (ME) of 1.76 dB/μm for the graphene-based dual-slot HPW (higher ME of 2.19 dB/μm can also be obtained). Based upon this promising result, we further design a graphene-based hybrid plasmonic EAM, achieving a modulation depth (MD) of 15.95 dB and insertion loss of 1.89 dB @1.55 μm, respectively, in a total length of only 10 μm, where its bandwidth can reach over 500 nm for keeping MD>15 dB; MD can also be improved by slightly increasing the device length or shrinking the waveguide thickness, showing strong advantages for applying it into on-chip high-performance silicon modulators.
Optical communication in free space
NASA Technical Reports Server (NTRS)
Plotkin, H. H.; Mcavoy, N.; Fitzmaurice, M. W.
1974-01-01
Two classes of laser communication systems for handling very high data rates across inter-satellite distances are considered that provide for high antenna gains, wide modulation bandwidths, and optical receiver sensitivities. System design considerations are based upon the carbon dioxide laser modulation to accommodate digital or analog information, and the neodymium doped YAG laser pulse for digital modulation.
High-Speed Operation of Interband Cascade Lasers
NASA Technical Reports Server (NTRS)
Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.
2010-01-01
Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links
CEO stabilization of a femtosecond laser using a SESAM as fast opto-optical modulator.
Hoffmann, Martin; Schilt, Stéphane; Südmeyer, Thomas
2013-12-02
We present a new method for intra-cavity control of the carrier-envelope offset (CEO) frequency of ultrafast lasers that combines high feedback bandwidth with low loss, low nonlinearity, and low dispersion. A semiconductor saturable-absorber mirror (SESAM) inside a modelocked laser is optically pumped with a continuous-wave (cw) laser. In this way, the SESAM acts as intra-cavity opto-optical modulator (OOM): the optical power of the cw-laser corresponds to a high-bandwidth modulation channel for CEO frequency control. We experimentally verified this method for a femtosecond Er:Yb:glass oscillator (ERGO), in which one SESAM is in parallel used for modelocking and as intra-cavity OOM for achieving a tight CEO lock. This laser can also be CEO-stabilized in the usual scheme, in which the laser pump current is modulated, i.e., the gain element acts as intra-cavity OOM. We compare the performance with gain and SESAM OOM measuring CEO transfer function, frequency noise power spectral density (PSD), and Allan deviation for integration times up to 1000 s. In the case of the gain OOM, the millisecond upper-state lifetime of the Er:Yb:glass limits the achievable CEO-control bandwidth to <10 kHz. The feedback bandwidth of the SESAM OOM was more than a factor of 10 higher than the gain OOM bandwidth and was mainly limited by the used current driver. The residual integrated phase noise (1 Hz - 100 kHz) of the ~20-MHz CEO beat was improved by more than an order of magnitude (from 720 mrad to less than 65 mrad), and the fractional frequency stability by a factor of 4 (from 1∙10
Static and Dynamic Effects of Lateral Carrier Diffusion in Semiconductor Lasers
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. It is well known that the value of diffusion coefficients affects the threshold pumping current of a semiconductor laser. At the same time, the strength of carrier diffusion process is expected to affect the modulation bandwidth of an AC-modulated laser. It is important not only to investigate the combined DC and AC effects due to carrier diffusion, but also to separate the AC effects from that of the combined effects in order to provide design insights for high speed modulation. In this presentation, we apply a hydrodynamic model developed by the present authors recently from the semiconductor Bloch equations. The model allows microscopic calculation of the lateral carrier diffusion coefficient, which is a nonlinear function of the carrier density and plasma temperature. We first studied combined AC and DC effects of lateral carrier diffusion by studying the bandwidth dependence on diffusion coefficient at a given DC current under small signal modulation. The results show an increase of modulation bandwidth with decrease in the diffusion coefficient. We simultaneously studied the effects of nonlinearity in the diffusion coefficient. To clearly identify how much of the bandwidth increase is a result of decrease in the threshold pumping current for smaller diffusion coefficient, thus an effective increase of DC pumping, we study the bandwidth dependence on diffusion coefficient at a given relative pumping. A detailed comparison of the two cases will be presented.
NASA Technical Reports Server (NTRS)
Saus, Joseph R.; Chang, Clarence T.; DeLaat, John C.; Vrnak, Daniel R.
2010-01-01
A test rig was designed and developed at the NASA Glenn Research Center (GRC) for the purpose of characterizing high bandwidth liquid fuel flow modulator candidates to determine their suitability for combustion instability control research. The test rig is capable of testing flow modulators at up to 600 psia supply pressure and flows of up to 2 gpm. The rig is designed to provide a quiescent flow into the test section in order to isolate the dynamic flow modulations produced by the test article. Both the fuel injector orifice downstream of the test article and the combustor are emulated. The effect of fuel delivery line lengths on modulator dynamic performance can be observed and modified to replicate actual fuel delivery systems. For simplicity, water is currently used as the working fluid, although future plans are to use jet fuel. The rig is instrumented for dynamic pressures and flows and a high-speed data system is used for dynamic data acquisition. Preliminary results have been obtained for one candidate flow modulator.
Ring modulator small-signal response analysis based on pole-zero representation.
Karimelahi, Samira; Sheikholeslami, Ali
2016-04-04
We present a closed-form expression for the small-signal response of a depletion-mode ring modulator and verify it by measurement results. Both electrical and optical behavior of micro-ring modulator as well as the loss variation due to the index modulation is considered in the derivation. This expression suggests that a ring modulator is a third-order system with one real pole, one zero and a pair of complex-conjugate poles. The exact positions of the poles/zero are given and shown to be dependent upon parameters such as electrical bandwidth, coupling condition, optical loss, and sign/value of laser detunings. We show that the location of zero is different for positive and negative detuning, and therefore, the ring modulator frequency response is asymmetric. We use the gain-bandwidth product as a figure of merit and calculate it for various pole/zero locations. We show that gain-bandwidth for the over-coupled ring modulator is superior compared to other coupling conditions. Also, we show that the gain-bandwidth product can be increased to a limit by increasing the electrical bandwidth.
Methods and Devices for Modifying Active Paths in a K-Delta-1-Sigma Modulator
NASA Technical Reports Server (NTRS)
Ardalan, Sasan (Inventor)
2017-01-01
The invention relates to an improved K-Delta-1-Sigma Modulators (KG1Ss) that achieve multi GHz sampling rates with 90 nm and 45 nm CMOS processes, and that provide the capability to balance performance with power in many applications. The improved KD1Ss activate all paths when high performance is needed (e.g. high bandwidth), and reduce the effective bandwidth by shutting down multiple paths when low performance is required. The improved KD1Ss can adjust the baseband filtering for lower bandwidth, and can provide large savings in power consumption while maintaining the communication link, which is a great advantage in space communications. The improved KD1Ss herein provides a receiver that adjusts to accommodate a higher rate when a packet is received at a low bandwidth, and at a initial lower rate, power is saved by turning off paths in the KD1S Analog to Digital Converter, and where when a higher rate is required, multiple paths are enabled in the KD1S to accommodate the higher band widths.
NASA Astrophysics Data System (ADS)
Xue, Bin; Liu, Zhe; Yang, Jie; Feng, Liangsen; Zhang, Ning; Wang, Junxi; Li, Jinmin
2018-03-01
An off-the-shelf green laser diode (LD) was measured to investigate its temperature dependent characteristics. Performance of the device was severely restricted by rising temperature in terms of increasing threshold current and decreasing modulation bandwidth. The observation reveals that dynamic characteristics of the LD is sensitive to temperature. Influence of light attenuation on the modulation bandwidth of the green LD was also studied. The impact of light attenuation on the modulation bandwidth of the LD in short and low turbid water channel was not obvious while slight difference in modulation bandwidth under same injection level was observed between water channel and free space even at short range.
Code of Federal Regulations, 2010 CFR
2010-10-01
... controlled carrier) during one radio frequency cycle under conditions of no modulation. Mean power. The power... long compared with the period of the lowest frequency encountered in the modulation. A time of 1/10... bandwidth. Occupied bandwidth. The frequency bandwidth such that, below its lower and above its upper...
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1988-01-01
During the period December 1, 1987 through May 31, 1988, progress was made in the following areas: construction of Multi-Dimensional Bandwidth Efficient Trellis Codes with MPSK modulation; performance analysis of Bandwidth Efficient Trellis Coded Modulation schemes; and performance analysis of Bandwidth Efficient Trellis Codes on Fading Channels.
100 GHz FMCW Radar Module Based on Broadband Schottky-diode Transceiver
NASA Astrophysics Data System (ADS)
Jiang, Shu; Xu, Jinping; Dou, Jiangling; Wang, Wenbo
2018-04-01
We report on a W-band frequency-modulated continuous-wave (FMCW) radar module with fractional bandwidth over 10 %. To improve flatness over large operation bandwidth, the radar module is developed with focus on the 90-101 GHz modular transceiver, for which accurate modeling of Schottky diode in combination with an integrated design method are proposed in this work. Moreover, the nonlinearity compensation approach is introduced to further optimize the range resolution. To verify the design method and RF performance of the radar module, both measurements of critical components and ISAR imaging experiments are performed. The results demonstrate that high resolution in range and azimuth dimensions can be achieved based on the radar module, of which the receiving gain flatness and transmitting power flatness are better than ±1.3 dB and ±0.7 dB over 90 101 GHz, respectively.
Silicon photonics plasma-modulators with advanced transmission line design.
Merget, Florian; Azadeh, Saeed Sharif; Mueller, Juliana; Shen, Bin; Nezhad, Maziar P; Hauck, Johannes; Witzens, Jeremy
2013-08-26
We have investigated two novel concepts for the design of transmission lines in travelling wave Mach-Zehnder interferometer based Silicon Photonics depletion modulators overcoming the analog bandwidth limitations arising from cross-talk between signal lines in push-pull modulators and reducing the linear losses of the transmission lines. We experimentally validate the concepts and demonstrate an E/O -3 dBe bandwidth of 16 GHz with a 4V drive voltage (in dual drive configuration) and 8.8 dB on-chip insertion losses. Significant bandwidth improvements result from suppression of cross-talk. An additional bandwidth enhancement of ~11% results from a reduction of resistive transmission line losses. Frequency dependent loss models for loaded transmission lines and E/O bandwidth modeling are fully verified.
High-speed Si/GeSi hetero-structure Electro Absorption Modulator.
Mastronardi, L; Banakar, M; Khokhar, A Z; Hattasan, N; Rutirawut, T; Bucio, T Domínguez; Grabska, K M; Littlejohns, C; Bazin, A; Mashanovich, G; Gardes, F Y
2018-03-19
The ever-increasing demand for integrated, low power interconnect systems is pushing the bandwidth density of CMOS photonic devices. Taking advantage of the strong Franz-Keldysh effect in the C and L communication bands, electro-absorption modulators in Ge and GeSi are setting a new standard in terms of device footprint and power consumption for next generation photonics interconnect arrays. In this paper, we present a compact, low power electro-absorption modulator (EAM) Si/GeSi hetero-structure based on an 800 nm SOI overlayer with a modulation bandwidth of 56 GHz. The device design and fabrication tolerant process are presented, followed by the measurement analysis. Eye diagram measurements show a dynamic ER of 5.2 dB at a data rate of 56 Gb/s at 1566 nm, and calculated modulator power is 44 fJ/bit.
High-Power, High-Speed Electro-Optic Pockels Cell Modulator
NASA Technical Reports Server (NTRS)
Hawthorne, Justin; Battle, Philip
2013-01-01
Electro-optic modulators rely on a change in the index of refraction for the optical wave as a function of an applied voltage. The corresponding change in index acts to delay the wavefront in the waveguide. The goal of this work was to develop a high-speed, high-power waveguide- based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key innovation in this effort is the use of potassium titanyl phosphate (KTP) waveguides, making the highpower, polarization-based waveguide amplitude modulator possible. Furthermore, because it is fabricated in KTP, the waveguide component will withstand high optical power and have a significantly higher RF modulation figure of merit (FOM) relative to lithium niobate. KTP waveguides support high-power TE and TM modes - a necessary requirement for polarization-based modulation as with a Pockels cell. High-power fiber laser development has greatly outpaced fiber-based modulators in terms of its maturity and specifications. The demand for high-performance nonlinear optical (NLO) devices in terms of power handling, efficiency, bandwidth, and useful wavelength range has driven the development of bulk NLO options, which are limited in their bandwidth, as well as waveguide based LN modulators, which are limited by their low optical damage threshold. Today, commercially available lithium niobate (LN) modulators are used for laser formatting; however, because of photorefractive damage that can reduce transmission and increase requirements on bias control, LN modulators cannot be used with powers over several mW, dependent on wavelength. The high-power, high-speed modulators proposed for development under this effort will enable advancements in several exciting fields including lidarbased remote sensing, atomic interferometry, free-space laser communications, and others.
Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J
2017-04-17
This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.
Nonlinear Detection, Estimation, and Control for Free-Space Optical Communication
2008-08-17
original message. The promising features of this communication scheme such as high-bandwidth, power efficiency, and security, render it a viable means...bandwidth, power efficiency, and security, render it a viable means for high data rate point-to-point communication. In this dissertation, we adopt a...Department of Electrical and Computer Engineering In free-space optical communication, the intensity of a laser beam is modulated by a message, the beam
NASA Technical Reports Server (NTRS)
Gioannini, Bryan; Wong, Yen; Wesdock, John
2005-01-01
The National Aeronautics and Space Administration (NASA) has recently established the Tracking and Data Relay Satellite System (TDRSS) K-band Upgrade Project (TKUP), a project intended to enhance the TDRSS Ku-band and Ka-band Single Access Return 225 MHz (Ku/KaSAR-225) data service by adding the capability to process bandwidth efficient signal design and to replace the White Sand Complex (WSC) KSAR high data rate ground equipment and high rate switches which are nearing obsolescence. As a precursor to this project, a modulation and coding study was performed to identify signal structures which maximized the data rate through the Ku/KaSAR-225 channel, minimized the required customer EIRP and ensured acceptable hardware complexity on the customer platform. This paper presents the results and conclusions of the TKUP modulation and coding study.
Pseudo-Random Modulation of a Laser Diode for Generating Ultrasonic Longitudinal Waves
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Anatasi, Robert F.
2004-01-01
Laser generated ultrasound systems have historically been more complicated and expensive than conventional piezoelectric based systems, and this fact has relegated the acceptance of laser based systems to niche applications for which piezoelectric based systems are less suitable. Lowering system costs, while improving throughput, increasing ultrasound signal levels, and improving signal-to-noise are goals which will help increase the general acceptance of laser based ultrasound. One current limitation with conventional laser generated ultrasound is a material s damage threshold limit. Increasing the optical power to generate more signal eventually damages the material being tested due to rapid, high heating. Generation limitations for laser based ultrasound suggests the use of pulse modulation techniques as an alternate generation method. Pulse modulation techniques can spread the laser energy over time or space, thus reducing laser power densities and minimizing damage. Previous experiments by various organizations using spatial or temporal pulse modulation have been shown to generate detectable surface, plate, and bulk ultrasonic waves with narrow frequency bandwidths . Using narrow frequency bandwidths improved signal detectability, but required the use of expensive and powerful lasers and opto-electronic systems. The use of a laser diode to generate ultrasound is attractive because of its low cost, small size, light weight, simple optics and modulation capability. The use of pulse compression techniques should allow certain types of laser diodes to produce usable ultrasonic signals. The method also does not need to be limited to narrow frequency bandwidths. The method demonstrated here uses a low power laser diode (approximately 150 mW) that is modulated by controlling the diode s drive current and the resulting signal is recovered by cross correlation. A potential application for this system which is briefly demonstrated is in detecting signals in thick composite materials where attenuation is high and signal amplitude and bandwidth are at a premium.
40-Gb/s directly-modulated photonic crystal lasers under optical injection-locking
NASA Astrophysics Data System (ADS)
Chen, Chin-Hui; Takeda, Koji; Shinya, Akihiko; Nozaki, Kengo; Sato, Tomonari; Kawaguchi, Yoshihiro; Notomi, Masaya; Matsuo, Shinji
2011-08-01
CMOS integrated circuits (IC) usually requires high data bandwidth for off-chip input/output (I/O) data transport with sufficiently low power consumption in order to overcome pin-count limitation. In order to meet future requirements of photonic network interconnect, we propose an optical output device based on an optical injection-locked photonic crystal (PhC) laser to realize low-power and high-speed off-chip interconnects. This device enables ultralow-power operation and is suitable for highly integrated photonic circuits because of its strong light-matter interaction in the PhC nanocavity and ultra-compact size. High-speed operation is achieved by using the optical injection-locking (OIL) technique, which has been shown as an effective means to enhance modulation bandwidth beyond the relaxation resonance frequency limit. In this paper, we report experimental results of the OIL-PhC laser under various injection conditions and also demonstrate 40-Gb/s large-signal direct modulation with an ultralow energy consumption of 6.6 fJ/bit.
Digital Intermediate Frequency Receiver Module For Use In Airborne Sar Applications
Tise, Bertice L.; Dubbert, Dale F.
2005-03-08
A digital IF receiver (DRX) module directly compatible with advanced radar systems such as synthetic aperture radar (SAR) systems. The DRX can combine a 1 G-Sample/sec 8-bit ADC with high-speed digital signal processor, such as high gate-count FPGA technology or ASICs to realize a wideband IF receiver. DSP operations implemented in the DRX can include quadrature demodulation and multi-rate, variable-bandwidth IF filtering. Pulse-to-pulse (Doppler domain) filtering can also be implemented in the form of a presummer (accumulator) and an azimuth prefilter. An out of band noise source can be employed to provide a dither signal to the ADC, and later be removed by digital signal processing. Both the range and Doppler domain filtering operations can be implemented using a unique pane architecture which allows on-the-fly selection of the filter decimation factor, and hence, the filter bandwidth. The DRX module can include a standard VME-64 interface for control, status, and programming. An interface can provide phase history data to the real-time image formation processors. A third front-panel data port (FPDP) interface can send wide bandwidth, raw phase histories to a real-time phase history recorder for ground processing.
NASA Astrophysics Data System (ADS)
Bock, Carlos; Prat, Josep; Walker, Stuart D.
2005-12-01
A novel time/space/wavelength division multiplexing (TDM/WDM) architecture using the free spectral range (FSR) periodicity of the arrayed waveguide grating (AWG) is presented. A shared tunable laser and a photoreceiver stack featuring dynamic bandwidth allocation (DBA) and remote modulation are used for transmission and reception. Transmission tests show correct operation at 2.5 Gb/s to a 30-km reach, and network performance calculations using queue modeling demonstrate that a high-bandwidth-demanding application could be deployed on this network.
Liu, Chuanbao; Bai, Yang; Zhao, Qian; Yang, Yihao; Chen, Hongsheng; Zhou, Ji; Qiao, Lijie
2016-01-01
Metasurfaces have powerful abilities to manipulate the properties of electromagnetic waves flexibly, especially the modulation of polarization state for both linearly polarized (LP) and circularly polarized (CP) waves. However, the transmission efficiency of cross-polarization conversion by a single-layer metasurface has a low theoretical upper limit of 25% and the bandwidth is usually narrow, which cannot be resolved by their simple additions. Here, we efficiently manipulate polarization coupling in multilayer metasurface to promote the transmission of cross-polarization by Fabry-Perot resonance, so that a high conversion coefficient of 80–90% of CP wave is achieved within a broad bandwidth in the metasurface with C-shaped scatters by theoretical calculation, numerical simulation and experiments. Further, fully controlling Pancharatnam-Berry phase enables to realize polarized beam splitter, which is demonstrated to produce abnormal transmission with high conversion efficiency and broad bandwidth. PMID:27703254
NASA Astrophysics Data System (ADS)
Wang, Yunxin; Li, Jingnan; Wang, Dayong; Zhou, Tao; Xu, Jiahao; Zhong, Xin; Yang, Dengcai; Rong, Lu
2018-03-01
An ultra-wideband microwave photonic frequency downconverter is proposed based on carrier-suppressed single-sideband (CS-SSB) modulation. A radio frequency (RF) signal and a local oscillator (LO) signal are combined to drive a dual-parallel Mach-Zehnder modulator (DPMZM) through the electrical 90°hybrid coupler. To break through the bandwidth limit, an optical bandpass filter (OBPF) is applied simultaneously. Then a photodetector (PD) after OBPF is used to obtain intermediate frequency (IF) signal. Experimental results demonstrate that the proposed frequency downconverter can generate the CS-SSB modulation signal from 2 to 40 GHz in optical spectrum. All the mixing spurs are completely suppressed under the noise floor in electrical spectrum, and the output IF signal possesses high purity with a suppression ratio of the undesired signals (≥40 dB). Furthermore, the multi-octave downconversion can also be implemented to satisfy the bandwidth requirement of multi-channel communication. The proposed frequency downconverter supplies an ultra-wideband and high-purity alternative for the signal processing in microwave photonic applications.
Dailey, James M; Power, Mark J; Webb, Roderick P; Manning, Robert J
2011-12-19
We report on the novel all-optical generation of duobinary (DB) and alternate-mark-inversion (AMI) modulation formats at 42.6 Gb/s from an input on-off keyed signal. The modulation converter consists of two semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer gates. A detailed SOA model numerically confirms the operational principles and experimental data shows successful AMI and DB conversion at 42.6 Gb/s. We also predict that the operational bandwidth can be extended beyond 40 Gb/s by utilizing a new pattern-effect suppression scheme, and demonstrate dramatic reductions in patterning up to 160 Gb/s. We show an increasing trade-off between pattern-effect reduction and mean output power with increasing bitrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollet, O., E-mail: oriane.mollet@lpn.cnrs.fr; Martinez, A.; Merghem, K.
In this paper, we report the characteristics of InAs/InP quantum dashes (QDash) based lasers emitting around 1.55 μm. An unprecedented high modal gain of ∼100 cm{sup −1} is obtained for an optimized active structure by stacking 12 QDash layers. Directly modulated lasers allowed achieving a modulation bandwidth of ∼10 GHz and a Henry factor around 5. Thanks to p-type doping, the Henry factor value is reduced down to 2.7 while the modulation bandwidth still amounts to ∼10 GHz. This shows that doping of the active region is important to improve the dynamic characteristics of QDash lasers.
Kwon, Oh Kee; Han, Young Tak; Baek, Yong Soon; Chung, Yun C
2012-05-21
We present and demonstrate a simple and cost-effective technique for improving the modulation bandwidth of electroabsorption-modulated laser (EML). This technique utilizes the RF resonance caused by the EML chip (i.e., junction capacitance) and bonding wire (i.e, wire inductance). We analyze the effects of the lengths of the bonding wires on the frequency responses of EML by using an equivalent circuit model. To verify this analysis, we package a lumped EML chip on the sub-mount and measure its frequency responses. The results show that, by using the proposed technique, we can increase the modulation bandwidth of EML from ~16 GHz to ~28 GHz.
NASA Astrophysics Data System (ADS)
Blauvelt, H.; Thurmond, G.; Parsons, J.; Lewis, D.; Yen, H.
1984-08-01
High-speed GaAs Schottky barrier photodiodes have been fabricated and characterized. These detectors have 3-dB bandwidths of 20 GHz and quantum efficiencies as high as 70 percent. The response of the detectors to light modulated at 1-18 GHz has been directly measured. Microwave modulated optical signals were obtained by using a LiNbO3 traveling wave modulator and by heterodyning two laser diodes.
Spectrum-Modulating Fiber-Optic Sensors
NASA Technical Reports Server (NTRS)
Beheim, Glenn; Fritsch, Klaus
1989-01-01
Family of spectrum-modulating fiber-optic sensors undergoing development for use in aircraft-engine control systems. Fiber-optic sensors offer advantages of small size, high bandwidth, immunity to electromagnetic interference, and light weight. Furthermore, they reduce number of locations on aircraft to which electrical power has to be supplied.
Pulse Shaped 8-PSK Bandwidth Efficiency and Spectral Spike Elimination
NASA Technical Reports Server (NTRS)
Tao, Jian-Ping
1998-01-01
The most bandwidth-efficient communication methods are imperative to cope with the congested frequency bands. Pulse shaping methods have excellent effects on narrowing bandwidth and increasing band utilization. The position of the baseband filters for the pulse shaping is crucial. Post-modulation pulse shaping (a low pass filter is located after the modulator) can change signals from constant envelope to non-constant envelope, and non-constant envelope signals through non-linear device (a SSPA or TWT) can further spread the power spectra. Pre-modulation pulse shaping (a filter is located before the modulator) will have constant envelope. These two pulse shaping methods have different effects on narrowing the bandwidth and producing bit errors. This report studied the effect of various pre-modulation pulse shaping filters with respect to bandwidth, spectral spikes and bit error rate. A pre-modulation pulse shaped 8-ary Phase Shift Keying (8PSK) modulation was used throughout the simulations. In addition to traditional pulse shaping filters, such as Bessel, Butterworth and Square Root Raised Cosine (SRRC), other kinds of filters or pulse waveforms were also studied in the pre-modulation pulse shaping method. Simulations were conducted by using the Signal Processing Worksystem (SPW) software package on HP workstations which simulated the power spectral density of pulse shaped 8-PSK signals, end to end system performance and bit error rates (BERS) as a function of Eb/No using pulse shaping in an AWGN channel. These results are compared with the post-modulation pulse shaped 8-PSK results. The simulations indicate traditional pulse shaping filters used in pre-modulation pulse shaping may produce narrower bandwidth, but with worse BER than those in post-modulation pulse shaping. Theory and simulations show pre- modulation pulse shaping could also produce discrete line power spectra (spikes) at regular frequency intervals. These spikes may cause interference with adjacent channel and reduce power efficiency. Some particular pulses (filters), such as trapezoid and pulses with different transits (such as weighted raised cosine transit) were found to reduce bandwidth and not generate spectral spikes. Although a solid state power amplifier (SSPA) was simulated in the non-linear (saturation) region, output power spectra did not spread due to the constant envelope 8-PSK signals.
A high frequency GaAlAs travelling wave electro-optic modulator at 0.82 micrometers
NASA Technical Reports Server (NTRS)
Chorey, Christopher M.; Ferendeci, Altan; Bhasin, Kul B.
1988-01-01
Experimental GaAlAs modulators operating at 0.82 micrometers using a Mach-Zehnder interferometer configuration were designed and fabricated. Coplanar 50 ohm travelling wave microwave electrodes were used to obtain a bandwidth length product of 11.95 GHz-cm. The design, fabrication and dc performance of the GaAlAs travelling wave modulator is presented.
A review of demodulation techniques for amplitude-modulation atomic force microscopy
Harcombe, David M; Ragazzon, Michael R P; Moheimani, S O Reza; Fleming, Andrew J
2017-01-01
In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in constant-height mode. PMID:28900596
NASA Astrophysics Data System (ADS)
Elgamri, Abdelghafor
The increased demand from IP traffic, video application and cell backhaul has placed fiber routes under severe stains. The high demands for large bandwidth from enormous numbers from cell sites on a network made the capacity of yesterday's networks not adequate for today's bandwidth demand. Carries considered Dense Wavelength Division Multiplexing (DWDM) network to overcome this issue. Recently, there has been growing interest in fiber Raman amplifiers due to their capability to upgrade the wavelength-division-multiplexing bandwidth, arbitrary gain bandwidth. In addition, photonic crystal fibers have been widely modeled, studied, and fabricated due to their peculiar properties that cannot be achieved with conventional fibers. The focus of this thesis is to develop a low-noise broadband Raman amplification system based on photonic crystal Fiber that can be implemented in high capacity DWDM network successfully. The design a module of photonic crystal fiber Raman amplifier is based on the knowledge of the fiber cross-sectional characteristics i.e. the geometric parameters and the Germania concentration in the dope area. The module allows to study different air-hole dimension and disposition, with or without a central doped area. In addition the design integrates distributed Raman amplifier and nonlinear optical loop mirror to improve the signal to noise ratio and overall gain in large capacity DWDM networks.
Wang, Zhaolu; Liu, Hongjun; Sun, Qibing; Huang, Nan; Li, Xuefeng
2014-12-15
A width-modulated silicon waveguide is proposed to realize non-degenerate phase sensitive optical parametric amplification. It is found that the relative phase at the input of the phase sensitive amplifier (PSA) θIn-PSA can be tuned by tailoring the width and length of the second segment of the width-modulated silicon waveguide, which will influence the gain in the parametric amplification process. The maximum gain of PSA is larger by 9 dB compared with the phase insensitive amplifier (PIA) gain, and the gain bandwidth of PSA is larger by 35 nm compared with the gain bandwidth of PIA. Our on-chip PSA can find important potential applications in highly integrated optical circuits for optical chip-to-chip communication and computers.
NASA Astrophysics Data System (ADS)
Siddiqui, Aleem; Reinke, Charles; Shin, Heedeuk; Jarecki, Robert L.; Starbuck, Andrew L.; Rakich, Peter
2017-05-01
The performance of electronic systems for radio-frequency (RF) spectrum analysis is critical for agile radar and communications systems, ISR (intelligence, surveillance, and reconnaissance) operations in challenging electromagnetic (EM) environments, and EM-environment situational awareness. While considerable progress has been made in size, weight, and power (SWaP) and performance metrics in conventional RF technology platforms, fundamental limits make continued improvements increasingly difficult. Alternatively, we propose employing cascaded transduction processes in a chip-scale nano-optomechanical system (NOMS) to achieve a spectral sensor with exceptional signal-linearity, high dynamic range, narrow spectral resolution and ultra-fast sweep times. By leveraging the optimal capabilities of photons and phonons, the system we pursue in this work has performance metrics scalable well beyond the fundamental limitations inherent to all electronic systems. In our device architecture, information processing is performed on wide-bandwidth RF-modulated optical signals by photon-mediated phononic transduction of the modulation to the acoustical-domain for narrow-band filtering, and then back to the optical-domain by phonon-mediated phase modulation (the reverse process). Here, we rely on photonics to efficiently distribute signals for parallel processing, and on phononics for effective and flexible RF-frequency manipulation. This technology is used to create RF-filters that are insensitive to the optical wavelength, with wide center frequency bandwidth selectivity (1-100GHz), ultra-narrow filter bandwidth (1-100MHz), and high dynamic range (70dB), which we will present. Additionally, using this filter as a building block, we will discuss current results and progress toward demonstrating a multichannel-filter with a bandwidth of < 10MHz per channel, while minimizing cumulative optical/acoustic/optical transduced insertion-loss to ideally < 10dB. These proposed metric represent significant improvements over RF-platforms.
Generation of broadband laser by high-frequency bulk phase modulator with multipass configuration.
Zhang, Peng; Jiang, Youen; Zhou, Shenlei; Fan, Wei; Li, Xuechun
2014-12-10
A new technique is presented for obtaining a large broadband nanosecond-laser pulse. This technique is based on multipass phase modulation of a single-frequency nanosecond-laser pulse from the integrated front-end source, and it is able to shape the temporal profile of the pulse arbitrarily, making this approach attractive for high-energy-density physical experiments in current laser fusion facilities. Two kinds of cavity configuration for multipass modulation are proposed, and the performances of both of them are discussed theoretically in detail for the first time to our knowledge. Simulation results show that the bandwidth of the generated laser pulse by this approach can achieve more than 100 nm in principle if adjustment accuracy of the time interval between contiguous passes is controlled within 0.1% of a microwave period. In our preliminary experiment, a 2 ns laser pulse with 1.35-nm bandwidth in 1053 nm is produced via this technique, which agrees well with the theoretical result. Owing to an all-solid-state structure, the energy of the pulse achieves 25 μJ. In the future, with energy compensation and spectrum filtering, this technique is expected to generate a nanosecond-laser pulse of 3 nm or above bandwidth with energy of about 100 μJ.
Enhanced speed in fluorescence imaging using beat frequency multiplexing
NASA Astrophysics Data System (ADS)
Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke
2016-03-01
Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.
Concatenated Coding Using Trellis-Coded Modulation
NASA Technical Reports Server (NTRS)
Thompson, Michael W.
1997-01-01
In the late seventies and early eighties a technique known as Trellis Coded Modulation (TCM) was developed for providing spectrally efficient error correction coding. Instead of adding redundant information in the form of parity bits, redundancy is added at the modulation stage thereby increasing bandwidth efficiency. A digital communications system can be designed to use bandwidth-efficient multilevel/phase modulation such as Amplitude Shift Keying (ASK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK) or Quadrature Amplitude Modulation (QAM). Performance gain can be achieved by increasing the number of signals over the corresponding uncoded system to compensate for the redundancy introduced by the code. A considerable amount of research and development has been devoted toward developing good TCM codes for severely bandlimited applications. More recently, the use of TCM for satellite and deep space communications applications has received increased attention. This report describes the general approach of using a concatenated coding scheme that features TCM and RS coding. Results have indicated that substantial (6-10 dB) performance gains can be achieved with this approach with comparatively little bandwidth expansion. Since all of the bandwidth expansion is due to the RS code we see that TCM based concatenated coding results in roughly 10-50% bandwidth expansion compared to 70-150% expansion for similar concatenated scheme which use convolution code. We stress that combined coding and modulation optimization is important for achieving performance gains while maintaining spectral efficiency.
NASA Astrophysics Data System (ADS)
Murawski, Robert K.
Quantum Cascade Lasers (QCL) are unique unipolar conduction band devices designed to emit in the mid infrared region (MIR). They have been employed very successfully in spectroscopy and sensing applications. Motivated by predictions of modulation bandwidths above 100 GHz, communication links based on QCLs were recently demonstrated. However, the intrinsic device circuitry of the QCL limits its bandwidth. In this thesis a new All-Optical Modulation of the QCL is presented and investigated both theoretically and experimentally. This method of modulation allows for full access to the bandwidth as well as unique optical control of the MIR laser emission. For this purpose, conduction and valence band wave functions for the complex QCL structure are presented allowing for the first time calculations of their interband energy resonances. Based on this knowledge, a novel optical modulation scheme is developed utilizing interband transition for laser modulation. Using laser rate equations, more accurate predictions for the response function can be derived. Optical modulation is shown to be superior to direct modulation. In addition to this theoretical framework, first experiments are presented on the effects of illuminating a QCL with additional lasers at or above the interband gap. The first demonstration of All-Optical Modulation was achieved using time varying near infrared illumination and the complimentary signature in the MIR QCL emission was observed. In addition to extending the knowledge base of QCL research by a first calculation of its valence band structure, this work opens new possibilities in modulation and control of the QCL's MIR emission by interband transition. Application of this technique range from fundamental physics research (e.g. electron coherence) to ultrafast communication (e.g. free-space links) and high-resolution spectroscopy.
OM300 Direction Drilling Module
MacGugan, Doug
2013-08-22
OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process
An ultrawide-bandwidth single-sideband modulator for terahertz frequencies
NASA Astrophysics Data System (ADS)
Meijer, A. S.; Berden, G.; Arslanov, D. D.; Ozerov, M.; Jongma, R. T.; van der Zande, W. J.
2016-11-01
Wireless high-speed data communication using terahertz (THz) carrier frequencies is becoming reality with data rates beyond 100 Gbit s-1. Many of the mobile applications use internet access and require that THz wireless base stations are connected to a global network, such as the radio-over-fibre network. We present the realization of an ultrawide bandwidth THz optical single-sideband (OSSB) modulator for converting (free-space) THz signals to THz optical modulations with an increased spectral efficiency. THz OSSB will mitigate chromatic dispersion-induced propagation losses in optical fibres and support digital modulation schemes. We demonstrate THz OSSB for free-space radiation between 0.3 and 1.0 THz using a specially designed dichroic beamsplitter for signal and carrier, and a planar light-wave circuit with multimode interference structures. This arrangement of optical elements mimics the Hartley single-sideband modulator for electronics signals and accomplishes the required Hilbert transform without any frequency-dependent tuning element over an ultrawide THz spectrum.
Programmable bandwidth management in software-defined EPON architecture
NASA Astrophysics Data System (ADS)
Li, Chengjun; Guo, Wei; Wang, Wei; Hu, Weisheng; Xia, Ming
2016-07-01
This paper proposes a software-defined EPON architecture which replaces the hardware-implemented DBA module with reprogrammable DBA module. The DBA module allows pluggable bandwidth allocation algorithms among multiple ONUs adaptive to traffic profiles and network states. We also introduce a bandwidth management scheme executed at the controller to manage the customized DBA algorithms for all date queues of ONUs. Our performance investigation verifies the effectiveness of this new EPON architecture, and numerical results show that software-defined EPONs can achieve less traffic delay and provide better support to service differentiation in comparison with traditional EPONs.
Research on Shore-Ship Photonic Link Performance for Two- Frequency-Band Signals
NASA Astrophysics Data System (ADS)
Zuo, Yanqin; Cong, Bo
2016-02-01
Ka and Ku bands links for shore-ship communications suffer limited bandwidth and high loss. In this paper, photonics-based links are proposed and modeled. The principle of phase modulation (PM) is elaborated and analyzed. It is showed that PM can effectively suppress high-order inter-modulation distortion (IMD), reduce the insert loss and improve the reliability of the system.
NASA Astrophysics Data System (ADS)
Girouard, Peter D.
The microwave, optical, and electro-optic properties of epitaxial barium titanate thin films grown on (100) MgO substrates and photonic crystal electro-optic modulators fabricated on these films were investigated to demonstrate the applicability of these devices for telecommunication and data networks. The electrical and electro-optical properties were characterized up to modulation frequencies of 50 GHz, and the optical properties of photonic crystal waveguides were determined for wavelengths spanning the optical C band between 1500 and 1580 nm. Microwave scattering parameters were measured on coplanar stripline devices with electrode gap spacings between 5 and 12 mum on barium titanate films with thicknesses between 230 and 680 nm. The microwave index and device characteristic impedance were obtained from the measurements. Larger (lower) microwave indices (impedances) were obtained for devices with narrower electrode gap spacings and on thicker films. Thinner film devices have both lower index mismatch between the co-propagating microwave and optical signals and lower impedance mismatch to a 50O system, resulting in a larger predicted electro-optical 3 dB bandwidth. This was experimentally verified with electro-optical frequency response measurements. These observations were applied to demonstrate a record high 28 GHz electro-optic bandwidth measured for a BaTiO3 conventional ridge waveguide modulator having 1mm long electrodes and 12 mum gap spacing on a 260nm thick film. The half-wave voltage and electro-optic coefficients of barium titanate modulators were measured for films having thicknesses between 260 and 500 nm. The half-wave voltage was directly measured at low frequencies using a polarizer-sample-compensator-analyzer setup by over-driving waveguide integrated modulators beyond their linear response regime. Effective in-device electro-optic coefficients were obtained from the measured half-wave voltages. The effective electro-optic coefficients were found to increase with both applied electrical dc bias and with film thickness. A record low 0.39V ˙ cm (0.45V ˙ cm) voltage-length product was measured for barium titanate modulators operating at telecommunication wavelengths on a device with 5 ?m electrode gap spacing on a 500nm thick film modulated at a frequency of 100 Hz (1 MHz). This measured voltage-length product is more than a factor of 5 lower than that reported for state-of-the-art silicon conventional waveguide modulators. The electro-optical characterization of BaTiO3 films revealed a trade-off that exists for traveling wave BaTiO3 modulators: lower voltages are obtained in thicker film devices with narrow electrode gap spacing while larger bandwidths are obtained in thinner film devices with wider electrode gap spacing. These findings were supported by calculations of the film thickness dependent half-wave voltage and electro-optic bandwidth. In order to demonstrate modulators having simultaneously low voltage operation and high electro-optic bandwidth, photonic crystal waveguide modulators with large group index were investigated through theory and experiment. The theory for slow light phase delay in linear optical materials was extended for second order nonlinear optical materials. This theory was incorporated into a detailed model for predicting photonic crystal modulator performance in terms of voltage-length product and electro-optic bandwidth. Modeling shows that barium titanate photonic crystal modulators with sub-millimeter length, sub-volt operation, and greater than 40 GHz electro-optic bandwidth are achievable in a single device. Two types of photonic crystal waveguides (PC) on BaTiO3 films were designed, fabricated, and characterized: waveguides with hexagonal lattice symmetry and waveguides with hexagonal symmetry having a line defect oriented in the direction of light propagation. Excellent agreement was obtained between the simulated and measured transmission for hexagonal lattice PC waveguides. An extinction of 20 dB was measured across a 9.9 nm stop band edge, yielding a record large band edge sharpness of 2 dB/nm for all photonic crystal waveguides on ferroelectric films. A 12-fold enhancement of the electro-optic coefficient was measured via optical spectral analysis in a line defect BaTiO3 modulator, yielding an effective electro-optic coefficient of 900 pm/V in the photonic crystal region at a modulation frequency of 10 GHz. This enhancement was demonstrated over a 48 nm range, demonstrating the wideband operation of these devices.
Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.; ...
2016-08-15
Active control of light is important for photonic integrated circuits, optical switches,. and telecommunications. Coupling light with acoustic vibrations in nanoscale optical resonators offers optical modulation capabilities with high bandwidth and Small footprint Instead of using noble metals, here we introduce indium tin-oxide nanorod arrays (ITO-NRAs) as the operating media;and demonstrate optical modulation covering the visible spectral range (from 360 to 700 nm), with similar to 20 GHz bandwidth through the excitation of coherent acoustic vibrations in ITO-NRAs. This broadband modulation results from the collective optical diffraction by the dielectric ITO-NRAs, and a high differential transmission modulation up to 10%more » is achieved through efficient near-infrared, on-plasmon-resonance pumping. By combining the frequency signatures Of the vibrational modes with finite-element simulations, we,further determine the anisotropic elastic constants for single-crystalline ITO, which are not known-for the bulk phase. Furthermore, this technique to determine elastic constants using Coherent acoustic vibrations of uniform nanostructures can be generalized to the study of other inorganic materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.
Active control of light is important for photonic integrated circuits, optical switches,. and telecommunications. Coupling light with acoustic vibrations in nanoscale optical resonators offers optical modulation capabilities with high bandwidth and Small footprint Instead of using noble metals, here we introduce indium tin-oxide nanorod arrays (ITO-NRAs) as the operating media;and demonstrate optical modulation covering the visible spectral range (from 360 to 700 nm), with similar to 20 GHz bandwidth through the excitation of coherent acoustic vibrations in ITO-NRAs. This broadband modulation results from the collective optical diffraction by the dielectric ITO-NRAs, and a high differential transmission modulation up to 10%more » is achieved through efficient near-infrared, on-plasmon-resonance pumping. By combining the frequency signatures Of the vibrational modes with finite-element simulations, we,further determine the anisotropic elastic constants for single-crystalline ITO, which are not known-for the bulk phase. Furthermore, this technique to determine elastic constants using Coherent acoustic vibrations of uniform nanostructures can be generalized to the study of other inorganic materials.« less
EMG-Torque Dynamics Change With Contraction Bandwidth.
Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E
2018-04-01
An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.
Frequency agile microwave photonic notch filter with anomalously high stopband rejection.
Marpaung, David; Morrison, Blair; Pant, Ravi; Eggleton, Benjamin J
2013-11-01
We report a novel class microwave photonic (MWP) notch filter with a very narrow isolation bandwidth (10 MHz), an ultrahigh stopband rejection (>60 dB), a wide frequency tuning (1-30 GHz), and flexible bandwidth reconfigurability (10-65 MHz). This performance is enabled by a new concept of sideband amplitude and phase controls using an electro-optic modulator and an optical filter. This concept enables energy efficient operation in active MWP notch filters, and opens up a pathway toward enabling low-power nanophotonic devices as high-performance RF filters.
NASA Astrophysics Data System (ADS)
Ke, Cheng; Li, Xun; Xi, Yanping; Yu, Yang
2017-11-01
In this paper, a detailed carrier dynamics model for quantum well lasers is used to study the modulation bandwidth of the directly modulated strained-layer multiple quantum well (SL-MQW) laser. The active region of the directly modulated laser (DML) is optimized in terms of the number of QWs and barrier height. To compromise the device dynamic performance at different operating temperatures, we present an overall optimized design for a 25 Gbps DML under an ambient temperature ranging from 25 to 85°C. To further enhance the modulation bandwidth, we have also proposed a mixed QWs design that increases the 3 dB bandwidth by almost 44% compared to the one without undergoing optimization. The experimental results show that the 3 dB bandwidth of the optimized DML can reach 19 GHz. A clear eye diagram with a bit rate of 25 Gbps was observed at 25°C.
Digital communication with Rydberg atoms and amplitude-modulated microwave fields
NASA Astrophysics Data System (ADS)
Meyer, David H.; Cox, Kevin C.; Fatemi, Fredrik K.; Kunz, Paul D.
2018-05-01
Rydberg atoms, with one highly excited, nearly ionized electron, have extreme sensitivity to electric fields, including microwave fields ranging from 100 MHz to over 1 THz. Here, we show that room-temperature Rydberg atoms can be used as sensitive, high bandwidth, microwave communication antennas. We demonstrate near photon-shot-noise limited readout of data encoded in amplitude-modulated 17 GHz microwaves, using an electromagnetically induced-transparency (EIT) probing scheme. We measure a photon-shot-noise limited channel capacity of up to 8.2 Mbit s-1 and implement an 8-state phase-shift-keying digital communication protocol. The bandwidth of the EIT probing scheme is found to be limited by the available coupling laser power and the natural linewidth of the rubidium D2 transition. We discuss how atomic communication receivers offer several opportunities to surpass the capabilities of classical antennas.
Apparatus and method for increasing the bandwidth of a laser beam
Chaffee, Paul H.
1991-01-01
A method and apparatus is disclosed that provides a laser output beam having a broad bandwidth and an intensity smooth over time. The bandwidth of the laser output can be varied easily by varying the intensity of a broadband source. The present invention includes an optical modulation apparatus comprising a narrowband laser that outputs a horizontally polarized beam (a "signal beam") and a broadband laser that outputs a vertically polarized beam (a "pump beam") whose intensity varies rapidly. The two beam are coupled into a birefringent laser material so that the respective polarizations coincide with the principal axes of the material. As the two beams travel through the material, the polarization preserving properties of the birefringent material maintain the respective polarizations of the two beam; however there is coupling between the two beams as a result of cross phase modulations, which induces a bandwidth change of the signal beam. The amount of bandwidth change is dependent upon the average intensity of the pump beam. The beams are coupled out from the birefringent material and the modulated signal beam is separated by a polarization selector. The modulated signal beam now has a wider bandwidth, and its shape remains smooth in time. This signal beam can be applied to incoherence inducing systems. The different bandwidths required by these different incoherence inducing systems can be obtained by varying the intensity of the pump beam. The United States Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the United States Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.
Compact silicon photonics-based multi laser module for sensing
NASA Astrophysics Data System (ADS)
Ayotte, S.; Costin, F.; Babin, A.; Paré-Olivier, G.; Morin, M.; Filion, B.; Bédard, K.; Chrétien, P.; Bilodeau, G.; Girard-Deschênes, E.; Perron, L.-P.; Davidson, C.-A.; D'Amato, D.; Laplante, M.; Blanchet-Létourneau, J.
2018-02-01
A compact three-laser source for optical sensing is presented. It is based on a low-noise implementation of the Pound Drever-Hall method and comprises high-bandwidth optical phase-locked loops. The outputs from three semiconductor distributed feedback lasers, mounted on thermo-electric coolers (TEC), are coupled with micro-lenses into a silicon photonics (SiP) chip that performs beat note detection and several other functions. The chip comprises phase modulators, variable optical attenuators, multi-mode-interference couplers, variable ratio tap couplers, integrated photodiodes and optical fiber butt-couplers. Electrical connections between a metallized ceramic and the TECs, lasers and SiP chip are achieved by wirebonds. All these components stand within a 35 mm by 35 mm package which is interfaced with 90 electrical pins and two fiber pigtails. One pigtail carries the signals from a master and slave lasers, while another carries that from a second slave laser. The pins are soldered to a printed circuit board featuring a micro-processor that controls and monitors the system to ensure stable operation over fluctuating environmental conditions. This highly adaptable multi-laser source can address various sensing applications requiring the tracking of up to three narrow spectral features with a high bandwidth. It is used to sense a fiber-based ring resonator emulating a resonant fiber optics gyroscope. The master laser is locked to the resonator with a loop bandwidth greater than 1 MHz. The slave lasers are offset frequency locked to the master laser with loop bandwidths greater than 100 MHz. This high performance source is compact, automated, robust, and remains locked for days.
NASA Astrophysics Data System (ADS)
Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.
2017-11-01
Optical fibre communication technologies are playing important roles in data centre networks (DCNs). Techniques for increasing capacity and flexibility for the inter-rack/pod communications in data centres have drawn remarkable attention in recent years. In this work, we propose a low complexity, reliable, alternative technique for increasing DCN capacity and flexibility through multi-signal modulation onto a single mode VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated on a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by modulating its phase attribute with a 2 GHz reference frequency (RF) clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a phase modulated 2 GHz RF signal using a single mode 10 GHz bandwidth VCSEL carrier. It is the first time a single mode 10 GHz bandwidth VCSEL carrier is reported to simultaneously transmit a directly modulated 4-PAM data signal and a phase modulated RF clock signal. A receiver sensitivity of -10. 52 dBm was attained for a 20 Gbps 4-PAM VCSEL transmission. The 2 GHz phase modulated RF clock signal introduced a power budget penalty of 0.21 dB. Simultaneous distribution of both data and timing signals over shared infrastructure significantly increases the aggregated data rate at different optical network units within the DCN, without expensive optics investment. We further demonstrate on the design of a software-defined digital signal processing assisted receiver to efficiently recover the transmitted signal without employing costly receiver hardware.
Progress and issues for high-speed vertical cavity surface emitting lasers
NASA Astrophysics Data System (ADS)
Lear, Kevin L.; Al-Omari, Ahmad N.
2007-02-01
Extrinsic electrical, thermal, and optical issues rather than intrinsic factors currently constrain the maximum bandwidth of directly modulated vertical cavity surface emitting lasers (VCSELs). Intrinsic limits based on resonance frequency, damping, and K-factor analysis are summarized. Previous reports are used to compare parasitic circuit values and electrical 3dB bandwidths and thermal resistances. A correlation between multimode operation and junction heating with bandwidth saturation is presented. The extrinsic factors motivate modified bottom-emitting structures with no electrical pads, small mesas, copper plated heatsinks, and uniform current injection. Selected results on high speed quantum well and quantum dot VCSELs at 850 nm, 980 nm, and 1070 nm are reviewed including small-signal 3dB frequencies up to 21.5 GHz and bit rates up to 30 Gb/s.
Specific innovative semi-transparent solar cell for indoor and outdoor LiFi applications.
Bialic, Emilie; Maret, Luc; Kténas, Dimitri
2015-09-20
Research in light-fidelity (LiFi), also called visible light communication (VLC), has gained huge interest. In such a communication system, an optical sensor translates the received luminous modulation flux into an electrical signal which is decoded. To consider LiFi as an alternative solution for wireless communication, the receiver must be operational in indoor and outdoor configurations. Photovoltaic modules could appear as a solution to this issue. In this paper, we present signal-to-noise ratio (SNR) response in the frequency of two different kinds of photovoltaic modules. We characterize in detail the SNR by using an experimental setup which connects a software-based direct current optical (DCO)-orthogonal frequency division multiiplexing emitter and receiver to hardware optical front ends. We analyze LiFi performances under different lighting conditions. We prove that the available bandwidth depends drastically on ambient lighting configurations. Under specific lighting conditions, a bandwidth around 4 MHz corresponding a data rate around 8 Mbit/s could be achieved. We present the lighting saturation effects and we prove that the semi-transparent solar cell under study improves their performances (both bandwidth and data rate) in high ambient lighting environments.
Integrated MEMS-tunable VCSELs for reconfigurable optical interconnects
NASA Astrophysics Data System (ADS)
Kögel, Benjamin; Debernardi, Pierluigi; Westbergh, Petter; Gustavsson, Johan S.; Haglund, Åsa; Haglund, Erik; Bengtsson, Jörgen; Larsson, Anders
2012-03-01
A simple and low-cost technology for tunable vertical-cavity surface-emitting lasers (VCSELs) with curved movable micromirror is presented. The micro-electro-mechanical system (MEMS) is integrated with the active optical component (so-called half-VCSEL) by means of surface-micromachining using a reflown photoresist droplet as sacrificial layer. The technology is demonstrated for electrically pumped, short-wavelength (850 nm) tunable VCSELs. Fabricated devices with 10 μm oxide aperture are singlemode with sidemode suppression >35 dB, tunable over 24 nm with output power up to 0.5mW, and have a beam divergence angle <6 °. An improved high-speed design with reduced parasitic capacitance enables direct modulation with 3dB-bandwidths up to 6GHz and error-free data transmission at 5Gbit/s. The modulation response of the MEMS under electrothermal actuation has a bandwidth of 400 Hz corresponding to switching times of about 10ms. The thermal crosstalk between MEMS and half-VCSEL is negligible and not degrading the device performance. With these characteristics the integrated MEMS-tunable VCSELs are basically suitable for use in reconfigurable optical interconnects and ready for test in a prototype system. Schemes for improving output power, tuning speed, and modulation bandwidth are briefly discussed.
Convolutional coding combined with continuous phase modulation
NASA Technical Reports Server (NTRS)
Pizzi, S. V.; Wilson, S. G.
1985-01-01
Background theory and specific coding designs for combined coding/modulation schemes utilizing convolutional codes and continuous-phase modulation (CPM) are presented. In this paper the case of r = 1/2 coding onto a 4-ary CPM is emphasized, with short-constraint length codes presented for continuous-phase FSK, double-raised-cosine, and triple-raised-cosine modulation. Coding buys several decibels of coding gain over the Gaussian channel, with an attendant increase of bandwidth. Performance comparisons in the power-bandwidth tradeoff with other approaches are made.
Switchable Scattering Meta-Surfaces for Broadband Terahertz Modulation
Unlu, M.; Hashemi, M. R.; Berry, C. W.; Li, S.; Yang, S.-H.; Jarrahi, M.
2014-01-01
Active tuning and switching of electromagnetic properties of materials is of great importance for controlling their interaction with electromagnetic waves. In spite of their great promise, previously demonstrated reconfigurable metamaterials are limited in their operation bandwidth due to their resonant nature. Here, we demonstrate a new class of meta-surfaces that exhibit electrically-induced switching in their scattering parameters at room temperature and over a broad range of frequencies. Structural configuration of the subwavelength meta-molecules determines their electromagnetic response to an incident electromagnetic radiation. By reconfiguration of the meta-molecule structure, the strength of the induced electric field and magnetic field in the opposite direction to the incident fields are varied and the scattering parameters of the meta-surface are altered, consequently. We demonstrate a custom-designed meta-surface with switchable scattering parameters at a broad range of terahertz frequencies, enabling terahertz intensity modulation with record high modulation depths and modulation bandwidths through a fully integrated, voltage-controlled device platform at room temperature. PMID:25028123
Maximum bandwidth snapshot channeled imaging polarimeter with polarization gratings
NASA Astrophysics Data System (ADS)
LaCasse, Charles F.; Redman, Brian J.; Kudenov, Michael W.; Craven, Julia M.
2016-05-01
Compact snapshot imaging polarimeters have been demonstrated in literature to provide Stokes parameter estimations for spatially varying scenes using polarization gratings. However, the demonstrated system does not employ aggressive modulation frequencies to take full advantage of the bandwidth available to the focal plane array. A snapshot imaging Stokes polarimeter is described and demonstrated through results. The simulation studies the challenges of using a maximum bandwidth configuration for a snapshot polarization grating based polarimeter, such as the fringe contrast attenuation that results from higher modulation frequencies. Similar simulation results are generated and compared for a microgrid polarimeter. Microgrid polarimeters are instruments where pixelated polarizers are superimposed onto a focal plan array, and this is another type of spatially modulated polarimeter, and the most common design uses a 2x2 super pixel of polarizers which maximally uses the available bandwidth of the focal plane array.
Advanced modulation technology development for earth station demodulator applications
NASA Technical Reports Server (NTRS)
Davis, R. C.; Wernlund, J. V.; Gann, J. A.; Roesch, J. F.; Wright, T.; Crowley, R. D.
1989-01-01
The purpose of this contract was to develop a high rate (200 Mbps), bandwidth efficient, modulation format using low cost hardware, in 1990's technology. The modulation format chosen is 16-ary continuous phase frequency shift keying (CPFSK). The implementation of the modulation format uses a unique combination of a limiter/discriminator followed by an accumulator to determine transmitted phase. An important feature of the modulation scheme is the way coding is applied to efficiently gain back the performance lost by the close spacing of the phase points.
Diode amplifier of modulated optical beam power
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'yachkov, N V; Bogatov, A P; Gushchik, T I
2014-11-30
Analytical relations are obtained between characteristics of modulated light at the output and input of an optical diode power amplifier operating in the highly saturated gain regime. It is shown that a diode amplifier may act as an amplitude-to-phase modulation converter with a rather large bandwidth (∼10 GHz). The low sensitivity of the output power of the amplifier to the input beam power and its high energy efficiency allow it to be used as a building block of a high-power multielement laser system with coherent summation of a large number of optical beams. (lasers)
Nyquist-WDM filter shaping with a high-resolution colorless photonic spectral processor.
Sinefeld, David; Ben-Ezra, Shalva; Marom, Dan M
2013-09-01
We employ a spatial-light-modulator-based colorless photonic spectral processor with a spectral addressability of 100 MHz along 100 GHz bandwidth, for multichannel, high-resolution reshaping of Gaussian channel response to square-like shape, compatible with Nyquist WDM requirements.
NASA Astrophysics Data System (ADS)
Geng, Yong; Huang, Xiatao; Cui, Wenwen; Ling, Yun; Xu, Bo; Zhang, Jin; Yi, Xingwen; Wu, Baojian; Huang, Shu-Wei; Qiu, Kun; Wong, Chee Wei; Zhou, Heng
2018-05-01
We demonstrate seamless channel multiplexing and high bitrate superchannel transmission of coherent optical orthogonal-frequency-division-multiplexing (CO-OFDM) data signals utilizing a dissipative Kerr soliton (DKS) frequency comb generated in an on-chip microcavity. Aided by comb line multiplication through Nyquist pulse modulation, the high stability and mutual coherence among mode-locked Kerr comb lines are exploited for the first time to eliminate the guard intervals between communication channels and achieve full spectral density bandwidth utilization. Spectral efficiency as high as 2.625 bit/Hz/s is obtained for 180 CO-OFDM bands encoded with 12.75 Gbaud 8-QAM data, adding up to total bitrate of 6.885 Tb/s within 2.295 THz frequency comb bandwidth. Our study confirms that high coherence is the key superiority of Kerr soliton frequency combs over independent laser diodes, as a multi-spectral coherent laser source for high-bandwidth high-spectral-density transmission networks.
47 CFR 2.1049 - Measurements required: Occupied bandwidth.
Code of Federal Regulations, 2010 CFR
2010-10-01
... established for the characteristic baseband frequency. (Modulation reference level is defined as the average....1049 Section 2.1049 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS... Certification § 2.1049 Measurements required: Occupied bandwidth. The occupied bandwidth, that is the frequency...
Bandwidth Efficient Wireless Digital Modem Developed
NASA Technical Reports Server (NTRS)
Kifle, Muli
1999-01-01
NASA Lewis Research Center has developed a digital approach for broadcasting highfidelity audio (nearly compact disk (CD) quality sound) in the commercial frequencymodulated (FM) broadcast band. This digital approach provides a means of achieving high data transmission rates with low hardware complexity--including low mass, size, and power consumption. Lewis has completed the design and prototype development of a bandwidth-efficient digital modem (modulator and demodulator) that uses a spectrally efficient modulation scheme: 16-ary rectangular quadrature amplitude modulation, or 16- ary QAM. The digital implementation is based strictly on inexpensive, commercial off-theshelf digital signal processing (DSP) hardware to perform up and down conversions and pulse shaping. The digital modem transmits data at rates up to 76 kilobits per second (kbps), which is almost 3 times faster than standard 28.8-kbps telephone modems. In addition, the modem offers improved power and spectral performance, flexible operation, and low-cost implementation.
Optical interconnect technologies for high-bandwidth ICT systems
NASA Astrophysics Data System (ADS)
Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki
2016-03-01
The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capineri, Lorenzo, E-mail: lorenzo.capineri@unifi.it
2014-10-01
This paper presents the design and the realization of a linear power amplifier with large bandwidth (15 MHz) capable of driving low impedance ultrasonic transducers. The output current driving capability (up to 5 A) and low distortion makes it suitable for new research applications using high power ultrasound in the medical and industrial fields. The electronic design approach is modular so that the characteristics can be scaled according to specific applications and implementation details for the circuit layout are reported. Finally the characterization of the power amplifier module is presented.
Optical Interconnection Via Computer-Generated Holograms
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang; Zhou, Shaomin
1995-01-01
Method of free-space optical interconnection developed for data-processing applications like parallel optical computing, neural-network computing, and switching in optical communication networks. In method, multiple optical connections between multiple sources of light in one array and multiple photodetectors in another array made via computer-generated holograms in electrically addressed spatial light modulators (ESLMs). Offers potential advantages of massive parallelism, high space-bandwidth product, high time-bandwidth product, low power consumption, low cross talk, and low time skew. Also offers advantage of programmability with flexibility of reconfiguration, including variation of strengths of optical connections in real time.
NASA Astrophysics Data System (ADS)
Obland, M. D.; Nehrir, A. R.; Liu, Z.; Chen, S.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Fan, T. F.; Choi, Y.; Plant, J.; Yang, M. M.; Browell, E. V.; Harrison, F. W.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.
2015-12-01
This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights.
NASA Astrophysics Data System (ADS)
Obland, M. D.; Liu, Z.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Carrion, W.; Hicks, J.; Fan, T. F.; Nehrir, A. R.; Browell, E. V.; Meadows, B.; Davis, K. J.
2016-12-01
This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights during the Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital flight campaign.
NASA Astrophysics Data System (ADS)
Goldenstein, C. S.; Spearrin, R. M.; Schultz, I. A.; Jeffries, J. B.; Hanson, R. K.
2014-05-01
The development, validation and demonstration of a two-color tunable diode laser (TDL) absorption sensor for measurements of temperature and H2O in high-pressure and high-temperature gases are presented. This sensor uses first-harmonic-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in harsh, high-pressure environments. Two telecommunications-grade TDLs were used to probe H2O absorption transitions near 1391.7 and 1469.3 nm. The lasers were frequency-multiplexed and modulated at 160 and 200 kHz to enable a measurement bandwidth up to 30 kHz along a single line-of-sight. In addition, accurate measurements are enabled at extreme conditions via an experimentally derived spectroscopic database. This sensor was validated under low-absorbance (<0.05) conditions in shock-heated H2O-N2 mixtures at temperatures and pressures from 700 to 2400 K and 2 to 25 atm. There, this sensor recovered the known temperature and H2O mole fraction with a nominal accuracy of 2.8% and 4.7% RMS, respectively. Lastly, this sensor resolved expected transients with high bandwidth and high precision in a reactive shock tube experiment and a pulse detonation combustor.
Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel
NASA Technical Reports Server (NTRS)
Downey, Joseph; Downey, James; Reinhart, Richard C.; Evans, Michael Alan; Mortensen, Dale John
2016-01-01
The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 248-phase shift keying (PSK) and 1632- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 bsHz) modulation combined with various LDPC encoding rates to maximize throughput. With a symbol rate of 200 Mbaud, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation techniques for filtering and equalization, and architecture considerations going forward for efficient use of NASA's infrastructure.
Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel
NASA Technical Reports Server (NTRS)
Downey, Joseph A.; Downey, James M.; Reinhart, Richard C.; Evans, Michael A.; Mortensen, Dale J.
2016-01-01
The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 2/4/8-phase shift keying (PSK) and 16/32- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 b/s/Hz) modulation combined with various LDPC encoding rates to maximize through- put. With a symbol rate of 200 M-band, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation techniques for filtering and equalization, and architecture considerations going forward for efficient use of NASA's infrastructure.
Time-reversing light pulses by adiabatic coupling modulation in coupled-resonator optical waveguides
NASA Astrophysics Data System (ADS)
Wang, Chao; Martini, Rainer; Search, Christopher P.
2012-12-01
We introduce a mechanism to time reverse short optical pulses in coupled resonator optical waveguides (CROWs) by direct modulation of the coupling coefficients between microresonators. The coupling modulation is achieved using phase modulation of a Mach-Zehnder interferometer coupler. We demonstrate that by adiabatic modulation of the coupling between resonators we can time reverse or store light pulses with bandwidths up to a few hundred GHz. The large pulse bandwidths, small device footprint, robustness with respect to resonator losses, and easy tuning process of the coupling coefficients make this method more practical than previous proposals.
Amplitude modulation detection with concurrent frequency modulation.
Nagaraj, Naveen K
2016-09-01
Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.
NASA Astrophysics Data System (ADS)
Kaba, M.; Zhou, F. C.; Lim, A.; Decoster, D.; Huignard, J.-P.; Tonda, S.; Dolfi, D.; Chazelas, J.
2007-11-01
The applications of microwave optoelectronics are extremely large since they extend from the Radio-over-Fibre to the Homeland security and defence systems. Then, the improved maturity of the optoelectronic components operating up to 40GHz permit to consider new optical processing functions (filtering, beamforming, ...) which can operate over very wideband microwave analogue signals. Specific performances are required which imply optical delay lines able to exhibit large Time-Bandwidth product values. It is proposed to evaluate slow light approach through highly dispersive structures based on either uniform or chirped Bragg Gratings. Therefore, we highlight the impact of the major parameters of such structures: index modulation depth, grating length, grating period, chirp coefficient and demonstrate the high potentiality of Bragg Grating for Large RF signals bandwidth processing under slow-light propagation.
Peak Satellite-to-Earth Data Rates Derived From Measurements of a 20 Gbps Bread-Board Modem
NASA Technical Reports Server (NTRS)
Landon, David G.; Simons, Rainee N.; Wintucky, Edwin G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen A.; McIntire, William K.; Metz, John L.; Smith, Francis J.
2011-01-01
A prototype data link using a Ka-band space qualified, high efficiency 200 W TWT amplifier and a bread-board modem emulator were created to explore the feasibility of very high speed communications in satellite-to-earth applications. Experiments were conducted using a DVB-S2-like waveform with modifications to support up to 20 Gbps through the addition of 128-Quadrature Amplitude Modulation (QAM). Limited by the bandwidth of the amplifier, a constant peak symbol rate of 3.2 Giga-symbols/sec was selected and the modulation order was varied to explore what peak data rate might be supported by an RF link through this amplifier. Using 128-QAM, an implementation loss of 3 dB was observed at 20 Gbps, and the loss decreased as data rate or bandwidth were reduced. Building on this measured data, realistic link budget calculations were completed. Low-Earth orbit (LEO) missions based on this TWTA with reasonable hardware assumptions and antenna sizing are found to be bandwidth-limited, rather than power-limited, making the spectral efficiency of 9/10-rate encoded 128-QAM very attractive. Assuming a bandwidth allocation of 1 GHz, these computations indicate that low-Earth orbit vehicles could achieve data rates up to 5 Gbps-an order of magnitude beyond the current state-of-practice, yet still within the processing power of a current FPGA-based software-defined modem. The measured performance results and a description of the experimental setup are presented to support these conclusions.
High-speed digital fiber optic links for satellite traffic
NASA Technical Reports Server (NTRS)
Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.
1989-01-01
Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.
47 CFR 101.515 - Emissions and bandwidth.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Emissions and bandwidth. 101.515 Section 101... FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.515 Emissions and bandwidth. Different types of emissions may be authorized if the applicant describes fully the modulation...
Gain and power optimization of the wireless optical system with multilevel modulation.
Liu, Xian
2008-06-01
When used in an outdoor environment to expedite networking access, the performance of wireless optical communication systems is affected by transmitter sway. In the design of such systems, much attention has been paid to developing power-efficient schemes. However, the bandwidth efficiency is also an important issue. One of the most natural approaches to promote bandwidth efficiency is to use multilevel modulation. This leads to multilevel pulse amplitude modulation in the context of intensity modulation and direct detection. We develop a model based on the four-level pulse amplitude modulation. We show that the model can be formulated as an optimization problem in terms of the transmitter power, bit error probability, transmitter gain, and receiver gain. The technical challenges raised by modeling and solving the problem include the analytical and numerical treatments for the improper integrals of the Gaussian functions coupled with the erfc function. The results demonstrate that, at the optimal points, the power penalty paid to the doubled bandwidth efficiency is around 3 dB.
Asryan, Levon V
2017-01-01
The modulation bandwidth of double tunneling-injection (DTI) quantum dot (QD) lasers is studied, taking into account noninstantaneous pumping of QDs. In this advanced type of semiconductor lasers, carriers are first captured from the bulk waveguide region into two-dimensional regions (quantum wells [QWs]); then they tunnel from the QWs into zero-dimensional regions (QDs). The two processes are noninstantaneous and, thus, could delay the delivery of the carriers to the QDs. Here, the modulation bandwidth of DTI QD lasers is calculated as a function of two characteristic times (the capture time from the waveguide region into the QW and the tunneling time from the QW into the QD ensemble) and is shown to increase as either of these times is reduced. The capture and tunneling times of 1 and 0.1 ps, respectively, are shown to characterize fast capture and tunneling processes; as the capture and tunneling times are brought below 1 and 0.1 ps, the bandwidth remains almost unchanged and close to its upper limit.
Wideband laser locking to an atomic reference with modulation transfer spectroscopy.
Negnevitsky, V; Turner, L D
2013-02-11
We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.
NASA Astrophysics Data System (ADS)
Zolotov, Evgenii M.; Pelekhatyĭ, V. M.; Tavlykaev, R. F.
1990-05-01
A simultaneous increase in the frequency bandwidth and a reduction in the control (drive) power of integrated optical traveling-wave modulators can be achieved as a result of the electrooptic interaction in accordance with a linear frequency-modulated oscillatory law derived by inverse Fourier transformation of a rectangular amplitude-frequency characteristic and a quadratic phase-frequency characteristic of a modulator. This oscillatory law is realized using planar electrode structures with triangular or trapezoidal toothed edges. The tooth repetition frequency is governed by the linearly frequency-modulated oscillations and it rises on increase in the light modulation frequency.
4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication.
Lee, Changmin; Zhang, Chong; Cantore, Michael; Farrell, Robert M; Oh, Sang Ho; Margalith, Tal; Speck, James S; Nakamura, Shuji; Bowers, John E; DenBaars, Steven P
2015-06-15
We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free-space data transmission rate was achieved at room temperature.
Nano-optomechanical transducer
Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul
2013-12-03
A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.
Miyamoto, Kenji; Kuwano, Shigeru; Terada, Jun; Otaka, Akihiro
2016-01-25
We analyze the mobile fronthaul (MFH) bandwidth and the wireless transmission performance in the split-PHY processing (SPP) architecture, which redefines the functional split of centralized/cloud RAN (C-RAN) while preserving high wireless coordinated multi-point (CoMP) transmission/reception performance. The SPP architecture splits the base stations (BS) functions between wireless channel coding/decoding and wireless modulation/demodulation, and employs its own CoMP joint transmission and reception schemes. Simulation results show that the SPP architecture reduces the MFH bandwidth by up to 97% from conventional C-RAN while matching the wireless bit error rate (BER) performance of conventional C-RAN in uplink joint reception with only 2-dB signal to noise ratio (SNR) penalty.
Multi-Modulator for Bandwidth-Efficient Communication
NASA Technical Reports Server (NTRS)
Gray, Andrew; Lee, Dennis; Lay, Norman; Cheetham, Craig; Fong, Wai; Yeh, Pen-Shu; King, Robin; Ghuman, Parminder; Hoy, Scott; Fisher, Dave
2009-01-01
A modulator circuit board has recently been developed to be used in conjunction with a vector modulator to generate any of a large number of modulations for bandwidth-efficient radio transmission of digital data signals at rates than can exceed 100 Mb/s. The modulations include quadrature phaseshift keying (QPSK), offset quadrature phase-shift keying (OQPSK), Gaussian minimum-shift keying (GMSK), and octonary phase-shift keying (8PSK) with square-root raised-cosine pulse shaping. The figure is a greatly simplified block diagram showing the relationship between the modulator board and the rest of the transmitter. The role of the modulator board is to encode the incoming data stream and to shape the resulting pulses, which are fed as inputs to the vector modulator. The combination of encoding and pulse shaping in a given application is chosen to maximize the bandwidth efficiency. The modulator board includes gallium arsenide serial-to-parallel converters at its input end. A complementary metal oxide/semiconductor (CMOS) field-programmable gate array (FPGA) performs the coding and modulation computations and utilizes parallel processing in doing so. The results of the parallel computation are combined and converted to pulse waveforms by use of gallium arsenide parallel-to-serial converters integrated with digital-to-analog converters. Without changing the hardware, one can configure the modulator to produce any of the designed combinations of coding and modulation by loading the appropriate bit configuration file into the FPGA.
Measuring the critical band for speech.
Healy, Eric W; Bacon, Sid P
2006-02-01
The current experiments were designed to measure the frequency resolution employed by listeners during the perception of everyday sentences. Speech bands having nearly vertical filter slopes and narrow bandwidths were sharply partitioned into various numbers of equal log- or ERBN-width subbands. The temporal envelope from each partition was used to amplitude modulate a corresponding band of low-noise noise, and the modulated carriers were combined and presented to normal-hearing listeners. Intelligibility increased and reached asymptote as the number of partitions increased. In the mid- and high-frequency regions of the speech spectrum, the partition bandwidth corresponding to asymptotic performance matched current estimates of psychophysical tuning across a number of conditions. These results indicate that, in these regions, the critical band for speech matches the critical band measured using traditional psychoacoustic methods and nonspeech stimuli. However, in the low-frequency region, partition bandwidths at asymptote were somewhat narrower than would be predicted based upon psychophysical tuning. It is concluded that, overall, current estimates of psychophysical tuning represent reasonably well the ability of listeners to extract spectral detail from running speech.
Liu, Weisong; Huang, Zhitao; Wang, Xiang; Sun, Weichao
2017-01-01
In a cognitive radio sensor network (CRSN), wideband spectrum sensing devices which aims to effectively exploit temporarily vacant spectrum intervals as soon as possible are of great importance. However, the challenge of increasingly high signal frequency and wide bandwidth requires an extremely high sampling rate which may exceed today’s best analog-to-digital converters (ADCs) front-end bandwidth. Recently, the newly proposed architecture called modulated wideband converter (MWC), is an attractive analog compressed sensing technique that can highly reduce the sampling rate. However, the MWC has high hardware complexity owing to its parallel channel structure especially when the number of signals increases. In this paper, we propose a single channel modulated wideband converter (SCMWC) scheme for spectrum sensing of band-limited wide-sense stationary (WSS) signals. With one antenna or sensor, this scheme can save not only sampling rate but also hardware complexity. We then present a new, SCMWC based, single node CR prototype System, on which the spectrum sensing algorithm was tested. Experiments on our hardware prototype show that the proposed architecture leads to successful spectrum sensing. And the total sampling rate as well as hardware size is only one channel’s consumption of MWC. PMID:28471410
A reduced complexity highly power/bandwidth efficient coded FQPSK system with iterative decoding
NASA Technical Reports Server (NTRS)
Simon, M. K.; Divsalar, D.
2001-01-01
Based on a representation of FQPSK as a trellis-coded modulation, this paper investigates the potential improvement in power efficiency obtained from the application of simple outer codes to form a concatenated coding arrangement with iterative decoding.
Performance investigation of optical multicast overlay system using orthogonal modulation format
NASA Astrophysics Data System (ADS)
Singh, Simranjit; Singh, Sukhbir; Kaur, Ramandeep; Kaler, R. S.
2015-03-01
We proposed a bandwidth efficient wavelength division multiplexed-passive optical network (WDM-PON) to simultaneously transmit 60 Gb/s unicast and 10 Gb/s multicast services with 10 Gb/s upstream. The differential phase shift keying (DPSK) multicast signal is superimposed onto multiplexed non-return to zero/polarization shift keying (NRZ/PolSK) orthogonal modulated data signals. Upstream amplitude shift keying (ASK) signals formed without use of any additional light source and superimposed onto received unicast NRZ/PolSK signal before being transmitted back to optical line terminal (OLT). We also investigated the proposed WDM-PON system for variable optical input power, transmission distance of single mode fiber in multicast enable and disable mode. The measured Quality factor for all unicast and multicast signal is in acceptable range (>6). The original contribution of this paper is to propose a bandwidth efficient WDM-PON system that could be projected even in high speed scenario at reduced channel spacing and expected to be more technical viable due to use of optical orthogonal modulation formats.
PAM4 silicon photonic microring resonator-based transceiver circuits
NASA Astrophysics Data System (ADS)
Palermo, Samuel; Yu, Kunzhi; Roshan-Zamir, Ashkan; Wang, Binhao; Li, Cheng; Seyedi, M. Ashkan; Fiorentino, Marco; Beausoleil, Raymond
2017-02-01
Increased data rates have motivated the investigation of advanced modulation schemes, such as four-level pulseamplitude modulation (PAM4), in optical interconnect systems in order to enable longer transmission distances and operation with reduced circuit bandwidth relative to non-return-to-zero (NRZ) modulation. Employing this modulation scheme in interconnect architectures based on high-Q silicon photonic microring resonator devices, which occupy small area and allow for inherent wavelength-division multiplexing (WDM), offers a promising solution to address the dramatic increase in datacenter and high-performance computing system I/O bandwidth demands. Two ring modulator device structures are proposed for PAM4 modulation, including a single phase shifter segment device driven with a multi-level PAM4 transmitter and a two-segment device driven by two simple NRZ (MSB/LSB) transmitters. Transmitter circuits which utilize segmented pulsed-cascode high swing output stages are presented for both device structures. Output stage segmentation is utilized in the single-segment device design for PAM4 voltage level control, while in the two-segment design it is used for both independent MSB/LSB voltage levels and impedance control for output eye skew compensation. The 65nm CMOS transmitters supply a 4.4Vppd output swing for 40Gb/s operation when driving depletion-mode microring modulators implemented in a 130nm SOI process, with the single- and two-segment designs achieving 3.04 and 4.38mW/Gb/s, respectively. A PAM4 optical receiver front-end is also described which employs a large input-stage feedback resistor transimpedance amplifier (TIA) cascaded with an adaptively-tuned continuous-time linear equalizer (CTLE) for improved sensitivity. Receiver linearity, critical in PAM4 systems, is achieved with a peak-detector-based automatic gain control (AGC) loop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alloatti, L., E-mail: luca.alloatti@gmail.com; Cheian, D.; Ram, R. J.
A microring depletion modulator is demonstrated with T-shaped lateral p-n junctions used to realize efficient modulation while maximizing the RC limited bandwidth. The device having a 3 dB bandwidth of 13 GHz has been fabricated in a standard 45 nm microelectronics CMOS process. The cavity has a linewidth of 17 GHz and an average wavelength-shift of 9 pm/V in reverse-bias conditions.
Somers, Ben; Bertrand, Alexander
2016-12-01
Chronic, 24/7 EEG monitoring requires the use of highly miniaturized EEG modules, which only measure a few EEG channels over a small area. For improved spatial coverage, a wireless EEG sensor network (WESN) can be deployed, consisting of multiple EEG modules, which interact through short-distance wireless communication. In this paper, we aim to remove eye blink artifacts in each EEG channel of a WESN by optimally exploiting the correlation between EEG signals from different modules, under stringent communication bandwidth constraints. We apply a distributed canonical correlation analysis (CCA-)based algorithm, in which each module only transmits an optimal linear combination of its local EEG channels to the other modules. The method is validated on both synthetic and real EEG data sets, with emulated wireless transmissions. While strongly reducing the amount of data that is shared between nodes, we demonstrate that the algorithm achieves the same eye blink artifact removal performance as the equivalent centralized CCA algorithm, which is at least as good as other state-of-the-art multi-channel algorithms that require a transmission of all channels. Due to their potential for extreme miniaturization, WESNs are viewed as an enabling technology for chronic EEG monitoring. However, multi-channel analysis is hampered in WESNs due to the high energy cost for wireless communication. This paper shows that multi-channel eye blink artifact removal is possible with a significantly reduced wireless communication between EEG modules.
NASA Astrophysics Data System (ADS)
Somers, Ben; Bertrand, Alexander
2016-12-01
Objective. Chronic, 24/7 EEG monitoring requires the use of highly miniaturized EEG modules, which only measure a few EEG channels over a small area. For improved spatial coverage, a wireless EEG sensor network (WESN) can be deployed, consisting of multiple EEG modules, which interact through short-distance wireless communication. In this paper, we aim to remove eye blink artifacts in each EEG channel of a WESN by optimally exploiting the correlation between EEG signals from different modules, under stringent communication bandwidth constraints. Approach. We apply a distributed canonical correlation analysis (CCA-)based algorithm, in which each module only transmits an optimal linear combination of its local EEG channels to the other modules. The method is validated on both synthetic and real EEG data sets, with emulated wireless transmissions. Main results. While strongly reducing the amount of data that is shared between nodes, we demonstrate that the algorithm achieves the same eye blink artifact removal performance as the equivalent centralized CCA algorithm, which is at least as good as other state-of-the-art multi-channel algorithms that require a transmission of all channels. Significance. Due to their potential for extreme miniaturization, WESNs are viewed as an enabling technology for chronic EEG monitoring. However, multi-channel analysis is hampered in WESNs due to the high energy cost for wireless communication. This paper shows that multi-channel eye blink artifact removal is possible with a significantly reduced wireless communication between EEG modules.
Xu, Tianhua; Shevchenko, Nikita A; Lavery, Domaniç; Semrau, Daniel; Liga, Gabriele; Alvarado, Alex; Killey, Robert I; Bayvel, Polina
2017-02-20
The relationship between modulation format and the performance of multi-channel digital back-propagation (MC-DBP) in ideal Nyquist-spaced optical communication systems is investigated. It is found that the nonlinear distortions behave independent of modulation format in the case of full-field DBP, in contrast to the cases of electronic dispersion compensation and partial-bandwidth DBP. It is shown that the minimum number of steps per span required for MC-DBP depends on the chosen modulation format. For any given target information rate, there exists a possible trade-off between modulation format and back-propagated bandwidth, which could be used to reduce the computational complexity requirement of MC-DBP.
High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Huang, Yao-Ting; Chang, Pi-Bai
2006-10-01
The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.
Relative intensity noise transfer of large-bandwidth pump lasers in Raman fiber amplifiers
NASA Astrophysics Data System (ADS)
Keita, Kafing; Delaye, Philippe; Frey, Robert; Roosen, Gérald
2006-12-01
A theoretical analysis of the Raman amplification in optical fibers and the pump-to-signal relative intensity noise (RIN) transfer has been performed in the spectral domain. An efficient Raman amplification of a monochromatic signal beam by a large-bandwidth pump beam has been demonstrated for a pump bandwidth much smaller than the Raman linewidth. Under the same approximation the pump-to-signal RIN transfer has been calculated in both cases of copropagating and counterpropagating beams in the two limiting cases of modulated monochromatic and smooth-profile large-bandwidth pump beams. At low frequencies the excess of noise evidenced in the case of a modulated monochromatic pump beam did not exist in the case of large-bandwidth pseudoincoherent sources. As this noise reduction can be as large as 13 dB for a 40 dB net gain of the amplifier, such incoherent pumping sources must be considered for the purpose of low-noise Raman amplifiers.
Ultra-wideband microwave photonic link based on single-sideband modulation
NASA Astrophysics Data System (ADS)
Li, Jingnan; Wang, Yunxin; Wang, Dayong; Zhou, Tao; Zhong, Xin; Xu, Jiahao; Yang, Dengcai; Rong, Lu
2017-10-01
Comparing with the conventional double-sideband (DSB) modulation in communication system, single-sideband (SSB) modulation only demands half bandwidth of DSB in transmission. Two common ways are employed to implement SSB modulation by using optical filter (OF) or electrical 90° phase shift, respectively. However, the bandwidth of above methods is limited by characteristics of current OF and electrical phase shift. To overcome this problem, an ultra-wideband microwave photonic link based on SSB modulation is proposed and demonstrated. The radio frequency (RF) signal modulates a single-drive dual-parallel Mach-Zehnder modulator, and the SSB modulation is realized by combining an electrical 90° hybrid coupler and an optical bandpass filter. The experimental results indicate that the system can achieve SSB modulation for RF signal from 2 to 40 GHz. The proposed microwave photonic link provides an ultra-wideband approach based on SSB modulation for radio-over-fiber system.
Modulation bandwidth of spin torque oscillators under current modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinsat, M.; CEA, INAC-SPINTEC, F-38054 Grenoble; CNRS, SPINTEC, F-38054 Grenoble
2014-10-13
For practical applications of spin torque nano-oscillators (STNO), one of the most critical characteristics is the speed at which an STNO responds to variations of external control parameters, such as current or/and field. Theory predicts that this speed is limited by the amplitude relaxation rate Γ{sub p} that determines the timescale over which the amplitude fluctuations are damped out. In this study, this limit is verified experimentally by analyzing the amplitude and frequency noise spectra of the output voltage signal when modulating an STNO by a microwave current. In particular, it is shown that due to the non-isochronous nature ofmore » the STNO the amplitude relaxation rate Γ{sub p} determines not only the bandwidth of an amplitude modulation, but also the bandwidth of a frequency modulation. The presented experimental technique will be important for the optimisation of the STNO characteristics for applications in telecommunications or/and data storage and is applicable even in the case when the STNO output signal is only several times higher than noise.« less
Ultra-Wideband Optical Modulation Spectrometer (OMS) Development
NASA Technical Reports Server (NTRS)
Gardner, Jonathan (Technical Monitor); Tolls, Volker
2004-01-01
The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.
Narrowband high temperature superconducting receiver for low frequency radio waves
Reagor, David W.
2001-01-01
An underground communicating device has a low-noise SQUID using high temperature superconductor components connected to detect a modulated external magnetic flux for outputting a voltage signal spectrum that is related to the varying magnetic flux. A narrow bandwidth filter may be used to select a portion of the voltage signal spectrum that is relatively free of power line noise to output a relatively low noise output signal when operating in a portion of the electromagnetic spectra where such power line noise exists. A demodulator outputs a communication signal, which may be an FM signal, indicative of a modulation on the modulated external magnetic flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borgohain, Nitu, E-mail: nituborgohain.ism@gmail.com; Konar, S.
The paper presents a theoretical study of the modulation instability of a continuous or quasi-continuous optical probe in a three level quantum well system under electromagnetically induced transparency. The modulation instability is affected by the control field detuning, as well as even-order dispersion and by the strength of Kerr (third-order) and quintic (fifth-order) nonlinearities. The fourth-order dispersion reduces the bandwidth over which modulation instability occurs, whereas the quintic nonlinearity saturates the growth of the modulation instability. Detuning the control field from resonance can significantly reduce the growth of the modulation instability at both low and high power levels. At lowmore » powers, the system becomes stable against modulation instability for small detuning of the control field and at high powers modulation instability disappears for larger detuning.« less
Ultrafast Narrow Band Modulation of VCSELs
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Multimode beating was greatly enhanced by taking output from part (e.g., half) of the output facet. Simpler sources of microwaves and millimeter waves of various frequencies were generated by varying the VCSEL diameter in a single multimode VCSEL our coupling of a few VCSELs. Breathing frequency in multi-mode operations affects modulation response and bandwidth. Optimizing RO frequency and mode beating frequency could potentially expand bandwidths suitable for wide band digital communications.
High frequency modulation and injection locking of terahertz quantum cascade lasers
NASA Astrophysics Data System (ADS)
Gu, L.; Wan, W. J.; Zhu, Y. H.; Fu, Z. L.; Li, H.; Cao, J. C.
2017-06-01
Due to intersubband transitions, the quantum cascade laser (QCL) is free of relaxations and able to work under fast modulations. In this work, the authors investigate the fast modulation properties of a continuous wave (cw) terahertz QCL emitting around 3 THz (˜100 μm). Both simulation and experimental results show that the 3 dB modulation bandwidth for the device can reach 11.5 GHz and the modulation response curve is relatively flat upto ˜16 GHz. The radio frequency (RF) injection measurements verify that around the laser threshold the inter-mode beat note interacts strongly with the RF signal and the laser can be modulated at the round trip frequency of 15.5 GHz.
Su, Chia-Ying; Lin, Chun-Han; Yao, Yu-Feng; Liu, Wei-Heng; Su, Ming-Yen; Chiang, Hsin-Chun; Tsai, Meng-Che; Tu, Charng-Gan; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, C C
2017-09-04
The high performance of a light-emitting diode (LED) with the total p-type thickness as small as 38 nm is demonstrated. By increasing the Mg doping concentration in the p-AlGaN electron blocking layer through an Mg pre-flow process, the hole injection efficiency can be significantly enhanced. Based on this technique, the high LED performance can be maintained when the p-type layer thickness is significantly reduced. Then, the surface plasmon coupling effects, including the enhancement of internal quantum efficiency, increase in output intensity, reduction of efficiency droop, and increase of modulation bandwidth, among the thin p-type LED samples of different p-type thicknesses that are compared. These advantageous effects are stronger as the p-type layer becomes thinner. However, the dependencies of these effects on p-type layer thickness are different. With a circular mesa size of 10 μm in radius, through surface plasmon coupling, we achieve the record-high modulation bandwidth of 625.6 MHz among c-plane GaN-based LEDs.
Photogating in Low Dimensional Photodetectors
Fang, Hehai
2017-01-01
Abstract Low dimensional materials including quantum dots, nanowires, 2D materials, and so forth have attracted increasing research interests for electronic and optoelectronic devices in recent years. Photogating, which is usually observed in photodetectors based on low dimensional materials and their hybrid structures, is demonstrated to play an important role. Photogating is considered as a way of conductance modulation through photoinduced gate voltage instead of simply and totally attributing it to trap states. This review first focuses on the gain of photogating and reveals the distinction from conventional photoconductive effect. The trap‐ and hybrid‐induced photogating including their origins, formations, and characteristics are subsequently discussed. Then, the recent progress on trap‐ and hybrid‐induced photogating in low dimensional photodetectors is elaborated. Though a high gain bandwidth product as high as 109 Hz is reported in several cases, a trade‐off between gain and bandwidth has to be made for this type of photogating. The general photogating is put forward according to another three reported studies very recently. General photogating may enable simultaneous high gain and high bandwidth, paving the way to explore novel high‐performance photodetectors. PMID:29270342
Holistic design in high-speed optical interconnects
NASA Astrophysics Data System (ADS)
Saeedi, Saman
Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking. In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy eciency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The receiver sensitivity is measured to be -8.8dBm at 32Gb/s. Next, on the optical transmitter side, three new techniques will be presented. First one is a differential ring modulator that breaks the optical bandwidth/quality factor trade-off known to limit the speed of high-Q ring modulators. This structure maintains a constant energy in the ring to avoid pattern-dependent power droop. As a first proof of concept, a prototype has been fabricated and measured up to 10Gb/s. The second technique is thermal stabilization of micro-ring resonator modulators through direct measurement of temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. A prototype is fabricated and a closed-loop feedback system is demonstrated to operate at 20Gb/s in the presence of temperature fluctuations. The third technique is a switched-capacitor based pre-emphasis technique designed to extend the inherently low bandwidth of carrier injection micro-ring modulators. A measured prototype of the optical transmitter achieves energy efficiency of 342fJ/bit at 10Gb/s and the wavelength stabilization circuit based on the monolithic PTAT sensor consumes 0.29mW. Lastly, a first-order frequency synthesizer that is suitable for high-speed on-chip clock generation will be discussed. The proposed design features an architecture combining an LC quadrature VCO, two sample-and-holds, a PI, digital coarse-tuning, and rotational frequency detection for fine-tuning. In addition to an electrical reference clock, as an extra feature, the prototype chip is capable of receiving a low jitter optical reference clock generated by a high-repetition-rate mode-locked laser. The output clock at 8GHz has an integrated RMS jitter of 490fs, peak-to-peak periodic jitter of 2.06ps, and total RMS jitter of 680fs. The reference spurs are measured to be 64.3dB below the carrier frequency. At 8GHz the system consumes 2.49mW from a 1V supply.
47 CFR 74.736 - Emissions and bandwidth.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Booster Stations § 74.736 Emissions and bandwidth. (a) The license of a low power TV, TV translator, or TV booster station authorizes the transmission of the visual signal by amplitude modulation (A5) and the...
47 CFR 74.736 - Emissions and bandwidth.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Booster Stations § 74.736 Emissions and bandwidth. (a) The license of a low power TV, TV translator, or TV booster station authorizes the transmission of the visual signal by amplitude modulation (A5) and the...
47 CFR 74.736 - Emissions and bandwidth.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Booster Stations § 74.736 Emissions and bandwidth. (a) The license of a low power TV, TV translator, or TV booster station authorizes the transmission of the visual signal by amplitude modulation (A5) and the...
47 CFR 74.736 - Emissions and bandwidth.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Booster Stations § 74.736 Emissions and bandwidth. (a) The license of a low power TV, TV translator, or TV booster station authorizes the transmission of the visual signal by amplitude modulation (A5) and the...
Sound absorption of a new oblique-section acoustic metamaterial with nested resonator
NASA Astrophysics Data System (ADS)
Gao, Nansha; Hou, Hong; Zhang, Yanni; Wu, Jiu Hui
2018-02-01
This study designs and investigates high-efficiency sound absorption of new oblique-section nested resonators. Impedance tube experiment results show that different combinations of oblique-section nest resonators have tunable low-frequency bandwidth characteristics. The sound absorption mechanism is due to air friction losses in the slotted region and the sample structure resonance. The acousto-electric analogy model demonstrates that the sound absorption peak and bandwidth can be modulated over an even wider frequency range by changing the geometric size and combinations of structures. The proposed structure can be easily fabricated and used in low-frequency sound absorption applications.
15 Gb/s OFDM-based VLC using direct modulation of 450 GaN laser diode
NASA Astrophysics Data System (ADS)
Viola, Shaun; Islim, Mohamed Sufyan; Watson, Scott; Videv, Stefan; Haas, Harald; Kelly, Anthony E.
2017-10-01
A record data rate for visible light communications (VLC) using a transistor outline (TO) packaged Gallium Nitride (GaN) laser diode is reported. Using a system 3 dB bandwidth of 1.4 GHz data transmission at 15 Gb/s is reported. This is achieved due to the use of orthogonal frequency division multiplexing (OFDM) in combination with a high system signal to noise ratio (SNR) and adaptive bit loading extending the effective bandwidth to 2.5 GHz. To the best of authors knowledge this is the highest reported data rate for single channel VLC.
Nanocomposites for high-speed optical modulators and plasmonic thermal mid-infrared emitters
NASA Astrophysics Data System (ADS)
Demir, Veysi
Demand for high-speed optical modulators and narrow-bandwidth infrared thermal emitters for numerous applications continues to rise and new optical devices are needed to deal with massive data flows, processing powers, and fabrication costs. Conventional techniques are usually hindered by material limitations or electronic interconnects and advances in organic nanocomposite materials and their integration into photonic integrated circuits (PICs) have been acknowledged as a promising alternative to single crystal techniques. The work presented in this thesis uses plasmonic and magneto-optic effects towards the development of novel optical devices for harnessing light and generating high bandwidth signals (>40GHz) at room and cryogenic temperatures (4.2°K). Several publications have resulted from these efforts and are listed at the end of the abstract. In our first published research we developed a narrow-bandwidth mid-infrared thermal emitter using an Ag/dielectric/Ag thin film structure arranged in hexagonal planar lattice structures. PECVD produced nanoamorphous carbon (NAC) is used as a dielectric layer. Spectrally tunable (>2 mum) and narrow bandwidth (<0.5 mum) emission peaks in the range of 4-7 mum were demonstrated by decreasing the resistivity of NAC from 1012 and 109 O.cm with an MoSi2 dopant and increasing the emitter lattice constant from 4 to 7 mum. This technique offers excellent flexibility for developing cost-effective mid-IR sources as compared to costly fiber and quantum cascade lasers (QCLs). Next, the effect of temperature on the Verdet constant for cobalt-ferrite polymer nanocomposites was measured for a series of temperatures ranging from 40 to 200°K with a Faraday rotation polarimeter. No visual change was observed in the films during thermal cycling, and ˜4x improvement was achieved at 40°K. The results are promising and further analysis is merited at 4.2°K to assess the performance of this material for cryogenic magneto-optic modulators for supercomputers. Finally, the dielectric constant and loss tangent of MAPTMS sol-gel films were measured over a wide range of microwave frequencies. The test structures were prepared by spin-coating sol-gel films onto metallized glass substrates. The dielectric properties of the sol-gel were probed with several different sets of coplanar waveguides (CPWs) electroplated onto sol-gel films. The dielectric constant and loss-tangent of these films were determined to be ˜3.1 and 3 x 10-3 at 35GHz. These results are very promising indicating that sol-gels are viable cladding materials for high-speed electro-optic polymer modulators (>40GHz).
Development of Advanced Low Emission Injectors and High-Bandwidth Fuel Flow Modulation Valves
NASA Technical Reports Server (NTRS)
Mansour, Adel
2015-01-01
Parker Hannifin Corporation developed the 3-Zone fuel nozzle for NASA's Environmentally Responsible Aviation Program to meet NASAs target of 75 LTO NOx reduction from CAEP6 regulation. The nozzle concept was envisioned as a drop-in replacement for currently used fuel nozzle stem, and is built up from laminates to provide energetic mixing suitable for lean direct injection mode at high combustor pressure. A high frequency fuel valve was also developed to provide fuel modulation for the pilot injector. Final testing result shows the LTO NOx level falling just shy of NASAs goal at 31.
A new multifunction acousto-optic signal processor
NASA Technical Reports Server (NTRS)
Berg, N. J.; Casseday, M. W.; Filipov, A. N.; Pellegrino, J. M.
1984-01-01
An acousto-optic architecture for simultaneously obtaining time integration correlation and high-speed power spectrum analysis was constructed using commercially available TeO2 modulators and photodiode detector-arrays. The correlator section of the processor uses coherent interferometry to attain maximum bandwidth and dynamic range while achieving a time-bandwidth product of 1 million. Two correllator outputs are achieved in this system configuration. One is optically filtered and magnified 2 : 1 to decrease the spatial frequency to a level where a 25-MHz bandwidth may be sampled by a 62-mm array with elements on 25-micro centers. The other output is magnified by a factor of 10 such that the center 4 microseconds of information is available for estimation of time-difference-of-arrival to within 10 ns. The Bragg cell spectrum-analyzer section, which also has two outputs, resolves a 25-MHz instantaneous bandwidth to 25 kHz and can determine discrete-frequency reception time to within 15 microseconds. A microprocessor combines spectrum analysis information with that obtained from the correlator.
Bandwidth-narrowed Bragg gratings inscribed in double-cladding fiber by femtosecond laser.
Shi, Jiawei; Li, Yuhua; Liu, Shuhui; Wang, Haiyan; Liu, Ningliang; Lu, Peixiang
2011-01-31
Bragg gratings with the bandwidth(FWHM) narrowed up to 79 pm were inscribed in double-cladding fiber with femtosecond radiation and a phase mask followed by an annealing treatment. With the annealing temperature below a critical value, the bandwidth of Bragg gratings induced by Type I-IR and Type II-IR index change was narrowed without the reduction of reflectivity. The bandwidth narrowing is due to the profile transformation of the refractive index modulation caused by the annealing treatment. This mechanism was verified by comparing bandwidth narrowing processes of FBGs written with different power densities.
High-efficiency L-band T/R Module: Development Results
NASA Technical Reports Server (NTRS)
Edelstein, Wendy N.; Andricos, Constantine; Wang, Feiyu; Rutled, David B.
2005-01-01
Future interferometric synthetic aperture radar (InSAR) systems require electronically scanned phased-array antennas, where the transmit/receive (T/R) module is a key component. The T/R module efficiency is a critical figure of merit and has direct implications on the power dissipation and power generation requirements of the system. Significant improvements in the efficiency of the T/R module will make SAR missions more feasible and affordable. The results of two high-efficiency T/R modules are presented, each based on different power amplifier technologies. One module uses a 30W GaAs Class-AlB power amplifier and the second module uses a 70W LD-MOS Class-ElF power amplifier, where both modules use a common low power section. Each module operates over an 80MHz bandwidth at L-band (1.2GHz) with an overall module efficiency greater than 58%. We will present the results of these two T/R modules that have been designed, built and tested.
VCSELs for optical communication at Fuji Xerox
NASA Astrophysics Data System (ADS)
Kondo, Takashi; Hayakawa, Junichiro; Jogan, Naoki; Murakami, Akemi; Sakurai, Jun; Gu, Xiaodong; Koyama, Fumio
2017-02-01
We introduce the characteristics of vertical-cavity surface-emitting lasers (VCSELs) for use in optical communications. In the field of optical interconnections and networks, 850 nm VCSELs are key optical transmitters due to their high-speed modulation and low power consumption. One promising candidate for achieving high-speed modulations exceeding 50 Gbps is the transverse-coupled-cavity (TCC) VCSEL. In this talk, we demonstrate the characteristics of 850 nm transverse-coupled-cavity VCSELs, which helped us achieve a high 3dB modulation bandwidth (30 GHz) at 0 °C and realize eye-opening at the large-signal modulation rate of 48 Gbps. The VCSEL's epilayer structure was grown by MOCVD. The active region consists of three strained InGaAs QWs surrounded by AlGaAs barriers. The n-type and p-type DBRs are composed of AlGaAs/AlGaAs, respectively. A line-shaped H+ ion was implanted at the center of the bowtie-shaped post, dividing it into two cavities. The threshold current of the TCC VCSEL with an oxide aperture of 3.6 μm is 0.33 mA. Only the left-side cavity is pumped, while the right cavity is unpumped. The effect of modulation bandwidth enhancement was observed over a wide temperature range of 120K thanks to an optical feedback in the coupled cavities. These results show the possibility of achieving high-speed VCSELs without any temperature or bias control. We also demonstrate an ultra-compact photodetector-integrated VCSEL with two laterally-coupled cavities. An output power and a photocurrent exhibit similar tendencies under a wide range of temperature changes. This device could be also used for monitoring output power without a conventional photodetector mounted separately.
Optical phase-locked loop (OPLL) for free-space laser communications with heterodyne detection
NASA Technical Reports Server (NTRS)
Win, Moe Z.; Chen, Chien-Chung; Scholtz, Robert A.
1991-01-01
Several advantages of coherent free-space optical communications are outlined. Theoretical analysis is formulated for an OPLL disturbed by shot noise, modulation noise, and frequency noise consisting of a white component, a 1/f component, and a 1/f-squared component. Each of the noise components is characterized by its associated power spectral density. It is shown that the effect of modulation depends only on the ratio of loop bandwidth and data rate, and is negligible for an OPLL with loop bandwidth smaller than one fourth the data rate. Total phase error variance as a function of loop bandwidth is displayed for several values of carrier signal to noise ratio. Optimal loop bandwidth is also calculated as a function of carrier signal to noise ratio. An OPLL experiment is performed, where it is shown that the measured phase error variance closely matches the theoretical predictions.
A Gigabit-per-Second Ka-Band Demonstration Using a Reconfigurable FPGA Modulator
NASA Technical Reports Server (NTRS)
Lee, Dennis; Gray, Andrew A.; Kang, Edward C.; Tsou, Haiping; Lay, Norman E.; Fong, Wai; Fisher, Dave; Hoy, Scott
2005-01-01
Gigabit-per-second communications have been a desired target for future NASA Earth science missions, and for potential manned lunar missions. Frequency bandwidth at S-band and X-band is typically insufficient to support missions at these high data rates. In this paper, we present the results of a 1 Gbps 32-QAM end-to-end experiment at Ka-band using a reconfigurable Field Programmable Gate Array (FPGA) baseband modulator board. Bit error rate measurements of the received signal using a software receiver demonstrate the feasibility of using ultra-high data rates at Ka-band, although results indicate that error correcting coding and/or modulator predistortion must be implemented in addition. Also, results of the demonstration validate the low-cost, MOS-based reconfigurable modulator approach taken to development of a high rate modulator, as opposed to more expensive ASIC or pure analog approaches.
Full color laser projection display using Kr-Ar laser (white laser) beam-scanning technology
NASA Astrophysics Data System (ADS)
Kim, Yonghoon; Lee, Hang W.; Cha, Seungnam; Lee, Jin-Ho; Park, Youngjun; Park, Jungho; Hong, Sung S.; Hwang, Young M.
1997-07-01
Full color laser projection display is realized on the large screen using a krypton-argon laser (white laser) as a light source, and acousto-optic devices as light modulators. The main wavelengths of red, green and blue color are 647, 515, and 488 nm separated by dichroic mirrors which are designed to obtain the best performance for the s-polarized beam with the 45 degree incident angle. The separated beams are modulated by three acousto-optic modulators driven by rf drivers which has energy level of 1 watt at 144 MHz and recombined by dichroic mirrors again. Acousto-optic modulators (AOM) are fabricated to satisfy high diffraction efficiency over 80% and fast rising time less than 50 ns at the video bandwidth of 5 MHz. The recombined three beams (RGB) are scanned by polygonal mirrors for horizontal lines and a galvanometer for vertical lines. The photodiode detection for monitoring of rotary polygonal mirrors is adopted in this system for the compensation of the tolerance in the mechanical scanning to prevent the image joggling in the horizontal direction. The laser projection display system described in this paper is expected to apply HDTV from the exploitation of the acousto- optic modulator with the video bandwidth of 30 MHz.
Razak, K A
2012-04-01
Frequency-modulated (FM) sweeps are common components of species-specific vocalizations. The intensity of FM sweeps can cover a wide range in the natural environment, but whether intensity affects neural selectivity for FM sweeps is unclear. Bats, such as the pallid bat, which use FM sweeps for echolocation, are suited to address this issue, because the intensity of echoes will vary with target distance. In this study, FM sweep rate selectivity of pallid bat auditory cortex neurons was measured using downward sweeps at different intensities. Neurons became more selective for FM sweep rates present in the bat's echolocation calls as intensity increased. Increased selectivity resulted from stronger inhibition of responses to slower sweep rates. The timing and bandwidth of inhibition generated by frequencies on the high side of the excitatory tuning curve [sideband high-frequency inhibition (HFI)] shape rate selectivity in cortical neurons in the pallid bat. To determine whether intensity-dependent changes in FM rate selectivity were due to altered inhibition, the timing and bandwidth of HFI were quantified at multiple intensities using the two-tone inhibition paradigm. HFI arrived faster relative to excitation as sound intensity increased. The bandwidth of HFI also increased with intensity. The changes in HFI predicted intensity-dependent changes in FM rate selectivity. These data suggest that neural selectivity for a sweep parameter is not static but shifts with intensity due to changes in properties of sideband inhibition.
Optical Peaking Enhancement in High-Speed Ring Modulators
Müller, J.; Merget, F.; Azadeh, S. Sharif; Hauck, J.; García, S. Romero; Shen, B.; Witzens, J.
2014-01-01
Ring resonator modulators (RRM) combine extreme compactness, low power consumption and wavelength division multiplexing functionality, making them a frontrunner for addressing the scalability requirements of short distance optical links. To extend data rates beyond the classically assumed bandwidth capability, we derive and experimentally verify closed form equations of the electro-optic response and asymmetric side band generation resulting from inherent transient time dynamics and leverage these to significantly improve device performance. An equivalent circuit description with a commonly used peaking amplifier model allows straightforward assessment of the effect on existing communication system architectures. A small signal analytical expression of peaking in the electro-optic response of RRMs is derived and used to extend the electro-optic bandwidth of the device above 40 GHz as well as to open eye diagrams penalized by intersymbol interference at 32, 40 and 44 Gbps. Predicted peaking and asymmetric side band generation are in excellent agreement with experiments. PMID:25209255
Zhang, Junwen; Yu, Jianjun; Chi, Nan; Chien, Hung-Chang
2014-08-25
We theoretically and experimentally investigate a time-domain digital pre-equalization (DPEQ) scheme for bandwidth-limited optical coherent communication systems, which is based on feedback of channel characteristics from the receiver-side blind and adaptive equalizers, such as least-mean-squares (LMS) algorithm and constant or multi- modulus algorithms (CMA, MMA). Based on the proposed DPEQ scheme, we theoretically and experimentally study its performance in terms of various channel conditions as well as resolutions for channel estimation, such as filtering bandwidth, taps length, and OSNR. Using a high speed 64-GSa/s DAC in cooperation with the proposed DPEQ technique, we successfully synthesized band-limited 40-Gbaud signals in modulation formats of polarization-diversion multiplexed (PDM) quadrature phase shift keying (QPSK), 8-quadrature amplitude modulation (QAM) and 16-QAM, and significant improvement in both back-to-back and transmission BER performances are also demonstrated.
Zhao, Tongtong; Lou, Shuqin; Wang, Xin; Zhou, Min; Lian, Zhenggang
2016-08-10
We design an ultrabroadband polarization splitter based on three-core photonic crystal fiber (PCF). A modulation core and two fluorine-doped cores are introduced to achieve an ultrawide bandwidth. The properties of three-core PCF are modeled by using the full-vector finite element method along with the full-vector beam propagation method. Numerical results demonstrate that an ultrabroadband splitter with 320 nm bandwidth with an extinction ratio as low as -20 dB can be achieved by using 52.8 mm long three-core PCF. This splitter also has high compatibility with standard single-mode fibers as the input and output ports due to low splicing loss of 0.02 dB. All the air holes in the proposed structure are circular holes and arranged in a triangular lattice that makes it easy to fabricate.
Bardella, Paolo; Chow, Weng; Montrosset, Ivo
2016-01-08
In the last decades, various solutions have been proposed to increase the modulation bandwidth and consequently the transmission bit rate of integrated semiconductor lasers. In this manuscript we discuss a design procedure for a recently proposed laser structure realized with the integration of two DBR lasers. Design guidelines will be proposed and dynamic small and large signal simulations, calculated using a Finite Difference Traveling Wave numerical simulator, will be performed to confirm the design results and the effectiveness of the analyzed integrated configuration to achieve a direct modulation bandwidth up to 80 GHz
An adaptive narrow band frequency modulation voice communication system
NASA Technical Reports Server (NTRS)
Wishna, S.
1972-01-01
A narrow band frequency modulation communication system is described which provides for the reception of good quality voice at low carrier-to-noise ratios. The high level of performance is obtained by designing a limiter and phase lock loop combination as a demodulator, so that the bandwidth of the phase lock loop decreases as the carrier level decreases. The system was built for the position location and aircraft communication equipment experiment of the ATS 6 program.
Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.
Djordjevic, Ivan B
2011-07-18
In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.
Ultra High-Speed Radio Frequency Switch Based on Photonics.
Ge, Jia; Fok, Mable P
2015-11-26
Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.
NASA Technical Reports Server (NTRS)
Lin, Shu (Principal Investigator); Uehara, Gregory T.; Nakamura, Eric; Chu, Cecilia W. P.
1996-01-01
The (64, 40, 8) subcode of the third-order Reed-Muller (RM) code for high-speed satellite communications is proposed. The RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. The progress made toward achieving the goal of implementing a decoder system based upon this code is summarized. The development of the integrated circuit prototype sub-trellis IC, particularly focusing on the design methodology, is addressed.
Parallel-Processing CMOS Circuitry for M-QAM and 8PSK TCM
NASA Technical Reports Server (NTRS)
Gray, Andrew; Lee, Dennis; Hoy, Scott; Fisher, Dave; Fong, Wai; Ghuman, Parminder
2009-01-01
There has been some additional development of parts reported in "Multi-Modulator for Bandwidth-Efficient Communication" (NPO-40807), NASA Tech Briefs, Vol. 32, No. 6 (June 2009), page 34. The focus was on 1) The generation of M-order quadrature amplitude modulation (M-QAM) and octonary-phase-shift-keying, trellis-coded modulation (8PSK TCM), 2) The use of square-root raised-cosine pulse-shaping filters, 3) A parallel-processing architecture that enables low-speed [complementary metal oxide/semiconductor (CMOS)] circuitry to perform the coding, modulation, and pulse-shaping computations at a high rate; and 4) Implementation of the architecture in a CMOS field-programmable gate array.
450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM.
Chi, Yu-Chieh; Hsieh, Dan-Hua; Tsai, Cheng-Ting; Chen, Hsiang-Yu; Kuo, Hao-Chung; Lin, Gong-Ru
2015-05-18
A TO-38-can packaged Gallium nitride (GaN) blue laser diode (LD) based free-space visible light communication (VLC) with 64-quadrature amplitude modulation (QAM) and 32-subcarrier orthogonal frequency division multiplexing (OFDM) transmission at 9 Gbps is preliminarily demonstrated over a 5-m free-space link. The 3-dB analog modulation bandwidth of the TO-38-can packaged GaN blue LD biased at 65 mA and controlled at 25°C is only 900 MHz, which can be extended to 1.5 GHz for OFDM encoding after throughput intensity optimization. When delivering the 4-Gbps 16-QAM OFDM data within 1-GHz bandwidth, the error vector magnitude (EVM), signal-to-noise ratio (SNR) and bit-error-rate (BER) of the received data are observed as 8.4%, 22.4 dB and 3.5 × 10(-8), respectively. By increasing the encoded bandwidth to 1.5 GHz, the TO-38-can packaged GaN blue LD enlarges its transmission capacity to 6 Gbps but degrades its transmitted BER to 1.7 × 10(-3). The same transmission capacity of 6 Gbps can also be achieved with a BER of 1 × 10(-6) by encoding 64-QAM OFDM data within 1-GHz bandwidth. Using the 1.5-GHz full bandwidth of the TO-38-can packaged GaN blue LD provides the 64-QAM OFDM transmission up to 9 Gbps, which successfully delivers data with an EVM of 5.1%, an SNR of 22 dB and a BER of 3.6 × 10(-3) passed the forward error correction (FEC) criterion.
InGaAlAs RW-based electro-absorption-modulated DFB-lasers for high-speed applications
NASA Astrophysics Data System (ADS)
Moehrle, Martin; Klein, Holger; Bornholdt, Carsten; Przyrembel, Georges; Sigmund, Ariane; Molzow, Wolf-Dietrich; Troppenz, Ute; Bach, Heinz-Gunter
2014-05-01
Electro-absorption modulated 10G and 25G DFB lasers (EML) are key components in transmission systems for long reach (up to 10 km) and extended reach (up to 80 km) applications. The next generation Ethernet will most likely be 400 Gb/s which will require components with even higher bandwidth. Commercially available EMLs are regarded as high-cost components due to their separate epitaxial butt-coupling growth process to separately optimize the DFB laser and the electro-absorption modulator (EAM). Alternatively the selective area growth (SAG) technique is used to achieve different MQW bandgaps in the DFB and EAM section of an EML. However for a lot of applications an emission wavelength within a narrow wavelength window is required enforcing a temperature controlled operation. All these applications can be covered with the developed EML devices that use a single InGaAlAs MQW waveguide for both the DFB and the EAM enabling a low-cost fabrication process similar to a conventional DFB laser diode. It will be shown that such devices can be used for 25Gb/s and 40Gb/s applications with excellent performance. By an additional monolithic integration of an impedance matching circuit the module fabrication costs can be reduced but also the modulation bandwidth of the devices can be further enhanced. Up to 70Gb/s modulation with excellent eye openings can be achieved. This novel approach opens the possibility for 100Gb/s NRZ EMLs and thus 4x100Gb/s NRZ EML-based transmitters in future. Also even higher bitrates seem feasible using more complex modulation formats such as e.g. DMT and PAM.
NASA Technical Reports Server (NTRS)
Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.
2012-01-01
At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.
Classified one-step high-radix signed-digit arithmetic units
NASA Astrophysics Data System (ADS)
Cherri, Abdallah K.
1998-08-01
High-radix number systems enable higher information storage density, less complexity, fewer system components, and fewer cascaded gates and operations. A simple one-step fully parallel high-radix signed-digit arithmetic is proposed for parallel optical computing based on new joint spatial encodings. This reduces hardware requirements and improves throughput by reducing the space-bandwidth produce needed. The high-radix signed-digit arithmetic operations are based on classifying the neighboring input digit pairs into various groups to reduce the computation rules. A new joint spatial encoding technique is developed to present both the operands and the computation rules. This technique increases the spatial bandwidth product of the spatial light modulators of the system. An optical implementation of the proposed high-radix signed-digit arithmetic operations is also presented. It is shown that our one-step trinary signed-digit and quaternary signed-digit arithmetic units are much simpler and better than all previously reported high-radix signed-digit techniques.
Harmonics analysis of the photonic time stretch system.
Mei, Yuan; Xu, Boyu; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin
2016-09-10
Photonic time stretch (PTS) has been intensively investigated in recent decades due to its potential application to ultra-wideband analog-to-digital conversion. A high-speed analog signal can be captured by an electronic analog-to-digital converter (ADC) with the help of the PTS technique, which slows down the speed of signal in the photonic domain. Unfortunately, the process of the time stretch is not linear due to the nonlinear modulation of the electro-optic intensity modulator in the PTS system, which means the undesired harmonics distortion. In this paper, we present an exact analytical model to fully characterize the harmonics generation in the PTS systems for the first time, to the best of our knowledge. We obtain concise and closed-form expressions for all harmonics of the PTS system with either a single-arm Mach-Zehnder modulator (MZM) or a push-pull MZM. The presented model can largely simplify the PTS system design and the system parameters estimation, such as system bandwidth, harmonics power, time-bandwidth product, and dynamic range. The correctness of the mathematic model is verified by the numerical and experimental results.
High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers.
Zhou, Daibing; Liang, Song; Zhao, Lingjuan; Zhu, Hongliang; Wang, Wei
2017-02-06
We report widely tunable two-section distributed Bragg reflector (DBR) lasers, which have InGaAlAs multiple quantum wells (MQWs) as the gain material. By butt-jointing InGaAsP, which has a photoluminescence wavelength of 1.4 μm as the material of the DBR section, a wavelength tuning range of 12 nm can be obtained by current injection into the DBR section. The direct modulation bandwidth of the lasers is greater than 10 GHz over the entire wavelength tuning range up to 40°C. Compared with InGaAsP DBR lasers having the same structure, the InGaAlAs lasers have smaller variations in both the threshold current and slope efficiency with the temperature because of the better electron confinement in the InGaAlAs MQWs. Moreover, the DBR-current-induced decreases in the modulation bandwidth and side mode suppression ratio (SMSR) of the optical spectra are notably smaller for the InGaAlAs lasers than for the InGaAsP lasers.
NASA Astrophysics Data System (ADS)
Gao, Zhuo; Zhan, Weida; Sun, Quan; Hao, Ziqiang
2018-04-01
Differential multi-pulse position modulation (DMPPM) is a new type of modulation technology. There is a fast transmission rate, high bandwidth utilization, high modulation rate characteristics. The study of DMPPM modulation has important scientific value and practical significance. Channel capacity is one of the important indexes to measure the communication capability of communication system, and studying the channel capacity of DMPPM without background noise is the key to analyze the characteristics of DMPPM. The DMPPM theoretical model is established. The symbol structure of DMPPM with guard time slot is analyzed, and the channel capacity expression of DMPPM is deduced. Simulation analysis by MATLAB. The curves of unit channel capacity and capacity efficiency at different pulse and photon counting rates are analyzed. The results show that DMPPM is more advantageous than multi-pulse position modulation (MPPM), and is more suitable for future wireless optical communication system.
Comparing bandwidth requirements for digital baseband signals.
NASA Technical Reports Server (NTRS)
Houts, R. C.; Green, T. A.
1972-01-01
This paper describes the relative bandwidth requirements of the common digital baseband signaling techniques used for data transmission. Bandwidth considerations include the percentage of total power in a properly encoded PN sequence passed at bandwidths of 0.5, 1, 2 and 3 times the reciprocal of the bit interval. The signals considered in this study are limited to the binary class. The study compares such signaling techniques as delay modulation, bipolar, biternary, duobinary, pair selected ternary and time polarity control in addition to the conventional NRZ, RZ and BI-phi schemes.
NASA Astrophysics Data System (ADS)
Hefferman, Gerald; Chen, Zhen; Wei, Tao
2017-07-01
This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.
Hefferman, Gerald; Chen, Zhen; Wei, Tao
2017-07-01
This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.
A Low-Ambiguity Signal Waveform for Pseudolite Positioning Systems Based on Chirp.
Liu, Qing; Huang, Zhigang; Kou, Yanhong; Wang, Jinling
2018-04-25
Signal modulation is an essential design factor of a positioning system, which directly impacts the system’s potential performance. Chirp compressions have been widely applied in the fields of communication, radar, and indoor positioning owing to their high compression gain and good resistance to narrowband interferences and multipath fading. Based on linear chirp, we present a modulation method named chirped pseudo-noise (ChPN). The mathematical model of the ChPN signal is provided with its auto-correlation function (ACF) and the power spectrum density (PSD) derived. The ChPN with orthogonal chirps is also discussed, which has better resistance to near-far effect. Then the generation and detection methods as well as the performances of ChPN are discussed by theoretical analysis and simulation. The results show that, for ChPN signals with the same main-lobe bandwidth (MLB), generally, the signal with a larger sweep bandwidth has better tracking precision and multipath resistance. ChPN yields slighter ACF peaks ambiguity due to its lower ACF side-peaks, although its tracking precision is a little worse than that of a binary offset carrier (BOC) with the same MLB. Moreover, ChPN provides better overall anti-multipath performance than BOC. For the ChPN signals with the same code rate, a signal with a larger sweep bandwidth has better performance in most aspects. In engineering practice, a ChPN receiver can be implemented by minor modifications of a BOC receiver. Thus, ChPN modulation shows promise for future positioning applications.
Spaceflight Ka-Band High-Rate Radiation-Hard Modulator
NASA Technical Reports Server (NTRS)
Jaso, Jeffery M.
2011-01-01
A document discusses the creation of a Ka-band modulator developed specifically for the NASA/GSFC Solar Dynamics Observatory (SDO). This flight design consists of a high-bandwidth, Quadriphase Shift Keying (QPSK) vector modulator with radiation-hardened, high-rate driver circuitry that receives I and Q channel data. The radiationhard design enables SDO fs Ka-band communications downlink system to transmit 130 Mbps (300 Msps after data encoding) of science instrument data to the ground system continuously throughout the mission fs minimum life of five years. The low error vector magnitude (EVM) of the modulator lowers the implementation loss of the transmitter in which it is used, thereby increasing the overall communication system link margin. The modulator comprises a component within the SDO transmitter, and meets the following specifications over a 0 to 40 C operational temperature range: QPSK/OQPSK modulator, 300-Msps symbol rate, 26.5-GHz center frequency, error vector magnitude less than or equal to 10 percent rms, and compliance with the NTIA (National Telecommunications and Information Administration) spectral mask.
The use of interleaving for reducing radio loss in trellis-coded modulation systems
NASA Technical Reports Server (NTRS)
Divsalar, D.; Simon, M. K.
1989-01-01
It is demonstrated how the use of interleaving/deinterleaving in trellis-coded modulation (TCM) systems can reduce the signal-to-noise ratio loss due to imperfect carrier demodulation references. Both the discrete carrier (phase-locked loop) and suppressed carrier (Costas loop) cases are considered and the differences between the two are clearly demonstrated by numerical results. These results are of great importance for future communication links to the Deep Space Network (DSN), especially from high Earth orbiters, which may be bandwidth limited.
Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides.
Choi, Ju Won; Chen, George F R; Ng, D K T; Ooi, Kelvin J A; Tan, Dawn T H
2016-06-08
CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra - silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W(-1)/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two - fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms.
A wide bandwidth free-electron laser with mode locking using current modulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kur, E.; Dunning, D. J.; McNeil, B. W. J.
2011-01-20
A new scheme for mode locking a free-electron laser amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept, based on the energy modulation of electrons, are improved including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked free-electron laser and self-amplified spontaneous emission free-electron laser. Illustrative examples using a hypothetical mode-locked free-electron laser amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated.
Multifunction audio digitizer for communications systems
NASA Technical Reports Server (NTRS)
Monford, L. G., Jr.
1971-01-01
Digitizer accomplishes both N bit pulse code modulation /PCM/ and delta modulation, and provides modulation indicating variable signal gain and variable sidetone. Other features include - low package count, variable clock rate to optimize bandwidth, and easily expanded PCM output.
Optimization of the segmented method for optical compression and multiplexing system
NASA Astrophysics Data System (ADS)
Al Falou, Ayman
2002-05-01
Because of the constant increasing demands of images exchange, and despite the ever increasing bandwidth of the networks, compression and multiplexing of images is becoming inseparable from their generation and display. For high resolution real time motion pictures, electronic performing of compression requires complex and time-consuming processing units. On the contrary, by its inherent bi-dimensional character, coherent optics is well fitted to perform such processes that are basically bi-dimensional data handling in the Fourier domain. Additionally, the main limiting factor that was the maximum frame rate is vanishing because of the recent improvement of spatial light modulator technology. The purpose of this communication is to benefit from recent optical correlation algorithms. The segmented filtering used to store multi-references in a given space bandwidth product optical filter can be applied to networks to compress and multiplex images in a given bandwidth channel.
Next-generation fiber lasers enabled by high-performance components
NASA Astrophysics Data System (ADS)
Kliner, D. A. V.; Victor, B.; Rivera, C.; Fanning, G.; Balsley, D.; Farrow, R. L.; Kennedy, K.; Hampton, S.; Hawke, R.; Soukup, E.; Reynolds, M.; Hodges, A.; Emery, J.; Brown, A.; Almonte, K.; Nelson, M.; Foley, B.; Dawson, D.; Hemenway, D. M.; Urbanek, W.; DeVito, M.; Bao, L.; Koponen, J.; Gross, K.
2018-02-01
Next-generation industrial fiber lasers enable challenging applications that cannot be addressed with legacy fiber lasers. Key features of next-generation fiber lasers include robust back-reflection protection, high power stability, wide power tunability, high-speed modulation and waveform generation, and facile field serviceability. These capabilities are enabled by high-performance components, particularly pump diodes and optical fibers, and by advanced fiber laser designs. We summarize the performance and reliability of nLIGHT diodes, fibers, and next-generation industrial fiber lasers at power levels of 500 W - 8 kW. We show back-reflection studies with up to 1 kW of back-reflected power, power-stability measurements in cw and modulated operation exhibiting sub-1% stability over a 5 - 100% power range, and high-speed modulation (100 kHz) and waveform generation with a bandwidth 20x higher than standard fiber lasers. We show results from representative applications, including cutting and welding of highly reflective metals (Cu and Al) for production of Li-ion battery modules and processing of carbon fiber reinforced polymers.
AlGaInAs EML having high extinction ratios fabricated by identical epitaxial layer technique
NASA Astrophysics Data System (ADS)
Deng, Qiufang; Guo, Lu; Liang, Song; Sun, Siwei; Xie, Xiao; Zhu, Hongliang; Wang, Wei
2018-04-01
AlGaInAs electroabsorption-modulated lasers (EMLs) fabricated by identical epitaxial layer technique are demonstrated. The EML device shows an infinite characteristic temperature when the temperature ranges from 20 oC to 30 oC. The integrated modulator has static extinction ratios of larger than 20 dB at a reverse bias voltage of - 2 V. The small signal modulation bandwidth of the modulator is larger than 11 GHz. At 10 Gb/s data modulation, the dynamic extinction ratio is about 9.5 dB in a back to back test configuration. Because only a simple fabrication procedure is needed, our EMLs are promising low cost light sources for optical fiber transmission applications.
NASA Astrophysics Data System (ADS)
Bai, Yang; Chen, Shufen; Fu, Li; Fang, Wei; Lu, Junjun
2005-01-01
A high bit rate more than 10Gbit/s optical pulse generation device is the key to achieving high-speed and broadband optical fiber communication network system .Now, we propose a novel high-speed optical transmission module(TM) consisting of a Ti:Er:LiNbO3 waveguide laser and a Mach-Zehnder-type encoding modulator on the same Er-doped substrate. According to the standard of ITU-T, we design the 10Gbit/ s transmission module at 1.53μm on the Z cut Y propagation LiNbO3 slice. A dynamic model and the corresponding numerical code are used to analyze the waveguide laser while the electrooptic effect to design the modulator. Meanwhile, the working principle, key technology, typical characteristic parameters of the module are given. The transmission module has a high extinction ratio and a low driving voltage, which supplies the efficient, miniaturized light source for wavelength division multiplexing(WDM) system. In additional, the relation of the laser gain with the cavity parameter, as well as the relation of the bandwidth of the electrooptic modulator with some key factors are discussed .The designed module structure is simulated by BPM software and HFSS software.
Highly Sensitive Electro-Optic Modulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVore, Peter S
2015-10-26
There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestationmore » of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.« less
Differential pulse amplitude modulation for multiple-input single-output OWVLC
NASA Astrophysics Data System (ADS)
Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.
2015-01-01
White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.
All-optical central-frequency-programmable and bandwidth-tailorable radar
Zou, Weiwen; Zhang, Hao; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping
2016-01-01
Radar has been widely used for military, security, and rescue purposes, and modern radar should be reconfigurable at multi-bands and have programmable central frequencies and considerable bandwidth agility. Microwave photonics or photonics-assisted radio-frequency technology is a unique solution to providing such capabilities. Here, we demonstrate an all-optical central-frequency-programmable and bandwidth-tailorable radar architecture that provides a coherent system and utilizes one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates a wideband linearly chirped radar signal. The working bands can be flexibly tailored with the desired bandwidth at a user-preferred carrier frequency. Radar echoes are first modulated onto the pre-chirped optical pulse, which is also used for signal generation, and then stretched in time or compressed in frequency several fold based on the time-stretch principle. Thus, digitization is facilitated without loss of detection ability. We believe that our results demonstrate an innovative radar architecture with an ultra-high-range resolution. PMID:26795596
Bandwidth-limited control and ringdown suppression in high-Q resonators.
Borneman, Troy W; Cory, David G
2012-12-01
We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity. Copyright © 2012 Elsevier Inc. All rights reserved.
Increasing Laser Stability with Improved Electronic Instruments
NASA Astrophysics Data System (ADS)
Troxel, Daylin; Bennett, Aaron; Erickson, Christopher J.; Jones, Tyler; Durfee, Dallin S.
2010-03-01
We present several electronic instruments developed to implement an ultra-stable laser lock. These instruments include a high speed, low noise homodyne photo-detector; an ultrahigh stability, low noise current driver with high modulation bandwidth and digital control; a high-speed, low noise PID controller; a low-noise piezo driver; and a laser diode temperature controller. We will present the theory of operation for these instruments, design and construction techniques, and essential characteristics for each device.
Linear optical pulse compression based on temporal zone plates.
Li, Bo; Li, Ming; Lou, Shuqin; Azaña, José
2013-07-15
We propose and demonstrate time-domain equivalents of spatial zone plates, namely temporal zone plates, as alternatives to conventional time lenses. Both temporal intensity zone plates, based on intensity-only temporal modulation, and temporal phase zone plates, based on phase-only temporal modulation, are introduced and studied. Temporal zone plates do not exhibit the limiting tradeoff between temporal aperture and frequency bandwidth (temporal resolution) of conventional linear time lenses. As a result, these zone plates can be ideally designed to offer a time-bandwidth product (TBP) as large as desired, practically limited by the achievable temporal modulation bandwidth (limiting the temporal resolution) and the amount of dispersion needed in the target processing systems (limiting the temporal aperture). We numerically and experimentally demonstrate linear optical pulse compression by using temporal zone plates based on linear electro-optic temporal modulation followed by fiber-optics dispersion. In the pulse-compression experiment based on temporal phase zone plates, we achieve a resolution of ~25.5 ps over a temporal aperture of ~5.77 ns, representing an experimental TBP larger than 226 using a phase-modulation amplitude of only ~0.8π rad. We also numerically study the potential of these devices to achieve temporal imaging of optical waveforms and present a comparative analysis on the performance of different temporal intensity and phase zone plates.
Upstream capacity upgrade in TDM-PON using RSOA based tunable fiber ring laser.
Yi, Lilin; Li, Zhengxuan; Dong, Yi; Xiao, Shilin; Chen, Jian; Hu, Weisheng
2012-04-23
An upstream multi-wavelength shared (UMWS) time division multiplexing passive optical network (TDM-PON) is presented by using a reflective semiconductor amplifier (RSOA) and tunable optical filter (TOF) based directly modulated fiber ring laser as upstream laser source. The stable laser operation is easily achieved no matter what the bandwidth and shape of the TOF is and it can be directly modulated when the RSOA is driven at its saturation region. In this UMWS TDM-PON system, an individual wavelength can be assigned to the user who has a high bandwidth demand by tuning the central wavelength of the TOF in its upgraded optical network unit (ONU), while others maintain their traditional ONU structure and share the bandwidth via time slots, which greatly and dynamically upgrades the upstream capacity. We experimentally demonstrated the bidirectional transmission of downstream data at 10-Gb/s and upstream data at 1.25-Gb/s per wavelength over 25-km single mode fiber (SMF) with almost no power penalty at both ends. A stable performance is observed for the upstream wavelength tuned from 1530 nm to 1595 nm. Moreover, due to the high extinction ratio (ER) of the upstream signal, the burst-mode transmitting is successfully presented and a better time-division multiplexing performance can be obtained by turning off the unused lasers thanks to the rapid formation of the laser in the fiber ring. © 2012 Optical Society of America
Synchronization for Optical PPM with Inter-Symbol Guard Times
NASA Astrophysics Data System (ADS)
Rogalin, R.; Srinivasan, M.
2017-05-01
Deep space optical communications promises orders of magnitude growth in communication capacity, supporting high data rate applications such as video streaming and high-bandwidth science instruments. Pulse position modulation is the modulation format of choice for deep space applications, and by inserting inter-symbol guard times between the symbols, the signal carries the timing information needed by the demodulator. Accurately extracting this timing information is crucial to demodulating and decoding this signal. In this article, we propose a number of timing and frequency estimation schemes for this modulation format, and in particular highlight a low complexity maximum likelihood timing estimator that significantly outperforms the prior art in this domain. This method does not require an explicit synchronization sequence, freeing up channel resources for data transmission.
Investigation of television transmission using adaptive delta modulation principles
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1976-01-01
The results are presented of a study on the use of the delta modulator as a digital encoder of television signals. The computer simulation of different delta modulators was studied in order to find a satisfactory delta modulator. After finding a suitable delta modulator algorithm via computer simulation, the results were analyzed and then implemented in hardware to study its ability to encode real time motion pictures from an NTSC format television camera. The effects of channel errors on the delta modulated video signal were tested along with several error correction algorithms via computer simulation. A very high speed delta modulator was built (out of ECL logic), incorporating the most promising of the correction schemes, so that it could be tested on real time motion pictures. Delta modulators were investigated which could achieve significant bandwidth reduction without regard to complexity or speed. The first scheme investigated was a real time frame to frame encoding scheme which required the assembly of fourteen, 131,000 bit long shift registers as well as a high speed delta modulator. The other schemes involved the computer simulation of two dimensional delta modulator algorithms.
Graphene-silicon phase modulators with gigahertz bandwidth
NASA Astrophysics Data System (ADS)
Sorianello, V.; Midrio, M.; Contestabile, G.; Asselberghs, I.; Van Campenhout, J.; Huyghebaert, C.; Goykhman, I.; Ott, A. K.; Ferrari, A. C.; Romagnoli, M.
2018-01-01
The modulator is a key component in optical communications. Several graphene-based amplitude modulators have been reported based on electro-absorption. However, graphene phase modulators (GPMs) are necessary for functions such as applying complex modulation formats or making switches or phased arrays. Here, we present a 10 Gb s-1 GPM integrated in a Mach-Zehnder interferometer configuration. This is a compact device based on a graphene-insulator-silicon capacitor, with a phase-shifter length of 300 μm and extinction ratio of 35 dB. The GPM has a modulation efficiency of 0.28 V cm at 1,550 nm. It has 5 GHz electro-optical bandwidth and operates at 10 Gb s-1 with 2 V peak-to-peak driving voltage in a push-pull configuration for binary transmission of a non-return-to-zero data stream over 50 km of single-mode fibre. This device is the key building block for graphene-based integrated photonics, enabling compact and energy-efficient hybrid graphene-silicon modulators for telecom, datacom and other applications.
NASA. Lewis Research Center Advanced Modulation and Coding Project: Introduction and overview
NASA Technical Reports Server (NTRS)
Budinger, James M.
1992-01-01
The Advanced Modulation and Coding Project at LeRC is sponsored by the Office of Space Science and Applications, Communications Division, Code EC, at NASA Headquarters and conducted by the Digital Systems Technology Branch of the Space Electronics Division. Advanced Modulation and Coding is one of three focused technology development projects within the branch's overall Processing and Switching Program. The program consists of industry contracts for developing proof-of-concept (POC) and demonstration model hardware, university grants for analyzing advanced techniques, and in-house integration and testing of performance verification and systems evaluation. The Advanced Modulation and Coding Project is broken into five elements: (1) bandwidth- and power-efficient modems; (2) high-speed codecs; (3) digital modems; (4) multichannel demodulators; and (5) very high-data-rate modems. At least one contract and one grant were awarded for each element.
Ultrafast pulsed laser utilizing broad bandwidth laser glass
Payne, Stephen A.; Hayden, Joseph S.
1997-01-01
An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.
Chen, Nan-Wei; Shi, Jin-Wei; Tsai, Hsuan-Ju; Wun, Jhih-Min; Kuo, Fong-Ming; Hesler, Jeffery; Crowe, Thomas W; Bowers, John E
2012-09-10
A 25 Gbits/s error-free on-off-keying (OOK) wireless link between an ultra high-speed W-band photonic transmitter-mixer (PTM) and a fast W-band envelope detector is demonstrated. At the transmission end, the high-speed PTM is developed with an active near-ballistic uni-traveling carrier photodiode (NBUTC-PD) integrated with broadband front-end circuitry via the flip-chip bonding technique. Compared to our previous work, the wireless data rate is significantly increased through the improvement on the bandwidth of the front-end circuitry together with the reduction of the intermediate-frequency (IF) driving voltage of the active NBUTC-PD. The demonstrated PTM has a record-wide IF modulation (DC-25 GHz) and optical-to-electrical fractional bandwidths (68-128 GHz, ~67%). At the receiver end, the demodulation is realized with an ultra-fast W-band envelope detector built with a zero-bias Schottky barrier diode with a record wide video bandwidth (37 GHz) and excellent sensitivity. The demonstrated PTM is expected to find applications in multi-gigabit short-range wireless communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, Michael A.; Berry, Jonathan W.; Hammond, Simon D.
A challenge in computer architecture is that processors often cannot be fed data from DRAM as fast as CPUs can consume it. Therefore, many applications are memory-bandwidth bound. With this motivation and the realization that traditional architectures (with all DRAM reachable only via bus) are insufficient to feed groups of modern processing units, vendors have introduced a variety of non-DDR 3D memory technologies (Hybrid Memory Cube (HMC),Wide I/O 2, High Bandwidth Memory (HBM)). These offer higher bandwidth and lower power by stacking DRAM chips on the processor or nearby on a silicon interposer. We will call these solutions “near-memory,” andmore » if user-addressable, “scratchpad.” High-performance systems on the market now offer two levels of main memory: near-memory on package and traditional DRAM further away. In the near term we expect the latencies near-memory and DRAM to be similar. Here, it is natural to think of near-memory as another module on the DRAM level of the memory hierarchy. Vendors are expected to offer modes in which the near memory is used as cache, but we believe that this will be inefficient.« less
Four-dimensional modulation and coding: An alternate to frequency-reuse
NASA Technical Reports Server (NTRS)
Wilson, S. G.; Sleeper, H. A.
1983-01-01
Four dimensional modulation as a means of improving communication efficiency on the band-limited Gaussian channel, with the four dimensions of signal space constituted by phase orthogonal carriers (cos omega sub c t and sin omega sub c t) simultaneously on space orthogonal electromagnetic waves are discussed. "Frequency reuse' techniques use such polarization orthogonality to reuse the same frequency slot, but the modulation is not treated as four dimensional, rather a product of two-d modulations, e.g., QPSK. It is well known that, higher dimensionality signalling affords possible improvements in the power bandwidth sense. Four-D modulations based upon subsets of lattice-packings in four-D, which afford simplification of encoding and decoding are described. Sets of up to 1024 signals are constructed in four-D, providing a (Nyquist) spectral efficiency of up to 10 bps/Hz. Energy gains over the reuse technique are in the one to three dB range t equal bandwidth.
Four-dimensional modulation and coding - An alternate to frequency-reuse
NASA Technical Reports Server (NTRS)
Wilson, S. G.; Sleeper, H. A.; Srinath, N. K.
1984-01-01
Four dimensional modulation as a means of improving communication efficiency on the band-limited Gaussian channel, with the four dimensions of signal space constituted by phase orthogonal carriers (cos omega sub c t and sin omega sub c t) simultaneously on space orthogonal electromagnetic waves are discussed. 'Frequency reuse' techniques use such polarization orthogonality to reuse the same frequency slot, but the modulation is not treated as four dimensional, rather a product of two-D modulations, e.g., QPSK. It is well known that, higher dimensionality signalling affords possible improvements in the power bandwidth sense. Four-D modulations based upon subsets of lattice-packings in four-D, which afford simplification of encoding and decoding are described. Sets of up to 1024 signals are constructed in four-D, providing a (Nyquist) spectral efficiency of up to 10 bps/Hz. Energy gains over the reuse technique are in the one to three dB range t equal bandwidth.
Behzadi, Kobra; Baghelani, Masoud
2014-05-01
This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator.
Behzadi, Kobra; Baghelani, Masoud
2013-01-01
This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator. PMID:25685504
NASA Astrophysics Data System (ADS)
Liu, Ming; Yin, Xiaobo; Wang, Feng; Zhang, Xiang
2011-10-01
Data communications have been growing at a speed even faster than Moore's Law, with a 44-fold increase expected within the next 10 years. Data Transfer on such scale would have to recruit optical communication technology and inspire new designs of light sources, modulators, and photodetectors. An ideal optical modulator will require high modulation speed, small device footprint and large operating bandwidth. Silicon modulators based on free carrier plasma dispersion effect and compound semiconductors utilizing direct bandgap transition have seen rapid improvement over the past decade. One of the key limitations for using silicon as modulator material is its weak refractive index change, which limits the footprint of silicon Mach-Zehnder interferometer modulators to millimeters. Other approaches such as silicon microring modulators reduce the operation wavelength range to around 100 pm and are highly sensitive to typical fabrication tolerances and temperature fluctuations. Growing large, high quality wafers of compound semiconductors, and integrating them on silicon or other substrates is expensive, which also restricts their commercialization. In this work, we demonstrate that graphene can be used as the active media for electroabsorption modulators. By tuning the Fermi energy level of the graphene layer, we induced changes in the absorption coefficient of graphene at communication wavelength and achieve a modulation depth above 3 dB. This integrated device also has the potential of working at high speed.
Multiplexing of spatial modes in the mid-IR region
NASA Astrophysics Data System (ADS)
Gailele, Lucas; Maweza, Loyiso; Dudley, Angela; Ndagano, Bienvenu; Rosales-Guzman, Carmelo; Forbes, Andrew
2017-02-01
Traditional optical communication systems optimize multiplexing in polarization and wavelength both trans- mitted in fiber and free-space to attain high bandwidth data communication. Yet despite these technologies, we are expected to reach a bandwidth ceiling in the near future. Communications using orbital angular momentum (OAM) carrying modes offers infinite dimensional states, providing means to increase link capacity by multiplexing spatially overlapping modes in both the azimuthal and radial degrees of freedom. OAM modes are multiplexed and de-multiplexed by the use of spatial light modulators (SLM). Implementation of complex amplitude modulation is employed on laser beams phase and amplitude to generate Laguerre-Gaussian (LG) modes. Modal decomposition is employed to detect these modes due to their orthogonality as they propagate in space. We demonstrate data transfer by sending images as a proof-of concept in a lab-based scheme. We demonstrate the creation and detection of OAM modes in the mid-IR region as a precursor to a mid-IR free-space communication link.
Improving performance of channel equalization in RSOA-based WDM-PON by QR decomposition.
Li, Xiang; Zhong, Wen-De; Alphones, Arokiaswami; Yu, Changyuan; Xu, Zhaowen
2015-10-19
In reflective semiconductor optical amplifier (RSOA)-based wavelength division multiplexed passive optical network (WDM-PON), the bit rate is limited by low modulation bandwidth of RSOAs. To overcome the limitation, we apply QR decomposition in channel equalizer (QR-CE) to achieve successive interference cancellation (SIC) for discrete Fourier transform spreading orthogonal frequency division multiplexing (DFT-S OFDM) signal. Using an RSOA with a 3-dB modulation bandwidth of only ~800 MHz, we experimentally demonstrate a 15.5-Gb/s over 20-km SSMF DFT-S OFDM transmission with QR-CE. The experimental results show that DFTS-OFDM with QR-CE attains much better BER performance than DFTS-OFDM and OFDM with conventional channel equalizers. The impacts of several parameters on QR-CE are investigated. It is found that 2 sub-bands in one OFDM symbol and 1 pilot in each sub-band are sufficient to achieve optimal performance and maintain the high spectral efficiency.
Meese, Tim S; Holmes, David J
2010-10-01
Most contemporary models of spatial vision include a cross-oriented route to suppression (masking from a broadly tuned inhibitory pool), which is most potent at low spatial and high temporal frequencies (T. S. Meese & D. J. Holmes, 2007). The influence of this pathway can elevate orientation-masking functions without exciting the target mechanism, and because early psychophysical estimates of filter bandwidth did not accommodate this, it is likely that they have been overestimated for this corner of stimulus space. Here we show that a transient 40% contrast mask causes substantial binocular threshold elevation for a transient vertical target, and this declines from a mask orientation of 0° to about 40° (indicating tuning), and then more gently to 90°, where it remains at a factor of ∼4. We also confirm that cross-orientation masking is diminished or abolished at high spatial frequencies and for sustained temporal modulation. We fitted a simple model of pedestal masking and cross-orientation suppression (XOS) to our data and those of G. C. Phillips and H. R. Wilson (1984) and found the dependency of orientation bandwidth on spatial frequency to be much less than previously supposed. An extension of our linear spatial pooling model of contrast gain control and dilution masking (T. S. Meese & R. J. Summers, 2007) is also shown to be consistent with our results using filter bandwidths of ±20°. Both models include tightly and broadly tuned components of divisive suppression. More generally, because XOS and/or dilution masking can affect the shape of orientation-masking curves, we caution that variations in bandwidth estimates might reflect variations in processes that have nothing to do with filter bandwidth.
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.
2014-01-01
NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.
A Low-Ambiguity Signal Waveform for Pseudolite Positioning Systems Based on Chirp
Huang, Zhigang; Kou, Yanhong; Wang, Jinling
2018-01-01
Signal modulation is an essential design factor of a positioning system, which directly impacts the system’s potential performance. Chirp compressions have been widely applied in the fields of communication, radar, and indoor positioning owing to their high compression gain and good resistance to narrowband interferences and multipath fading. Based on linear chirp, we present a modulation method named chirped pseudo-noise (ChPN). The mathematical model of the ChPN signal is provided with its auto-correlation function (ACF) and the power spectrum density (PSD) derived. The ChPN with orthogonal chirps is also discussed, which has better resistance to near-far effect. Then the generation and detection methods as well as the performances of ChPN are discussed by theoretical analysis and simulation. The results show that, for ChPN signals with the same main-lobe bandwidth (MLB), generally, the signal with a larger sweep bandwidth has better tracking precision and multipath resistance. ChPN yields slighter ACF peaks ambiguity due to its lower ACF side-peaks, although its tracking precision is a little worse than that of a binary offset carrier (BOC) with the same MLB. Moreover, ChPN provides better overall anti-multipath performance than BOC. For the ChPN signals with the same code rate, a signal with a larger sweep bandwidth has better performance in most aspects. In engineering practice, a ChPN receiver can be implemented by minor modifications of a BOC receiver. Thus, ChPN modulation shows promise for future positioning applications. PMID:29693581
47 CFR 73.128 - AM stereophonic broadcasting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... stereophonic transmissions conform to the modulation characteristics specified in paragraphs (b) and (c) of... occupied bandwidth specifications of § 73.44 under all possible conditions of program modulation. Compliance with requirement shall be demonstrated either by the following specific modulation tests or other...
Wang, Shau-Chun; Chen, Hsiao-Ping; Lee, Chia-Yu; Yeo, Leslie Y
2005-04-15
In capillary electrophoresis, effective optical signal quality improvement is obtained when high frequency (>100 Hz) external pulse fields modulate analyte velocities with synchronous lock-in detection. However, the pulse frequency is constrained under a critical value corresponding to the time required for the bulk viscous flow, which arises due to viscous momentum diffusion from the electro-osmotic slip in the Debye layer, to reach steady-state. By solving the momentum diffusion equation for transient bulk flow in the micro-channel, we show that this set-in time to steady-state and hence, the upper limit for the pulse frequency is dependent on the characteristic diffusion length scale and therefore the channel geometry; for cylindrical capillaries, the set-in time is approximately one half of that for rectangular slot channels. From our estimation of the set-in time and hence the upper frequency modulation limit, we propose that the half width of planar channels does not exceed 100 microm and that the radii of cylindrical channels be limited to 140 microm such that there is a finite working bandwidth range above 100 Hz and below the upper limit in order for flicker noise to be effectively suppressed.
NASA Technical Reports Server (NTRS)
Moyerman, S.; Bierman, E.; Ade, P. A. R.; Aiken, R.; Barkats, D.; Bischoff, C.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.;
2012-01-01
The design and performance of a wide bandwidth linear polarization-modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to approx 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP fs 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP fs measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP fs 43 pixels without FRMs.
Ultrafast pulsed laser utilizing broad bandwidth laser glass
Payne, S.A.; Hayden, J.S.
1997-09-02
An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.
Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong
2017-10-23
Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.
Wavefront control with a spatial light modulator containing dual-frequency liquid crystal
NASA Astrophysics Data System (ADS)
Gu, Dong-Feng; Winker, Bruce; Wen, Bing; Taber, Don; Brackley, Andrew; Wirth, Allan; Albanese, Marc; Landers, Frank
2004-10-01
A versatile, scalable wavefront control approach based upon proven liquid crystal (LC) spatial light modulator (SLM) technology was extended for potential use in high-energy near-infrared laser applications. The reflective LC SLM module demonstrated has a two-inch diameter active aperture with 812 pixels. Using an ultra-low absorption transparent conductor in the LC SLM, a high laser damage threshold was demonstrated. Novel dual frequency liquid crystal materials and addressing schemes were implemented to achieve fast switching speed (<1ms at 1.31 microns). Combining this LCSLM with a novel wavefront sensing method, a closed loop wavefront controller is being demonstrated. Compared to conventional deformable mirrors, this non-mechanical wavefront control approach offers substantial improvements in speed (bandwidth), resolution, power consumption and system weight/volume.
An Ultrafast Switchable Terahertz Polarization Modulator Based on III-V Semiconductor Nanowires.
Baig, Sarwat A; Boland, Jessica L; Damry, Djamshid A; Tan, H Hoe; Jagadish, Chennupati; Joyce, Hannah J; Johnston, Michael B
2017-04-12
Progress in the terahertz (THz) region of the electromagnetic spectrum is undergoing major advances, with advanced THz sources and detectors being developed at a rapid pace. Yet, ultrafast THz communication is still to be realized, owing to the lack of practical and effective THz modulators. Here, we present a novel ultrafast active THz polarization modulator based on GaAs semiconductor nanowires arranged in a wire-grid configuration. We utilize an optical pump-terahertz probe spectroscopy system and vary the polarization of the optical pump beam to demonstrate ultrafast THz modulation with a switching time of less than 5 ps and a modulation depth of -8 dB. We achieve an extinction of over 13% and a dynamic range of -9 dB, comparable to microsecond-switchable graphene- and metamaterial-based THz modulators, and surpassing the performance of optically switchable carbon nanotube THz polarizers. We show a broad bandwidth for THz modulation between 0.1 and 4 THz. Thus, this work presents the first THz modulator which combines not only a large modulation depth but also a broad bandwidth and picosecond time resolution for THz intensity and phase modulation, making it an ideal candidate for ultrafast THz communication.
An X-band phase-locked relativistic backward wave oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y.; Science and Technology on High Power Microwave Laboratory, Mianyang 621900; Li, Z. H.
2015-08-15
For the purpose of coherent high power microwave combining at high frequency band, an X-band phase-locked relativistic backward wave oscillator is presented and investigated. The phase-locking of the oscillator is accomplished by modulation of the electron beam before it reaches the oscillator. To produce a bunched beam with an acceptable injected RF power requirement, an overmoded input cavity is employed to provide initial density modulation. And a buncher cavity is introduced to further increase the modulation depth. When the beam enters the oscillator, the modulation depth is enough to lock the frequency and phase of the output microwave generated bymore » the oscillator. Particle-in-cell simulation shows that an input power of 90 kW is sufficient to lock the frequency and phase of 1.5 GW output microwave with locking bandwidth of 60 MHz.« less
Yong, Zheng; Shopov, Stefan; Mikkelsen, Jared C; Mallard, Robert; Mak, Jason C C; Voinigescu, Sorin P; Poon, Joyce K S
2017-03-20
We present a silicon electro-optic transmitter consisting of a 28nm ultra-thin body and buried oxide fully depleted silicon-on-insulator (UTBB FD-SOI) CMOS driver flip-chip integrated onto a Mach-Zehnder modulator. The Mach-Zehnder silicon optical modulator was optimized to have a 3dB bandwidth of around 25 GHz at -1V bias and a 50 Ω impedance. The UTBB FD-SOI CMOS driver provided a large output voltage swing around 5 Vpp to enable a high dynamic extinction ratio and a low device insertion loss. At 44 Gbps, the transmitter achieved a high extinction ratio of 6.4 dB at the modulator quadrature operation point. This result shows open eye diagrams at the highest bit rates and with the largest extinction ratios for silicon electro-optic transmitter using a CMOS driver.
Multilevel photonic modules for millimeter-wave phased-array antennas
NASA Astrophysics Data System (ADS)
Paolella, Arthur C.; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.
1998-11-01
Optical signal distribution for phased array antennas in communication system is advantageous to designers. By distributing the microwave and millimeter wave signal through optical fiber there is the potential for improved performance and lower weight. In addition when applied to communication satellites this weight saving translates into substantially reduced launch costs. The goal of the Phase I Small Business Innovation Research (SBIR) Program is the development of multi-level photonic modules for phased array antennas. The proposed module with ultimately comprise of a monolithic, InGaAs/InP p-i-n photodetector-p-HEMT power amplifier, opto-electronic integrated circuit, that has 44 GHz bandwidth and output power of 50 mW integrated with a planar antenna. The photodetector will have a high quantum efficiency and will be front-illuminated, thereby improved optical performance. Under Phase I a module was developed using standard MIC technology with a high frequency coaxial feed interconnect.
A Standard for RF Modulation Factor,
1979-09-01
Mathematics of Physics and Chemistry, pp. 474-477 (D. Van Nostrand Co., Inc., New York, N.Y., 1943). [23] Graybill , F. A., An Introduction to Linear ...circuit model . The primary limitation on the quadratic technique is the linearity and bandwidth of the analog multiplier. A high speed (5 MHz...o ...... . ..... 39 7.2.1. Nonlinearity Model ............................................... 41 7.2.2. Model Parameters
Nonlinear heating of ions by electron cyclotron frequency waves
NASA Astrophysics Data System (ADS)
Zestanakis, P. A.; Hizanidis, K.; Ram, A. K.; Kominis, Y.
2010-11-01
We study the nonlinear interaction of ions with electron cyclotron (EC) wave packets in a magnetized plasma. Previous studies have shown that such interactions with high frequency electrostatic lower hybrid waves can lead to coherent energization of ions. It requires the frequency bandwidth of the wave packet to be broader than the ion cyclotron frequency [1,2]. For the electromagnetic high frequency EC waves we have developed a more general theory, based on the Lie transform canonical perturbation method [3,4]. We apply the theory to the case of two overlapping EC beams. The wave frequency of each beam is assumed to be frequency modulated with a modulation bandwidth comparable to the ion cyclotron frequency. We present results for both X-mode and O-mode and illustrate the conditions for ion energization. [4pt] [1] D. Benisti, A. K. Ram, and A. Bers, Phys. Plasmas 5, 3224 (1998). [0pt] [2] A. K. Ram, A. Bers, and D. Benisti , J. Geophys. Res. 103, 9431 (1998). [0pt] [3] J.R. Cary and A.N. Kaufman, Phys. Fluids 24, 1238 (1981). [0pt] [4] R.L. Dewar, J. Phys A-Math. Gen 9, 2043 (1976).
Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides
Choi, Ju Won; Chen, George F. R.; Ng, D. K. T.; Ooi, Kelvin J. A.; Tan, Dawn T. H.
2016-01-01
CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra – silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W−1/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two – fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms. PMID:27272558
47 CFR 74.535 - Emission and bandwidth.
Code of Federal Regulations, 2010 CFR
2010-10-01
... transmitter power (PMEAN) in accordance with the following schedule: (1) When using frequency modulation: (i... employed when digital modulation occupies 50 percent or more of the total peak frequency deviation of a... deviation produced by the digital modulation signal and the deviation produced by any frequency division...
High-frequency modulation of the four states of polarization of light with a single phase modulator
NASA Astrophysics Data System (ADS)
Compain, Eric; Drevillon, Bernard
1998-04-01
A method for light polarization modulation is described. It allows us to independently modulate, at a high frequency, the four components of the Stokes vector of light using a single phase modulator. It works in a double-pass configuration: the polarization of light is modulated a first time by the phase modulator, and is then modified by a coupling object before being modulated a second time by the same modulator. The coupling object consists of multiple glass plates, oriented at the Brewster angle, acting as a partial polarizer and in a right angle prism acting as a phase shifter and back reflector. Its polarimetric properties are obtained from refractive index contrast effects, which provides optimized and constant properties over a wide spectral range. The phase modulator can be either an electro-optic modulator providing a very high-frequency capability (up to 100 MHz) or a photoelastic modulator providing a wide spectral range capability. It is robust because there is no moving part and simple to implement because of the presence of one modulation. It displays a high level of sensitivity because all the components are high-frequency modulated. Two applications using this modulator in a polarimeter or in a polarization states generator are described. The four modulations, having the same fundamental frequency, are easily demodulated by numerical data processing. Optimized demodulation processing, adapted to the different kind of phase modulator is described. Its adaptation taking into account the bandwidth limitation and the variation of the sampling phase, are finally presented in the case of a photoelastic modulator.
Tunable compensation of GVD-induced FM-AM conversion in the front end of high-power lasers.
Li, Rao; Fan, Wei; Jiang, Youen; Qiao, Zhi; Zhang, Peng; Lin, Zunqi
2017-02-01
Group velocity dispersion (GVD) is one of the main factors leading to frequency modulation (FM) to amplitude modulation (AM) conversion in the front end of high-power lasers. In order to compensate the FM-AM modulation, the influence of GVD, which is mainly induced by the phase filter effect, is theoretically investigated. Based on the theoretical analysis, a high-precision, high-stability, tunable GVD compensatory using gratings is designed and experimentally demonstrated. The results indicate that the compensator can be implemented in high-power laser facilities to compensate the GVD of fiber with a length between 200-500 m when the bandwidth of a phase-modulated laser is 0.34 nm or 0.58 nm and the central wavelength is in the range of 1052.3217-1053.6008 nm. Due to the linear relationship between the dispersion and the spacing distance of the gratings, the compensator can easily achieve closed-loop feedback controlling. The proposed GVD compensator promises significant applications in large laser facilities, especially in the future polarizing fiber front end of high-power lasers.
Emerging technologies in Si active photonics
NASA Astrophysics Data System (ADS)
Wang, Xiaoxin; Liu, Jifeng
2018-06-01
Silicon photonics for synergistic electronic–photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro-optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronicSilicon photonics for synergistic electronic-photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro–optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronic–photonic integration with performance inaccessible from conventional Si photonics technologies-photonic integration with performance inaccessible from conventional Si photonics technologies.
NASA Astrophysics Data System (ADS)
Kleinert, M.; Reinke, P.; Bach, H.-G.; Brinker, W.; Zawadzki, C.; Dietrich, A.; de Felipe, D.; Keil, N.; Schell, M.
2017-02-01
Graphene with its high carrier mobility as well as its tunable light absorption is an attractive active material for highspeed electro-absorption modulators (EAMs). Large-area CVD-grown graphene monolayers can be transferred onto arbitrary substrates to add active optoelectronic properties to intrinsically passive photonic integration platforms. In this work, we present graphene-based EAMs integrated in passive polymer waveguides. To facilitate modulation frequencies in the GHz range, a 50 Ω termination resistor as well as a DC blocking capacitor are integrated with graphene EAMs for the first time. Large signal data transmission experiments were carried out across the O, C and L optical communications bands. The fastest devices exhibit a 3-dB bandwidth of more than 4 GHz. Our analytical model of the modulation response for the graphene-based EAMs is in good agreement with the measurement results. It predicts that bandwidths greater than 50 GHz are possible with future device iterations. Owing to the absorption properties of the graphene layers, the devices are expected to be functional at smaller wavelengths of interest for optical interconnects and data-communications as well, offering a novel flexibility for the integration of high-speed functionalities in optoelectronic integrated circuits. Our work is the first step towards an Active Optical Printed Circuit Board, hiding the optics completely inside the board and thus removing entry barriers in manufacturing. We believe this will lead to the same success as observed in Active Optical Cables for short range optically wired connections.
Mincey, John S.; Silva-Martinez, Jose; Karsilayan, AydinIlker; ...
2017-03-17
In this study, a coherent subsampling digitizer for pulsed Doppler radar systems is proposed. Prior to transmission, the radar system modulates the RF pulse with a known pseudorandom binary phase shift keying (BPSK) sequence. Upon reception, the radar digitizer uses a programmable sample-and-hold circuit to multiply the received waveform by a properly time-delayed version of the known a priori BPSK sequence. This operation demodulates the desired echo signal while suppressing the spectrum of all in-band noncorrelated interferers, making them appear as noise in the frequency domain. The resulting demodulated narrowband Doppler waveform is then subsampled at the IF frequency bymore » a delta-sigma modulator. Because the digitization bandwidth within the delta-sigma feedback loop is much less than the input bandwidth to the digitizer, the thermal noise outside of the Doppler bandwidth is effectively filtered prior to quantization, providing an increase in signal-to-noise ratio (SNR) at the digitizer's output compared with the input SNR. In this demonstration, a delta-sigma correlation digitizer is fabricated in a 0.18-μm CMOS technology. The digitizer has a power consumption of 1.12 mW with an IIP3 of 7.5 dBm. The digitizer is able to recover Doppler tones in the presence of blockers up to 40 dBm greater than the Doppler tone.« less
An implementation of a reference symbol approach to generic modulation in fading channels
NASA Technical Reports Server (NTRS)
Young, R. J.; Lodge, J. H.; Pacola, L. C.
1990-01-01
As mobile satellite communications systems evolve over the next decade, they will have to adapt to a changing tradeoff between bandwidth and power. This paper presents a flexible approach to digital modulation and coding that will accommodate both wideband and narrowband schemes. This architecture could be the basis for a family of modems, each satisfying a specific power and bandwidth constraint, yet all having a large number of common signal processing blocks. The implementation of this generic approach, with general purpose digital processors for transmission of 4.8 kilobits per sec. digitally encoded speech, is described.
Investigation of a GaAlAs Mach-Zehnder electro-optic modulator. M.S. Thesis. Final Contractor Report
NASA Technical Reports Server (NTRS)
Materna, David M.
1987-01-01
A GaAs modulator operating at 0.78 to 0.88 micron wavelength has the potential to be integrated with a GaAs/GaAlAs laser diode for an integrated fiber-optic transmitter. A travelling-wave Mach-Zehnder modulator using the electro-optic effect of GaAs and operating at a wavelength of 0.82 microns has been investigated for the first time. A four layer Strip-loaded ridge optical waveguide has been analyzed using the effective index method and single mode waveguides have been designed. The electro-optic effect of GaAs has also been analyzed and a modulator using the geometry producing the maximum phase shift has been designed. A coplanar transmission line structure is used in an effort to tap the potentially higher bandwidth of travelling-wave electrodes. The modulator bandwidth has been calculated at 11.95 GHz with a required drive power of 2.335 Watts for full intensity modulation. Finally, some preliminary experiments were performed to characterize a fabrication process for the modulator.
Code of Federal Regulations, 2010 CFR
2010-10-01
... this paragraph. (4) Modulation. Quadrature amplitude modulation (QAM) with orthogonal frequency... frequency broadcasting (HFBC) band, provided the protection afforded to the analog emissions is at least as... used for either DSB or SSB emissions. (c) Emission characteristics—(1) Bandwidth and center frequency...
NASA Astrophysics Data System (ADS)
Zhou, Wen; Qin, Chaoyi
2017-09-01
We demonstrate multi-frequency QPSK millimeter-wave (mm-wave) vector signal generation enabled by MZM-based optical carrier suppression (OCS) modulation and in-phase/quadrature (I/Q) modulation. We numerically simulate the generation of 40-, 80- and 120-GHz vector signal. Here, the three different signals carry the same QPSK modulation information. We also experimentally realize 11Gbaud/s QPSK vector signal transmission over 20 km fiber, and the generation of the vector signals at 40-GHz, 80-GHz and 120-GHz. The experimental results show that the bit-error-rate (BER) for all the three different signals can reach the forward-error-correction (FEC) threshold of 3.8×10-3. The advantage of the proposed system is that provide high-speed, high-bandwidth and high-capacity seamless access of TDM and wireless network. These features indicate the important application prospect in wireless access networks for WiMax, Wi-Fi and 5G/LTE.
Semrau, Daniel; Killey, Robert; Bayvel, Polina
2017-06-12
As the bandwidths of optical communication systems are increased to maximize channel capacity, the impact of stimulated Raman scattering (SRS) on the achievable information rates (AIR) in ultra-wideband coherent WDM systems becomes significant, and is investigated in this work, for the first time. By modifying the GN-model to account for SRS, it is possible to derive a closed-form expression that predicts the optical signal-to-noise ratio of all channels at the receiver for bandwidths of up to 15 THz, which is in excellent agreement with numerical calculations. It is shown that, with fixed modulation and coding rate, SRS leads to a drop of approximately 40% in achievable information rates for bandwidths higher than 15 THz. However, if adaptive modulation and coding rates are applied across the entire spectrum, this AIR reduction can be limited to only 10%.
Zhuge, Qunbi; Morsy-Osman, Mohamed; Chagnon, Mathieu; Xu, Xian; Qiu, Meng; Plant, David V
2014-02-10
In this paper, we propose a low-complexity format-transparent digital signal processing (DSP) scheme for next generation flexible and energy-efficient transceiver. It employs QPSK symbols as the training and pilot symbols for the initialization and tracking stage of the receiver-side DSP, respectively, for various modulation formats. The performance is numerically and experimentally evaluated in a dual polarization (DP) 11 Gbaud 64QAM system. Employing the proposed DSP scheme, we conduct a system-level study of Tb/s bandwidth-adaptive superchannel transmissions with flexible modulation formats including QPSK, 8QAM and 16QAM. The spectrum bandwidth allocation is realized in the digital domain instead of turning on/off sub-channels, which improves the performance of higher order QAM. Various transmission distances ranging from 240 km to 6240 km are demonstrated with a colorless detection for hardware complexity reduction.
A 1.3-μm four-channel directly modulated laser array fabricated by SAG-Upper-SCH technology
NASA Astrophysics Data System (ADS)
Guo, Fei; Lu, Dan; Zhang, Ruikang; Liu, Songtao; Sun, Mengdie; Kan, Qiang; Ji, Chen
2017-01-01
A monolithically integrated four-channel directly modulated laser (DML) array working at the 1.3-μm band is demonstrated. The laser was manufactured by using the techniques of selective area growth (SAG) of the upper separate confinement heterostructure (Upper-SCH) and modified butt-joint method. The fabricated device showed stable single mode operation with the side mode suppression ratio (SMSR) >35 dB, and high wavelength accuracy with the deviations from the linear fitted values <±0.03 nm for all channels. Furthermore, small signal modulation bandwidth >7 GHz was obtained, which may be suitable for 40 GbE applications in the 1.3-μm band.
NASA Astrophysics Data System (ADS)
Liu, Xiao-Di; Xu, Lu; Liang, Xiao-Yan
2017-01-01
We theoretically analyzed output beam quality of broad bandwidth non-collinear optical parametric chirped pulse amplification (NOPCPA) in LiB3O5 (LBO) centered at 800 nm. With a three-dimensional numerical model, the influence of the pump intensity, pump and signal spatial modulations, and the walk-off effect on the OPCPA output beam quality are presented, together with conversion efficiency and the gain spectrum. The pump modulation is a dominant factor that affects the output beam quality. Comparatively, the influence of signal modulation is insignificant. For a low-energy system with small beam sizes, walk-off effect has to be considered. Pump modulation and walk-off effect lead to asymmetric output beam profile with increased modulation. A special pump modulation type is found to optimize output beam quality and efficiency. For a high-energy system with large beam sizes, the walk-off effect can be neglected, certain back conversion is beneficial to reduce the output modulation. A trade-off must be made between the output beam quality and the conversion efficiency, especially when the pump modulation is large since. A relatively high conversion efficiency and a low output modulation are both achievable by controlling the pump modulation and intensity.
The effect of interference on delta modulation encoded video signals
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1979-01-01
The results of a study on the use of the delta modulator as a digital encoder of television signals are presented. The computer simulation was studied of different delta modulators in order to find a satisfactory delta modulator. After finding a suitable delta modulator algorithm via computer simulation, the results are analyzed and then implemented in hardware to study the ability to encode real time motion pictures from an NTSC format television camera. The effects were investigated of channel errors on the delta modulated video signal and several error correction algorithms were tested via computer simulation. A very high speed delta modulator was built (out of ECL logic), incorporating the most promising of the correction schemes, so that it could be tested on real time motion pictures. The final area of investigation concerned itself with finding delta modulators which could achieve significant bandwidth reduction without regard to complexity or speed. The first such scheme to be investigated was a real time frame to frame encoding scheme which required the assembly of fourteen, 131,000 bit long shift registers as well as a high speed delta modulator. The other schemes involved two dimensional delta modulator algorithms.
Multiple p-n junction subwavelength gratings for transmission-mode electro-optic modulators
Lee, Ki Young; Yoon, Jae Woong; Song, Seok Ho; Magnusson, Robert
2017-01-01
We propose a free-space electro-optic transmission modulator based on multiple p-n-junction semiconductor subwavelength gratings. The proposed device operates with a high-Q guided-mode resonance undergoing electro-optic resonance shift due to direct electrical control. Using rigorous electrical and optical modeling methods, we theoretically demonstrate a modulation depth of 84%, on-state efficiency 85%, and on-off extinction ratio of 19 dB at 1,550 nm wavelength under electrical control signals within a favorably low bias voltage range from −4 V to +1 V. This functionality operates in the transmission mode and sustainable in the high-speed operation regime up to a 10-GHz-scale modulation bandwidth in principle. The theoretical performance prediction is remarkably advantageous over plasmonic tunable metasurfaces in the power-efficiency and absolute modulation-depth aspects. Therefore, further experimental study is of great interest for creating practical-level metasurface components in various application areas. PMID:28417962
High-efficiency W-band hybrid integrated photoreceiver module using UTC-PD and pHEMT amplifier
NASA Astrophysics Data System (ADS)
Umezawa, T.; Katshima, K.; Kanno, A.; Akahane, K.; Matsumoto, A.; Yamamoto, N.; Kawanishi, T.
2016-02-01
A 100-GHz narrowband photoreceiver module integrated with a zero-bias operational uni-traveling-carrier photodiode (UTC-PD) and a GaAs-based pseudomorphic high-electron-mobility transistor (pHEMT) amplifier was fabricated and characterized. Both devices exhibited flat frequency response and outstanding overall performance. The UTC-PD showed a 3-dB bandwidth beyond 110 GHz while the pHEMT amplifier featured low power consumption and a gain of 24 dB over the 85-100 GHz range. A butterfly metal package equipped with a 1.0 mm (W) coaxial connector and a microstrip-coplanar waveguide conversion substrate was designed for low insertion loss and low return loss. The fabricated photoreceiver module demonstrated high conversion gain, a maximum output power of +9.5 dBm at 96 GHz, and DC-power consumption of 0.21 W.
Duobinary pulse shaping for frequency chirp enabled complex modulation.
Che, Di; Yuan, Feng; Khodakarami, Hamid; Shieh, William
2016-09-01
The frequency chirp of optical direct modulation (DM) used to be a performance barrier of optical transmission system, because it broadens the signal optical spectrum, which becomes more susceptible to chromatic dispersion induced inter-symbol interference (ISI). However, by considering the chirp as frequency modulation, the single DM simultaneously generates a 2-D signal containing the intensity and phase (namely, the time integral of frequency). This complex modulation concept significantly increases the optical signal to noise ratio (OSNR) sensitivity of DM systems. This Letter studies the duobinary pulse shaping (DB-PS) for chirp enabled DM and its impact on the optical bandwidth and system OSNR sensitivity. DB-PS relieves the bandwidth requirement, at the sacrifice of system OSNR sensitivity. As DB-PS induces a controlled ISI, the receiver requires one more tap for maximum likelihood sequence estimation (MLSE). We verify this modified MLSE with a 10-Gbaud duobinary PAM-4 transmission experiment.
Full complex spatial filtering with a phase mostly DMD. [Deformable Mirror Device
NASA Technical Reports Server (NTRS)
Florence, James M.; Juday, Richard D.
1991-01-01
A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.
Yu, Ge; Yang, T C; Piao, Shengchun
2017-10-01
A chirp signal is a signal with linearly varying instantaneous frequency over the signal bandwidth, also known as a linear frequency modulated (LFM) signal. It is widely used in communication, radar, active sonar, and other applications due to its Doppler tolerance property in signal detection using the matched filter (MF) processing. Modern sonar uses high-gain, wideband signals to improve the signal to reverberation ratio. High gain implies a high product of the signal bandwidth and duration. However, wideband and/or long duration LFM signals are no longer Doppler tolerant. The shortcoming of the standard MF processing is loss of performance, and bias in range estimation. This paper uses the wideband ambiguity function and the fractional Fourier transform method to estimate the target velocity and restore the performance. Target velocity or Doppler provides a clue for differentiating the target from the background reverberation and clutter. The methods are applied to simulated and experimental data.
HgCdTe APDs for time-resolved space applications
NASA Astrophysics Data System (ADS)
Rothman, J.; Lasfargues, G.; Delacourt, B.; Dumas, A.; Gibert, F.; Bardoux, A.; Boutillier, M.
2017-12-01
The use of HgCdTe avalanche photodiodes (APDs) for resolving the temporal variation of faint light level signals is analyzed. The analysis is based on the performance characteristics such as the gain, the response time, and dark currents in the APDs, measured as a function of operating temperature and Cd composition, and on recently developed detector demonstrator modules. The choice of Cd composition in the APDs is strongly dependent on the application needs in terms of electrical bandwidth and signal-to-noise ratio. A performance model has been developed and used to predict the performance of the future detector modules for different applications such as high bandwidth and/or deep space free space optical telecommunications and lidar, associated with sensitivities down to single photon level at low operating temperature and close to single-photon operation at bandwidth of 10 GHz at room temperature. The predictions are corroborated by the results obtained on detector modules that have been developed and used in lidar and deep space optical communications. In a first lidar prototype, integrating a 200 µm APD, we obtained a maximum sensitivity of 25 fW/√Hz at T = 190 K operating temperature. The detector has been used for differential absorption lidar estimations of the absorption due to presence of CO2 in the atmosphere. A random error of 3-10% was obtained for the estimation of the optical thickness at a distance of 100-3000 m, for a range resolution of 100 m and using and averaging time of 4 s. The pursuit of this development is pending on the space qualification of the technology. Results from first proton and irradiation tests are reported that shows on a close to constant performance during and after the irradiation and endurance tests.
Least reliable bits coding (LRBC) for high data rate satellite communications
NASA Technical Reports Server (NTRS)
Vanderaar, Mark; Budinger, James; Wagner, Paul
1992-01-01
LRBC, a bandwidth efficient multilevel/multistage block-coded modulation technique, is analyzed. LRBC uses simple multilevel component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Soft-decision multistage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Analytical expressions and tight performance bounds are used to show that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of BPSK. The relative simplicity of Galois field algebra vs the Viterbi algorithm and the availability of high-speed commercial VLSI for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.
High Speed Laser with 100 Ghz Resonance Frequency
2014-02-28
applications, such as opto - electronic oscillators . Recently, however, by optimizing the detuning frequency and injection ratio, we have shown enhanced...semiconductor lasers has been limited by relaxation oscillation frequency to < 40 GHz. By using strong optical injection locking, we report resonance...direct modulation bandwidth of semiconductor lasers. In a typical laser, the relaxation oscillation [resonance] frequency is a figure-of-merit that is a
Novel Applications of High Speed Optical-Injection Locked Lasers
2010-07-31
transimpedance amplifiers (TIAs) and optical hybrids. We have also demonstrated digital communications on a 60 GHz optical subcarrier using directly modulated...of the devices. Also included on the mask are both single ended as well as differential transimpedance amplifiers (TIAs). These circuits have a... transimpedance amplifiers with the photo-transistors as the input stage. Simulations predict a transimpedance bandwidth of 120 GHz for the single
Two-level main memory co-design: Multi-threaded algorithmic primitives, analysis, and simulation
Bender, Michael A.; Berry, Jonathan W.; Hammond, Simon D.; ...
2017-01-03
A challenge in computer architecture is that processors often cannot be fed data from DRAM as fast as CPUs can consume it. Therefore, many applications are memory-bandwidth bound. With this motivation and the realization that traditional architectures (with all DRAM reachable only via bus) are insufficient to feed groups of modern processing units, vendors have introduced a variety of non-DDR 3D memory technologies (Hybrid Memory Cube (HMC),Wide I/O 2, High Bandwidth Memory (HBM)). These offer higher bandwidth and lower power by stacking DRAM chips on the processor or nearby on a silicon interposer. We will call these solutions “near-memory,” andmore » if user-addressable, “scratchpad.” High-performance systems on the market now offer two levels of main memory: near-memory on package and traditional DRAM further away. In the near term we expect the latencies near-memory and DRAM to be similar. Here, it is natural to think of near-memory as another module on the DRAM level of the memory hierarchy. Vendors are expected to offer modes in which the near memory is used as cache, but we believe that this will be inefficient.« less
The spurious response of microwave photonic mixer
NASA Astrophysics Data System (ADS)
Xiao, Yongchuan; Zhong, Guoshun; Qu, Pengfei; Sun, Lijun
2018-02-01
Microwave photonic mixer is a potential solution for wideband information systems due to the ultra-wide operating bandwidth, high LO-to-RF isolation, the intrinsic immunity to electromagnetic interference, and the compatibility with exsiting microwave photonic transmission systems. The spurious response of microwave photonic mixer cascading in series a pair of Mach-Zehnder interferometric intensity modulators has been simulated and analyzed in this paper. The low order spurious products caused by the nonlinearity of modulators are non-negligible, and the proper IF frequency and accurate bias-controlling are of great importance to mitigate the impact of spurious products.
Spectrum Control through Discrete Frequency Diffraction in the Presence of Photonic Gauge Potentials
NASA Astrophysics Data System (ADS)
Qin, Chengzhi; Zhou, Feng; Peng, Yugui; Sounas, Dimitrios; Zhu, Xuefeng; Wang, Bing; Dong, Jianji; Zhang, Xinliang; Alù; , Andrea; Lu, Peixiang
2018-03-01
By using optical phase modulators in a fiber-optical circuit, we theoretically and experimentally demonstrate large control over the spectrum of an impinging signal, which may evolve analogously to discrete diffraction in spatial waveguide arrays. The modulation phase acts as a photonic gauge potential in the frequency dimension, realizing efficient control of the central frequency and bandwidth of frequency combs. We experimentally achieve a 50 GHz frequency shift and threefold bandwidth expansion of an impinging comb, as well as the frequency analogue of various refraction phenomena, including negative refraction and perfect focusing in the frequency domain, both for discrete and continuous incident spectra. Our study paves a promising way towards versatile frequency management for optical communications and signal processing using time modulation schemes.
Si photonics technology for future optical interconnection
NASA Astrophysics Data System (ADS)
Zheng, Xuezhe; Krishnamoorthy, Ashok V.
2011-12-01
Scaling of computing systems require ultra-efficient interconnects with large bandwidth density. Silicon photonics offers a disruptive solution with advantages in reach, energy efficiency and bandwidth density. We review our progress in developing building blocks for ultra-efficient WDM silicon photonic links. Employing microsolder based hybrid integration with low parasitics and high density, we optimize photonic devices on SOI platforms and VLSI circuits on more advanced bulk CMOS technology nodes independently. Progressively, we successfully demonstrated single channel hybrid silicon photonic transceivers at 5 Gbps and 10 Gbps, and 80 Gbps arrayed WDM silicon photonic transceiver using reverse biased depletion ring modulators and Ge waveguide photo detectors. Record-high energy efficiency of less than 100fJ/bit and 385 fJ/bit were achieved for the hybrid integrated transmitter and receiver, respectively. Waveguide grating based optical proximity couplers were developed with low loss and large optical bandwidth to enable multi-layer intra/inter-chip optical interconnects. Thermal engineering of WDM devices by selective substrate removal, together with WDM link using synthetic wavelength comb, we significantly improved the device tuning efficiency and reduced the tuning range. Using these innovative techniques, two orders of magnitude tuning power reduction was achieved. And tuning cost of only a few 10s of fJ/bit is expected for high data rate WDM silicon photonic links.
Kingni, Sifeu Takougang; Mbé, Jimmi Hervé Talla; Woafo, Paul
2012-09-01
In this work, we numerically study the dynamics of vertical cavity surface emitting laser (VCSEL) firstly when it is driven by Chua's oscillator, secondly in case where it is driven by a broad frequency spectral bandwidth chaotic oscillator developed by Nana et al. [Commun. Nonlinear Sci. Numer. Simul. 14, 2266 (2009)]. We demonstrated that the VCSEL generated robust chaotic dynamics compared to the ones found in VCSEL subject to a sinusoidally modulated current and therefore it is more suitable for chaos encryption techniques. The synchronization characteristics and the communication performances of unidirectional coupled VCSEL driven by the broad frequency spectral bandwidth chaotic oscillators are investigated numerically. The results show that high-quality synchronization and transmission of messages can be realized for suitable system parameters. Chaos shift keying method is successfully applied to encrypt a message at a high bitrate.
Ultra-low noise optical phase-locked loop
NASA Astrophysics Data System (ADS)
Ayotte, Simon; Babin, André; Costin, François
2014-03-01
The relative phase between two fiber lasers is controlled via a high performance optical phase-locked loop (OPLL). Two parameters are of particular importance for the design: the intrinsic phase noise of the laser (i.e. its linewidth) and a high-gain, low-noise electronic locking loop. In this work, one of the lowest phase noise fiber lasers commercially available was selected (i.e. NP Photonics Rock fiber laser module), with sub-kHz linewidth at 1550.12 nm. However, the fast tuning mechanism of such lasers is through stretching its cavity length with a piezoelectric transducer which has a few 10s kHz bandwidth. To further increase the locking loop bandwidth to several MHz, a second tuning mechanism is used by adding a Lithium Niobate phase modulator in the laser signal path. The OPLL is thus divided into two locking loops, a slow loop acting on the laser piezoelectric transducer and a fast loop acting on the phase modulator. The beat signal between the two phase-locked lasers yields a highly pure sine wave with an integrated phase error of 0.0012 rad. This is orders of magnitude lower than similar existing systems such as the Laser Synthesizer used for distribution of photonic local oscillator (LO) for the Atacama Large Millimeter Array radio telescope in Chile. Other applications for ultra-low noise OPLL include coherent power combining, Brillouin sensing, light detection and ranging (LIDAR), fiber optic gyroscopes, phased array antenna and beam steering, generation of LOs for next generation coherent communication systems, coherent analog optical links, terahertz generation and coherent spectroscopy.
Analysis of higher order harmonics with holographic reflection gratings
NASA Astrophysics Data System (ADS)
Mas-Abellan, P.; Madrigal, R.; Fimia, A.
2017-05-01
Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation that will produce high order harmonics. We studied the influence of the overmodulation and its effects on the transmission spectra for a wide exposure range by use of 9 μm thickness films of ultrafine grain emulsion BB640, exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index produce second order harmonics with high diffraction efficiency (higher than 75%) and a narrow grating bandwidth (12.5 nm). Results also show that overmodulation produce diffraction spectra deformation of the second order harmonic, transforming the spectrum from sinusoidal to approximation of square shape due to very high overmodulation. Increasing the levels of overmodulation of refractive index, we have obtained higher order harmonics, obtaining third order harmonic with diffraction efficiency (up to 23%) and narrowing grating bandwidth (5 nm). This study is the first step to develop a new easy technique to obtain narrow spectral filters based on the use of high index modulation reflection gratings.
NASA Technical Reports Server (NTRS)
Sullivan, D. V.
2015-01-01
The Link Module described in this paper was developed for the NASA Uninhabited Aerial System (UAS) Global Hawk Pacific Mission (GloPAC) Airborne Science Campaign; four flights of 30 hour duration, supporting the Aura Validation Experiment (AVE). It was used again during the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth Science field experiment to better understand how tropical storms form and develop into major hurricanes. In these missions, the Link Module negotiated all communication over the high bandwidth Ku satellite link, archived all the science data from onboard experiments in a spatially enabled database, routed command and control of the instruments from the Global Hawk Operations Center, and re-transmitted select data sets directly to experimenters control and analysis systems. The availability of aggregated information from collections of sensors, and remote control capabilities, in real-time, is revolutionizing the way Airborne Science is being conducted. The Link Module NG now being flown in support of the NASA Earth Venture missions, the Hurricane and Severe Storm Sentinel (HS3) mission, and Airborne Tropical Tropopause Experiment (A TTREX) mission, has advanced data fusion technologies that are further advancing the Scientific productivity, flexibility and robustness of these systems. On-the-fly traffic shaping has been developed to allow the high definition video, used for critical flight control segments, to dynamically allocate variable bandwidth on demand. Historically, the Link Module evolved from the instrument and communication interface controller used by NASA's Pathfinder and Pathfinder plus solar powered UAS's in the late 1990' s. It later was expanded for use in the AIRDAS four channel scanner flown on the NASA Altus UAS, and then again to a module in the AMS twelve channel multispectral scanner flying on the NASA (Predator-b) Ikhana UAS. The current system is the answer to the challenges imposed by extremely long duration UASs, with on-board multi-instrument (>= 12) Sensor Webs.
NASA Astrophysics Data System (ADS)
Lee, Hwi Don; Lee, Ju Han; Yung Jeong, Myung; Kim, Chang-Seok
2011-07-01
The static and dynamic characteristics of a wavelength-swept active mode locking (AML) fiber laser are presented in both the time-region and wavelength-region. This paper shows experimentally that the linewidth of a laser spectrum and the bandwidth of the sweeping wavelength are dependent directly on the length and dispersion of the fiber cavity as well as the modulation frequency and sweeping rate under the mode-locking condition. To achieve a narrower linewidth, a longer length and higher dispersion of the fiber cavity as well as a higher order mode locking condition are required simultaneously. For a broader bandwidth, a lower order of the mode locking condition is required using a lower modulation frequency. The dynamic sweeping performance is also analyzed experimentally to determine its applicability to optical coherence tomography imaging. It is shown that the maximum sweeping rate can be improved by the increased free spectral range from the shorter length of the fiber cavity. A reflective semiconductor optical amplifier (RSOA) was used to enhance the modulation and dispersion efficiency. Overall a triangular electrical signal can be used instead of the sinusoidal signal to sweep the lasing wavelength at a high sweeping rate due to the lack of mechanical restrictions in the wavelength sweeping mechanism.
Toward a reduced-wire readout system for ultrasound imaging.
Lim, Jaemyung; Arkan, Evren F; Degertekin, F Levent; Ghovanloo, Maysam
2014-01-01
We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply.
A Compact Low-Power Driver Array for VCSELs in 65-nm CMOS Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Zhiyao; Sun, Kexu; Wang, Guanhua
This article presents a compact low-power 4 x 10 Gb/s quad-driver module for Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays in a 65 nm CMOS technology. The side-by-side drivers can be directly wire bonded to the VCSEL diode array, supporting up to 4 channels. To increase the bandwidth of the driver, an internal feed-forward path is added for pole-zero cancellation, without increasing the power consumption. An edge-configurable pre-emphasis technique is proposed to achieve high bandwidth and minimize the asymmetry of the fall and rise times of the driver output current. Measurement results demonstrate a RMS jitter of 0.68 ps for 10 Gb/smore » operation. Tests demonstrate negligible crosstalk between channels. Under irradiation, the modulation amplitude degrades less than 5% up to 300 Mrad ionizing dose. Finally, the area of the quaddriver array is 500 μm by 1000 μm and the total power consumption for the entire driver array chip is 130 mW for the typical current setting.« less
Toward a Reduced-Wire Readout System for Ultrasound Imaging
Lim, Jaemyung; Arkan, Evren F.; Degertekin, F. Levent; Ghovanloo, Maysam
2015-01-01
We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply. PMID:25571135
A Compact Low-Power Driver Array for VCSELs in 65-nm CMOS Technology
Zeng, Zhiyao; Sun, Kexu; Wang, Guanhua; ...
2017-05-08
This article presents a compact low-power 4 x 10 Gb/s quad-driver module for Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays in a 65 nm CMOS technology. The side-by-side drivers can be directly wire bonded to the VCSEL diode array, supporting up to 4 channels. To increase the bandwidth of the driver, an internal feed-forward path is added for pole-zero cancellation, without increasing the power consumption. An edge-configurable pre-emphasis technique is proposed to achieve high bandwidth and minimize the asymmetry of the fall and rise times of the driver output current. Measurement results demonstrate a RMS jitter of 0.68 ps for 10 Gb/smore » operation. Tests demonstrate negligible crosstalk between channels. Under irradiation, the modulation amplitude degrades less than 5% up to 300 Mrad ionizing dose. Finally, the area of the quaddriver array is 500 μm by 1000 μm and the total power consumption for the entire driver array chip is 130 mW for the typical current setting.« less
Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory
Fisher, Kent A. G.; England, Duncan G.; MacLean, Jean-Philippe W.; Bustard, Philip J.; Resch, Kevin J.; Sussman, Benjamin J.
2016-01-01
The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion. PMID:27045988
Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory.
Fisher, Kent A G; England, Duncan G; MacLean, Jean-Philippe W; Bustard, Philip J; Resch, Kevin J; Sussman, Benjamin J
2016-04-05
The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion.
Full-Field Spectroscopy at Megahertz-frame-rates: Application of Coherent Time-Stretch Transform
NASA Astrophysics Data System (ADS)
DeVore, Peter Thomas Setsuda
Outliers or rogue events are found extensively in our world and have incredible effects. Also called rare events, they arise in the distribution of wealth (e.g., Pareto index), finance, network traffic, ocean waves, and e-commerce (selling less of more). Interest in rare optical events exploded after the sighting of optical rogue waves in laboratory experiments at UCLA. Detecting such tail events in fast streams of information necessitates real-time measurements. The Coherent Time-Stretch Transform chirps a pulsed source of radiation so that its temporal envelope matches its spectral profile (analogous to the far field regime of spatial diffraction), and the mapped spectral electric field is slow enough to be captured by a real-time digitizer. Combining this technique with spectral encoding, the time stretch technique has enabled a new class of ultra-high performance spectrometers and cameras (30+ MHz), and analog-to-digital converters that have led to the discovery of optical rogue waves and detection of cancer cells in blood with one in a million sensitivity. Conventionally, the Coherent Time-Stretch Transform maps the spectrum into the temporal electric field, but the time-dilation process along with inherent fiber losses results in reduction of peak power and loss of sensitivity, a problem exacerbated by extremely narrow molecular linewidths. The loss issue notwithstanding, in many cases the requisite dispersive optical device is not available. By extending the Coherent Time-Stretch Transform to the temporal near field, I have demonstrated, for the first time, phase-sensitive absorption spectroscopy of a gaseous sample at millions of frames per second. As the Coherent Time-Stretch Transform may capture both near and far field optical waves, it is a complete spectro-temporal optical characterization tool. This is manifested as an amplitude-dependent chirp, which implies the ability to measure the complex refractive index dispersion at megahertz frame rates. This technique is not only four orders of magnitude faster than even the fastest (kHz) spectrometers, but will also enable capture of real-time complex dielectric function dynamics of plasmas and chemical reactions (e.g. combustion). It also has applications in high-energy physics, biology, and monitoring fast high-throughput industrial processes. Adding an electro-optic modulator to the Time-Stretch Transform yields time-to-time mapping of electrical waveforms. Known as TiSER, it is an analog slow-motion processor that uses light to reduce the bandwidth of broadband RF signals for capture by high-sensitivity analog-to-digital converters (ADC). However, the electro-optic modulator limits the electrical bandwidth of TiSER. To solve this, I introduced Optical Sideband-only Amplification, wherein electro-optically generated modulation (containing the RF information) is amplified at the expense of the carrier, addressing the two most important problems plaguing electro-optic modulators: (1) low RF bandwidth and (2) high required RF drive voltages. I demonstrated drive voltage reductions of 5x at 10 GHz and 10x at 50 GHz, while simultaneously increasing the RF bandwidth.
Development of a wireless system for auditory neuroscience.
Lukes, A J; Lear, A T; Snider, R K
2001-01-01
In order to study how the auditory cortex extracts communication sounds in a realistic acoustic environment, a wireless system is being developed that will transmit acoustic as well as neural signals. The miniature transmitter will be capable of transmitting two acoustic signals with 37.5 KHz bandwidths (75 KHz sample rate) and 56 neural signals with bandwidths of 9.375 KHz (18.75 KHz sample rate). These signals will be time-division multiplexed into one high bandwidth signal with a 1.2 MHz sample rate. This high bandwidth signal will then be frequency modulated onto a 2.4 GHz carrier, which resides in the industrial, scientic, and medical (ISM) band that is designed for low-power short-range wireless applications. On the receiver side, the signal will be demodulated from the 2.4 GHz carrier and then digitized by an analog-to-digital (A/D) converter. The acoustic and neural signals will be digitally demultiplexed from the multiplexed signal into their respective channels. Oversampling (20 MHz) will allow the reconstruction of the multiplexing clock by a digital signal processor (DSP) that will perform frame and bit synchronization. A frame is a subset of the signal that contains all the channels and several channels tied high and low will signal the start of a frame. This technological development will bring two benefits to auditory neuroscience. It will allow simultaneous recording of many neurons that will permit studies of population codes. It will also allow neural functions to be determined in higher auditory areas by correlating neural and acoustic signals without apriori knowledge of the necessary stimuli.
NASA Astrophysics Data System (ADS)
Habibi, Ali
1993-01-01
The objective of this article is to present a discussion on the future of image data compression in the next two decades. It is virtually impossible to predict with any degree of certainty the breakthroughs in theory and developments, the milestones in advancement of technology and the success of the upcoming commercial products in the market place which will be the main factors in establishing the future stage to image coding. What we propose to do, instead, is look back at the progress in image coding during the last two decades and assess the state of the art in image coding today. Then, by observing the trends in developments of theory, software, and hardware coupled with the future needs for use and dissemination of imagery data and the constraints on the bandwidth and capacity of various networks, predict the future state of image coding. What seems to be certain today is the growing need for bandwidth compression. The television is using a technology which is half a century old and is ready to be replaced by high definition television with an extremely high digital bandwidth. Smart telephones coupled with personal computers and TV monitors accommodating both printed and video data will be common in homes and businesses within the next decade. Efficient and compact digital processing modules using developing technologies will make bandwidth compressed imagery the cheap and preferred alternative in satellite and on-board applications. In view of the above needs, we expect increased activities in development of theory, software, special purpose chips and hardware for image bandwidth compression in the next two decades. The following sections summarize the future trends in these areas.
Energy-efficient routing, modulation and spectrum allocation in elastic optical networks
NASA Astrophysics Data System (ADS)
Tan, Yanxia; Gu, Rentao; Ji, Yuefeng
2017-07-01
With tremendous growth in bandwidth demand, energy consumption problem in elastic optical networks (EONs) becomes a hot topic with wide concern. The sliceable bandwidth-variable transponder in EON, which can transmit/receive multiple optical flows, was recently proposed to improve a transponder's flexibility and save energy. In this paper, energy-efficient routing, modulation and spectrum allocation (EE-RMSA) in EONs with sliceable bandwidth-variable transponder is studied. To decrease the energy consumption, we develop a Mixed Integer Linear Programming (MILP) model with corresponding EE-RMSA algorithm for EONs. The MILP model jointly considers the modulation format and optical grooming in the process of routing and spectrum allocation with the objective of minimizing the energy consumption. With the help of genetic operators, the EE-RMSA algorithm iteratively optimizes the feasible routing path, modulation format and spectrum resources solutions by explore the whole search space. In order to save energy, the optical-layer grooming strategy is designed to transmit the lightpath requests. Finally, simulation results verify that the proposed scheme is able to reduce the energy consumption of the network while maintaining the blocking probability (BP) performance compare with the existing First-Fit-KSP algorithm, Iterative Flipping algorithm and EAMGSP algorithm especially in large network topology. Our results also demonstrate that the proposed EE-RMSA algorithm achieves almost the same performance as MILP on an 8-node network.
Weber, Stefan M; Extermann, Jérôme; Bonacina, Luigi; Noell, Wilfried; Kiselev, Denis; Waldis, Severin; de Rooij, Nico F; Wolf, Jean-Pierre
2010-09-15
We demonstrate the capabilities of a new optical microelectromechanical systems device that we specifically developed for broadband femtosecond pulse shaping. It consists of a one-dimensional array of 100 independently addressable, high-aspect-ratio micromirrors with up to 3 μm stroke. We apply linear and quadratic phase modulations demonstrating the temporal compression of 800 and 400 nm pulses. Because of the device's surface flatness, stroke, and stroke resolution, phase shaping over an unprecedented bandwidth is attainable.
Analysis of blocking probability for OFDM-based variable bandwidth optical network
NASA Astrophysics Data System (ADS)
Gong, Lei; Zhang, Jie; Zhao, Yongli; Lin, Xuefeng; Wu, Yuyao; Gu, Wanyi
2011-12-01
Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique. For optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments, optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions, and optical networking is the future trend of development. In OFDM-based optical network the research of blocking rate has very important significance for network assessment. Current research for WDM network is basically based on a fixed bandwidth, in order to accommodate the future business and the fast-changing development of optical network, our study is based on variable bandwidth OFDM-based optical networks. We apply the mathematical analysis and theoretical derivation, based on the existing theory and algorithms, research blocking probability of the variable bandwidth of optical network, and then we will build a model for blocking probability.
An FDMA system concept for 30/20 GHz high capacity domestic satellite service
NASA Technical Reports Server (NTRS)
Berk, G.; Jean, P. N.; Rotholz, E.; White, B. E.
1982-01-01
The paper summarizes a feasibility study of a multibeam FDMA satellite system operating in the 30/20 GHz band. The system must accommodate a very high volume of traffic within the restrictions of a 5 kW solar cell array and a 2.5 GHz bandwidth. Multibeam satellite operation reduces the DC power demand and allows reuse of the available bandwidth. Interferences among the beams are brought to acceptable levels by appropriate frequency assignments. A transponder design is presented; it is greatly simplified by the application of a regional concept. System analysis shows that MSK modulation is appropriate for a high-capacity system because it conserves the frequency spectrum. Rain attenuation, a serious problem in this frequency band, is combatted with sufficient power margins and with coding. Link budgets, cost analysis, and weight and power calculations are also discussed. A satellite-routed FDMA system compares favorably in performance and cost with a satellite-switched TDMA system.
Graphene-assisted ultra-compact polarization splitter and rotator with an extended bandwidth.
Zhang, Tian; Ke, Xianmin; Yin, Xiang; Chen, Lin; Li, Xun
2017-09-22
The high refraction-index contrast between silicon and the surrounding cladding makes silicon-on-insulator devices highly polarization-dependent. However, it is greatly desirable for many applications to address the issue of polarization dependence in silicon photonics. Here, a novel ultra-compact polarization splitter and rotator (PSR), constructed with an asymmetrical directional coupler consisting of a rib silicon waveguide and a graphene-embedded rib silicon waveguide (GERSW), on a silicon-on-insulator platform is proposed and investigated. By taking advantage of the large modulation of the effective refractive index of the TE mode for the GERSW by tuning the chemical potential of graphene, the phase matching condition can be well satisfied over a wide spectral band. The presented result demonstrates that for a 7-layer-graphene-embedded PSR with a coupling length of 11.1 μm, a high TM-to-TE conversion efficiency (>-0.5 dB) can be achieved over a broad bandwidth from 1516 to 1602 nm.
Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements
NASA Astrophysics Data System (ADS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron
2015-10-01
Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.
Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron
2015-01-01
Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Ismail, Syed
2014-01-01
Global atmospheric carbon dioxide (CO2) measurements through the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) Decadal Survey recommended space mission are critical for improving our understanding of CO2 sources and sinks. IM-CW (Intensity Modulated Continuous Wave) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS science requirements. In previous laboratory and flight experiments we have successfully used linear swept frequency modulation to discriminate surface lidar returns from intermediate aerosol and cloud contamination. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate clouds, which is a requirement for the inversion of the CO2 column-mixing ratio from the instrument optical depth measurements, has been demonstrated with the linear swept frequency modulation technique. We are concurrently investigating advanced techniques to help improve the auto-correlation properties of the transmitted waveform implemented through physical hardware to make cloud rejection more robust in special restricted scenarios. Several different carrier based modulation techniques are compared including orthogonal linear swept, orthogonal non-linear swept, and Binary Phase Shift Keying (BPSK). Techniques are investigated that reduce or eliminate sidelobes. These techniques have excellent auto-correlation properties while possessing a finite bandwidth (by way of a new cyclic digital filter), which will reduce bias error in the presence of multiple scatterers. Our analyses show that the studied modulation techniques can increase the accuracy of CO2 column measurements from space. A comparison of various properties such as signal to noise ratio (SNR) and time-bandwidth product are discussed.
Apparatus and method for increasing the bandwidth of a laser beam
Wilcox, Russell B.
1992-01-01
A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.
NASA Astrophysics Data System (ADS)
Liao, Renbo; Liu, Hongzhan; Qiao, Yaojun
2014-05-01
In order to improve the power efficiency and reduce the packet error rate of reverse differential pulse position modulation (RDPPM) for wireless optical communication (WOC), a hybrid reverse differential pulse position width modulation (RDPPWM) scheme is proposed, based on RDPPM and reverse pulse width modulation. Subsequently, the symbol structure of RDPPWM is briefly analyzed, and its performance is compared with that of other modulation schemes in terms of average transmitted power, bandwidth requirement, and packet error rate over ideal additive white Gaussian noise (AWGN) channels. Based on the given model, the simulation results show that the proposed modulation scheme has the advantages of improving the power efficiency and reducing the bandwidth requirement. Moreover, in terms of error probability performance, RDPPWM can achieve a much lower packet error rate than that of RDPPM. For example, at the same received signal power of -28 dBm, the packet error rate of RDPPWM can decrease to 2.6×10-12, while that of RDPPM is 2.2×10. Furthermore, RDPPWM does not need symbol synchronization at the receiving end. These considerations make RDPPWM a favorable candidate to select as the modulation scheme in the WOC systems.
NASA Astrophysics Data System (ADS)
Zhuge, Qunbi; Chen, Xi
2018-02-01
Global IP traffic is predicted to increase nearly threefold over the next 5 years, driven by emerging high-bandwidth-demanding applications, such as cloud computing, 5G wireless, high-definition video streaming, and virtual reality. This results in a continuously increasing demand on the capacity of backbone optical networks. During the past decade, advanced digital signal processing (DSP), modulation formats, and forward error correction (FEC) were commercially realized to exploit the capacity potential of long-haul fiber channels, and have increased per channel data rate from 10 Gb/s to 400 Gb/s. DSP has played a crucial role in coherent transceivers to accommodate channel impairments including chromatic dispersion (CD), polarization mode dispersion (PMD), laser phase noise, fiber nonlinearities, clock jitter, and so forth. The advance of DSP has also enabled innovations in modulation formats to increase spectral efficiency, improve linear/nonlinear noise tolerance, and realize flexible bandwidth. Moving forward to next generation 1 Tb/s systems on conventional single mode fiber (SMF) platform, more innovations in DSP techniques are needed to further reduce cost per bit, increase network efficiency, and close the gap to the Shannon limit. To further increase capacity per fiber, spatial-division multiplexing (SDM) systems can be used. DSP techniques such as advanced channel equalization methods and distortion compensation can help SDM systems to achieve higher system capacity. In the area of short-reach transmission, the rapid increase of data center network traffic has driven the development of optical technologies for both intra- and inter-data center interconnects (DCI). In particular, DSP has been exploited in intensity-modulation direct detection (IM/DD) systems to realize 400 Gb/s pluggable optical transceivers. In addition, multi-dimensional direct detection modulation schemes are being investigated to increase the data rate per wavelength targeting 1 Tb/s interface.
NASA Astrophysics Data System (ADS)
Wong, Elaine; Zhao, Xiaoxue; Chang-Hasnain, Connie J.; Hofmann, Werner; Amann, Marcus C.
2007-11-01
In this paper, we will discuss the utilization of optically injection-locked (OIL) 1.55 μm vertical-cavity surface-emitting lasers (VCSELs) for operation as low-cost, stable, directly modulated, and potentially uncooled transmitters, whereby the injection-locking master source is furnished by modulated downstream signals. Such a transmitter will find useful application in wavelength division multiplexed passive optical networks (WDM-PONs) which is actively being developed to meet the ever-increasing bandwidth demands of end users. Our scheme eliminates the need for external injection locking optical sources, external modulators, and wavelength stabilization circuitry. We show through experiments that the injection-locked VCSEL favors low injection powers and responds only strongly to the carrier but not the modulated data of the downstream signal. Further, we will discuss results from experimental studies performed on the dependence of OIL-VCSELs in bidirectional networks on the degree of Rayleigh backscattered signal and extinction ratio. We show that error-free upstream performance can be achieved when the upstream signal to Rayleigh backscattering ratio is greater than 13.4 dB, and with minimal dependence on the downstream extinction ratio. We will also review a fault monitoring and localization scheme based on a highly-sensitive yet low-cost monitor comprising a low output power broadband source and low bandwidth detectors. The proposed scheme benefits from the high reflectivity top distributed Bragg reflector mirror of the OIL-VCSEL, incurring only a minimal penalty on the upstream transmissions of the existing infrastructure. Such a scheme provides fault monitoring without having to further invest in the upgrade of customer premises.
8-PSK Signaling over non-linear satellite channels
NASA Technical Reports Server (NTRS)
Horan, Sheila B.; Caballero, Ruben B. Eng.
1996-01-01
Space agencies are under pressure to utilize better bandwidth-efficient communication methods due to the actual allocated frequency bands becoming more congested. Also budget reductions is another problem that the space agencies must deal with. This budget constraint results in simpler spacecraft carrying less communication capabilities and also the reduction in staff to capture data in the earth stations. It is then imperative that the most bandwidth efficient communication methods be utilized. This thesis presents a study of 8-ary Phase Shift Keying (8PSK) modulation with respect to bandwidth, power efficiency, spurious emissions and interference susceptibility over a non-linear satellite channel.
Construction and characterization of ultraviolet acousto-optic based femtosecond pulse shapers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcgrane, Shawn D; Moore, David S; Greenfield, Margo T
2008-01-01
We present all the information necessary for construction and characterization of acousto optic pulse shapers, with a focus on ultraviolet wavelengths, Various radio-frequency drive configurations are presented to allow optimization via knowledgeable trade-off of design features. Detailed performance characteristics of a 267 nm acousto-optic modulator (AOM) based pulse shaper are presented, Practical considerations for AOM based pulse shaping of ultra-broad bandwidth (sub-10 fs) amplified femtosecond pulse shaping are described, with particular attention paid to the effects of the RF frequency bandwidth and optical frequency bandwidth on the spatial dispersion of the output laser pulses.
High current, high bandwidth laser diode current driver
NASA Technical Reports Server (NTRS)
Copeland, David J.; Zimmerman, Robert K., Jr.
1991-01-01
A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.
Holding-time-aware asymmetric spectrum allocation in virtual optical networks
NASA Astrophysics Data System (ADS)
Lyu, Chunjian; Li, Hui; Liu, Yuze; Ji, Yuefeng
2017-10-01
Virtual optical networks (VONs) have been considered as a promising solution to support current high-capacity dynamic traffic and achieve rapid applications deployment. Since most of the network services (e.g., high-definition video service, cloud computing, distributed storage) in VONs are provisioned by dedicated data centers, needing different amount of bandwidth resources in both directions, the network traffic is mostly asymmetric. The common strategy, symmetric provisioning of traffic in optical networks, leads to a waste of spectrum resources in such traffic patterns. In this paper, we design a holding-time-aware asymmetric spectrum allocation module based on SDON architecture and an asymmetric spectrum allocation algorithm based on the module is proposed. For the purpose of reducing spectrum resources' waste, the algorithm attempts to reallocate the idle unidirectional spectrum slots in VONs, which are generated due to the asymmetry of services' bidirectional bandwidth. This part of resources can be exploited by other requests, such as short-time non-VON requests. We also introduce a two-dimensional asymmetric resource model for maintaining idle spectrum resources information of VON in spectrum and time domains. Moreover, a simulation is designed to evaluate the performance of the proposed algorithm, and results show that our proposed asymmetric spectrum allocation algorithm can improve the resource waste and reduce blocking probability.
NASA Astrophysics Data System (ADS)
Ab-Rahman, Mohammad Syuhaimi; Swedan, Abdulhameed Almabrok
2017-12-01
The emergence of new services and data exchange applications has increased the demand for bandwidth among individuals and commercial business users at the access area. Thus, vendors of optical access networks should achieve a high-capacity system. This study demonstrates the performance of an integrated configuration of one to four multi-wavelength conversions at 10 Gb/s based on cross-phase modulation using semiconductor optical amplifier integrated with Mach-Zehnder interferometer. The Opti System simulation tool is used to simulate and demonstrate one to four wavelength conversions using one modulated wavelength and four probes of continuous wave sources. The wavelength converter processes are confirmed through investigation of the input and output characteristics, optical signal-to-noise ratio, conversion efficiency, and extinction ratio of new modulated channels after separation by demultiplexing. The outcomes of the proposed system using single channel indicate that the capacity can increase from 10 Gb/s to 50 Gb/s with a maximum number of access points increasing from 64 to 320 (each point with 156.25 Mb/s bandwidth). The splitting ratio of 1:16 provides each client with 625 Mb/s for the total number of 80 users. The Q-factor and bit error rate curves are investigated to confirm and validate the modified scheme and prove the system performance of the full topology of 25 km with 1/64 splitter. The outcomes are within the acceptable range to provide the system scalability.
Martinez, Alfonso; Pastor, Daniel; Capmany, Jose
2002-12-30
We provide a full analysis of the distortion effects produced by the first and second order in-band dispersion of fiber Bragg grating based optical demultiplexers over analogue SCM (Sub Carrier Multiplexed) signals. Optical bandwidth utilization ranges for Dense WDM network are calculated considering different SCM system cases of frequency extension and modulation conditions.
Rout, Saroj; Sonkusale, Sameer
2016-06-27
The ever increasing demand for bandwidth in wireless communication systems will inevitably lead to the extension of operating frequencies toward the terahertz (THz) band known as the 'THz gap'. Towards closing this gap, we present a multi-level amplitude shift keying (ASK) terahertz wireless communication system using terahertz spatial light modulators (SLM) instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. The fundamental principle behind this higher efficiency is the conversion of a noisy voltage domain signal to a noise-free binary spatial pattern for effective amplitude modulation of a free-space THz carrier wave. Spatial modulation is achieved using an an active metamaterial array embedded with pseudomorphic high-electron mobility (pHEMT) designed in a consumer-grade galium-arsenide (GaAs) integrated circuit process which enables electronic control of its THz transmissivity. Each array is assembled as individually controllable tiles for transmissive terahertz spatial modulation. Using the experimental data from our metamaterial based modulator, we show that a four-level ASK digital communication system has two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR) using spatial light modulation compared to voltage controlled modulation.
Andriolo, Artur; Reis, Sarah S; Amorim, Thiago O S; Sucunza, Federico; de Castro, Franciele R; Maia, Ygor Geyer; Zerbini, Alexandre N; Bortolotto, Guilherme A; Dalla Rosa, Luciano
2015-09-01
Acoustic parameters of killer whale (Orcinus orca) whistles were described for the western South Atlantic Ocean and highlight the occurrence of high frequency whistles. Killer whale signals were recorded on December of 2012, when a pod of four individuals was observed harassing a group of sperm whales. The high frequency whistles were highly stereotyped and were modulated mostly at ultrasonic frequencies. Compared to other contour types, the high frequency whistles are characterized by higher bandwidths, shorter durations, fewer harmonics, and higher sweep rates. The results add to the knowledge of vocal behavior of this species.
NASA Astrophysics Data System (ADS)
Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Sakharov, A. V.; Ustinov, V. M.
2018-01-01
The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called "vertical-cavity surface-emitting lasers") under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of ˜30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers.
6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors.
Li, Hua; Wan, Wen-Jian; Tan, Zhi-Yong; Fu, Zhang-Long; Wang, Hai-Xia; Zhou, Tao; Li, Zi-Ping; Wang, Chang; Guo, Xu-Guang; Cao, Jun-Cheng
2017-06-14
The fast detection of terahertz radiation is of great importance for various applications such as fast imaging, high speed communications, and spectroscopy. Most commercial products capable of sensitively responding the terahertz radiation are thermal detectors, i.e., pyroelectric sensors and bolometers. This class of terahertz detectors is normally characterized by low modulation frequency (dozens or hundreds of Hz). Here we demonstrate the first fast semiconductor-based terahertz quantum well photodetectors by carefully designing the device structure and microwave transmission line for high frequency signal extraction. Modulation response bandwidth of gigahertz level is obtained. As an example, the 6.2-GHz modulated terahertz light emitted from a Fabry-Pérot terahertz quantum cascade laser is successfully detected using the fast terahertz quantum well photodetector. In addition to the fast terahertz detection, the technique presented in this work can also be used for optically characterizing the frequency stability of terahertz quantum cascade lasers, heterodyne detections and photomixing applications.
30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide.
Feng, Ning-Ning; Feng, Dazeng; Liao, Shirong; Wang, Xin; Dong, Po; Liang, Hong; Kung, Cheng-Chih; Qian, Wei; Fong, Joan; Shafiiha, Roshanak; Luo, Ying; Cunningham, Jack; Krishnamoorthy, Ashok V; Asghari, Mehdi
2011-04-11
We demonstrate a compact waveguide-based high-speed Ge electro-absorption (EA) modulator integrated with a single mode 3 µm silicon-on-isolator (SOI) waveguide. The Ge EA modulator is based on a horizontally-oriented p-i-n structure butt-coupled with a deep-etched silicon waveguide, which transitions adiabatically to a shallow-etched single mode large core SOI waveguide. The demonstrated device has a compact active region of 1.0 × 45 µm(2), a total insertion loss of 2.5-5 dB and an extinction ratio of 4-7.5 dB over a wavelength range of 1610-1640 nm with -4V(pp) bias. The estimated Δα/α value is in the range of 2-3.3. The 3 dB bandwidth measurements show that the device is capable of operating at more than 30 GHz. Clear eye-diagram openings at 12.5 Gbps demonstrates large signal modulation at high transmission rate. © 2011 Optical Society of America
Broadband, Spectrally Flat, Graphene-based Terahertz Modulators.
Shi, Fenghua; Chen, Yihang; Han, Peng; Tassin, Philippe
2015-12-02
Advances in the efficient manipulation of terahertz waves are crucial for the further development of terahertz technology, promising applications in many diverse areas, such as biotechnology and spectroscopy, to name just a few. Due to its exceptional electronic and optical properties, graphene is a good candidate for terahertz electro-absorption modulators. However, graphene-based modulators demonstrated to date are limited in bandwidth due to Fabry-Perot oscillations in the modulators' substrate. Here, a novel method is demonstrated to design electrically controlled graphene-based modulators that can achieve broadband and spectrally flat modulation of terahertz beams. In our design, a graphene layer is sandwiched between a dielectric and a slightly doped substrate on a metal reflector. It is shown that the spectral dependence of the electric field intensity at the graphene layer can be dramatically modified by optimizing the structural parameters of the device. In this way, the electric field intensity can be spectrally flat and even compensate for the dispersion of the graphene conductivity, resulting in almost invariant absorption in a wide frequency range. Modulation depths up to 76% can be achieved within a fractional operational bandwidth of over 55%. It is expected that our modulator designs will enable the use of terahertz technology in applications requiring broadband operation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adiabatic and fast passage ultra-wideband inversion in pulsed EPR.
Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar
2013-05-01
We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small. Copyright © 2013 Elsevier Inc. All rights reserved.
Bandwidth in bolometric interferometry
NASA Astrophysics Data System (ADS)
Charlassier, R.; Bunn, E. F.; Hamilton, J.-Ch.; Kaplan, J.; Malu, S.
2010-05-01
Context. Bolometric interferometry is a promising new technology with potential applications to the detection of B-mode polarization fluctuations of the cosmic microwave background (CMB). A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers to be competitive with imaging experiments. A crucial concern is that interferometers are assumed to be significantly affected by a spoiling effect known as bandwidth smearing. Aims: We investigate how the bandwidth modifies the work principle of a bolometric interferometer and affects its sensitivity to the CMB angular power spectra. Methods: We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. If the phase shifters produce shifts that are constant with respect to frequency, the instrument works like its monochromatic version (the modulation matrix is not modified), while if they vary (linearly or otherwise) with respect to frequency, one has to perform a special reconstruction scheme, which allows the visibilities to be reconstructed in frequency subbands. Using an angular power spectrum estimator that accounts for the bandwidth, we finally calculate the sensitivity of a broadband bolometric interferometer. A numerical simulation is performed that confirms the analytical results. Results: We conclude that (i) broadband bolometric interferometers allow broadband visibilities to be reconstructed regardless of the type of phase shifters used and (ii) for dedicated B-mode bolometric interferometers, the sensitivity loss caused by bandwidth smearing is quite acceptable, even for wideband instruments (a factor of 2 loss for a typical 20% bandwidth experiment).
Performance analysis of ultrasono-therapy transducer with contact detection.
Moreno, Eduardo; González, Gilberto; Leija, Lorenzo; Rodríguez, Orlando; Castillo, Martha; Fuentes, Martín
2003-06-01
The performance of ultrasono-therapy transducer with contact detection by using the impedance phase change is described. Usually a therapy transducer is designed with a lambda/2 frontal plate glued to a PZT-4 piezoceramic. This plate ensures a good mechanical protection of the piezoceramic with a corresponding high-transmission energy. Normally this transducer is operated at the minimum at the frequency of the impedance module of its input electric impedance, but this operation point is affected by the shift caused by the expected temperature increase. This shift could be higher than the narrow bandwidth presented. As a result we obtain a decrease in the power level for medical treatment. Usually it is designed electronic drivers with automatic control that follow the frequency change, but the relatively narrow bandwidth introduces difficulty in the design. Another frequency operation point is presented here and analyzed using the criteria of the maximum of the impedance phase with a wider bandwidth than in the previous case. Simulation with mechanical losses are presented with experimental results that show the convenience of this criteria for practical application.
A High Performance Delta-Sigma Modulator for Neurosensing
Xu, Jian; Zhao, Menglian; Wu, Xiaobo; Islam, Md. Kafiul; Yang, Zhi
2015-01-01
Recorded neural data are frequently corrupted by large amplitude artifacts that are triggered by a variety of sources, such as subject movements, organ motions, electromagnetic interferences and discharges at the electrode surface. To prevent the system from saturating and the electronics from malfunctioning due to these large artifacts, a wide dynamic range for data acquisition is demanded, which is quite challenging to achieve and would require excessive circuit area and power for implementation. In this paper, we present a high performance Delta-Sigma modulator along with several design techniques and enabling blocks to reduce circuit area and power. The modulator was fabricated in a 0.18-μm CMOS process. Powered by a 1.0-V supply, the chip can achieve an 85-dB peak signal-to-noise-and-distortion ratio (SNDR) and an 87-dB dynamic range when integrated over a 10-kHz bandwidth. The total power consumption of the modulator is 13 μW, which corresponds to a figure-of-merit (FOM) of 45 fJ/conversion step. These competitive circuit specifications make this design a good candidate for building high precision neurosensors. PMID:26262623
Very short intracavity directional coupler for high-speed communication
NASA Astrophysics Data System (ADS)
Griffel, Giora
1993-07-01
We propose a novel intracavity modulator/switch that consists of a directional-coupler located inside a Fabry-Perot cavity. The back mirror of the cavity has a unit reflectivity so that both input and output signals are at the same side. In this way we obtain a two-port, single side element, with coupling length of 83.5 μm, which is the shortest modulation coupler proposed so far. The upper frequency limit due to photon lifetime is 275 GHz, which is well over the bandwidth constraints of microwave lumped structures. A unified approach for the analysis of this device and other similar structures is presented and discussed.
DFB laser - External modulator fiber optic delay line for radar applications
NASA Astrophysics Data System (ADS)
Newberg, I. L.; Gee, C. M.; Thurmond, G. D.; Yen, H. W.
1989-09-01
A new application of a long fiber-optic delay line as a radar repeater in a radar test set is described. The experimental 31.6-kilometer fiber-optic link includes an external modulator operating with a distributed-feedback laser and low-loss single-mode fiber matched to the laser wavelength to obtain low dispersion for achieving large bandwidth-length performance. The successful tests, in which pulse compression peak sidelobe measurements are used to confirm the link RF phase linearity and SNR performance, show that fiber-optic links can meet the stringent phase and noise requirements of modern radars at high microwave frequencies.
NASA Astrophysics Data System (ADS)
Kovacevic, Goran; Phare, Christopher; Set, Sze Y.; Lipson, Michal; Yamashita, Shinji
2018-06-01
We present a design of an ultra-fast in-line graphene optical modulator on a silicon waveguide with a bandwidth exceeding 100 GHz, very small power consumption below 15 fJ/bit, and insertion loss of 1.5 dB. This is achieved by utilizing the transverse-electric-mode silicon slot to tailor the overlap of graphene electrodes, thus significantly reducing the capacitance of the device while maintaining a low insertion loss and using conservative estimates of the graphene resistance. Our design is substantiated by comprehensive finite-element-method simulations and RC circuit characterization, as well as fabrication feasibility discussion.
Suppression of pattern dependence in 10 Gbps upstream transmission of WDM-PON with RSOA-based ONUs
NASA Astrophysics Data System (ADS)
Zhang, Min; Wang, Danshi; Cao, Zhihui; Chen, Xue; Huang, Shanguo
2013-11-01
The finite gain recovery time of the reflective semiconductor optical amplifier (RSOA) causes distortion and pattern dependence at high bit rates in colorless optical network units (ONUs) of WDM passive optical network (WDN-PON). We propose and demonstrate a scheme of upstream transmission of 10 Gbps NRZ signals directly modulated via a RSOA in a 25 km single fiber, where we use a fiber Bragg grating (FBG) as an offset filter to suppress the pattern dependence and improve the RSOA modulation bandwidth. Both experimental and simulation results are provided, which are useful results for designing cost-effective colorless transceivers.
Boletti, A; Boffi, P; Martelli, P; Ferrario, M; Martinelli, M
2015-01-26
To face the increased demand for bandwidth, cost-effectiveness and simplicity of future Ethernet data communications, a comparison between two different solutions based on directly-modulated VCSEL sources and Silicon Photonics technologies is carried out. Also by exploiting 4-PAM modulation, the transmission of 50-Gb/s and beyond capacity per channel is analyzed by means of BER performance. Applications for optical backplane, very short reach and in case of client-optics networks and intra and inter massive data centers communications (up to 10 km) are taken into account. A comparative analysis based on the power consumption is also proposed.
Pulse Compression Techniques for Laser Generated Ultrasound
NASA Technical Reports Server (NTRS)
Anastasi, R. F.; Madaras, E. I.
1999-01-01
Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.
Electromagnetic Counter-Counter Measure (ECCM) Techniques of the Digital Microwave Radio.
1982-05-01
Frequency hopping requires special synthesizers and filter banks. Large bandwidth expansion in a microwave radio relay application can best be achieved with...34 processing gain " performance as a function of jammer modulation type " pulse jammer performance • emission bandwidth and spectral shaping 0... spectral efficiency, implementation complexity, and suitability for ECCK techniques will be considered. A sumary of the requirements and characteristics of
Micromechanical Signal Processors
NASA Astrophysics Data System (ADS)
Nguyen, Clark Tu-Cuong
Completely monolithic high-Q micromechanical signal processors constructed of polycrystalline silicon and integrated with CMOS electronics are described. The signal processors implemented include an oscillator, a bandpass filter, and a mixer + filter--all of which are components commonly required for up- and down-conversion in communication transmitters and receivers, and all of which take full advantage of the high Q of micromechanical resonators. Each signal processor is designed, fabricated, then studied with particular attention to the performance consequences associated with miniaturization of the high-Q element. The fabrication technology which realizes these components merges planar integrated circuit CMOS technologies with those of polysilicon surface micromachining. The technologies are merged in a modular fashion, where the CMOS is processed in the first module, the microstructures in a following separate module, and at no point in the process sequence are steps from each module intermixed. Although the advantages of such modularity include flexibility in accommodating new module technologies, the developed process constrained the CMOS metallization to a high temperature refractory metal (tungsten metallization with TiSi _2 contact barriers) and constrained the micromachining process to long-term temperatures below 835^circC. Rapid-thermal annealing (RTA) was used to relieve residual stress in the mechanical structures. To reduce the complexity involved with developing this merged process, capacitively transduced resonators are utilized. High-Q single resonator and spring-coupled micromechanical resonator filters are also investigated, with particular attention to noise performance, bandwidth control, and termination design. The noise in micromechanical filters is found to be fairly high due to poor electromechanical coupling on the micro-scale with present-day technologies. Solutions to this high series resistance problem are suggested, including smaller electrode-to-resonator gaps to increase the coupling capacitance. Active Q-control techniques are demonstrated which control the bandwidth of micromechanical filters and simulate filter terminations with little passband distortion. Noise analysis shows that these active techniques are relatively quiet when compared with other resistive techniques. Modulation techniques are investigated whereby a single resonator or a filter constructed from several such resonators can provide both a mixing and a filtering function, or a filtering and amplitude modulation function. These techniques center around the placement of a carrier signal on the micromechanical resonator. Finally, micro oven stabilization is investigated in an attempt to null the temperature coefficient of a polysilicon micromechanical resonator. Here, surface micromachining procedures are utilized to fabricate a polysilicon resonator on a microplatform--two levels of suspension--equipped with heater and temperature sensing resistors, which are then imbedded in a feedback loop to control the platform (and resonator) temperature. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Gatto, A.; Parolari, P.; Boffi, P.
2018-05-01
Frequency division multiplexing (FDM) is attractive to achieve high capacities in multiple access networks characterized by direct modulation and direct detection. In this paper we take into account point-to-point intra- and inter-datacenter connections to understand the performance of FDM operation compared with the ones achievable with standard multiple carrier modulation approach based on discrete multitone (DMT). DMT and FDM allow to match the non-uniform and bandwidth-limited response of the system under test, associated with the employment of low-cost directly-modulated sources, such as VCSELs with high-frequency chirp, and with fibre-propagation in presence of chromatic dispersion. While for very short distances typical of intra-datacentre communications, the huge number of DMT subcarriers permits to increase the transported capacity with respect to the FDM employment, in case of few tens-km reaches typical of inter-datacentre connections, the capabilities of FDM are more evident, providing system performance similar to the case of DMT application.
MPCM: a hardware coder for super slow motion video sequences
NASA Astrophysics Data System (ADS)
Alcocer, Estefanía; López-Granado, Otoniel; Gutierrez, Roberto; Malumbres, Manuel P.
2013-12-01
In the last decade, the improvements in VLSI levels and image sensor technologies have led to a frenetic rush to provide image sensors with higher resolutions and faster frame rates. As a result, video devices were designed to capture real-time video at high-resolution formats with frame rates reaching 1,000 fps and beyond. These ultrahigh-speed video cameras are widely used in scientific and industrial applications, such as car crash tests, combustion research, materials research and testing, fluid dynamics, and flow visualization that demand real-time video capturing at extremely high frame rates with high-definition formats. Therefore, data storage capability, communication bandwidth, processing time, and power consumption are critical parameters that should be carefully considered in their design. In this paper, we propose a fast FPGA implementation of a simple codec called modulo-pulse code modulation (MPCM) which is able to reduce the bandwidth requirements up to 1.7 times at the same image quality when compared with PCM coding. This allows current high-speed cameras to capture in a continuous manner through a 40-Gbit Ethernet point-to-point access.
Assessment of laser tracking and data transfer for underwater optical communications
NASA Astrophysics Data System (ADS)
Watson, Malcolm A.; Blanchard, Paul M.; Stace, Chris; Bhogul, Priya K.; White, Henry J.; Kelly, Anthony E.; Watson, Scott; Valyrakis, Manousos; Najda, Stephen P.; Marona, Lucja; Perlin, Piotr
2014-10-01
We report on an investigation into optical alignment and tracking for high bandwidth, laser-based underwater optical communication links. Link acquisition approaches (including scanning of narrow laser beams versus a wide-angle `beacon' approach) for different underwater laser-based communications scenarios are discussed. An underwater laserbased tracking system was tested in a large water flume facility using water whose scattering properties resembled that of a turbid coastal or harbour region. The lasers used were state-of-the-art, temperature-controlled, high modulation bandwidth gallium nitride (GaN) devices. These operate at blue wavelengths and can achieve powers up to ~100 mW. The tracking performance and characteristics of the system were studied as the light-scattering properties of the water were increased using commercial antacid (Maalox) solution, and the results are reported here. Optical tracking is expected to be possible even in high scattering water environments, assuming better components are developed commercially; in particular, more sensitive detector arrays. High speed data transmission using underwater optical links, based on blue light sources, is also reported.
Long-wavelength photonic integrated circuits and avalanche photodetectors
NASA Astrophysics Data System (ADS)
Tsou, Yi-Jen D.; Zaytsev, Sergey; Pauchard, Alexandre; Hummel, Steve; Lo, Yu-Hwa
2001-10-01
Fast-growing internet traffic volume require high data communication bandwidth over longer distances. Access network bottlenecks put pressure on short-range (SR) telecommunication systems. To effectively address these datacom and telecom market needs, low-cost, high-speed laser modules at 1310 to 1550 nm wavelengths and avalanche photodetectors are required. The great success of GaAs 850nm VCSEls for Gb/s Ethernet has motivated efforts to extend VCSEL technology to longer wavelengths in the 1310 and 1550 nm regimes. However, the technological challenges associated with materials for long wavelength VCSELs are tremendous. Even with recent advances in this area, it is believed that significant additional development is necessary before long wavelength VCSELs that meet commercial specifications will be widely available. In addition, the more stringent OC192 and OC768 specifications for single-mode fiber (SMF) datacom may require more than just a long wavelength laser diode, VCSEL or not, to address numerous cost and performance issues. We believe that photonic integrated circuits (PICs), which compactly integrate surface-emitting lasers with additional active and passive optical components with extended functionality, will provide the best solutions to today's problems. Photonic integrated circuits have been investigated for more than a decade. However, they have produced limited commercial impact to date primarily because the highly complicated fabrication processes produce significant yield and device performance issues. In this presentation, we will discuss a new technology platform of InP-based PICs compatible with surface-emitting laser technology, as well as a high data rate externally modulated laser module. Avalanche photodetectors (APDs) are the key component in the receiver to achieve high data rate over long transmission distance because of their high sensitivity and large gain- bandwidth product. We have used wafer fusion technology to achieve InGaAs/Si APDs with much greater potential than the traditional InGaAs/InP APDs. Preliminary results on their performance will be presented.
Phase-tuning Metasurface for Circularly Polarized Broadside Radiation in Broadband.
Zhang, Youfei; Wang, Haogang; Liao, Dashuang; Fu, Weijie
2018-02-14
Metasurface antennas (MAs) have been proposed as innovative alternatives to conventional bulky configurations for satellite applications because of their low profile, low cost, and high gain. The general method of surface impedance modulation for designing MAs is complicated, and achieving broad operation bandwidth remains a challenge because of its high dispersion response. We propose a novel and easy technique to control cylindrical surface waves radiated by a phase-tuning metasurface. Simultaneously, this technique exhibits a considerably wide working bandwidth. A detailed analysis of the radiation mechanism is discussed. A left-hand circularly polarized (LHCP) antenna and a right-hand circularly polarized (RHCP) antenna that are based on the phase-tuning metasurface are simulated and measured. The measured fractional 3-dB gain bandwidth and gain are higher than 17% and 15.57 dBi, respectively, which are consistent with the simulated results. Moreover, 30% 3-dB axial ratio is achieved for the LHCP and RHCP antennas. To the best knowledge of the authors, it is for the first time to realize a circularly polarized broadband MA by using the phase-tuning mechanism. The approach can be regarded as a new starting point for antenna design, thereby paving the way for the development of broadband and low-profile antennas for future satellite communication.
Electric vehicle power train instrumentation: Some constraints and considerations
NASA Technical Reports Server (NTRS)
Triner, J. E.; Hansen, I. G.
1977-01-01
The application of pulse modulation control (choppers) to dc motors creates unique instrumentation problems. In particular, the high harmonic components contained in the current waveforms require frequency response accommodations not normally considered in dc instrumentation. In addition to current sensing, accurate power measurement requires not only adequate frequency response but must also address phase errors caused by the finite bandwidths and component characteristics involved. The implications of these problems are assessed.
Application of LC and LCoS in Multispectral Polarized Scene Projector (MPSP)
NASA Astrophysics Data System (ADS)
Yu, Haiping; Guo, Lei; Wang, Shenggang; Lippert, Jack; Li, Le
2017-02-01
A Multispectral Polarized Scene Projector (MPSP) had been developed in the short-wave infrared (SWIR) regime for the test & evaluation (T&E) of spectro-polarimetric imaging sensors. This MPSP generates multispectral and hyperspectral video images (up to 200 Hz) with 512×512 spatial resolution with active spatial, spectral, and polarization modulation with controlled bandwidth. It projects input SWIR radiant intensity scenes from stored memory with user selectable wavelength and bandwidth, as well as polarization states (six different states) controllable on a pixel level. The spectral contents are implemented by a tunable filter with variable bandpass built based on liquid crystal (LC) material, together with one passive visible and one passive SWIR cholesteric liquid crystal (CLC) notch filters, and one switchable CLC notch filter. The core of the MPSP hardware is the liquid-crystal-on-silicon (LCoS) spatial light modulators (SLMs) for intensity control and polarization modulation.
All-optical flip-flops based on dynamic Brillouin gratings in fibers.
Soto, Marcelo A; Denisov, Andrey; Angulo-Vinuesa, Xabier; Martin-Lopez, Sonia; Thévenaz, Luc; Gonzalez-Herraez, Miguel
2017-07-01
A method to generate an all-optical flip-flop is proposed and experimentally demonstrated based on dynamic Brillouin gratings (DBGs) in polarization maintaining fibers. In a fiber with sufficiently uniform birefringence, this flip-flop can provide extremely long storage times and ultra-wide bandwidth. The experimental results demonstrate an all-optical flip-flop operation using phase-modulated pulses of 300 ps and a 1 m long DBG. This has led to a time-bandwidth product of ∼30, being in this proof-of-concept setup mainly limited by the relatively low bandwidth of the used pulses and the short fiber length.
Code of Federal Regulations, 2010 CFR
2010-10-01
... for the use of frequencies and equipment in the maritime services. These requirements include standards for equipment authorization, frequency tolerance, modulation, emission, power and bandwidth. ...
Ultrafast Pulse Generation in an Organic Nanoparticle-Array Laser.
Daskalakis, Konstantinos S; Väkeväinen, Aaro I; Martikainen, Jani-Petri; Hakala, Tommi K; Törmä, Päivi
2018-04-11
Nanoscale coherent light sources offer potentially ultrafast modulation speeds, which could be utilized for novel sensors and optical switches. Plasmonic periodic structures combined with organic gain materials have emerged as promising candidates for such nanolasers. Their plasmonic component provides high intensity and ultrafast nanoscale-confined electric fields, while organic gain materials offer fabrication flexibility and a low acquisition cost. Despite reports on lasing in plasmonic arrays, lasing dynamics in these structures have not been experimentally studied yet. Here we demonstrate, for the first time, an organic dye nanoparticle-array laser with more than a 100 GHz modulation bandwidth. We show that the lasing modulation speed can be tuned by the array parameters. Accelerated dynamics is observed for plasmonic lasing modes at the blue side of the dye emission.
High-speed fiber-optic links for distribution of satellite traffic
NASA Technical Reports Server (NTRS)
Daryoush, Afshin S.; Saedi, Reza; Ackerman, Edward; Kunath, Richard; Shalkhauser, Kurt
1990-01-01
Low-loss fiberoptic links are designed for distribution of data and the frequency reference in large-aperture phased-array antennas based on the transmit/receive-level data mixing architecture. In particular, design aspects of a fiberoptic link satisfying the distribution requirements of satellite data traffic are presented. The design is addressed in terms of reactively matched optical transmitter and receiver modules. Analog and digital characterization of a 50-m fiberoptic link realized using these modules indicates the applicability of this architecture as the only viable alternative for distribution of data signals inside a satellite at present. It is demonstrated that the design of a reactive matching modules enhances the link performance. A dynamic range of 88 dB/MHz was measured for analog data over a 500-1000-MHz bandwidth.
Method and system for controlling the position of a beam of light
Steinkraus, Jr., Robert F.; Johnson, Gary W [Livermore, CA; Ruggiero, Anthony J [Livermore, CA
2011-08-09
An method and system for laser beam tracking and pointing is based on a conventional position sensing detector (PSD) or quadrant cell but with the use of amplitude-modulated light. A combination of logarithmic automatic gain control, filtering, and synchronous detection offers high angular precision with exceptional dynamic range and sensitivity, while maintaining wide bandwidth. Use of modulated light enables the tracking of multiple beams simultaneously through the use of different modulation frequencies. It also makes the system resistant to interfering light sources such as ambient light. Beam pointing is accomplished by feeding back errors in the measured beam position to a beam steering element, such as a steering mirror. Closed-loop tracking performance is superior to existing methods, especially under conditions of atmospheric scintillation.
Bunching phase and constraints on echo enabled harmonic generation
NASA Astrophysics Data System (ADS)
Hemsing, E.
2018-05-01
A simple mathematical description is developed for the bunching spectrum in echo enabled harmonic generation (EEHG) that incorporates the effect of additional electron beam energy modulations. Under common assumptions, they are shown to contribute purely through the phase of the longitudinal bunching factor, which allows the spectral moments of the bunching to be calculated directly from the known energy modulations. In particular, the second moment (spectral bandwidth) serves as simple constraint on the amplitude of the energy modulations to maintain a transform-limited seed. We show that, in general, the impact on the spectrum of energy distortions that develop between the EEHG chicanes scales like the harmonic number compared to distortions that occur upstream. This may limit the parameters that will allow EEHG to reach short wavelengths in high brightness FELs.
Plasma Heating and Ultrafast Semiconductor Laser Modulation Through a Terahertz Heating Field
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Ning, C. Z.
2000-01-01
Electron-hole plasma heating and ultrafast modulation in a semiconductor laser under a terahertz electrical field are investigated using a set of hydrodynamic equations derived from the semiconductor Bloch equations. The self-consistent treatment of lasing and heating processes leads to the prediction of a strong saturation and degradation of modulation depth even at moderate terahertz field intensity. This saturation places a severe limit to bandwidth achievable with such scheme in ultrafast modulation. Strategies for increasing modulation depth are discussed.
Apparatus and method for measuring and imaging traveling waves
Telschow, Kenneth L.; Deason, Vance A.
2001-01-01
An apparatus is provided for imaging traveling waves in a medium. The apparatus includes a vibration excitation source configured to impart traveling waves within a medium. An emitter is configured to produce two or more wavefronts, at least one wavefront modulated by a vibrating medium. A modulator is configured to modulate another wavefront in synchronization with the vibrating medium. A sensing media is configured to receive in combination the modulated one wavefront and the another wavefront and having a detection resolution within a limited bandwidth. The another wavefront is modulated at a frequency such that a difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. Such modulation produces an image of the vibrating medium having an output intensity that is substantially linear with small physical variations within the vibrating medium for all vibration frequencies above the sensing media's response bandwidth. A detector is configured to detect an image of traveling waves in the vibrating medium resulting from interference between the modulated one wavefront and the another wavefront when combined in association with the sensing media. The traveling wave can be used to characterize certain material properties of the medium. Furthermore, a method is provided for imaging and characterizing material properties according to the apparatus.
A Frequency Agile, Self-Adaptive Serial Link on Xilinx FPGAs
NASA Astrophysics Data System (ADS)
Aloisio, A.; Giordano, R.; Izzo, V.; Perrella, S.
2015-06-01
In this paper, we focused on the GTX transceiver modules of Xilinx Kintex 7 field-programmable gate arrays (FPGAs), which provide high bandwidth, low jitter on the recovered clock, and an equalization system on the transmitter and the receiver. We present a frequency agile, auto-adaptive serial link. The link is able to take care of the reconfiguration of the GTX parameters in order to fully benefit from the available link bandwidth, by setting the highest line rate. It is designed around an FPGA-embedded microprocessor, which drives the programmable ports of the GTX in order to control the quality of the received data and to easily calculate the bit-error rate in each sampling point of the eye diagram. We present the self-adaptive link project, the description of the test system, and the main results.
Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements
NASA Astrophysics Data System (ADS)
Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael
2015-04-01
Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.
Scalable modulation technology and the tradeoff of reach, spectral efficiency, and complexity
NASA Astrophysics Data System (ADS)
Bosco, Gabriella; Pilori, Dario; Poggiolini, Pierluigi; Carena, Andrea; Guiomar, Fernando
2017-01-01
Bandwidth and capacity demand in metro, regional, and long-haul networks is increasing at several tens of percent per year, driven by video streaming, cloud computing, social media and mobile applications. To sustain this traffic growth, an upgrade of the widely deployed 100-Gbit/s long-haul optical systems, based on polarization multiplexed quadrature phase-shift keying (PM-QPSK) modulation format associated with coherent detection and digital signal processing (DSP), is mandatory. In fact, optical transport techniques enabling a per-channel bit rate beyond 100 Gbit/s have recently been the object of intensive R and D activities, aimed at both improving the spectral efficiency and lowering the cost per bit in fiber transmission systems. In this invited contribution, we review the different available options to scale the per-channel bit-rate to 400 Gbit/s and beyond, i.e. symbol-rate increase, use of higher-order quadrature amplitude modulation (QAM) modulation formats and use of super-channels with DSP-enabled spectral shaping and advanced multiplexing technologies. In this analysis, trade-offs of system reach, spectral efficiency and transceiver complexity are addressed. Besides scalability, next generation optical networks will require a high degree of flexibility in the transponders, which should be able to dynamically adapt the transmission rate and bandwidth occupancy to the light path characteristics. In order to increase the flexibility of these transponders (often referred to as "flexponders"), several advanced modulation techniques have recently been proposed, among which sub-carrier multiplexing, hybrid formats (over time, frequency and polarization), and constellation shaping. We review these techniques, highlighting their limits and potential in terms of performance, complexity and flexibility.
47 CFR 80.213 - Modulation requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... transmission period. (g) Radar stations operating in the bands above 2.4 GHz may use any type of modulation consistent with the bandwidth requirements in § 80.209(b). (h) Radar transponder coast stations using the... designed to reduce interference caused by triggering from radar antenna sidelobes. (i) Variable frequency...
47 CFR 2.1049 - Measurements required: Occupied bandwidth.
Code of Federal Regulations, 2012 CFR
2012-10-01
... monaural operation—when amplitude modulated 85% by a 7,500 Hz input signal. (2) AM broadcast stereophonic... broadcast stereophonic sound transmitters—when the transmitter is modulated with a 15 kHz input signal to... input signal such that its amplitude and symbol rate represent the maximum rated conditions under which...
47 CFR 2.1049 - Measurements required: Occupied bandwidth.
Code of Federal Regulations, 2011 CFR
2011-10-01
... monaural operation—when amplitude modulated 85% by a 7,500 Hz input signal. (2) AM broadcast stereophonic... broadcast stereophonic sound transmitters—when the transmitter is modulated with a 15 kHz input signal to... input signal such that its amplitude and symbol rate represent the maximum rated conditions under which...
47 CFR 2.1049 - Measurements required: Occupied bandwidth.
Code of Federal Regulations, 2013 CFR
2013-10-01
... monaural operation—when amplitude modulated 85% by a 7,500 Hz input signal. (2) AM broadcast stereophonic... broadcast stereophonic sound transmitters—when the transmitter is modulated with a 15 kHz input signal to... input signal such that its amplitude and symbol rate represent the maximum rated conditions under which...
47 CFR 2.1049 - Measurements required: Occupied bandwidth.
Code of Federal Regulations, 2014 CFR
2014-10-01
... monaural operation—when amplitude modulated 85% by a 7,500 Hz input signal. (2) AM broadcast stereophonic... broadcast stereophonic sound transmitters—when the transmitter is modulated with a 15 kHz input signal to... input signal such that its amplitude and symbol rate represent the maximum rated conditions under which...
47 CFR 101.809 - Bandwidth and emission limitations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... limitations. (a) Stations in this service operating on frequencies in the 27.23-27.28 MHz band will be authorized to employ only amplitude modulated or frequency modulated emission for radiotelephony. The... maintenance of the station. (b) Stations in the service operating on frequencies above 940 MHz may be...
Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters.
Rodríguez, Juan; Lamar, Diego G; Aller, Daniel G; Miaja, Pablo F; Sebastián, Javier
2018-04-07
Visible light communication (VLC) based on solid-state lighting (SSL) is a promising option either to supplement or to substitute existing radio frequency (RF) wireless communication in indoor environments. VLC systems take advantage of the fast modulation of the visible light that light emitting diodes (LEDs) enable. The switching-mode dc-to-dc converter (SMC dc-dc ) must be the cornerstone of the LED driver of VLC transmitters in order to incorporate the communication functionality into LED lighting, keeping high power efficiency. However, the new requirements related to the communication, especially the high bandwidth that the LED driver must achieve, converts the design of the SMC dc-dc into a very challenging task. In this work, three different methods for achieving such a high bandwidth with an SMC dc-dc are presented: increasing the order of the SMC dc-dc output filter, increasing the number of voltage inputs, and increasing the number of phases. These three strategies are combinable and the optimum design depends on the particular VLC application, which determines the requirements of the VLC transmitter. As an example, an experimental VLC transmitter based on a two-phase buck converter with a fourth-order output filter will demonstrate that a bandwidth of several hundred kilohertz (kHz) can be achieved with output power levels close to 10 W and power efficiencies between 85% and 90%. In conclusion, the design strategy presented allows us to incorporate VLC into SSL, achieving high bit rates without damaging the power efficiency of LED lighting.
Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters
2018-01-01
Visible light communication (VLC) based on solid-state lighting (SSL) is a promising option either to supplement or to substitute existing radio frequency (RF) wireless communication in indoor environments. VLC systems take advantage of the fast modulation of the visible light that light emitting diodes (LEDs) enable. The switching-mode dc-to-dc converter (SMCdc-dc) must be the cornerstone of the LED driver of VLC transmitters in order to incorporate the communication functionality into LED lighting, keeping high power efficiency. However, the new requirements related to the communication, especially the high bandwidth that the LED driver must achieve, converts the design of the SMCdc-dc into a very challenging task. In this work, three different methods for achieving such a high bandwidth with an SMCdc-dc are presented: increasing the order of the SMCdc-dc output filter, increasing the number of voltage inputs, and increasing the number of phases. These three strategies are combinable and the optimum design depends on the particular VLC application, which determines the requirements of the VLC transmitter. As an example, an experimental VLC transmitter based on a two-phase buck converter with a fourth-order output filter will demonstrate that a bandwidth of several hundred kilohertz (kHz) can be achieved with output power levels close to 10 W and power efficiencies between 85% and 90%. In conclusion, the design strategy presented allows us to incorporate VLC into SSL, achieving high bit rates without damaging the power efficiency of LED lighting. PMID:29642455
MATLAB implementation of a dynamic clamp with bandwidth >125 KHz capable of generating INa at 37°C
Clausen, Chris; Valiunas, Virginijus; Brink, Peter R.; Cohen, Ira S.
2012-01-01
We describe the construction of a dynamic clamp with bandwidth >125 KHz that utilizes a high performance, yet low cost, standard home/office PC interfaced with a high-speed (16 bit) data acquisition module. High bandwidth is achieved by exploiting recently available software advances (code-generation technology, optimized real-time kernel). Dynamic-clamp programs are constructed using Simulink, a visual programming language. Blocks for computation of membrane currents are written in the high-level matlab language; no programming in C is required. The instrument can be used in single- or dual-cell configurations, with the capability to modify programs while experiments are in progress. We describe an algorithm for computing the fast transient Na+ current (INa) in real time, and test its accuracy and stability using rate constants appropriate for 37°C. We then construct a program capable of supplying three currents to a cell preparation: INa, the hyperpolarizing-activated inward pacemaker current (If), and an inward-rectifier K+ current (IK1). The program corrects for the IR drop due to electrode current flow, and also records all voltages and currents. We tested this program on dual patch-clamped HEK293 cells where the dynamic clamp controls a current-clamp amplifier and a voltage-clamp amplifier controls membrane potential, and current-clamped HEK293 cells where the dynamic clamp produces spontaneous pacing behavior exhibiting Na+ spikes in otherwise passive cells. PMID:23224681
De Paëpe, Gaël; Lewandowski, Józef R; Griffin, Robert G
2008-03-28
We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5
Underwater Communications for Video Surveillance Systems at 2.4 GHz
Sendra, Sandra; Lloret, Jaime; Jimenez, Jose Miguel; Rodrigues, Joel J.P.C.
2016-01-01
Video surveillance is needed to control many activities performed in underwater environments. The use of wired media can be a problem since the material specially designed for underwater environments is very expensive. In order to transmit the images and videos wirelessly under water, three main technologies can be used: acoustic waves, which do not provide high bandwidth, optical signals, although the effect of light dispersion in water severely penalizes the transmitted signals and therefore, despite offering high transfer rates, the maximum distance is very small, and electromagnetic (EM) waves, which can provide enough bandwidth for video delivery. In the cases where the distance between transmitter and receiver is short, the use of EM waves would be an interesting option since they provide high enough data transfer rates to transmit videos with high resolution. This paper presents a practical study of the behavior of EM waves at 2.4 GHz in freshwater underwater environments. First, we discuss the minimum requirements of a network to allow video delivery. From these results, we measure the maximum distance between nodes and the round trip time (RTT) value depending on several parameters such as data transfer rate, signal modulations, working frequency, and water temperature. The results are statistically analyzed to determine their relation. Finally, the EM waves’ behavior is modeled by a set of equations. The results show that there are some combinations of working frequency, modulation, transfer rate and temperature that offer better results than others. Our work shows that short communication distances with high data transfer rates is feasible. PMID:27782095
Underwater Communications for Video Surveillance Systems at 2.4 GHz.
Sendra, Sandra; Lloret, Jaime; Jimenez, Jose Miguel; Rodrigues, Joel J P C
2016-10-23
Video surveillance is needed to control many activities performed in underwater environments. The use of wired media can be a problem since the material specially designed for underwater environments is very expensive. In order to transmit the images and videos wirelessly under water, three main technologies can be used: acoustic waves, which do not provide high bandwidth, optical signals, although the effect of light dispersion in water severely penalizes the transmitted signals and therefore, despite offering high transfer rates, the maximum distance is very small, and electromagnetic (EM) waves, which can provide enough bandwidth for video delivery. In the cases where the distance between transmitter and receiver is short, the use of EM waves would be an interesting option since they provide high enough data transfer rates to transmit videos with high resolution. This paper presents a practical study of the behavior of EM waves at 2.4 GHz in freshwater underwater environments. First, we discuss the minimum requirements of a network to allow video delivery. From these results, we measure the maximum distance between nodes and the round trip time (RTT) value depending on several parameters such as data transfer rate, signal modulations, working frequency, and water temperature. The results are statistically analyzed to determine their relation. Finally, the EM waves' behavior is modeled by a set of equations. The results show that there are some combinations of working frequency, modulation, transfer rate and temperature that offer better results than others. Our work shows that short communication distances with high data transfer rates is feasible.
Scalable UWB photonic generator based on the combination of doublet pulses.
Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José
2014-06-30
We propose and experimentally demonstrate a scalable and reconfigurable optical scheme to generate high order UWB pulses. Firstly, various ultra wideband doublets are created through a process of phase-to-intensity conversion by means of a phase modulation and a dispersive media. In a second stage, doublets are combined in an optical processing unit that allows the reconfiguration of UWB high order pulses. Experimental results both in time and frequency domains are presented showing good performance related to the fractional bandwidth and spectral efficiency parameters.
A New Approach to Attitude Stability and Control for Low Airspeed Vehicles
NASA Technical Reports Server (NTRS)
Lim, K. B.; Shin, Y-Y.; Moerder, D. D.; Cooper, E. G.
2004-01-01
This paper describes an approach for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The large thrust vector that characterizes such vehicles can be modulated to provide control forces and moments to the airframe, but such modulation is accompanied by significant unsteady flow effects. These effects are difficult to model, and can compromise the practical value of thrust vectoring in closed-loop attitude stability, even if the thrust vectoring machinery has sufficient bandwidth for stabilization. The stabilization approach described in this paper is based on using internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other "outer loop" control functions. The three main components of this approach are: (1) a z-body axis angular momentum bias enhances static attitude stability, reducing the amount of control activity needed for stabilization, (2) optionally, gimbaled reaction wheels provide high-bandwidth control torques for additional stabilization, or agility, and (3) the resulting strongly coupled system dynamics are controlled by a multivariable controller. A flight test vehicle is described, and nonlinear simulation results are provided that demonstrate the efficiency of the approach.
Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes.
Dorize, Christian; Awwad, Elie
2018-05-14
Monitoring the optical phase change in a fiber enables a wide range of applications where fast phase variations are induced by acoustic signals or by vibrations in general. However, the quality of the estimated fiber response strongly depends on the method used to modulate the light sent to the fiber and capture the variations of the optical field. In this paper, we show that distributed optical fiber sensing systems can advantageously exploit techniques from the telecommunication domain, as those used in coherent optical transmission, to enhance their performance in detecting mechanical events, while jointly offering a simpler setup than widespread pulse-cloning or spectral-sweep based schemes with acousto-optic modulators. We periodically capture an overall fiber Jones matrix estimate thanks to a novel probing technique using two mutually orthogonal complementary (Golay) pairs of binary sequences applied simultaneously in phase and quadrature on two orthogonal polarization states. A perfect channel response estimation of the sensor array is achieved, subject to conditions detailed in the paper, thus enhancing the sensitivity and bandwidth of coherent ϕ-OTDR systems. High sensitivity, linear response, and bandwidth coverage up to 18 kHz are demonstrated with a sensor array composed of 10 fiber Bragg gratings (FBGs).
Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes
NASA Astrophysics Data System (ADS)
Dorize, Christian; Awwad, Elie
2018-05-01
Monitoring the optical phase change in a fiber enables a wide range of applications where fast phase variations are induced by acoustic signals or vibrations in general. However, the quality of the estimated fiber response strongly depends on the method used to modulate the light sent to the fiber and capture the variations of the optical field. In this paper, we show that distributed optical fiber sensing systems can advantageously exploit techniques from the telecommunication domain, as those used in coherent optical transmission, to enhance their performance in detecting mechanical events, while jointly offering a simpler setup than widespread pulse-cloning or spectral-sweep based schemes with acousto-optic modulators. We periodically capture an overall fiber Jones matrix estimate thanks to a novel probing technique using two mutually orthogonal complementary (Golay) pairs of binary sequences applied simultaneously in phase and quadrature on two orthogonal polarization states. A perfect channel response estimation of the sensor array is achieved, subject to conditions detailed in the paper, thus enhancing the sensitivity and bandwidth of coherent phase-OTDR systems. High sensitivity, linear response, and bandwidth coverage up to 18 kHz are demonstrated with a sensor array composed of 10 fiber Bragg gratings (FBGs).
Optimum filters for narrow-band frequency modulation.
NASA Technical Reports Server (NTRS)
Shelton, R. D.
1972-01-01
The results of a computer search for the optimum type of bandpass filter for low-index angle-modulated signals are reported. The bandpass filters are discussed in terms of their low-pass prototypes. Only filter functions with constant numerators are considered. The pole locations for the optimum filters of several cases are shown in a table. The results are fairly independent of modulation index and bandwidth.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1989-01-01
The performance of bandwidth efficient trellis codes on channels with phase jitter, or those disturbed by jamming and impulse noise is analyzed. An heuristic algorithm for construction of bandwidth efficient trellis codes with any constraint length up to about 30, any signal constellation, and any code rate was developed. Construction of good distance profile trellis codes for sequential decoding and comparison of random coding bounds of trellis coded modulation schemes are also discussed.
Bayly, John G.; Booth, Ronald J.
1977-01-01
An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.
Design and characterization of a W-band system for modulated DNP experiments.
Guy, Mallory L; Zhu, Lihuang; Ramanathan, Chandrasekhar
2015-12-01
Magnetic-field and microwave-frequency modulated DNP experiments have been shown to yield improved enhancements over conventional DNP techniques, and even to shorten polarization build-up times. The resulting increase in signal-to-noise ratios can lead to significantly shorter acquisition times in signal-limited multi-dimensional NMR experiments and pave the way to the study of even smaller sample volumes. In this paper we describe the design and performance of a broadband system for microwave frequency- and amplitude-modulated DNP that has been engineered to minimize both microwave and thermal losses during operation at liquid helium temperatures. The system incorporates a flexible source that can generate arbitrary waveforms at 94GHz with a bandwidth greater than 1GHz, as well as a probe that efficiently transmits the millimeter waves from room temperature outside the magnet to a cryogenic environment inside the magnet. Using a thin-walled brass tube as an overmoded waveguide to transmit a hybrid HE11 mode, it is possible to limit the losses to 1dB across a 2GHz bandwidth. The loss is dominated by the presence of a quartz window used to isolate the waveguide pipe. This performance is comparable to systems with corrugated waveguide or quasi-optical components. The overall excitation bandwidth of the probe is seen to be primarily determined by the final antenna or resonator used to excite the sample and its coupling to the NMR RF coil. Understanding the instrumental limitations imposed on any modulation scheme is key to understanding the observed DNP results and potentially identifying the underlying mechanisms. We demonstrate the utility of our design with a set of triangular frequency-modulated DNP experiments. Copyright © 2015 Elsevier Inc. All rights reserved.
Karlen, Lauriane; Buchs, Gilles; Portuondo-Campa, Erwin; Lecomte, Steve
2016-01-15
A novel scheme for intracavity control of the carrier-envelope offset (CEO) frequency of a 100 MHz mode-locked Er:Yb:glass diode-pumped solid-state laser (DPSSL) based on the modulation of the laser gain via stimulated emission of the excited Er(3+) ions is demonstrated. This method allows us to bypass the ytterbium system few-kHz low-pass filter in the f(CEO) stabilization loop and thus to push the phase lock bandwidth up to a limit close to the relaxation oscillations frequency of the erbium system. A phase lock bandwidth above 70 kHz has been achieved with the fully stabilized laser, leading to an integrated phase noise [1 Hz-1 MHz] of 120 mrad.
Investigation of Bandwidth-Efficient Coding and Modulation Techniques
NASA Technical Reports Server (NTRS)
Osborne, William P.
1992-01-01
The necessary technology was studied to improve the bandwidth efficiency of the space-to-ground communications network using the current capabilities of that network as a baseline. The study was aimed at making space payloads, for example the Hubble Space Telescope, more capable without the need to completely redesign the link. Particular emphasis was placed on the following concepts: (1) what the requirements are which are necessary to convert an existing standard 4-ary phase shift keying communications link to one that can support, as a minimum, 8-ary phase shift keying with error corrections applied; and (2) to determine the feasibility of using the existing equipment configurations with additional signal processing equipment to realize the higher order modulation and coding schemes.
Duan, Yuhua; Chen, Liao; Zhou, Haidong; Zhou, Xi; Zhang, Chi; Zhang, Xinliang
2017-04-03
Real-time electrical spectrum analysis is of great significance for applications involving radio astronomy and electronic warfare, e.g. the dynamic spectrum monitoring of outer space signal, and the instantaneous capture of frequency from other electronic systems. However, conventional electrical spectrum analyzer (ESA) has limited operation speed and observation bandwidth due to the electronic bottleneck. Therefore, a variety of photonics-assisted methods have been extensively explored due to the bandwidth advantage of the optical domain. Alternatively, we proposed and experimentally demonstrated an ultrafast ESA based on all-optical Fourier transform and temporal magnification in this paper. The radio-frequency (RF) signal under test is temporally multiplexed to the spectrum of an ultrashort pulse, thus the frequency information is converted to the time axis. Moreover, since the bandwidth of this ultrashort pulse is far beyond that of the state-of-the-art photo-detector, a temporal magnification system is applied to stretch the time axis, and capture the RF spectrum with 1-GHz resolution. The observation bandwidth of this ultrafast ESA is over 20 GHz, limited by that of the electro-optic modulator. Since all the signal processing is in the optical domain, the acquisition frame rate can be as high as 50 MHz. This ultrafast ESA scheme can be further improved with better dispersive engineering, and is promising for some ultrafast spectral information acquisition applications.
A bandwidth efficient coding scheme for the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Pietrobon, Steven S.; Costello, Daniel J., Jr.
1991-01-01
As a demonstration of the performance capabilities of trellis codes using multidimensional signal sets, a Viterbi decoder was designed. The choice of code was based on two factors. The first factor was its application as a possible replacement for the coding scheme currently used on the Hubble Space Telescope (HST). The HST at present uses the rate 1/3 nu = 6 (with 2 (exp nu) = 64 states) convolutional code with Binary Phase Shift Keying (BPSK) modulation. With the modulator restricted to a 3 Msym/s, this implies a data rate of only 1 Mbit/s, since the bandwidth efficiency K = 1/3 bit/sym. This is a very bandwidth inefficient scheme, although the system has the advantage of simplicity and large coding gain. The basic requirement from NASA was for a scheme that has as large a K as possible. Since a satellite channel was being used, 8PSK modulation was selected. This allows a K of between 2 and 3 bit/sym. The next influencing factor was INTELSAT's intention of transmitting the SONET 155.52 Mbit/s standard data rate over the 72 MHz transponders on its satellites. This requires a bandwidth efficiency of around 2.5 bit/sym. A Reed-Solomon block code is used as an outer code to give very low bit error rates (BER). A 16 state rate 5/6, 2.5 bit/sym, 4D-8PSK trellis code was selected. This code has reasonable complexity and has a coding gain of 4.8 dB compared to uncoded 8PSK (2). This trellis code also has the advantage that it is 45 deg rotationally invariant. This means that the decoder needs only to synchronize to one of the two naturally mapped 8PSK signals in the signal set.
112 Gb/s sub-cycle 16-QAM Nyquist-SCM for intra-datacenter connectivity
NASA Astrophysics Data System (ADS)
Bakopoulos, Paraskevas; Dris, Stefanos; Argyris, Nikolaos; Spatharakis, Christos; Avramopoulos, Hercules
2016-03-01
Datacenter traffic is exploding. Ongoing advancements in network infrastructure that ride on Moore's law are unable to keep up, necessitating the introduction of multiplexing and advanced modulation formats for optical interconnects in order to overcome bandwidth limitations, and scale lane speeds with energy- and cost-efficiency to 100 Gb/s and beyond. While the jury is still out as to how this will be achieved, schemes relying on intensity modulation with direct detection (IM/DD) are regarded as particularly attractive, due to their inherent implementation simplicity. Moreover, the scaling-out of datacenters calls for longer transmission reach exceeding 300 m, requiring single-mode solutions. In this work we advocate using 16-QAM sub-cycle Nyquist-SCM as a simpler alternative to discrete multitone (DMT), but which is still more bandwidth-efficient than PAM-4. The proposed optical interconnect is demonstrated at 112 Gb/s, which, to the best of our knowledge, is the highest rate achieved in a single-polarization implementation of SCM. Off-the-shelf components are used: A DFB laser, a 24.3 GHz electro-absorption modulator (EAM) and a limiting photoreceiver, combined with equalization through digital signal processing (DSP) at the receiver. The EAM is driven by a low-swing (<1 V) arbitrary waveform generator (AWG), which produces a 28 Gbaud 16-QAM electrical signal with carrier frequency at ~15 GHz. Tight spectral shaping is leveraged as a means of maintaining signal fidelity when using low-bandwidth electro-optic components; matched root-raised-cosine transmit and receive filters with 0.1 excess bandwidth are thus employed. Performance is assessed through transmission experiments over 1250 m and 2000 m of SMF.
Self-phase-modulation induced spectral broadening in silicon waveguides
NASA Astrophysics Data System (ADS)
Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram
2004-03-01
The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm2 peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.
Self-phase-modulation induced spectral broadening in silicon waveguides.
Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram
2004-03-08
The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm(2) peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.
AOSLO: from benchtop to clinic
NASA Astrophysics Data System (ADS)
Zhang, Yuhua; Poonja, Siddharth; Roorda, Austin
2006-08-01
We present a clinically deployable adaptive optics scanning laser ophthalmoscope (AOSLO) that features micro-electro-mechanical (MEMS) deformable mirror (DM) based adaptive optics (AO) and low coherent light sources. With the miniaturized optical aperture of a μDMS-Multi TM MEMS DM (Boston Micromachines Corporation, Watertown, MA), we were able to develop a compact and robust AOSLO optical system that occupies a 50 cm X 50 cm area on a mobile optical table. We introduced low coherent light sources, which are superluminescent laser diodes (SLD) at 680 nm with 9 nm bandwidth and 840 nm with 50 nm bandwidth, in confocal scanning ophthalmoscopy to eliminate interference artifacts in the images. We selected a photo multiplier tube (PMT) for photon signal detection and designed low noise video signal conditioning circuits. We employed an acoustic-optical (AOM) spatial light modulator to modulate the light beam so that we could avoid unnecessary exposure to the retina or project a specific stimulus pattern onto the retina. The MEMS DM based AO system demonstrated robust performance. The use of low coherent light sources effectively mitigated the interference artifacts in the images and yielded high-fidelity retinal images of contiguous cone mosaic. We imaged patients with inherited retinal degenerations including cone-rod dystrophy (CRD) and retinitis pigmentosa (RP). We have produced high-fidelity, real-time, microscopic views of the living human retina for healthy and diseased eyes.
Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems.
Zhong, Kangping; Zhou, Xian; Gui, Tao; Tao, Li; Gao, Yuliang; Chen, Wei; Man, Jiangwei; Zeng, Li; Lau, Alan Pak Tao; Lu, Chao
2015-01-26
Advanced modulation formats combined with digital signal processing and direct detection is a promising way to realize high capacity, low cost and power efficient short reach optical transmission system. In this paper, we present a detailed investigation on the performance of three advanced modulation formats for 100 Gb/s short reach transmission system. They are PAM-4, CAP-16 and DMT. The detailed digital signal processing required for each modulation format is presented. Comprehensive simulations are carried out to evaluate the performance of each modulation format in terms of received optical power, transmitter bandwidth, relative intensity noise and thermal noise. The performance of each modulation format is also experimentally studied. To the best of our knowledge, we report the first demonstration of a 112 Gb/s transmission over 10km of SSMF employing single band CAP-16 with EML. Finally, a comparison of computational complexity of DSP for the three formats is presented.
Mitani, Yuji; Kubo, Mamoru; Muramoto, Ken-ichiro; Fukuma, Takeshi
2009-08-01
We have developed a wideband digital frequency detector for high-speed frequency modulation atomic force microscopy (FM-AFM). We used a subtraction-based phase comparator (PC) in a phase-locked loop circuit instead of a commonly used multiplication-based PC, which has enhanced the detection bandwidth to 100 kHz. The quantitative analysis of the noise performance revealed that the internal noise from the developed detector is small enough to provide the theoretically limited noise performance in FM-AFM experiments in liquid. FM-AFM imaging of mica in liquid was performed with the developed detector, showing its stability and applicability to true atomic-resolution imaging in liquid.
Parallel optoelectronic trinary signed-digit division
NASA Astrophysics Data System (ADS)
Alam, Mohammad S.
1999-03-01
The trinary signed-digit (TSD) number system has been found to be very useful for parallel addition and subtraction of any arbitrary length operands in constant time. Using the TSD addition and multiplication modules as the basic building blocks, we develop an efficient algorithm for performing parallel TSD division in constant time. The proposed division technique uses one TSD subtraction and two TSD multiplication steps. An optoelectronic correlator based architecture is suggested for implementation of the proposed TSD division algorithm, which fully exploits the parallelism and high processing speed of optics. An efficient spatial encoding scheme is used to ensure better utilization of space bandwidth product of the spatial light modulators used in the optoelectronic implementation.
Nanophotonic projection system.
Aflatouni, Firooz; Abiri, Behrooz; Rekhi, Angad; Hajimiri, Ali
2015-08-10
Low-power integrated projection technology can play a key role in development of low-cost mobile devices with built-in high-resolution projectors. Low-cost 3D imaging and holography systems are also among applications of such a technology. In this paper, an integrated projection system based on a two-dimensional optical phased array with fast beam steering capability is reported. Forward biased p-i-n phase modulators with 200MHz bandwidth are used per each array element for rapid phase control. An optimization algorithm is implemented to compensate for the phase dependent attenuation of the p-i-n modulators. Using rapid vector scanning technique, images were formed and recorded within a single snapshot of the IR camera.
Želudevičius, J; Danilevičius, R; Viskontas, K; Rusteika, N; Regelskis, K
2013-03-11
Results of numerical and experimental investigations of the simple fiber CPA system seeded by nearly bandwidth-limited pulses from the picosecond oscillator are presented. We utilized self-phase modulation in a stretcher fiber to broaden the pulse spectrum and dispersion of the fiber to stretch pulses in time. During amplification in the ytterbium-doped CCC fiber, gain-shaping and self-phase modulation effects were observed, which improved pulse compression with a bulk diffraction grating compressor. After compression with spectral filtering, pulses with the duration of 400 fs and energy as high as 50 µJ were achieved, and the output beam quality was nearly diffraction-limited.
NASA Technical Reports Server (NTRS)
Weber, W. J., III; Stanton, P. H.; Sumida, J. T.
1978-01-01
A bandwidth compressive modem making use of multi-amplitude minimum shift keying (MAMSK) has been designed and implemented in a laboratory environment at microwave frequencies. This system achieves a substantial bandwidth reduction over binary PSK and operates within 0.5 dB of theoretical performance. A number of easily implemented microwave transmitters have been designed to generate the required set of 16 signals. The receiver has been designed to work at 1 Mbit/s and contains the necessary phase tracking, AGC, and symbol synchronization loops as well as a lock detector, SNR estimator and provisions for differential decoding. This paper describes this entire system and presents the experimental results.
Bandwidth broadening of a graphene-based circular polarization converter by phase compensation.
Gao, Xi; Yang, Wanli; Cao, Weiping; Chen, Ming; Jiang, Yannan; Yu, Xinhua; Li, Haiou
2017-10-02
We present a broadband tunable circular polarization converter composed of a single graphene sheet patterned with butterfly-shaped holes, a dielectric spacer, and a 7-layer graphene ground plane. It can convert a linearly polarized wave into a circularly polarized wave in reflection mode. The polarization converter can be dynamically tuned by varying the Fermi energy of the single graphene sheet. Furthermore, the 7-layer graphene acting as a ground plane can modulate the phase of its reflected wave by controlling the Femi energy, which provides constructive interference condition at the surface of the single graphene sheet in a broad bandwidth and therefore significantly broadens the tunable bandwidth of the proposed polarization converter.
Hubless satellite communications networks
NASA Technical Reports Server (NTRS)
Robinson, Peter Alan
1994-01-01
Frequency Comb Multiple Access (FCMA) is a new combined modulation and multiple access method which will allow cheap hubless Very Small Aperture Terminal (VSAT) networks to be constructed. Theoretical results show bandwidth efficiency and power efficiency improvements over other modulation and multiple access methods. Costs of the VSAT network are reduced dramatically since a hub station is not required.
NASA Technical Reports Server (NTRS)
Omura, J. K.; Simon, M. K.
1982-01-01
A theory is presented for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the linear satellite channel. The underlying principle used is the development of receiver structures based on the maximum-likelihood decision rule. The application of the performance prediction tools, e.g., channel cutoff rate and bit error probability transfer function bounds to these modulation/demodulation techniques.
A new generation of IC based beam steering devices for free-space optical communication
NASA Astrophysics Data System (ADS)
Bedi, Vijit
Free Space Optical (FSO) communication has tremendously advanced within the last decade to meet the ever increasing demand for higher communication bandwidth. Advancement in laser technology since its invention in the 1960's [1] attracted them to be the dominant source in FSO communication modules. The future of FSO systems lay in implementing semiconductor lasers due to their small size, power efficiency and mass fabrication abilities. In the near future, these systems are very likely to be used in space and ground based applications and revolutionary beam steering technologies will be required for distant communications in free-space. The highly directional characteristic inherent to a laser beam challenges and calls for new beam pointing and steering technologies for such type of communication. In this dissertation, research is done on a novel FSO communication device based on semiconductor lasers for high bandwidth communication. The "Fly eye transceiver" is an extremely wide steering bandwidth, completely non-mechanical FSO laser communication device primarily designed to replace traditional mechanical beam steering optical systems. This non-mechanical FSO device possesses a full spherical steering range and a very high tracking bandwidth. Inspired by the evolutionary model of a fly's eye, the full spherical steering range is assured by electronically controlled switching of its sub-eyes. Non mechanical technologies used in the past for beam steering such as acousto-optic Bragg cells, liquid crystal arrays or piezoelectric elements offer the wide steering bandwidth and fast response time, but are limited in their angular steering range. Mechanical gimbals offer a much greater steering range but face a much slower response time or steering bandwidth problem and often require intelligent adaptive controls with bulky driver amplifiers to feed their actuators. As a solution to feed both the fast and full spherical steering, the Fly-eye transceiver is studied as part of my PhD work. The design tool created for the research of the fly eye is then used to study different applications that may be implemented with the concept. Research is done on the mathematical feasibility, modeling, design, application of the technology, and its characterization in a simulation environment. In addition, effects of atmospheric turbulence on beam propagation in free space, and applying data security using optical encryption are also researched.
Design of an electro-optic-polymer-based Mach-Zehnder modulator
NASA Astrophysics Data System (ADS)
Haugen, Chris J.; DeCorby, Ray G.; McMullin, James N.; Pulikkaseril, C.
2000-12-01
A novel structure for an electro-optic (e-o) polymer based Mach-Zehnder modulator is proposed and its anticipated device performance is detailed. The modulator is designed using commercially available materials and makes usc of wellcharacterized electrical and optical structures. The modulator is designed to be competitive with the pertrmance of LiNbO based modulators. The results of the analysis predict a bandwidth of 20 GHz, V of 8-10 V, optical insertion loss of S d13, and a contrast ratio of approximately 13 dB.
(DARPA) Nonlinear Optics at Low Light Levels
2010-05-28
of 104. The receiver modulator, M2 is run in anti-phase to the transmitter modulator so as to demodulate the photon beam and reduce its bandwidth to...spectrum that is wider than 3.5 MHz. After passing through the second phase modulator the anti-Stokes photon is sent through a 65-MHz fiber based Fabry ... Perot filter (Micron Optics) with a free spectral range of 13.6 GHz. If the spectral width of the photon after the second phase modulator is less than
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorogush, E S; Afonenko, A A
The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)
Easwar, Vijayalakshmi; Purcell, David W; Aiken, Steven J; Parsa, Vijay; Scollie, Susan D
2015-01-01
The use of auditory evoked potentials as an objective outcome measure in infants fitted with hearing aids has gained interest in recent years. This article proposes a test paradigm using speech-evoked envelope following responses (EFRs) for use as an objective-aided outcome measure. The method uses a running speech-like, naturally spoken stimulus token /susa∫i/ (fundamental frequency [f0] = 98 Hz; duration 2.05 sec), to elicit EFRs by eight carriers representing low, mid, and high frequencies. Each vowel elicited two EFRs simultaneously, one from the region of formant one (F1) and one from the higher formants region (F2+). The simultaneous recording of two EFRs was enabled by lowering f0 in the region of F1 alone. Fricatives were amplitude modulated to enable recording of EFRs from high-frequency spectral regions. The present study aimed to evaluate the effect of level and bandwidth on speech-evoked EFRs in adults with normal hearing. As well, the study aimed to test convergent validity of the EFR paradigm by comparing it with changes in behavioral tasks due to bandwidth. Single-channel electroencephalogram was recorded from the vertex to the nape of the neck over 300 sweeps in two polarities from 20 young adults with normal hearing. To evaluate the effects of level in experiment I, EFRs were recorded at test levels of 50 and 65 dB SPL. To evaluate the effects of bandwidth in experiment II, EFRs were elicited by /susa∫i/ low-pass filtered at 1, 2, and 4 kHz, presented at 65 dB SPL. The 65 dB SPL condition from experiment I represented the full bandwidth condition. EFRs were averaged across the two polarities and estimated using a Fourier analyzer. An F test was used to determine whether an EFR was detected. Speech discrimination using the University of Western Ontario Distinctive Feature Differences test and sound quality rating using the Multiple Stimulus Hidden Reference and Anchors paradigm were measured in identical bandwidth conditions. In experiment I, the increase in level resulted in a significant increase in response amplitudes for all eight carriers (mean increase of 14 to 50 nV) and the number of detections (mean increase of 1.4 detections). In experiment II, an increase in bandwidth resulted in a significant increase in the number of EFRs detected until the low-pass filtered 4 kHz condition and carrier-specific changes in response amplitude until the full bandwidth condition. Scores in both behavioral tasks increased with bandwidth up to the full bandwidth condition. The number of detections and composite amplitude (sum of all eight EFR amplitudes) significantly correlated with changes in behavioral test scores. Results suggest that the EFR paradigm is sensitive to changes in level and audible bandwidth. This may be a useful tool as an objective-aided outcome measure considering its running speech-like stimulus, representation of spectral regions important for speech understanding, level and bandwidth sensitivity, and clinically feasible test times. This paradigm requires further validation in individuals with hearing loss, with and without hearing aids.
Microwave fiber optics delay line
NASA Astrophysics Data System (ADS)
Slayman, C.; Yen, H. W.
1980-01-01
A microwave delay line is one of the devices used in EW systems for preserving the frequency and phase contents of RF signals. For such applications, delay lines are required to have large dynamic range, wide bandwidth, low insertion loss, and a linear response. The basic components of a fiber-optics delay line are: an optical source, a wideband optical modulator, a spool of single-mode fiber with appropriate length to provide a given microwave signal delay, and a high-speed photodetector with an RF amplifier. This contract program is to study the feasibility of such a fiber-optic delay line in the frequency range of 4.0 to 6.5 GHz. The modulation scheme studied is the direct modulation of injection lasers. The most important issue identified is the frequency response of the injection laser and the photodetector.
NASA Astrophysics Data System (ADS)
Wang, Max L.; Arbabian, Amin
2017-09-01
We propose and demonstrate an ultrasonic communication link using spatial degrees of freedom to increase data rates for deeply implantable medical devices. Low attenuation and millimeter wavelengths make ultrasound an ideal communication medium for miniaturized low-power implants. While a small spectral bandwidth has drastically limited achievable data rates in conventional ultrasonic implants, a large spatial bandwidth can be exploited by using multiple transducers in a multiple-input/multiple-output system to provide spatial multiplexing gain without additional power, larger bandwidth, or complicated packaging. We experimentally verify the communication link in mineral oil with a transmitter and a receiver 5 cm apart, each housing two custom-designed mm-sized piezoelectric transducers operating at the same frequency. Two streams of data modulated with quadrature phase-shift keying at 125 kbps are simultaneously transmitted and received on both channels, effectively doubling the data rate to 250 kbps with a measured bit error rate below 10-4. We also evaluate the performance and robustness of the channel separation network by testing the communication link after introducing position offsets. These results demonstrate the potential of spatial multiplexing to enable more complex implant applications requiring higher data rates.
Polarization-dependent optical reflection ultrasonic detection
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyi; Huang, Zhiyu; Wang, Guohe; Li, Wenzhao; Li, Changhui
2017-03-01
Although ultrasound transducers based on commercial piezoelectric-material have been widely used, they generally have limited bandwidth centered at the resonant frequency. Currently, several pure-optical ultrasonic detection methods have gained increasing interest due to their wide bandwidth and high sensitivity. However, most of them require customized components (such as micro-ring, SPR, Fabry-Perot film, etc), which limit their broad implementations. In this study, we presented a simple pure-optical ultrasound detection method, called "Polarization-dependent Reflection Ultrasonic Detection" (PRUD). It detects the intensity difference between two polarization components of the probe beam that is modulated by ultrasound waves. PRUD detect the two components by using a balanced detector, which effectively suppressed much of the unwanted noise. We have achieved the sensitivity (noise equivalent pressure) to be 1.7kPa, and this can be further improved. In addition, like many other pure-optical ultrasonic detection methods, PRUD also has a flat and broad bandwidth from almost zero to over 100MHz. Besides theoretical analysis, we did a phantom study by imaging a tungsten filament to demonstrate the performance of PRUD. We believe this simple and economic method will attract both researchers and engineers in optical and ultrasound fields.
Self-tuning stochastic resonance energy harvester for smart tires
NASA Astrophysics Data System (ADS)
Kim, Hongjip; Tai, Wei Che; Zuo, Lei
2018-03-01
Energy harvesting from smart tire has been an influential topic for researchers over several years. In this paper, we propose novel energy harvester for smart tire taking advantage of adaptive tuning stochastic resonance. Compared to previous tire energy harvesters, it can generate large power and has wide bandwidth. Large power is achieved by stochastic resonance while wide-bandwidth is accomplished by adaptive tuning via centrifugal stiffening effect. Energy harvesting configuration for modulated noise is described first. It is an electromagnetic energy harvester consists of rotating beam subject to centrifugal buckling. Equation of motion for energy harvester is derived to investigate the effect of centrifugal stiffening. Numerical analysis was conducted to simulate response. The result show that high power is achieved with wide bandwidth. To verify the theoretical and simulation results, the experiment was conducted. Equivalent horizontal rotating platform is built to mimic tire environment. Experiment results showed good agreement with the numerical result with around 10% of errors, which verified feasibility of proposed harvester. Maximum power 1.8mW is achieved from 3:1 scale experiment setup. The equivalent working range of harvester is around 60-105 km/h which is typical speed for car in general road and highway.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2017-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2014-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits
NASA Astrophysics Data System (ADS)
Sohn, Donggyu B.; Kim, Seunghwi; Bahl, Gaurav
2018-02-01
Achieving non-reciprocal light propagation via stimuli that break time-reversal symmetry, without magneto-optics, remains a major challenge for integrated nanophotonic devices. Recently, optomechanical microsystems in which light and vibrational modes are coupled through ponderomotive forces have demonstrated strong non-reciprocal effects through a variety of techniques, but always using optical pumping. None of these approaches has demonstrated bandwidth exceeding that of the mechanical system, and all of them require optical power; these are both fundamental and practical issues. Here, we resolve both challenges by breaking time-reversal symmetry using a two-dimensional acoustic pump that simultaneously provides a non-zero overlap integral for light-sound interaction and also satisfies the necessary phase-matching. We use this technique to produce a non-reciprocal modulator (a frequency shifting isolator) by means of indirect interband scattering. We demonstrate mode conversion asymmetry up to 15 dB and efficiency as high as 17% over a bandwidth exceeding 1 GHz.
NASA Astrophysics Data System (ADS)
Palodiya, Vikram; Raghuwanshi, Sanjeev Kumar
2017-12-01
In this paper, the domain inversion is used in a simple fashion to improve the performance of a Z-cut highly integrated LiNbO3 optical modulator (LNOM). The Z-cut modulator having ≤ 3 V switching voltage and bandwidth of 15 GHz for an external modulator in which traveling-wave electrode length L_{m} imposed the modulating voltage, the product of V_π and L_{m} is fixed for a given electro-optic material (EOM). An investigation to achieve a low V_π by both magnitude of the electro-optic coefficient (EOC) for a wide variety of EOMs has been reported. The Sellmeier equation (SE) for the extraordinary index of congruent LiNbO3 is derived. The predictions related to phase matching are accurate between room temperature and 250 °C and wavelength ranging from 0.4 to 5 μm. The SE predicts more accurate refractive indices (RI) at long wavelengths. The different overlaps between the waveguides for the Z-cut structure are shown to yield a chirp parameter that can able to adjust 0-0.7. Theoretical results are perfectly verified by simulated results.
Digitally synthesized beat frequency-multiplexed fluorescence lifetime spectroscopy
Chan, Jacky C. K.; Diebold, Eric D.; Buckley, Brandon W.; Mao, Sien; Akbari, Najva; Jalali, Bahram
2014-01-01
Frequency domain fluorescence lifetime imaging is a powerful technique that enables the observation of subtle changes in the molecular environment of a fluorescent probe. This technique works by measuring the phase delay between the optical emission and excitation of fluorophores as a function of modulation frequency. However, high-resolution measurements are time consuming, as the excitation modulation frequency must be swept, and faster low-resolution measurements at a single frequency are prone to large errors. Here, we present a low cost optical system for applications in real-time confocal lifetime imaging, which measures the phase vs. frequency spectrum without sweeping. Deemed Lifetime Imaging using Frequency-multiplexed Excitation (LIFE), this technique uses a digitally-synthesized radio frequency comb to drive an acousto-optic deflector, operated in a cat’s-eye configuration, to produce a single laser excitation beam modulated at multiple beat frequencies. We demonstrate simultaneous fluorescence lifetime measurements at 10 frequencies over a bandwidth of 48 MHz, enabling high speed frequency domain lifetime analysis of single- and multi-component sample mixtures. PMID:25574449
Ohmae, Noriaki; Moriwaki, Shigenori; Mio, Norikatsu
2010-07-01
Second-generation gravitational wave detectors require a highly stable laser with an output power greater than 100 W to attain their target sensitivity. We have developed a frequency stabilization system for a 100-W injection-locked Nd:YAG (yttrium aluminum garnet) laser. By placing an external wideband electro-optic modulator used as a fast-frequency actuator in the optical path of the slave output, we can circumvent a phase delay in the frequency control loop originating from the pole of an injection-locked slave cavity. Thus, we have developed an electro-optic modulator made of a MgO-doped stoichiometric LiNbO(3) crystal. Using this modulator, we achieve a frequency control bandwidth of 800 kHz and a control gain of 180 dB at 1 kHz. These values satisfy the requirement for a laser frequency control loop in second-generation gravitational wave detectors.
High performance TWT development for the microwave power module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whaley, D.R.; Armstrong, C.M.; Groshart, G.
1996-12-31
Northrop Grumman`s ongoing development of microwave power modules (MPM) provides microwave power at various power levels, frequencies, and bandwidths for a variety of applications. Present day requirements for the vacuum power booster traveling wave tubes of the microwave power module are becoming increasingly more demanding, necessitating the need for further enhancement of tube performance. The MPM development program at Northrop Grumman is designed specifically to meet this need by construction and test of a series of new tubes aimed at verifying computation and reaching high efficiency design goals. Tubes under test incorporate several different helix designs, as well as varyingmore » electron gun and magnetic confinement configurations. Current efforts also include further development of state-of-the-art TWT modeling and computational methods at Northrop Grumman incorporating new, more accurate models into existing design tools and developing new tools to be used in all aspects of traveling wave tube design. Current status of the Northrop Grumman MPM TWT development program will be presented.« less
Advanced Broadband Links for TIER III UAV Data Communication
NASA Astrophysics Data System (ADS)
Griethe, Wolfgang; Gregory, Mark; Heine, Frank; Kampfner, Hartmut
2011-08-01
Unmanned Aeronautical Vehicle (UAV) are getting more and more importance because of their prominent role as national reconnaissance systems, for disaster monitoring, and environmental mapping. However, the existence of reliable and robust data links are indispensable for Unmanned Aircraft System (UAS) missions. In particular for Beyond Line-Of-Sight operations (BLOS) of Tier III UAVs, satellite data links are a key element since extensive sensor data have to be transmitted preferably in real-time or near real-time.The paper demonstrates that the continuously increasing number of UAS and the intensified use of high resolution sensors will reveal RF-bandwidth as a limitating factor in the communication chain of Tier III UAVs. The RF-bandwidth gap can be partly closed by use of high-order modulation, of course, but much more progress in terms of bandwidth allocation can be achieved by using optical transmission technology. Consequently, the paper underlines that meanwhile this technology has been sufficiently verified in space, and shows that optical links are suited as well for broadband communications of Tier III UAVs. Moreover, the advantages of LaserCom in UAV scenarios and its importance for Network Centric Warfare (NCW) as well as for Command, Control, Communications, Computers, Intelligens, Surveillance, and Reconnaissance (C4ISR) are emphasized. Numerous practical topics and design requirements, relevant for the establishment of optical links onboard of Tier III UAVs, are discussed.
Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris
2013-11-04
In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators.
PN-type carrier-induced filter with modulatable extinction ratio.
Fang, Qing; Tu, Xiaoguang; Song, Junfeng; Jia, Lianxi; Luo, Xianshu; Yang, Yan; Yu, Mingbin; Lo, Guoqiang
2014-12-01
We demonstrate the first PN-type carrier-induced silicon waveguide Bragg grating filter on a SOI wafer. The optical extinction ratio of this kind of filter can be efficiently modulated under both reverse and forward biases. The carrier-induced Bragg grating based on a PN junction is fabricated on the silicon waveguide using litho compensation technology. The measured optical bandwidth and the extinction ratio of the filter are 0.45 nm and 19 dB, respectively. The optical extinction ratio modulation under the reverse bias is more than 11.5 dB and it is more than 10 dB under the forward bias. Only 1-dB optical transmission loss is realized in this Bragg grating under a reverse bias. The shifting rates of the central wavelength under forward and reverse biases are ~-1.25 nm/V and 0.01 nm/V, respectively. The 3-dB modulation bandwidth of this filter is 5.1 GHz at a bias of -10 V.
Quantum Limits of Space-to-Ground Optical Communications
NASA Technical Reports Server (NTRS)
Hemmati, H.; Dolinar, S.
2012-01-01
For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission
Nan, Yinbo; Huo, Li; Lou, Caiyun
2005-05-20
We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.
Electro-Optic Modulator Based on Organic Planar Waveguide Integrated with Prism Coupler
NASA Technical Reports Server (NTRS)
Sarkisov, Sergey S.
2002-01-01
The objectives of the project, as they were formulated in the proposal, are the following: (1) Design and development of novel electro-optic modulator using single crystalline film of highly efficient electro-optic organic material integrated with prism coupler; (2) Experimental characterization of the figures-of-merit of the modulator. It is expected to perform with an extinction ratio of 10 dB at a driving signal of 5 V; (3) Conclusions on feasibility of the modulator as an element of data communication systems of future generations. The accomplishments of the project are the following: (1) The design of the electro-optic modulator based on a single crystalline film of organic material NPP has been explored; (2) The evaluation of the figures-of-merit of the electro-optic modulator has been performed; (3) Based on the results of characterization of the figures-of-merit, the conclusion was made that the modulator based on a thin film of NPP is feasible and has a great potential of being used in optic communication with a modulation bandwidth of up to 100 GHz and a driving voltage of the order of 3 to 5 V.
Demonstration of 40 MHz thin-film electro-optic modulator using an organic molecular salt
NASA Astrophysics Data System (ADS)
Bhowmik, Achintya; Ahyi, Ayayi; Tan, Shida; Mishra, Alpana; Thakur, Mrinal
2000-03-01
Recently we reported the first demonstration of a single-pass thin-film electro-optic modulator based on a DAST single-crystal film.(M. Thakur, J. Xu, A. Bhowmik, and L. Zhou, Appl. Phys. Lett. 74, 635-637 (1999).) In this work, we report a larger modulation depth ( ~80%) and higher speed of operation. Excellent optical quality single-crystal films were prepared by a modified shear method.(M. Thakur and S. Meyler, Macromolecules 18, 2341 (1985); M. Thakur, Y. Shani, G. C. Chi, and K. O'Brien, Synth. Met. 28, D595 (1989).) Thin-film modulator was constructed by depositing electrodes across the polar axis. The beam from a Ti-Sapphire laser, tunable over 720-850 nm, was propagated perpendicular to the film surface. The modulated signal was detected using a fast photodetector, and displayed on a high bandwidth oscilloscope and a spectrum analyzer. The response was independent of the frequency of applied field over the measurement range (2 kHz - 40 MHz). A much higher speed (>100 GHz) of operation should be possible using these films. These modulators involve negligible losses compared to the waveguide structures, and have significant potential for a broad range of applications in high speed optical signal processing.
High-Density, High-Bandwidth, Multilevel Holographic Memory
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
2008-01-01
A proposed holographic memory system would be capable of storing data at unprecedentedly high density, and its data transfer performance in both reading and writing would be characterized by exceptionally high bandwidth. The capabilities of the proposed system would greatly exceed even those of a state-of-the art memory system, based on binary holograms (in which each pixel value represents 0 or 1), that can hold .1 terabyte of data and can support a reading or writing rate as high as 1 Gb/s. The storage capacity of the state-of-theart system cannot be increased without also increasing the volume and mass of the system. However, in principle, the storage capacity could be increased greatly, without significantly increasing the volume and mass, if multilevel holograms were used instead of binary holograms. For example, a 3-bit (8-level) hologram could store 8 terabytes, or an 8-bit (256-level) hologram could store 256 terabytes, in a system having little or no more size and mass than does the state-of-the-art 1-terabyte binary holographic memory. The proposed system would utilize multilevel holograms. The system would include lasers, imaging lenses and other beam-forming optics, a block photorefractive crystal wherein the holograms would be formed, and two multilevel spatial light modulators in the form of commercially available deformable-mirror-device spatial light modulators (DMDSLMs) made for use in high speed input conversion of data up to 12 bits. For readout, the system would also include two arrays of complementary metal oxide/semiconductor (CMOS) photodetectors matching the spatial light modulators. The system would further include a reference-beam sterring device (equivalent of a scanning mirror), containing no sliding parts, that could be either a liquid-crystal phased-array device or a microscopic mirror actuated by a high-speed microelectromechanical system. Time-multiplexing and the multilevel nature of the DMDSLM would be exploited to enable writing and reading of multilevel holograms. The DMDSLM would also enable transfer of data at a rate of 7.6 Gb/s or perhaps somewhat higher.
Scaling single-wavelength optical interconnects to 180 Gb/s with PAM-M and pulse shaping
NASA Astrophysics Data System (ADS)
Dris, Stefanos; Bakopoulos, Paraskevas; Argyris, Nikolaos; Spatharakis, Christos; Avramopoulos, Hercules
2016-03-01
Faced with surging datacenter traffic demand, system designers are turning to multi-level optical modulation with direct detection as the means of reaching 100 Gb/s in a single optical lane; a further upgrade to 400 Gb/s is envisaged through wavelength-multiplexing of multiple 100 Gb/s strands. In terms of modulation formats, PAM-4 and PAM-8 are considered the front-runners, striking a good balance between bandwidth-efficiency and implementation complexity. In addition, the emergence of energy-efficient, high-speed CMOS digital-to-analog converters (DACs) opens up new possibilities: Spectral shaping through digital filtering will allow squeezing even more data through low-cost, low-bandwidth electro-optic components. In this work we demonstrate an optical interconnect based on an EAM that is driven directly with sub-volt electrical swing by a 65 GSa/s arbitrary waveform generator (AWG). Low-voltage drive is particularly attractive since it allows direct interfacing with the switch/server ASIC, eliminating the need for dedicated, power-hungry and expensive electrical drivers. Single-wavelength throughputs of 180 and 120 Gb/s are experimentally demonstrated with 60 Gbaud optical PAM-8 and PAM-4 respectively. Successful transmission over 1250 m SMF is achieved with direct-detection, using linear equalization via offline digital signal processing in order to overcome the strong bandwidth limitation of the overall link (~20 GHz). The suitability of Nyquist pulse shaping for optical interconnects is also investigated experimentally with PAM-4 and PAM-8, at a lower symbol rate of 40 Gbaud (limited by the sampling rate of the AWG). To the best of our knowledge, the rates achieved are the highest ever using optical PAM-M formats.
[Integration design and diffraction characteristics analysis of prism-grating-prism].
He, Tian-Bo; Bayanheshig; Li, Wen-Hao; Kong, Peng; Tang, Yu-Guo
2014-01-01
Prism-grating-prism (PGP) module is the important dispersing component in the hyper spectral imager. In order to effectively predict the distribution of diffraction efficiency of the whole PGP component and its diffraction characteristics before fabrication, a method of the PGP integration design is proposed. From the point of view of the volume phase holographic grating (VPHG) design, combined with the restrictive correlation between the various parameters of prisms and grating, we compiled the analysis software for calculating the whole PGP's diffraction efficiency. Furthermore, the effects of the structure parameters of prisms and grating on the PGP's diffraction characteristics were researched in detail. In particular we discussed the Bragg wavelength shift behaviour of the grating and a broadband PGP spectral component with high diffraction efficiency was designed for the imaging spectrometers. The result of simulation indicated that the spectral bandwidth of the PGP becomes narrower with the dispersion coefficient of prism 1 material decreasing; Bragg wavelength shift characteristics broaden the bandwidth of VPHG both spectrally and angularly, higher angular selectivity is desirable for selection requirements of the prism 1 material, and it can be easily tuned to achieve spectral bandwidth suitable for imaging PGP spectrograph; the vertex angle of prism 1, the film thickness and relative permittivity modulation of the grating have a significant impact on the distribution of PGP's diffraction efficiency, so precision control is necessary when fabrication. The diffraction efficiency of the whole PGP component designed by this method is no less than 50% in the wavelength range from 400 to 1000 nm, the specific design parameters have been given in this paper that have a certain reference value for PGP fabrication.
NASA Astrophysics Data System (ADS)
Pace, Phillip Eric; Tan, Chew Kung; Ong, Chee K.
2018-02-01
Direction finding (DF) systems are fundamental electronic support measures for electronic warfare. A number of DF techniques have been developed over the years; however, these systems are limited in bandwidth and resolution and suffer from a complex design for frequency downconversion. The design of a photonic DF technique for the detection and DF of low probability of intercept (LPI) signals is investigated. Key advantages of this design include a small baseline, wide bandwidth, high resolution, minimal space, weight, and power requirement. A robust postprocessing algorithm that utilizes the minimum Euclidean distance detector provides consistence and accurate estimation of angle of arrival (AoA) for a wide range of LPI waveforms. Experimental tests using frequency modulation continuous wave (FMCW) and P4 modulation signals were conducted in an anechoic chamber to verify the system design. Test results showed that the photonic DF system is capable of measuring the AoA of the LPI signals with 1-deg resolution over a 180 deg field-of-view. For an FMCW signal, the AoA was determined with a RMS error of 0.29 deg at 1-deg resolution. For a P4 coded signal, the RMS error in estimating the AoA is 0.32 deg at 1-deg resolution.
Design and implementation of the next generation Landsat satellite communications system
Mah, Grant R.; O'Brien, Michael; Garon, Howard; Mott, Claire; Ames, Alan; Dearth, Ken
2012-01-01
The next generation Landsat satellite, Landsat 8 (L8), also known as the Landsat Data Continuity Mission (LDCM), uses a highly spectrally efficient modulation and data formatting approach to provide large amounts of downlink (D/L) bandwidth in a limited X-Band spectrum allocation. In addition to purely data throughput and bandwidth considerations, there were a number of additional constraints based on operational considerations for prevention of interference with the NASA Deep-Space Network (DSN) band just above the L8 D/L band, minimization of jitter contributions to prevent impacts to instrument performance, and the need to provide an interface to the Landsat International Cooperator (IC) community. A series of trade studies were conducted to consider either X- or Ka-Band, modulation type, and antenna coverage type, prior to the release of the request for proposal (RFP) for the spacecraft. Through use of the spectrally efficient rate-7/8 Low-Density Parity-Check error-correction coding and novel filtering, an XBand frequency plan was developed that balances all the constraints and considerations, while providing world-class link performance, fitting 384 Mbits/sec of data into the 375 MHz X-Band allocation with bit-error rates better than 10-12 using an earth-coverage antenna.
Iwakuni, Kana; Inaba, Hajime; Nakajima, Yoshiaki; Kobayashi, Takumi; Hosaka, Kazumoto; Onae, Atsushi; Hong, Feng-Lei
2012-06-18
We have developed an optical frequency comb using a mode-locked fiber ring laser with an intra-cavity waveguide electro-optic modulator controlling the optical length in the laser cavity. The mode-locking is achieved with a simple ring configuration and a nonlinear polarization rotation mechanism. The beat note between the laser and a reference laser and the carrier envelope offset frequency of the comb were simultaneously phase locked with servo bandwidths of 1.3 MHz and 900 kHz, respectively. We observed an out-of-loop beat between two identical combs, and obtained a coherent δ-function peak with a signal to noise ratio of 70 dB/Hz.
Lee, Myung-Jae; Youn, Jin-Sung; Park, Kang-Yeob; Choi, Woo-Young
2014-02-10
We present a fully integrated 12.5-Gb/s optical receiver fabricated with standard 0.13-µm complementary metal-oxide-semiconductor (CMOS) technology for 850-nm optical interconnect applications. Our integrated optical receiver includes a newly proposed CMOS-compatible spatially-modulated avalanche photodetector, which provides larger photodetection bandwidth than previously reported CMOS-compatible photodetectors. The receiver also has high-speed CMOS circuits including transimpedance amplifier, DC-balanced buffer, equalizer, and limiting amplifier. With the fabricated optical receiver, detection of 12.5-Gb/s optical data is successfully achieved at 5.8 pJ/bit. Our receiver achieves the highest data rate ever reported for 850-nm integrated CMOS optical receivers.
NASA Astrophysics Data System (ADS)
Carpenter, A. C.; Herrmann, H. W.; Beeman, B. V.; Lopez, F. E.; Hernandez, J. E.
2016-09-01
This paper covers the performance of a high speed analogue data transmission system. This system uses multiple Mach- Zehnder optical modulators to transmit and record fusion burn history data for the Gas Cherenkov Detector (GCD) on the National Ignition Facility. The GCD is designed to measure the burn duration of high energy gamma rays generated by Deuterium-Tritium (DT) interactions in the NIF. The burn duration of DT fusion can be as short as 10ps and the optical photons generated in the gas Cherenkov cell are measured using a vacuum photodiode with a FWHM of 55ps. A recording system with a 3dB bandwidth of ≥10GHz and a signal to noise ratio of ≥5 for photodiode output voltage of 50mV is presented. The data transmission system uses two or three Mach-Zehnder modulators and an RF amplifier to transmit data optically. This signal is received and recorded by optical to electrical converts and a high speed digital oscilloscope placed outside of the NIF Target Bay. Electrical performance metrics covered include signal to noise ratio (SNR), signal to peak to peak noise ratio, single shot dynamic range, shot to shot dynamic range, system bandwidth, scattering parameters, are shown. Design considerations such as self-test capabilities, the NIF radiation environment, upgrade compatibility, Mach-Zehnder (MZ) biasing, maintainability, and operating considerations for the use of MZs are covered. This data recording system will be used for the future upgrade of the GCD to be used with a Pulse Dilation PMT, currently under development.
Design of Hybrid Silicon and Lithium Niobate Active Region for Electro-optical Modulation
2017-03-01
bandwidth our group has proposed a Mach-Zehnder traveling -wave type modulator with optimized cross section dimensions using a similar material stack as...increases the electric field intensity available to the Pockel’s effect. At the same time , the induced metal loss increases as the electrodes become...Gopalakrishnan et al., “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Light. Technol., vol. 12, no. 10, pp
Spectrotemporal Processing in Spectral Tuning Modules of Cat Primary Auditory Cortex
Atencio, Craig A.; Schreiner, Christoph E.
2012-01-01
Spectral integration properties show topographical order in cat primary auditory cortex (AI). Along the iso-frequency domain, regions with predominantly narrowly tuned (NT) neurons are segregated from regions with more broadly tuned (BT) neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and characterized processing differences between them using both spectrotemporal receptive fields (STRFs) and nonlinear stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules. These results indicate fundamental differences in spectrotemporal preferences - and thus distinct physiological functions - for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the manner in which stimulus information is processed. PMID:22384036
Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.
1991-09-10
In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.
Skupsky, Stanley; Kessler, Terrance J.; Short, Robert W.; Craxton, Stephen; Letzring, Samuel A.; Soures, John
1991-01-01
In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.
Modulation properties of optically injection-locked quantum cascade lasers.
Wang, Cheng; Grillot, Fédéric; Kovanis, Vassilios I; Bodyfelt, Joshua D; Even, Jacky
2013-06-01
A rate equation analysis on the modulation response of an optical injection-locked quantum cascade laser is outlined. It is found that the bifurcation diagram exhibits both bistable and unstable locked regions. In addition, the stable locked regime widens as the linewidth enhancement factor increases. It is also shown that both positive and negative optical detunings as well as strong injection strength enhance the 3 dB modulation bandwidth by as much as 30 GHz. Finally, the peak in the modulation response is significantly influenced by the optical frequency detuning.
50 Gb/s hybrid silicon traveling-wave electroabsorption modulator.
Tang, Yongbo; Chen, Hui-Wen; Jain, Siddharth; Peters, Jonathan D; Westergren, Urban; Bowers, John E
2011-03-28
We have demonstrated a traveling-wave electroabsorption modulator based on the hybrid silicon platform. For a device with a 100 μm active segment, the small-signal electro/optical response renders a 3 dB bandwidth of around 42 GHz and its modulation efficiency reaches 23 GHz/V. A dynamic extinction ratio of 9.8 dB with a driving voltage swing of only 2 V was demonstrated at a transmission rate of 50 Gb/s. This represents a significant improvement for modulators compatible with integration of silicon-based photonic integrated circuits.
A closed-loop phase-locked interferometer for wide bandwidth position sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Andrew J., E-mail: Andrew.Fleming@Newcastle.edu.au; Routley, Ben S., E-mail: Ben.Routley@Newcastle.edu.au
This article describes a position sensitive interferometer with closed-loop control of the reference mirror. A calibrated nanopositioner is used to lock the interferometer phase to the most sensitive point in the interferogram. In this configuration, large low-frequency movements of the sensor mirror can be detected from the control signal applied to the nanopositioner and high-frequency short-range signals can be measured directly from the photodiode. It is demonstrated that these two signals are complementary and can be summed to find the total displacement. The resulting interferometer has a number of desirable characteristics: it is optically simple, does not require polarization ormore » modulation to detect the direction of motion, does not require fringe-counting or interpolation electronics, and has a bandwidth equal to that of the photodiode. Experimental results demonstrate the frequency response analysis of a high-speed positioning stage. The proposed instrument is ideal for measuring the frequency response of nanopositioners, electro-optical components, MEMs devices, ultrasonic devices, and sensors such as surface acoustic wave detectors.« less
High-efficiency broadband polarization converter based on Ω-shaped metasurface
NASA Astrophysics Data System (ADS)
Zhang, Tianyao; Huang, Lingling; Li, Xiaowei; Liu, Juan; Wang, Yongtian
2017-11-01
The polarization state, which cannot be directly detected by human eyes, forms an important characteristic of electromagnetic waves. Control of polarization states has long been pursued for various applications. Conventional polarization converters can hardly meet the requirements in lab-on-chip systems, due to the involvement of bulk materials. Here, we propose the design and realization of a linear to circular polarization converter based on metasurfaces. The metasurface is deliberately designed using achiral two-fold mirror symmetry Ω-shaped antennas. The converter integrates a ground metal plane, a spacer dielectric layer and an antenna array, leading to a high conversion efficiency and broad operating bandwidth in the near infrared regime. The calculated Stokes parameters indicate an excellent conversion of linear to circular polarization for the reflected light. The tunability of the bandwidth by oblique incidence and by modulating the thickness of the dielectric layer is also introduced and demonstrated, which shows great flexibilities for such metasurface converters. The proposed metasurface may open up intriguing possibilities towards the realization of ultrathin nanophotonic devices for polarization manipulation and wavefront engineering.
Review on Photonic Generation of Chirp Arbitrary Microwave Waveforms for Remote Sensing Application
NASA Astrophysics Data System (ADS)
Raghuwanshi, Sanjeev Kumar; Srivastav, Akash; Athokpam, Bidhanshel Singh
2017-12-01
A novel technique to generate an arbitrary chirped waveform by harnessing features of lithium niobate (LiNb O_3) Mach-Zehnder modulator is proposed and demonstrated. The most important application of chirped microwave waveform is that, it improves the range resolution of radar. Microwave photonics system provides high bandwidth capabilities of fiber-optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, it should be consider that microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper, we have thoroughly reviewed the arbitrary chirped microwave generation techniques by using photonics technology.
Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack
NASA Technical Reports Server (NTRS)
Keys, Andrew S. (Inventor); Fork, Richard L. (Inventor)
2005-01-01
An optical phase modulator includes a bandpass multilayer stack, formed by a plurality of dielectric layers, preferably of GaAs and AlAs, and having a transmission function related to the refractive index of the layers of the stack, for receiving an optical input signal to be phase modulated. A phase modulator device produces a nonmechanical change in the refractive index of each layer of the stack by, e.g., the injection of free carrier, to provide shifting of the transmission function so as to produce phase modulation of the optical input signal and to thereby produce a phase modulated output signal.
Low frequency piezoresonance defined dynamic control of terahertz wave propagation
NASA Astrophysics Data System (ADS)
Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G.; Bhalla, Amar S.; Guo, Ruyan
2016-11-01
Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.
SoMIR framework for designing high-NDBP photonic crystal waveguides.
Mirjalili, Seyed Mohammad
2014-06-20
This work proposes a modularized framework for designing the structure of photonic crystal waveguides (PCWs) and reducing human involvement during the design process. The proposed framework consists of three main modules: parameters module, constraints module, and optimizer module. The first module is responsible for defining the structural parameters of a given PCW. The second module defines various limitations in order to achieve desirable optimum designs. The third module is the optimizer, in which a numerical optimization method is employed to perform optimization. As case studies, two new structures called Ellipse PCW (EPCW) and Hypoellipse PCW (HPCW) with different shape of holes in each row are proposed and optimized by the framework. The calculation results show that the proposed framework is able to successfully optimize the structures of the new EPCW and HPCW. In addition, the results demonstrate the applicability of the proposed framework for optimizing different PCWs. The results of the comparative study show that the optimized EPCW and HPCW provide 18% and 9% significant improvements in normalized delay-bandwidth product (NDBP), respectively, compared to the ring-shape-hole PCW, which has the highest NDBP in the literature. Finally, the simulations of pulse propagation confirm the manufacturing feasibility of both optimized structures.
Low frequency piezoresonance defined dynamic control of terahertz wave propagation.
Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G; Bhalla, Amar S; Guo, Ruyan
2016-11-30
Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO 3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.
Hybrid metasurface for ultra-broadband terahertz modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heyes, Jane E.; Withayachumnankul, Withawat; Grady, Nathaniel K.
2014-11-05
We demonstrate an ultra-broadband free-space terahertz modulator based on a semiconductor-integrated metasurface. The modulator is made of a planar array of metal cut-wires on a silicon-on-sapphire substrate, where the silicon layer functions as photoconductive switches. Without external excitation, the cut-wire array exhibits a Lorentzian resonant response with a transmission passband spanning dc up to the fundamental dipole resonance above 2 THz. Under photoexcitation with 1.55 eV near-infrared light, the silicon regions in the cut-wire gaps become highly conductive, causing a transition of the resonant metasurface to a wire grating with a Drude response. In effect, the low-frequency passband below 2more » THz evolves into a stopband for the incident terahertz waves. Experimental validations confirm a bandwidth of at least 100%, spanning 0.5 to 1.5 THz with -10 dB modulation depth. This modulation depth is far superior to -5 dB achievable from a plain silicon-on-sapphire substrate with effectively 25 times higher pumping energy. The proposed concept of ultra-broadband metasurface modulator can be readily extended to electrically controlled terahertz wave modulation.« less
Transmission of digital images within the NTSC analog format
Nickel, George H.
2004-06-15
HDTV and NTSC compatible image communication is done in a single NTSC channel bandwidth. Luminance and chrominance image data of a scene to be transmitted is obtained. The image data is quantized and digitally encoded to form digital image data in HDTV transmission format having low-resolution terms and high-resolution terms. The low-resolution digital image data terms are transformed to a voltage signal corresponding to NTSC color subcarrier modulation with retrace blanking and color bursts to form a NTSC video signal. The NTSC video signal and the high-resolution digital image data terms are then transmitted in a composite NTSC video transmission. In a NTSC receiver, the NTSC video signal is processed directly to display the scene. In a HDTV receiver, the NTSC video signal is processed to invert the color subcarrier modulation to recover the low-resolution terms, where the recovered low-resolution terms are combined with the high-resolution terms to reconstruct the scene in a high definition format.
47 CFR 22.807 - General aviation air-ground application requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... proposed; (3) The center frequency of each channel requested, the maximum effective radiated power, any non-standard emission types to be used, including bandwidth and modulation type and the transmitter...
Noise performance of frequency modulation Kelvin force microscopy
Deresmes, Dominique; Mélin, Thierry
2014-01-01
Summary Noise performance of a phase-locked loop (PLL) based frequency modulation Kelvin force microscope (FM-KFM) is assessed. Noise propagation is modeled step by step throughout the setup using both exact closed loop noise gains and an approximation known as “noise gain” from operational amplifier (OpAmp) design that offers the advantage of decoupling the noise performance study from considerations of stability and ideal loop response. The bandwidth can be chosen depending on how much noise is acceptable and it is shown that stability is not an issue up to a limit that will be discussed. With thermal and detector noise as the only sources, both approaches yield PLL frequency noise expressions equal to the theoretical value for self-oscillating circuits and in agreement with measurement, demonstrating that the PLL components neither modify nor contribute noise. Kelvin output noise is then investigated by modeling the surrounding bias feedback loop. A design rule is proposed that allows choosing the AC modulation frequency for optimized sharing of the PLL bandwidth between Kelvin and topography loops. A crossover criterion determines as a function of bandwidth, temperature and probe parameters whether thermal or detector noise is the dominating noise source. Probe merit factors for both cases are then established, suggesting how to tackle noise performance by probe design. Typical merit factors of common probe types are compared. This comprehensive study is an encouraging step toward a more integral performance assessment and a remedy against focusing on single aspects and optimizing around randomly chosen key values. PMID:24455457
Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.
Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias
2015-06-01
To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.
Cryogenic 160-GHz MMIC Heterodyne Receiver Module
NASA Technical Reports Server (NTRS)
Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah
2011-01-01
A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz. Additionally, the use of a W-band isolator between the receiver module and the local oscillator source also improved the noise temperature substantially. This may be because the mixer was presented with a better impedance match with the use of the isolator. Cryogenic testing indicates a system noise temperature of 100 K or less at 166 GHz. Prior tests of the MMIC amplifiers alone have resulted in a system noise temperature of 65.70 K in the same frequency range (.160 GHz) when cooled to an ambient temperature of 20 K. While other detector systems may be slightly more sensitive (such as SIS mixers), they require more cooling (to 4 K ambient) and are not as easily scalable to build a large array, due to the need for large magnets and other equipment. When cooled to 20 K, this receiver module achieves approximately 100 K system noise temperature, which is slightly higher than single-amplifier module results obtained at JPL (65.70 K when an amplifier is corrected for back-end noise contributions). If this performance can be realized in practice, and a scalable array can be produced, the impact on cosmic microwave background experiments, astronomical and Earth spectroscopy, interferometry, and radio astronomy in general will be dramatic.
A Computer Model of a Phase Lock Loop
NASA Technical Reports Server (NTRS)
Shelton, Ralph Paul
1973-01-01
A computer model is reported of a PLL (phase-lock loop), preceded by a bandpass filter, which is valid when the bandwidth of the bandpass filter is of the same order of magnitude as the natural frequency of the PLL. New results for the PLL natural frequency equal to the bandpass filter bandwidth are presented for a second order PLL operating with carrier plus noise as the input. However, it is shown that extensions to higher order loops, and to the case of a modulated carrier are straightforward. The new results presented give the cycle skipping rate of the PLL as a function of the input carrier to noise ratio when the PLL natural frequency is equal to the bandpass filter bandwidth. Preliminary results showing the variation of the output noise power and cycle skipping rates of the PLL as a function of the loop damping ratio for the PLL natural frequency equal to the bandpass filter bandwidth are also included.
Time lens assisted photonic sampling extraction
NASA Astrophysics Data System (ADS)
Petrillo, Keith Gordon
Telecommunication bandwidth demands have dramatically increased in recent years due to Internet based services like cloud computing and storage, large file sharing, and video streaming. Additionally, sensing systems such as wideband radar, magnetic imaging resonance systems, and complex modulation formats to handle large data transfer in telecommunications require high speed, high resolution analog-to-digital converters (ADCs) to interpret the data. Accurately processing and acquiring the information at next generation data rates from these systems has become challenging for electronic systems. The largest contributors to the electronic bottleneck are bandwidth and timing jitter which limit speed and reduce accuracy. Optical systems have shown to have at least three orders of magnitude increase in bandwidth capabilities and state of the art mode locked lasers have reduced timing jitters into thousands of attoseconds. Such features have encouraged processing signals without the use of electronics or using photonics to assist electronics. All optical signal processing has allowed the processing of telecommunication line rates up to 1.28 Tb/s and high resolution analog-to-digital converters in the 10s of gigahertz. The major drawback to these optical systems is the high cost of the components. The application of all optical processing techniques such as a time lens and chirped processing can greatly reduce bandwidth and cost requirements of optical serial to parallel converters and push photonically assisted ADCs into the 100s of gigahertz. In this dissertation, the building blocks to a high speed photonically assisted ADC are demonstrated, each providing benefits to its own respective application. A serial to parallel converter using a continuously operating time lens as an optical Fourier processor is demonstrated to fully convert a 160-Gb/s optical time division multiplexed signal to 16 10-Gb/s channels with error free operation. Using chirped processing, an optical sample and hold concept is demonstrated and analyzed as a resolution improvement to existing photonically assisted ADCs. Simulations indicate that the application of a continuously operating time lens to a photonically assisted sampling system can increase photonically sampled systems by an order of magnitude while acquiring properties similar to an optical sample and hold system.
Multi-stage decoding for multi-level block modulation codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao
1991-01-01
Various types of multistage decoding for multilevel block modulation codes, in which the decoding of a component code at each stage can be either soft decision or hard decision, maximum likelihood or bounded distance are discussed. Error performance for codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. It was found that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. It was found that the difference in performance between the suboptimum multi-stage soft decision maximum likelihood decoding of a modulation code and the single stage optimum decoding of the overall code is very small, only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.
Gigahertz speed operation of epsilon-near-zero silicon photonic modulators
Wood, Michael G.; Campione, Salvatore; Parameswaran, S.; ...
2018-02-21
Opmore » tical communication systems increasingly require electro-optical modulators that deliver high modulation speeds across a large optical bandwidth with a small device footprint and a CMOS-compatible fabrication process. Although silicon photonic modulators based on transparent conducting oxides (TCOs) have shown promise for delivering on these requirements, modulation speeds to date have been limited. Here, we describe the design, fabrication, and performance of a fast, compact electroabsorption modulator based on TCOs. The modulator works by using bias voltage to increase the carrier density in the conducting oxide, which changes the permittivity and hence optical attenuation by almost 10 dB. Under bias, light is tightly confined to the conducting oxide layer through nonresonant epsilon-near-zero (ENZ) effects, which enable modulation over a broad range of wavelengths in the telecommunications band. Our approach features simple integration with passive silicon waveguides, the use of stable inorganic materials, and the ability to modulate both transverse electric and magnetic polarizations with the same device design. Using a 4-μm-long modulator and a drive voltage of 2 V p p , we demonstrate digital modulation at rates of 2.5 Gb/s. We report broadband operation with a 6.5 dB extinction ratio across the 1530–1590 nm band and a 10 dB insertion loss. This work verifies that high-speed ENZ devices can be created using conducting oxide materials and paves the way for additional technology development that could have a broad impact on future optical communications systems.« less
Gigahertz speed operation of epsilon-near-zero silicon photonic modulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Michael G.; Campione, Salvatore; Parameswaran, S.
Opmore » tical communication systems increasingly require electro-optical modulators that deliver high modulation speeds across a large optical bandwidth with a small device footprint and a CMOS-compatible fabrication process. Although silicon photonic modulators based on transparent conducting oxides (TCOs) have shown promise for delivering on these requirements, modulation speeds to date have been limited. Here, we describe the design, fabrication, and performance of a fast, compact electroabsorption modulator based on TCOs. The modulator works by using bias voltage to increase the carrier density in the conducting oxide, which changes the permittivity and hence optical attenuation by almost 10 dB. Under bias, light is tightly confined to the conducting oxide layer through nonresonant epsilon-near-zero (ENZ) effects, which enable modulation over a broad range of wavelengths in the telecommunications band. Our approach features simple integration with passive silicon waveguides, the use of stable inorganic materials, and the ability to modulate both transverse electric and magnetic polarizations with the same device design. Using a 4-μm-long modulator and a drive voltage of 2 V p p , we demonstrate digital modulation at rates of 2.5 Gb/s. We report broadband operation with a 6.5 dB extinction ratio across the 1530–1590 nm band and a 10 dB insertion loss. This work verifies that high-speed ENZ devices can be created using conducting oxide materials and paves the way for additional technology development that could have a broad impact on future optical communications systems.« less
POWER SUPPLY CONTROL AND MONITORING FOR THE SNS RING AND TRANSPORT SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAMBIASE,R.; OERTER,B.; PENG,S.
2001-06-28
There are approximately 300 magnet power supplies in the SNS accumulator ring and transport lines. Control and monitoring of the these converters will be primarily accomplished with a new Power Supply Interface and Controller (PSI/PSC) system developed for the SNS project. This PSI/PSC system provides all analog and digital commands and status readbacks in one fiber isolated module. With a maximum rate of 10KHz, the PSI/PSC must be supplemented with higher speed systems for the wide bandwidth pulsed injection supplies, and the even wider bandwidth extraction kickers. This paper describes the implementation of this PSI/PSC system, which was developed throughmore » an industry/laboratory collaboration, and the supplementary equipment used to support the wider bandwidth pulsed supplies.« less
Comparison of FDMA and CDMA for second generation land-mobile satellite communications
NASA Technical Reports Server (NTRS)
Yongacoglu, A.; Lyons, R. G.; Mazur, B. A.
1990-01-01
Code Division Multiple Access (CDMA) and Frequency Division Multiple Access (FDMA) (both analog and digital) systems capacities are compared on the basis of identical link availabilities and physical propagation models. Parameters are optimized for a bandwidth limited, multibeam environment. For CDMA, the benefits of voice activated carriers, antenna discrimination, polarization reuse, return link power control and multipath suppression are included in the analysis. For FDMA, the advantages of bandwidth efficient modulation/coding combinations, voice activated carriers, polarization reuse, beam placement, and frequency staggering were taken into account.
NASA Astrophysics Data System (ADS)
Wu, Y.; Xu, Z.; Li, Z. H.; Tang, C. X.
2012-07-01
In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.
Pre-emphasis determination for an S-band constant bandwidth FM/FM station
NASA Technical Reports Server (NTRS)
Wallace, G. R.; Salter, W. E.
1972-01-01
Pre-emphasis schedules are given for 11 constant-bandwidth FM subcarriers modulating an S band transmitter at three receiver signal to noise ratios (i.e., 9, 15, and 25 dB). The criterion for establishing these pre-emphasis curves is the achievement, at various receiver intermediate frequency signal to noise ratios, of equal receiver output signal to noise ratios for all channels. It is realized that these curves may not be the optimum pre-emphasis curves based on overall efficiency or maximum utilization of the allotted spectrum, but they are near-optimum for data with channels which require equal output signal to noise ratios, such as spectral densities. The empirically derived results are compared with a simplified, analytically derived schedule and the primary differences are explained. The S band pre-emphasis schedule differs from the lower frequency VHF case. Since most proportional bandwidth and constant bandwidth systems use ground based recorders and some use flight recorders (as the Saturn systems did on VHF proportional bandwidth telemetry), the effects of these recorders are discussed and a modified pre-emphasis schedule is presented showing the results of this study phase.
Multi-gigahertz, femtosecond Airy beam optical parametric oscillator pumped at 78 MHz
Aadhi, A.; Sharma, Varun; Chaitanya, N. Apurv; Samanta, G. K.
2017-01-01
We report a high power ultrafast Airy beam source producing femtosecond pulses at multi-gigahertz (GHz) repetition rate (RR). Based on intra-cavity cubic phase modulation of an optical parametric oscillator (OPO) designed in high harmonic cavity configuration synchronous to a femtosecond Yb-fiber laser operating at 78 MHz, we have produced ultrafast 2D Airy beam at multi-GHz repetition rate through the fractional increment in the cavity length. While small (<1 mm) crystals are used in femtosecond OPOs to take the advantage of broad phase-matching bandwidth, here, we have exploited the extended phase-matching bandwidth of a 50-mm long Magnesium-oxide doped periodically poled LiNbO3 (MgO:PPLN) crystal for efficient generation of ultrafast Airy beam and broadband mid-IR radiation. Pumping the MgO:PPLN crystal of grating period, Λ = 30 μm and crystal temperature, T = 100 °C using a 5-W femtosecond laser centred at 1064 nm, we have produced Airy beam radiation of 684 mW in ~639 fs (transform limited) pulses at 1525 nm at a RR of ~2.5 GHz. Additionally, the source produces broadband idler radiation with maximum power of 510 mW and 94 nm bandwidth at 3548 nm in Gaussian beam profile. Using an indirect method (change in cavity length) we estimate maximum RR of the Airy beam source to be ~100 GHz. PMID:28262823
NASA Astrophysics Data System (ADS)
Jessop, David S.; Sol, Christian W. O.; Xiao, Long; Kindness, Stephen J.; Braeuninger-Weimer, Philipp; Lin, Hungyen; Griffiths, Jonathan P.; Ren, Yuan; Kamboj, Varun S.; Hofmann, Stephan; Zeitler, J. Axel; Beere, Harvey E.; Ritchie, David A.; Degl'Innocenti, Riccardo
2016-02-01
The growing interest in terahertz (THz) technologies in recent years has seen a wide range of demonstrated applications, spanning from security screening, non-destructive testing, gas sensing, to biomedical imaging and communication. Communication with THz radiation offers the advantage of much higher bandwidths than currently available, in an unallocated spectrum. For this to be realized, optoelectronic components capable of manipulating THz radiation at high speeds and high signal-to-noise ratios must be developed. In this work we demonstrate a room temperature frequency dependent optoelectronic amplitude modulator working at around 2 THz, which incorporates graphene as the tuning medium. The architecture of the modulator is an array of plasmonic dipole antennas surrounded by graphene. By electrostatically doping the graphene via a back gate electrode, the reflection characteristics of the modulator are modified. The modulator is electrically characterized to determine the graphene conductivity and optically characterization, by THz time-domain spectroscopy and a single-mode 2 THz quantum cascade laser, to determine the optical modulation depth and cut-off frequency. A maximum optical modulation depth of ~ 30% is estimated and is found to be most (least) sensitive when the electrical modulation is centered at the point of maximum (minimum) differential resistivity of the graphene. A 3 dB cut-off frequency > 5 MHz, limited only by the area of graphene on the device, is reported. The results agree well with theoretical calculations and numerical simulations, and demonstrate the first steps towards ultra-fast, graphene based THz optoelectronic devices.
Optical modulation in silicon-vanadium dioxide photonic structures
NASA Astrophysics Data System (ADS)
Miller, Kevin J.; Hallman, Kent A.; Haglund, Richard F.; Weiss, Sharon M.
2017-08-01
All-optical modulators are likely to play an important role in future chip-scale information processing systems. In this work, through simulations, we investigate the potential of a recently reported vanadium dioxide (VO2) embedded silicon waveguide structure for ultrafast all-optical signal modulation. With a VO2 length of only 200 nm, finite-differencetime- domain simulations suggest broadband (200 nm) operation with a modulation greater than 12 dB and an insertion loss of less than 3 dB. Predicted performance metrics, including modulation speed, modulation depth, optical bandwidth, insertion loss, device footprint, and energy consumption of the proposed Si-VO2 all-optical modulator are benchmarked against those of current state-of-the-art all-optical modulators with in-plane optical excitation.
Defence Technology Strategy for the Demands of the 21st Century
2006-10-01
understanding of human capability in the CBM role. Ownership of the intellectual property behind algorithms may be sovereign10, but implementation will...synchronisation schemes. · coding schemes. · modulation techniques. · access schemes. · smart spectrum usage . · low probability of intercept. · implementation...modulation techniques; access schemes; smart spectrum usage ; low probability of intercept Spectrum and bandwidth management · cross layer technologies to
Germanium:gallium photoconductors for far infrared heterodyne detection
NASA Technical Reports Server (NTRS)
Park, I. S.; Haller, E. E.; Grossman, E. N.; Watson, Dan M.
1988-01-01
Highly compensated Ge:Ga photoconductors for high bandwidth heterodyne detection have been fabricated and evaluated. Bandwidths up to 60 MHz have been achieved with a corresponding current responsivity of 0.01 A/W. The expected dependence of bandwidth on bias field is obtained. It is noted that increased bandwidth is obtained at the price of greater required local oscillator power.
Tactical Decision Aids High Bandwidth Links Using Autonomous Vehicles
2004-01-01
1 Tactical Decision Aids (High Bandwidth Links Using Autonomous Vehicles ) A. J. Healey, D. P. Horner, Center for Autonomous Underwater Vehicle...SUBTITLE Tactical Decision Aids (High Bandwidth Links Using Autonomous Vehicles ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
Probing water dynamics with OH -
NASA Astrophysics Data System (ADS)
Corridoni, T.; Sodo, A.; Bruni, F.; Ricci, M. A.; Nardone, M.
2007-07-01
Isotropic Raman spectra of aqueous solutions of LiOH, NaOH and KOH at concentrations ranging from high dilution to saturation have been measured and the frequency and width of the OH - stretching band have been analyzed. The dependence of the bandwidth on solute concentration suggests that the OH - vibration undergoes a transition from fast to slow modulation regimes as the solvent concentration decreases below the value of ˜20 water molecules per solute molecule. A correlation between this finding and structural modifications of the H-bond network of the solvent at similar concentrations is envisaged.
An earth-isolated optically coupled wideband high voltage probe powered by ambient light.
Zhai, Xiang; Bellan, Paul M
2012-10-01
An earth-isolated optically-coupled wideband high voltage probe has been developed for pulsed power applications. The probe uses a capacitive voltage divider coupled to a fast light-emitting diode that converts high voltage into an amplitude-modulated optical signal, which is then conveyed to a receiver via an optical fiber. A solar cell array, powered by ambient laboratory lighting, charges a capacitor that, when triggered, acts as a short-duration power supply for an on-board amplifier in the probe. The entire system has a noise level ≤0.03 kV, a DC-5 MHz bandwidth, and a measurement range from -6 to 2 kV; this range can be conveniently adjusted.
Research on SOI-based micro-resonator devices
NASA Astrophysics Data System (ADS)
Xiao, Xi; Xu, Haihua; Hu, Yingtao; Zhou, Liang; Xiong, Kang; Li, Zhiyong; Li, Yuntao; Fan, Zhongchao; Han, Weihua; Yu, Yude; Yu, Jinzhong
2010-10-01
SOI (silicon-on-insulator)-based micro-resonator is the key building block of silicon photonics, which is considered as a promising solution to alleviate the bandwidth bottleneck of on-chip interconnects. Silicon-based sub-micron waveguide, microring and microdisk devices are investigated in Institute of Semiconductors, Chinese Academy of Sciences. The main progress in recent years is presented in this talk, such as high Q factor single mode microdisk filters, compact thirdorder microring filters with the through/drop port extinctions to be ~ 30/40 dB, fast microring electro-optical switches with the switch time of < 400 ps and crosstalk < -23 dB, and > 10 Gbit/s high speed microring modulators.
Multichannel heterodyning for wideband interferometry, correlation and signal processing
Erskine, David J.
1999-01-01
A method of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized.
Multichannel heterodyning for wideband interferometry, correlation and signal processing
Erskine, D.J.
1999-08-24
A method is disclosed of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized. 50 figs.
NASA Astrophysics Data System (ADS)
Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.
2017-01-01
Access networks based on vertical cavity surface emitting laser (VCSEL) transmitters offer alternative solution in delivering different high bandwidth, cost effective services to the customer premises. Clock and reference frequency distribution is critical for applications such as Coordinated Universal Time (UTC), GPS, banking and big data science projects. Simultaneous distribution of both data and timing signals over shared infrastructure is thus desirable. In this paper, we propose and experimentally demonstrate a novel, cost-effective technique for multi-signal modulation on a single VCSEL transmitter. Two signal types, an intensity modulated 10 Gbps data signal and a polarization-based pulse per second (PPS) clock signal are directly modulated onto a single VCSEL carrier at 1310 nm. Spectral efficiency is maximized by exploiting inherent orthogonal polarization switching of the VCSEL with changing bias in transmission of the PPS signal. A 10 Gbps VCSEL transmission with PPS over 11 km of G.652 fibre introduced a transmission penalty of 0.52 dB. The contribution of PPS to this penalty was found to be 0.08 dB.
Code of Federal Regulations, 2010 CFR
2010-10-01
... requirements for use of frequencies and equipment in the radio services governed by this part. Such requirements include standards for acceptability of equipment, frequency tolerance, modulation, emissions, power, and bandwidths. Special additional technical standards applicable to certain frequency bands and...
NASA Astrophysics Data System (ADS)
Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya
2015-04-01
A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.
Intensity autocorrelation measurements of frequency combs in the terahertz range
NASA Astrophysics Data System (ADS)
Benea-Chelmus, Ileana-Cristina; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jérôme
2017-09-01
We report on direct measurements of the emission character of quantum cascade laser based frequency combs, using intensity autocorrelation. Our implementation is based on fast electro-optic sampling, with a detection spectral bandwidth matching the emission bandwidth of the comb laser, around 2.5 THz. We find the output of these frequency combs to be continuous even in the locked regime, but accompanied by a strong intensity modulation. Moreover, with our record temporal resolution of only few hundreds of femtoseconds, we can resolve correlated intensity modulation occurring on time scales as short as the gain recovery time, about 4 ps. By direct comparison with pulsed terahertz light originating from a photoconductive emitter, we demonstrate the peculiar emission pattern of these lasers. The measurement technique is self-referenced and ultrafast, and requires no reconstruction. It will be of significant importance in future measurements of ultrashort pulses from quantum cascade lasers.
Subaperture clutter filter with CFAR signal detection
Ormesher, Richard C.; Naething, Richard M.
2016-08-30
The various technologies presented herein relate to the determination of whether a received signal comprising radar clutter further comprises a communication signal. The communication signal can comprise of a preamble, a data symbol, communication data, etc. A first portion of the radar clutter is analyzed to determine a radar signature of the first portion of the radar clutter. A second portion of the radar clutter can be extracted based on the radar signature of the first portion. Following extraction, any residual signal can be analyzed to retrieve preamble data, etc. The received signal can be based upon a linear frequency modulation (e.g., a chirp modulation) whereby the chirp frequency can be determined and the frequency of transmission of the communication signal can be based accordingly thereon. The duration and/or bandwidth of the communication signal can be a portion of the duration and/or the bandwidth of the radar clutter.
Buset, Jonathan M; El-Sahn, Ziad A; Plant, David V
2012-06-18
We demonstrate an improved overlapped-subcarrier multiplexed (O-SCM) WDM PON architecture transmitting over a single feeder using cost sensitive intensity modulation/direct detection transceivers, data re-modulation and simple electronics. Incorporating electronic equalization and Reed-Solomon forward-error correction codes helps to overcome the bandwidth limitation of a remotely seeded reflective semiconductor optical amplifier (RSOA)-based ONU transmitter. The O-SCM architecture yields greater spectral efficiency and higher bit rates than many other SCM techniques while maintaining resilience to upstream impairments. We demonstrate full-duplex 5 Gb/s transmission over 20 km and analyze BER performance as a function of transmitted and received power. The architecture provides flexibility to network operators by relaxing common design constraints and enabling full-duplex operation at BER ∼ 10(-10) over a wide range of OLT launch powers from 3.5 to 8 dBm.
Dynamics of ultra-broadband terahertz quantum cascade lasers for comb operation.
Li, Hua; Laffaille, Pierre; Gacemi, Djamal; Apfel, Marc; Sirtori, Carlo; Leonardon, Jeremie; Santarelli, Giorgio; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jerome; Hänsel, Wolfgang; Holzwarth, Ronald; Barbieri, Stefano
2015-12-28
We present an experimental investigation of the multimode dynamics and the coherence of terahertz quantum cascade lasers emitting over a spectral bandwidth of ~1THz. The devices are studied in free-running and under direct RF modulation. Depending on the pump current we observe different regimes of operation, where RF spectra displaying single and multiple narrow beat-note signals alternate with spectra showing a single beat-note characterized by an intense phase-noise, extending over a bandwidth up to a few GHz. We investigate the relation between this phase-noise and the dynamics of the THz modes through the electro-optic sampling of the laser emission. We find that when the phase-noise is large, the laser operates in an unstable regime where the lasing modes are incoherent. Under RF modulation of the laser current such instability can be suppressed and the modes coherence recovered, while, simultaneously, generating a strong broadening of the THz emission spectrum.
NASA Astrophysics Data System (ADS)
Zaouter, Y.; Cormier, E.; Rigail, P.; Hönninger, C.; Mottay, E.
2007-02-01
The concept of spectral compression induced by self phase modulation is used to generate transform-limited 10ps pulses in a rare-earth-doped low nonlinearity fibre amplifier. The seed source of the amplifier stage is a high power, Yb 3+:KGW bulk oscillator which delivers 500 fs transform-limited pulses at 10MHz repetition rate. After a reduction of the repetition rate down to 3MHz, the femtosecond pulses are negatively chirped by transmission gratings in a compressor arrangement. The resulting 10ps pulses are further seeded into the power amplifier and up to 32W output power is obtained while the spectral bandwidth is reduced to less than 0.5 nm by means of self phase modulation.
Use of the 37-38 GHz and 40-40.5 GHz Ka-bands for Deep Space Communications
NASA Technical Reports Server (NTRS)
Morabito, David; Hastrup, Rolf
2004-01-01
This paper covers a wide variety of issues associated with the implementation and use of these frequency bands for deep space communications. Performance issues, such as ground station pointing stability, ground antenna gain, antenna pattern, and propagation effects such as due to atmospheric, charged-particle and space loss at 37 GHz, will be addressed in comparison to the 32 GHz Ka-band deep space allocation. Issues with the use of and competition for this spectrum also will be covered. The state of the hardware developed (or proposed) for operating in this frequency band will be covered from the standpoint of the prospects for achieving higher data rates that could be accommodated in the available bandwidth. Hardware areas to be explored include modulators, digital-to-analog converters, filters, power amplifiers, receivers, and antennas. The potential users of the frequency band will be explored as well as their anticipated methods to achieve the potential high data rates and the implications of the competition for bandwidth.
Broadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates
Jiang, Zhi Hao; Lin, Lan; Ma, Ding; Yun, Seokho; Werner, Douglas H.; Liu, Zhiwen; Mayer, Theresa S.
2014-01-01
Quasi two-dimensional metasurfaces composed of subwavelength nanoresonator arrays can dramatically alter the properties of light in an ultra-thin planar geometry, enabling new optical functions such as anomalous reflection and refraction, polarization filtering, and wavefront modulation. However, previous metasurface-based nanostructures suffer from low efficiency, narrow bandwidth and/or limited field-of-view due to their operation near the plasmonic resonance. Here we demonstrate plasmonic metasurface-based nanostructures for high-efficiency, angle-insensitive polarization transformation over a broad octave-spanning bandwidth. The structures are realized by optimizing the anisotropic response of an array of strongly coupled nanorod resonators to tailor the interference of light at the subwavelength scale. Nanofabricated reflective half-wave and quarter-wave plates designed using this approach have measured polarization conversion ratios and reflection magnitudes greater than 92% over a broad wavelength range from 640 to 1290 nm and a wide field-of-view up to ±40°. This work outlines a versatile strategy to create metasurface-based photonics with diverse optical functionalities. PMID:25524830
MR CAT scan: a modular approach for hybrid imaging.
Hillenbrand, C; Hahn, D; Haase, A; Jakob, P M
2000-07-01
In this study, a modular concept for NMR hybrid imaging is presented. This concept essentially integrates different imaging modules in a sequential fashion and is therefore called CAT (combined acquisition technique). CAT is not a single specific measurement sequence, but rather a sequence design concept whereby distinct acquisition techniques with varying imaging parameters are employed in rapid succession in order to cover k-space. The power of the CAT approach is that it provides a high flexibility toward the acquisition optimization with respect to the available imaging time and the desired image quality. Important CAT sequence optimization steps include the appropriate choice of the k-space coverage ratio and the application of mixed bandwidth technology. Details of both the CAT methodology and possible CAT acquisition strategies, such as FLASH/EPI-, RARE/EPI- and FLASH/BURST-CAT are provided. Examples from imaging experiments in phantoms and healthy volunteers including mixed bandwidth acquisitions are provided to demonstrate the feasibility of the proposed CAT concept.
Atmospheric Remote Sensing via Infrared-Submillimeter Double Resonance
NASA Astrophysics Data System (ADS)
Srikantaiah, Sree; Holt, Jennifer; Neese, Christopher F.; Phillips, Dane; Everitt, Henry O.; De Lucia, Frank C.
2016-06-01
Specificity and sensitivity in atmospheric pressure remote sensing have always been big challenges. This is especially true for approaches that involve the submillimeter/terahertz (smm/THz) spectral region because atmospheric pressure broadening precludes taking advantage of the small Doppler broadening in the region. The Infrared-submillimeter (IR-smm) double resonance spectroscopic technique allows us to obtain a more specific two-dimensional signature as well as a means of modulating the molecular signal to enhance its separation from background and system variation. Applying this technique at atmospheric pressure presents a unique bandwidth requirement on the IR pump laser, and the smm/THz receiver. We will discuss the pump system comprising of a CO2 TEA laser, plasma switch and a free induction decay hot cell designed to produce fast IR pulses on the time scale of atmospheric pressure relaxation and a high bandwidth fast pulse smm/THz receiver. System diagnostics will also be discussed. Results as a function of pressure and pump pulse width will be presented.
Zhang, Jing; De Groote, Andreas; Abbasi, Amin; Loi, Ruggero; O'Callaghan, James; Corbett, Brian; Trindade, António José; Bower, Christopher A; Roelkens, Gunther
2017-06-26
A 4-channel silicon photonics transceiver array for Point-to-Point (P2P) fiber-to-the-home (FTTH) optical networks at the central office (CO) side is demonstrated. A III-V O-band photodetector array was integrated onto the silicon photonic transmitter through transfer printing technology, showing a polarization-independent responsivity of 0.39 - 0.49 A/W in the O-band. The integrated PDs (30 × 40 μm 2 mesa) have a 3 dB bandwidth of 11.5 GHz at -3 V bias. Together with high-speed C-band silicon ring modulators whose bandwidth is up to 15 GHz, operation of the transceiver array at 10 Gbit/s is demonstrated. The use of transfer printing for the integration of the III-V photodetectors allows for an efficient use of III-V material and enables the scalable integration of III-V devices on silicon photonics wafers, thereby reducing their cost.
NASA Astrophysics Data System (ADS)
Zhang, Yunhao; Li, Longsheng; Bi, Meihua; Xiao, Shilin
2017-12-01
In this paper, we propose a hybrid analog optical self-interference cancellation (OSIC) and baseband digital SIC (DSIC) system for over-the-air in-band full-duplex (IBFD) wireless communication. Analog OSIC system is based on optical delay line, electro-absorption modulation lasers (EMLs) and balanced photodetector (BPD), which has the properties of high adjusting precision and broad processing bandwidth. With the help of baseband DSIC, the cancellation depth limitation of OSIC can be mitigated so as to achieve deeper total SIC depth. Experimental results show about 20-dB depth by OSIC and 10-dB more depth by DSIC over 1GHz broad baseband, so that the signal of interest (SOI) overlapped by wideband self-interference (SI) signal is better recovered compared to the IBFD system with OSIC or DSIC only. The hybrid of OSIC and DSIC takes advantages of the merits of optical devices and digital processors to achieve deep cancellation depth over broad bandwidth.
Varshney, Shailendra; Fujisawa, Takeshi; Saitoh, Kunimasa; Koshiba, Masanori
2005-11-14
In this paper, we report, for the first time, an inherently gain-flattened discrete highly nonlinear photonic crystal fiber (HNPCF) Raman amplifier (HNPCF-RA) design which shows 13.7 dB of net gain (with +/-0.85-dB gain ripple) over 28-nm bandwidth. The wavelength dependent leakage loss property of HNPCF is used to flatten the Raman gain of the amplifier module. The PCF structural design is based on W-shaped refractive index profile where the fiber parameters are well optimized by homely developed genetic algorithm optimization tool integrated with an efficient vectorial finite element method (V-FEM). The proposed fiber design has a high Raman gain efficiency of 4.88 W(-1) . km(-1) at a frequency shift of 13.1 THz, which is precisely evaluated through V-FEM. Additionally, the designed module, which shows ultra-wide single mode operation, has a slowly varying negative dispersion coefficient (-107.5 ps/nm/km at 1550 nm) over the operating range of wavelengths. Therefore, our proposed HNPCF-RA module acts as a composite amplifier with dispersion compensator functionality in a single component using a single pump.
O and temperature in high-pressure and -temperature gases
NASA Astrophysics Data System (ADS)
Goldenstein, C. S.; Spearrin, R. M.; Jeffries, J. B.; Hanson, R. K.
2014-09-01
The design and validation of a tunable diode laser (TDL) sensor for temperature and H2O in high-pressure and -temperature gases are presented. High-fidelity measurements are enabled through the use of: (1) strong H2O fundamental-band absorption near 2.5 μm, (2) calibration-free first-harmonic-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2 f/1 f), (3) an experimentally derived and validated spectroscopic database, and (4) a new approach to selecting the optimal wavelength and modulation depth of each laser. This sensor uses two TDLs near 2,474 and 2,482 nm that were fiber coupled in free space and frequency multiplexed to enable measurements along a single line-of-sight. The lasers were modulated at 35 and 45.5 kHz, respectively, to achieve a sensor bandwidth of 4.5 kHz. This sensor was validated in a shock tube at temperatures and pressures ranging from 1,000 to 2,700 K and 8 to 50 bar. There the sensor resolved transients and recovered the known steady-state temperature and H2O mole fraction with a precision of 3.2 and 2.6 % RMS, respectively.
Khiarak, Mehdi Noormohammadi; Martianova, Ekaterina; Bories, Cyril; Martel, Sylvain; Proulx, Christophe D; De Koninck, Yves; Gosselin, Benoit
2018-06-01
Fluorescence biophotometry measurements require wide dynamic range (DR) and high-sensitivity laboratory apparatus. Indeed, it is often very challenging to accurately resolve the small fluorescence variations in presence of noise and high-background tissue autofluorescence. There is a great need for smaller detectors combining high linearity, high sensitivity, and high-energy efficiency. This paper presents a new biophotometry sensor merging two individual building blocks, namely a low-noise sensing front-end and a order continuous-time modulator (CTSDM), into a single module for enabling high-sensitivity and high energy-efficiency photo-sensing. In particular, a differential CMOS photodetector associated with a differential capacitive transimpedance amplifier-based sensing front-end is merged with an incremental order 1-bit CTSDM to achieve a large DR, low hardware complexity, and high-energy efficiency. The sensor leverages a hardware sharing strategy to simplify the implementation and reduce power consumption. The proposed CMOS biosensor is integrated within a miniature wireless head mountable prototype for enabling biophotometry with a single implantable fiber in the brain of live mice. The proposed biophotometry sensor is implemented in a 0.18- CMOS technology, consuming from a 1.8- supply voltage, while achieving a peak dynamic range of over a 50- input bandwidth, a sensitivity of 24 mV/nW, and a minimum detectable current of 2.46- at a 20- sampling rate.
Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro
2005-10-01
We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.
45 Mbps cat's eye modulating retro-reflector link over 7 Km
NASA Astrophysics Data System (ADS)
Rabinovich, W. S.; Mahon, R.; Goetz, P. G.; Swingen, L.; Murphy, J.; Ferraro, M.; Burris, R.; Suite, M.; Moore, C. I.; Gilbreath, G. C.; Binari, S.
2006-09-01
Modulating retro-reflectors (MRR) allow free space optical links with no need for pointing, tracking or a laser on one end of the link. They work by coupling a passive optical retro-reflector with an optical modulator. The most common kind of MRR uses a corner cube retro-reflector. These devices must have a modulator whose active area is as large as the area of the corner cube. This limits the ability to close longer range high speed links because the large aperture need to return sufficient light implies a large modulator capacitance. To overcome this limitation we developed the concept of a cat's eye MRR. Cat's eye MRRs place the modulator in the focal plane of a lens system designed to passively retro-reflect light. Because the light focuses onto the modulator, a small, low capacitance, modulator can be used with a large optical aperture. However, the position of the focal spot varies with the angle of incidence so an array of modulators must be placed in the focal plane, In addition, to avoid having to drive all the modulator pixels, an angle of arrival sensor must be used. We discuss several cat's eye MRR systems with near diffraction limited performance and bandwidths of 45 Mbps. We also discuss a link to a cat's eye MRR over a 7 Km range.
Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).
Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko
2010-10-11
We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.
Lin, Fang-Zheng; Wu, Tsu-Hsiu; Chiu, Yi-Jen
2009-06-08
A new monolithic integration scheme, namely cascaded-integration (CI), for improving high-speed optical modulation is proposed and demonstrated. High-speed electroabsorption modulators (EAMs) and semiconductor optical amplifiers (SOAs) are taken as the integrated elements of CI. This structure is based on an optical waveguide defined by cascading segmented EAMs with segmented SOAs, while high-impedance transmission lines (HITLs) are used for periodically interconnecting EAMs, forming a distributive optical re-amplification and re-modulation. Therefore, not only the optical modulation can be beneficial from SOA gain, but also high electrical reflection due to EAM low characteristic impedance can be greatly reduced. Two integration schemes, CI and conventional single-section (SS), with same total EAM- and SOA- lengths are fabricated and compared to examine the concept. Same modulation-depth against with EAM bias (up to 5V) as well as SOA injection current (up to 60mA) is found in both structures. In comparison with SS, a < 1dB extra optical-propagation loss in CI is measured due to multi-sections of electrical-isolation regions between EAMs and SOAs, suggesting no significant deterioration in CI on DC optical modulation efficiency. Lower than -12dB of electrical reflection from D.C. to 30GHz is observed in CI, better than -5dB reflection in SS for frequency of above 5GHz. Superior high-speed electrical properties in CI structure can thus lead to higher speed of electrical-to-optical (EO) response, where -3dB bandwidths are >30GHz and 13GHz for CI and SS respectively. Simulation results on electrical and EO response are quite consistent with measurement, confirming that CI can lower the driving power at high-speed regime, while the optical loss is still kept the same level. Taking such distributive advantage (CI) with optical gain, not only higher-speed modulation with high output optical power can be attained, but also the trade-off issue due to impedance mismatch can be released to reduce the driving power of modulator. Such kind of monolithic integration scheme also has potential for the applications of other high-speed optoelectronics devices.
Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Jing, Ruiquan
2017-11-27
Network operators generally provide dedicated lightpaths for customers to meet the demand for high-quality transmission. Considering the variation of traffic load, customers usually rent peak bandwidth that exceeds the practical average traffic requirement. In this case, bandwidth provisioning is unmetered and customers have to pay according to peak bandwidth. Supposing that network operators could keep track of traffic load and allocate bandwidth dynamically, bandwidth can be provided as a metered service and customers would pay for the bandwidth that they actually use. To achieve cost-effective bandwidth provisioning, this paper proposes an autonomic bandwidth adjustment scheme based on data analysis of traffic load. The scheme is implemented in a software defined networking (SDN) controller and is demonstrated in the field trial of multi-vendor optical transport networks. The field trial shows that the proposed scheme can track traffic load and realize autonomic bandwidth adjustment. In addition, a simulation experiment is conducted to evaluate the performance of the proposed scheme. We also investigate the impact of different parameters on autonomic bandwidth adjustment. Simulation results show that the step size and adjustment period have significant influences on bandwidth savings and packet loss. A small value of step size and adjustment period can bring more benefits by tracking traffic variation with high accuracy. For network operators, the scheme can serve as technical support of realizing bandwidth as metered service in the future.
High-speed 850-nm VCSELs for 40-Gb/s transmission
NASA Astrophysics Data System (ADS)
Gustavsson, Johan; Westbergh, Petter; Szczerba, Krzysztof; Haglund, Åsa; Larsson, Anders; Karlsson, Magnus; Andrekson, Peter; Hopfer, Friedhelm; Fiol, Gerrit; Bimberg, Dieter; Olsson, Bengt-Erik; Kristiansson, A.; Healy, Sorcha; O'Reilly, Eoin; Joel, Andrew
2010-04-01
We have explored the possibility to extend the data transmission rate for standard 850-nm GaAs-based VCSELs beyond the 10 Gbit/s limit of today's commercially available directly-modulated devices. By sophisticated tailoring of the design for high-speed performance we demonstrate that 10 Gb/s is far from the upper limit. For example, the thermal conductivity of the bottom mirror is improved by the use of binary compounds, and the electrical parasitics are kept at a minimum by incorporating a large diameter double layered oxide aperture in the design. We also show that the intrinsic high speed performance is significantly improved by replacing the traditional GaAs QWs with strained InGaAs QWs in the active region. The best overall performance is achieved for a device with a 9 μm diameter oxide aperture, having in a threshold current of 0.6 mA, a maximum output power of 9 mW, a thermal resistance of 1.9 °C/mW, and a differential resistance of 80 Ω. The measured 3dB bandwidth exceeds 20 GHz, and we experimentally demonstrate that the device is capable of error-free transmission (BER<10-12) under direct modulation at a record-high bit-rate of 32 Gb/s over 50 m of OM3 fiber at room temperature, and at 25 Gb/s over 100 m of OM3 fiber at 85 °C. We also demonstrate transmission at 40 Gb/s over 200 m of OM3+ fiber at room temperature using a subcarrier multiplexing scheme with a spectrally efficient 16 QAM modulation format. All transmission results were obtained with the VCSEL biased at current densities between 11-14 kA/cm2, which is close to the 10 kA/cm2 industry benchmark for reliability. Finally, we show that by a further reduction of the oxide capacitance and by reducing the photon lifetime using a shallow surface etch, a record bandwidth of 23 GHz for 850 nm VCSELs can be reached.
Low-power nanophotonics: material and device technology
NASA Astrophysics Data System (ADS)
Thylén, Lars; Holmstrom, Petter; Wosinski, Lech; Lourdudoss, Sebastian
2013-05-01
Development in photonics for communications and interconnects pose increasing requirements on reduction of footprint, power dissipation and cost, as well as increased bandwidth. Nanophotonics integrated photonics has been viewed as a solution to this, capitalizing on development in nanotechnology and an increased understanding of light matter interaction on the nanoscale. The latter can be exemplified by plasmonics and low dimensional semiconductors such as quantum dots (QDs). In this scenario the development of improved electrooptic materials is of great importance, the electrooptic polymers being an example, since they potentially offer superior properties for optical phase modulators in terms of power and integratability. Phase modulators are essential for e.g. the rapidly developing advanced modulation formats, since phase modulation basically can generate any type of modulation. The electrooptic polymers, in combination with plasmonics nanoparticle array waveguides or nanostructured hybrid plasmonic media can give extremely compact and low power dissipation modulators. Low-dimensional semiconductors, e.g. in the shape of QDs, can be employed for modulation or switching functions, offering possibilities for scaling to 2 or 3 dimensions for advanced switching functions. In both the high field confinement plasmonics and QDs, the nanosizing is due to nearfield interactions, albeit being of different physical origin in the two cases. Epitaxial integration of III-V structures on Si plays an important role in developing high-performance light sources on silicon, eventually integrated with silicon electronics. A brief remark on all-optical vs. electronically controlled optical switching systems is also given.
Modulation of Radio Frequency Signals by Nonlinearly Generated Acoustic Fields
2014-01-01
roll -off in attenuation, known as the filter skirt. Therefore, the use of filters can be inadequate if the small signals are close in frequency to the...effect can be avoided by introducing filters into the nonlinear measurement system that have much smaller bandwidths, capable of isolating narrow...contribution from each source of modulation has not been done as isolating each effect during measurement is currently infeasible. To better
NASA Astrophysics Data System (ADS)
Shi, Nuannuan; Hao, Tengfei; Li, Wei; Zhu, Ninghua; Li, Ming
2018-01-01
We propose a photonic scheme to realize a reconfigurable microwave photonic filter (MPF) with flexible tunability using a multi-wavelength laser (MWL) and a multi-channel phase-shifted fiber Bragg grating (PS-FBG). The proposed MPF is capable of performing reconfigurability including single bandpass filter, two independently bandpass filter and a flat-top bandpass filter. The performance such as the central frequency and the bandwidth of passband is tuned by controlling the wavelengths of the MWL. In the MPF, The light waves from a MWL are sent to a phase modulator (PM) to generate the phase-modulated optical signals. By applying a multi-channel PS-FBG, which has a series of narrow notches in the reflection spectrum with the free spectral range (FSR) of 0.8 nm, the +1st sidebands are removed in the notches and the phased-modulated signals are converted to the intensity-modulated signals without beating signals generation between each two optical carriers. The proposed MPF is also experimentally verified. The 3-dB bandwidth of the MPF is broadened from 35 MHz to 135 MHz and the magnitude deviation of the top from the MPF is less than 0.2 dB within the frequency tunable range from 1 GHz to 5 GHz.
New Bandwidth Efficient Parallel Concatenated Coding Schemes
NASA Technical Reports Server (NTRS)
Denedetto, S.; Divsalar, D.; Montorsi, G.; Pollara, F.
1996-01-01
We propose a new solution to parallel concatenation of trellis codes with multilevel amplitude/phase modulations and a suitable iterative decoding structure. Examples are given for throughputs 2 bits/sec/Hz with 8PSK and 16QAM signal constellations.
1998 NASA Review: Center for Space Telemetering and Telecommunication Systems
NASA Technical Reports Server (NTRS)
Cunningham, Garry
1998-01-01
The following topics are included in the conference proceedings following the program overview: (1) Coding and Carrier Recovery Techniques; (2) Carrier Frequency Estimation Under Unknown Doppler Shifts; (3) Small Satellite Experiments; (4) Bandwidth Efficient Modulation/Equalization Techniques.
Integrated programmable photonic filter on the silicon-on-insulator platform.
Liao, Shasha; Ding, Yunhong; Peucheret, Christophe; Yang, Ting; Dong, Jianji; Zhang, Xinliang
2014-12-29
We propose and demonstrate a silicon-on-insulator (SOI) on-chip programmable filter based on a four-tap finite impulse response structure. The photonic filter is programmable thanks to amplitude and phase modulation of each tap controlled by thermal heaters. We further demonstrate the tunability of the filter central wavelength, bandwidth and variable passband shape. The tuning range of the central wavelength is at least 42% of the free spectral range. The bandwidth tuning range is at least half of the free spectral range. Our scheme has distinct advantages of compactness, capability for integrating with electronics.
Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary JO; Whyte, Wayne A., Jr.
1989-01-01
Advances in very large-scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible and potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for a DPCM-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the CODEC are described, and performance results are provided.
Phase locked loop synchronization for direct detection optical PPM communication systems
NASA Technical Reports Server (NTRS)
Chen, C. C.; Gardner, C. S.
1985-01-01
Receiver timing synchronization of an optical pulse position modulation (PPM) communication system can be achieved using a phase locked loop (PLL) if the photodetector output is properly processed. The synchronization performance is shown to improve with increasing signal power and decreasing loop bandwidth. Bit error rate (BER) of the PLL synchronized PPM system is analyzed and compared to that for the perfectly synchronized system. It is shown that the increase in signal power needed to compensate for the imperfect synchronization is small (less than 0.1 dB) for loop bandwidths less than 0.1% of the slot frequency.
Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary JO; Whyte, Wayne A.
1991-01-01
Advances in very large scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible an potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for DPCM (differential pulse code midulation)-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the codec are described, and performance results are provided.
Si-based optical I/O for optical memory interface
NASA Astrophysics Data System (ADS)
Ha, Kyoungho; Shin, Dongjae; Byun, Hyunil; Cho, Kwansik; Na, Kyoungwon; Ji, Hochul; Pyo, Junghyung; Hong, Seokyong; Lee, Kwanghyun; Lee, Beomseok; Shin, Yong-hwack; Kim, Junghye; Kim, Seong-gu; Joe, Insung; Suh, Sungdong; Choi, Sanghoon; Han, Sangdeok; Park, Yoondong; Choi, Hanmei; Kuh, Bongjin; Kim, Kichul; Choi, Jinwoo; Park, Sujin; Kim, Hyeunsu; Kim, Kiho; Choi, Jinyong; Lee, Hyunjoo; Yang, Sujin; Park, Sungho; Lee, Minwoo; Cho, Minchang; Kim, Saebyeol; Jeong, Taejin; Hyun, Seokhun; Cho, Cheongryong; Kim, Jeong-kyoum; Yoon, Hong-gu; Nam, Jeongsik; Kwon, Hyukjoon; Lee, Hocheol; Choi, Junghwan; Jang, Sungjin; Choi, Joosun; Chung, Chilhee
2012-01-01
Optical interconnects may provide solutions to the capacity-bandwidth trade-off of recent memory interface systems. For cost-effective optical memory interfaces, Samsung Electronics has been developing silicon photonics platforms on memory-compatible bulk-Si 300-mm wafers. The waveguide of 0.6 dB/mm propagation loss, vertical grating coupler of 2.7 dB coupling loss, modulator of 10 Gbps speed, and Ge/Si photodiode of 12.5 Gbps bandwidth have been achieved on the bulk-Si platform. 2x6.4 Gbps electrical driver circuits have been also fabricated using a CMOS process.
NASA Astrophysics Data System (ADS)
Goldenstein, Christopher S.; Almodóvar, Christopher A.; Jeffries, Jay B.; Hanson, Ronald K.; Brophy, Christopher M.
2014-10-01
The design and use of two-color tunable diode laser (TDL) absorption sensors for measurements of temperature and H2O in a rotating detonation engine (RDE) are presented. Both sensors used first-harmonic-normalized scanned-wavelength-modulation spectroscopy with second-harmonic detection (scanned-WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in the harsh combustion environment. One sensor used two near-infrared (NIR) TDLs near 1391.7 nm and 1469.3 nm that were modulated at 225 kHz and 285 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O absorption transitions to provide a measurement rate of 50 kHz and a detection limit in the RDE of 0.2% H2O by mole. The other sensor used two mid-infrared (MIR) TDLs near 2551 nm and 2482 nm that were modulated at 90 kHz and 112 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O transitions to provide a measurement rate of 10 kHz and a detection limit in the RDE of 0.02% H2O by mole. Four H2O absorption transitions with different lower-state energies were used to assess the homogeneity of temperature in the measurement plane. Experimentally derived spectroscopic parameters that enable temperature and H2O sensing to within 1.5-3.5% of known values are reported. The sensor design enabling the high-bandwidth scanned-WMS-2f/1f measurements is presented. The two sensors were deployed across two orthogonal and coplanar lines-of-sight (LOS) located in the throat of a converging-diverging nozzle at the RDE combustor exit. Measurements in the non-premixed H2-fueled RDE indicate that the temperature and H2O oscillate at the detonation frequency (≈3.25 kHz) and that production of H2O is a weak function of global equivalence ratio.
Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions
NASA Technical Reports Server (NTRS)
Padmanabhan, Sharmila; Fung, King Man; Kangaslahti, Pekka P.; Peralta, Alejandro; Soria, Mary M.; Pukala, David M.; Sin, Seth; Samoska, Lorene A.; Sarkozy, Stephen; Lai, Richard
2012-01-01
Packaging of MMIC LNA (monolithic microwave integrated circuit low-noise amplifier) chips at frequencies over 200 GHz has always been problematic due to the high loss in the transition between the MMIC chip and the waveguide medium in which the chip will typically be used. In addition, above 200 GHz, wire-bond inductance between the LNA and the waveguide can severely limit the RF matching and bandwidth of the final waveguide amplifier module. This work resulted in the development of a low-loss quartz waveguide transition that includes a capacitive transmission line between the MMIC and the waveguide probe element. This capacitive transmission line tunes out the wirebond inductance (where the wire-bond is required to bond between the MMIC and the probe element). This inductance can severely limit the RF matching and bandwidth of the final waveguide amplifier module. The amplifier module consists of a quartz E-plane waveguide probe transition, a short capacitive tuning element, a short wire-bond to the MMIC, and the MMIC LNA. The output structure is similar, with a short wire-bond at the output of the MMIC, a quartz E-plane waveguide probe transition, and the output waveguide. The quartz probe element is made of 3-mil quartz, which is the thinnest commercially available material. The waveguide band used is WR4, from 170 to 260 GHz. This new transition and block design is an improvement over prior art because it provides for better RF matching, and will likely yield lower loss and better noise figure. The development of high-performance, low-noise amplifiers in the 180-to- 700-GHz range has applications for future earth science and planetary instruments with low power and volume, and astrophysics array instruments for molecular spectroscopy. This frequency band, while suitable for homeland security and commercial applications (such as millimeter-wave imaging, hidden weapons detection, crowd scanning, airport security, and communications), also has applications to future NASA missions. The Global Atmospheric Composition Mission (GACM) in the NRC Decadel Survey will need low-noise amplifiers with extremely low noise temperatures, either at room temperature or for cryogenic applications, for atmospheric remote sensing.
NASA Technical Reports Server (NTRS)
Day, T.; Farinas, A. D.; Byer, R. L.
1990-01-01
A type II 1.06-micron optical phase-locked loop (OPLL) for use in a coherent homodyne receiver is discussed. Diode-laser-pumped solid-state lasers are used for both the local oscillator and transmitter, because their phase noise is significantly lower than that of diode lasers. Closed-loop RMS phase noise of less than 12 mrad (0.69 deg) is achieved, and modulation-demodulation in bulk modulators at rates from 20 kHz to 20 MHz with less than 19 deg of modulation depth is demonstrated.
Monolithic device for modelocking and stabilization of frequency combs.
Lee, C-C; Hayashi, Y; Silverman, K L; Feldman, A; Harvey, T; Mirin, R P; Schibli, T R
2015-12-28
We demonstrate a device that integrates a III-V semiconductor saturable absorber mirror with a graphene electro-optic modulator, which provides a monolithic solution to modelocking and noise suppression in a frequency comb. The device offers a pure loss modulation bandwidth exceeding 5 MHz and only requires a low voltage driver. This hybrid device provides not only compactness and simplicity in laser cavity design, but also small insertion loss, compared to the previous metallic-mirror-based modulators. We believe this work paves the way to portable and fieldable phase-coherent frequency combs.
Metting van Rijn, A C; Peper, A; Grimbergen, C A
1991-07-01
A multichannel instrumentation amplifier, developed to be used in a miniature universal eight-channel amplifier module, is described. After discussing the specific properties of a bioelectric recording, the difficulties of meeting the demanded specifications with a design based on operational amplifiers are reviewed. Because it proved impossible to achieve the demanded combination of low noise and low power consumption using commercially available operational amplifiers, an amplifier equipped with an input stage with discrete transistors was developed. A new design concept was used to expand the design to a multichannel version with an equivalent input noise voltage of 0.35 microV RMS in a bandwidth of 0.1-100 Hz and a power consumption of 0.6 mW per channel. The results of this study are applied to miniature, universal, eight-channel amplifier modules, manufactured with thick-film production techniques. The modules can be coupled to satisfy the demand for a multiple of eight channels. The low power consumption enables the modules to be used in all kinds of portable and telemetry measurement systems and simplifies the power supply in stationary measurement systems.
High-speed acoustic communication by multiplexing orbital angular momentum
Shi, Chengzhi; Dubois, Marc; Wang, Yuan
2017-01-01
Long-range acoustic communication is crucial to underwater applications such as collection of scientific data from benthic stations, ocean geology, and remote control of off-shore industrial activities. However, the transmission rate of acoustic communication is always limited by the narrow-frequency bandwidth of the acoustic waves because of the large attenuation for high-frequency sound in water. Here, we demonstrate a high-throughput communication approach using the orbital angular momentum (OAM) of acoustic vortex beams with one order enhancement of the data transmission rate at a single frequency. The topological charges of OAM provide intrinsically orthogonal channels, offering a unique ability to multiplex data transmission within a single acoustic beam generated by a transducer array, drastically increasing the information channels and capacity of acoustic communication. A high spectral efficiency of 8.0 ± 0.4 (bit/s)/Hz in acoustic communication has been achieved using topological charges between −4 and +4 without applying other communication modulation techniques. Such OAM is a completely independent degree of freedom which can be readily integrated with other state-of-the-art communication modulation techniques like quadrature amplitude modulation (QAM) and phase-shift keying (PSK). Information multiplexing through OAM opens a dimension for acoustic communication, providing a data transmission rate that is critical for underwater applications. PMID:28652341
NASA Technical Reports Server (NTRS)
Peach, Robert; Malarky, Alastair
1990-01-01
Currently proposed mobile satellite communications systems require a high degree of flexibility in assignment of spectral capacity to different geographic locations. Conventionally this results in poor spectral efficiency which may be overcome by the use of bandwidth switchable filtering. Surface acoustic wave (SAW) technology makes it possible to provide banks of filters whose responses may be contiguously combined to form variable bandwidth filters with constant amplitude and phase responses across the entire band. The high selectivity possible with SAW filters, combined with the variable bandwidth capability, makes it possible to achieve spectral efficiencies over the allocated bandwidths of greater than 90 percent, while retaining full system flexibility. Bandwidth switchable SAW filtering (BSSF) achieves these gains with a negligible increase in hardware complexity.
Considerations of digital phase modulation for narrowband satellite mobile communication
NASA Technical Reports Server (NTRS)
Grythe, Knut
1990-01-01
The Inmarsat-M system for mobile satellite communication is specified as a frequency division multiple access (FDMA) system, applying Offset Quadrature Phase Shift Keying (QPSK) for transmitting 8 kbit/sec in 10 kHz user channel bandwidth. We consider Digital Phase Modulation (DPM) as an alternative modulation format for INMARSAT-M. DPM is similar to Continuous Phase Modulation (CPM) except that DPM has a finite memory in the premodular filter with a continuous varying modulation index. It is shown that DPM with 64 states in the VA obtains a lower bit error rate (BER). Results for a 5 kHz system, with the same 8 kbit/sec transmitted bitstream, is also presented.
Integration of hybrid silicon lasers and electroabsorption modulators.
Sysak, Matthew N; Anthes, Joel O; Bowers, John E; Raday, Omri; Jones, Richard
2008-08-18
We present an integration platform based on quantum well intermixing for multi-section hybrid silicon lasers and electroabsorption modulators. As a demonstration of the technology, we have fabricated discrete sampled grating DBR lasers and sampled grating DBR lasers integrated with InGaAsP/InP electroabsorption modulators. The integrated sampled grating DBR laser-modulators use the as-grown III-V bandgap for optical gain, a 50 nm blue shifted bandgap for the electrabosprtion modulators, and an 80 nm blue shifted bandgap for low loss mirrors. Laser continuous wave operation up to 45 ?C is achieved with output power >1.0 mW and threshold current of <50 mA. The modulator bandwidth is >2GHz with 5 dB DC extinction.
Integrated optic single-ring filter for narrowband phase demodulation
NASA Astrophysics Data System (ADS)
Madsen, C. K.
2017-05-01
Integrated optic notch filters are key building blocks for higher-order spectral filter responses and have been demonstrated in many technology platforms from dielectrics (such as Si3N4) to semiconductors (Si photonics). Photonic-assisted RF processing applications for notch filters include identifying and filtering out high-amplitude, narrowband signals that may be interfering with the desired signal, including undesired frequencies detected in radar and free-space optical links. The fundamental tradeoffs for bandwidth and rejection depth as a function of the roundtrip loss and coupling coefficient are investigated along with the resulting spectral phase response for minimum-phase and maximum-phase responses compared to the critical coupling condition and integration within a Mach Zehnder interferometer. Based on a full width at half maximum criterion, it is shown that maximum-phase responses offer the smallest bandwidths for a given roundtrip loss. Then, a new role for passive notch filters in combination with high-speed electro-optic phase modulation is explored around narrowband phase-to-amplitude demodulation using a single ring operating on one sideband. Applications may include microwave processing and instantaneous frequency measurement (IFM) for radar, space and defense applications.
Chen, Sen; Luo, Sheng Nian
2018-03-01
Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10-100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are explored via Gaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Sen; Luo, Sheng-Nian
Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10–100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are exploredviaGaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamentalmore » harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.« less
Multi-stage decoding for multi-level block modulation codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1991-01-01
In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.
NASA Astrophysics Data System (ADS)
Fu, Meixia; Zhang, Min; Wang, Danshi; Cui, Yue; Han, Huanhuan
2016-10-01
We propose a scheme of optical duobinary-modulated upstream transmission system for reflective semiconductor optical amplifier-based colorless optical network units in 10-Gbps wavelength-division multiplexed passive optical network (WDM-PON), where a fiber Bragg grating (FBG) is adopted as an optical equalizer for better performance. The demodulation module is extremely simple, only needing a binary intensity modulation direct detection receiver. A better received sensitivity of -16.98 dBm at bit rate error (BER)=1.0×10-4 can be achieved at 120 km without FBG, and the BER at the sensitivity of -18.49 dBm can be up to 2.1×10-5 at the transmission distance of 160 km with FBG, which demonstrates the feasibility of our proposed scheme. Moreover, it could be a high cost-effectiveness scheme for WDM-PON in the future.
Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs.
Han, Liangshun; Liang, Song; Wang, Huitao; Qiao, Lijun; Xu, Junjie; Zhao, Lingjuan; Zhu, Hongliang; Wang, Baojun; Wang, Wei
2014-12-01
We present an InP based distributed Bragg reflector (DBR) laser transmitter which has a wide wavelength tuning range and a high chip output power for wavelength division multiplexing passive optical network (WDM-PON) applications. By butt-jointing InGaAsP with 1.45 µm emission wavelength as the material of the grating section, the laser wavelength can be tuned for over 13 nm by the DBR current. Accompanied by varying the chip temperature, the tuning range can be further enlarged to 16 nm. With the help of the integrated semiconductor optical amplifier (SOA), the largest chip output power is over 30 mW. The electroabsorption modulator (EAM) is integrated into the device by the selective-area growth (SAG) technique. The 3 dB small signal modulation bandwidth of the EAM is over 13 GHz. The device has both a simple tuning scheme and a simple fabrication procedure, making it suitable for low cost massive production which is desirable for WDM-PON uses.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1991-01-01
Shannon's capacity bound shows that coding can achieve large reductions in the required signal to noise ratio per information bit (E sub b/N sub 0 where E sub b is the energy per bit and (N sub 0)/2 is the double sided noise density) in comparison to uncoded schemes. For bandwidth efficiencies of 2 bit/sym or greater, these improvements were obtained through the use of Trellis Coded Modulation and Block Coded Modulation. A method of obtaining these high efficiencies using multidimensional Multiple Phase Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) signal sets with trellis coding is described. These schemes have advantages in decoding speed, phase transparency, and coding gain in comparison to other trellis coding schemes. Finally, a general parity check equation for rotationally invariant trellis codes is introduced from which non-linear codes for two dimensional MPSK and QAM signal sets are found. These codes are fully transparent to all rotations of the signal set.
High-speed ADC and DAC modules with fibre optic interconnections for telecom satellites
NASA Astrophysics Data System (ADS)
Heikkinen, Veli; Juntunen, Eveliina; Karppinen, Mikko; Kautio, Kari; Ollila, Jyrki; Sitomaniemi, Aila; Tanskanen, Antti; Casey, Rory; Scott, Shane; Gachon, Hélène; Sotom, Michel; Venet, Norbert; Toivonen, Jaakko; Tuominen, Taisto; Karafolas, Nikos
2017-11-01
The flexibility required for future telecom payloads calls for the introduction of more and more digital processing capabilities. Aggregate data throughputs of several Tbps will have to be handled onboard, thus creating the need for effective, ADCDSP and DACDSP highspeed links. ADC and DAC modules with optical interconnections is an attractive option as it can solve easily the transmission and routing of the expected huge amount of data. This technique will enable to increase the bandwidth and/or the number of beams/channels to be treated, or to support advanced digital processing architectures including beam forming. We realised electrooptic ADC and DAC modules containing an 8 bit, 2 GSa/s A/D converter and a 12 bit, 2 GSa/s D/A converter. The 4channel parallel fibre optic link employs 850nm VCSELs and GaAs PIN photodiodes coupled to 50/125μm fibre ribbon cable. ADCDSP and DSPDAC links both have an aggregate data rate of 25 Gbps. The paper presents the current status of this development.
High-speed phosphor-LED wireless communication system utilizing no blue filter
NASA Astrophysics Data System (ADS)
Yeh, C. H.; Chow, C. W.; Chen, H. Y.; Chen, J.; Liu, Y. L.; Wu, Y. F.
2014-09-01
In this paper, we propose and investigate an adaptively 84.44 to 190 Mb/s phosphor-LED visible light communication (VLC) system at a practical transmission distance. Here, we utilize the orthogonal-frequency-division-multiplexing quadrature-amplitude-modulation (OFDM-QAM) modulation with power/bit-loading algorithm in proposed VLC system. In the experiment, the optimal analogy pre-equalization design is also performed at LED-Tx side and no blue filter is used at the Rx side for extending the modulation bandwidth from 1 MHz to 30 MHz. In addition, the corresponding free space transmission lengths are between 75 cm and 2 m under various data rates of proposed VLC. And the measured bit error rates (BERs) of < 3.8×10-3 [forward error correction (FEC) limit] at different transmission lengths and measured data rates can be also obtained. Finally, we believe that our proposed scheme could be another alternative VLC implementation in practical distance, supporting < 100 Mb/s, using commercially available LED and PD (without optical blue filtering) and compact size.
High-speed laser communications in UAV scenarios
NASA Astrophysics Data System (ADS)
Griethe, Wolfgang; Gregory, Mark; Heine, Frank; Kämpfner, Hartmut
2011-05-01
Optical links, based on coherent homodyne detection and BPSK modulation with bidirectional data transmission of 5.6 Gbps over distances of about 5,000 km and BER of 10-8, have been sufficiently verified in space. The verification results show that this technology is suitable not only for space applications but also for applications in the troposphere. After a brief description of the Laser Communication Terminal (LCT) for space applications, the paper consequently discusses the future utilization of satellite-based optical data links for Beyond Line of Sight (BLOS) operations of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicles (UAV). It is shown that the use of optical frequencies is the only logical consequence of an ever-increasing demand for bandwidth. In terms of Network Centric Warfare it is highly recommended that Unmanned Aircraft Systems (UAS) of the future should incorporate that technology which allows almost unlimited bandwidth. The advantages of optical communications especially for Intelligence, Surveillance and Reconnaissance (ISR) are underlined. Moreover, the preliminary design concept of an airborne laser communication terminal is described. Since optical bi-directional links have been tested between a LCT in space and a TESAT Optical Ground Station (OGS), preliminary analysis on tracking and BER performance and the impact of atmospheric disturbances on coherent links will be presented.
Classification and Evaluation of Coherent Synchronous Sampled-Data Telemetry Systems
NASA Technical Reports Server (NTRS)
Viterbi, Andrew
1961-01-01
This paper analyzes the various types of continuous wave and pulse modulation for the transmission of sampled data over channels perturbed by white gaussian noise. Optimal coherent synchronous detection schemes for all the different modulation methods are shown to belong to one of two general classes: linear synchronous detection and correlation detection. The figures of merit, mean-square signal-to-error ratio and bandwidth occupancy, are determined for each system and compared.
Self-phase modulation of submicrojoule femtosecond pulses in a hollow-core photonic-crystal fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konorov, S.O.; Sidorov-Biryukov, D.A.; Zheltikov, A.M.
Hollow-core photonic-crystal fibers (PCFs) capable of transporting sub-100-fs pulses of Ti:sapphire laser radiation in one of their transmission peaks centered around 800 nm have been designed and demonstrated. These fibers are shown to enhance self-phase modulation of submicrojoule 100-fs Ti:sapphire laser pulses, allowing a spectral bandwidth of 35 nm to be achieved with an 8-cm PCF sample.
Downhole drilling network using burst modulation techniques
Hall,; David R. , Fox; Joe, [Spanish Fork, UT
2007-04-03
A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.
Performance measurements of the first RAID prototype
NASA Technical Reports Server (NTRS)
Chervenak, Ann L.
1990-01-01
The performance is examined of Redundant Arrays of Inexpensive Disks (RAID) the First, a prototype disk array. A hierarchy of bottlenecks was discovered in the system that limit overall performance. The most serious is the memory system contention on the Sun 4/280 host CPU, which limits array bandwidth to 2.3 MBytes/sec. The array performs more successfully on small random operations, achieving nearly 300 I/Os per second before the Sun 4/280 becomes CPU limited. Other bottlenecks in the system are the VME backplane, bandwidth on the disk controller, and overheads associated with the SCSI protocol. All are examined in detail. The main conclusion is that to achieve the potential bandwidth of arrays, more powerful CPU's alone will not suffice. Just as important are adequate host memory bandwidth and support for high bandwidth on disk controllers. Current disk controllers are more often designed to achieve large numbers of small random operations, rather than high bandwidth. Operating systems also need to change to support high bandwidth from disk arrays. In particular, they should transfer data in larger blocks, and should support asynchronous I/O to improve sequential write performance.
NASA Astrophysics Data System (ADS)
Bunandar, Darius; Urayama, Junji; Boynton, Nicholas; Martinez, Nicholas; Derose, Christopher; Lentine, Anthony; Davids, Paul; Camacho, Ryan; Wong, Franco; Englund, Dirk
We present a compact polarization-encoded quantum key distribution (QKD) transmitter near a 1550-nm wavelength implemented on a CMOS-compatible silicon-on-insulator photonics platform. The transmitter generates arbitrary polarization qubits at gigahertz bandwidth with an extinction ratio better than 30 dB using high-speed carrier-depletion phase modulators. We demonstrate the performance of this device by generating secret keys at a rate of 1 Mbps in a complete QKD field test. Our work shows the potential of using advanced photonic integrated circuits to enable high-speed quantum-secure communications. This work was supported by the SECANT QKD Grand Challenge, the Samsung Global Research Outreach Program, and the Air Force Office of Scientific Research.
Practical continuous-variable quantum key distribution without finite sampling bandwidth effects.
Li, Huasheng; Wang, Chao; Huang, Peng; Huang, Duan; Wang, Tao; Zeng, Guihua
2016-09-05
In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver's side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack.
NASA Astrophysics Data System (ADS)
Mutig, Alex; Lott, James A.; Blokhin, Sergey A.; Moser, Philip; Wolf, Philip; Hofmann, Werner; Nadtochiy, Alexey M.; Bimberg, Dieter
2011-03-01
The progressive penetration of optical communication links into traditional copper interconnect markets greatly expands the applications of vertical cavity surface emitting lasers (VCSELs) for the next-generation of board-to-board, moduleto- module, chip-to-chip, and on-chip optical interconnects. Stability of the VCSEL parameters at high temperatures is indispensable for such applications, since these lasers typically reside directly on or near integrated circuit chips. Here we present 980 nm oxide-confined VCSELs operating error-free at bit rates up to 25 Gbit/s at temperatures as high as 85 °C without adjustment of the drive current and peak-to-peak modulation voltage. The driver design is therefore simplified and the power consumption of the driver electronics is lowered, reducing the production and operational costs. Small and large signal modulation experiments at various temperatures from 20 up to 85 °C for lasers with different oxide aperture diameters are presented in order to analyze the physical processes controlling the performance of the VCSELs. Temperature insensitive maximum -3 dB bandwidths of around 13-15 GHz for VCSELs with aperture diameters of 10 μm and corresponding parasitic cut-off frequencies exceeding 22 GHz are observed. Presented results demonstrate the suitability of our VCSELs for practical high speed and high temperature stable short-reach optical links.
Baseband pulse shaping techniques for nonlinearly amplified pi/4-QPSK and QAM systems
NASA Technical Reports Server (NTRS)
Feher, Kamilo
1991-01-01
A new generation of multi-stage pi/4-shifted QPSK and of superposed quadrature-amplitude-modulated (SQAM) modulators-coherent demodulators (modems) and of continuous phase modulated (CPM)-gaussian premodulation filtered minimum-shift-keying (MGMSK) systems is proposed and studied. These modems will lead to bandwidth and power efficient satellite communications systems designs. As an illustrative application, a baseband processing technique pi/4-controlled transition PSK (pi/4-CTPSK) is described. To develop a cost and power efficient design strategy, we assume that nonlinear, fully saturated high power amplifiers (HPA) are utilized in the satellite earth station transmitter and in the satellite transponder. Modem structures which could lead to application specific integrated circuit (ASIC) satellite on-board processing universal modem applications are also considered. Multistate GMSK (i.e., MGMSK) signal generation methods by means of two or more RF combined nonlinearly amplified SQAM modems and by one multistate (in-phase and quadrature-baseband premodulation filtered-superposed) SQAM architecture and one RF nonlinear amplifier are studied. During the SQAM modem development phase we investigate the potential system advantages of the pi/4-shifted logic. The bandwidth efficiency of the proposed multistate GMSK and baseband filtered PAM-FM modulator (a new class in the CPM family) will be significantly higher than that of conventional G-MSK systems. To optimize the practical P(sub e) = f((E sub b)/(N sub o)) performance we consider improved coherent demodulation MGMSK structures such as deviated-frequency locking coherent demodulators. For relative low bit rate SATCOM applications, e.g., bit rates less than 300 kb/s, phase noise tracking cancellation (for fixed site earth station) and phase noise cancellation as well as Doppler compensation (for satellite to mobile earth station) applications may be required. We study digital channel sounding methods which could cancel the phase noise-caused degradations of CPM and GMSK modems.
An open-loop system design for deep space signal processing applications
NASA Astrophysics Data System (ADS)
Tang, Jifei; Xia, Lanhua; Mahapatra, Rabi
2018-06-01
A novel open-loop system design with high performance is proposed for space positioning and navigation signal processing. Divided by functions, the system has four modules, bandwidth selectable data recorder, narrowband signal analyzer, time-delay difference of arrival estimator and ANFIS supplement processor. A hardware-software co-design approach is made to accelerate computing capability and improve system efficiency. Embedded with the proposed signal processing algorithms, the designed system is capable of handling tasks with high accuracy over long period of continuous measurements. The experiment results show the Doppler frequency tracking root mean square error during 3 h observation is 0.0128 Hz, while the TDOA residue analysis in correlation power spectrum is 0.1166 rad.
CW Interference Effects on High Data Rate Transmission Through the ACTS Wideband Channel
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ngo, Duc H.; Tran, Quang K.; Tran, Diepchi T.; Yu, John; Kachmar, Brian A.; Svoboda, James S.
1996-01-01
Satellite communications channels are susceptible to various sources of interference. Wideband channels have a proportionally greater probability of receiving interference than narrowband channels. NASA's Advanced Communications Technology Satellite (ACTS) includes a 900 MHz bandwidth hardlimiting transponder which has provided an opportunity for the study of interference effects of wideband channels. A series of interference tests using two independent ACTS ground terminals measured the effects of continuous-wave (CW) uplink interference on the bit-error rate of a 220 Mbps digitally modulated carrier. These results indicate the susceptibility of high data rate transmissions to CW interference and are compared to results obtained with a laboratory hardware-based system simulation and a computer simulation.
Performance of FSO Links using CSRZ, RZ, and NRZ and Effects of Atmospheric Turbulence
NASA Astrophysics Data System (ADS)
Nadeem, Lubna; Saadullah Qazi, M.; Hassam, Ammar
2018-04-01
Free space optical (FSO) communication is a wireless communication technology in which data is transferred from one point to another through highly directed beam of light. The main factors that limit the FSO link availability is the local weather conditions. It guarantees the potential of high bandwidth capacity over unlicensed optical wavelengths. The transmission medium of FSO is atmosphere and is significantly affected by the various weather conditions such as rain, fog, snow, wind, etc. In this paper, the modulation techniques under consideration are RZ, NRZ and CSRZ. Analysis is carried out regarding Q-factor with respect to varying distance, bit rates and input laser power.
Seeto, Angeline; Searchfield, Grant D
2018-03-01
Advances in digital signal processing have made it possible to provide a wide-band frequency response with smooth, precise spectral shaping. Several manufacturers have introduced hearing aids that are claimed to provide gain for frequencies up to 10-12 kHz. However, there is currently limited evidence and very few independent studies evaluating the performance of the extended bandwidth hearing aids that have recently become available. This study investigated an extended bandwidth hearing aid using measures of speech intelligibility and sound quality to find out whether there was a significant benefit of extended bandwidth amplification over standard amplification. Repeated measures study designed to examine the efficacy of extended bandwidth amplification compared to standard bandwidth amplification. Sixteen adult participants with mild-to-moderate sensorineural hearing loss. Participants were bilaterally fit with a pair of Widex Mind 440 behind-the-ear hearing aids programmed with a standard bandwidth fitting and an extended bandwidth fitting; the latter provided gain up to 10 kHz. For each fitting, and an unaided condition, participants completed two speech measures of aided benefit, the Quick Speech-in-Noise test (QuickSIN™) and the Phonak Phoneme Perception Test (PPT; high-frequency perception in quiet), and a measure of sound quality rating. There were no significant differences found between unaided and aided conditions for QuickSIN™ scores. For the PPT, there were statistically significantly lower (improved) detection thresholds at high frequencies (6 and 9 kHz) with the extended bandwidth fitting. Although not statistically significant, participants were able to distinguish between 6 and 9 kHz 50% better with extended bandwidth. No significant difference was found in ability to recognize phonemes in quiet between the unaided and aided conditions when phonemes only contained frequency content <6 kHz. However significant benefit was found with the extended bandwidth fitting for recognition of 9-kHz phonemes. No significant difference in sound quality preference was found between the standard bandwidth and extended bandwidth fittings. This study demonstrated that a pair of currently available extended bandwidth hearing aids was technically capable of delivering high-frequency amplification that was both audible and useable to listeners with mild-to-moderate hearing loss. This amplification was of acceptable sound quality. Further research, particularly field trials, is required to ascertain the real-world benefit of high-frequency amplification. American Academy of Audiology
Kwon, Kun-Sup; Yoon, Won-Sang
2010-01-01
In this paper we propose a method of removing from synthesizer output spurious signals due to quasi-amplitude modulation and superposition effect in a frequency-hopping synthesizer with direct digital frequency synthesizer (DDFS)-driven phase-locked loop (PLL) architecture, which has the advantages of high frequency resolution, fast transition time, and small size. There are spurious signals that depend on normalized frequency of DDFS. They can be dominant if they occur within the PLL loop bandwidth. We suggest that such signals can be eliminated by purposefully creating frequency errors in the developed synthesizer.
Ti:sapphire-pumped diamond Raman laser with sub-100-fs pulse duration.
Murtagh, Michelle; Lin, Jipeng; Mildren, Richard P; Spence, David J
2014-05-15
We report a synchronously pumped femtosecond diamond Raman laser operating at 895 nm with a 33% slope efficiency. Pumped using a mode-locked Ti:sapphire laser at 800 nm with a duration of 170 fs, the bandwidth of the Stokes output is broadened and chirped to enable subsequent pulse compression to 95 fs using a prism pair. Modeling results indicate that self-phase modulation drives the broadening of the Stokes spectrum in this highly transient laser. Our results demonstrate the potential for Raman conversion to extend the wavelength coverage and pulse shorten Ti:sapphire lasers.
Deep ultraviolet semiconductor light sources for sensing and security
NASA Astrophysics Data System (ADS)
Shatalov, Max; Bilenko, Yuri; Yang, Jinwei; Gaska, Remis
2009-09-01
III-Nitride based deep ultraviolet (DUV) light emitting diodes (LEDs) rapidly penetrate into sensing market owing to several advantages over traditional UV sources (i.e. mercury, xenon and deuterium lamps). Small size, a wide choice of peak emission wavelengths, lower power consumption and reduced cost offer flexibility to system integrators. Short emission wavelength offer advantages for gas detection and optical sensing systems based on UV induced fluorescence. Large modulation bandwidth for these devices makes them attractive for frequency-domain spectroscopy. We will review present status of DUV LED technology and discuss recent advances in short wavelength emitters and high power LED lamps.
47 CFR 95.1111 - Frequency coordination.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., title, office, phone number, fax number, e-mail address). (b) An authorized health care provider shall...) Modulation scheme used (including occupied bandwidth); (3) Effective radiated power; (4) Number of...) and model numbers); (5) Legal name of the authorized health care provider; (6) Location of transmitter...
Ultra-Wideband Chaos Life-Detection Radar with Sinusoidal Wave Modulation
NASA Astrophysics Data System (ADS)
Xu, Hang; Li, Ying; Zhang, Jianguo; Han, Hong; Zhang, Bing; Wang, Longsheng; Wang, Yuncai; Wang, Anbang
2017-12-01
We propose and experimentally demonstrate an ultra-wideband (UWB) chaos life-detection radar. The proposed radar transmits a wideband chaotic-pulse-position modulation (CPPM) signal modulated by a single-tone sinusoidal wave. A narrow-band split ring sensor is used to collect the reflected sinusoidal wave, and a lock-in amplifier is utilized to identify frequencies of respiration and heartbeat by detecting the phase change of the sinusoidal echo signal. Meanwhile, human location is realized by correlating the CPPM echo signal with its delayed duplicate and combining the synthetic aperture technology. Experimental results demonstrate that the human target can be located accurately and his vital signs can be detected in a large dynamic range through a 20-cm-thick wall using our radar system. The down-range resolution is 15cm, benefiting from the 1-GHz bandwidth of the CPPM signal. The dynamic range for human location is 50dB, and the dynamic ranges for heartbeat and respiration detection respectively are 20dB and 60dB in our radar system. In addition, the bandwidth of the CPPM signal can be adjusted from 620MHz to 1.56GHz to adapt to different requirements.
Finneran, James J; Schlundt, Carolyn E
2007-07-01
Studies of underwater hearing are often hampered by the behavior of sound waves in small experimental tanks. At lower frequencies, tank dimensions are often not sufficient for free field conditions, resulting in large spatial variations of sound pressure. These effects may be mitigated somewhat by increasing the frequency bandwidth of the sound stimulus, so effects of multipath interference average out over many frequencies. In this study, acoustic fields and bottlenose dolphin (Tursiops truncatus) hearing thresholds were compared for pure tone and frequency modulated signals. Experiments were conducted in a vinyl-walled, seawater-filled pool approximately 3.7 x 6 x 1.5 m. Acoustic signals were pure tone and linear and sinusoidal frequency modulated tones with bandwidths/modulation depths of 1%, 2%, 5%, 10%, and 20%. Thirteen center frequencies were tested between 1 and 100 kHz. Acoustic fields were measured (without the dolphin present) at three water depths over a 60 x 65 cm grid with a 5-cm spacing. Hearing thresholds were measured using a behavioral response paradigm and up/down staircase technique. The use of FM signals significantly improved the sound field without substantially affecting the measured hearing thresholds.
NASA Technical Reports Server (NTRS)
Liu, Jian; Kim, Junghwan; Kwatra, S. C.; Stevens, Grady H.
1991-01-01
Aspects of error performance of various power and bandwidth efficient modulations for the land mobile satellite systems (LMSS) were investigated under multipath fading and interferences by using Monte-Carlo simulation. A differential detection for 16QAM (quadrature amplitude modulation) was proposed to cope with Ricean fading and Doppler shift. Computer simulation results show that the performance of 16QAM with differential detection is as good as that of 16PSK with coherent detection and 3 dB better than that of 16PSK with differential detection, although it degrades by about 4.5 dB as compared to 16QAM with coherent detection under an additive white Gaussian noise (AWGN) channel. For the nonlinear channels, 16QAM with modified signal constellations is introduced and analyzed. The simulation results show that the modified 16QAM exhibits a gain of 2.5 dB over 16PSK under traveling-wave tube nonlinearity, and about 4 dB gain over 16PSK at the bit error rate of 10 exp -5 under AWGN. Computer simulation results for modified 16 QAM under cochannel interference and adjacent-channel interference are also presented.
Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.
Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven
2014-11-01
Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without affecting the axial resolution.
Hakobyan, Sargis; Wittwer, Valentin J; Gürel, Kutan; Mayer, Aline S; Schilt, Stéphane; Südmeyer, Thomas
2017-11-15
We demonstrate, to the best of our knowledge, the first carrier-envelope offset (CEO) frequency stabilization of a GHz femtosecond laser based on opto-optical modulation (OOM) of a semiconductor saturable absorber mirror (SESAM). The 1.05-GHz laser is based on a Yb:CALGO gain crystal and emits sub-100-fs pulses with 2.1-W average power at a center wavelength of 1055 nm. The SESAM plays two key roles: it starts and stabilizes the mode-locking operation and is simultaneously used as an actuator to control the CEO frequency. This second functionality is implemented by pumping the SESAM with a continuous-wave 980-nm laser diode in order to slightly modify its nonlinear reflectivity. We use the standard f-to-2f method for detection of the CEO frequency, which is stabilized by applying a feedback signal to the current of the SESAM pump diode. We compare the SESAM-OOM stabilization with the traditional method of gain modulation via control of the pump power of the Yb:CALGO gain crystal. While the bandwidth for gain modulation is intrinsically limited to ∼250 kHz by the laser cavity dynamics, we show that the OOM provides a feedback bandwidth above 500 kHz. Hence, we were able to obtain a residual integrated phase noise of 430 mrad for the stabilized CEO beat, which represents an improvement of more than 30% compared to gain modulation stabilization.
Systems and Methods for Radar Data Communication
NASA Technical Reports Server (NTRS)
Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)
2013-01-01
A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.