Science.gov

Sample records for high mutant frequency

  1. Pre-thymic somatic mutation leads to high mutant frequency at hypoxanthine-guanine phosphoribosyltransferase gene

    SciTech Connect

    Jett, J.

    1994-12-01

    While characterizing the background mutation spectrum of the Hypoxathine-guanine phosphoribosyltransferase (HPRT) gene in a healthy population, an outlier with a high mutant frequency of thioguanine resistant lymphocytes was found. When studied at the age of 46, this individual had been smoking 60 cigarettes per day for 38 years. His mutant frequency was calculated at 3.6 and 4.2x10{sup {minus}4} for two sampling periods eight months apart. Sequencing analysis of the HPRT gene in his mutant thioguanine resistant T lymphocytes was done to find whether the cells had a high rate of mutation, or if the mutation was due to a single occurrence of mutation and, if so, when in the T lymphocyte development the mutation occurred. By T-cell receptor analysis it has been found that out of 35 thioguanine resistant clones there was no dominant gamma T cell receptor gene rearrangement. During my appointment in the Science & Engineering Research Semester, I found that 34 of those clones have the same base substitution of G{yields}T at cDNA position 197. Due to the consistent mutant frequency from both sampling periods and the varying T cell receptors, the high mutant frequency cannot be due to recent proliferation of a mature mutant T lymphocyte. From the TCR and DNA sequence analysis we conclude that the G{yields}T mutation must have occurred in a T lymphocyte precursor before thymic differentiation so that the thioguanine resistant clones share the same base substitution but not the same gamma T cell receptor gene.

  2. Selection-driven accumulation of suppressor mutants in bacillus subtilis: the apparent high mutation frequency of the cryptic gudB gene and the rapid clonal expansion of gudB(+) suppressors are due to growth under selection.

    PubMed

    Gunka, Katrin; Stannek, Lorena; Care, Rachel A; Commichau, Fabian M

    2013-01-01

    Soil bacteria like Bacillus subtilis can cope with many growth conditions by adjusting gene expression and metabolic pathways. Alternatively, bacteria can spontaneously accumulate beneficial mutations or shape their genomes in response to stress. Recently, it has been observed that a B. subtilis mutant lacking the catabolically active glutamate dehydrogenase (GDH), RocG, mutates the cryptic gudB(CR) gene at a high frequency. The suppressor mutants express the active GDH GudB, which can fully replace the function of RocG. Interestingly, the cryptic gudB(CR) allele is stably inherited as long as the bacteria synthesize the functional GDH RocG. Competition experiments revealed that the presence of the cryptic gudB(CR) allele provides the bacteria with a selective growth advantage when glutamate is scarce. Moreover, the lack of exogenous glutamate is the driving force for the selection of mutants that have inactivated the active gudB gene. In contrast, two functional GDHs are beneficial for the cells when glutamate was available. Thus, the amount of GDH activity strongly affects fitness of the bacteria depending on the availability of exogenous glutamate. At a first glance the high mutation frequency of the cryptic gudB(CR) allele might be attributed to stress-induced adaptive mutagenesis. However, other loci on the chromosome that could be potentially mutated during growth under the selective pressure that is exerted on a GDH-deficient mutant remained unaffected. Moreover, we show that a GDH-proficient B. subtilis strain has a strong selective growth advantage in a glutamate-dependent manner. Thus, the emergence and rapid clonal expansion of the active gudB allele can be in fact explained by spontaneous mutation and growth under selection without an increase of the mutation rate. Moreover, this study shows that the selective pressure that is exerted on a maladapted bacterium strongly affects the apparent mutation frequency of mutational hot spots.

  3. High Persister Mutants in Mycobacterium tuberculosis

    PubMed Central

    Torrey, Heather L.; Keren, Iris; Via, Laura E.; Lee, Jong Seok; Lewis, Kim

    2016-01-01

    Mycobacterium tuberculosis forms drug-tolerant persister cells that are the probable cause of its recalcitrance to antibiotic therapy. While genetically identical to the rest of the population, persisters are dormant, which protects them from killing by bactericidal antibiotics. The mechanism of persister formation in M. tuberculosis is not well understood. In this study, we selected for high persister (hip) mutants and characterized them by whole genome sequencing and transcriptome analysis. In parallel, we identified and characterized clinical isolates that naturally produce high levels of persisters. We compared the hip mutants obtained in vitro with clinical isolates to identify candidate persister genes. Genes involved in lipid biosynthesis, carbon metabolism, toxin-antitoxin systems, and transcriptional regulators were among those identified. We also found that clinical hip isolates exhibited greater ex vivo survival than the low persister isolates. Our data suggest that M. tuberculosis persister formation involves multiple pathways, and hip mutants may contribute to the recalcitrance of the infection. PMID:27176494

  4. [High frequency ultrasound].

    PubMed

    Sattler, E

    2015-07-01

    Diagnostic ultrasound has become a standard procedure in clinical dermatology. Devices with intermediate high frequencies of 7.5-15 MHz are used in dermato-oncology for the staging and postoperative care of skin tumor patients and in angiology for improved vessel diagnostics. In contrast, the high frequency ultrasound systems with 20-100 MHz probes offer a much higher resolution, yet with a lower penetration depth of about 1 cm. The main indications are the preoperative measurements of tumor thickness in malignant melanoma and other skin tumors and the assessment of inflammatory and soft tissue diseases, offering information on the course of these dermatoses and allowing therapy monitoring. This article gives an overview on technical principles, devices, mode of examination, influencing factors, interpretation of the images, indications but also limitations of this technique. PMID:25636803

  5. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  6. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  7. [High frequency ultrasound].

    PubMed

    Sattler, E

    2015-07-01

    Diagnostic ultrasound has become a standard procedure in clinical dermatology. Devices with intermediate high frequencies of 7.5-15 MHz are used in dermato-oncology for the staging and postoperative care of skin tumor patients and in angiology for improved vessel diagnostics. In contrast, the high frequency ultrasound systems with 20-100 MHz probes offer a much higher resolution, yet with a lower penetration depth of about 1 cm. The main indications are the preoperative measurements of tumor thickness in malignant melanoma and other skin tumors and the assessment of inflammatory and soft tissue diseases, offering information on the course of these dermatoses and allowing therapy monitoring. This article gives an overview on technical principles, devices, mode of examination, influencing factors, interpretation of the images, indications but also limitations of this technique.

  8. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  9. Frequency-dependent viability in mutant strains of Drosophila melanogaster.

    PubMed

    Curtsinger, J W; Sheen, F M

    1991-01-01

    We investigated the effects of genotypic frequencies on egg-to-adult viabilities in pairwise combinations of four strains of Drosophila melanogaster. The experiments involved mixture of a total of 42,000 eggs in varying proportions under controlled densities and observation of surviving adults. Viabilities were found to depend on frequencies in several genotypic combinations. In the most extreme case, the absolute viability of cn;bw females increased monotonically from 54% when common to 70% when rare. The results illustrate several statistical and methodological problems that might explain why some experiments have failed to detect frequency-dependent viabilities. These problems include heterogeneity between replications, sex differences in susceptibility to competition, and strong dependence of the experimental outcome on the choice of competitor genotypes. PMID:1901577

  10. Recovery of a low mutant frequency after ionizing radiation-induced mutagenesis during spermatogenesis.

    PubMed

    Xu, Guogang; Intano, Gabriel W; McCarrey, John R; Walter, Ronald B; McMahan, C Alex; Walter, Christi A

    2008-07-31

    Humans are exposed to ionizing radiation (IR) under various circumstances, e.g. cosmic radiation, diagnostic X-rays and radiotherapy for cancer. It has been shown that IR can impair spermatogenesis and can cause mutations in germ cells. However, the mutagenic responses of germ cells exposed to IR at different stages of testicular maturation have not been examined by directly assessing the mutant frequency in defined spermatogenic cell types. This study was performed to address whether preadult exposure to IR can increase mutations in adult germ cells that could in turn have a major impact on adult reproductive function and the health of ensuing offspring. Male Lac I transgenic mice were irradiated with a single dose of 2.5 Gy of gamma-ray at different ages before adulthood, reflecting different stages of testicular maturation, and then mutant frequency (MF) was determined directly in spermatogenic cell types emanating from the irradiated precursor cells. The results showed that (1) preadult exposure to IR did not significantly increase MF in adult epididymal spermatozoa; (2) spermatogenic stages immediately following the irradiated stage(s) displayed an elevated mutant frequency; but (3) the mutant frequency was restored to unirradiated levels in later stages of spermatogenesis. These findings provide evidence that there is a mechanism(s) to prevent spermatogenic cells with elevated mutant frequencies from progressing through spermatogenesis. PMID:18582597

  11. Escherichia coli mutants resistant to inactivation by high hydrostatic pressure.

    PubMed Central

    Hauben, K J; Bartlett, D H; Soontjens, C C; Cornelis, K; Wuytack, E Y; Michiels, C W

    1997-01-01

    Alternating cycles of exposure to high pressure and outgrowth of surviving populations were used to select for highly pressure-resistant mutants of Escherichia coli MG1655. Three barotolerant mutants (LMM1010, LMM1020, and LMM1030) were isolated independently by using outgrowth temperatures of 30, 37, and 42 degrees C, respectively. Survival of these mutants after pressure treatment for 15 min at ambient temperature was 40 to 85% at 220 MPa and 0.5 to 1.5% at 800 MPa, while survival of the parent strain, MG1655, decreased from 15% at 220 MPa to 2 x 10(-8)% at 700 MPa. Heat resistance of mutants LMM1020 and LMM1030 was also altered, as evident by higher D values at 58 and 60 degrees C and reduced z values compared to those for the parent strain. D and z values for mutant LMM1010 were not significantly different from those for the parent strain. Pressure sensitivity of the mutants increased from 10 to 50 degrees C, as opposed to the parent strain, which showed a minimum around 40 degrees C. The ability of the mutants to grow at moderately elevated pressure (50 MPa) was reduced at temperatures above 37 degrees C, indicating that resistance to pressure inactivation is unrelated to barotolerant growth. The development of high levels of barotolerance as demonstrated in this work should cause concern about the safety of high-pressure food processing. PMID:9055412

  12. Arabidopsis thaliana siRNA biogenesis mutants have the lower frequency of homologous recombination.

    PubMed

    Yao, Youli; Bilichak, Andriy; Golubov, Andrey; Kovalchuk, Igor

    2016-07-01

    Small interfering RNAs (siRNAs) are involved in the regulation of plant development and response to stress. We have previously shown that mutants impaired in Dicer-like 2 (DCL2), DCL3 and DCL4, RDR2, RDR6 and NPRD1 are partially impaired in their response to stress and dcl2 and dcl3 plants are also impaired in transgenerational response to stress, including changes in homologous recombination frequency (HRF). Here, we have analyzed genome stability of dcl2, dcl3, dcl4, dcl2 dcl3, dcl2 dcl3 dcl4 and rdr6 mutants by measuring the non-induced and the stress-induced recombination frequency. We found that all mutants had the lower spontaneous HRF. The analysis of strand breaks showed that all tested Arabidopsis mutants had a higher level of spontaneous strand breaks, suggesting that the lower HRF is not due to the unusually low level of breaks. Exposure to methyl methane sulfonate (MMS) resulted in an increase in the level of strand breaks in wild-type plants and a decrease in mutants. All mutants had the higher methylation of cytosines at CpG sites under non-induced conditions. Exposure to MMS resulted in a decrease in methylation level in wild-type plants and an increase in methylation in all dcl mutants. The expression of several DNA repair genes was altered in dcl4 plants under non-induced and induced conditions. Our data suggest that siRNA biogenesis may be essential for the maintenance of the genome stability and stress response in Arabidopsis. PMID:26901311

  13. High frequency nanotube oscillator

    DOEpatents

    Peng, Haibing; Zettl, Alexander K.

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  14. Bacteriophage-insensitive mutants for high quality Crescenza manufacture

    PubMed Central

    Chirico, Donatella; Gorla, Arianna; Verga, Viola; Pedersen, Per D.; Polgatti, Eliseo; Cava, Antonio; Dal Bello, Fabio

    2014-01-01

    Streptococcus thermophilus is a thermophilic lactic acid bacterium used as starter culture for the manufacture of fermented dairy products. For the production of Crescenza and other soft cheeses, Sacco has developed and provides dairies with three different defined blends of S. thermophilus strains. Each blend contains two different S. thermophilus strains. The strains were selected based on their unique technological properties as well as different phage profiles. Analysis of 133 whey samples collected in 2009–2010 from Italian dairies showed a high prevalence (about 50%) of bacteriophage attacks on the blend ST020. More specifically, the strain S. thermophilus ST1A was found to be the preferred target of the bacteriophages. A bacteriophage insensitive mutant (BIM5) of the phage-sensitive strain ST1A was successfully developed and used to substitute strain ST1A in the Crescenza starter culture ST020. The strain BIM5 showed identical technological and industrial traits as those of the phage-sensitive strain ST1A. The improved resistance of the modified Crescenza starter culture ST020R was confirmed at Italian dairies, and its effectiveness monitored on 122 whey samples collected in 2011–2012. Compared to the previous values (2009–2010), the use of the phage-hardened blend ST020R allowed reducing of frequency of phage attacks from about 50 to less than 5% of the whey samples investigated. PMID:24834065

  15. High power, high frequency component test facility

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Krawczonek, Walter

    1990-01-01

    The NASA Lewis Research Center has available a high frequency, high power laboratory facility for testing various components of aerospace and/or terrestrial power systems. This facility is described here. All of its capabilities and potential applications are detailed.

  16. Development and characterisation of highly antibiotic resistant Bartonella bacilliformis mutants

    PubMed Central

    Gomes, Cláudia; Martínez-Puchol, Sandra; Ruiz-Roldán, Lidia; Pons, Maria J.; del Valle Mendoza, Juana; Ruiz, Joaquim

    2016-01-01

    The objective was to develop and characterise in vitro Bartonella bacilliformis antibiotic resistant mutants. Three B. bacilliformis strains were plated 35 or 40 times with azithromycin, chloramphenicol, ciprofloxacin or rifampicin discs. Resistance-stability was assessed performing 5 serial passages without antibiotic pressure. MICs were determined with/without Phe-Arg-β-Napthylamide and artesunate. Target alterations were screened in the 23S rRNA, rplD, rplV, gyrA, gyrB, parC, parE and rpoB genes. Chloramphenicol and ciprofloxacin resistance were the most difficult and easiest (>37.3 and 10.6 passages) to be selected, respectively. All mutants but one selected with chloramphenicol achieved high resistance levels. All rifampicin, one azithromycin and one ciprofloxacin mutants did not totally revert when cultured without antibiotic pressure. Azithromycin resistance was related to L4 substitutions Gln-66 → Lys or Gly-70 → Arg; L4 deletion Δ62–65 (Lys-Met-Tyr-Lys) or L22 insertion 83::Val-Ser-Glu-Ala-His-Val-Gly-Lys-Ser; in two chloramphenicol-resistant mutants the 23S rRNA mutation G2372A was detected. GyrA Ala-91 → Val and Asp-95 → Gly and GyrB Glu474 → Lys were detected in ciprofloxacin-resistant mutants. RpoB substitutions Gln-527 → Arg, His-540 → Tyr and Ser-545 → Phe plus Ser-588 → Tyr were detected in rifampicin-resistant mutants. In 5 mutants the effect of efflux pumps on resistance was observed. Antibiotic resistance was mainly related to target mutations and overexpression of efflux pumps, which might underlie microbiological failures during treatments. PMID:27667026

  17. High-throughput phenotyping of chlamydomonas swimming mutants based on nanoscale video analysis.

    PubMed

    Fujita, Shohei; Matsuo, Takuya; Ishiura, Masahiro; Kikkawa, Masahide

    2014-07-15

    Studies on biflagellated algae Chlamydomonas reinhardtii mutants have resulted in significant contributions to our understanding of the functions of cilia/flagella components. However, visual inspection conducted under a microscope to screen and classify Chlamydomonas swimming requires considerable time, effort, and experience. In addition, it is likely that identification of mutants by this screening is biased toward individual cells with severe swimming defects, and mutants that swim slightly more slowly than wild-type cells may be missed by these screening methods. To systematically screen Chlamydomonas swimming mutants, we have here developed the cell-locating-with-nanoscale-accuracy (CLONA) method to identify the cell position to within 10-nm precision through the analysis of high-speed video images. Instead of analyzing the shape of the flagella, which is not always visible in images, we determine the position of Chlamydomonas cell bodies by determining the cross-correlation between a reference image and the image of the cell. From these positions, various parameters related to swimming, such as velocity and beat frequency, can be accurately estimated for each beat cycle. In the examination of wild-type and seven dynein arm mutants of Chlamydomonas, we found characteristic clustering on scatter plots of beat frequency versus swimming velocity. Using the CLONA method, we have screened 38 Chlamydomonas strains and detected believed-novel motility-deficient mutants that would be missed by visual screening. This CLONA method can automate the screening for mutants of Chlamydomonas and contribute to the elucidation of the functions of motility-associated proteins.

  18. High frequency integrated MOS filters

    NASA Technical Reports Server (NTRS)

    Peterson, C.

    1990-01-01

    Several techniques exist for implementing integrated MOS filters. These techniques fit into the general categories of sampled and tuned continuous-time filters. Advantages and limitations of each approach are discussed. This paper focuses primarily on the high frequency capabilities of MOS integrated filters.

  19. A ku70 null mutant improves gene targeting frequency in the fungal pathogen Verticillium dahliae.

    PubMed

    Qi, Xiliang; Su, Xiaofeng; Guo, Huiming; Qi, Juncang; Cheng, Hongmei

    2015-12-01

    To overcome the challenges met with gene deletion in the plant pathogen Verticillium dahliae, a mutant strain with impaired non-homologous end joining DNA repair was generated to improve targeted gene replacement frequencies. A V. dahliae 991 ΔVdku70 null mutant strain was generated using Agrobacterium tumefaciens-mediated transformation. Despite having impaired non-homologous end joining DNA repair function, the ΔVdku70 strain exhibited normal growth, reproduction capability, and pathogenicity when compared with the wild-type strain. When the ΔVdku70 strain was used to delete 2-oxoglutarate dehydrogenase E2, ferric reductase transmembrane component 3 precursor, and ferric reductase transmembrane component 6 genes, gene replacement frequencies ranged between 22.8 and 34.7% compared with 0.3 and 0.5 % in the wild-type strain. The ΔVdku70 strain will be a valuable tool to generate deletion strains when studying factors that underlie virulence and pathogenesis in this filamentous fungus.

  20. A ku70 null mutant improves gene targeting frequency in the fungal pathogen Verticillium dahliae.

    PubMed

    Qi, Xiliang; Su, Xiaofeng; Guo, Huiming; Qi, Juncang; Cheng, Hongmei

    2015-12-01

    To overcome the challenges met with gene deletion in the plant pathogen Verticillium dahliae, a mutant strain with impaired non-homologous end joining DNA repair was generated to improve targeted gene replacement frequencies. A V. dahliae 991 ΔVdku70 null mutant strain was generated using Agrobacterium tumefaciens-mediated transformation. Despite having impaired non-homologous end joining DNA repair function, the ΔVdku70 strain exhibited normal growth, reproduction capability, and pathogenicity when compared with the wild-type strain. When the ΔVdku70 strain was used to delete 2-oxoglutarate dehydrogenase E2, ferric reductase transmembrane component 3 precursor, and ferric reductase transmembrane component 6 genes, gene replacement frequencies ranged between 22.8 and 34.7% compared with 0.3 and 0.5 % in the wild-type strain. The ΔVdku70 strain will be a valuable tool to generate deletion strains when studying factors that underlie virulence and pathogenesis in this filamentous fungus. PMID:26475327

  1. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  2. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  3. Stability analysis of a high fibre yield and low lignin content "thick stem" mutant in tossa jute (Corchorus olitorius L.).

    PubMed

    Mandal, Aninda; Datta, Animesh K

    2014-01-01

    A "thick stem" mutant of Corchorus olitorius L. was induced at M2 (0.50%, 4 h, EMS) and the true breeding mutant is assessed across generations (M5 to M7) considering morphometric traits as well as SEM analysis of pollen grains and raw jute fibres, stem anatomy, cytogenetical attributes, and lignin content in relation to control. Furthermore, single fibre diameter and tensile strength are also analysed. The objective is to assess the stability of mutant for its effective exploration for raising a new plant type in tossa jute for commercial exploitation and efficient breeding. The mutant trait is monogenic recessive to normal. Results indicate that "thick stem" mutant is stable across generations (2n = 14) with distinctive high seed and fibre yield and significantly low lignin content. Stem anatomy of the mutant shows significant enhancement in fibre zone, number of fibre pyramids and fibre bundles per pyramid, and diameter of fibre cell in relation to control. Moreover, tensile strength of mutant fibre is significantly higher than control fibre and the trait is inversely related to fibre diameter. However the mutant is associated with low germination frequency, poor seed viability, and high pollen sterility, which may be eliminated through mutational approach followed by rigorous selection and efficient breeding.

  4. Stability analysis of a high fibre yield and low lignin content "thick stem" mutant in tossa jute (Corchorus olitorius L.).

    PubMed

    Mandal, Aninda; Datta, Animesh K

    2014-01-01

    A "thick stem" mutant of Corchorus olitorius L. was induced at M2 (0.50%, 4 h, EMS) and the true breeding mutant is assessed across generations (M5 to M7) considering morphometric traits as well as SEM analysis of pollen grains and raw jute fibres, stem anatomy, cytogenetical attributes, and lignin content in relation to control. Furthermore, single fibre diameter and tensile strength are also analysed. The objective is to assess the stability of mutant for its effective exploration for raising a new plant type in tossa jute for commercial exploitation and efficient breeding. The mutant trait is monogenic recessive to normal. Results indicate that "thick stem" mutant is stable across generations (2n = 14) with distinctive high seed and fibre yield and significantly low lignin content. Stem anatomy of the mutant shows significant enhancement in fibre zone, number of fibre pyramids and fibre bundles per pyramid, and diameter of fibre cell in relation to control. Moreover, tensile strength of mutant fibre is significantly higher than control fibre and the trait is inversely related to fibre diameter. However the mutant is associated with low germination frequency, poor seed viability, and high pollen sterility, which may be eliminated through mutational approach followed by rigorous selection and efficient breeding. PMID:24860822

  5. Tipping the mutation-selection balance: Limited migration increases the frequency of deleterious mutants.

    PubMed

    Cooper, Jacob D; Neuhauser, Claudia; Dean, Antony M; Kerr, Benjamin

    2015-09-01

    Typical mutation-selection models assume well-mixed populations, but dispersal and migration within many natural populations is spatially limited. Such limitations can lead to enhanced variation among locations as different types become clustered in different places. Such clustering weakens competition between unlike types relative to competition between like types; thus, the rate by which a fitter type displaces an inferior competitor can be affected by the spatial scale of movement. In this paper, we use a birth-death model to show that limited migration can affect asexual populations by creating competitive refugia. We use a moment closure approach to show that as population structure is introduced by limiting migration, the equilibrial frequency of deleterious mutants increases. We support and extend the model through stochastic simulation, and we use a spatially explicit cellular automaton approach to corroborate the results. We discuss the implications of these results for standing variation in structured populations and adaptive valley crossing in Wright's "shifting balance" process.

  6. High Frequency Stable Oscillate boiling

    NASA Astrophysics Data System (ADS)

    Li, Fenfang; Gonzalez-Avila, Silvestre Roberto; Ohl, Claus Dieter

    2015-11-01

    We present an unexpected regime of resonant bubble oscillations on a thin metal film submerged in water, which is continuously heated with a focused CW laser. The oscillatory bubble dynamics reveals a remarkably stable frequency of several 100 kHz and is resolved from the side using video recordings at 1 million frames per second. The emitted sound is measured simultaneously and shows higher harmonics. Once the laser is switched on the water in contact with the metal layer is superheated and an explosively expanding cavitation bubble is generated. However, after the collapse a microbubble is nucleated from the bubble remains which displays long lasting oscillations. Generally, pinch-off from of the upper part of the microbubble is observed generating a continuous stream of small gas bubbles rising upwards. The cavitation expansion, collapse, and the jetting of gas bubbles are detected by the hydrophone and are correlated to the high speed video. We find the bubble oscillation frequency is dependent on the bubble size and surface tension. A preliminary model based on Marangoni flow and heat transfer can explain the high flow velocities observed, yet the origin of bubble oscillation is currently not well understood.

  7. Real-time PCR genotyping assay for canine progressive rod-cone degeneration and mutant allele frequency in Toy Poodles, Chihuahuas and Miniature Dachshunds in Japan.

    PubMed

    Kohyama, Moeko; Tada, Naomi; Mitsui, Hiroko; Tomioka, Hitomi; Tsutsui, Toshihiko; Yabuki, Akira; Rahman, Mohammad Mahbubur; Kushida, Kazuya; Mizukami, Keijiro; Yamato, Osamu

    2016-03-01

    Canine progressive rod-cone degeneration (PRCD) is a middle- to late-onset, autosomal recessive, inherited retinal disorder caused by a substitution (c.5G>A) in the canine PRCD gene that has been identified in 29 or more purebred dogs. In the present study, a TaqMan probe-based real-time PCR assay was developed and evaluated for rapid genotyping and large-scale screening of the mutation. Furthermore, a genotyping survey was carried out in a population of the three most popular breeds in Japan (Toy Poodles, Chihuahuas and Miniature Dachshunds) to determine the current mutant allele frequency. The assay separated all the genotypes of canine PRCD rapidly, indicating its suitability for large-scale surveys. The results of the survey showed that the mutant allele frequency in Toy Poodles was high enough (approximately 0.09) to allow the establishment of measures for the prevention and control of this disorder in breeding kennels. The mutant allele was detected in Chihuahuas for the first time, but the frequency was lower (approximately 0.02) than that in Toy Poodles. The mutant allele was not detected in Miniature Dachshunds. This assay will allow the selective breeding of dogs from the two most popular breeds (Toy Poodle and Chihuahua) in Japan and effective prevention or control of the disorder. PMID:26549343

  8. Real-time PCR genotyping assay for canine progressive rod-cone degeneration and mutant allele frequency in Toy Poodles, Chihuahuas and Miniature Dachshunds in Japan

    PubMed Central

    KOHYAMA, Moeko; TADA, Naomi; MITSUI, Hiroko; TOMIOKA, Hitomi; TSUTSUI, Toshihiko; YABUKI, Akira; RAHMAN, Mohammad Mahbubur; KUSHIDA, Kazuya; MIZUKAMI, Keijiro; YAMATO, Osamu

    2015-01-01

    Canine progressive rod-cone degeneration (PRCD) is a middle- to late-onset, autosomal recessive, inherited retinal disorder caused by a substitution (c.5G>A) in the canine PRCD gene that has been identified in 29 or more purebred dogs. In the present study, a TaqMan probe-based real-time PCR assay was developed and evaluated for rapid genotyping and large-scale screening of the mutation. Furthermore, a genotyping survey was carried out in a population of the three most popular breeds in Japan (Toy Poodles, Chihuahuas and Miniature Dachshunds) to determine the current mutant allele frequency. The assay separated all the genotypes of canine PRCD rapidly, indicating its suitability for large-scale surveys. The results of the survey showed that the mutant allele frequency in Toy Poodles was high enough (approximately 0.09) to allow the establishment of measures for the prevention and control of this disorder in breeding kennels. The mutant allele was detected in Chihuahuas for the first time, but the frequency was lower (approximately 0.02) than that in Toy Poodles. The mutant allele was not detected in Miniature Dachshunds. This assay will allow the selective breeding of dogs from the two most popular breeds (Toy Poodle and Chihuahua) in Japan and effective prevention or control of the disorder. PMID:26549343

  9. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  10. High frequency, high power capacitor development

    NASA Astrophysics Data System (ADS)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  11. Special Aspects in Designing High - Frequency Betatron

    NASA Astrophysics Data System (ADS)

    Filimonov, A. A.; Kasyanov, S. V.; Kasyanov, V. A.

    2016-01-01

    The article is devoted to designing the high - frequency betatron. In high - frequency betatron most important problem is overheating of the elements of the body radiator unit. In an article some directions of solving this problem are shown.

  12. Atomic frequency standards for ultra-high-frequency stability

    NASA Technical Reports Server (NTRS)

    Maleki, L.; Prestage, J. D.; Dick, G. J.

    1987-01-01

    The general features of the Hg-199(+) trapped-ion frequency standard are outlined and compared to other atomic frequency standards, especially the hydrogen maser. The points discussed are those which make the trapped Hg-199(+) standard attractive: high line Q, reduced sensitivity to external magnetic fields, and simplicity of state selection, among others.

  13. Early-life exposure to benzo[a]pyrene increases mutant frequency in spermatogenic cells in adulthood.

    PubMed

    Xu, Guogang; McMahan, C Alex; Walter, Christi A

    2014-01-01

    Children are vulnerable to environmental mutagens, and the developing germline could also be affected. However, little is known about whether exposure to environmental mutagens in childhood will result in increased germline mutations in subsequent adult life. In the present study, male transgenic lacI mice at different ages (7, 25 and 60 days old) were treated with a known environmental mutagen (benzo[a]pyrene, B[a]P) at different doses (0, 50, 200 or 300 mg/kg body weight). Mutant frequency was then determined in a meiotic cell type (pachytene spermatocyte), a post-meiotic cell type (round spermatid) and epididymal spermatozoa after at least one cycle of spermatogenesis. Our results show that 1) mice treated with B[a]P at 7 or 25 days old, both being pre-adult ages, had significantly increased mutant frequencies in all spermatogenic cell types tested when they were 60 days old; 2) spermatogenic cells from mice treated before puberty were more susceptible to B[a]P-associated mutagenesis compared to adult mice; and 3) unexpectedly, epididymal spermatozoa had the highest mutant frequency among the spermatogenic cell types tested. These data show that pre-adult exposure to B[a]P increases the male germline mutant frequency in young adulthood. The data demonstrate that exposure to environmental genotoxins at different life phases (e.g., pre-adult and adult) can have differential effects on reproductive health.

  14. High frequency-heated air turbojet

    NASA Technical Reports Server (NTRS)

    Miron, J. H. D.

    1986-01-01

    A description is given of a method to heat air coming from a turbojet compressor to a temperature necessary to produce required expansion without requiring fuel. This is done by high frequency heating, which heats the walls corresponding to the combustion chamber in existing jets, by mounting high frequency coils in them. The current transformer and high frequency generator to be used are discussed.

  15. High Frequency Chandler Wobble Excitation

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Stuck, J.; Thomas, M.

    2003-04-01

    and OMCT forcing fields give no hint for increased excitation power in the Chandler band. Thus it is assumed, that continuous high frequency excitation due to stochastic weather phenomena is responsible for the perpetuation of the Chandler wobble.

  16. High Frequency Electronic Packaging Technology

    NASA Technical Reports Server (NTRS)

    Herman, M.; Lowry, L.; Lee, K.; Kolawa, E.; Tulintseff, A.; Shalkhauser, K.; Whitaker, J.; Piket-May, M.

    1994-01-01

    Commercial and government communication, radar, and information systems face the challenge of cost and mass reduction via the application of advanced packaging technology. A majority of both government and industry support has been focused on low frequency digital electronics.

  17. Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures.

    PubMed

    Hong, Suk-Whan; Lee, Ung; Vierling, Elizabeth

    2003-06-01

    Plants acquire thermotolerance to lethal high temperatures if first exposed to moderately high temperature or if temperature is increased gradually to an otherwise lethal temperature. We have taken a genetic approach to dissecting acquired thermotolerance by characterizing loss-of-function thermotolerance mutants in Arabidopsis. In previous work, we identified single recessive alleles of four loci required for thermotolerance of hypocotyl elongation, hot1-1, hot2-1, hot3-1, and hot4-1. Completed screening of M2 progeny from approximately 2500 M1 plants has now identified new alleles of three of these original loci, along with three new loci. The low mutant frequency suggests that a relatively small number of genes make a major contribution to this phenotype or that other thermotolerance genes encode essential or redundant functions. Further analysis of the original four loci was performed to define the nature of their thermotolerance defects. Although the HOT1 locus was shown previously to encode a major heat shock protein (Hsp), Hsp101, chromosomal map positions indicate that HOT2, 3, and 4 do not correspond to major Hsp or heat shock transcription factor genes. Measurement of thermotolerance at different growth stages reveals that the mutants have growth stage-specific heat sensitivity. Analysis of Hsp accumulation shows that hot2 and hot4 produce normal levels of Hsps, whereas hot3 shows reduced accumulation. Thermotolerance of luciferase activity and of ion leakage also varies in the mutants. These data provide the first direct genetic evidence, to our knowledge, that distinct functions, independent of Hsp synthesis, are required for thermotolerance, including protection of membrane integrity and recovery of protein activity/synthesis. PMID:12805605

  18. 75 FR 81284 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... SECURITY Coast Guard Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology... of High Frequency (HF) and Ultra High Frequency (UHF) Sound Navigation and Ranging (SONAR) Technology... in the January 17, 2008, issue of the Federal Register (73 FR 3316). Background and Purpose...

  19. Transponder System for High-Frequency Ranging

    NASA Technical Reports Server (NTRS)

    Lichtenberg, C. L.; Shores, P. W.; Kobayashi, H. S.

    1986-01-01

    Transponder system uses phase difference between transmitted and reflected high-frequency radio waves to measure distance to target. To suppress spurious measurements of reflections from objects near target at transmitted frequency and its harmonics, transponder at target generates return signal at half transmitted frequency. System useful in such applications as surveying, docking of ships, and short-range navigation.

  20. Propagation of high frequencies in Scandinavia

    SciTech Connect

    Bame, D.

    1989-04-01

    To determine if seismic signals at frequencies up to 50 Hz are useful for detecting events and discriminating between earthquakes and explosions, approximately 180 events from the three-component high-frequency seismic element (HFSE) installed at the center of the Norwegian Regional Seismic Array (NRSA) have been analyzed. The attenuation of high-frequency signals in Scandinavia varies with distance, azimuth, magnitude, and source effects. Most of the events were detected with HFSE, although detections were better on the NRSA where signal processing techniques were used. Based on a preliminary analysis, high-frequency data do not appear to be a useful discriminant in Scandinavia. 21 refs., 29 figs., 3 tabs.

  1. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  2. Lightning protection devices for high frequencies equipments

    SciTech Connect

    Pierre, J.

    1983-01-01

    Contents: Mechanism of a Lightning Stroke from Antenna to Ground; Principles of Protection Devices for Feeders; Electrical Characteristics of H.F. Protection Devices; Calculation of H.F. Protection Devices; Catalogue Devices for High Frequency Protection; Some Measurement Results for Tees; Measurement Results for Decoupling Line Devices; Installation of High Frequency Devices.

  3. Psychophysical tuning curves at very high frequencies

    NASA Astrophysics Data System (ADS)

    Yasin, Ifat; Plack, Christopher J.

    2005-10-01

    For most normal-hearing listeners, absolute thresholds increase rapidly above about 16 kHz. One hypothesis is that the high-frequency limit of the hearing-threshold curve is imposed by the transmission characteristics of the middle ear, which attenuates the sound input [Masterton et al., J. Acoust. Soc. Am. 45, 966-985 (1969)]. An alternative hypothesis is that the high-frequency limit of hearing is imposed by the tonotopicity of the cochlea [Ruggero and Temchin, Proc. Nat. Acad. Sci. U.S.A. 99, 13206-13210 (2002)]. The aim of this study was to test these hypotheses. Forward-masked psychophysical tuning curves (PTCs) were derived for signal frequencies of 12-17.5 kHz. For the highest signal frequencies, the high-frequency slopes of some PTCs were steeper than the slope of the hearing-threshold curve. The results also show that the human auditory system displays frequency selectivity for characteristic frequencies (CFs) as high as 17 kHz, above the frequency at which absolute thresholds begin to increase rapidly. The findings suggest that, for CFs up to 17 kHz, the high-frequency limitation in humans is imposed in part by the middle-ear attenuation, and not by the tonotopicity of the cochlea.

  4. Apparatus for measuring high frequency currents

    NASA Technical Reports Server (NTRS)

    Hagmann, Mark J. (Inventor); Sutton, John F. (Inventor)

    2003-01-01

    An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.

  5. Ultra-High-Frequency Capacitive Displacement Sensor

    NASA Technical Reports Server (NTRS)

    Vanzandt, Thomas R.; Kenny, Thomas W.; Kaiser, William J.

    1994-01-01

    Improved class of compact, high-resolution capacitive displacement sensors operates at excitation frequency of 915 MHz and measures about 7.5 by 4 by 2 centimeters. Contains commercially available 915-MHz oscillator and transmission-line resonator. Resonator contains stripline inductor in addition to variable capacitor. Ultrahigh excitation frequency offers advantages of resolution and frequency response. Not deleteriously affected by mechanical overdriving, or contact between electrodes.

  6. Bilirubin UDP-Glucuronosyltransferase 1A1 (UGT1A1) Gene Promoter Polymorphisms and HPRT, Glycophorin A, and Micronuclei Mutant Frequencies in Human Blood

    SciTech Connect

    Grant, D; Hall, I J; Eastmond, D; Jones, I M; Bell, D A

    2004-10-06

    A dinucleotide repeat polymorphism (5-, 6-, 7-, or 8-TA units) has been identified within the promoter region of UDP-glucuronosyltransferase 1A1 gene (UGT1A1). The 7-TA repeat allele has been associated with elevated serum bilirubin levels that cause a mild hyperbilirubinemia (Gilbert's syndrome). Studies suggest that promoter transcriptional activity of UGT1A1 is inversely related to the number of TA repeats and that unconjugated bilirubin concentration increases directly with the number of TA repeat elements. Because bilirubin is a known antioxidant, we hypothesized that UGT1A1 repeats associated with higher bilirubin may be protective against oxidative damage. We examined the effect of UGT1A1 genotype on somatic mutant frequency in the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) gene in human lymphocytes and the glycophorin A (GPA) gene of red blood cells (both N0, NN mutants), and the frequency of lymphocyte micronuclei (both kinetochore (K) positive or micronuclei K negative) in 101 healthy smoking and nonsmoking individuals. As hypothesized, genotypes containing 7-TA and 8-TA displayed marginally lower GPA{_}NN mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). In contrast, our analysis showed that lower expressing UGT1A1 alleles (7-TA and 8-TA) were associated with modestly increased HPRT mutation frequency (p<0.05) while the same low expression genotypes were not significantly associated with micronuclei frequencies (K-positive or K-negative) when compared to high expression genotypes (5-TA and 6-TA). We found weak evidence that UGT1A1 genotypes containing 7-TA and 8-TA were associated with increased GPA{_}N0 mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). These data suggest that UGT1A1 genotype may modulate somatic mutation of some types, in some cell lineages, by a mechanism not involving bilirubin antioxidant activity. More detailed studies examining UGT1A1 promoter variation, oxidant/antioxidant balance and genetic

  7. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... SECURITY Coast Guard Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology...) and Ultra High Frequency (UHF) Sound Navigation and Ranging (SONAR) Technology and Finding of No... less than two weeks; however, for environmental disasters such as the Deepwater Horizon oil...

  8. High frequency pressure oscillator for microcryocoolers

    NASA Astrophysics Data System (ADS)

    Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  9. High frequency pressure oscillator for microcryocoolers.

    PubMed

    Vanapalli, S; ter Brake, H J M; Jansen, H V; Zhao, Y; Holland, H J; Burger, J F; Elwenspoek, M C

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5 MPa and compression volume of about 22.6 mm(3) when operating the actuator with a peak-to-peak sinusoidal voltage of 100 V at a frequency of 1 kHz. The electrical power input was 2.73 W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  10. Neural coding of high-frequency tones

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1976-01-01

    Available evidence was presented indicating that neural discharges in the auditory nerve display characteristic periodicities in response to any tonal stimulus including high-frequency stimuli, and that this periodicity corresponds to the subjective pitch.

  11. Overview of the Advanced High Frequency Branch

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  12. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  13. Real-Time PCR Genotyping Assay for GM2 Gangliosidosis Variant 0 in Toy Poodles and the Mutant Allele Frequency in Japan

    PubMed Central

    RAHMAN, Mohammad Mahbubur; YABUKI, Akira; KOHYAMA, Moeko; MITANI, Sawane; MIZUKAMI, Keijiro; UDDIN, Mohammad Mejbah; CHANG, Hye-Sook; KUSHIDA, Kazuya; KISHIMOTO, Miori; YAMABE, Remi; YAMATO, Osamu

    2013-01-01

    ABSTRACT GM2 gangliosidosis variant 0 (Sandhoff disease, SD) is a fatal, progressive neurodegenerative lysosomal storage disease caused by mutations of the HEXB gene. In canine SD, a pathogenic mutation (c.283delG) of the canine HEXB gene has been identified in toy poodles. In the present study, a TaqMan probe-based real-time PCR genotyping assay was developed and evaluated for rapid and large-scale genotyping and screening for this mutation. Furthermore, a genotyping survey was carried out in a population of toy poodles in Japan to determine the current mutant allele frequency. The real-time PCR assay clearly showed all genotypes of canine SD. The assay was suitable for large-scale survey as well as diagnosis, because of its high throughput and rapidity. The genotyping survey demonstrated a carrier frequency of 0.2%, suggesting that the current mutant allele frequency is low in Japan. However, there may be population stratification in different places, because of the founder effect by some carriers. Therefore, this new assay will be useful for the prevention and control of SD in toy poodles. PMID:24161966

  14. Stability Analysis of a High Fibre Yield and Low Lignin Content “Thick Stem” Mutant in Tossa Jute (Corchorus olitorius L.)

    PubMed Central

    Mandal, Aninda; Datta, Animesh K.

    2014-01-01

    A “thick stem” mutant of Corchorus olitorius L. was induced at M2 (0.50%, 4 h, EMS) and the true breeding mutant is assessed across generations (M5 to M7) considering morphometric traits as well as SEM analysis of pollen grains and raw jute fibres, stem anatomy, cytogenetical attributes, and lignin content in relation to control. Furthermore, single fibre diameter and tensile strength are also analysed. The objective is to assess the stability of mutant for its effective exploration for raising a new plant type in tossa jute for commercial exploitation and efficient breeding. The mutant trait is monogenic recessive to normal. Results indicate that “thick stem” mutant is stable across generations (2n = 14) with distinctive high seed and fibre yield and significantly low lignin content. Stem anatomy of the mutant shows significant enhancement in fibre zone, number of fibre pyramids and fibre bundles per pyramid, and diameter of fibre cell in relation to control. Moreover, tensile strength of mutant fibre is significantly higher than control fibre and the trait is inversely related to fibre diameter. However the mutant is associated with low germination frequency, poor seed viability, and high pollen sterility, which may be eliminated through mutational approach followed by rigorous selection and efficient breeding. PMID:24860822

  15. Extremely high frequency RF effects on electronics.

    SciTech Connect

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  16. [Evaluation of penicillin expandase mutants and complex substrate inhibition characteristics at high concentrations of penicillin G].

    PubMed

    Wu, Linjun; Fan, Keqiang; Ji, Junjie; Yang, Keqian

    2015-12-01

    Penicillin expandase, also known as deacetoxycephalosporin C synthase (DAOCS), is an essential enzyme involved in cephalosporin C biosynthesis. To evaluate the catalytic behaviors of penicillin expandase under high penicillin G concentration and to identify mutants suitable for industrial applications, the specific activities of wild-type DAOCS and several mutants with increased activities toward penicillin G were determined by HPLC under high penicillin G concentrations. Their specific activity profiles were compared with theoretical predictions by different catalytic dynamics models. We evaluated the specific activities of wild-type DAOCS and previous reported high-activity mutants H4, H5, H6 and H7 at concentrations ranging from 5.6 to 500 mmol/L penicillin G. The specific activities of wild-type DAOCS and mutant H4 increased as penicillin G concentration increased, but decreased when concentrations of substrate go above 200 mmol/L. Other mutants H5, H6 and H7 showed more complex behaviors under high concentration of penicillin G. Among all tested enzymes, mutant H6 showed the highest activity when concentration of penicillin G is above 100 mmol/L. Our results revealed that the substrate inhibition to wild-type DAOCS' by penicillin G is noncompetitive. Other DAOCS mutants showed more complex trends in their specific activities at high concentration of penicillin G (>100 mmol/L), indicating more complex substrate inhibition mechanism might exist. The substrate inhibition and activity of DAOCS mutants at high penicillin G concentration provide important insight to help select proper mutants for industrial application. PMID:27093832

  17. Rapid, Sensitive, and Accurate Evaluation of Drug Resistant Mutant (NS5A-Y93H) Strain Frequency in Genotype 1b HCV by Invader Assay.

    PubMed

    Yoshimi, Satoshi; Ochi, Hidenori; Murakami, Eisuke; Uchida, Takuro; Kan, Hiromi; Akamatsu, Sakura; Hayes, C Nelson; Abe, Hiromi; Miki, Daiki; Hiraga, Nobuhiko; Imamura, Michio; Aikata, Hiroshi; Chayama, Kazuaki

    2015-01-01

    Daclatasvir and asunaprevir dual oral therapy is expected to achieve high sustained virological response (SVR) rates in patients with HCV genotype 1b infection. However, presence of the NS5A-Y93H substitution at baseline has been shown to be an independent predictor of treatment failure for this regimen. By using the Invader assay, we developed a system to rapidly and accurately detect the presence of mutant strains and evaluate the proportion of patients harboring a pre-treatment Y93H mutation. This assay system, consisting of nested PCR followed by Invader reaction with well-designed primers and probes, attained a high overall assay success rate of 98.9% among a total of 702 Japanese HCV genotype 1b patients. Even in serum samples with low HCV titers, more than half of the samples could be successfully assayed. Our assay system showed a better lower detection limit of Y93H proportion than using direct sequencing, and Y93H frequencies obtained by this method correlated well with those of deep-sequencing analysis (r = 0.85, P <0.001). The proportion of the patients with the mutant strain estimated by this assay was 23.6% (164/694). Interestingly, patients with the Y93H mutant strain showed significantly lower ALT levels (p=8.8 x 10-4), higher serum HCV RNA levels (p=4.3 x 10-7), and lower HCC risk (p=6.9 x 10-3) than those with the wild type strain. Because the method is both sensitive and rapid, the NS5A-Y93H mutant strain detection system established in this study may provide important pre-treatment information valuable not only for treatment decisions but also for prediction of disease progression in HCV genotype 1b patients. PMID:26083687

  18. High power radio frequency attenuation device

    DOEpatents

    Kerns, Quentin A.; Miller, Harold W.

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  19. High power, high frequency, vacuum flange

    DOEpatents

    Felker, B.; McDaniel, M.R.

    1993-03-23

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counter bores surrounding the waveguide tubes. When the sections are bolted together the counter bores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  20. High power, high frequency, vacuum flange

    DOEpatents

    Felker, Brian; McDaniel, Michael R.

    1993-01-01

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counterbores surrounding the waveguide tubes. When the sections are bolted together the counterbores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  1. Navy Applications of High-Frequency Acoustics

    NASA Astrophysics Data System (ADS)

    Cox, Henry

    2004-11-01

    Although the emphasis in underwater acoustics for the last few decades has been in low-frequency acoustics, motivated by long range detection of submarines, there has been a continuing use of high-frequency acoustics in traditional specialized applications such as bottom mapping, mine hunting, torpedo homing and under ice navigation. The attractive characteristics of high-frequency sonar, high spatial resolution, wide bandwidth, small size and relatively low cost must be balanced against the severe range limitation imposed by attenuation that increases approximately as frequency-squared. Many commercial applications of acoustics are ideally served by high-frequency active systems. The small size and low cost, coupled with the revolution in small powerful signal processing hardware has led to the consideration of more sophisticated systems. Driven by commercial applications, there are currently available several commercial-off-the-shelf products including acoustic modems for underwater communication, multi-beam fathometers, side scan sonars for bottom mapping, and even synthetic aperture side scan sonar. Much of the work in high frequency sonar today continues to be focused on specialized applications in which the application is emphasized over the underlying acoustics. Today's vision for the Navy of the future involves Autonomous Undersea Vehicles (AUVs) and off-board ASW sensors. High-frequency acoustics will play a central role in the fulfillment of this vision as a means of communication and as a sensor. The acoustic communication problems for moving AUVs and deep sensors are discussed. Explicit relationships are derived between the communication theoretic description of channel parameters in terms of time and Doppler spreads and ocean acoustic parameters, group velocities, phase velocities and horizontal wavenumbers. Finally the application of synthetic aperture sonar to the mine hunting problems is described.

  2. Inhalation of benzene leads to an increase in the mutant frequencies of a lacI transgene in lung and spleen tissues of mice.

    PubMed

    Mullin, A H; Rando, R; Esmundo, F; Mullin, D A

    1995-03-01

    The goal of this study was to determine if inhalation of benzene leads to an increase in the mutant frequencies in the tissues of male C57BL/6 mice. Mutant frequencies were measured using a previously described assay in which bacteriophage lambda lacI transgenes are rescued from mouse genomic DNA as infectious phage and scored for their LacI phenotype. Eight experimental mice were exposed to a target concentration of 300 ppm of benzene for 6 h/day x 5 days/week x 12 weeks, and eight control mice were treated similarly except that they were not exposed to benzene. Mutant frequencies were calculated as the ratio of LacI-/total phage recovered from organs of interest. The mean mutant frequency measured in lung tissues of mice exposed to benzene was (10.6 +/- 1.4) x 10(-5), which is about 1.7-fold higher than that of the unexposed controls. In spleen tissues from benzene-exposed mice the mean mutation frequency was (12.6 +/- 4.1) x 10(-5), which is about 1.5-fold higher than that of spleen tissues from unexposed controls. The differences in mean mutant frequencies between benzene-exposed and unexposed lung and spleen tissues are statistically significant. In liver tissues, however, the mean mutant frequencies of benzene-exposed mice and unexposed mice are not significantly different. These results demonstrate that inhaled benzene results in a statistically significant increase in the mutant frequencies in lung and spleen, but not in liver tissues of mice.

  3. High frequency III–V nanowire MOSFETs

    NASA Astrophysics Data System (ADS)

    Lind, Erik

    2016-09-01

    III–V nanowire transistors are promising candidates for very high frequency electronics applications. The improved electrostatics originating from the gate-all-around geometry allow for more aggressive scaling as compared with planar field-effect transistors, and this can lead to device operation at very high frequencies. The very high mobility possible with In-rich devices can allow very high device performance at low operating voltages. GaN nanowires can take advantage of the large band gap for high voltage operation. In this paper, we review the basic physics and device performance of nanowire field- effect transistors relevant for high frequency performance. First, the geometry of lateral and vertical nanowire field-effect transistors is introduced, with special emphasis on the parasitic capacitances important for nanowire geometries. The basic important high frequency transistor metrics are introduced. Secondly, the scaling properties of gate-all-around nanowire transistors are introduced, based on geometric length scales, demonstrating the scaling possibilities of nanowire transistors. Thirdly, to model nanowire transistor performance, a two-band non-parabolic ballistic transistor model is used to efficiently calculate the current and transconductance as a function of band gap and nanowire size. The intrinsic RF metrics are also estimated. Finally, experimental state-of-the-art nanowire field-effect transistors are reviewed and benchmarked, lateral and vertical transistor geometries are explored, and different fabrication routes are highlighted. Lateral devices have demonstrated operation up to 350 GHz, and vertical devices up to 155 GHz.

  4. High frequency III-V nanowire MOSFETs

    NASA Astrophysics Data System (ADS)

    Lind, Erik

    2016-09-01

    III-V nanowire transistors are promising candidates for very high frequency electronics applications. The improved electrostatics originating from the gate-all-around geometry allow for more aggressive scaling as compared with planar field-effect transistors, and this can lead to device operation at very high frequencies. The very high mobility possible with In-rich devices can allow very high device performance at low operating voltages. GaN nanowires can take advantage of the large band gap for high voltage operation. In this paper, we review the basic physics and device performance of nanowire field- effect transistors relevant for high frequency performance. First, the geometry of lateral and vertical nanowire field-effect transistors is introduced, with special emphasis on the parasitic capacitances important for nanowire geometries. The basic important high frequency transistor metrics are introduced. Secondly, the scaling properties of gate-all-around nanowire transistors are introduced, based on geometric length scales, demonstrating the scaling possibilities of nanowire transistors. Thirdly, to model nanowire transistor performance, a two-band non-parabolic ballistic transistor model is used to efficiently calculate the current and transconductance as a function of band gap and nanowire size. The intrinsic RF metrics are also estimated. Finally, experimental state-of-the-art nanowire field-effect transistors are reviewed and benchmarked, lateral and vertical transistor geometries are explored, and different fabrication routes are highlighted. Lateral devices have demonstrated operation up to 350 GHz, and vertical devices up to 155 GHz.

  5. High frequency ultrasonic scattering by biological tissues

    NASA Astrophysics Data System (ADS)

    Shung, K. Kirk; Maruvada, Subha

    2002-05-01

    High frequency (HF) diagnostic ultrasonic imaging devices at frequencies higher than 20 MHz have found applications in ophthalmology, dermatology, and vascular surgery. To be able to interpret these images and to further the development of these devices, a better understanding of ultrasonic scattering in biological tissues such as blood, liver, myocardium in the high frequency range is crucial. This work has previously been hampered by the lack of suitable transducers. With the availability of HF transducers going to 90 MHz, HF attenuation and backscatter experiments have been made on porcine red blood cell (RBC) suspensions, for which much data on attenuation and backscatter can be found in the literature in the lower frequency range for frequencies, from 30 to 90 MHz and on bovine tissues for frequencies from 10 to 30 MHz using a modified substitution method that allow the utilization of focused transducers. These results will be reviewed in this talk along with relevant theoretical models that could be applied to interpreting them. The relevance of the parameter that has been frequently used in the biomedical ultrasound literature to describe backscattering, the backscattering coefficient, will be critically examined.

  6. High-frequency micromechanical columnar resonators

    NASA Astrophysics Data System (ADS)

    Kehrbusch, Jenny; Ilin, Elena A.; Bozek, Peter; Radzio, Bernhard; Oesterschulze, Egbert

    2009-06-01

    High-frequency silicon columnar microresonators are fabricated using a simple but effective technological scheme. An optimized fabrication scheme was invented to obtain mechanically protected microcolumns with lateral dimensions controlled on a scale of at least 1 μm. In this paper, we investigate the influence of the environmental conditions on the mechanical resonator properties. At ambient conditions, we observed a frequency stability δf/f of less than 10-6 during 5 h of operation at almost constant temperature. However, varying the temperature shifts the frequency by approximately -173 Hz °C- 1. In accordance with a viscous damping model of the ambient gas, we perceived that the quality factor of the first flexural mode decreased with the inverse of the square root of pressure. However, in the low-pressure regime, a linear dependence was observed. We also investigated the influence of the type of the immersing gas on the resonant frequency.

  7. High carrier frequency of 21-hydroxylase deficiency in Cyprus.

    PubMed

    Phedonos, A A P; Shammas, C; Skordis, N; Kyriakides, T C; Neocleous, V; Phylactou, L A

    2013-12-01

    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is a common autosomal recessive disorder caused by mutations in the CYP21A2 gene. The carrier frequency of CYP21A2 mutations has been estimated to be 1:25 to 1:10 on the basis of newborn screening. The main objective of this study was to determine the carrier frequency in the Cypriot population of mutations in the CYP21A2 gene. Three hundred unrelated subjects (150 males and 150 females) from the general population of Cyprus were screened for mutations in the CYP21A2 gene and its promoter. The CYP21A2 genotype analysis identified six different mutants and revealed a carrier frequency of 9.83% with the mild p.Val281Leu being the most frequent (4.3%), followed by p.Qln318stop (2.5%), p.Pro453Ser (1.33%), p.Val304Met (0.83%), p.Pro482Ser (0.67%) and p.Met283Val (0.17%). The notable high CYP21A2 carrier frequency of the Cypriot population is one of the highest reported so far by genotype analysis. Knowledge of the mutational spectrum of CYP21A2 will enable to optimize mutation detection strategy for genetic diagnosis of 21-OHD not only in Cyprus, but also the greater Mediterranean region.

  8. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  9. Metrology For High-Frequency Nanoelectronics

    SciTech Connect

    Wallis, T. Mitch; Imtiaz, Atif; Nembach, Hans T.; Rice, Paul; Kabos, Pavel

    2007-09-26

    Two metrological tools for high-frequency measurements of nanoscale systems are described: (i) two/N-port analysis of nanoscale devices as well as (ii) near-field scanning microwave microscopy (NSMM) for materials characterization. Calibrated two/N-port measurements were made on multiwalled carbon nanotubes (MWNT) welded to a coplanar waveguide. Significant changes in the extracted high-frequency electrical response of the welded MWNT were measured when the contacts to the MWNT were modified. Additionally, NSMM was used to characterize films of nanotube soot deposited on copper and sapphire substrates. The material properties of the films showed a strong dependence on the substrate material.

  10. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  11. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  12. Selection of the Mutants with High Hydroquinone Degradation Ability of Serratia Marcesscen by Plasma Mutation

    NASA Astrophysics Data System (ADS)

    Yao, Risheng; You, Qidong; He, Weijing; Zhu, Huixia

    2009-06-01

    In this study, an efficient way by plasma induced mutation was applied to improve the hydroquinone degradation capacity of Serratia marcescens AB 90027 (SM27). The results showed that combined with the selection of hydroquinone tolerance, the mutant with high hydroquinone degradation ability induced by plasma could be achieved. The best dose for plasma mutation was 15 s, which showed a 47.0% higher positive mutation ratio. Besides, the aimed mutant was markedly different from the parent strain (SM27) in colonial traits while cultivated on Kings media. Finally, the hydroquinone degradation ratio reached 70.5% using the induced mutant strain with 1500 mg/L hydroquinone (HQ) after 15 days of cultivation as the selective conditions; however, it was only 46.7% for SM27. The improvement of the degradation capacity by the induced mutant with a high concentration of HQ selection was attributed to its faster growth and higher hydroquinone tolerance compared with that of the parent strain.

  13. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    PubMed Central

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  14. Ionospheric modifications in high frequency heating experiments

    SciTech Connect

    Kuo, Spencer P.

    2015-01-15

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  15. Optical generation of narrowband high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Hung, Shi-Yao; Hsieh, Bao-Yu; Li, Pai-Chi

    2014-03-01

    We propose a multilayer film structure to generate high frequency and narrowband ultrasound. It consists of three light-absorbing layers and two light-transmittance layers. The amplitude is tunable by adjusting the optical absorption coefficient of light-absorbing layers. The delay can be adjusted by changing thicknesses of light-transmittance layers. In one example, the generated high frequency narrowband ultrasound signal has a center frequency of 18.4MHz and 32.6% fractional bandwidth using the proposed multilayer structure. Compared with this result, the single layer structure produces a center frequency of 20.2MHz and 125.7% fractional bandwidth. In addition, a single laser pulse was employed to generate US on the multilayer film as an US source and PA signals of the high optical absorption region of the phantom at the same time. Because the spectral characteristics of the ultrasound signals generated by the multi-layer film are tunable, it can be designed such that the US echo and PA echo are spectrally separable, thus enabling simultaneous US/PA imaging using only a single laser pulse. Feasibility of this proposed method was demonstrated by imaging of a cyst-like phantom.

  16. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-10-01

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  17. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-12-31

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  18. High Frequency Laser-Based Ultrasound

    SciTech Connect

    Huber, R; Chinn, D; Balogun, O; Murray, T

    2005-09-12

    To obtain micrometer resolution of materials using acoustics requires frequencies around 1 GHz. Attenuation of such frequencies is high, limiting the thickness of the parts that can be characterized. Although acoustic microscopes can operate up to several GHz in frequency, they are used primarily as a surface characterization tool. The use of a pulsed laser for acoustic generation allows generation directly in the part, eliminating the loss of energy associated with coupling the energy from a piezoelectric transducer to the part of interest. The use of pulsed laser acoustic generation in combination with optical detection is investigated for the non-contact characterization of materials with features that must be characterized to micrometer resolution.

  19. High-frequency resonant-tunneling oscillators

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Parker, C. D.; Calawa, A. R.; Manfra, M. J.; Chen, C. L.

    1991-01-01

    Advances in high-frequency resonant-tunneling-diode (RTD) oscillators are described. Oscillations up to a frequency of 420 GHz have been achieved in the GaAs/AlAs system. Recent results obtained with In0.53Ga0.47As/AlAs and InAs/AlSb RTDs show a greatly increased power density and indicate the potential for fundamental oscillations up to about 1 THz. These results are consistent with a lumped-element equivalent circuit model of the RTD. The model shows that the maximum oscillation frequency of the GaAs/AlAs RTDs is limited primarily by series resistance, and that the power density is limited by low peak-to-valley current ratio.

  20. Development of DNA markers for newly identified high-oleate peanut mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of high-oleate cultivars is one of the important objectives of peanut breeding because consuming products containing high oleate can benefit human health in many aspects. By screening the entire USDA cultivated peanut collection, we have identified two new high-oleate mutants (PI 342664...

  1. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  2. Noise temperature in graphene at high frequencies

    NASA Astrophysics Data System (ADS)

    Rengel, Raúl; Iglesias, José M.; Pascual, Elena; Martín, María J.

    2016-07-01

    A numerical method for obtaining the frequency-dependent noise temperature in monolayer graphene is presented. From the mobility and diffusion coefficient values provided by Monte Carlo simulation, the noise temperature in graphene is studied up to the THz range, considering also the influence of different substrate types. The influence of the applied electric field is investigated: the noise temperature is found to increase with the applied field, dropping down at high frequencies (in the sub-THz range). The results show that the low-frequency value of the noise temperature in graphene on a substrate tends to be reduced as compared to the case of suspended graphene due to the important effect of remote polar phonon interactions, thus indicating a reduced emitted noise power; however, at very high frequencies the influence of the substrate tends to be significantly reduced, and the differences between the suspended and on-substrate cases tend to be minimized. The values obtained are comparable to those observed in GaAs and semiconductor nitrides.

  3. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  4. Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress.

    PubMed

    Müller-Moulé, Patricia; Golan, Talila; Niyogi, Krishna K

    2004-03-01

    Acclimation to changing environments, such as increases in light intensity, is necessary, especially for the survival of sedentary organisms like plants. To learn more about the importance of ascorbate in the acclimation of plants to high light (HL), vtc2, an ascorbate-deficient mutant of Arabidopsis, and the double mutants vtc2npq4 and vtc2npq1 were tested for growth in low light and HL and compared with the wild type. The vtc2 mutant has only 10% to 30% of wild-type levels of ascorbate, vtc2npq4 has lower ascorbate levels and lacks non-photochemical quenching of chlorophyll fluorescence (NPQ) because of the absence of the photosystem II protein PsbS, and vtc2npq1 is NPQ deficient and also lacks zeaxanthin in HL but has PsbS. All three genotypes were able to grow in HL and had wild-type levels of Lhcb1, cytochrome f, PsaF, and 2-cysteine peroxiredoxin. However, the mutants had lower electron transport and oxygen evolution rates and lower quantum efficiency of PSII compared with the wild type, implying that they experienced chronic photooxidative stress. The mutants lacking NPQ in addition to ascorbate were only slightly more affected than vtc2. All three mutants had higher glutathione levels than the wild type in HL, suggesting a possible compensation for the lower ascorbate content. These results demonstrate the importance of ascorbate for the long-term acclimation of plants to HL.

  5. Radome structures for high frequency applications

    NASA Astrophysics Data System (ADS)

    Hager, W.

    The optimization of radome structures for high-frequency applications is examined for the cases of thin-walled radomes, thick-walled radomes, sandwich radomes, and multilayer radomes. Examples of applications are briefly described, including radomes in an ECM-pod of a Tornado aircraft, a radome for a mobile two-dimensional radar installation, and a radome for a millimeter wave search radar.

  6. Quantitative EEG analysis of depth electrode recordings from several brain regions of mutant hamsters with paroxysmal dystonia discloses frequency changes in the basal ganglia.

    PubMed

    Gernert, M; Richter, A; Rundfeldt, C; Löscher, W

    1998-05-01

    Computerized EEG spectral analyses of depth electrode recordings from striatum (caudate/putamen; CPu), globus pallidus (GP), and parietal cortex (pCtx) were performed before and after dystonic attacks in freely moving mutant dt(sz) hamsters with paroxysmal dystonia. In these hamsters, sustained attacks of abnormal movements and postures can be reproducibly induced by stress, such as placing the animals in a new environment. Data recorded from mutant hamsters were compared with recordings from age-matched nondystonic control hamsters. The predominant EEG changes in CPu and GP of dystonic hamsters were significant decreases in the high-frequency beta2 range and there was a tendency to increase in delta and theta activities. These changes were seen both before and after onset of dystonic attacks, indicating a permanent disturbance of neural activities in the basal ganglia of dystonic animals. No such changes were seen in the pCtx. Furthermore, no epileptic or epileptiform activity was seen in any of the recordings, substantiating a previous notion from cortical and hippocampal recordings that paroxysmal dystonia in these mutant hamsters has no epileptogenic basis. The present finding of abnormal synchronization of neural activity in the CPu and GP of dystonic hamsters adds to the belief that the striatopallidal-thalamocortical circuit is the most likely site in which to search for the unknown defect in primary (idiopathic) dystonia. As suggested by this study, quantitative EEG analysis can increase the likelihood of detecting subtle EEG abnormalities in different types of idiopathic dystonia and thereby improves our understanding of the pathogenetic mechanisms of this movement disorder.

  7. Performance of annular high frequency thermoacoustic engines

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ivan A.

    This thesis presents studies of the behavior of miniature annular thermoacoustic prime movers and the imaging of the complex sound fields using PIV inside the small acoustic wave guides when driven by a temperature gradient. Thermoacoustic engines operating in the standing wave mode are limited in their acoustic efficiency by a high degree of irreversibility that is inherent in how they work. Better performance can be achieved by using traveling waves in the thermoacoustic devices. This has led to the development of an annular high frequency thermoacoustic prime mover consisting of a regenerator, which is a random stack in-between a hot and cold heat exchanger, inside an annular waveguide. Miniature devices were developed and studied with operating frequencies in the range of 2-4 kHz. This corresponds to an average ring circumference of 11 cm for the 3 kHz device, the resonator bore being 6 mm. A similar device of 11 mm bore, length of 18 cm was also investigated; its resonant frequency was 2 kHz. Sound intensities as high as 166.8 dB were generated with limited heat input. Sound power was extracted from the annular structure by an impedance-matching side arm. The nature of the acoustic wave generated by heat was investigated using a high speed PIV instrument. Although the acoustic device appears symmetric, its performance is characterized by a broken symmetry and by perturbations that exist in its structure. Effects of these are observed in the PIV imaging; images show axial and radial components. Moreover, PIV studies show effects of streaming and instabilities which affect the devices' acoustic efficiency. The acoustic efficiency is high, being of 40% of Carnot. This type of device shows much promise as a high efficiency energy converter; it can be reduced in size for microcircuit applications.

  8. High frequency stimulation can block axonal conduction.

    PubMed

    Jensen, Alicia L; Durand, Dominique M

    2009-11-01

    High frequency stimulation (HFS) is used to control abnormal neuronal activity associated with movement, seizure, and psychiatric disorders. Yet, the mechanisms of its therapeutic action are not known. Although experimental results have shown that HFS suppresses somatic activity, other data has suggested that HFS could generate excitation of axons. Moreover it is unclear what effect the stimulation has on tissue surrounding the stimulation electrode. Electrophysiological and computational modeling literature suggests that HFS can drive axons at the stimulus frequency. Therefore, we tested the hypothesis that unlike cell bodies, axons are driven by pulse train HFS. This hypothesis was tested in fibers of the hippocampus both in-vivo and in-vitro. Our results indicate that although electrical stimulation could activate and drive axons at low frequencies (0.5-25 Hz), as the stimulus frequency increased, electrical stimulation failed to continuously excite axonal activity. Fiber tracts were unable to follow extracellular pulse trains above 50 Hz in-vitro and above 125 Hz in-vivo. The number of cycles required for failure was frequency dependent but independent of stimulus amplitude. A novel in-vitro preparation was developed, in which, the alveus was isolated from the remainder of the hippocampus slice. The isolated fiber tract was unable to follow pulse trains above 75 Hz. Reversible conduction block occurred at much higher stimulus amplitudes, with pulse train HFS (>150 Hz) preventing propagation through the site of stimulation. This study shows that pulse train HFS affects axonal activity by: (1) disrupting HFS evoked excitation leading to partial conduction block of activity through the site of HFS; and (2) generating complete conduction block of secondary evoked activity, as HFS amplitude is increased. These results are relevant for the interpretation of the effects of HFS for the control of abnormal neural activity such as epilepsy and Parkinson's disease. PMID

  9. High-frequency plasma-heating apparatus

    DOEpatents

    Brambilla, Marco; Lallia, Pascal

    1978-01-01

    An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.

  10. Investigating Sonothrombolysis with High Frequency Ultrasound

    NASA Astrophysics Data System (ADS)

    Wright, Cameron; Hynynen, Kullervo; Goertz, David

    2009-04-01

    Despite a significant body of work establishing the feasibility of ultrasound mediated thrombolysis in vitro, in vivo, and in clinical settings, there remains considerable uncertainty about the specific mechanisms involved in this process. This motivates further work to elucidate these mechanisms, which will be central to optimizing safe and effective operating conditions, and to guide the development of novel approaches and instrumentation. In this study, we investigate the use of high frequency ultrasound as a means of gaining mechanistic insight into sonothrombolysis. A high frequency ultrasound (20-50 MHz) instrument is employed which provides the ability to conduct volumetric clot imaging as well as pulsed-wave Doppler to monitor hemodynamics within vessels and clots. With modifications, it is enabled to perform the acquisition of RF data to assess the displacement of clots and vessel walls subjected to therapeutic pulses. Additional modifications were made to perform nonlinear imaging of micron to submicron sized bubbles, which are of interest in enhancing clot lysis. Experiments were performed on in vitro clots, and in vivo using a rabbit femoral artery clot model initiated by the injection of thrombin. Therapeutic pulses are provided by a single element spherically focused air backed transducer with transmit frequencies of 1.68 MHz. Clear visualization of the clots, displacements, and presence or absence of flow within these vessels is shown to be feasible, indicating the potential of this approach as a tool for providing insight into sonothrombolysis.

  11. High power and high SFDR frequency conversion using sum frequency generation in KTP waveguides.

    PubMed

    Barbour, Russell J; Brewer, Tyler; Barber, Zeb W

    2016-08-01

    We characterize the intermodulation distortion of high power and efficient frequency conversion of modulated optical signals based on sum frequency generation (SFG) in a periodically poled potassium titanyl phosphate (KTP) waveguide. Unwanted frequency two-tone spurs are generated near the converted signal via a three-step cascaded three-wave mixing process. Computer simulations describing the process are presented along with the experimental measurements. High-conversion efficiencies and large spur-free dynamic range of the converted optical signal are demonstrated. PMID:27472638

  12. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach. PMID:19736969

  13. High-frequency ultrasonic wire bonding systems

    PubMed

    Tsujino; Yoshihara; Sano; Ihara

    2000-03-01

    The vibration characteristics of longitudinal-complex transverse vibration systems with multiple resonance frequencies of 350-980 kHz for ultrasonic wire bonding of IC, LSI or electronic devices were studied. The complex vibration systems can be applied for direct welding of semiconductor tips (face-down bonding, flip-chip bonding) and packaging of electronic devices. A longitudinal-complex transverse vibration bonding system consists of a complex transverse vibration rod, two driving longitudinal transducers 7.0 mm in diameter and a transverse vibration welding tip. The vibration distributions along ceramic and stainless-steel welding tips were measured at up to 980 kHz. A high-frequency vibration system with a height of 20.7 mm and a weight of less than 15 g was obtained.

  14. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  15. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  16. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  17. Adaptation of Chlamydomonas reinhardtii high-CO sub 2 -requiring mutants to limiting CO sub 2

    SciTech Connect

    Suzuki, K.; Spalding, M.H. )

    1989-07-01

    Photosynthetic characteristics of four high-CO{sub 2}-requiring mutants of Chlamydomonas reinhardtii were compared to those of wild type before and after a 24-hour exposure to limiting CO{sub 2} concentrations. The four mutants represent two loci involved in the CO{sub 2}-concentrating system of this unicellular alga. All mutants had a lower photosynthetic affinity for inorganic carbon than did the wild type when grown at an elevated CO{sub 2} concentration, indicating that the genetic lesion in each is expressed even at elevated CO{sub 2} concentrations. Wild type and all four mutants exhibited adaptive responses to limiting CO{sub 2} characteristic of the induction of the CO{sub 2}-concentrating system, resulting in an increased affinity for inorganic carbon only in wild type. Although other components of the CO{sub 2}-concentrating system were induced in these mutants, the defective component in each was sufficient to prevent any increase in the affinity for inorganic carbon. It was concluded that the genes corresponding to the ca-1 and pmp-1 loci exhibit at least partially constitutive expression and that all components of the CO{sub 2}-concentrating system may be required to significantly affect the photosynthetic affinity for inorganic carbon.

  18. Root-determined hypernodulation mutant of Lotus japonicus shows high-yielding characteristics.

    PubMed

    Yokota, Keisuke; Li, Yong Yi; Hisatomi, Masahiro; Wang, Yanxu; Ishikawa, Kaori; Liu, Chi-Te; Suzuki, Shino; Aonuma, Kho; Aono, Toshihiro; Nakamoto, Tomomi; Oyaizu, Hiroshi

    2009-07-01

    Here we report the phenotypic characteristics of a novel hypernodulation mutant, Ljrdh1 (root-determined hypernodulation 1) of Lotus japonicus. At 12 weeks after rhizobial inoculation, there were no differences between the growth of Ljrdh1 and, wild-type. However, Ljrdh1 showed 2 to 3 times higher nitrogen-fixing activity, and seed and pod yields, were approximately 50% higher than the wild-type. This is the first report of a legume hypernodulation mutant showing normal growth and a high-yielding characteristic under optimal cultivation conditions.

  19. Isolation and characterization of high-temperature-induced Dauer formation mutants in Caenorhabditis elegans.

    PubMed Central

    Ailion, Michael; Thomas, James H

    2003-01-01

    Dauer formation in Caenorhabditis elegans is regulated by at least three signaling pathways, including an insulin receptor-signaling pathway. These pathways were defined by mutants that form dauers constitutively (Daf-c) at 25 degrees. Screens for Daf-c mutants at 25 degrees have probably been saturated, but failed to identify all the components involved in regulating dauer formation. Here we screen for Daf-c mutants at 27 degrees, a more strongly dauer-inducing condition. Mutations identified include novel classes of alleles for three known genes and alleles defining at least seven new genes, hid-1-hid-7. Many of the genes appear to act in the insulin branch of the dauer pathway, including pdk-1, akt-1, aex-6, and hid-1. We also molecularly identify hid-1 and show that it encodes a novel highly conserved putative transmembrane protein expressed in neurons. PMID:14504222

  20. High-Frequency Fluctuations During Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, J.; Ji, H.; Daughton, W. S.; Roytershteyn, V.; Yamada, M.; Yoo, J.; Fox, W. R., II

    2014-12-01

    During collisionless reconnection, the decoupling of the field from the plasma is known to occur only within the localized ion and electron diffusion regions, however predictions from fully kinetic simulations do not agree with experimental observations on the size of the electron diffusion region, implying differing reconnection mechanisms. Previous experiments, along with 2D and 3D simulations, have conclusively shown that this discrepancy cannot be explained by either classical collisions or Lower-Hybrid Drift Instability (Roytershtyn 2010, 2013). Due to computational limitations, however, previous simulations were constrained to have minimal scale separation between the electron skin depth and the Debye length (de/λD ~ 10), much smaller than in experiments (de/λD ~ 300). This lack of scale-separation can drastically modify the electrostatic microphysics within the diffusion layer. Using 3D, fully explicit kinetic simulations with a realistic and unprecedentedly large separation between the Debye length and the electron skin depth, de/λD = 64, we show that high frequency electrostatic waves (ω >> ωLH) can exist within the electron diffusion region. These waves generate small-scale turbulence within the electron diffusion region which acts to broaden the layer. Anomalous resistivity is also generated by the turbulence and significantly modifies the force balance. In addition to simulation results, initial experimental measurements of high frequency fluctuations (electrostatic and electromagnetic, f ≤ 1 GHz) in the Magnetic Reconnection Experiment (MRX) will be presented.

  1. Fundamentals of bipolar high-frequency surgery.

    PubMed

    Reidenbach, H D

    1993-04-01

    In endoscopic surgery a very precise surgical dissection technique and an efficient hemostasis are of decisive importance. The bipolar technique may be regarded as a method which satisfies both requirements, especially regarding a high safety standard in application. In this context the biophysical and technical fundamentals of this method, which have been known in principle for a long time, are described with regard to the special demands of a newly developed field of modern surgery. After classification of this method into a general and a quasi-bipolar mode, various technological solutions of specific bipolar probes, in a strict and in a generalized sense, are characterized in terms of indication. Experimental results obtained with different bipolar instruments and probes are given. The application of modern microprocessor-controlled high-frequency surgery equipment and, wherever necessary, the integration of additional ancillary technology into the specialized bipolar instruments may result in most useful and efficient tools of a key technology in endoscopic surgery.

  2. Radio spectra of High Frequency Peakers

    NASA Astrophysics Data System (ADS)

    Dallacasa, D.; Orienti, M.

    2016-02-01

    New radio spectra of High Frequency Peakers (HFP) obtained from the Jansky Very Large Array (JVLA) show that variability is common among this class of sources. A subsample of sources have been observed with a nearly continuous spectral sampling between 1 and 10 GHz. The observed HFP sources were previously classified as F (flat), H (HFP profile with little or no flux density variability) and V (variable, but preserving a peaked spectrum). In general, sources classified as V and H show a decrease of the flux density measured in the optically thin part of the spectrum, while there is a moderate increment in the optically thick region, resulting into a progressive shift of the spectral peak to lower frequencies. This is consistent with the idea of an expanding bubble of radio plasma. The sources with an F classification instead show substantial variability, both in spectral shape and in time evolution. In these HFP sources an irregular production of energy is best observed since the radio emission is dominated by recently generated relativistic plasma, and the contribution of mini lobes, in which old plasma accumulates, is marginal if not absent at all, given the short radiative life of electrons in strong magnetic fields (tens of mG) found in these objects.

  3. Frequency metrology using highly charged ions

    NASA Astrophysics Data System (ADS)

    Crespo López-Urrutia, J. R.

    2016-06-01

    Due to the scaling laws of relativistic fine structure splitting, many forbidden optical transitions appear within the ground state configurations of highly charged ions (HCI). In some hydrogen-like ions, even the hyperfine splitting of the 1s ground state gives rise to optical transitions. Given the very low polarizability of HCI, such laser-accessible transitions are extremely impervious to external perturbations and systematics that limit optical clock performance and arise from AC and DC Stark effects, such as black-body radiation and light shifts. Moreover, AC and DC Zeeman splitting are symmetric due to the much larger relativistic spin-orbit coupling and corresponding fine-structure splitting. Appropriate choice of states or magnetic sub-states with suitable total angular momentum and magnetic quantum numbers can lead to a cancellation of residual quadrupolar shifts. All these properties are very advantageous for the proposed use of HCI forbidden lines as optical frequency standards. Extremely magnified relativistic, quantum electrodynamic, and nuclear size contributions to the binding energies of the optically active electrons make HCI ideal tools for fundamental research, as in proposed studies of a possible time variation of the fine structure constant. Beyond this, HCI that cannot be photoionized by vacuum-ultraviolet photons could also provide frequency standards for future lasers operating in that range.

  4. Designing a mutant CCL2-HSA chimera with high glycosaminoglycan-binding affinity and selectivity.

    PubMed

    Gerlza, Tanja; Winkler, Sophie; Atlic, Aid; Zankl, Christina; Konya, Viktoria; Kitic, Nikola; Strutzmann, Elisabeth; Knebl, Kerstin; Adage, Tiziana; Heinemann, Akos; Weis, Roland; Kungl, Andreas J

    2015-08-01

    Chemokines like CCL2 mediate leukocyte migration to inflammatory sites by binding to G-protein coupled receptors on the target cell as well as to glycosaminoglycans (GAGs) on the endothelium of the inflamed tissue. We have recently shown that the dominant-negative Met-CCL2 mutant Y13A/S21K/Q23R with improved GAG binding affinity is highly bio-active in several animal models of inflammatory diseases. For chronic indications, we have performed here a fusion to human serum albumin (HSA) in order to extend the serum half-life of the chemokine mutant. To compensate a potential drop in GAG-binding affinity due to steric hindrance by HSA, a series of novel CCL2 mutants was generated with additional basic amino acids which were genetically introduced at sites oriented towards the GAG ligand. From this set of mutants, the Met-CCL2 variant Y13A/N17K/S21K/Q23K/S34K exhibited high GAG-binding affinity and a similar selectivity as wild type (wt) CCL2. From a set of different HSA-chemokine chimeric constructs, the linked HSA(C34A)(Gly)4Ser-Met-CCL2(Y13A/N17K/S21K/Q23K/S34K) fusion protein was found to show the best overall GAG-binding characteristics. Molecular modeling demonstrated an energetically beneficial fold of this novel protein chimera. This was experimentally supported by GdmCl-induced unfolding studies, in which the fusion construct exhibited a well-defined secondary structure and a transition point significantly higher than both the wt and the unfused CCL2 mutant protein. Unlike the wt chemokine, the quaternary structure of the HSA-fusion protein is monomeric according to size-exclusion chromatography experiments. In competition experiments, the HSA-fusion construct displaced only two of seven unrelated chemokines from heparan sulfate, whereas the unfused CCL2 mutant protein displaced five other chemokines. The most effective concentration of the HSA-fusion protein in inhibiting CCL2-mediated monocyte attachment to endothelial cells, as detected in the flow chamber

  5. Development of a mutant strain of Escherichia coli for molecular cloning of highly methylated DNA

    SciTech Connect

    Bishr, M.A.

    1991-01-01

    A mutant strain of Escherichia coli designated as GR219 that allows efficient molecular cloning of highly methylated bean DNA has been developed by UV light mutation of the parent LE392 str[sup r] strain. This mutant strain, like the parent, is streptomycin resistant and is biologically contained, because it requires thymidine for growth. Both the wild type and the mutant strain have lambda phage receptors so both can be utilized for construction of genomic libraries using the phase as a vector. The efficiency of transformation of the parent and the mutant strain with a recombinant plasmid containing bean DNA was compared to the efficiency of transformation of the PLK-F[prime] strain, which has a deletion of mcrA and mcrB genes and, therefore, allows transformation with methylated bean DNA. It has been found that the GR219 strain has the highest efficiency of transformation, while the PLK-F[prime] strain shows less, and the parent LE392 str[sup r] strain the least efficiency of transformation. These results indicate that strains of E. coli with mcrA and mcrB genes can recognize and degrade highly methylated DNA. However, other undefined factors affected by the altered gene(s) in the GR219 strain are also involved in the recognition and degradation of any cloned foreign DNA.

  6. Frequency stable high power lasers in space

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    The concept of a laser heterodyne gravity wave antenna that would operate in solar orbit with a one million kilometer path length is discussed. Laser technology that would be appropriate for operation of this space-based gravity wave detector is also discussed. The rapid progress in diode laser coupled with the energy storage and potentially sub-Hertz linewidths of solid state lasers, and the possibility of efficient frequency conversion by nonlinear optical techniques defines a technology that is appropriate for laser interferometry in space. The present status of diode-laser-pumped, solid state lasers is summarized and future progress is projected in areas of linewidth control, high average power, operating efficiency, and operational lifetimes that are essential for space-based applications.

  7. High frequency oscillators for chaotic radar

    NASA Astrophysics Data System (ADS)

    Beal, A. N.; Blakely, J. N.; Corron, N. J.; Dean, R. N.

    2016-05-01

    This work focuses on implementing a class of exactly solvable chaotic oscillators at speeds that allow real world radar applications. The implementation of a chaotic radar using a solvable system has many advantages due to the generation of aperiodic, random-like waveforms with an analytic representation. These advantages include high range resolution, no range ambiguity, and spread spectrum characteristics. These systems allow for optimal detection of a noise-like signal by the means of a linear matched filter using simple and inexpensive methods. This paper outlines the use of exactly solvable chaos in ranging systems, while addressing electronic design issues related to the frequency dependence of the system's stretching function introduced by the use of negative impedance converters (NICs).

  8. A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants.

    PubMed

    Terashima, Mia; Freeman, Elizabeth S; Jinkerson, Robert E; Jonikas, Martin C

    2015-01-01

    There is significant interest in farming algae for the direct production of biofuels and valuable lipids. Chlamydomonas reinhardtii is the leading model system for studying lipid metabolism in green algae, but current methods for isolating mutants of this organism with a perturbed lipid content are slow and tedious. Here, we present the Chlamydomonas high-lipid sorting (CHiLiS) strategy, which enables enrichment of high-lipid mutants by fluorescence-activated cell sorting (FACS) of pooled mutants stained with the lipid-sensitive dye Nile Red. This method only takes 5 weeks from mutagenesis to mutant isolation. We developed a staining protocol that allows quantification of lipid content while preserving cell viability. We improved separation of high-lipid mutants from the wild type by using each cell's chlorophyll fluorescence as an internal control. We initially demonstrated 20-fold enrichment of the known high-lipid mutant sta1 from a mixture of sta1 and wild-type cells. We then applied CHiLiS to sort thousands of high-lipid cells from a pool of about 60,000 mutants. Flow cytometry analysis of 24 individual mutants isolated by this approach revealed that about 50% showed a reproducible high-lipid phenotype. We further characterized nine of the mutants with the highest lipid content by flame ionization detection and mass spectrometry lipidomics. All mutants analyzed had a higher triacylglycerol content and perturbed whole-cell fatty acid composition. One arbitrarily chosen mutant was evaluated by microscopy, revealing larger lipid droplets than the wild type. The unprecedented throughput of CHiLiS opens the door to a systems-level understanding of green algal lipid biology by enabling genome-saturating isolation of mutants in key genes.

  9. A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants

    PubMed Central

    Terashima, Mia; Freeman, Elizabeth S; Jinkerson, Robert E; Jonikas, Martin C

    2015-01-01

    There is significant interest in farming algae for the direct production of biofuels and valuable lipids. Chlamydomonas reinhardtii is the leading model system for studying lipid metabolism in green algae, but current methods for isolating mutants of this organism with a perturbed lipid content are slow and tedious. Here, we present the Chlamydomonas high-lipid sorting (CHiLiS) strategy, which enables enrichment of high-lipid mutants by fluorescence-activated cell sorting (FACS) of pooled mutants stained with the lipid-sensitive dye Nile Red. This method only takes 5 weeks from mutagenesis to mutant isolation. We developed a staining protocol that allows quantification of lipid content while preserving cell viability. We improved separation of high-lipid mutants from the wild type by using each cell's chlorophyll fluorescence as an internal control. We initially demonstrated 20-fold enrichment of the known high-lipid mutant sta1 from a mixture of sta1 and wild-type cells. We then applied CHiLiS to sort thousands of high-lipid cells from a pool of about 60 000 mutants. Flow cytometry analysis of 24 individual mutants isolated by this approach revealed that about 50% showed a reproducible high-lipid phenotype. We further characterized nine of the mutants with the highest lipid content by flame ionization detection and mass spectrometry lipidomics. All mutants analyzed had a higher triacylglycerol content and perturbed whole-cell fatty acid composition. One arbitrarily chosen mutant was evaluated by microscopy, revealing larger lipid droplets than the wild type. The unprecedented throughput of CHiLiS opens the door to a systems-level understanding of green algal lipid biology by enabling genome-saturating isolation of mutants in key genes. PMID:25267488

  10. A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants.

    PubMed

    Terashima, Mia; Freeman, Elizabeth S; Jinkerson, Robert E; Jonikas, Martin C

    2015-01-01

    There is significant interest in farming algae for the direct production of biofuels and valuable lipids. Chlamydomonas reinhardtii is the leading model system for studying lipid metabolism in green algae, but current methods for isolating mutants of this organism with a perturbed lipid content are slow and tedious. Here, we present the Chlamydomonas high-lipid sorting (CHiLiS) strategy, which enables enrichment of high-lipid mutants by fluorescence-activated cell sorting (FACS) of pooled mutants stained with the lipid-sensitive dye Nile Red. This method only takes 5 weeks from mutagenesis to mutant isolation. We developed a staining protocol that allows quantification of lipid content while preserving cell viability. We improved separation of high-lipid mutants from the wild type by using each cell's chlorophyll fluorescence as an internal control. We initially demonstrated 20-fold enrichment of the known high-lipid mutant sta1 from a mixture of sta1 and wild-type cells. We then applied CHiLiS to sort thousands of high-lipid cells from a pool of about 60,000 mutants. Flow cytometry analysis of 24 individual mutants isolated by this approach revealed that about 50% showed a reproducible high-lipid phenotype. We further characterized nine of the mutants with the highest lipid content by flame ionization detection and mass spectrometry lipidomics. All mutants analyzed had a higher triacylglycerol content and perturbed whole-cell fatty acid composition. One arbitrarily chosen mutant was evaluated by microscopy, revealing larger lipid droplets than the wild type. The unprecedented throughput of CHiLiS opens the door to a systems-level understanding of green algal lipid biology by enabling genome-saturating isolation of mutants in key genes. PMID:25267488

  11. Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters

    SciTech Connect

    Liqiu, Wei E-mail: weiliqiu@hit.edu.cn; Liang, Han; Ziyi, Yang; Jing, Li; Yong, Cao; Daren, Yu; Jianhua, Du

    2015-02-07

    It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.

  12. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  13. Plant Responses to High Frequency Electromagnetic Fields.

    PubMed

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  14. Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole.

    PubMed

    Nascimento, Adriana M; Goldman, Gustavo H; Park, Steven; Marras, Salvatore A E; Delmas, Guillaume; Oza, Uma; Lolans, Karen; Dudley, Michael N; Mann, Paul A; Perlin, David S

    2003-05-01

    A collection of Aspergillus fumigatus mutants highly resistant to itraconazole (RIT) at 100 micro g ml(-1) were selected in vitro (following UV irradiation as a preliminary step) to investigate mechanisms of drug resistance in this clinically important pathogen. Eight of the RIT mutants were found to have a mutation at Gly54 (G54E, -K, or -R) in the azole target gene CYP51A. Primers designed for highly conserved regions of multidrug resistance (MDR) pumps were used in reverse transcriptase PCR amplification reactions to identify novel genes encoding potential MDR efflux pumps in A. fumigatus. Two genes, AfuMDR3 and AfuMDR4, showed prominent changes in expression levels in many RIT mutants and were characterized in more detail. Analysis of the deduced amino acid sequence encoded by AfuMDR3 revealed high similarity to major facilitator superfamily transporters, while AfuMDR4 was a typical member of the ATP-binding cassette superfamily. Real-time quantitative PCR with molecular beacon probes was used to assess expression levels of AfuMDR3 and AfuMDR4. Most RIT mutants showed either constitutive high-level expression of both genes or induction of expression upon exposure to itraconazole. Our results suggest that overexpression of one or both of these newly identified drug efflux pump genes of A. fumigatus and/or selection of drug target site mutations are linked to high-level itraconazole resistance and are mechanistic considerations for the emergence of clinical resistance to itraconazole.

  15. High relatedness maintains multicellular cooperation in a social amoeba by controlling cheater mutants

    PubMed Central

    Gilbert, Owen M.; Foster, Kevin R.; Mehdiabadi, Natasha J.; Strassmann, Joan E.; Queller, David C.

    2007-01-01

    The control of cheating is important for understanding major transitions in evolution, from the simplest genes to the most complex societies. Cooperative systems can be ruined if cheaters that lower group productivity are able to spread. Kin-selection theory predicts that high genetic relatedness can limit cheating, because separation of cheaters and cooperators limits opportunities to cheat and promotes selection against low-fitness groups of cheaters. Here, we confirm this prediction for the social amoeba Dictyostelium discoideum; relatedness in natural wild groups is so high that socially destructive cheaters should not spread. We illustrate in the laboratory how high relatedness can control a mutant that would destroy cooperation at low relatedness. Finally, we demonstrate that, as predicted, mutant cheaters do not normally harm cooperation in a natural population. Our findings show how altruism is preserved from the disruptive effects of such mutant cheaters and how exceptionally high relatedness among cells is important in promoting the cooperation that underlies multicellular development. PMID:17496139

  16. Production of Highly Sialylated Recombinant Glycoproteins Using Ricinus communis Agglutinin-I-Resistant CHO Glycosylation Mutants.

    PubMed

    Goh, John S Y; Chan, Kah Fai; Song, Zhiwei

    2015-01-01

    The degree of sialylation of therapeutic glycoproteins affects its circulatory half-life and efficacy because incompletely sialylated glycoproteins are cleared from circulation by asialoglycoprotein receptors present in the liver cells. Mammalian expression systems, often employed in the production of these glycoprotein drugs, produce heterogeneously sialylated products. Here, we describe how to produce highly sialylated glycoproteins using a Chinese hamster ovary (CHO) cell glycosylation mutant called CHO-gmt4 with human erythropoietin (EPO) as a model glycoprotein. The protocol describes how to isolate and characterize the CHO glycosylation mutants and how to assess the sialylation of the recombinant protein using isoelectric focusing (IEF). It further describes how to inactivate the dihydrofolate reductase (DHFR) gene in these cells using zinc finger nuclease (ZFN) technology to enable gene amplification and the generation of stable cell lines producing highly sialylated EPO.

  17. Selection of a Mutant of Escherichia coli Which Has High Mutation Rates

    PubMed Central

    Helling, Robert B.

    1968-01-01

    A mutation which causes high mutation rates in all other loci tested was induced with nitrosoguanidine and was selected through the ability of the progeny of such mutant cells to mutate to streptomycin resistance at a higher rate than the wild-type cells. This mutation (mut-2) and the Treffers' mutation (mutT1) mapped at approximately the same position to the right of leu. Specificity studies showed that the two mutations differ in rates of mutation produced. PMID:4879569

  18. ENGLISH WORDS OF VERY HIGH FREQUENCY.

    ERIC Educational Resources Information Center

    CARD, WILLIAM; MCDAVID, VIRGINIA

    THE BIAS OF THE FREQUENCY OF THE 122 MOST COMMONLY USED ENGLISH WORDS WAS STUDIED. THE METHOD USED TO ASSEMBLE THESE DATA IS DESCRIBED FULLY. THE MOST FREQUENTLY USED WORDS WERE TAKEN FROM A DISSERTATION BY GEORGE K. MONROE, "PHONEMIC TRANSCRIPTION OF GRAPHIC POSTBASE AFFIXES IN ENGLISH," GODFREY DEWEY, "RELATIVE FREQUENCY OF ENGLISH SPEECH…

  19. Laser for high frequency modulated interferometry

    DOEpatents

    Mansfield, Dennis K.; Vocaturo, Michael; Guttadora, Lawrence J.

    1991-01-01

    A Stark-tuned laser operating in the 119 micron line of CH.sub.3 OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth.

  20. Laser for high frequency modulated interferometry

    DOEpatents

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.J.

    1991-07-23

    A Stark-tuned laser operating in the 119 micron line of CH[sub 3]OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth. 10 figures.

  1. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  2. High prevalence of dhfr triple mutant and correlation with high rates of sulphadoxine-pyrimethamine treatment failures in vivo in Gabonese children

    PubMed Central

    2011-01-01

    Background Drug resistance contributes to the global malaria burden. Plasmodium falciparum dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) polymorphisms confer resistance to sulphadoxine-pyrimethamine (SP). Methods The study assessed the frequency of SP resistance-conferring polymorphisms in Plasmodium falciparum-positive samples from two clinical studies in Lambaréné. Their role on treatment responses and transmission potential was studied in an efficacy open-label clinical trial with a 28-day follow-up in 29 children under five with uncomplicated malaria. Results SP was well tolerated by all subjects in vivo. Three subjects were excluded from per-protocol analysis. PCR-corrected, 12/26 (46%) achieved an adequate clinical and parasitological response, 13/26 (50%) were late parasitological failures, while 1/26 (4%) had an early treatment failure, resulting in early trial discontinuation. Of 106 isolates, 98 (92%) carried the triple mutant dhfr haplotype. Three point mutations were found in dhps in a variety of haplotypic configurations. The 437G + 540E double mutant allele was found for the first time in Gabon. Conclusions There is a high prevalence of dhfr triple mutant with some dhps point mutations in Gabon, in line with treatment failures observed, and molecular markers of SP resistance should be closely monitored. Trial Registration ClinicalTrials.gov: NCT00453856 PMID:21569596

  3. High-frequency furnace. Final technical report

    SciTech Connect

    Zumbrunnen, A.D.

    1985-04-30

    An experimental furnace has been built for the purpose of evaluating a new technique for the high purity melting of certain metals and semiconductors. The melt is contained in a solidified skull of the same material being melted, thus avoiding crucible reactions that are a problem in conventional processing. A number of commercial applications of the invention are discussed, assuming that feasibility can be etablished. These include the melting and crystal growth of silicon, where the avoidance of crucible contamination would improve the energy conversion efficiency of solar cells; and the consolidation of titanium sponge and scrap, where energy savings and other process advantages would be realized. The production of ferrous and non-ferrous, specialty alloys is also discussed. Heating power is derived from the electrical, proximity effect which is used to concentrate a high-frequency (9.6 kHz) current in the melt zone. The power source is a conventional, 50 kW, solid-state inverter of the type used in induction heating practice. All heats were conducted on a cast iron workpiece in argon at atmospheric pressure. The melt temperature of the casting (2100/sup 0/F) was not achieved in any test run; however, the ability of proximity effect to generate localized heating was clearly demonstrated. A maximum temperature of about 1600/sup 0/F was reached at an inverter power output of approximately seventy-five percent. Full power was not obtained because of a poor impedance match between the furnace and power supply. Temperature was further limited because of the absence of heat shielding and other factors which resulted in excessive heat loss from the workpiece. These results are considered to be only preliminary since no attempt has been made to optimize either the electrical or thermal characteristics of the system.

  4. Analysis on the DNA Fingerprinting of Aspergillus Oryzae Mutant Induced by High Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Zhang, Jian; Yang, Fan; Wang, Kai; Shen, Si-Le; Liu, Bing-Bing; Zou, Bo; Zou, Guang-Tian

    2011-01-01

    The mutant strains of aspergillus oryzae (HP300a) are screened under 300 MPa for 20 min. Compared with the control strains, the screened mutant strains have unique properties such as genetic stability, rapid growth, lots of spores, and high protease activity. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) are used to analyze the DNA fingerprinting of HP300a and the control strains. There are 67.9% and 51.3% polymorphic bands obtained by these two markers, respectively, indicating significant genetic variations between HP300a and the control strains. In addition, comparison of HP300a and the control strains, the genetic distances of random sequence and simple sequence repeat of DNA are 0.51 and 0.34, respectively.

  5. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  6. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  7. Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants.

    PubMed

    Golan, Talila; Müller-Moulé, Patricia; Niyogi, Krishna K

    2006-05-01

    Biochemical and physiological acclimation to different light environments is crucial for plant growth and survival. In high light (HL), feedback de-excitation (qE) is a well-known photoprotective mechanism that dissipates excess excitation energy in the light-harvesting antenna of photosystem II (PSII) and relieves excitation pressure in the photosynthetic electron transport chain. The xanthophylls zeaxanthin (Z) and lutein (L) function in qE, but also have roles as antioxidants. Although several studies have shown that qE is important during short-term fluctuations in light intensity, here we show that it is not required for the growth of Arabidopsis thaliana in prolonged HL conditions in the laboratory. Mutants that are deficient in qE alone, qE and Z synthesis, or in qE, Z synthesis and also L synthesis were able to grow at 1800 micromol photons m(-2) s(-1) and exhibited no major symptoms of photooxidative stress. The mutants (and wild type) acclimated to HL by increasing photosynthetic capacity and decreasing light harvesting, which together rendered qE less important for photoprotection. At a metabolite level, the HL-grown mutants appeared to compensate for their remaining qE deficit with increased alpha-tocopherol and ascorbate levels compared to the wild type. The specificity of this response provides insight into the relationship between qE and the antioxidant network in plants.

  8. An inkjet vision measurement technique for high-frequency jetting

    SciTech Connect

    Kwon, Kye-Si Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  9. A high-throughput method for isolation of salicylic acid metabolic mutants

    PubMed Central

    2010-01-01

    Background Salicylic acid (SA) is a key defense signal molecule against biotrophic pathogens in plants. Quantification of SA levels in plants is critical for dissecting the SA-mediated immune response. Although HPLC and GC/MS are routinely used to determine SA concentrations, they are expensive and time-consuming. We recently described a rapid method for a bacterial biosensor Acinetobacter sp. ADPWH_lux-based SA quantification, which enables high-throughput analysis. In this study we describe an improved method for fast sample preparation, and present a high-throughput strategy for isolation of SA metabolic mutants. Results On the basis of the previously described biosensor-based method, we simplified the tissue collection and the SA extraction procedure. Leaf discs were collected and boiled in Luria-Bertani (LB), and then the released SA was measured with the biosensor. The time-consuming steps of weighing samples, grinding tissues and centrifugation were avoided. The direct boiling protocol detected similar differences in SA levels among pathogen-infected wild-type, npr1 (nonexpressor of pathogenesis-related genes), and sid2 (SA induction-deficient) plants as did the previously described biosensor-based method and an HPLC-based approach, demonstrating the efficacy of the protocol presented here. We adapted this protocol to a high-throughput format and identified six npr1 suppressors that accumulated lower levels of SA than npr1 upon pathogen infection. Two of the suppressors were found to be allelic to the previously identified eds5 mutant. The other four are more susceptible than npr1 to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326 and their identity merits further investigation. Conclusions The rapid SA extraction method by direct boiling of leaf discs further reduced the cost and time required for the biosensor Acinetobacter sp. ADPWH_lux-based SA estimation, and allowed the screening for npr1 suppressors that accumulated less SA than npr1

  10. High-Frequency, High-Temperature Fretting Experiments

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haake, F. K.; Swanson, G. R.; Duke, G. C.

    2005-01-01

    Fretting is a structural damage mechanism observed when two nominally clamped surfaces are subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact. These contact stresses drive crack nucleation and propagation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting cracks pose to damage tolerance and structural integrity of in-service components, the objective of this work is to develop a well-characterized experimental fretting rig capable of investigating fretting behavior of advanced aerospace alloys subjected to load and temperature conditions representative of such turbomachinery components.

  11. High level of antibiotic production in a double polyphosphate kinase and phosphate-binding protein mutant of Streptomyces lividans.

    PubMed

    Díaz, Margarita; Sevillano, Laura; Rico, Sergio; Lombo, Felipe; Braña, Alfredo F; Salas, Jose A; Mendez, Carmen; Santamaría, Ramón I

    2013-05-01

    Phosphate metabolism regulates most of the life processes of microorganisms. In the present work we obtained and studied a Streptomyces lividans ppk/pstS double mutant, which lacks polyphosphate kinase (PPK) and the high-affinity phosphate-binding protein (PstS), impairing at the same time the intracellular storage of polyphosphate and the intake of new inorganic phosphate from a phosphate-limited medium, respectively. In some of the aspects analyzed, the ppk/pstS double mutant was more similar to the wt strain than was the single pstS mutant. The double mutant was thus able to grow in phosphate-limited media, whereas the pstS mutant required the addition of 1 mM phosphate under the assay conditions used. The double mutant was able to incorporate more than one fourth of the inorganic phosphate incorporated by the wt strain, whereas phosphate incorporation was almost completely impaired in the pstS mutant. Noteworthy, under phosphate limitation conditions, the double ppk/pstS mutant showed a higher production of the endogenous antibiotic actinorhodin and the heterologous antitumor 8-demethyl-tetracenomycin (up to 10-fold with respect to the wt strain), opening new possibilities for the use of this strain in the heterologous expression of antibiotic pathways.

  12. Effect of partial hepatectomy on the mutant frequency of benzo(a)pyrene in the liver of C57BL/6 transgenic mice

    SciTech Connect

    Shane, B.S. Tindall, K.R.

    1994-12-31

    The Big Blue{reg_sign} transgenic mouse is an in vivo mutation system which permits the study of the role of pharmacodynamic parameters on mutation frequency following xenobiotic exposure. We have studied the effects of cellular proliferation on the frequency of mutations arising in the liver of male C57B1/6 Big Blue{reg_sign} mice by subjecting the mice to partial hepatectomy following treatment with benzo(a)pyrene (BP). The contribution of cellular proliferation to the induction of mutations and, in turn, to the observed mutant frequency (MF) can be assessed by evaluating the MF in tissues from treated and control animals before and after hepatectomy. Mice (3) were injected with 50 mg/kg of BP in corn oil on three consecutive days, followed by hepatectomy on the fourth day. Three days later (i.e. seven days following the initial BP injection), the animals were sacrificed and the MF in the liver was compared to the MF observed in the same mouse before hepatectomy. Controls were injected with corn oil without BP and were subjected to partial hepatectomy at the same time as the treatment group. The spontaneous MF was not significantly different before (2.3x10{sup -5}) and after (1.7x10{sup -5}) hepatectomy. Among the BP-treated animals, the MF was 5.7x10{sup -5} and from BP treated mice was 6.1x10{sup -5} suggesting that some lacI mutants arise in E. coli following infection. These data support the notion that turnover of hepatocytes can influence th MF elicited by BP and that bulky adducts remaining in mouse genomic DNA may be packaged and fixed as mutations in E. coli resulting in an increased frequency of sectored mutant plaques.

  13. Processing of superconductive materials and high frequency

    SciTech Connect

    Smith, J.L.

    1987-01-01

    We do not know yet if superconductivity will become useful without refrigeration. Now, the superconductors are so different from copper that it is difficult to imagine replacing copper with such a brittle material. Superconductors conduct dc with no loss, ac with small losses, and microwaves in co-axial lines with almost no loss and with no dispersion from dc to the highest frequencies. They will probably allow us to close the gap between radio frequency and infrared optical transmission. Clearly your industry should know some things about where superconductivity may lead us and must consider whether the greater risk is to develop them or to let others try it. There are no easy answers yet.

  14. High-Frequency Radiation and Tritium Channel

    NASA Astrophysics Data System (ADS)

    Afonichev, D. D.

    2005-12-01

    In the process of deformation of titanium alloy samples preliminarily saturated by deuterium (at a temperature T = 710°C) radiation, which is not a neutron flux, was detected. Electromagnetic radiation in the range of radio frequencies was detected in titanium alloy samples in the process of their saturation by deuterium. The probable mechanism of its occurrence may be the retardation of charged particles in the metallic matrix.

  15. High Precision Noise Measurements at Microwave Frequencies

    SciTech Connect

    Ivanov, Eugene; Tobar, Michael

    2009-04-23

    We describe microwave noise measurement system capable of detecting the phase fluctuations of rms amplitude of 2{center_dot}10{sup -11} rad/{radical}(Hz). Such resolution allows the study of intrinsic fluctuations in various microwave components and materials, as well as precise tests of fundamental physics. Employing this system we discovered a previously unknown phenomenon of down-conversion of pump oscillator phase noise into the low-frequency voltage fluctuations.

  16. High-Frequency, Conformable Organic Amplifiers.

    PubMed

    Reuveny, Amir; Lee, Sunghoon; Yokota, Tomoyuki; Fuketa, Hiroshi; Siket, Christian M; Lee, Sungwon; Sekitani, Tsuyoshi; Sakurai, Takayasu; Bauer, Siegfried; Someya, Takao

    2016-05-01

    Large-bandwidth, low-operation-voltage, and uniform organic amplifiers are fabricated on ultrathin foils. By the integration of short-channel OTFTs and AlOx capacitors, organic amplifiers with a bandwidth of 25 kHz are realized, demonstrating the highest gain-bandwidth product (GBWP) reported to date. Owing to material and process advancements, closed-loop architectures operate at frequencies of several kilohertz with an area smaller than 30 mm(2) . PMID:26922899

  17. High-Frequency, Conformable Organic Amplifiers.

    PubMed

    Reuveny, Amir; Lee, Sunghoon; Yokota, Tomoyuki; Fuketa, Hiroshi; Siket, Christian M; Lee, Sungwon; Sekitani, Tsuyoshi; Sakurai, Takayasu; Bauer, Siegfried; Someya, Takao

    2016-05-01

    Large-bandwidth, low-operation-voltage, and uniform organic amplifiers are fabricated on ultrathin foils. By the integration of short-channel OTFTs and AlOx capacitors, organic amplifiers with a bandwidth of 25 kHz are realized, demonstrating the highest gain-bandwidth product (GBWP) reported to date. Owing to material and process advancements, closed-loop architectures operate at frequencies of several kilohertz with an area smaller than 30 mm(2) .

  18. Dielectric behavior of wild-type yeast and vacuole-deficient mutant over a frequency range of 10 kHz to 10 GHz.

    PubMed Central

    Asami, K; Yonezawa, T

    1996-01-01

    Dielectric behavior of Saccharomyces cerevisiae wild-type and vacuole-deficient mutant cells has been studied over a frequency range of 10 kHz to 10 GHz. Both types of cells harvested at the early stationary growth phase showed dielectric dispersion that was phenomenologically formulated by a sum of three separate dispersion terms: beta 1-dispersion (main dispersion) and beta 2-dispersion (additional dispersion) and gamma-dispersion due to orientation of water molecules. The beta 1-dispersion centered at a few MHz, which has been extensively studied so far, is due to interfacial polarization (or the Maxwell-Wagner effect) related to the plasma membrane. The beta 2-dispersion for the vacuole-deficient mutant centered at approximately 50 MHz was explained by taking the cell wall into account, whereas, for the wild-type cells, the beta 2-dispersion around a few tens MHz involved the contributions from the vacuole and cell wall. PMID:8889195

  19. Jasmonates induce nonapoptotic death in high-resistance mutant p53-expressing B-lymphoma cells.

    PubMed

    Fingrut, Orit; Reischer, Dorit; Rotem, Ronit; Goldin, Natalia; Altboum, Irit; Zan-Bar, Israel; Flescher, Eliezer

    2005-11-01

    Mutations in p53, a tumor suppressor gene, occur in more than half of human cancers. Therefore, we tested the hypothesis that jasmonates (novel anticancer agents) can induce death in mutated p53-expressing cells. Two clones of B-lymphoma cells were studied, one expressing wild-type (wt) p53 and the other expressing mutated p53. Jasmonic acid and methyl jasmonate (0.25-3 mM) were each equally cytotoxic to both clones, whereas mutant p53-expressing cells were resistant to treatment with the radiomimetic agent neocarzinostatin and the chemotherapeutic agent bleomycin. Neocarzinostatin and bleomycin induced an elevation in the p53 levels in wt p53-expressing cells, whereas methyl jasmonate did not. Methyl jasmonate induced mostly apoptotic death in the wt p53-expressing cells, while no signs of early apoptosis were detected in mutant p53-expressing cells. In contrast, neocarzinostatin and bleomycin induced death only in wt p53-expressing cells, in an apoptotic mode. Methyl jasmonate induced a rapid depletion of ATP in both clones. In both clones, oligomycin (a mitochondrial ATP synthase inhibitor) did not increase ATP depletion induced by methyl jasmonate, whereas inhibition of glycolysis with 2-deoxyglucose did. High glucose levels protected both clones from methyl jasmonate-induced ATP depletion (and reduced methyl jasmonate-induced cytotoxicity), whereas high levels of pyruvate did not. These results suggest that methyl jasmonate induces ATP depletion mostly by compromising oxidative phosphorylation in the mitochondria. In conclusion, jasmonates can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing a nonapoptotic cell death.

  20. High yield production of a mutant Nippostrongylus brasiliensis acetylcholinesterase in Pichia pastoris and its purification.

    PubMed

    Richter, Sven; Nieveler, Jens; Schulze, Holger; Bachmann, Till T; Schmid, Rolf D

    2006-04-01

    The mutant M301A of the acetylcholinesterase B from Nippostrongylus brasiliensis (NbAChE) was produced in a high-cell-density fermentation of a recombinant methylotrophic yeast Pichia pastoris. Dissolved oxygen (DO) spikes were used as an indicator for feeding the carbon source. Wet cell weight (WCW) reached after 8 days a maximum value of 316 g/L and the OD600 at this time was 280. The acetylcholinesterase activity increased up to 6,600 U/mL corresponding to an expression rate of 2 g of NbAChE per liter supernatant. The specific activity of the mutant NbAChE was determined after purification as 3,300 U/mg. Active site titration with chlorpyrifos, a strong AChE inhibitor, yielded in a specific activity of 3,400 U/mg. The enzyme was secreted by Pichia pastoris. Therefore, it could be concentrated from culture broth by cross-flow-filtration (50 kDa cut-off membrane). It was further purified in one-step anion-exchange chromatography, using a XK 50/20 column filled with 125 mL Q Sepharose HP. Mutant NbAChE was purified 1.9-fold up to a purity of 97% and a yield of 87%. The isolated enzyme was nearly homogenous, as seen on the silver stained SDS-PAGE as well as by a single peak after gel filtration. This extraordinary high expression rate and the ease of purification is an important prerequisite for their practical application, for example in biosensors for the detection of neurotoxic insecticides.

  1. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, Eric S.; Campbell, David V.

    1997-01-01

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.

  2. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, E.S.; Campbell, D.V.

    1997-04-29

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.

  3. Effects of interelectrode gap on high frequency and very high frequency capacitively coupled plasmas

    SciTech Connect

    Bera, Kallol; Rauf, Shahid; Ramaswamy, Kartik; Collins, Ken

    2009-07-15

    Capacitively coupled plasma (CCP) discharges using high frequency (HF) and very high frequency (VHF) sources are widely used for dielectric etching in the semiconductor industry. A two-dimensional fluid plasma model is used to investigate the effects of interelectrode gap on plasma spatial characteristics of both HF and VHF CCPs. The plasma model includes the full set of Maxwell's equations in their potential formulation. The peak in plasma density is close to the electrode edge at 13.5 MHz for a small interelectrode gap. This is due to electric field enhancement at the electrode edge. As the gap is increased, the plasma produced at the electrode edge diffuses to the chamber center and the plasma becomes more uniform. At 180 MHz, where electromagnetic standing wave effects are strong, the plasma density peaks at the chamber center at large interelectrode gap. As the interelectrode gap is decreased, the electron density increases near the electrode edge due to inductive heating and electrostatic electron heating, which makes the plasma more uniform in the interelectrode region.

  4. High efficiency, oxidation resistant radio frequency susceptor

    DOEpatents

    Besmann, Theodore M.; Klett, James W.

    2004-10-26

    An article and method of producing an article for converting energy from one form to another having a pitch-derived graphitic foam carbon foam substrate and a single layer coating applied to all exposed surfaces wherein the coating is either silicon carbide or carbides formed from a Group IVA metal. The article is used as fully coated carbon foam susceptors that more effectively absorb radio frequency (RF) band energy and more effectively convert the RF energy into thermal band energy or sensible heat. The essentially non-permeable coatings also serve as corrosion or oxidation resistant barriers.

  5. Photothermal operation of high frequency nanoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Sampathkumar, A.; Murray, T. W.; Ekinci, K. L.

    2006-05-01

    We describe photothermal operation of nanoelectromechanical systems (NEMS) in ambient atmosphere. Using a tightly focused modulated laser source, we have actuated the out-of-plane flexural resonances of bilayered doubly clamped beams. The optically detected displacement profiles in these beams are consistent with a model where the absorbed laser power results in a local temperature rise and a subsequent thermally induced bending moment. The described technique allows probing and actuation of NEMS with exquisite spatial and temporal resolution. From a device perspective, the technique offers immense frequency tunability and may enable future NEMS that can be remotely accessed without electronic coupling.

  6. A high frequency resonance gravity gradiometer

    SciTech Connect

    Bagaev, S. N.; Kvashnin, N. L.; Skvortsov, M. N.; Bezrukov, L. B.; Krysanov, V. A.; Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Samoilenko, A. A.; Yudin, I. S.; Rudenko, V. N.

    2014-06-15

    A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  7. A high frequency resonance gravity gradiometer

    NASA Astrophysics Data System (ADS)

    Bagaev, S. N.; Bezrukov, L. B.; Kvashnin, N. L.; Krysanov, V. A.; Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Rudenko, V. N.; Samoilenko, A. A.; Skvortsov, M. N.; Yudin, I. S.

    2014-06-01

    A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  8. Self isolating high frequency saturable reactor

    SciTech Connect

    Moore, James A.

    1998-06-23

    The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

  9. High molecular weight complexes of mutant superoxide dismutase 1: age-dependent and tissue-specific accumulation.

    PubMed

    Wang, Jiou; Xu, Guilian; Borchelt, David R

    2002-03-01

    Mutations in the cytosolic enzyme, superoxide dismutase 1, have been identified as the cause of motor neuron disease in a subset of cases of familial amyotrophic lateral sclerosis. It has been postulated that the injurious property of mutant enzyme resides in its propensity to aggregate or its propensity to catalyze deleterious, copper-mediated, chemistries. Aggregates of SOD1 have been identified, histologically, in neurons and astroglia of the spinal cords of SOD1-linked FALS patients and in transgenic mice that express these mutant proteins. In the present study, we have employed a technique used in detecting and quantifying aggregates of mutant huntingtin (cellulose acetate filtration) to examine the molecular characteristics of mutant SOD1 in three previously characterized transgenic mouse models of FALS. We show that the brains and spinal cords of these mice accumulate mutant SOD1 complexes that can be trapped by cellulose acetate filtration. The relative abundance of these structures increases dramatically with age. Although expressed to the same level in nonnervous tissues, mutant SOD1 was not found in high molecular weight structures. We conclude that some aspect of the biology of neural tissues (in a setting of declining motor neuron function) predisposes to the accumulation of high molecular weight complexes of mutant SOD1.

  10. Calibration of High Frequency MEMS Microphones

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to

  11. High power single-frequency Innoslab amplifier.

    PubMed

    Han, Ke-Zhen; Ning, Jian; Zhang, Bai-Tao; Wang, Yi-Ran; Zhang, Hai-Kun; Nie, Hong-Kun; Sun, Xiao-Li; He, Jing-Liang

    2016-07-10

    A laser diode array (LDA) end-pumped continuous-wave single-frequency Innoslab amplifier has been demonstrated. The Gaussian ray bundle method was used to model the light propagation in the Innoslab amplifier for the first time to the best of our knowledge. With discrete reflectors, the maximum output of 60 W with a linewidth of 44 MHz was achieved under the pump power of 245 W, corresponding to the optical-optical efficiency of 24.5%. The beam quality factor M2 at the output power of 51 W in the horizontal and vertical direction was measured to be 1.4 and 1.3, respectively. The long-term power instability in 2 h was less than 0.25%. PMID:27409308

  12. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  13. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  14. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  15. Haemodynamic changes during high frequency oscillation for respiratory distress syndrome.

    PubMed Central

    Laubscher, B.; van Melle, G.; Fawer, C. L.; Sekarski, N.; Calame, A.

    1996-01-01

    In a crossover trial left ventricular output (LVO), cerebral blood flow velocity (CBFV), and resistance index (RI) of the anterior cerebral artery were compared using Doppler ultrasonography, in eight preterm infants with respiratory distress syndrome (RDS) during conventional mechanical ventilation and high frequency oscillation. LVO was 14% to 18% lower with high frequency oscillation. There were no significant changes in CBFV. On the first day of life there was a trend towards lower RI on high frequency oscillation; the fall in LVO on high frequency oscillation was not related to lung hyperinflation. Changes in ventilation type (from conventional mechanical ventilation to high frequency oscillation, or vice versa) can induce significant LVO changes in preterm infants with RDS. PMID:8777679

  16. Nanohertz frequency determination for the gravity probe B high frequency superconducting quantum interference device signal.

    PubMed

    Salomon, M; Conklin, J W; Kozaczuk, J; Berberian, J E; Keiser, G M; Silbergleit, A S; Worden, P; Santiago, D I

    2011-12-01

    In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10(10) resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the gravity probe B (GP-B) mission. It was applied to the high frequency (HF) component of GP-B's superconducting quantum interference device signal, whose main frequency f(z) is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/s resolution in its decay rate were achieved out of a succession of 1.86 s-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.

  17. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  18. A MEMS-based high frequency x-ray chopper.

    PubMed

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  19. Status of local oscillators for operating ultra-high resolution frequency discriminators as frequency standards

    NASA Technical Reports Server (NTRS)

    Vessot, R. F. C.; Mattison, E. M.; Levine, M. W.; Walsworth, R. L.

    1993-01-01

    The operation of new improved frequency standards based on new ultra-high-resolution frequency discriminators requires high stability local, or 'flywheel' oscillators. We review the spectral density of phase fluctuations of existing flywheel oscillators and the related time domain frequency stability of new and proposed cryogenically cooled oscillators suitable for this application. Presently used devices include the quartz crystal oscillator, the room-temperature actively oscillating atomic hydrogen (H) maser, and the superconducting maser oscillator. Future devices include the cryogenic H-maser and other cryogenic devices using resonators of superconducting metal or solid crystalline sapphire. The relation of the phase spectral density of these devices to the characteristics of present and proposed frequency discriminators based on trapped cooled ions and cold atoms is discussed in terms of their operation as frequency standards.

  20. Different frequencies should be prescribed for different high frequency chest compression machines.

    PubMed

    Milla, Carlos E; Hansen, Leland G; Warwick, Warren J

    2006-01-01

    High frequency chest compression (HFCC) is used for treatment and prevention of the lung diseases characterized by impaired mucus clearance and/or cough, where patients are at risk for acquiring acute bronchitis or pneumonia. The HFCC treatment frequencies may be prescribed according to the manufacturers' generic guidelines or may be determined for each individual patient by a "tuning" method that measures, at the mouth, the air volume displacement and the associated airflows produced at each frequency. Tuning is performed while the patient is breathing normally during the HFCC system operation. After measurements for several breaths at one frequency have been collected, the program randomly selects and measures another frequency until the entire frequency range of the machine being tuned has been sampled. Frequencies range from 6 to 21 Hz for the sine waveform machines and from 6 to 25 Hz for the square waveform machines. Each group of flow signals is digitized and analyzed by the program. For each frequency, the HFCC flow velocities and volumes are computed and averaged. These average flows and volumes are rank ordered; the three frequencies with the highest flows and the three frequencies producing the largest volumes are selected for prescription. If the same frequency is selected as one of the three best frequencies for both flow and volume, the next ranked frequency is selected randomly for flow or volume. Significant differences exist between patients and HFCC machines. In a series of 100 cystic fibrosis (CF) patients with varying degrees of lung disease, we found that the best-ranked frequencies varied from patient to patient and did not correlate with patients' age, gender, height, weight, or spirometry parameters. With the sine waveform, the highest HFCC airflows were between 13 and 20 Hz 82% of the time and the largest HFCC volumes were between 6 and 10 Hz 83% of the time. With the square waveform, both the highest average HFCC flow rates and the largest

  1. High-frequency filtering of strong-motion records

    USGS Publications Warehouse

    Douglas, J.; Boore, D.M.

    2011-01-01

    The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.

  2. High temperature pressurized high frequency testing rig and test method

    DOEpatents

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  3. Determination of essential fatty acid composition among mutant lines of Canola (Brassica napus), through high pressure liquid chromatography.

    PubMed

    Raza, Ghulam; Siddique, Aquil; Khan, Imtiaz Ahmad; Ashraf, Muhammed Yasin; Khatri, Abdullah

    2009-12-01

    The present study aimed to quantify the methyl esters of lenoleic acid (LA), gamma-lenolenic acid (LNA) and oleic acid (OL) in the oil of Brassica napus mutants. Five stable mutants (ROO-75/1, ROO-100/6, ROO-125/12, ROO-125/14, and ROO-125/17) of B. napus cv. 'Rainbow' (P) and three mutants (W97-95/16, W97-0.75/11 and W97-.075/13) of B. napus cv. 'Westar' (P) at M6 stage, exhibiting better yield and yield components, were analyzed for essential fatty acids. The highest seed yield was observed in the mutant (ROO-100/6) followed by ROO-125/14 of Rainbow, that is, 34% and 32% higher than their parent plants, respectively. Westar mutant W97-75/11 also showed 30% higher seed yield than its parent plant. High performance liquid chromatography analysis of the composition of fatty acids indicated that OL was the most dominant fatty acid, ranging from 39.1 to 66.3%; LA was second (15.3-41.6%) and LNA was third (18.1-28.9%). Mutant ROO-125/14 showed higher OL contents than parent (Rainbow). These results are expected to support the approval of ROO-125/14 in the National Uniform Varietal Yield Trials (NUVYT) as a new variety based on high oil quality.

  4. Quantum inductance and high frequency oscillators in graphene nanoribbons.

    PubMed

    Begliarbekov, Milan; Strauf, Stefan; Search, Christopher P

    2011-04-22

    Here we investigate high frequency AC transport through narrow graphene nanoribbons with top-gate potentials that form a localized quantum dot. We show that as a consequence of the finite dwell time of an electron inside the quantum dot (QD), the QD behaves like a classical inductor at sufficiently high frequencies ω ≥ GHz. When the geometric capacitance of the top-gate and the quantum capacitance of the nanoribbon are accounted for, the admittance of the device behaves like a classical serial RLC circuit with resonant frequencies ω ∼ 100-900 GHz and Q-factors greater than 10(6). These results indicate that graphene nanoribbons can serve as all-electronic ultra-high frequency oscillators and filters, thereby extending the reach of high frequency electronics into new domains.

  5. High yield antibiotic producing mutants of Streptomyces erythreus induced by low energy ion implantation

    NASA Astrophysics Data System (ADS)

    Yu, Chen; Zhixin, Lin; Zuyao, Zou; Feng, Zhang; Duo, Liu; Xianghuai, Liu; Jianzhong, Tang; Weimin, Zhu; Bo, Huang

    1998-05-01

    Conidia of Streptomyces erythreus, an industrial microbe, were implanted by nitrogen ions with energy of 40-60 keV and fluence from 1 × 10 11 to 5 × 10 14 ions/cm 2. The logarithm value of survival fraction had good linear relationship with the logarithm value of fluence. Some mutants with a high yield of erythromycin were induced by ion implantation. The yield increment was correlated with the implantation fluence. Compared with the mutation results induced by ultraviolet rays, mutation effects of ion implantation were obvious having higher increasing erythromycin potency and wider mutation spectrum. The spores of Bacillus subtilis were implanted by arsenic ions with energy of 100 keV. The distribution of implanted ions was measured by Rutherford Backscattering Spectrometry (RBS) and calculated in theory. The mechanism of mutation induced by ion implantation was discussed.

  6. High-frequency energy in singing and speech

    NASA Astrophysics Data System (ADS)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  7. High frequency single mode traveling wave structure for particle acceleration

    NASA Astrophysics Data System (ADS)

    Ivanyan, M. I.; Danielyan, V. A.; Grigoryan, B. A.; Grigoryan, A. H.; Tsakanian, A. V.; Tsakanov, V. M.; Vardanyan, A. S.; Zakaryan, S. V.

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM01 mode in a metallic tube with internally coated low conductive thin layer are examined.

  8. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    PubMed

    Schubotz, Wiebke; Brand, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception. PMID:26730702

  9. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise

    PubMed Central

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4–8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception. PMID:26730702

  10. High-frequency multimodal atomic force microscopy

    PubMed Central

    Nievergelt, Adrian P; Adams, Jonathan D; Odermatt, Pascal D

    2014-01-01

    Summary Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples. PMID:25671141

  11. The apparent immunity of high-frequency ``transposed'' stimuli to low-frequency binaural interference

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2004-11-01

    Discrimination of interaural temporal disparities (ITDs) was measured with either conventional or transposed ``targets'' centered at 4 kHz. The targets were presented either in the presence or absence of a simultaneously gated diotic noise centered at 500 Hz, the interferer. As expected, the presence of the low-frequency interferer resulted in substantially elevated threshold-ITDs for the conventional high-frequency stimuli. In contrast, these interference effects were absent for ITDs conveyed by the high-frequency transposed targets. The binaural interference effects observed with the conventional high-frequency stimuli were well accounted for, quantitatively, by the model described by Heller and Trahiotis [L. M. Heller and C. Trahiotis, J. Acoust. Soc. Am. 99, 3632-3637 (1996)]. The lack of binaural interference effects observed with the high-frequency transposed stimuli was not predicted by that model. It is suggested that transposed stimuli may be one of a class of stimuli that do not foster an obligatory combination of binaural information between low- and high-frequency regions. Under those conditions that do foster such an obligatory combination, one could still consider models of binaural interference, such as the one described in Heller and Trahiotis, to be valid descriptors of binaural processing. .

  12. High-frequency hearing in seals and sea lions.

    PubMed

    Cunningham, Kane A; Reichmuth, Colleen

    2016-01-01

    Existing evidence suggests that some pinnipeds (seals, sea lions, and walruses) can detect underwater sound at frequencies well above the traditional high-frequency hearing limits for their species. This phenomenon, however, is not well studied: Sensitivity patterns at frequencies beyond traditional high-frequency limits are poorly resolved, and the nature of the auditory mechanism mediating hearing at these frequencies is unknown. In the first portion of this study, auditory sensitivity patterns in the 50-180 kHz range were measured for one California sea lion (Zalophus californianus), one harbor seal (Phoca vitulina), and one spotted seal (Phoca largha). Results show the presence of two distinct slope-regions at the high-frequency ends of the audiograms of all three subjects. The first region is characterized by a rapid decrease in sensitivity with increasing frequency-i.e. a steep slope-followed by a region of much less rapid sensitivity decrease-i.e. a shallower slope. In the second portion of this study, a masking experiment was conducted to investigate how the basilar membrane of a harbor seal subject responded to acoustic energy from a narrowband masking noise centered at 140 kHz. The measured masking pattern suggests that the initial, rapid decrease in sensitivity on the high-frequency end of the subject's audiogram is not due to cochlear constraints, as has been previously hypothesized, but rather to constraints on the conductive mechanism. PMID:26519092

  13. Factors Affecting the Benefits of High-Frequency Amplification

    ERIC Educational Resources Information Center

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2008-01-01

    Purpose: This study was designed to determine the extent to which high-frequency amplification helped or hindered speech recognition as a function of hearing loss, gain-frequency response, and background noise. Method: Speech recognition was measured monaurally under headphones for nonsense syllables low-pass filtered in one-third-octave steps…

  14. High-frequency hearing in seals and sea lions.

    PubMed

    Cunningham, Kane A; Reichmuth, Colleen

    2016-01-01

    Existing evidence suggests that some pinnipeds (seals, sea lions, and walruses) can detect underwater sound at frequencies well above the traditional high-frequency hearing limits for their species. This phenomenon, however, is not well studied: Sensitivity patterns at frequencies beyond traditional high-frequency limits are poorly resolved, and the nature of the auditory mechanism mediating hearing at these frequencies is unknown. In the first portion of this study, auditory sensitivity patterns in the 50-180 kHz range were measured for one California sea lion (Zalophus californianus), one harbor seal (Phoca vitulina), and one spotted seal (Phoca largha). Results show the presence of two distinct slope-regions at the high-frequency ends of the audiograms of all three subjects. The first region is characterized by a rapid decrease in sensitivity with increasing frequency-i.e. a steep slope-followed by a region of much less rapid sensitivity decrease-i.e. a shallower slope. In the second portion of this study, a masking experiment was conducted to investigate how the basilar membrane of a harbor seal subject responded to acoustic energy from a narrowband masking noise centered at 140 kHz. The measured masking pattern suggests that the initial, rapid decrease in sensitivity on the high-frequency end of the subject's audiogram is not due to cochlear constraints, as has been previously hypothesized, but rather to constraints on the conductive mechanism.

  15. High performance vapour-cell frequency standards

    NASA Astrophysics Data System (ADS)

    Gharavipour, M.; Affolderbach, C.; Kang, S.; Bandi, T.; Gruet, F.; Pellaton, M.; Mileti, G.

    2016-06-01

    We report our investigations on a compact high-performance rubidium (Rb) vapour-cell clock based on microwave-optical double-resonance (DR). These studies are done in both DR continuous-wave (CW) and Ramsey schemes using the same Physics Package (PP), with the same Rb vapour cell and a magnetron-type cavity with only 45 cm3 external volume. In the CW-DR scheme, we demonstrate a DR signal with a contrast of 26% and a linewidth of 334 Hz; in Ramsey-DR mode Ramsey signals with higher contrast up to 35% and a linewidth of 160 Hz have been demonstrated. Short-term stabilities of 1.4×10-13 τ-1/2 and 2.4×10-13 τ-1/2 are measured for CW-DR and Ramsey-DR schemes, respectively. In the Ramsey-DR operation, thanks to the separation of light and microwave interactions in time, the light-shift effect has been suppressed which allows improving the long-term clock stability as compared to CW-DR operation. Implementations in miniature atomic clocks are considered.

  16. Generation and Multi-phenotypic High-content Screening of Coxiella burnetii Transposon Mutants

    PubMed Central

    Martinez, Eric; Cantet, Franck; Bonazzi, Matteo

    2015-01-01

    Invasion and colonization of host cells by bacterial pathogens depend on the activity of a large number of prokaryotic proteins, defined as virulence factors, which can subvert and manipulate key host functions. The study of host/pathogen interactions is therefore extremely important to understand bacterial infections and develop alternative strategies to counter infectious diseases. This approach however, requires the development of new high-throughput assays for the unbiased, automated identification and characterization of bacterial virulence determinants. Here, we describe a method for the generation of a GFP-tagged mutant library by transposon mutagenesis and the development of high-content screening approaches for the simultaneous identification of multiple transposon-associated phenotypes. Our working model is the intracellular bacterial pathogen Coxiellaburnetii, the etiological agent of the zoonosis Q fever, which is associated with severe outbreaks with a consequent health and economic burden. The obligate intracellular nature of this pathogen has, until recently, severely hampered the identification of bacterial factors involved in host pathogen interactions, making of Coxiella the ideal model for the implementation of high-throughput/high-content approaches. PMID:25992686

  17. High density terahertz frequency comb produced by coherent synchrotron radiation.

    PubMed

    Tammaro, S; Pirali, O; Roy, P; Lampin, J-F; Ducournau, G; Cuisset, A; Hindle, F; Mouret, G

    2015-07-20

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10(-10) and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.

  18. High density terahertz frequency comb produced by coherent synchrotron radiation

    PubMed Central

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-01-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10−10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile. PMID:26190043

  19. Disruption of microalgal cells using high-frequency focused ultrasound.

    PubMed

    Wang, Meng; Yuan, Wenqiao; Jiang, Xiaoning; Jing, Yun; Wang, Zhuochen

    2014-02-01

    The objective of this study was to evaluate the effectiveness of high-frequency focused ultrasound (HFFU) in microalgal cell disruption. Two microalgal species including Scenedesmus dimorphus and Nannochloropsis oculata were treated by a 3.2-MHz, 40-W focused ultrasound and a 100-W, low-frequency (20kHz) non-focused ultrasound (LFNFU). The results demonstrated that HFFU was effective in the disruption of microalgal cells, indicated by significantly increased lipid fluorescence density, the decrease of cell sizes, and the increase of chlorophyll a fluorescence density after treatments. Compared with LFNFU, HFFU treatment was more energy efficient. The combination of high and low frequency treatments was found to be even more effective than single frequency treatment at the same processing time, indicating that frequency played a critical role in cell disruption. In both HFFU and LFNFU treatments, the effectiveness of cell disruption was found to be dependent on the cell treated. PMID:24374364

  20. Imaging Observations of a Very High Frequency Type II Burst

    NASA Astrophysics Data System (ADS)

    White, S. M.; Mercier, C.; Bradley, R.; Bastian, T.; Kerdraon, A.; Pick, M.

    2006-05-01

    A remarkable Type II burst was detected by the high-frequency system of the Green Bank Solar Radio Burst Spectrometer on 2005 November 14. The harmonic branch of the Type II extended up to 800 MHz, making it one of the highest frequency Type II bursts ever detected, but it failed to propagate to heights corresponding to frequencies below 100 MHz. At such high frequencies, it implies the formation of a shock relatively low in the corona. No coronal mass ejection was evident in the LASCO data for this east limb event. It is one of the few Type II bursts to be observable at every frequency of observation of the Nancay Radio Heliograph (164-432 MHz). Here we present analysis of images of the event, including simultaneous imaging of the fundamental and harmonic branches.

  1. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  2. High-frequency audibility: benefits for hearing-impaired listeners.

    PubMed

    Hogan, C A; Turner, C W

    1998-07-01

    The present study was a systematic investigation of the benefit of providing hearing-impaired listeners with audible high-frequency speech information. Five normal-hearing and nine high-frequency hearing-impaired listeners identified nonsense syllables that were low-pass filtered at a number of cutoff frequencies. As a means of quantifying audibility for each condition, Articulation Index (AI) was calculated for each condition for each listener. Most hearing-impaired listeners demonstrated an improvement in speech recognition as additional audible high-frequency information was provided. In some cases for more severely impaired listeners, increasing the audibility of high-frequency speech information resulted in no further improvement in speech recognition, or even decreases in speech recognition. A new measure of how well hearing-impaired listeners used information within specific frequency bands called "efficiency" was devised. This measure compared the benefit of providing a given increase in speech audibility to a hearing-impaired listener to the benefit observed in normal-hearing listeners for the same increase in speech audibility. Efficiencies were calculated using the old AI method and the new AI method (which takes into account the effects of high speech presentation levels). There was a clear pattern in the results suggesting that as the degree of hearing loss at a given frequency increased beyond 55 dB HL, the efficacy of providing additional audibility to that frequency region was diminished, especially when this degree of hearing loss was present at frequencies of 4000 Hz and above. A comparison of analyses from the "old" and "new" AI procedures suggests that some, but not all, of the deficiencies of speech recognition in these listeners was due to high presentation levels.

  3. High frequency ultrasound with color Doppler in dermatology*

    PubMed Central

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  4. High frequency, small signal MH loops of ferromagnetic thin films

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Ong, K. G.

    2000-01-01

    A method is presented for transforming the high frequency bias susceptibility measurements of ferromagnetic thin films into the form of a MH loop with, depending upon the measurement geometry, the y-axis zero crossing giving a measure of the coercive force or anisotropy field. The loops provide a measure of the quantitative and qualitative high frequency switching properties of ferromagnetic thin films. c2000 American Institute of Physics.

  5. Induced and Form Birefringence in High-Frequency Polarization Gratings

    NASA Astrophysics Data System (ADS)

    Martinez-Ponce, Geminiano; Solano, Cristina

    2001-08-01

    High-frequency phase polarization gratings are fabricated holographically in dichromated gelatin dyed with malachite green. It is observed that the intensity of the -1 diffracted beam is a sinusoidal function of the incident polarization angle. In addition, we analyze the dependence of the diffracted order polarization on grating frequency. It is evident from our results that form birefringence becomes significant when the grating period is smaller than the illumination wavelength, thus modifying the optically induced birefringence. Then, in polarization hologram reconstruction, it is not possible to obtain the polarization distribution at the recording step for high-frequency objects.

  6. High and low spatial frequencies in website evaluations.

    PubMed

    Thielsch, Meinald T; Hirschfeld, Gerrit

    2010-08-01

    Which features of websites are important for users' perceptions regarding aesthetics or usability? This study investigates how evaluations of aesthetic appeal and usability depend on high vs. low spatial frequencies. High spatial frequencies convey information on fine details, whereas low spatial frequencies convey information about the global layout. Participants rated aesthetic appeal and usability of 50 website screenshots from different domains. Screenshots were presented unfiltered, low-pass filtered with blurred targets or high-pass filtered with high-pass filtered targets. The main result is that low spatial frequencies can be seen to have a unique contribution in perceived website aesthetics, thus confirming a central prediction from processing fluency theory. There was no connection between low spatial frequencies and usability evaluations, whereas strong correlations were found between ratings of high-pass filtered websites and those of unfiltered websites in aesthetics and usability. This study thus offers a new perspective on the biological basis of users' website perceptions. This research links ergonomics to neurocognitive models of visual processing. This paper investigates how high and low spatial frequencies, which are neurologically processed in different visual pathways, independently contribute to users' perceptions of websites. This is very relevant for theories of website perceptions and for practitioners of web design. PMID:20658391

  7. Frequencies of Inaudible High-Frequency Sounds Differentially Affect Brain Activity: Positive and Negative Hypersonic Effects

    PubMed Central

    Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu

    2014-01-01

    The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10–13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC. PMID:24788141

  8. Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects.

    PubMed

    Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu

    2014-01-01

    The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10-13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.

  9. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing.

    PubMed

    Worthmann, Brian M; Song, H C; Dowling, David R

    2015-12-01

    Matched field processing (MFP) is an established technique for source localization in known multipath acoustic environments. Unfortunately, in many situations, particularly those involving high frequency signals, imperfect knowledge of the actual propagation environment prevents accurate propagation modeling and source localization via MFP fails. For beamforming applications, this actual-to-model mismatch problem was mitigated through a frequency downshift, made possible by a nonlinear array-signal-processing technique called frequency difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029]. Here, this technique is extended to conventional (Bartlett) MFP using simulations and measurements from the 2011 Kauai Acoustic Communications MURI experiment (KAM11) to produce ambiguity surfaces at frequencies well below the signal bandwidth where the detrimental effects of mismatch are reduced. Both the simulation and experimental results suggest that frequency difference MFP can be more robust against environmental mismatch than conventional MFP. In particular, signals of frequency 11.2 kHz-32.8 kHz were broadcast 3 km through a 106-m-deep shallow ocean sound channel to a sparse 16-element vertical receiving array. Frequency difference MFP unambiguously localized the source in several experimental data sets with average peak-to-side-lobe ratio of 0.9 dB, average absolute-value range error of 170 m, and average absolute-value depth error of 10 m. PMID:26723312

  10. Increase in Ty1 cDNA Recombination in Yeast sir4 Mutant Strains at High Temperature

    PubMed Central

    Radford, Sarah J.; Boyle, Meredith L.; Sheely, Catherine J.; Graham, Joel; Haeusser, Daniel P.; Zimmerman, Leigh; Keeney, Jill B.

    2004-01-01

    Transposition of the Ty1 element of the yeast Saccharomyces cerevisiae is temperature sensitive. We have identified a null allele of the silent information regulator gene SIR4 as a host mutant that allows for transposition at high temperature. We show that the apparent increase in transposition activity in sir4 mutant strains at high temperature is dependent on the RAD52 gene and is thus likely resulting from an increase in Ty1 cDNA recombination, rather than in IN-mediated integration. General cellular recombination is not increased at high temperature, suggesting that the increase in recombination at high temperature in sir4 mutants is specific for Ty1 cDNA. Additionally, this high-temperature Ty1 recombination was found to be dependent on functional Sir2p and Sir3p. We speculate that the increase in recombination seen in sir4 mutants at high temperature may be due to changes in chromatin structure or Ty1 interactions with chromosomal structures resulting in higher recombination rates. PMID:15454529

  11. Switch over to the high frequency rf systems near transition

    SciTech Connect

    Brennan, J.M.; Wei, J.

    1988-01-01

    The purpose of this note is to point out that since bunch narrowing naturally occurs in the acceleration process in the vicinity of transition, it should be possible to switch over to the high frequency system close to transition when the bunch has narrowed enough to fit directly into the high frequency bucket. The advantage of this approach is the simplicity, no extra components or gymnastics are required of the low frequency system. The disadvantage, of course, is for protons which do not go through transition. But on the other hand, there is no shortage of intensity for protons and so it should be possible to keep the phase space area low for protons, and then matching to the high frequency bucket should be easily accomplished by adiabatic compression. 3 refs., 7 figs.

  12. Parametric Study of High Frequency Pulse Detonation Tubes

    NASA Technical Reports Server (NTRS)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  13. Advanced waveforms and frequency with spinal cord stimulation: burst and high-frequency energy delivery.

    PubMed

    Pope, Jason E; Falowski, Steven; Deer, Tim R

    2015-07-01

    In recent years, software development has been key to the next generation of neuromodulation devices. In this review, we will describe the new strategies for electrical waveform delivery for spinal cord stimulation. A systematic literature review was performed using bibliographic databases, limited to the English language and human data, between 2010 and 2014. The literature search yielded three articles on burst stimulation and four articles on high-frequency stimulation. High-frequency and burst stimulation may offer advantages over tonic stimulation, as data suggest improved patient tolerance, comparable increase in function and possible success with a subset of patients refractory to tonic spinal cord stimulation. High-frequency and burst stimulation are new ways to deliver energy to the spinal cord that may offer advantages over tonic stimulation. These may offer new salvage strategies to mitigate spinal cord stimulation failure and improve cost-effectiveness by reducing explant rate.

  14. Dynamic high-resolution spectroscopic frequency referencing for frequency sweeping interferometry

    NASA Astrophysics Data System (ADS)

    Prellinger, Günther; Meiners-Hagen, Karl; Pollinger, Florian

    2016-06-01

    A spectroscopic reference for the intrinsic frequency calibration of a ranging system based on frequency-sweeping interferometry (FSI) is presented. Saturation spectroscopy of iodine transitions at 636.8 nm is used to generate well-defined frequency markers. The experimental and analytic implementation is shown to enable in principle a frequency determination with an uncertainty of 0.17 MHz for a coverage factor k = 1. This corresponds to a relative standard uncertainty of 1.5× {10}-7 as contribution to the combined measurement uncertainty of the FSI-based length measurement. But the analysis also reveals the high sensitivity of the actually achievable measurement uncertainty to the quality of the spectroscopic reference data.

  15. THE RELATION OF FREQUENCY TO THE PHYSIOLOGICAL EFFECTS OF ULTRA-HIGH FREQUENCY CURRENTS.

    PubMed

    Christie, R V; Loomis, A L

    1929-01-31

    1. Biological effects of electromagnetic waves emitted by a vacuum tube oscillator have been studied at frequencis ranging from 8,300,000 to 158,000,000 cycles per second (1.9 to 38 meters wave-length). 2. The effects produced on animals can be fully explained on the basis of the heat generated by high frequency currents which are induced in them. 3. No evidence was obtained to support the theory that certain wave-lengths have a specific action on living cells. 4. At frequencies below 50,000,000 cycles, the effect of these radiations on animals is proportionate to the intensity of the electro-magnetic field. As the frequency is increased beyond this point, the amount of induced current is diminished and the apparent lethality of the radiation is decreased. This can be explained by changes occurring in the dielectric properties of tissues at low wave-lengths.

  16. Pulsating fireballs with high-frequency sheath-plasma instabilities

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Gruenwald, J.; Ionita, C.; Schrittwieser, R.

    2011-08-01

    High-frequency instabilities are observed in connection with unstable fireballs. Fireballs are discharge phenomena near positively biased electrodes in discharge plasmas. They are bounded by a double layer whose potential is of order of the ionization potential. Fireballs become unstable when plasma losses and plasma production are not in balance, resulting in periodic fireball pulses. High-frequency instabilities in the range of the electron plasma frequency have been observed. These occur between fireball pulses, hence are not due to electron beam-plasma instabilities since there are no beams without double layers. The instability has been identified as a sheath-plasma instability. Electron inertia creates a phase shift between high-frequency current and electric fields which destabilizes the sheath-plasma resonance. High-frequency signals are observed in the current to the electrode and on probes near the sheath of the electrode. Waveforms and spectra are presented, showing bursty emissions, phase shifts, frequency jumps, beat phenomena between two sheaths, and nonlinear effects such as amplitude clipping. These reveal many interesting properties of sheaths with periodic ionization phenomena.

  17. Efficient production of a gene mutant cell line through integrating TALENs and high-throughput cell cloning.

    PubMed

    Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff

    2015-02-01

    Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line.

  18. Impact of maternal lifestyle factors on newborn HPRT mutant frequencies and molecular spectrum--initial results from the Prenatal Exposures and Preeclampsia Prevention (PEPP) Study.

    PubMed

    Bigbee, W L; Day, R D; Grant, S G; Keohavong, P; Xi, L; Zhang, L; Ness, R B

    1999-12-17

    Epidemiological studies have demonstrated associations between maternal tobacco smoke exposure and consumption of alcohol during pregnancy and increased risk of pediatric malignancies, particularly infant leukemias. Molecular evidence also suggests that somatic mutational events occurring during fetal hematopoiesis in utero can contribute to this process. As part of an ongoing multi-endpoint biomarker study of 2000 mothers and newborns, the HPRT T-lymphocyte cloning assay was used to determine mutant frequencies (Mf) in umbilical cord blood samples from an initial group of 60 neonates born to a sociodemographically diverse cohort of mothers characterized with respect to age, ethnicity, socioeconomic status, and cigarette smoke and alcohol exposure. Non-zero Mf (N = 47) ranged from 0.19 to 5.62 x 10(-6), median 0.70 x 10(-6), mean +/- SD 0.98 +/- 0.95 x 10(-6). No significant difference in Mf was observed between female and male newborns. Multivariable Poisson regression analysis revealed that increased HPRT Mf were significantly associated with maternal consumption of alcohol at the beginning [Relative Rate (RR) = 1.84, 95% CI = 0.99-3.40, P = 0.052) and during pregnancy (RR = 2.99, 95% CI = 1.14-7.84, P = 0.026). No independent effect of self-reported active maternal cigarette smoking, either at the beginning or throughout pregnancy, nor maternal passive exposure to cigarette smoke was observed. Although based on limited initial data, this is the first report of a positive association between maternal alcohol consumption during pregnancy and HPRT Mf in human newborns. In addition, the spectrum of mutations at the HPRT locus was determined in 33 mutant clones derived from 19 newborns of mothers with no self-reported exposure to tobacco smoke and 14 newborns of mothers exposed passively or actively to cigarette smoke. In the unexposed group, alterations leading to specific exon 2-3 deletions, presumably as a result of illegitimate V(D)J recombinase activity, were

  19. Proteomic analysis of Spirogyra varians mutant with high starch content and growth rate induced by gamma irradiation.

    PubMed

    Yoon, Minchul; Choi, Jong-il; Kim, Gwang Hoon; Kim, Dong-Ho; Park, Don-Hee

    2013-06-01

    This study was conducted to develop a high-efficiency strain of Spirogyra varians for the production of biomass by radiation breeding. The characteristics of wild-type and mutant S. varians were analyzed through phenomenological and proteomic observations. The results of our phenomenological observations of the S. varians mutant demonstrated increases in growth rate and content of chlorophyll a, b, and a + b; in particular, a significant threefold increase was observed in starch accumulation. Proteomic analysis to investigate the differences in expression between wild-type and mutant proteins identified 18 proteins with significantly different expressions. From the literature review, it was confirmed that the up-regulated proteins were mainly involved in photosynthesis, carbohydrate biosynthesis, and energy metabolism. These results suggest the possibility of algae development by radiation breeding for the production of biofuel. PMID:23370702

  20. Proteomic analysis of Spirogyra varians mutant with high starch content and growth rate induced by gamma irradiation.

    PubMed

    Yoon, Minchul; Choi, Jong-il; Kim, Gwang Hoon; Kim, Dong-Ho; Park, Don-Hee

    2013-06-01

    This study was conducted to develop a high-efficiency strain of Spirogyra varians for the production of biomass by radiation breeding. The characteristics of wild-type and mutant S. varians were analyzed through phenomenological and proteomic observations. The results of our phenomenological observations of the S. varians mutant demonstrated increases in growth rate and content of chlorophyll a, b, and a + b; in particular, a significant threefold increase was observed in starch accumulation. Proteomic analysis to investigate the differences in expression between wild-type and mutant proteins identified 18 proteins with significantly different expressions. From the literature review, it was confirmed that the up-regulated proteins were mainly involved in photosynthesis, carbohydrate biosynthesis, and energy metabolism. These results suggest the possibility of algae development by radiation breeding for the production of biofuel.

  1. Frequency stabilization of a high power argon laser.

    NASA Technical Reports Server (NTRS)

    Hohimer, J. P.; Tittel, F. K.; Kelly, R. C.

    1972-01-01

    A technique for frequency stabilizing a high power, single frequency argon laser is described which offers certain advantages over those that have already been reported. This system is capable of maintaining a relative short term frequency stability of the order of plus or minus two parts in one billion and a long term stability (2 hr) of about plus or minus five parts in one billion for the 5145-A line at a power level of 750 mW. This short and long term stability is achieved by means of a multiple feedback loop composed of an optical cavity discriminator which is stabilized against an iodine vapor absorption line.

  2. External high-frequency control of combustion instability

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Kozar, A. N.

    2016-01-01

    The article presents the results of experimental studies of combustion instability in the pulse combustor. Propane-air mixture is burned in the chamber with the flame holder. It was experimentally found that feeding high-frequency sound vibrations into the combustion chamber causes the suppression of pulsating combustion. The oscillation frequency ranges in 870 to 1400 Hz. This corresponds to 9-12 resonance frequencies of oscillations in the combustor. The physical mechanism of the observed phenomenon consists in changing the conditions of formation and destruction of fuel jets in the vortex zone behind the flame holder.

  3. High-power radio-frequency attenuation device

    DOEpatents

    Kerns, Q.A.; Miller, H.W.

    1981-12-30

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  4. Frequency and time domain modeling of high speed amplifier

    NASA Astrophysics Data System (ADS)

    Opalska, Katarzyna

    2015-09-01

    The paper presents the lumped model of high speed amplifier useful for frequency and time domain (also large signal) simulation. Model is constructed on the basis of two-domain device measurements, namely small signal frequency parameters and time response to the input step of varying amplitude. Rational approximation of frequency domain data leads to small signal model composed of RLC subcircuits and controlled sources. Next, the model is complimented with the nonlinearities identified from time-domain measurements, including those taken for large input signals. Final amplifier model implemented in SPICE simulator is shown to correctly render the behavior of the device over the wide variety of operating conditions.

  5. Prognostic significance of L1CAM expression and its association with mutant p53 expression in high-risk endometrial cancer.

    PubMed

    Van Gool, Inge C; Stelloo, Ellen; Nout, Remi A; Nijman, Hans W; Edmondson, Richard J; Church, David N; MacKay, Helen J; Leary, Alexandra; Powell, Melanie E; Mileshkin, Linda; Creutzberg, Carien L; Smit, Vincent T H B M; Bosse, Tjalling

    2016-02-01

    Studies in early-stage, predominantly low- and intermediate-risk endometrial cancer have demonstrated that L1 cell adhesion molecule (L1CAM) overexpression identifies patients at increased risk of recurrence, yet its prognostic significance in high-risk endometrial cancer is unclear. To evaluate this, its frequency, and the relationship of L1CAM with the established endometrial cancer biomarker p53, we analyzed the expression of both markers by immunohistochemistry in a pilot series of 116 endometrial cancers (86 endometrioid, 30 non-endometrioid subtype) with high-risk features (such as high tumor grade and deep myometrial invasion) and correlated results with clinical outcome. We used The Cancer Genome Atlas (TCGA) endometrial cancer series to validate our findings. Using the previously reported cutoff of 10% positive staining, 51/116 (44%) tumors were classified as L1CAM-positive, with no significant association between L1CAM positivity and the rate of distant metastasis (P=0.195). However, increasing the threshold for L1CAM positivity to 50% resulted in a reduction of the frequency of L1CAM-positive tumors to 24% (28/116), and a significant association with the rate of distant metastasis (P=0.018). L1CAM expression was strongly associated with mutant p53 in the high-risk and TCGA series (P<0.001), although a substantial fraction (36% of endometrioid, 10% of non-endometrioid morphology) of p53-mutant endometrial cancers displayed <10% L1CAM positivity. Moreover, 30% of p53-wild-type non-endometrioid endometrial cancers demonstrated diffuse L1CAM staining, suggesting p53-independent mechanisms of L1CAM overexpression. In conclusion, the previously proposed threshold for L1CAM positivity of >10% does not predict prognosis in high-risk endometrial cancer, whereas an alternative threshold (>50%) does. L1CAM expression is strongly, but not universally, associated with mutant p53, and may be strong enough for clinical implementation as prognostic marker in combination

  6. Engineering Graphene Conductivity for Flexible and High-Frequency Applications.

    PubMed

    Samuels, Alexander J; Carey, J David

    2015-10-14

    Advances in lightweight, flexible, and conformal electronic devices depend on materials that exhibit high electrical conductivity coupled with high mechanical strength. Defect-free graphene is one such material that satisfies both these requirements and which offers a range of attractive and tunable electrical, optoelectronic, and plasmonic characteristics for devices that operate at microwave, terahertz, infrared, or optical frequencies. Essential to the future success of such devices is therefore the ability to control the frequency-dependent conductivity of graphene. Looking to accelerate the development of high-frequency applications of graphene, here we demonstrate how readily accessible and processable organic and organometallic molecules can efficiently dope graphene to carrier densities in excess of 10(13) cm(-2) with conductivities at gigahertz frequencies in excess of 60 mS. In using the molecule 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ), a high charge transfer (CT) of 0.5 electrons per adsorbed molecule is calculated, resulting in p-type doping of graphene. n-Type doping is achieved using cobaltocene and the sulfur-containing molecule tetrathiafulvalene (TTF) with a CT of 0.41 and 0.24 electrons donated per adsorbed molecule, respectively. Efficient CT is associated with the interaction between the π electrons present in the molecule and in graphene. Calculation of the high-frequency conductivity shows dispersion-less behavior of the real component of the conductivity over a wide range of gigahertz frequencies. Potential high-frequency applications in graphene antennas and communications that can exploit these properties and the broader impacts of using molecular doping to modify functional materials that possess a low-energy Dirac cone are also discussed.

  7. Engineering Graphene Conductivity for Flexible and High-Frequency Applications.

    PubMed

    Samuels, Alexander J; Carey, J David

    2015-10-14

    Advances in lightweight, flexible, and conformal electronic devices depend on materials that exhibit high electrical conductivity coupled with high mechanical strength. Defect-free graphene is one such material that satisfies both these requirements and which offers a range of attractive and tunable electrical, optoelectronic, and plasmonic characteristics for devices that operate at microwave, terahertz, infrared, or optical frequencies. Essential to the future success of such devices is therefore the ability to control the frequency-dependent conductivity of graphene. Looking to accelerate the development of high-frequency applications of graphene, here we demonstrate how readily accessible and processable organic and organometallic molecules can efficiently dope graphene to carrier densities in excess of 10(13) cm(-2) with conductivities at gigahertz frequencies in excess of 60 mS. In using the molecule 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ), a high charge transfer (CT) of 0.5 electrons per adsorbed molecule is calculated, resulting in p-type doping of graphene. n-Type doping is achieved using cobaltocene and the sulfur-containing molecule tetrathiafulvalene (TTF) with a CT of 0.41 and 0.24 electrons donated per adsorbed molecule, respectively. Efficient CT is associated with the interaction between the π electrons present in the molecule and in graphene. Calculation of the high-frequency conductivity shows dispersion-less behavior of the real component of the conductivity over a wide range of gigahertz frequencies. Potential high-frequency applications in graphene antennas and communications that can exploit these properties and the broader impacts of using molecular doping to modify functional materials that possess a low-energy Dirac cone are also discussed. PMID:26387636

  8. Optimization of electric pulse amplitude and frequency in vitro for low voltage and high frequency electrochemotherapy.

    PubMed

    Shankayi, Zeinab; Firoozabadi, S M P; Hassan, Zohair Saraf

    2014-02-01

    During standard electrochemotherapy (ECT), using a train of 1,000 V/cm amplitude rectangular pulses with 1 Hz frequency, patients experience an unpleasant sensation and slight edema. According to the patients, muscle contractions provoked by high amplitude (about 1,000 V/cm) and low repetition frequency (1 Hz) pulses are the most unpleasant and painful sensations. Recently, ECT using low voltage and higher repetition frequency (LVHF) has been shown to be an effective tool for inhibiting tumor growth. The aim of the present study was to optimize electric pulse amplitude and repetition frequency for LVHF ECT by sampling the different sets of pulse parameters on cell viability and permeabilization. In ECT, a reversible effect based on high permeabilization is desirable. For this purpose, we used bleomycin to evaluate the permeabilization of K562 and MIA-PACA2 cells caused by low voltage (50-150 V/cm) and higher repetition frequency (4-6 kHz) electric pulses. We show that the reversible effect with electropermeabilization of the cells caused by LVHF ECT is accessible; this interaction is more effective for electric pulses with 70 V/cm amplitude. PMID:24271721

  9. Frequency- and amplitude-transitioned waveforms mitigate the onset response in high-frequency nerve block

    NASA Astrophysics Data System (ADS)

    Gerges, Meana; Foldes, Emily L.; Ackermann, D. Michael; Bhadra, Narendra; Bhadra, Niloy; Kilgore, Kevin L.

    2010-12-01

    High-frequency alternating currents (HFAC) have proven to be a reversible and rapid method of blocking peripheral nerve conduction, holding promise for treatment of disorders associated with undesirable neuronal activity. The delivery of HFAC is characterized by a transient period of neural firing at its inception, termed the 'onset response'. The onset response is minimized for higher frequencies and higher amplitudes, but requires larger currents. However, the complete block can be maintained at lower frequencies and amplitudes, using lower currents. In this in vivo study on whole mammalian peripheral nerves, we demonstrate a method to minimize the onset response by initiating the block using a stimulation paradigm with a high frequency and large amplitude, and then transitioning to a low-frequency and low-amplitude waveform, reducing the currents required to maintain the conduction block. In five of six animals, it was possible to transition from a 30 kHz to a 10 kHz waveform without inducing any transient neural firing. The minimum transition time was 0.03 s. Transition activity was minimized or eliminated with longer transition times. The results of this study show that this method is feasible for achieving a nerve block with minimal onset responses and current amplitude requirements.

  10. Solution of high frequency variations of ERP from VLBI observations

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Li, J. L.; Wang, G. L.; Zhao, M.

    2005-01-01

    In the astrometric and geodetic VLBI data analysis software CALC/SOLVE, the high frequency variations of the Earth Rotation Parameters (ERP) are determined by a constrained continuous piecewise linear model. The ERP rate within two epoch nodes is constrained to be smaller than a limitation setting, and the ERP is forced to be continuous at epoch nodes. Observation analysis shows that when the data points are not very dense the constraint and the continuation requirement are helpful to the improvement in the stability of the solution, but degrade the independence of ERP solutions at epoch nodes as well. By using the Userpartial entry of CALC/SOLVE a direct solution module of the high frequency variations of ERP is realized without any constraint on the rate nor the requirement of continuation at nodes. It is shown from real observation reduction that the direct solution mode is feasible. In the solution of high frequency variations of ERP from VLBI observations with long period coverage, the model errors of the precession and nutation (celestial pole offset) should be taken into consideration. A corresponding module is realized and global solutions of the high frequency variation of ERP are successfully performed on the VLBI observations from 1979 to 2003. Comparison of the solutions shows that with the consideration of the pole offsets the precision of parameters could be improved obviously. In the solution of high frequency variation of ERP from VLBI observations, the direct solution mode with the consideration of the pole offsets is accordingly recommended.

  11. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  12. High frequency high magnetic field response of graphene monolayers

    NASA Astrophysics Data System (ADS)

    Petkovic, Ivana; Williams, Francis; Portier, Fabien; Roche, Patrice; Bennaceur, Keyan; Glattli, Christian

    2012-02-01

    We study the electronic magnetotransport in graphene at rf frequencies (5-50GHz). Our aim is to investigate the dynamics of charge carriers in the quantum Hall regime. The graphene sample is placed in a break made in a coplanar waveguide and the transmitted power is measured. In order to isolate the response of the sample from the direct transmission between the input and output waveguides, the graphene electron density distribution is modulated with a side gate and the resulting modulation in the transmitted power detected via a standard lock-in technique. The fixed frequency graphene response as a function of magnetic field reveals two different components. One is symmetric in B and dominates under large side gate voltage, and the other shows reproducible fluctuations revealed only at low gate voltage modulation amplitude. The first part is thought to be related to the bulk conductivity and the fluctuations to the carrier dynamics close to the edge. The amplitude of the fluctuations depends on the trajectory of the carriers, since the parity with respect to magnetic field reversal is not conserved. We thus demonstrate the chiral nature of the transport. We assume that the fluctuations of impedance originate in the scattering from localized states close to the sample edge.

  13. Quantitative insertion-site sequencing (QIseq) for high throughput phenotyping of transposon mutants

    PubMed Central

    Bronner, Iraad F.; Otto, Thomas D.; Zhang, Min; Udenze, Kenneth; Wang, Chengqi; Quail, Michael A.; Jiang, Rays H.Y.; Adams, John H.

    2016-01-01

    Genetic screening using random transposon insertions has been a powerful tool for uncovering biology in prokaryotes, where whole-genome saturating screens have been performed in multiple organisms. In eukaryotes, such screens have proven more problematic, in part because of the lack of a sensitive and robust system for identifying transposon insertion sites. We here describe quantitative insertion-site sequencing, or QIseq, which uses custom library preparation and Illumina sequencing technology and is able to identify insertion sites from both the 5′ and 3′ ends of the transposon, providing an inbuilt level of validation. The approach was developed using piggyBac mutants in the human malaria parasite Plasmodium falciparum but should be applicable to many other eukaryotic genomes. QIseq proved accurate, confirming known sites in >100 mutants, and sensitive, identifying and monitoring sites over a >10,000-fold dynamic range of sequence counts. Applying QIseq to uncloned parasites shortly after transfections revealed multiple insertions in mixed populations and suggests that >4000 independent mutants could be generated from relatively modest scales of transfection, providing a clear pathway to genome-scale screens in P. falciparum. QIseq was also used to monitor the growth of pools of previously cloned mutants and reproducibly differentiated between deleterious and neutral mutations in competitive growth. Among the mutants with fitness defects was a mutant with a piggyBac insertion immediately upstream of the kelch protein K13 gene associated with artemisinin resistance, implying mutants in this gene may have competitive fitness costs. QIseq has the potential to enable the scale-up of piggyBac-mediated genetics across multiple eukaryotic systems. PMID:27197223

  14. Electrojet-independent ionospheric extremely low frequency/very low frequency wave generation by powerful high frequency waves

    SciTech Connect

    Kuo, Spencer; Snyder, Arnold; Chang, Chia-Lie

    2010-08-15

    Results of extremely low frequency/very low frequency (ELF/VLF) wave generation by intensity-modulated high frequency (HF) heaters of 3.2 MHz in Gakona, Alaska, near local solar noon during a geomagnetic quiet time, are presented to support an electrojet-independent ELF/VLF wave generation mechanism. The modulation was set by splitting the HF transmitter array into two subarrays; one was run at cw full power and the other run alternatively at 50% and 100% power modulation by rectangular waves of 2.02, 5, 8, and 13 kHz. The most effective generation was from the X-mode heater with 100% modulation. While the 8 kHz radiation has the largest wave amplitude, the spectral intensity of the radiation increases with the modulation frequency, i.e., 13 kHz line is the strongest. Ionograms recorded significant virtual height spread of the O-mode sounding echoes. The patterns of the spreads and the changes of the second and third hop virtual height traces caused by the O/X-mode heaters are distinctively different, evidencing that it is due to differently polarized density irregularities generated by the filamentation instability of the O/X-mode HF heaters.

  15. Nonlocal theory for heat transport at high frequencies

    NASA Astrophysics Data System (ADS)

    Koh, Yee Kan; Cahill, David G.; Sun, Bo

    2014-11-01

    We develop a nonlocal theory for heat conduction under high-frequency temperature fields and apply the theory to explain reductions of the apparent thermal conductivity observed in recent experiments. Our nonlocal theory is an analytical solution of the Boltzmann transport equation for phonons in a semi-infinite solid, similar to a prior nonlocal theory for heat conduction under a high-temperature gradient but subjected to periodic heating at the surface. The boundary condition of periodic heating, as opposed to prior calculations of heating by a single laser pulse, better mimics time-domain thermoreflectance (TDTR) and broadband frequency-domain thermoreflectance (BB-FDTR) measurements. We find that, except for pure crystals at high frequencies, the effective thermal conductivity derived using the nonlocal theory compares well with calculations of a modified Callaway model that includes an upper limit on the phonon mean-free path at twice the thermal penetration depth. For pure crystals, however, the effective thermal conductivity derived from the out-of-phase calculations are independent of frequency, in agreement with prior TDTR measurements, due to the countereffect of reduced heat flux and diminished relative phase between the heat flux and temperature oscillations at high frequencies. Our results suggest that empirical interpretation of ballistic phonons not contributing to heat conduction is not general and can only be applied to measurements on alloys and not pure crystals, even when a large laser spot size is used in the experiments and the interfacial thermal resistance is negligible.

  16. High-frequency oscillations and the neurobiology of schizophrenia.

    PubMed

    Uhlhaas, Peter J; Singer, Wolf

    2013-09-01

    Neural oscillations at low- and high-frequency ranges are a fundamental feature of large-scale networks. Recent evidence has indicated that schizophrenia is associated with abnormal amplitude and synchrony of oscillatory activity, in particular, at high (beta/gamma) frequencies. These abnormalities are observed during task-related and spontaneous neuronal activity which may be important for understanding the pathophysiology of the syndrome. In this paper, we shall review the current evidence for impaired beta/gamma-band oscillations and their involvement in cognitive functions and certain symptoms of the disorder. In the first part, we will provide an update on neural oscillations during normal brain functions and discuss underlying mechanisms. This will be followed by a review of studies that have examined high-frequency oscillatory activity in schizophrenia and discuss evidence that relates abnormalities of oscillatory activity to disturbed excitatory/inhibitory (E/I) balance. Finally, we shall identify critical issues for future research in this area.

  17. A digital multigate Doppler method for high frequency ultrasound.

    PubMed

    Qiu, Weibao; Ye, Zongying; Yu, Yanyan; Chen, Yan; Chi, Liyang; Mu, Peitian; Li, Guofeng; Wang, Congzhi; Xiao, Yang; Dai, Jiyan; Sun, Lei; Zheng, Hairong

    2014-01-01

    Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method.

  18. High Frequency Amplitude Detector for GMI Magnetic Sensors

    PubMed Central

    Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul

    2014-01-01

    A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted. PMID:25536003

  19. Electro-optical microwave signal processor for high-frequency wideband frequency channelization

    NASA Astrophysics Data System (ADS)

    Dawber, William N.; Webster, Ken

    1998-08-01

    An electro-optic microwave signal processor for activity monitoring in an electronic warfare receiver, offering wideband operation, parallel output in real time and 100 percent probability of intercept is presented, along with results from a prototype system. Requirements on electronic warfare receiver system are demanding, because they have to defect and identify potential threats across a large frequency bandwidth and in the high pulse density expected of the battlefield environment. A technique of processing signals across a wide bandwidth is to use a channelizer in the receiver front-end, in order to produce a number of narrow band outputs that can be individually processed. In the presented signal processor, received microwave signals ar unconverted onto an optical carrier using an electro- optic modulator and then spatially separated into a series of spots. The position and intensity of the spots is determined by the received signal(s) frequency and strength. Finally a photodiode array can be used for fast parallel data readout. Thus the signal processor output is fully channelized according to frequency. A prototype signal processor has been constructed, which can process microwave frequencies from 500MHz to 8GHz. A standard telecommunications electro-optic intensity modulator with a 3dB bandwidth of approximately 2.5GHz provides frequency upconversion. Readout is achieved using either a near IR camera or a 16 element linear photodiode array.

  20. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  1. High-frequency nonreciprocal reflection from magnetic films with overlayers

    SciTech Connect

    Wang, Ying; Nie, Yan; Camley, R. E.

    2013-11-14

    We perform a theoretical study of the nonreciprocal reflection of high-frequency microwave radiation from ferromagnetic films with thin overlayers. Reflection from metallic ferromagnetic films is always near unity and shows no nonreciprocity. In contrast, reflection from a structure which has a dielectric overlayer on top of a film composed of insulated ferromagnetic nanoparticles or nanostructures can show significant nonreciprocity in the 75–80 GHz frequency range, a very high value. This can be important for devices such as isolators or circulators.

  2. High Frequency Haplotypes are Expected Events, not Historical Figures.

    PubMed

    Guillot, Elsa G; Cox, Murray P

    2015-01-01

    Cultural transmission of reproductive success states that successful men have more children and pass this raised fecundity to their offspring. Balaresque and colleagues found high frequency haplotypes in a Central Asian Y chromosome dataset, which they attribute to cultural transmission of reproductive success by prominent historical men, including Genghis Khan. Using coalescent simulation, we show that these high frequency haplotypes are consistent with a neutral model, where they commonly appear simply by chance. Hence, explanations invoking cultural transmission of reproductive success are statistically unnecessary.

  3. High Frequency Haplotypes are Expected Events, not Historical Figures

    PubMed Central

    Guillot, Elsa G.; Cox, Murray P.

    2016-01-01

    Cultural transmission of reproductive success states that successful men have more children and pass this raised fecundity to their offspring. Balaresque and colleagues found high frequency haplotypes in a Central Asian Y chromosome dataset, which they attribute to cultural transmission of reproductive success by prominent historical men, including Genghis Khan. Using coalescent simulation, we show that these high frequency haplotypes are consistent with a neutral model, where they commonly appear simply by chance. Hence, explanations invoking cultural transmission of reproductive success are statistically unnecessary. PMID:26834987

  4. ZCS High Frequency Inverter for Aluminum Vessel Induction Heating

    NASA Astrophysics Data System (ADS)

    Ogiwara, Hiroyuki; Nakaoka, Mutsuo

    Recent induction cooking apparatus are utilized for induction heating of ferromagnetic materials at 20-50kHz with a high efficiency. They can not, however, be applied for non-magnetic materials such as aluminum vessels. Here, we present a voltage-clamp reverse conducting ZCS high frequency inverter of half bridge type for induction heating of an aluminum vessel. The switching devices utilized for this inverter are SITs and its operating frequency is determined as 200kHz. This paper describes its circuit constitution and the obtained experimental results from a practical point of view.

  5. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  6. A Novel Soft Switching PWM Power Frequency Converter with Non DC Smoothing Filter Link for Consumer High Frequency Induction Heating

    NASA Astrophysics Data System (ADS)

    Sugimura, Hisayuki; Muraoka, Hidekazu; Hiraki, Eiji; Hirota, Izuo; Yasui, Kenji; Omori, Hideki; Lee, Hyun-Woo; Nakaoka, Mutsuo

    In this paper, high frequency power converter without DC smoothing electrolytic capacitor filter link which convert the 100V/200Vrms and 60Hz single phase utility frequency AC power into a high frequency AC. This proposed high frequency AC power converter without electrolytic capacitor filter can operate under a principle of soft switching PWM based on a lossless capacitor snubber is proposed and demonstrated for consumer high frequency induction heating (IH). In particular, this high frequency power converter capable of producing a high frequency AC more than 20kHz is developed for consumer IH applications as hot water producer and steamer based on the specially designed spiral type IH-Dual Packs Heater (DPH), which includes the dual mode pulse modulation control scheme based on soft switching PWM for high output power setting and commercial frequency AC zero voltage soft switching pulse density modulation (PDM) for low output power settings. This developed high frequency power frequency converter using trench gate IGBTs is clarified on the basis of experimental and simulation results for its circuit operation of the utility frequency AC to high frequency AC frequency PWM power converter without the electrolytic capacitor bank DC filter link for the IH hot water and IH steamer. These IH appliances are based upon an innovative electromagnetic IH-DPH for fluid heating as heat exchanger in consumer pipeline. Finally, its power regulation characteristics, power conversion efficiency and harmonic current components characteristics including power factor in utility AC grid side are evaluated and discussed from an experimental point of view. The practical effectiveness of this utility frequency AC to high frequency AC soft switching high power frequency converter defined conveniently as high frequency soft switching cyclo-inverter is proved as one of the important products effective for next generation IH application all electricity power utilizations.

  7. High-Frequency Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2009-01-01

    Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.

  8. Source of high-frequency oscillations in oblique saccade trajectory.

    PubMed

    Ghasia, Fatema F; Shaikh, Aasef G

    2014-04-01

    Most common eye movements, oblique saccades, feature rapid velocity, precise amplitude, but curved trajectory that is variable from trial-to-trial. In addition to curvature and inter-trial variability, the oblique saccade trajectory also features high-frequency oscillations. A number of studies proposed the physiological basis of the curvature and inter-trial variability of the oblique saccade trajectory, but kinematic characteristics of high-frequency oscillations are yet to be examined. We measured such oscillations and compared their properties with orthogonal pure horizontal and pure vertical oscillations generated during pure vertical and pure horizontal saccades, respectively. We found that the frequency of oscillations during oblique saccades ranged between 15 and 40 Hz, consistent with the frequency of orthogonal saccadic oscillations during pure horizontal or pure vertical saccades. We also found that the amplitude of oblique saccade oscillations was larger than pure horizontal and pure vertical saccadic oscillations. These results suggest that the superimposed high-frequency sinusoidal oscillations upon the oblique saccade trajectory represent reverberations of disinhibited circuit of reciprocally innervated horizontal and vertical burst generators.

  9. Neuronal morphology generates high-frequency firing resonance.

    PubMed

    Ostojic, Srdjan; Szapiro, Germán; Schwartz, Eric; Barbour, Boris; Brunel, Nicolas; Hakim, Vincent

    2015-05-01

    The attenuation of neuronal voltage responses to high-frequency current inputs by the membrane capacitance is believed to limit single-cell bandwidth. However, neuronal populations subject to stochastic fluctuations can follow inputs beyond this limit. We investigated this apparent paradox theoretically and experimentally using Purkinje cells in the cerebellum, a motor structure that benefits from rapid information transfer. We analyzed the modulation of firing in response to the somatic injection of sinusoidal currents. Computational modeling suggested that, instead of decreasing with frequency, modulation amplitude can increase up to high frequencies because of cellular morphology. Electrophysiological measurements in adult rat slices confirmed this prediction and displayed a marked resonance at 200 Hz. We elucidated the underlying mechanism, showing that the two-compartment morphology of the Purkinje cell, interacting with a simple spiking mechanism and dendritic fluctuations, is sufficient to create high-frequency signal amplification. This mechanism, which we term morphology-induced resonance, is selective for somatic inputs, which in the Purkinje cell are exclusively inhibitory. The resonance sensitizes Purkinje cells in the frequency range of population oscillations observed in vivo. PMID:25948257

  10. High-frequency P wave spectra from explosions and earthquakes

    NASA Astrophysics Data System (ADS)

    Walter, William R.; Priestley, Keith F.

    Two explosion P wave spectral models [Sharpe, 1942; Mueller-Murphy, 1971] and two earthquake P wave spectral models [Archambeau, 1968, 1972; modified Brune 1970, 1971] are reviewed to assess their implications for high-frequency (>1 Hz) seismic discrimination between earthquakes and explosions. The importance of the corner frequency scaling, particularly for models with the same high-frequency spectral decay rate, is demonstrated by calculating source spectral ratios (a potentially important regional discriminant) for these models. We compare North American events and a limited data set of Central Asian events with these spectral models. We find North American earthquakes are consistent with a constant stress drop modified Brune model between 10 and 30 Hz. Shallow (<700 m depth) Pahute Mesa explosions at the Nevada Test Site have a high-frequency spectral decay between 10 and 30 Hz greater than the ω-2 predicted by the explosion models. Near regional recordings of the Soviet Joint Verification Experiment (JVE) explosion show a higher corner frequency and lower 1 to 4 Hz spectral ratios than predicted by either explosion model. The higher corner frequency of the Soviet JVE appears not to be due to attenuation, or receiver effects, and may represent a need for different corner frequency scaling, or result from source complications such as spall and tectonic release. A regional recording of the Soviet JVE (NEIC mb = 6.1) is shown to have a lower 1 to 4 Hz spectral ratio than a smaller earthquake (NEIC mb = 4.6) recorded on a nearly reciprocal path.

  11. Combined high vacuum/high frequency fatigue tester

    NASA Technical Reports Server (NTRS)

    Honeycutt, C. R.; Martin, T. F.

    1971-01-01

    Apparatus permits application of significantly greater number of cycles or equivalent number of cycles in shorter time than conventional fatigue test machines. Environment eliminates problems associated with high temperature oxidation and with sensitivity of refractory alloy behavior to atmospheric contamination.

  12. High frequency dielectrophoretic response of microalgae over time

    PubMed Central

    Hadady, Hanieh; Wong, Johnson J.; Hiibel, Sage R.; Redelman, Doug; Geiger, Emil J.

    2015-01-01

    The high frequency dielectrophoresis (>20 MHz) response of microalgae cells with different lipid content was monitored over time. Chlamydomonas reinhardtii was cultured in regular medium and under nitrogen-depleted conditions in order to produce populations of cells with low and high lipid content, respectively. The electrical conductivity (EC) of the culture media was also monitored over the same time. The upper crossover frequency (UCOF) decreased for high-lipid cells over time. The single-shell model predicts that the upper crossover frequency is dictated primarily by the dielectric properties of the cytoplasm. The high frequency DEP response of the high-lipid cells’ cytoplasm was changed by lipid accumulation. DEP response of the low-lipid cells also varied with the conductivity of the culture media due to nutrient consumption. Relative lipid content was estimated with BODIPY 505/515 dye by calculating the area-weighted intensity average of fluorescent images. Finally, microalgae cells were successfully separated based on lipid content at 41 MHz and DEP media conductivity 106 ± 1 µS/cm. PMID:25229637

  13. Clustered Desynchronization from High-Frequency Deep Brain Stimulation.

    PubMed

    Wilson, Dan; Moehlis, Jeff

    2015-12-01

    While high-frequency deep brain stimulation is a well established treatment for Parkinson's disease, its underlying mechanisms remain elusive. Here, we show that two competing hypotheses, desynchronization and entrainment in a population of model neurons, may not be mutually exclusive. We find that in a noisy group of phase oscillators, high frequency perturbations can separate the population into multiple clusters, each with a nearly identical proportion of the overall population. This phenomenon can be understood by studying maps of the underlying deterministic system and is guaranteed to be observed for small noise strengths. When we apply this framework to populations of Type I and Type II neurons, we observe clustered desynchronization at many pulsing frequencies. PMID:26713619

  14. Clustered Desynchronization from High-Frequency Deep Brain Stimulation

    PubMed Central

    Wilson, Dan; Moehlis, Jeff

    2015-01-01

    While high-frequency deep brain stimulation is a well established treatment for Parkinson’s disease, its underlying mechanisms remain elusive. Here, we show that two competing hypotheses, desynchronization and entrainment in a population of model neurons, may not be mutually exclusive. We find that in a noisy group of phase oscillators, high frequency perturbations can separate the population into multiple clusters, each with a nearly identical proportion of the overall population. This phenomenon can be understood by studying maps of the underlying deterministic system and is guaranteed to be observed for small noise strengths. When we apply this framework to populations of Type I and Type II neurons, we observe clustered desynchronization at many pulsing frequencies. PMID:26713619

  15. High frequency vibration analysis by the complex envelope vectorization.

    PubMed

    Giannini, O; Carcaterra, A; Sestieri, A

    2007-06-01

    The complex envelope displacement analysis (CEDA) is a procedure to solve high frequency vibration and vibro-acoustic problems, providing the envelope of the physical solution. CEDA is based on a variable transformation mapping the high frequency oscillations into signals of low frequency content and has been successfully applied to one-dimensional systems. However, the extension to plates and vibro-acoustic fields met serious difficulties so that a general revision of the theory was carried out, leading finally to a new method, the complex envelope vectorization (CEV). In this paper the CEV method is described, underlying merits and limits of the procedure, and a set of applications to vibration and vibro-acoustic problems of increasing complexity are presented.

  16. Determining the frequency, depth and velocity of preferential flow by high frequency soil moisture monitoring.

    PubMed

    Hardie, Marcus; Lisson, Shaun; Doyle, Richard; Cotching, William

    2013-01-01

    Preferential flow in agricultural soils has been demonstrated to result in agrochemical mobilisation to shallow ground water. Land managers and environmental regulators need simple cost effective techniques for identifying soil - land use combinations in which preferential flow occurs. Existing techniques for identifying preferential flow have a range of limitations including; often being destructive, non in situ, small sampling volumes, or are subject to artificial boundary conditions. This study demonstrated that high frequency soil moisture monitoring using a multi-sensory capacitance probe mounted within a vertically rammed access tube, was able to determine the occurrence, depth, and wetting front velocity of preferential flow events following rainfall. Occurrence of preferential flow was not related to either rainfall intensity or rainfall amount, rather preferential flow occurred when antecedent soil moisture content was below 226 mm soil moisture storage (0-70 cm). Results indicate that high temporal frequency soil moisture monitoring may be used to identify soil type - land use combinations in which the presence of preferential flow increases the risk of shallow groundwater contamination by rapid transport of agrochemicals through the soil profile. However use of high frequency based soil moisture monitoring to determine agrochemical mobilisation risk may be limited by, inability to determine the volume of preferential flow, difficulty observing macropore flow at high antecedent soil moisture content, and creation of artificial voids during installation of access tubes in stony soils. PMID:23159761

  17. Determining the frequency, depth and velocity of preferential flow by high frequency soil moisture monitoring.

    PubMed

    Hardie, Marcus; Lisson, Shaun; Doyle, Richard; Cotching, William

    2013-01-01

    Preferential flow in agricultural soils has been demonstrated to result in agrochemical mobilisation to shallow ground water. Land managers and environmental regulators need simple cost effective techniques for identifying soil - land use combinations in which preferential flow occurs. Existing techniques for identifying preferential flow have a range of limitations including; often being destructive, non in situ, small sampling volumes, or are subject to artificial boundary conditions. This study demonstrated that high frequency soil moisture monitoring using a multi-sensory capacitance probe mounted within a vertically rammed access tube, was able to determine the occurrence, depth, and wetting front velocity of preferential flow events following rainfall. Occurrence of preferential flow was not related to either rainfall intensity or rainfall amount, rather preferential flow occurred when antecedent soil moisture content was below 226 mm soil moisture storage (0-70 cm). Results indicate that high temporal frequency soil moisture monitoring may be used to identify soil type - land use combinations in which the presence of preferential flow increases the risk of shallow groundwater contamination by rapid transport of agrochemicals through the soil profile. However use of high frequency based soil moisture monitoring to determine agrochemical mobilisation risk may be limited by, inability to determine the volume of preferential flow, difficulty observing macropore flow at high antecedent soil moisture content, and creation of artificial voids during installation of access tubes in stony soils.

  18. Note: High precision measurements using high frequency gigahertz signals

    NASA Astrophysics Data System (ADS)

    Jin, Aohan; Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung

    2014-12-01

    Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 108 to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example, the change in length, resistance, etc. Real time implementation of the technique can open up new methodologies of in situ virtual metrology in material design.

  19. Note: High precision measurements using high frequency gigahertz signals.

    PubMed

    Jin, Aohan; Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung

    2014-12-01

    Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 10(8) to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example, the change in length, resistance, etc. Real time implementation of the technique can open up new methodologies of in situ virtual metrology in material design.

  20. Selection and molecular characterization of a high tocopherol accumulation rice mutant line induced by gamma irradiation.

    PubMed

    Hwang, Jung Eun; Ahn, Joon-Woo; Kwon, Soon-Jae; Kim, Jin-Baek; Kim, Sang Hoon; Kang, Si-Yong; Kim, Dong Sub

    2014-11-01

    Tocopherols are micronutrients with antioxidant properties. They are synthesized by photosynthetic bacteria and plants, and play important roles in animal and human nutrition. In this study, we isolated a new rice mutant line with elevated tocopherol content (MRXII) from an in vitro mutagenized population induced by gamma irradiation. The mutant exhibited greater seed longevity than the control, indicating a crucial role for tocopherols in maintaining viability during quiescence, and displayed faster seedling growth during the early growth stage. To study the molecular mechanism underlying vitamin E biosynthesis, we examined the expression patterns of seven rice genes encoding vitamin E biosynthetic enzymes. Accumulation levels of the OsVTE2 transcript and OsVTE2 protein in the MRXII mutant were significantly higher than in the control. Sequence analysis revealed that the MRXII mutant harbored a point mutation in the OsVTE2 promoter region, which resulted in the generation of MYB transcription factor-binding cis-element. These results help identify the promoter regions that regulate OsVTE2 transcription, and offer insights into the regulation of tocopherol content.

  1. Newly identified natural high oleate mutant from Arachis hypogaea L. subsp. hypogaea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural genetic variation exists in animals and plants. Mining and utilizing this variation may provide benefits for new breed/cultivar development. From screening over 4,000 cultivated peanut germplasm accessions, we identified two natural mutant lines with 80% oleic acid by gas chromatography anal...

  2. High frequency electrical conduction block of the pudendal nerve

    NASA Astrophysics Data System (ADS)

    Bhadra, Narendra; Bhadra, Niloy; Kilgore, Kevin; Gustafson, Kenneth J.

    2006-06-01

    A reversible electrical block of the pudendal nerves may provide a valuable method for restoration of urinary voiding in individuals with bladder-sphincter dyssynergia. This study quantified the stimulus parameters and effectiveness of high frequency (HFAC) sinusoidal waveforms on the pudendal nerves to produce block of the external urethral sphincter (EUS). A proximal electrode on the pudendal nerve after its exit from the sciatic notch was used to apply low frequency stimuli to evoke EUS contractions. HFAC at frequencies from 1 to 30 kHz with amplitudes from 1 to 10 V were applied through a conforming tripolar nerve cuff electrode implanted distally. Sphincter responses were recorded with a catheter mounted micro-transducer. A fast onset and reversible motor block was obtained over this range of frequencies. The HFAC block showed three phases: a high onset response, often a period of repetitive firing and usually a steady state of complete or partial block. A complete EUS block was obtained in all animals. The block thresholds showed a linear relationship with frequency. HFAC pudendal nerve stimulation effectively produced a quickly reversible block of evoked urethral sphincter contractions. The HFAC pudendal block could be a valuable tool in the rehabilitation of bladder-sphincter dyssynergia.

  3. Extremely high-frequency micro-Doppler measurements of humans

    NASA Astrophysics Data System (ADS)

    Hedden, Abigail S.; Silvious, Jerry L.; Dietlein, Charles R.; Green, Jeremy A.; Wikner, David A.

    2014-05-01

    The development of sensors that are capable of penetrating smoke, dust, fog, clouds, and rain is critical for maintaining situational awareness in degraded visual environments and for providing support to the Warfighter. Atmospheric penetration properties, the ability to form high-resolution imagery with modest apertures, and available source power make the extremely high-frequency (EHF) portion of the spectrum promising for the development of radio frequency (RF) sensors capable of penetrating visual obscurants. Comprehensive phenomenology studies including polarization and backscatter properties of relevant targets are lacking at these frequencies. The Army Research Laboratory (ARL) is developing a fully-polarimetric frequency-modulated continuous-wave (FMCW) instrumentation radar to explore polarization and backscatter properties of in-situ rain, scattering from natural and man-made surfaces, and the radar cross section and micro-Doppler signatures of humans at EHF frequencies, specifically, around the 220 GHz atmospheric window. This work presents an overview of the design and construction of the radar system, hardware performance, data acquisition software, and initial results including an analysis of human micro-Doppler signatures.

  4. High frequency alternating current chip nano calorimeter with laser heating

    SciTech Connect

    Shoifet, E.; Schick, C.; Chua, Y. Z.; Huth, H.

    2013-07-15

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (∼1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm{sup 2}). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10{sup −3} Hz and 10{sup 6} Hz. In this frequency range the dynamic glass transition shifts about 120 K.

  5. High frequency nanomechanical resonators in ultraclean suspended graphene pn junctions

    NASA Astrophysics Data System (ADS)

    Jung, Minkyung; Rickhaus, Peter; Zihmann, Simon; Makk, Peter; Eichler, Alexander; Weiss, Markus; Schönenberger, Christian; Department of Physics, University of Basel Team; Department of Physics, ETH Zurich Team

    2015-03-01

    Here, we demonstrate high frequency nanomechanical resonators in ultraclean suspended graphene pn junctions. The suspended graphene resonators are fabricated on two bottom gates (left and right) covered with lift-off resist (LOR) by using a mechanical transfer technique. After current annealing, the device exhibits a clear charge neutrality point around zero gate voltage. Depending on the left and right bottom gate voltages, the device shows four different conductance regimes: pp, nn, np and pn corresponding to two different carrier types in the two sides of the sample. At pn and np regimes, the clear Fabry-Perot interference pattern is observed, indicating ballistic transport behavior over 1 μm-long channel. Then, the mechanical resonance is measured in the same device with a frequency modulation (FM) mixing technique at 4.2 K in the vacuum chamber. The resonance frequency is about 405 MHz. By fitting resonance frequency, we deduce both the mass density and the built-in tension in the graphene sheet. In a similar device structure with different strain environment, we observe a resonance frequency as high as 1.17 GHz for the fundamental mode.

  6. High-resolution structure of an α-spectrin SH3-domain mutant with a redesigned hydrophobic core

    PubMed Central

    Cámara-Artigas, Ana; Andújar-Sánchez, Monserrat; Ortiz-Salmerón, Emilia; Cuadri, Celia; Cobos, Eva S.; Martin-Garcia, Jose Manuel

    2010-01-01

    The α-spectrin SH3 domain (Spc-SH3) is a small modular domain which has been broadly used as a model protein in folding studies and these studies have sometimes been supported by structural information obtained from the coordinates of Spc-SH3 mutants. The structure of B5/D48G, a multiple mutant designed to improve the hydrophobic core and as a consequence the protein stability, has been solved at 1 Å resolution. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 24.79, b = 37.23, c = 62.95 Å. This mutant also bears a D48G substitution in the distal loop and this mutation has also been reported to increase the stability of the protein by itself. The structure of the B5/D48G mutant shows a highly packed hydrophobic core and a more ordered distal loop compared with previous Spc-SH3 structures. PMID:20823517

  7. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    PubMed

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  8. Disappearance of high frequency modes in polymer dilute solution viscoelasticity

    NASA Astrophysics Data System (ADS)

    Larson, Ronald; Jain, Semant

    2009-03-01

    We address the problem of the ``missing modes'' in the high frequency rheology of dilute polymer solutions. According to the Rouse-Zimm theory, the slow viscoelastic response of dilute polymers is dominated by the collective motion of the chain, as described by a bead-spring model. However, one expects this description to break down at high frequencies at which chain motion on scales too small to be represented by beads and springs should be evident; this motion should be controlled by rotations of individual backbone bonds of the polymer. The viscoelastic response produced by these ``local modes'' is observable in polymer melts; however, for dilute polymer solutions, the ``local modes'' are absent from viscoelastic spectra, as shown by Schrag and coworkers (Peterson, et al., J. Polym. Sci. B, 39:2860 (2001)). Here we address this problem by directly simulating single polymer chains using Brownian dynamics simulations, with realistic bending and torsional potentials. We show using these simulations that the ``missing modes'' result from barriers to bond rotation that make the chain ``dynamically rigid'' at high frequencies. As a result, the ``dynamical Kuhn length'' of the chain exceeds the static one, and the chain at high frequencies is not able to explore local conformations as fast as would be needed for their relaxation to contribute to the mechanical relaxation spectrum.

  9. The Origin of High-Frequency Hearing in Whales.

    PubMed

    Churchill, Morgan; Martinez-Caceres, Manuel; de Muizon, Christian; Mnieckowski, Jessica; Geisler, Jonathan H

    2016-08-22

    Odontocetes (toothed whales) rely upon echoes of their own vocalizations to navigate and find prey underwater [1]. This sensory adaptation, known as echolocation, operates most effectively when using high frequencies, and odontocetes are rivaled only by bats in their ability to perceive ultrasonic sound greater than 100 kHz [2]. Although features indicative of ultrasonic hearing are present in the oldest known odontocetes [3], the significance of this finding is limited by the methods employed and taxa sampled. In this report, we describe a new xenorophid whale (Echovenator sandersi, gen. et sp. nov.) from the Oligocene of South Carolina that, as a member of the most basal clade of odontocetes, sheds considerable light on the evolution of ultrasonic hearing. By placing high-resolution CT data from Echovenator sandersi, 2 hippos, and 23 fossil and extant whales in a phylogenetic context, we conclude that ultrasonic hearing, albeit in a less specialized form, evolved at the base of the odontocete radiation. Contrary to the hypothesis that odontocetes evolved from low-frequency specialists [4], we find evidence that stem cetaceans, the archaeocetes, were more sensitive to high-frequency sound than their terrestrial ancestors. This indicates that selection for high-frequency hearing predates the emergence of Odontoceti and the evolution of echolocation. PMID:27498568

  10. Collocations of High Frequency Noun Keywords in Prescribed Science Textbooks

    ERIC Educational Resources Information Center

    Menon, Sujatha; Mukundan, Jayakaran

    2012-01-01

    This paper analyses the discourse of science through the study of collocational patterns of high frequency noun keywords in science textbooks used by upper secondary students in Malaysia. Research has shown that one of the areas of difficulty in science discourse concerns lexis, especially that of collocations. This paper describes a corpus-based…

  11. High temporal frequency measurements of greenhouse gas emissions from soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the most important anthropogenic greenhouse gases (GHGs). Variation in soil moisture can be very dynamic, and it is one of the dominant factors controlling the net exchange of these three GHGs. Although technologies for high-frequency,...

  12. High frequency excitation of Earth rotation parameters (ERP) from atmosphere.

    NASA Astrophysics Data System (ADS)

    Xie, Boquan; Zheng, Dawei

    1996-06-01

    The data sets of Earth rotation parameters measured by space geodetic techniques and atmospheric angular momentum reduced by the global meteorological data from 1983 through 1992 are used to analyze and study the high frequency excitations of Earth rotation parameters for the length of day and polar motion up to the monthly time scale from the atmosphere. The main results are given.

  13. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks.

  14. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K. Kirk

    2011-01-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol–gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed. PMID:21720451

  15. High-Frequency Oscillations and Seizure Generation in Neocortical Epilepsy

    ERIC Educational Resources Information Center

    Worrell, Greg A.; Parish, Landi; Cranstoun, Stephen D.; Jonas, Rachel; Baltuch, Gordon; Litt, Brian

    2004-01-01

    Neocortical seizures are often poorly localized, explosive and widespread at onset, making them poorly amenable to epilepsy surgery in the absence of associated focal brain lesions. We describe, for the first time in an unselected group of patients with neocortical epilepsy, the finding that high-frequency (60--100 Hz) epileptiform oscillations…

  16. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants.

    PubMed

    Davenport, K D; Williams, K E; Ullmann, B D; Gustin, M C

    1999-11-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  17. A quantitative method for defining high-arched palate using the Tcof1(+/-) mutant mouse as a model.

    PubMed

    Conley, Zachary R; Hague, Molly; Kurosaka, Hiroshi; Dixon, Jill; Dixon, Michael J; Trainor, Paul A

    2016-07-15

    The palate functions as the roof of the mouth in mammals, separating the oral and nasal cavities. Its complex embryonic development and assembly poses unique susceptibilities to intrinsic and extrinsic disruptions. Such disruptions may cause failure of the developing palatal shelves to fuse along the midline resulting in a cleft. In other cases the palate may fuse at an arch, resulting in a vaulted oral cavity, termed high-arched palate. There are many models available for studying the pathogenesis of cleft palate but a relative paucity for high-arched palate. One condition exhibiting either cleft palate or high-arched palate is Treacher Collins syndrome, a congenital disorder characterized by numerous craniofacial anomalies. We quantitatively analyzed palatal perturbations in the Tcof1(+/-) mouse model of Treacher Collins syndrome, which phenocopies the condition in humans. We discovered that 46% of Tcof1(+/-) mutant embryos and new born pups exhibit either soft clefts or full clefts. In addition, 17% of Tcof1(+/-) mutants were found to exhibit high-arched palate, defined as two sigma above the corresponding wild-type population mean for height and angular based arch measurements. Furthermore, palatal shelf length and shelf width were decreased in all Tcof1(+/-) mutant embryos and pups compared to controls. Interestingly, these phenotypes were subsequently ameliorated through genetic inhibition of p53. The results of our study therefore provide a simple, reproducible and quantitative method for investigating models of high-arched palate.

  18. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    NASA Technical Reports Server (NTRS)

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  19. The comparison of three high-frequency chest compression devices.

    PubMed

    Lee, Yong W; Lee, Jongwon; Warwick, Warren J

    2008-01-01

    High-frequency chest compression (HFCC) is shown to enhance clearance of pulmonary airway secretions. Several HFCC devices have been designed to provide this therapy. Standard equipment consists of an air pulse generator attached by lengths of tubing to an adjustable, inflatable vest/jacket (V/J) garment. In this study, the V/Js were fitted over a mannequin. The three device air pulse generators produced characteristic waveform patterns. The variations in the frequency and pressure setting of devices were consistent with specific device design features. These studies suggest that a better understanding of the effects of different waveform, frequency, and pressure combinations may improve HFCC therapeutic efficacy of three different HFCC machines. The V/J component of HFCC devices delivers the compressive pulses to the chest wall to produce both airflow through and oscillatory effects in the airways. The V/J pressures of three HFCC machines were measured and analyzed to characterize the frequency, pressure, and waveform patterns generated by each of three device models. The dimensions of all V/Js were adjusted to a circumference of approximately 110% of the chest circumference. The V/J pressures were measured, and maximum, minimum, and mean pressure, pulse pressure, and root mean square of three pulse generators were calculated. Jacket pressures ranged between 2 and 34 mmHg. The 103 and 104 models' pulse pressures increased with the increase in HFCC frequency at constant dial pressure. With the ICS the pulse pressure decreased when the frequency increased. The waveforms of models 103 and 104 were symmetric sine wave and asymmetric sine wave patterns, respectively. The ICS had a triangular waveform. At 20 Hz, both the 103 and 104 were symmetric sine waveform but the ICS remained triangular. Maximum crest factors emerged in low-frequency and high-pressure settings for the ICS and in the high-frequency and low-pressure settings for models 103 and 104. Recognizing the

  20. Analysis of mutant frequencies and mutation spectra in hMTH1 knockdown TK6 cells exposed to UV radiation.

    PubMed

    Fotouhi, Asal; Hagos, Winta Woldai; Ilic, Marina; Wojcik, Andrzej; Harms-Ringdahl, Mats; de Gruijl, Frank; Mullenders, Leon; Jansen, Jacob G; Haghdoost, Siamak

    2013-01-01

    Ultraviolet radiation is a highly mutagenic agent that damages the DNA by the formation of mutagenic photoproducts at dipyrimidine sites and by oxidative DNA damages via reactive oxygen species (ROS). ROS can also give rise to mutations via oxidation of dNTPs in the nucleotide pool, e.g. 8-oxo-dGTP and 2-OH-dATP and subsequent incorporation during DNA replication. Here we show that expression of human MutT homolog 1 (hMTH1) which sanitizes the nucleotide pool by dephosphorylating oxidized dNTPs, protects against mutagenesis induced by long wave UVA light and by UVB light but not by short wave UVC light. Mutational spectra analyses of UVA-induced mutations at the endogenous Thymidine kinase gene in human lymphoblastoid cells revealed that hMTH1 mainly protects cells from transitions at GC and AT base pairs.

  1. A cytochrome c mutant with high electron transfer and antioxidant activities but devoid of apoptogenic effect.

    PubMed Central

    Abdullaev, Ziedulla Kh; Bodrova, Marina E; Chernyak, Boris V; Dolgikh, Dmitry A; Kluck, Ruth M; Pereverzev, Mikhail O; Arseniev, Alexander S; Efremov, Roman G; Kirpichnikov, Mikhail P; Mokhova, Elena N; Newmeyer, Donald D; Roder, Heinrich; Skulachev, Vladimir P

    2002-01-01

    A cytochrome c mutant lacking apoptogenic function but competent in electron transfer and antioxidant activities has been constructed. To this end, mutant species of horse and yeast cytochromes c with substitutions in the N-terminal alpha-helix or position 72 were obtained. It was found that yeast cytochrome c was much less effective than the horse protein in activating respiration of rat liver mitoplasts deficient in endogenous cytochrome c as well as in inhibition of H(2)O(2) production by the initial segment of the respiratory chain of intact rat heart mitochondria. The major role in the difference between the horse and yeast proteins was shown to be played by the amino acid residue in position 4 (glutamate in horse, and lysine in yeast; horse protein numbering). A mutant of the yeast cytochrome c containing K4E and some other "horse" modifications in the N-terminal alpha-helix, proved to be (i) much more active in electron transfer and antioxidant activity than the wild-type yeast cytochrome c and (ii), like the yeast cytochrome c, inactive in caspase stimulation, even if added in 400-fold excess compared with the horse protein. Thus this mutant seems to be a good candidate for knock-in studies of the role of cytochrome c-mediated apoptosis, in contrast with the horse K72R, K72G, K72L and K72A mutant cytochromes that at low concentrations were less active in apoptosis than the wild-type, but were quite active when the concentrations were increased by a factor of 2-12. PMID:11879204

  2. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies.

    PubMed

    Wang, Zenghui; Jia, Hao; Zheng, Xuqian; Yang, Rui; Wang, Zefang; Ye, G J; Chen, X H; Shan, Jie; Feng, Philip X-L

    2015-01-21

    We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ∼100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ∼200 nm down to ∼20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory devices and for semiconductor transducers where high-speed mechanical motions could be coupled to the attractive electronic and optoelectronic properties of black phosphorus.

  3. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies.

    PubMed

    Wang, Zenghui; Jia, Hao; Zheng, Xuqian; Yang, Rui; Wang, Zefang; Ye, G J; Chen, X H; Shan, Jie; Feng, Philip X-L

    2015-01-21

    We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ∼100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ∼200 nm down to ∼20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory devices and for semiconductor transducers where high-speed mechanical motions could be coupled to the attractive electronic and optoelectronic properties of black phosphorus. PMID:25385657

  4. Testing the high turbulence level breakdown of low-frequency gyrokinetics against high-frequency cyclokinetic simulations

    SciTech Connect

    Deng, Zhao; Waltz, R. E.

    2015-05-15

    This paper presents numerical simulations of the nonlinear cyclokinetic equations in the cyclotron harmonic representation [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Simulations are done with a local flux-tube geometry and with the parallel motion and variation suppressed using a newly developed rCYCLO code. Cyclokinetic simulations dynamically follow the high-frequency ion gyro-phase motion which is nonlinearly coupled into the low-frequency drift-waves possibly interrupting and suppressing gyro-averaging and increasing the transport over gyrokinetic levels. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the breakdown of gyrokinetics at high turbulence levels is quantitatively tested over a range of relative ion cyclotron frequency 10 < Ω*{sup  }< 100 where Ω*{sup  }= 1/ρ*, and ρ* is the relative ion gyroradius. The gyrokinetic linear mode rates closely match the cyclokinetic low-frequency rates for Ω*{sup  }> 5. Gyrokinetic transport recovers cyclokinetic transport at high relative ion cyclotron frequency (Ω*{sup  }≥ 50) and low turbulence level as required. Cyclokinetic transport is found to be lower than gyrokinetic transport at high turbulence levels and low-Ω* values with stable ion cyclotron (IC) modes. The gyrokinetic approximation is found to break down when the density perturbations exceed 20%. For cyclokinetic simulations with sufficiently unstable IC modes and sufficiently low Ω*{sup  }∼ 10, the high-frequency component of cyclokinetic transport level can exceed the gyrokinetic transport level. However, the low-frequency component of the cyclokinetic transport and turbulence level does not exceed that of gyrokinetics. At higher and more physically relevant Ω*{sup  }≥ 50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport and turbulence level is still smaller than that of

  5. High-overtone self-focusing acoustic transducers for high-frequency ultrasonic Doppler.

    PubMed

    Zhu, Jie; Lee, Chuangyuan; Kim, Eun Sok; Wu, Dawei; Hu, Changhong; Zhou, Qifa; Shung, K Kirk; Wang, Gaofeng; Yu, Hongyu

    2010-05-01

    This work reports the potential use of high-overtone self-focusing acoustic transducers for high-frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz.

  6. High frequency columnar silicon microresonators for mass detection

    SciTech Connect

    Kehrbusch, J.; Ilin, E. A.; Hullin, M.; Oesterschulze, E.

    2008-07-14

    A simple but effective technological scheme for the fabrication of high frequency silicon columnar microresonators is presented. With the proposed technique the dimensions of the microresonators are controlled on a scale of at least 1 {mu}m. Characterization of the mechanical properties of silicon columns gave resonant frequencies of the lowest flexural mode of 3-7 MHz with quality factors of up to 2500 in air and {approx}8800 under vacuum condition. Columnar microresonators were operated as mass balance with a sensitivity of 1 Hz/fg. A mass detection limit of 25 fg was deduced from experiments.

  7. Dynamics and sensitivity analysis of high-frequency conduction block

    NASA Astrophysics Data System (ADS)

    Ackermann, D. Michael; Bhadra, Niloy; Gerges, Meana; Thomas, Peter J.

    2011-10-01

    The local delivery of extracellular high-frequency stimulation (HFS) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and is currently being pursued for several clinical indications. However, the mechanism for this type of nerve block remains unclear. In this study, we investigate two hypotheses: (1) depolarizing currents promote conduction block via inactivation of sodium channels and (2) the gating dynamics of the fast sodium channel are the primary determinate of minimal blocking frequency. Hypothesis 1 was investigated using a combined modeling and experimental study to investigate the effect of depolarizing and hyperpolarizing currents on high-frequency block. The results of the modeling study show that both depolarizing and hyperpolarizing currents play an important role in conduction block and that the conductance to each of three ionic currents increases relative to resting values during HFS. However, depolarizing currents were found to promote the blocking effect, and hyperpolarizing currents were found to diminish the blocking effect. Inward sodium currents were larger than the sum of the outward currents, resulting in a net depolarization of the nodal membrane. Our experimental results support these findings and closely match results from the equivalent modeling scenario: intra-peritoneal administration of the persistent sodium channel blocker ranolazine resulted in an increase in the amplitude of HFS required to produce conduction block in rats, confirming that depolarizing currents promote the conduction block phenomenon. Hypothesis 2 was investigated using a spectral analysis of the channel gating variables in a single-fiber axon model. The results of this study suggested a relationship between the dynamical properties of specific ion channel gating elements and the contributions of corresponding conductances to block onset. Specifically, we show that the dynamics of the fast sodium inactivation gate are

  8. High frequency wide-band transformer uses coax to achieve high turn ratio and flat response

    NASA Technical Reports Server (NTRS)

    De Parry, T.

    1966-01-01

    Center-tap push-pull transformer with toroidal core helically wound with a single coaxial cable creates a high frequency wideband transformer. This transformer has a high-turn ratio, a high coupling coefficient, and a flat broadband response.

  9. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  10. High-Frequency Oscillations as a New Biomarker in Epilepsy

    PubMed Central

    Zijlmans, Maeike; Jiruska, Premysl; Zelmann, Rina; Leijten, Frans S.S.; Jefferys, John G.R.; Gotman, Jean

    2013-01-01

    The discovery that electroencephalography (EEG) contains useful information at frequencies above the traditional 80Hz limit has had a profound impact on our understanding of brain function. In epilepsy, high-frequency oscillations (HFOs, >80Hz) have proven particularly important and useful. This literature review describes the morphology, clinical meaning, and pathophysiology of epileptic HFOs. To record HFOs, the intracranial EEG needs to be sampled at least at 2,000Hz. The oscillatory events can be visualized by applying a high-pass filter and increasing the time and amplitude scales, or EEG time-frequency maps can show the amount of high-frequency activity. HFOs appear excellent markers for the epileptogenic zone. In patients with focal epilepsy who can benefit from surgery, invasive EEG is often required to identify the epileptic cortex, but current information is sometimes inadequate. Removal of brain tissue generating HFOs has been related to better postsurgical outcome than removing the seizure onset zone, indicating that HFOs may mark cortex that needs to be removed to achieve seizure control. The pathophysiology of epileptic HFOs is challenging, probably involving populations of neurons firing asynchronously. They differ from physiological HFOs in not being paced by rhythmic inhibitory activity and in their possible origin from population spikes. Their link to the epileptogenic zone argues that their study will teach us much about the pathophysiology of epileptogenesis and ictogenesis. HFOs show promise for improving surgical outcome and accelerating intracranial EEG investigations. Their potential needs to be assessed by future research. PMID:22367988

  11. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  12. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  13. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed. PMID:27131709

  14. Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.

    PubMed

    Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M

    2016-08-10

    Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied.

  15. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  16. Highly flexible distributions to fit multiple frequency financial returns

    NASA Astrophysics Data System (ADS)

    BenSaïda, Ahmed; Slim, Skander

    2016-01-01

    Financial data are usually studied via low flexible distributions, independently of the frequency of the data, due to their simplicity and analytical tractability. In this paper we analyze two highly flexible five-parameter distributions into fitting financial returns, these are the skewed generalized t (SGT) and the generalized hyperbolic (GH). Applications carried on two exchange rates (Euro-Dollar and Dollar-Yen), and two indexes (S&P 500 and Nikkei 225) over four frequencies: weekly, daily, 30-min and 5-min, confirm the superiority of the SGT and GH in approximating the distribution of a given data at a remarkable precision. Moreover, as we move from higher to lower frequency, the distribution's overall shape does indeed change radically, and the estimated parameters refute the tendency to normality, which calls into question the aggregational Gaussianity's stylized fact.

  17. Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.

    PubMed

    Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M

    2016-08-10

    Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied. PMID:27387370

  18. A high-performance Hg(+) trapped ion frequency standard

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Tjoelker, R. L.; Dick, G. J.; Maleki, L.

    1992-01-01

    A high-performance frequency standard based on (199)Hg(+) ions confined in a hybrid radio frequency (RF)/dc linear ion trap is demonstrated. This trap permits storage of large numbers of ions with reduced susceptibility to the second-order Doppler effect caused by the RF confining fields. A 160-mHz-wide atomic resonance line for the 40.5-GHz clock transition is used to steer the output of a 5-mHz crystal oscillator to obtain a stability of 2 x 10(exp -15) for 24,000-second averaging times. Measurements with a 37-mHz line width for the Hg(+) clock transition demonstrate that the inherent stability for this frequency standard is better than 1 x 10(exp -15) at 10,000-second averaging times.

  19. MUTANT FREQUENCIES AND LOSS OF HETEROZYGOSITY INDUCED BY N-ETHYL-N-NITROSOUREA (ENU) IN THE THYMIDINE KINASE (TK) GENE OF L5178YTK+/-3.7.2C MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    MUTANT FREQUENCIES AND LOSS HETEROZYGOSITY INDUCED BY N-ETHYK-N-NITROSOUREA (ENU) IN THE THYMIDINE KINASE (tk) GENE IF l5178Y/TK+/-3.7.2C MOUSE LYMPHOMA CELLS

    N-ethyl-N-nitrosourea (ENU) is a potent monofunctional-ethylating agent that has been found to be mutagenic in a w...

  20. Software for Displaying High-Frequency Test Data

    NASA Technical Reports Server (NTRS)

    Elmore, Jason L.

    2003-01-01

    An easy-to-use, intuitive computer program was written to satisfy a need of test operators and data requestors to quickly view and manipulate high-frequency test data recorded at the East and West Test Areas at Marshall Space Flight Center. By enabling rapid analysis, this program makes it possible to reduce times between test runs, thereby potentially reducing the overall cost of test operations. The program can be used to perform quick frequency analysis, using multiple fast- Fourier-transform windowing and amplitude options. The program can generate amplitude-versus-time plots with full zoom capabilities, frequency-component plots at specified time intervals, and waterfall plots (plots of spectral intensity versus frequency at successive small time intervals, showing the changing frequency components over time). There are options for printing of the plots and saving plot data as text files that can be imported into other application programs. The program can perform all of the aforementioned plotting and plot-data-handling functions on a relatively inexpensive computer; other software that performs the same functions requires computers with large amounts of power and memory.

  1. Phenotypic Switching in Mycoplasma gallisepticum Hemadsorption Is Governed by a High-Frequency, Reversible Point Mutation

    PubMed Central

    Winner, Florian; Markovà, Ivana; Much, Peter; Lugmair, Albin; Siebert-Gulle, Karin; Vogl, Gunther; Rosengarten, Renate; Citti, Christine

    2003-01-01

    Mycoplasma gallisepticum is a flask-shaped organism that commonly induces chronic respiratory disease in chickens and infectious sinusitis in turkeys. Phenotypic switching in M. gallisepticum hemadsorption (HA) was found to correlate with phase variation of the GapA cytadhesin concurrently with that of the CrmA protein, which exhibits cytadhesin-related features and is encoded by a gene located downstream of the gapA gene as part of the same transcription unit. In clones derived from strain Rlow, detailed genetic analyses further revealed that on-off switching in GapA expression is governed by a reversible base substitution occurring at the beginning of the gapA structural gene. In HA− variants, this event generates a stop codon that results in the premature termination of GapA translation and consequently affects the expression of CrmA. Sequences flanking the mutation spot do not feature any repeated motifs that could account for error-prone mutation via DNA slippage and the exact mechanism underlying this high-frequency mutational event remains to be elucidated. An HA− mutant deficient in producing CrmA, mHAD3, was obtained by disrupting the crmA gene by using transposition mutagenesis. Despite a fully functional gapA gene, the amount of GapA detected in this mutant was considerably lower than in HA+ clonal variants, suggesting that, in absence of CrmA, GapA might be subjected to a higher turnover. PMID:12595441

  2. Toward a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Drummond, J. Philip

    2006-01-01

    This paper describes the continued development of an actuator, energized by pulsed detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant tube and the products exit the tube as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. Pulsed detonations have been demonstrated in the lambda/4 mode of an 8 inch long tube at approximately 600 Hz. The pulsed jet at the exit of the device has been observed using shadowgraph and an infrared camera.

  3. Toward a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Drummond, J. Philip

    2006-01-01

    This paper describes the continued development of an actuator, energized by pulsed detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant tube and the products exit the tube as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. Pulsed detonations have been demonstrated in the lambda/4 mode of an 8 inch long tube at approx. 600 Hz. The pulsed jet at the exit of the device has been observed using shadowgraph and an infrared camera.

  4. Resonant frequency does not predict high-frequency chest compression settings that maximize airflow or volume.

    PubMed

    Luthy, Sarah K; Marinkovic, Aleksandar; Weiner, Daniel J

    2011-06-01

    High-frequency chest compression (HFCC) is a therapy for cystic fibrosis (CF). We hypothesized that the resonant frequency (f(res)), as measured by impulse oscillometry, could be used to determine what HFCC vest settings produce maximal airflow or volume in pediatric CF patients. In 45 subjects, we studied: f(res), HFCC vest frequencies that subjects used (f(used)), and the HFCC vest frequencies that generated the greatest volume (f(vol)) and airflow (f(flow)) changes as measured by pneumotachometer. Median f(used) for 32 subjects was 14 Hz (range, 6-30). The rank order of the three most common f(used) was 15 Hz (28%) and 12 Hz (21%); three frequencies tied for third: 10, 11, and 14 Hz (5% each). Median f(res) for 43 subjects was 20.30 Hz (range, 7.85-33.65). Nineteen subjects underwent vest-tuning to determine f(vol) and f(flow). Median f(vol) was 8 Hz (range, 6-30). The rank order of the three most common f(vol) was: 8 Hz (42%), 6 Hz (32%), and 10 Hz (21%). Median f(flow) was 26 Hz (range, 8-30). The rank order of the three most common f(flow) was: 30 Hz (26%) and 28 Hz (21%); three frequencies tied for third: 8, 14, and 18 Hz (11% each). There was no correlation between f(used) and f(flow) (r(2)  = -0.12) or f(vol) (r(2) = 0.031). There was no correlation between f(res) and f(flow) (r(2)  = 0.19) or f(vol) (r(2) = 0.023). Multivariable analysis showed no independent variables were predictive of f(flow) or f(vol). Vest-tuning may be required to optimize clinical utility of HFCC. Multiple HFCC frequencies may need to be used to incorporate f(flow) and f(vol).

  5. The diageotropica mutant of tomato lacks high specific activity auxin binding sites

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rayle, D. L.; Lomax, T. L.

    1989-01-01

    Tomato plants homozygous for the diageotropica (dgt) mutation exhibit morphological and physiological abnormalities which suggest that they are unable to respond to the plant growth hormone auxin (indole-3-acetic acid). The photoaffinity auxin analog [3H]5N3-IAA specifically labels a polypeptide doublet of 40 and 42 kilodaltons in membrane preparations from stems of the parental variety, VFN8, but not from stems of plants containing the dgt mutation. In roots of the mutant plants, however, labeling is indistinguishable from that in VFN8. These data suggest that the two polypeptides are part of a physiologically important auxin receptor system, which is altered in a tissue-specific manner in the mutant.

  6. High-frequency signal generation using 1550 nm VCSEL subject to two-frequency optical injection

    NASA Astrophysics Data System (ADS)

    Consoli, Antonio; Quirce, Ana; Valle, Angel; Esquivias, Ignacio; Pesquera, Luis; García Tijero, Jose Manuel

    2013-03-01

    We experimentally investigate high-frequency microwave signal generation using a 1550 nm single-mode VCSEL subject to two-frequency optical injection. We first consider a situation in which the injected signals come from two similar VCSELs. The polarization of the injected light is parallel to that of the injected VCSEL. We obtain that the VCSEL can be locked to one of the injected signals, but the observed microwave signal is originated by beating at the photodetector. In a second situation we consider injected signals that come from two external cavity tunable lasers with a significant increase of the injected power with respect to the VCSEL-by-VCSEL injection case. The polarization of the injected light is orthogonal to that of the free-running slave VCSEL. We show that in this case it is possible to generate a microwave signal inside the VCSEL cavity.

  7. Isolation of a highly active photosystem II preparation from Synechocystis 6803 using a histidine-tagged mutant of CP 47.

    PubMed

    Bricker, T M; Morvant, J; Masri, N; Sutton, H M; Frankel, L K

    1998-11-01

    Site-directed mutagenesis was used to produce a Synechocystis mutant containing a histidine tag at the C terminus of the CP 47 protein of Photosystem II. This mutant cell line, designated HT-3, exhibited slightly above normal rates of oxygen evolution and appeared to accumulate somewhat more Photosystem II reaction centers than a control strain. A rapidly isolatable (<7 h) oxygen-evolving Photosystem II preparation was prepared from HT-3 using dodecyl-beta-d-maltoside solubilization and Co2+ metal affinity chromatography. This histidine-tagged Photosystem II preparation stably evolved oxygen at a high rate (2440 micromol O2 (mg chl)-1 h-1), exhibited an alpha-band absorption maximum at 674 nm, and was highly enriched in a number of Photosystem II components including cytochrome c550. Fluorescence yield analysis using water or hydroxylamine as an electron donor to the Photosystem II preparation indicated that virtually all of the Photosystem II reaction centers were capable of evolving oxygen. Proteins associated with Photosystem II were highly enriched in this preparation. 3,3',5, 5'-Tetramethylbenzidine staining indicated that the histidine-tagged preparation was enriched in cytochromes c550 and b559 and depleted of cytochrome f. This result was confirmed by optical difference spectroscopy. This histidine-tagged Photosystem II preparation may be very useful for the isolation of Photosystem II preparations from mutants containing lesions in other Photosystem II proteins. PMID:9804889

  8. High-Frequency Excitation of a Plane Wake

    NASA Technical Reports Server (NTRS)

    Cain, Alan B.; Rogers, Michael M.

    2000-01-01

    In the early 1990's, Glezer and his co-workers at Georgia Tech made a startling discovery. They found that forcing at frequencies too high to directly affect the production scales led to a dramatic alteration in the development of a turbulent shear layer. An experimental study of this phenomenon is presented in Wiltse and Glezer. They used piezoelectric actuators located near the jet exit plane to force the shear layers of a square low-speed jet. The actuators were driven at a high frequency in the Kolmogorov inertial subrange, much higher than the frequencies associated with the large-scale motion (where the turbulent energy is produced and located) but much lower than those associated with the Kolmogorov scale (where the turbulent energy is dissipated). Measurements of the shear-layer turbulence showed that direct excitation of small-scale motion by high-frequency forcing led to an increase in the turbulent dissipation of more than an order of magnitude in the initial region of the shear layer! The turbulent dissipation gradually decreased with downstream distance but remained above the corresponding level for the unforced flow at all locations examined. The high-frequency forcing increased the turbulent kinetic energy in the initial region near the actuators, but the kinetic energy decreased quite rapidly with downstream distance, dropping to levels that were a small fraction of the level for the unforced case. Perhaps most importantly from the present standpoint, the high-frequency forcing significantly decreased the energy in the large-scale motion, increasingly so with downstream distance. Wiltse and Glezer interpreted this behavior as an enhanced transfer of energy from the large scales to the small scales. The initial work by Wiltse and Glezer has expanded into other applications. To explore the potential of high-frequency forcing for active acoustic suppression, in 1998 the first author proposed a set of experiments involving an edge tone shear layer and

  9. High-throughput quantitative analysis with cell growth kinetic curves for low copy number mutant cells.

    PubMed

    Xing, James Z; Gabos, Stephan; Huang, Biao; Pan, Tianhong; Huang, Min; Chen, Jie

    2012-10-01

    The mutation rate in cells induced by environmental genotoxic hazards is very low and difficult to detect using traditional cell counting assays. The established genetic toxicity tests currently recognized by regulatory authorities, such as conventional Ames and hypoxanthine guanine phosphoribosyl-transferase (HPRT) assays, are not well suited for higher-throughput screening as they require large amounts of test compounds and are very time consuming. In this study, we developed a novel cell-based assay for quantitative analysis of low numbers of cell copies with HPRT mutation induced by an environmental mutagen. The HPRT gene mutant cells induced by the mutagen were selected by 6-thioguanine (6-TG) and the cell's kinetic growth curve monitored by a real-time cell electronic sensor (RT-CES) system. When a threshold is set at a certain cell index (CI) level, samples with different initial mutant cell copies take different amounts of time in order for their growth (or CI accumulation) to cross this threshold. The more cells that are initially seeded in the test well, the faster the cell accumulation and therefore the shorter the time required to cross this threshold. Therefore, the culture time period required to cross the threshold of each sample corresponds to the original number of cells in the sample. A mutant cell growth time threshold (MT) value of each sample can be calculated to predict the number of original mutant cells. For mutagenesis determination, the RT-CES assay displayed an equal sensitivity (p > 0.05) and coefficients of variation values with good correlation to conventional HPRT mutagenic assays. Most importantly, the RT-CES mutation assay has a higher throughput than conventional cellular assays.

  10. High-frequency wave normals in the solar wind

    SciTech Connect

    Herbert, F.; Smith, L.D.; Sonett, C.P.

    1984-05-01

    High-frequency (0.01--0.04 Hz) magnetic fluctuations in 506 ten-minute intervals of contemporaneous Explorer 35 and Apollo 12 measurements made in the solar wind near the morning side of the Earth's bow shock show the presence of a large population of disturbances resembling Alfven waves. Each wavefront normal n is systematically aligned (median deviation = 35/sup 0/) with , the associated ten-minute average of the magnetic field. Because of variability in the direction of from one interval to another, the coupled distribution of n is nearly isotropic in solar ecliptic coordinates, in contrast with the results of other studies of waves at much lower frequency indicating outward propagation from the sun. Presumably the high frequency waves discussed here are stirred into isotropy (in solar ecliptic coordinates) by following the low frequency fluctuations. As these waves maintain their alignement of n with despite the great variation of , a strong physical alignment constraint is inferred.

  11. Very High Frequency (Beyond 100 MHz) PZT Kerfless Linear Arrays

    PubMed Central

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-µm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-µm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss). PMID:19942516

  12. Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications

    SciTech Connect

    Leary, AM; Ohodnicki, PR; McHenry, ME

    2012-07-04

    Advanced soft magnetic materials are needed to match high-power density and switching frequencies made possible by advances in wide band-gap semiconductors. Magnetics capable of operating at higher operating frequencies have the potential to greatly reduce the size of megawatt level power electronics. In this article, we examine the role of soft magnetic materials in high-frequency power applications and we discuss current material's limitations and highlight emerging trends in soft magnetic material design for high-frequency and power applications using the materials paradigm of synthesis -> structure -> property -> performance relationships.

  13. Studies on radiosensitive lines of Drosophila. IX. Analysis of fertility and frequency of dominant lethal mutations in the gamma-irradiated females of the mutant line rad(2)201/sup G1/

    SciTech Connect

    Varentsova, E.R.; Sharygin, V.I.; Khromykh, Yu.M.

    1986-03-01

    Fertility and frequency of dominant lethal mutations (DLM) induced by gamma rays in females at the age of 0-5 h and 5-7 days were studied in the radiosensitive mutant rad(2)201/sup G1/ of Drosophila. It has been found that the oocytes of mutant lines are more radiosensitive as compared to those of the wild type flies when compared on the basis of DLM frequency obtained through the entire maturation period. The early oocytes of stages 2-7, i.e., at the stages corresponding to the recombination-defective properties of mutation rad(2)201/sup g1/ are the most sensitive. It has also been demonstrated that the gamma-ray doses exceeding 10 Gy cause a strong sterilizing effect in the mutant females as a result of destruction and resorption of the egg chamber, irradiated at the stages of previtellogenic growth of oocytes. In the radiosensitive mutant females, the sensitivity of the oocytes for DLM induction does not correlate with the sensitivity of the ovarian follicles toward the resorbing effect of gamma rays. The possible involvement of the mutant locus in the genetic processes in different specialized cells of the sexual pathway in Drosophila is discussed.

  14. High frequency seismic waves and slab structures beneath Italy

    NASA Astrophysics Data System (ADS)

    Sun, Daoyuan; Miller, Meghan S.; Piana Agostinetti, Nicola; Asimow, Paul D.; Li, Dunzhu

    2014-04-01

    Tomographic images indicate a complicated subducted slab structure beneath the central Mediterranean where gaps in fast velocity anomalies in the upper mantle are interpreted as slab tears. The detailed shape and location of these tears are important for kinematic reconstructions and understanding the evolution of the subduction system. However, tomographic images, which are produced by smoothed, damped inversions, will underestimate the sharpness of the structures. Here, we use the records from the Italian National Seismic Network (IV) to study the detailed slab structure. The waveform records for stations in Calabria show large amplitude, high frequency (f>5 Hz) late arrivals with long coda after a relatively low-frequency onset for both P and S waves. In contrast, the stations in the southern and central Apennines lack such high frequency arrivals, which correlate spatially with the central Apennines slab window inferred from tomography and receiver function studies. Thus, studying the high frequency arrivals provides an effective way to investigate the structure of slab and detect possible slab tears. The observed high frequency arrivals in the southern Italy are the strongest for events from 300 km depth and greater whose hypocenters are located within the slab inferred from fast P-wave velocity perturbations. This characteristic behavior agrees with previous studies from other tectonic regions, suggesting the high frequency energy is generated by small scale heterogeneities within the slab which act as scatterers. Furthermore, using a 2-D finite difference (FD) code, we calculate synthetic seismograms to search for the scale, shape and velocity perturbations of the heterogeneities that may explain features observed in the data. Our preferred model of the slab heterogeneities beneath the Tyrrhenian Sea has laminar structure parallel to the slab dip and can be described by a von Kármán function with a down-dip correlation length of 10 km and 0.5 km in

  15. Piezoelectric Shaker Development for High Frequency Calibration of Accelerometers

    SciTech Connect

    Payne, Bev; Harper, Kari K.; Vogl, Gregory W.

    2010-05-28

    Calibration of vibration transducers requires sinusoidal motion over a wide frequency range with low distortion and low cross-axial motion. Piezoelectric shakers are well suited to generate such motion and are suitable for use with laser interferometric methods at frequencies of 3 kHz and above. An advantage of piezoelectric shakers is the higher achievable accelerations and displacement amplitudes as compared to electro-dynamic (ED) shakers. Typical commercial ED calibration shakers produce maximum accelerations from 100 m/s{sup 2} to 500 m/s{sup 2}. Very large ED shakers may produce somewhat higher accelerations but require large amplifiers and expensive cooling systems to dissipate heat. Due to the limitations in maximum accelerations by ED shakers at frequencies above 5 kHz, the amplitudes of the generated sinusoidal displacement are frequently below the resolution of laser interferometers used in primary calibration methods. This limits the usefulness of ED shakers in interferometric based calibrations at higher frequencies.Small piezoelectric shakers provide much higher acceleration and displacement amplitudes for frequencies above 5 kHz, making these shakers very useful for accelerometer calibrations employing laser interferometric measurements, as will be shown in this paper. These piezoelectric shakers have been developed and used at NIST for many years for high frequency calibration of accelerometers. This paper documents the construction and performance of a new version of these shakers developed at NIST for the calibration of accelerometers over the range of 3 kHz to 30 kHz and possibly higher. Examples of typical calibration results are also given.

  16. How High Frequency Trading Affects a Market Index

    PubMed Central

    Kenett, Dror Y.; Ben-Jacob, Eshel; Stanley, H. Eugene; gur-Gershgoren, Gitit

    2013-01-01

    The relationship between a market index and its constituent stocks is complicated. While an index is a weighted average of its constituent stocks, when the investigated time scale is one day or longer the index has been found to have a stronger effect on the stocks than vice versa. We explore how this interaction changes in short time scales using high frequency data. Using a correlation-based analysis approach, we find that in short time scales stocks have a stronger influence on the index. These findings have implications for high frequency trading and suggest that the price of an index should be published on shorter time scales, as close as possible to those of the actual transaction time scale. PMID:23817553

  17. Transformation ray method: controlling high frequency elastic waves (L).

    PubMed

    Chang, Zheng; Liu, Xiaoning; Hu, Gengkai; Hu, Jin

    2012-10-01

    Elastic ray theory is a high frequency asymptotic approximation of solution of elastodynamic equation, and is widely used in seismology. In this paper, the form invariance under a general spatial mapping and high frequency wave control have been examined by transformation method. It is showed that with the constraint of major and minor symmetry of the transformed elastic tensor, the eikonal equation keeps its form under a general mapping, however, the transport equation loses its form except for conformal mapping. Therefore, the elastic ray path can be controlled in an exact manner by a transformation method, whereas energy distribution along the ray is only approximately controlled. An elastic rotator based on ray tracing method is also provided to illustrate the method and to access the approximation. PMID:23039561

  18. High-Frequency Power Gain in the Mammalian Cochlea

    NASA Astrophysics Data System (ADS)

    Maoiléidigh, Dáibhid Ó.; Hudspeth, A. J.

    2011-11-01

    Amplification in the mammalian inner ear is thought to result from a nonlinear active process known as the cochlear amplifier. Although there is much evidence that outer hair cells (OHCs) play a central role in the cochlear amplifier, the mechanism of amplification remains uncertain. In non-mammalian ears hair bundles can perform mechanical work and account for the active process in vitro, yet in the mammalian cochlea membrane-based electromotility is required for amplification in vivo. A key issue is how OHCs conduct mechanical power amplification at high frequencies. We present a physical model of a segment of the mammalian cochlea that can amplify the power of external signals. In this representation both electromotility and active hair-bundle motility are required for mechanical power gain at high frequencies. We demonstrate how the endocochlear potential, the OHC resting potential, Ca2+ gradients, and ATP-fueled myosin motors serve as the energy sources underlying mechanical power gain in the cochlear amplifier.

  19. Recording and analysis techniques for high-frequency oscillations

    PubMed Central

    Worrell, G.A.; Jerbi, K.; Kobayashi, K.; Lina, J.M.; Zelmann, R.; Le Van Quyen, M.

    2013-01-01

    In recent years, new recording technologies have advanced such that, at high temporal and spatial resolutions, high-frequency oscillations (HFO) can be recorded in human partial epilepsy. However, because of the deluge of multichannel data generated by these experiments, achieving the full potential of parallel neuronal recordings depends on the development of new data mining techniques to extract meaningful information relating to time, frequency and space. Here, we aim to bridge this gap by focusing on up-to-date recording techniques for measurement of HFO and new analysis tools for their quantitative assessment. In particular, we emphasize how these methods can be applied, what property might be inferred from neuronal signals, and potentially productive future directions. PMID:22420981

  20. High levels of plasma cortisol and impaired hypoosmoregulation in a mutant medaka deficient in P450c17I.

    PubMed

    Takahashi, Hideya; Sato, Tadashi; Ikeuchi, Toshitaka; Saito, Kazuhiro; Sakaizumi, Mitsuru; Sakamoto, Tatsuya

    2016-07-15

    scl is a spontaneous medaka mutant deficient in P450c17I, which is required for production of sex steroids, but not of cortisol, the major role of which is osmoregulation in teleost fish. The scl mutant provides a new model to study the functions of these hormones. We first found that fish homozygous for this mutation have plasma cortisol constitutively at a high physiological level (1000 nM). Since we previously showed that this level reversed the seawater-type differentiation of the medaka gastrointestinal tract, hypoosmoregulation of the scl mutant was analyzed. Muscle water contents in freshwater were normal in scl homozygotes, but the contents were lower than those of the wild type (WT) after seawater transfer. There were no differences in gill mRNA levels of corticosteroid receptors or ion transporters between scl homozygotes and WT. In the intestine, expression of glucocorticoid receptors and Na(+)/K(+)/2Cl(-) cotransporter were induced in WT during seawater acclimation, but not in scl homozygotes. The high plasma cortisol may prevent hypoosmoregulation by inhibition of increased intestinal water absorption, essentially by the Na(+)/K(+)/2Cl(-) cotransporter, in seawater. PMID:27107936

  1. High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Spermatogenesis.

    PubMed

    Sridharan, Vinod; Heimiller, Joseph; Robida, Mark D; Singh, Ravinder

    2016-01-01

    The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. Using an unbiased high throughput sequencing approach, we have identified transcripts that are misregulated in this mutant. Aberrant transcripts show altered expression levels, exon skipping, and alternative 5' ends. We independently verified these findings by reverse-transcription and polymerase chain reaction (RT-PCR) analysis. Our analysis shows misregulation of transcripts that have been connected to spermatogenesis, including components of the actomyosin cytoskeletal apparatus. We show, for example, that the Myosin light chain 1 (Mlc1) transcript is aberrantly spliced. Furthermore, bioinformatics analysis reveals that Mlc1 contains a high affinity binding site(s) for dmPTB and that the site is conserved in many Drosophila species. We discuss that Mlc1 and other components of the actomyosin cytoskeletal apparatus offer important molecular links between the loss of dmPTB function and the observed developmental defect in spermatogenesis. This study provides the first comprehensive list of genes misregulated in vivo in the heph2 mutant in Drosophila and offers insight into the role of dmPTB during spermatogenesis.

  2. High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Spermatogenesis

    PubMed Central

    Sridharan, Vinod; Heimiller, Joseph; Robida, Mark D.; Singh, Ravinder

    2016-01-01

    The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. Using an unbiased high throughput sequencing approach, we have identified transcripts that are misregulated in this mutant. Aberrant transcripts show altered expression levels, exon skipping, and alternative 5’ ends. We independently verified these findings by reverse-transcription and polymerase chain reaction (RT-PCR) analysis. Our analysis shows misregulation of transcripts that have been connected to spermatogenesis, including components of the actomyosin cytoskeletal apparatus. We show, for example, that the Myosin light chain 1 (Mlc1) transcript is aberrantly spliced. Furthermore, bioinformatics analysis reveals that Mlc1 contains a high affinity binding site(s) for dmPTB and that the site is conserved in many Drosophila species. We discuss that Mlc1 and other components of the actomyosin cytoskeletal apparatus offer important molecular links between the loss of dmPTB function and the observed developmental defect in spermatogenesis. This study provides the first comprehensive list of genes misregulated in vivo in the heph2 mutant in Drosophila and offers insight into the role of dmPTB during spermatogenesis. PMID:26942929

  3. Improvement of L-lactic acid production by osmotic-tolerant mutant of Lactobacillus casei at high temperature.

    PubMed

    Ge, Xiang-Yang; Yuan, Jian; Qin, Hao; Zhang, Wei-Guo

    2011-01-01

    L-Lactic acid production by Lactobacillus casei was used as a model to study the mechanism of substrate inhibition and the strategy for enhancing L-lactic acid production. It was found that the concentration of cell growth and L-lactate decreased with the increase of glucose concentration and fermentation temperature. To enhance the osmotic stress resistance of the strain at high temperature, a mutant G-03 was screened and selected with 360 g/L glucose at 45°C as the selective criterion. To further increase the cell growth for lactic acid production, 3 g/L of biotin was supplemented to the medium. As a result, L: -lactate concentration by the mutant G-03 reached 198.2 g/L (productivity of 5.5 g L(-1) h(-1)) at 41°C in a 7-L fermentor with 210 g/L glucose as carbon source. L: -Lactate concentration and productivity of mutant G-03 were 115.2% and 97.8% higher than those of the parent strain, respectively. The strategy for enhancing L: -lactic acid production by increasing osmotic stress resistance at high temperature may provide an alternative approach to enhance organic acid production with other strains. PMID:20857288

  4. Robust Optimization Design Algorithm for High-Frequency TWTs

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Chevalier, Christine T.

    2010-01-01

    Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.

  5. Study of switching transients in high frequency converters

    NASA Technical Reports Server (NTRS)

    Zinger, Donald S.; Elbuluk, Malik E.; Lee, Tony

    1993-01-01

    As the semiconductor technologies progress rapidly, the power densities and switching frequencies of many power devices are improved. With the existing technology, high frequency power systems become possible. Use of such a system is advantageous in many aspects. A high frequency ac source is used as the direct input to an ac/ac pulse-density-modulation (PDM) converter. This converter is a new concept which employs zero voltage switching techniques. However, the development of this converter is still in its infancy stage. There are problems associated with this converter such as a high on-voltage drop, switching transients, and zero-crossing detecting. Considering these problems, the switching speed and power handling capabilities of the MOS-Controlled Thyristor (MCT) makes the device the most promising candidate for this application. A complete insight of component considerations for building an ac/ac PDM converter for a high frequency power system is addressed. A power device review is first presented. The ac/ac PDM converter requires switches that can conduct bi-directional current and block bi-directional voltage. These bi-directional switches can be constructed using existing power devices. Different bi-directional switches for the converter are investigated. Detailed experimental studies of the characteristics of the MCT under hard switching and zero-voltage switching are also presented. One disadvantage of an ac/ac converter is that turn-on and turn-off of the switches has to be completed instantaneously when the ac source is at zero voltage. Otherwise shoot-through current or voltage spikes can occur which can be hazardous to the devices. In order for the devices to switch softly in the safe operating area even under non-ideal cases, a unique snubber circuit is used in each bi-directional switch. Detailed theory and experimental results for circuits using these snubbers are presented. A current regulated ac/ac PDM converter built using MCT's and IGBT's is

  6. Microstrip antenna modeling and measurement at high frequencies

    SciTech Connect

    Bevensee, R.M.

    1986-04-30

    This report addresses the task C(i) of the Proposal for Microstrip Antenna Modeling and Measurement at High Frequencies by the writer, July 1985. The task is: Assess the advantages and disadvantages of the three computational approaches outlined in the Proposal, including any difficulties to be resolved and an estimate of the time required to implement each approach. The three approaches are (1) Finite Difference, (2) Sommerfeld-GTD-MOM, and (3) Surface Intergral Equations - MOM. These are discussed in turn.

  7. High Frequency Atomic Magnetometer by Use of Electromagnetically Induced Transparency

    SciTech Connect

    Katsoprinakis, G.; Kominis, I. K.; Petrosyan, D.

    2006-12-08

    Atomic magnetometers have achieved magnetic sensitivities in the subfemtotesla regime. Their bandwidth is determined by the transverse spin relaxation rate, 1/T{sub 2}, which also determines the magnetic sensitivity. It is theoretically demonstrated that by using an electromagnetically induced transparent probe beam in a pump-probe atomic magnetometer, it is possible to operate the latter at frequencies much higher than its bandwidth, maintaining a high signal-to-noise ratio.

  8. High-frequency hearing loss among mobile phone users.

    PubMed

    Velayutham, P; Govindasamy, Gopala Krishnan; Raman, R; Prepageran, N; Ng, K H

    2014-01-01

    The objective of this study is to assess high frequency hearing (above 8 kHz) loss among prolonged mobile phone users is a tertiary Referral Center. Prospective single blinded study. This is the first study that used high-frequency audiometry. The wide usage of mobile phone is so profound that we were unable to find enough non-users as a control group. Therefore we compared the non-dominant ear to the dominant ear using audiometric measurements. The study was a blinded study wherein the audiologist did not know which was the dominant ear. A total of 100 subjects were studied. Of the subjects studied 53% were males and 47% females. Mean age was 27. The left ear was dominant in 63%, 22% were dominant in the right ear and 15% did not have a preference. This study showed that there is significant loss in the dominant ear compared to the non-dominant ear (P < 0.05). Chronic usage mobile phone revealed high frequency hearing loss in the dominant ear (mobile phone used) compared to the non dominant ear.

  9. High-Frequency Dynamics of Ultrasound Contrast Agents

    PubMed Central

    Sun, Yang; Kruse, Dustin E.; Dayton, Paul A.; Ferrara, Katherine W.

    2006-01-01

    Ultrasound contrast agents enhance echoes from the microvasculature and enable the visualization of flow in smaller vessels. Here, we optically and acoustically investigate microbubble oscillation and echoes following insonation with a 10 MHz center frequency pulse. A high-speed camera system with a temporal resolution of 10 ns, which provides two-dimensional (2-D) frame images and streak images, is used in optical experiments. Two confocally aligned transducers, transmitting at 10 MHz and receiving at 5 MHz, are used in acoustical experiments in order to detect subharmonic components. Results of a numerical evaluation of the modified Rayleigh-Plesset equation are used to predict the dynamics of a microbubble and are compared to results of in vitro experiments. From the optical observations of a single microbubble, nonlinear oscillation, destruction, and radiation force are observed. The maximum bubble expansion, resulting from insonation with a 20-cycle, 10-MHz linear chirp with a peak negative pressure of 3.5 MPa, has been evaluated. For an initial diameter ranging from 1.5 to 5 μm, a maximum diameter less than 8 μm is produced during insonation. Optical and acoustical experiments provide insight into the mechanisms of destruction, including fragmentation and active diffusion. High-frequency pulse transmission may provide the opportunity to detect contrast echoes resulting from a single pulse, may be robust in the presence of tissue motion, and may provide the opportunity to incorporate high-frequency ultrasound into destruction-replenishment techniques. PMID:16422410

  10. High-frequency ultrasound in parotid gland disease.

    PubMed

    Onkar, Prashant Madhukar; Ratnaparkhi, Chetana; Mitra, Kajal

    2013-12-01

    Parotid gland is involved in many inflammatory and neoplastic conditions. Many a times, it is difficult to ascertain the type of swelling by clinical examination. The anatomy and various abnormalities of the glands are very easily visualized by high-frequency ultrasound. Ultrasound can confirm the presence of the mass with sensitivity up to 100%. It can demonstrate whether a lesion is located in the parotid gland or outside. It can help in differentiating benign from malignant neoplasms and local staging of the mass in malignant lesions. In addition, ultrasound can identify those entities that may not need surgical intervention. The glands appear enlarged and show altered echopattern in acute inflammation and may be normal or reduce in size in chronic inflammation. Other pathologies that involve salivary glands are sialolithiasis and various benign and malignant neoplasms. Ultrasound many times suggests final diagnosis or supplies important differential diagnosis. In this article, the use of high-frequency ultrasound in parotid disease is discussed, and sonographic features of different parotid pathologies are reviewed with examples illustrated. High-frequency ultrasound is the first and many a times the only imaging investigation done for evaluation of parotid glands.

  11. Ultra-high resolution spectroscopy of optical frequency combs

    NASA Astrophysics Data System (ADS)

    Schneider, Thomas; Preußler, Stefan

    2016-03-01

    The precision, versatility and broad bandwidth of frequency combs are the basis of many different applications from the microwave via the millimeter and THz up to the optical range of the electromagnetic spectrum. Optical frequency combs can be used for the new definition of physical constants, for high-precision metrology and spectroscopy and for ultrahigh bitrate data communications, for instance. Besides the stability and the bandwidth, the most important parameters of a frequency comb are the free spectral range ,as well as the linewidth and amplitude of the single comb lines. A conventional grating based optical spectrometer can easily measure the bandwidth of the comb. However, it fails for the measurement of all other comb parameters, if the comb is generated by a mode-locked fiber laser for instance. Here we present a proof-of-concept setup for an optical spectrometer with a resolution in the kHz-range and first measurements of the free spectral range, linewidth and amplitude of a comb source. The spectrometer is based on the combination of optical heterodyning with the polarization pulling effect of stimulated Brillouin scattering. As we will discuss, the maximum possible resolution is only restricted by the linewidth and stability of the used reference laser. Thus due to the stability of our laser used as local oscillator, our setup has a maximum resolution of around 5 kHz or 40 attometer, corresponding to 11 orders of magnitude compared to the center frequency of the comb of around 190 THz.

  12. High-Performance Optical Frequency References for Space

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Döringshoff, Klaus; Milke, Alexander; Sanjuan, Josep; Gohlke, Martin; Kovalchuk, Evgeny V.; Gürlebeck, Norman; Peters, Achim; Braxmaier, Claus

    2016-06-01

    A variety of future space missions rely on the availability of high-performance optical clocks with applications in fundamental physics, geoscience, Earth observation and navigation and ranging. Examples are the gravitational wave detector eLISA (evolved Laser Interferometer Space Antenna), the Earth gravity mission NGGM (Next Generation Gravity Mission) and missions, dedicated to tests of Special Relativity, e.g. by performing a Kennedy- Thorndike experiment testing the boost dependence of the speed of light. In this context we developed optical frequency references based on Doppler-free spectroscopy of molecular iodine; compactness and mechanical and thermal stability are main design criteria. With a setup on engineering model (EM) level we demonstrated a frequency stability of about 2·10-14 at an integration time of 1 s and below 6·10-15 at integration times between 100s and 1000s, determined from a beat-note measurement with a cavity stabilized laser where a linear drift was removed from the data. A cavity-based frequency reference with focus on improved long-term frequency stability is currently under development. A specific sixfold thermal shield design based on analytical methods and numerical calculations is presented.

  13. High-resolution frequency measurement method with a wide-frequency range based on a quantized phase step law.

    PubMed

    Du, Baoqiang; Dong, Shaofeng; Wang, Yanfeng; Guo, Shuting; Cao, Lingzhi; Zhou, Wei; Zuo, Yandi; Liu, Dan

    2013-11-01

    A wide-frequency and high-resolution frequency measurement method based on the quantized phase step law is presented in this paper. Utilizing a variation law of the phase differences, the direct different frequency phase processing, and the phase group synchronization phenomenon, combining an A/D converter and the adaptive phase shifting principle, a counter gate is established in the phase coincidences at one-group intervals, which eliminates the ±1 counter error in the traditional frequency measurement method. More importantly, the direct phase comparison, the measurement, and the control between any periodic signals have been realized without frequency normalization in this method. Experimental results show that sub-picosecond resolution can be easily obtained in the frequency measurement, the frequency standard comparison, and the phase-locked control based on the phase quantization processing technique. The method may be widely used in navigation positioning, space techniques, communication, radar, astronomy, atomic frequency standards, and other high-tech fields.

  14. Specific interaction of mutant p53 with regions of matrix attachment region DNA elements (MARs) with a high potential for base-unpairing

    PubMed Central

    Will, Katrin; Warnecke, Gabriele; Wiesmüller, Lisa; Deppert, Wolfgang

    1998-01-01

    Mutant, but not wild-type p53 binds with high affinity to a variety of MAR-DNA elements (MARs), suggesting that MAR-binding of mutant p53 relates to the dominant-oncogenic activities proposed for mutant p53. MARs recognized by mutant p53 share AT richness and contain variations of an AATATATTT “DNA-unwinding motif,” which enhances the structural dynamics of chromatin and promotes regional DNA base-unpairing. Mutant p53 specifically interacted with MAR-derived oligonucleotides carrying such unwinding motifs, catalyzing DNA strand separation when this motif was located within a structurally labile sequence environment. Addition of GC-clamps to the respective MAR-oligonucleotides or introducing mutations into the unwinding motif strongly reduced DNA strand separation, but supported the formation of tight complexes between mutant p53 and such oligonucleotides. We conclude that the specific interaction of mutant p53 with regions of MAR-DNA with a high potential for base-unpairing provides the basis for the high-affinity binding of mutant p53 to MAR-DNA. PMID:9811860

  15. Inaudible high-frequency sounds affect brain activity: hypersonic effect.

    PubMed

    Oohashi, T; Nishina, E; Honda, M; Yonekura, Y; Fuwamoto, Y; Kawai, N; Maekawa, T; Nakamura, S; Fukuyama, H; Shibasaki, H

    2000-06-01

    Although it is generally accepted that humans cannot perceive sounds in the frequency range above 20 kHz, the question of whether the existence of such "inaudible" high-frequency components may affect the acoustic perception of audible sounds remains unanswered. In this study, we used noninvasive physiological measurements of brain responses to provide evidence that sounds containing high-frequency components (HFCs) above the audible range significantly affect the brain activity of listeners. We used the gamelan music of Bali, which is extremely rich in HFCs with a nonstationary structure, as a natural sound source, dividing it into two components: an audible low-frequency component (LFC) below 22 kHz and an HFC above 22 kHz. Brain electrical activity and regional cerebral blood flow (rCBF) were measured as markers of neuronal activity while subjects were exposed to sounds with various combinations of LFCs and HFCs. None of the subjects recognized the HFC as sound when it was presented alone. Nevertheless, the power spectra of the alpha frequency range of the spontaneous electroencephalogram (alpha-EEG) recorded from the occipital region increased with statistical significance when the subjects were exposed to sound containing both an HFC and an LFC, compared with an otherwise identical sound from which the HFC was removed (i.e., LFC alone). In contrast, compared with the baseline, no enhancement of alpha-EEG was evident when either an HFC or an LFC was presented separately. Positron emission tomography measurements revealed that, when an HFC and an LFC were presented together, the rCBF in the brain stem and the left thalamus increased significantly compared with a sound lacking the HFC above 22 kHz but that was otherwise identical. Simultaneous EEG measurements showed that the power of occipital alpha-EEGs correlated significantly with the rCBF in the left thalamus. Psychological evaluation indicated that the subjects felt the sound containing an HFC to be more

  16. High throughput gene complementation screening permits identification of a mammalian mitochondrial protein synthesis (ρ(-)) mutant.

    PubMed

    Potluri, Prasanth; Procaccio, Vincent; Scheffler, Immo E; Wallace, Douglas C

    2016-08-01

    To identify nuclear DNA (nDNA) oxidative phosphorylation (OXPHOS) gene mutations using cultured cells, we have developed a complementation system based on retroviral transduction with a full length cDNA expression library and selection for OXHOS function by growth in galactose. We have used this system to transduce the Chinese hamster V79-G7 OXPHOS mutant cell line with a defect in mitochondrial protein synthesis. The complemented cells were found to have acquired the cDNA for the bS6m polypeptide of the small subunit of the mitochondrial ribosome. bS6m is a 14 kDa polypeptide located on the outside of the mitochondrial 28S ribosomal subunit and interacts with the rRNA. The V79-G7 mutant protein was found to harbor a methionine to threonine missense mutation at codon 13. The hamster bS6m null mutant could also be complemented by its orthologs from either mouse or human. bS6m protein tagged at its C-terminus by HA, His or GFP localized to the mitochondrion and was fully functional. Through site-directed mutagenesis we identified the probable RNA interacting residues of the bS6m peptide and tested the functional significance of mammalian specific C-terminal region. The N-terminus of the bS6m polypeptide functionally corresponds to that of the prokaryotic small ribosomal subunit, but deletion of C-terminal residues along with the zinc ion coordinating cysteine had no functional effect. Since mitochondrial diseases can result from hundreds to thousands of different nDNA gene mutations, this one step viral complementation cloning may facilitate the molecular diagnosis of a range of nDNA mitochondrial disease mutations. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26946086

  17. Kinetic Characterization of High-Activity Mutants of Human Butyrylcholinesterase for Cocaine Metabolite Norcocaine

    PubMed Central

    Zhan, Max; Hou, Shurong; Zhan, Chang-Guo; Zheng, Fang

    2015-01-01

    It has been known that cocaine produces the toxic and physiological effects through not only cocaine itself but also norcocaine formed from cocaine oxidation catalyzed by microsomal cytochrome P450 3A4 in the human liver. The catalytic parameters (kcat and KM) of human butyrylcholinesterase (BChE) and its three mutants (i.e. the A199S/S287G/A328W/Y332G, A199S/F227A/S287G/A328W/E441D, and A199S/F227A/S287G/A328W/Y332G mutants) for norcocaine have been characterized in the present study, for the first time, in comparison with those for cocaine. Based on the obtained kinetic data, wild-type human BChE has a significantly lower catalytic activity for norcocaine (kcat = 2.8 min−1, KM = 15 μM, and kcat/KM = 1.87 × 105 M−1 min−1) compared to its catalytic activity for (−)-cocaine. The BChE mutants examined in this study have considerably improved catalytic activities against both cocaine and norcocaine compared to the wild-type enzyme. Within the enzymes examined in this study, the A199S/F227A/S287G/A328W/Y332G mutant (CocH3) is identified as the most efficient enzyme for hydrolyzing both cocaine and norcocaine. CocH3 has a 1080-fold improved catalytic efficiency for norcocaine (kcat = 2610 min−1, KM = 13 μM, and kcat/KM = 2.01 × 108 M−1 min−1) and a 2020-fold improved catalytic efficiency for cocaine. It has been demonstrated that CocH3 as an exogenous enzyme can rapidly metabolize norcocaine, in addition to cocaine, in rats. Further kinetic modeling has suggested that CocH3 with an identical concentration as that of the endogenous BChE in human plasma can effectively eliminate both cocaine and norcocaine in a simplified kinetic model of cocaine abuse. PMID:24125115

  18. Spirogyra varians mutant generated by high dose gamma-irradiation shows increased antioxidant properties

    NASA Astrophysics Data System (ADS)

    Lee, Hak-Jyung; Yoon, Minchul; Sung, Nak-Yun; Choi, Jong-il

    2012-08-01

    The aim of this study was to evaluate the antioxidant properties of a Spirogyra varians mutant (Mut) produced by gamma irradiation. Methanol extracts were prepared from Spirogyra varians wild-type and Mut plants, and their antioxidant activities and total phenolic content (TPC) were determined. Antioxidant parameters, including the 2-diphenyl-1-picrylhydrazyl radical-scavenging activity and ferric-reducing/antioxidant power, were higher in the Mut extract. Moreover, the TPC level was higher (P<0.05) in the Mut methanol extract. Therefore, these results suggest that gamma irradiation-induced S. varians Mut has superior antioxidant properties.

  19. Characteristics of high-frequency consumers of prescription psychoactive drugs.

    PubMed

    Chambers, C D; White, O Z

    1980-01-01

    Two cohorts of white middle-class housewives who reported themselves as high-frequency consumers of prescription sedatives, tranquilizers, and stimulants have been studied and their characteristics have been reported. One group of these women are residents of a Midwestern state, and the other in a Southern state. These women can best be described as follows: Most reported their primary physician as being a general practitioner (60%), and most reported they had consulted two or more separate physicians during the last year (78%). More than a third (36%) had seen at least three different physicians. Interestingly, while most of these women were consulting general practitioners and/or internists, almost a third were presenting them with general psychological complaints. The self-reported high-frequency users most frequently used the relaxants/minor tranquilizers (64%), followed by sedatives (41%), stimulants (31%), and major tranquilizers (7%). Almost half of all these high-frequency medicine consumers were also regular drinkers (47%), and some 13 to 17% could be considered as heavy drinkers. The majority of the relaxant/minor tranquilizer users had been taking the medications daily or several times a week for at least six months. Less than half of these users, however, felt their "condition" had gotten "better." The majority of the sedative users had also been taking the medications daily or several times a week for at least six months. Less than a third of these users felt the condition that precipitated the prescription had improved during this period of use. Of major importance, only a minority of these long-term high-frequency users of sedatives and relaxants/minor tranquilizers believe these drugs to be habit-forming or to have any potential for physical or psychological harm. Although the stimulant-users were also found to be high-frequency consumers, stimulant-users were found to have been using these drugs for a shorter period of time. There also appears to

  20. Phosphorus geochemical cycling inferences from high frequency lake monitoring

    NASA Astrophysics Data System (ADS)

    Crockford, Lucy; Jordan, Philip; Taylor, David

    2013-04-01

    Freshwater bodies in Europe are required to return to good water quality status under the Water Framework Directive by 2015. A small inter-drumlin lake in the northeast of Ireland has been susceptible to eutrophic episodes and the presence of algal blooms during summer since annual monitoring began in 2002. While agricultural practice has been controlled by the implementation of the Nitrates Directive in 2006, the lake is failing to recover to good water quality status to meet with the Water Framework Directive objectives. Freshwaters in Ireland are regarded, in the main, as phosphorus (P) limited so identifying the sources of P possibly fuelling the algal blooms may provide an insight into how to improve water quality conditions. In a lake, these sources are divided between external catchment driven loads, as a result of farming and point sources, and P released from sediments made available to photic waters through internal lake mechanisms. High frequency sensors on data-sondes, installed on the lake in three locations, have provided chlorophyll a, redox potential, dissolved oxygen, temperature, pH, conductivity and turbidity data since March 2010. A data-sonde was installed in the hypolimnion to observe the change in lake conditions as P is released from lake sediments as a result of geochemical cycling with iron during anoxic periods. As compact high frequency sampling equipment for P analysis is still in its infancy for freshwaters, a proxy measurement of geochemical cycling in lakes would be useful to determine fully the extent of P contribution from sediments to the overall P load. Phosphorus was analysed once per month along with a number of other parameters and initial analysis of the high frequency data has shown changes in readings when known P release from lake sediments has occurred. Importantly, these data have shown when these P enriched hypolimnetic waters may be re-introduced to shallower waters in the photic zone, by changes in dissolved oxygen

  1. Novel high frequency devices with graphene and GaN

    NASA Astrophysics Data System (ADS)

    Zhao, Pei

    This work focuses on exploring new materials and new device structures to develop novel devices that can operate at very high speed. In chapter 2, the high frequency performance limitations of graphene transistor with channel length less than 100 nm are explored. The simulated results predict that intrinsic cutoff frequency fT of graphene transistor can be close to 2 THz at 15 nm channel length. In chapter 3, we explored the possibility of developing a 2D materials based vertical tunneling device. An analytical model to calculate the channel potentials and current-voltage characteristics in a Symmetric tunneling Field-Effect-Transistor (SymFET) is presented. The symmetric resonant peak in SymFET is a good candidate for high-speed analog applications. Rest of the work focuses on Gallium Nitride (GaN), several novel device concepts based on GaN heterostructure have been proposed for high frequency and high power applications. In chapter 4, we compared the performance of GaN Schottky diodes on bulk GaN substrates and GaN-on-sapphire substrates. In addition, we also discussed the lateral GaN Schottky diode between metal/2DEGs. The advantage of lateral GaN Schottky diodes is the intrinsic cutoff frequency is in the THz range. In chapter 5, a GaN Heterostructure barrier diode (HBD) is designed using the polarization charge and band offset at the AlGaN/GaN heterojunction. The polarization charge at AlGaN/GaN interface behaves as a delta-doping which induces a barrier without any chemical doping. The IV characteristics can be explained by the barrier controlled thermionic emission current. GaN HBDs can be directly integrated with GaN HEMTs, and serve as frequency multipliers or mixers for RF applications. In chapter 6, a GaN based negative effective mass oscillator (NEMO) is proposed. The current in NEMO is estimated under the ballistic limits. Negative differential resistances (NDRs) can be observed with more than 50% of the injected electrons occupied the negative

  2. HIGH FREQUENCY ULTRASOUND OF ARMOR-GRADE ALUMINA CERAMICS

    SciTech Connect

    Bottiglieri, S.; Haber, R. A.

    2009-03-03

    Different lots of high density, commercial, armor-grade alumina (Al{sub 2}O{sub 3}) were tested using high frequency ultrasound in order to determine any correlation between measured properties and ballistic performance. C-scan images were taken using a 15 MHz ultrasonic transducer in order to form attenuation coefficient and elastic property maps. These samples were further characterized by using quantitative analysis. The results indicate that attenuation coefficient values appear to have the strongest correlation, of every property measured, to ballistic classifications.

  3. High frequency noise studies at the Hartousov mofette area (CZE)

    NASA Astrophysics Data System (ADS)

    Schmidt, Andreas; Flores-Estrella, Hortencia; Pommerencke, Julia; Umlauft, Josefine

    2014-05-01

    Ambient noise analysis has been used as a reliable tool to investigate sub-surface structures at seismological quiet regions with none or less specific seismic events. Here, we consider the acoustic signals from a single mofette at the Hartoušov area (CZE) as a noise-like high frequency source caused by multiple near surface degassing processes in a restricted location. From this assumption we have used different array geometries for recording at least one hour of continuous noise. We installed triangular arrays with 3 component geophones: the first deployment consisted on two co-centric triangles with side length of 30 and 50 m with the mofette in the center; the second deployment consisted on two triangular arrays, both with side length of 30 m, co-directional to the mofette. Furthermore, we also installed profiles with 24 channels and vertical geophones locating them in different positions with respect to the mofette. In this work, we present preliminary results from the data analysis dependent on the geometry, to show the characteristics of the noise wave-field referring to frequency content and propagation features, such as directionality and surface wave velocity. The spectral analysis shows that the energy is concentrated in a frequency band among 10 and 40 Hz. However, in this interval there is no evidence of any exclusive fundamental frequencies. From this, man-induced influences can be identified as intermittent signal peaks in narrow frequency bands and can be separated to receive the revised mofette wave-field record. The inversion of dispersive surface waves, that were detected by interferometric methods, provides a velocity model down to 12 m with an S-wave velocity between 160 and 180 m/s on the uppermost layer. Furthermore, the interferometric signal properties indicate that it is not possible to characterize the mofette as a punctual source, but rather as a conglomerate of multiple sources with time and location variations.

  4. Quantitative digital image analysis of chromogenic assays for high throughput screening of alpha-amylase mutant libraries.

    PubMed

    Shankar, Manoharan; Priyadharshini, Ramachandran; Gunasekaran, Paramasamy

    2009-08-01

    An image analysis-based method for high throughput screening of an alpha-amylase mutant library using chromogenic assays was developed. Assays were performed in microplates and high resolution images of the assay plates were read using the Virtual Microplate Reader (VMR) script to quantify the concentration of the chromogen. This method is fast and sensitive in quantifying 0.025-0.3 mg starch/ml as well as 0.05-0.75 mg glucose/ml. It was also an effective screening method for improved alpha-amylase activity with a coefficient of variance of 18%.

  5. Barley mutants with low rates of endosperm starch synthesis have low grain dormancy and high susceptibility to preharvest sprouting.

    PubMed

    Howard, Thomas P; Fahy, Brendan; Craggs, Alice; Mumford, Rachel; Leigh, Fiona; Howell, Phil; Greenland, Andy; Smith, Alison M

    2012-04-01

    • Studies of embryo dormancy in relation to preharvest sprouting (PHS) in cereals have focused on ABA and other hormones. The relationship between these phenomena and the rate of grain filling has not been investigated. • A collection of barley mutants impaired in starch synthesis was assessed for preharvest sprouting in the field. In subsequent glasshouse experiments, developing grains were assayed for germination index, sugars, abscisic acid (ABA) and the effects of temperature and exogenous ABA on germination. • Mutant lines displayed greater preharvest sprouting in the field than parental lines. In the glasshouse, nondeep physiological dormancy was reduced in developing grains of five lines with mutations affecting proteins involved in endosperm starch synthesis. Inhibition of germination by exogenous ABA and elevated temperature was decreased in developing mutant grains. Sugar concentrations were high but embryo and endosperm ABA contents were unaltered. • We reveal a direct connection between grain filling and the extent of grain dormancy. Impaired endosperm starch synthesis directly influences the acquisition of embryo dormancy, perhaps because endosperm sugar concentrations modulate the ABA responsiveness of the embryo. Thus environmental or genetic factors that reduce grain filling are likely to reduce dormancy and enhance susceptibility to PHS. PMID:22300545

  6. Use of a highly transparent zebrafish mutant for investigations in the development of the vertebrate auditory system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wisniowiecki, Anna M.; Mattison, Scott P.; Kim, Sangmin; Riley, Bruce; Applegate, Brian E.

    2016-03-01

    Zebrafish, an auditory specialist among fish, offer analogous auditory structures to vertebrates and is a model for hearing and deafness in vertebrates, including humans. Nevertheless, many questions remain on the basic mechanics of the auditory pathway. Phase-sensitive Optical Coherence Tomography has been proven as valuable technique for functional vibrometric measurements in the murine ear. Such measurements are key to building a complete understanding of auditory mechanics. The application of such techniques in the zebrafish is impeded by the high level of pigmentation, which develops superior to the transverse plane and envelops the auditory system superficially. A zebrafish double mutant for nacre and roy (mitfa-/- ;roya-/- [casper]), which exhibits defects for neural-crest derived melanocytes and iridophores, at all stages of development, is pursued to improve image quality and sensitivity for functional imaging. So far our investigations with the casper mutants have enabled the identification of the specialized hearing organs, fluid-filled canal connecting the ears, and sub-structures of the semicircular canals. In our previous work with wild-type zebrafish, we were only able to identify and observe stimulated vibration of the largest structures, specifically the anterior swim bladder and tripus ossicle, even among small, larval specimen, with fully developed inner ears. In conclusion, this genetic mutant will enable the study of the dynamics of the zebrafish ear from the early larval stages all the way into adulthood.

  7. High Frequency PIN-Diode Switches for Radiometer Applications

    NASA Technical Reports Server (NTRS)

    Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka; Reising, Steven C.

    2011-01-01

    Internally calibrated radiometers are needed for ocean topography and other missions. Typically internal calibration is achieved with Dicke switching as one of the techniques. We have developed high frequency single-pole double-throw (SPDT) switches in the form of monolithic microwave integrated circuits (MMIC) that can be easily integrated into Dicke switched radiometers that utilize microstrip technology. In particular, the switches we developed can be used for a radiometer such as the one proposed for the Surface Water and Ocean Topography (SWOT) Satellite Mission whose three channels at 92, 130, and 166 GHz would allow for wet-tropospheric path delay correction near coastal zones and over land. This feat is not possible with the current Jason-class radiometers due to their lower frequency signal measurement and thus lower resolution. The MMIC chips were fabricated at NGST using their InP PIN diode process and measured at JPL using high frequency test equipment. Measurement and simulation results will be presented.

  8. High-resolution time-frequency distributions for fall detection

    NASA Astrophysics Data System (ADS)

    Amin, Moeness G.; Zhang, Yimin D.; Boashash, Boualem

    2015-05-01

    In this paper, we examine the role of high-resolution time-frequency distributions (TFDs) of radar micro-Doppler signatures for fall detection. The work supports the recent and rising interest in using emerging radar technology for elderly care and assisted living. Spectrograms have been the de facto joint-variable signal representation, depicting the signal power in both time and frequency. Although there have been major advances in designing quadratic TFDs which are superior to spectrograms in terms of detailing the local signal behavior, the contributions of these distributions in the area of human motion classifications and their offerings in enhanced feature extractions have not yet been properly evaluated. The main purpose of this paper is to show the effect of using high-resolution TFD kernels, in lieu of spectrogram, on fall detection. We focus on the extended modified B-distribution (EMBD) and exploit the level of details it provides as compared with the coarse and smoothed time-frequency signatures offered by spectrograms.

  9. High-frequency-link based power electronics in power systems

    NASA Astrophysics Data System (ADS)

    Sree, Hari

    Power quality has become a serious concern to many utility customers in recent times. Among the many power quality problems, voltage sags are one of the most common and most mischievous, affecting industrial and commercial customers. They are primarily caused by power system faults at the transmission and distribution level, and thus, are mostly unavoidable. Their effect depends on the equipment sensitivities to the magnitude and duration of these sags and each can cost an industry up to few million dollars. To counter these limitations, many solutions at the customer end have been proposed which include Constant Voltage Transformers (CVT's), UPS and line frequency transformer based Dynamic Voltage Restorer (DVR). These approaches have their respective limitations with regard to capabilities, size and cost. This research proposes a new approach to mitigating these voltage sags involving the use of high frequency transformer link. Suitable switching logic and control strategies have been implemented. The proposed approach in a one-phase application is verified with computer simulations and by a hardware proof-of-concept prototype. Application to three-phase system is verified through simulations. Application of high frequency transformers in other utility applications such as active filters and static compensators is also looked at.

  10. High-frequency synthetic ultrasound array incorporating an actuator

    NASA Astrophysics Data System (ADS)

    Ritter, Timothy A.; Shrout, Thomas R.; Shung, K. Kirk

    2001-05-01

    Ultrasound imaging at frequencies above 20 MHz relies almost exclusively on single-element transducers. IN order to apply array technology at these frequencies, several practical problems must be solved, including spatial scale and fabrication limitations, low device capacitance, and lack of a hardware beamformer. One method of circumventing these problems is to combine an array, an actuator, and a synthetic aperture software beamformer. The array can use relatively wide elements spaced on a coarse pitch. The actuator is used to move the array in short steps (less than the element pitch), and pulse-echo data is acquired at intermediate sample positions. The synthetic aperture beamformer reconstructs the image from the pulse-echo data. A 50 MHz example is analyzed in detail. Estimates of signal-to-noise reveal performance comparable to a standard phased array; furthermore, the actuated array requires half the number of elements, the elements are 8x wider, and only one channel is required. Simulated three-dimensional point spread functions demonstrate side lobe levels approaching - 40dB and main beam widths of 50 to 100 microns. A 50 MHz piezo-composite array design has been tested which displays experimental bandwidth of 70% while maintaining high sensitivity. Individual composite sub-elements are 18 microns wide. Once this array is integrated with a suitable actuator, it is anticipated that a tractable method of imaging with high frequency arrays will result.

  11. High-frequency ultrasonic imaging of thickly sliced specimens

    NASA Astrophysics Data System (ADS)

    Miyasaka, Chiaki; Tittmann, Bernhard R.; Chandraratna, Premindra A. N.

    2003-07-01

    It has been reported that a mechanical scanning reflection acoustic microscope (hereinafter called simply "SAM"), using high frequency ultrasonic tone-burst waves, can form a horizontal cross-sectional image (i.e., c-scan image) showing a highly resolved cellular structure of biological tissue. However, the tissue prepared for the SAM has been mostly a thinly sectioned specimen. In this study, the SAM images of specimens thickly sectioned from the tissue were analyzed. Optical and scanning acoustic microscopies were used to evaluate tissues of human small intestine and esophagus. For preparing thin specimens, the tissue was embedded in paraffin, and substantially sectioned at 5-10μm by the microtome. For optical microscopy, the tissue was stained with hematoxylin and eosin, and affixed onto glass substrates. For scanning acoustic microscopy, two types of specimens were prepared: thinly sectioned specimens affixed on the glass substrate, wherein the specimens were deparaffinized in xylene, but not stained, and thickely sectioned specimens. Images of the thick specimens obtained with frequency at 200 MHz revealed cellular structures. The morphology was very similar to that seen in the thinly sectioned specimens with optical and scanning acoustic microscopy. In addition, scanning electron microscopy was used to compare the images of biological tissue. An acoustic lens with frequency at 200 MHz permitted the imaging of surface and/or subsurface of microstructures in the thick sections of small intestine and esophagus.

  12. Facile Alkaline Lysis of Escherichia coli Cells in High-Throughput Mode for Screening Enzyme Mutants: Arylsulfatase as an Example.

    PubMed

    Yuan, Mei; Yang, Xiaolan; Li, Yuwei; Liu, Hongbo; Pu, Jun; Zhan, Chang-Guo; Liao, Fei

    2016-06-01

    Facile alkaline lysis of Escherichia coli cells in high-throughput (HTP) mode for screening enzyme mutants was tested with Pseudomonas aeruginosa arylsulfatase (PAAS). The alkaline lysis buffer was 1.0 M Tris-HCl at pH 9.0 plus 0.1 % Tween-20 and 2.0 mM 4-aminobenzamidine, mixed with cell suspension at 8:1 to 12:1 ratio for continuous agitation of mixtures in 96-well plates under room temperature; enzymatic activity in lysates was measured with 96-well microplate. PAAS activity tolerated final 0.1 % Tween-20. Individual clones were amplified for 12 h in 0.50 mL TB medium with 48-well plates to enhance the repeatability of induced expression. During continuous agitation of the mixture of cells and the lysis buffer, PAAS activities in lysates were steady from 3 to 9 h and comparable to sonication treatment but better than freezing-thawing. Coefficients of variation of activities of PAAS/mutants in lysates after treatment for 7 h reached ∼22 %. The mutant M72Q had specific activity 2-fold of G138S. By HTP lysis of cells, M72Q was recognized as a positive mutant over G138S with the area under the curve of 0.873. Therefore, for enzymes tolerating concentrated alkaline buffers, the proposed alkaline lysis approach may be generally applicable for HTP lysis of host cells during directed evolution. PMID:26899233

  13. Attenuation of high sucrose diet–induced insulin resistance in tryptophan 2,3-dioxygenase deficient Drosophila melanogaster vermilion mutants

    PubMed Central

    Navrotskaya, Valeriya; Oxenkrug, Gregory; Vorobyova, Lyudmila; Summergrad, Paul

    2015-01-01

    Exposure to high sugar diet (HSD) serves as an experimental model of insulin resistance (IR) and type 2 diabetes (T2D) in mammals and insects. Peripheral IR induced by HSD delays emergence of pupae from larvae and decreases body weight of Drosophila imago. Understanding of mechanisms of IR/T2D is essential for refining T2D prevention and treatment strategies. Dysregulation of tryptophan (TRP) – kynurenine (KYN) pathway was suggested as one of the mechanisms of IR development. Rate-limiting enzyme of TRP – KYN pathway in Drosophila is TRP 2,3-dioxygenase (TDO), an evolutionary conserved ortholog of human TDO. In insects TDO is encoded by vermilion gene. TDO is not active in vermilion mutants. In order to evaluate the possible impact of deficient formation of KYN from TRP on the inducement of IR by HSD, we compared the effect of HSD in wild type (Oregon) and vermilion mutants of Drosophila melanogaster by assessing the time of white pupae emergence from larva and body weight of imago. Delay of emergence of pupae from larvae induced by high sucrose diet was less pronounced in vermilion (1.4 days) than in Oregon flies (3.3 days) in comparison with flies maintained on standard diet. Exposure to high sucrose diet decreased body weight of Oregon (but not vermilion) imago. Attenuation of high sucrose diet–induced IR/T2D in vermilion flies might depend on deficiency of TRP – KYN pathway. Besides IR/T2D, HSD induces obesity in Drosophila. Future studies of HSD-induced obesity and IR/T2D in TDO deficient vermilion mutants of Drosophila might help to understand the mechanisms of high association between IR/T2D and obesity. Modulation of TRP – KYN metabolism might be utilized for prevention and treatment of IR/T2D. PMID:26191458

  14. The role of the high potential form of the cytochrome b559: Study of Thermosynechococcus elongatus mutants.

    PubMed

    Guerrero, Fernando; Zurita, Jorge L; Roncel, Mercedes; Kirilovsky, Diana; Ortega, José M

    2014-06-01

    Cytochrome b559 is an essential component of the photosystem II reaction center in photosynthetic oxygen-evolving organisms, but its function still remains unclear. The use of photosystem II preparations from Thermosynechococcus elongatus of high integrity and activity allowed us to measure for the first time the influence of cytochrome b559 mutations on its midpoint redox potential and on the reduction of the cytochrome b559 by the plastoquinone pool (or QB). In this work, five mutants having a mutation in the α-subunit (I14A, I14S, R18S, I27A and I27T) and one in the β-subunit (F32Y) of cytochrome b559 have been investigated. All the mutations led to a destabilization of the high potential form of the cytochrome b559. The midpoint redox potential of the high potential form was significantly altered in the αR18S and αI27T mutant strains. The αR18S strain also showed a high sensitivity to photoinhibitory illumination and an altered oxidase activity. This was suggested by measurements of light induced oxidation and dark re-reduction of the cytochrome b559 showing that under conditions of a non-functional water oxidation system, once the cytochrome is oxidized by P680(+), the yield of its reduction by QB or the PQ pool was smaller and the kinetic slower in the αR18S mutant than in the wild-type strain. Thus, the extremely positive redox potential of the high potential form of cytochrome b559 could be necessary to ensure efficient oxidation of the PQ pool and to function as an electron reservoir replacing the water oxidation system when it is not operating.

  15. ICD lead failure detection through high frequency impedance.

    PubMed

    Kollmann, Daniel T; Swerdlow, Charles D; Kroll, Mark W; Seifert, Gregory J; Lichter, Patrick A

    2014-01-01

    Abrasion-induced insulation breach is a common failure mode of silicone-body, transvenous, implantable cardioverter defibrillator leads. It is caused either by external compression or internal motion of conducting cables. The present method of monitoring lead integrity measures low frequency conductor impedance. It cannot detect insulation failures until both the silicone lead body and inner fluoropolymer insulation have been breached completely, exposing conductors directly to blood or tissue. Thus the first clinical presentation may be either failure to deliver a life-saving shock or painful, inappropriate shocks in normal rhythm. We present a new method for identifying lead failure based on high frequency impedance measurements. This method was evaluated in 3D electromagnetic simulation and bench testing to identify insulation defects in the St. Jude Medical Riata® lead, which is prone to insulation breach.

  16. High frequency activity correlates of robust movement in humans.

    PubMed

    Kerr, Matthew S D; Kahn, Kevin; Hyun-Joo Park; Thompson, Susan; Hao, Stephanie; Bulacio, Juan; Gonzalez-Martinez, Jorge A; Gale, John; Sarma, Sridevi V

    2014-01-01

    The neural circuitry underlying fast robust human motor control is not well understood. In this study we record neural activity from multiple stereotactic encephalograph (SEEG) depth electrodes in a human subject while he/she performs a center-out reaching task holding a robotic manipulandum that occasionally introduces an interfering force field. Collecting neural data from humans during motor tasks is rare, and SEEG provides an unusual opportunity to examine neural correlates of movement at a millisecond time scale in multiple brain regions. Time-frequency analysis shows that high frequency activity (50-150 Hz) increases significantly in the left precuneus and left hippocampus when the subject is compensating for a perturbation to their movement. These increases in activity occur with different durations indicating differing roles in the motor control process.

  17. High-frequency extensions of magnetorotational instability in astrophysical plasmas

    SciTech Connect

    Mikhailovskii, A. B.; Lominadze, J. G.; Churikov, A. P.; Pustovitov, V. D.; Erokhin, N. N.; Tsypin, V. S.; Galvao, R. M. O.

    2008-08-15

    High-frequency extensions of magnetorotational instability driven by the Velikhov effect beyond the standard magnetohydrodynamic (MHD) regime are studied. The existence of the well-known Hall regime and a new electron inertia regime is demonstrated. The electron inertia regime is realized for a lesser plasma magnetization of rotating plasma than that in the Hall regime. It includes the subregime of nonmagnetized electrons. It is shown that, in contrast to the standard MHD regime and the Hall regime, magnetorotational instability in this subregime can be driven only at positive values of dln{Omega}/dlnr, where {Omega} is the plasma rotation frequency and r is the radial coordinate. The permittivity of rotating plasma beyond the standard MHD regime, including both the Hall regime and the electron inertia regime, is calculated.

  18. Improve predictive maintenance with HFE monitoring. [High Frequency Envelope

    SciTech Connect

    Page, E.A. ); Berggren, C. )

    1994-01-01

    New on-line machine vibration monitoring systems are offering substantially lower costs and simpler installation requirement. By incorporating high-frequency envelope (HFE) spectrum analysis, these systems can provide earlier and more reliable fault detection. These new capabilities are spurring a transition to on-line predictive monitoring of even noncritical machinery. These condition-monitoring systems automatically perform both conventional vibration analysis and HFE spectrum analysis. Conventional low-frequency spectrum analysis, between 0 to 10 kHz, is widely acknowledged as the most effective means of detecting imbalance, misalignment, mechanical resonances and looseness on machinery. HFE spectrum analysis, above 15 kHz, is now accepted as the most effective method for detecting machine faults, such as pitting or cracking in bearings and gears, insufficient lubrication, shaft rubbing and pump cavitation. The performance and economics of this method is discussed.

  19. High fidelity simian immunodeficiency virus reverse transcriptase mutants have impaired replication in vitro and in vivo.

    PubMed

    Lloyd, Sarah B; Lichtfuss, Marit; Amarasena, Thakshila H; Alcantara, Sheilajen; De Rose, Robert; Tachedjian, Gilda; Alinejad-Rokny, Hamid; Venturi, Vanessa; Davenport, Miles P; Winnall, Wendy R; Kent, Stephen J

    2016-05-01

    The low fidelity of HIV replication facilitates immune and drug escape. Some reverse transcriptase (RT) inhibitor drug-resistance mutations increase RT fidelity in biochemical assays but their effect during viral replication is unclear. We investigated the effect of RT mutations K65R, Q151N and V148I on SIV replication and fidelity in vitro, along with SIV replication in pigtailed macaques. SIVmac239-K65R and SIVmac239-V148I viruses had reduced replication capacity compared to wild-type SIVmac239. Direct virus competition assays demonstrated a rank order of wild-type>K65R>V148I mutants in terms of viral fitness. In single round in vitro-replication assays, SIVmac239-K65R demonstrated significantly higher fidelity than wild-type, and rapidly reverted to wild-type following infection of macaques. In contrast, SIVmac239-Q151N was replication incompetent in vitro and in pigtailed macaques. Thus, we showed that RT mutants, and specifically the common K65R drug-resistance mutation, had impaired replication capacity and higher fidelity. These results have implications for the pathogenesis of drug-resistant HIV. PMID:26896929

  20. The Influence of High-Frequency Gravitational Waves Upon Muscles

    SciTech Connect

    Moy, Lawrence S.; Baker, Robert M. L. Jr

    2007-01-30

    The objective of this paper is to present a theory for the possible influence of high-frequency gravitational waves or HFGWs and pulsed micro-current electromagnetic waves or EMs on biological matter specifically on muscle cells and myofibroblasts. The theory involves consideration of the natural frequency of contractions and relaxations of muscles, especially underlying facial skin, and the possible influence of HFGWs on that process. GWs pass without attenuation through all material thus conventional wisdom would dictate that GWs would have no influence on biological matter. On the other hand, GWs can temporarily modify a gravitational field in some locality if they are of high frequency and such a modification might have an influence in changing the skin muscles' natural frequency. Prior to the actual laboratory generation of HFGWs their influence can be emulated by micro-current EM pulses to the skin and some evidence presented here on that effect may predict the influence of HFGWs. We believe that the HFGW pulsations lead to increased muscle activity and may serve to reverse the aging process. A novel theoretical framework concerning these relaxation phenomena is one result of the paper. Another result is the analysis of the possible delivery system of the FBAR-generated HFGWs, the actual power of the generated HFGWs, and the system's application to nanostructural modification of the skin or muscle cells. It is concluded that a series of non-evasive experiments, which are identified, will have the potential to test theory by detecting and analyzing the possible HFGWs change in polarization, refraction, etc. after their interaction with the muscle cells.

  1. High precision spectroscopy and imaging in THz frequency range

    NASA Astrophysics Data System (ADS)

    Vaks, Vladimir L.

    2014-03-01

    Application of microwave methods for development of the THz frequency range has resulted in elaboration of high precision THz spectrometers based on nonstationary effects. The spectrometers characteristics (spectral resolution and sensitivity) meet the requirements for high precision analysis. The gas analyzers, based on the high precision spectrometers, have been successfully applied for analytical investigations of gas impurities in high pure substances. These investigations can be carried out both in absorption cell and in reactor. The devices can be used for ecological monitoring, detecting the components of chemical weapons and explosive in the atmosphere. The great field of THz investigations is the medicine application. Using the THz spectrometers developed one can detect markers for some diseases in exhaled air.

  2. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability. PMID:19687946

  3. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability.

  4. Very high frequency plasma reactant for atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo; Kim, Tae Hyung; Yeom, Geun Young; Kim, Kangsik; Lee, Zonghoon; Jung, Hanearl; Lee, Chang Wan; Kim, Hyungjun; Lee, Han-Bo-Ram

    2016-11-01

    Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al2O3 were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al2O3 shows superior physical and electrical properties over RF PE-ALD Al2O3, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al2O3 on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  5. Kinetic characterization of high-activity mutants of human butyrylcholinesterase for the cocaine metabolite norcocaine.

    PubMed

    Zhan, Max; Hou, Shurong; Zhan, Chang-Guo; Zheng, Fang

    2014-01-01

    It has been known that cocaine produces its toxic and physiological effects through not only cocaine itself, but also norcocaine formed from cocaine oxidation catalysed by microsomal CYP (cytochrome P450) 3A4 in the human liver. The catalytic parameters (kcat and Km) of human BChE (butyrylcholinesterase) and its three mutants (i.e. A199S/S287G/A328W/Y332G, A199S/F227A/S287G/A328W/E441D and A199S/F227A/S287G/A328W/Y332G) for norcocaine have been characterized in the present study for the first time and compared with those for cocaine. On the basis of the obtained kinetic data, wild-type human BChE has a significantly lower catalytic activity for norcocaine (kcat=2.8 min(-1), Km=15 μM and kcat/Km=1.87 × 10(5) M(-1)·min(-1)) compared with its catalytic activity for (-)-cocaine. The BChE mutants examined in the present study have considerably improved catalytic activities against both cocaine and norcocaine compared with the wild-type enzyme. Within the enzymes examined in the present study, the A199S/F227A/S287G/A328W/Y332G mutant (CocH3) is identified as the most efficient enzyme for hydrolysing both cocaine and norcocaine. CocH3 has a 1080-fold improved catalytic efficiency for norcocaine (kcat=2610 min(-1), Km=13 μM and kcat/Km=2.01 × 10(8) M(-1)·min(-1)) and a 2020-fold improved catalytic efficiency for cocaine. It has been demonstrated that CocH3 as an exogenous enzyme can rapidly metabolize norcocaine, in addition to cocaine, in rats. Further kinetic modelling has suggested that CocH3 with an identical concentration with that of the endogenous BChE in human plasma can effectively eliminate both cocaine and norcocaine in a simplified kinetic model of cocaine abuse.

  6. Maximization of the effective impulse delivered by a high-frequency/low-frequency planetary drill tool.

    PubMed

    Harkness, Patrick; Lucas, Margaret; Cardoni, Andrea

    2011-11-01

    Ultrasonic tools are used for a variety of cutting applications in surgery and the food industry, but when they are applied to harder materials, such as rock, their cutting performance declines because of the low effective impulse delivered by each vibration cycle. To overcome this problem, a technique known as high-frequency/low-frequency (or alternatively, ultrasonic/sonic) drilling is employed. In this approach, an ultrasonic step-horn is used to deliver an impulse to a free mass which subsequently moves toward a drilling bit, delivering the impulse on contact. The free mass then rebounds to complete the cycle. The horn has time between impacts to build significant vibration amplitude and thus delivers a much larger impulse to the free mass than could be delivered if it were applied directly to the target. To maximize the impulse delivered to the target by the cutting bit, both the momentum transfer from the ultrasonic horn to the free mass and the dynamics of the horn/free mass/cutting bit stack must be optimized. This paper uses finite element techniques to optimize the ultrasonic horns and numerical propagation of the stack dynamics to maximize the delivered effective impulse, validated in both cases by extensive experimental analysis.

  7. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  8. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing.

    PubMed

    Oh, W Y; Yun, S H; Vakoc, B J; Shishkov, M; Desjardins, A E; Park, B H; de Boer, J F; Tearney, G J; Bouma, B E

    2008-01-21

    Polarization sensitive optical coherence tomography (PS-OCT) provides a cross-sectional image of birefringence in biological samples that is complementary in many applications to the standard reflectance-based image. Recent ex vivo studies have demonstrated that birefringence mapping enables the characterization of collagen and smooth muscle concentration and distribution in vascular tissues. Instruments capable of applying these measurements percutaneously in vivo may provide new insights into coronary atherosclerosis and acute myocardial infarction. We have developed a polarization sensitive optical frequency domain imaging (PS-OFDI) system that enables high-speed intravascular birefringence imaging through a fiber-optic catheter. The novel design of this system utilizes frequency multiplexing to simultaneously measure reflectance of two incident polarization states, overcoming concerns regarding temporal variations of the catheter fiber birefringence and spatial variations in the birefringence of the sample. We demonstrate circular cross-sectional birefringence imaging of a human coronary artery ex vivo through a flexible fiber-optic catheter with an A-line rate of 62 kHz and a ranging depth of 6.2 mm.

  9. High frequency MoS2 nanomechanical resonators.

    PubMed

    Lee, Jaesung; Wang, Zenghui; He, Keliang; Shan, Jie; Feng, Philip X-L

    2013-07-23

    Molybdenum disulfide (MoS2), a layered semiconducting material in transition metal dichalcogenides (TMDCs), as thin as a monolayer (consisting of a hexagonal plane of Mo atoms covalently bonded and sandwiched between two planes of S atoms, in a trigonal prismatic structure), has demonstrated unique properties and strong promises for emerging two-dimensional (2D) nanodevices. Here we report on the demonstration of movable and vibrating MoS2 nanodevices, where MoS2 diaphragms as thin as 6 nm (a stack of 9 monolayers) exhibit fundamental-mode nanomechanical resonances up to f0 ~ 60 MHz in the very high frequency (VHF) band, and frequency-quality (Q) factor products up to f0 × Q ~ 2 × 10(10)Hz, all at room temperature. The experimental results from many devices with a wide range of thicknesses and lateral sizes, in combination with theoretical analysis, quantitatively elucidate the elastic transition regimes in these ultrathin MoS2 nanomechanical resonators. We further delineate a roadmap for scaling MoS2 2D resonators and transducers toward microwave frequencies. This study also opens up possibilities for new classes of vibratory devices to exploit strain- and dynamics-engineered ultrathin semiconducting 2D crystals.

  10. Advances to Dynamic Mechanical Analysis: High Frequencies and Environmental Applications

    NASA Astrophysics Data System (ADS)

    Foreman, Jonathon

    2002-03-01

    In dynamic mechanical analysis (DMA) the sample is deformed and released sinusoidally providing information about the modulus and damping behaviors with respect to temperature, time, oscillation frequency and amplitude of motion. It offers exceptional sensitivity to glass transitions and secondary relaxations. Recent developments have increased the frequency range up to 1000 Hz, which allow properties measurements under actual end-use conditions. Furthermore high frequencies enhance the ability to determine the kinetics of viscoelastic relaxations. Another recent development allows DMA measurements while samples are immersed in fluids or enveloped in gases. Most significant is the ability to alter the furnace control parameters to account for the thermal properties of the environment used. This configuration allows temperature-controlled measurements (both heating and isothermal profiles) on a wide range of sample shapes and sizes. Environmental DMA is easier to interpret than standard DMA (in air or inert gas) on preconditioned samples because such samples often lose the conditioning solvent or gas during the measurement. Examples will show real-time property changes from the interaction of unconditioned materials with conditioning environments and experiments on pre-conditioned materials that are heated while immersed in conditioning environments. -------------------------------------------------------------

  11. High Recombinant Frequency in Extraintestinal Pathogenic Escherichia coli Strains.

    PubMed

    Rodríguez-Beltrán, Jerónimo; Tourret, Jérôme; Tenaillon, Olivier; López, Elena; Bourdelier, Emmanuelle; Costas, Coloma; Matic, Ivan; Denamur, Erick; Blázquez, Jesús

    2015-07-01

    Homologous recombination promotes genetic diversity by facilitating the integration of foreign DNA and intrachromosomal gene shuffling. It has been hypothesized that if recombination is variable among strains, selection should favor higher recombination rates among pathogens, as they face additional selection pressures from host defenses. To test this hypothesis we have developed a plasmid-based method for estimating the rate of recombination independently of other factors such as DNA transfer, selective processes, and mutational interference. Our results with 160 human commensal and extraintestinal pathogenic Escherichia coli (ExPEC) isolates show that the recombinant frequencies are extremely diverse (ranging 9 orders of magnitude) and plastic (they are profoundly affected by growth in urine, a condition commonly encountered by ExPEC). We find that the frequency of recombination is biased by strain lifestyle, as ExPEC isolates display strikingly higher recombination rates than their commensal counterparts. Furthermore, the presence of virulence factors is positively associated with higher recombination frequencies. These results suggest selection for high homologous recombination capacity, which may result in a higher evolvability for pathogens compared with commensals.

  12. Sensitivity of high-frequency Rayleigh-wave data revisited

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Ivanov, J.

    2007-01-01

    Rayleigh-wave phase velocity of a layered earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity (Vs), density, and thickness of layers. Analysis of the Jacobian matrix (or the difference method) provides a measure of dispersion curve sensitivity to earth properties. Vs is the dominant influence for the fundamental mode (Xia et al., 1999) and higher modes (Xia et al., 2003) of dispersion curves in a high frequency range (>2 Hz) followed by layer thickness. These characteristics are the foundation of determining S-wave velocities by inversion of Rayleigh-wave data. More applications of surface-wave techniques show an anomalous velocity layer such as a high-velocity layer (HVL) or a low-velocity layer (LVL) commonly exists in near-surface materials. Spatial location (depth) of an anomalous layer is usually the most important information that surface-wave techniques are asked to provide. Understanding and correctly defining the sensitivity of high-frequency Rayleigh-wave data due to depth of an anomalous velocity layer are crucial in applying surface-wave techniques to obtain a Vs profile and/or determine the depth of an anomalous layer. Because depth is not a direct earth property of a layered model, changes in depth will result in changes in other properties. Modeling results show that sensitivity at a given depth calculated by the difference method is dependent on the Vs difference (contrast) between an anomalous layer and surrounding layers. The larger the contrast is, the higher the sensitivity due to depth of the layer. Therefore, the Vs contrast is a dominant contributor to sensitivity of Rayleigh-wave data due to depth of an anomalous layer. Modeling results also suggest that the most sensitive depth for an HVL is at about the middle of the depth to the half-space, but for an LVL it is near the ground surface. ?? 2007 Society of Exploration Geophysicists.

  13. High frequency fast wave current drive for DEMO

    NASA Astrophysics Data System (ADS)

    Koch, R.; Lerche, E.; Van Eester, D.; Nightingale, M.

    2011-12-01

    A steady-state tokamak reactor (SSTR) requires a high efficiency current drive system, from plug to driven mega-amps. RF systems working in the ion-cyclotron range of frequencies (ICRF) have high efficiency from plug to antenna but a limited current drive (CD) efficiency and centrally peaked CD profiles. The latter feature is not adequate for a SSTR where the current should be sufficiently broad to keep the central safety factor (possibly significantly) above 1. In addition, the fact that the fast wave (FW) is evanescent at the edge limits coupling, requiring high voltage operation, which makes the system dependent on plasma edge properties and prone to arcing, reducing its reliability. A possible way to overcome these weaknesses is to operate at higher frequency (10 times or more the cyclotron frequency). The advantages are: (1) The coupling can be much better (waves propagate in vacuum) if the parallel refractive index n∥ is kept below one, (2) The FW group velocity tends to align to the magnetic field, so the power circumnavigates the magnetic axis and can drive off-axis current, (3) Due to the latter property, n∥ can be upshifted along the wave propagation path, allowing low n∥ launch (hence good coupling, large CD efficiency) with ultimately good electron absorption (which requires higher n∥). Note however that the n∥ upshift is a self-organized feature, that electron absorption is in competition with α-particle absorption and that uncoupling of the FW from the lower hybrid resonance at the edge requires n∥ slightly above one. The latter possibly counterproductive features might complicate the picture. The different aspects of this potentially attractive off-axis FWCD scheme are discussed.

  14. Molecular determinants for the high constitutive activity of the human histamine H4 receptor: functional studies on orthologues and mutants

    PubMed Central

    Wifling, D; Löffel, K; Nordemann, U; Strasser, A; Bernhardt, G; Dove, S; Seifert, R; Buschauer, A

    2015-01-01

    Background and Purpose Some histamine H4 receptor ligands act as inverse agonists at the human H4 receptor (hH4R), a receptor with exceptionally high constitutive activity, but as neutral antagonists or partial agonists at the constitutively inactive mouse H4 receptor (mH4R) and rat H4 receptor (rH4R). To study molecular determinants of constitutive activity, H4 receptor reciprocal mutants were constructed: single mutants: hH4R-F169V, mH4R-V171F, hH4R-S179A, hH4R-S179M; double mutants: hH4R-F169V+S179A, hH4R-F169V+S179M and mH4R-V171F+M181S. Experimental Approach Site-directed mutagenesis with pVL1392 plasmids containing hH4 or mH4 receptors were performed. Wild-type or mutant receptors were co-expressed with Gαi2 and Gβ1γ2 in Sf9 cells. Membranes were studied in saturation and competition binding assays ([3H]-histamine), and in functional [35S]-GTPγS assays with inverse, partial and full agonists of the hH4 receptor. Key Results Constitutive activity decreased from the hH4 receptor via the hH4R-F169V mutant to the hH4R-F169V+S179A and hH4R-F169V+S179M double mutants. F169 alone or in concert with S179 plays a major role in stabilizing a ligand-free active state of the hH4 receptor. Partial inverse hH4 receptor agonists like JNJ7777120 behaved as neutral antagonists or partial agonists at species orthologues with lower or no constitutive activity. Some partial and full hH4 receptor agonists showed decreased maximal effects and potencies at hH4R-F169V and double mutants. However, the mutation of S179 in the hH4 receptor to M as in mH4 receptor or A as in rH4 receptor did not significantly reduce constitutive activity. Conclusions and Implications F169 and S179 are key amino acids for the high constitutive activity of hH4 receptors and may also be of relevance for other constitutively active GPCRs. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update published in volume 170 issue 1. To view the other articles in this issue visit

  15. The diageotropica mutant of tomato lacks high specific activity auxin sites

    SciTech Connect

    Hicks, G.R.; Lomax, T.L. ); Rayle, D.L. )

    1989-04-01

    Tomato (Lycopersicum esculentum, Mill) plants homozygous for the single gene diageotropica (dgt) mutation have reduced shoot growth, abnormal vascular tissue, altered leaf morphology, and lack of lateral root branching. These and other morphological and physiological abnormalities suggest that dgt plants are unable to respond to the plant growth hormone auxin (indole-3-acetic acid, IAA). The photoaffinity auxin analogue {sup 3}H-5N{sub 3}-IAA specifically labels a polypeptide doublet of 40 ad 42 kD in membrane preparations from stems of the parental variety VFN8, but not from stems of dgt. In elongation tests, excised dgt roots respond in the same manner to IAA an VFN8 roots. These data suggest that the two polypeptides are part of a physiologically important auxin receptor system which is altered in a tissue-specific manner in the mutant.

  16. Observations of High Frequency Harmonics of the Ionospheric Alfven Resonator

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Usanova, Maria; Bortnik, Jacob; Milling, David; Kale, Andy; Shao, Leo; Miles, David; Rae, I. Jonathan

    We present observations of high frequency harmonics of the ionospheric Alfven Resonator (IAR). These are seen in the form of spectral resonance structures (SRS) recorded by a ground-based search coil magnetometer sampling at 100 samples/s at the Ministik Lake station at L=4.2 within the expanded CARISMA magnetometer array. Previous observational studies have indicated that such SRS are typically confined to frequencies <~5 Hz with only several SRS harmonics being observed. We report the first observations of clear and discrete SRS, which we believe are harmonics of the IAR, and which extend to around 20 Hz in at least 10-12 clear SRS harmonics. We additionally demonstrate the utility of the Bortnik et al. (2007) auto-detection algorithm, designed for Pc1 wavepackets, for characterising the properties of the IAR. Our results also indicate that the cavity supporting SRS in the IAR at this time must be structured to support and trap much higher frequency IAR harmonics than previously assumed. This impacts the potential importance of the IAR for magnetosphere-ionosphere coupling, especially in relation to the impacts of incident Alfven waves on the ionosphere including Alfvenic aurora. Our observations also highlight the potential value of IAR observations for diagnosing the structure of the topside ionosphere, not least using the observed structure of the SRS. These are the first mid-latitude observations demonstrating that the IAR can extend to frequencies beyond those of the lowest few harmonics of the Schumann resonances - significantly suggesting the possibility that the Schumann resonance modes and the IAR may be coupled. The in-situ structure of the IAR is also examined by combining satellite data with conjugate measurements from the ground, and the impacts of the IAR for magnetosphere-ionosphere-thermosphere coupling examined.

  17. High-frequency shear-horizontal surface acoustic wave sensor

    SciTech Connect

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  18. Spectroscopic measurements of high frequency plasma in supercritical carbon dioxide

    SciTech Connect

    Maehara, T.; Mukasa, S.; Takemori, T.; Watanabe, T.; Kurokawa, K.; Toyota, H.; Nomura, S.; Kawashima, A.; Iwamae, A.

    2009-03-15

    Spectroscopic measurements of high frequency (hf) plasma were performed under high pressure conditions (5 and 7 MPa) and supercritical (sc) CO{sub 2} conditions (8-20 MPa). Temperature evaluated from C{sub 2} Swan bands (d {sup 3}{pi}{sub g}{yields}a {sup 3}{pi}{sub u}) increased from 3600 to 4600 K with an increase in pressure. The first observation of broadening and shifting of the O I line profile (3p {sup 5} P{sub 3,2,1}{yields}3s {sup 5} S{sub 2}{sup 0}) of hf plasma under sc CO{sub 2} conditions was carried out. However, the origin of broadening and the shifting cannot be understood because the present theory explaining them is not valid for such high pressure conditions.

  19. High-frequency shear-horizontal surface acoustic wave sensor

    SciTech Connect

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  20. Measurements of relative binding of cohesin and dockerin mutants using an advanced ELISA technique for high-affinity interactions.

    PubMed

    Slutzki, Michal; Barak, Yoav; Reshef, Dan; Schueler-Furman, Ora; Lamed, Raphael; Bayer, Edward A

    2012-01-01

    The cellulosome is a large bacterial extracellular multienzyme complex able to degrade crystalline cellulosic substrates. The complex contains catalytic and noncatalytic subunits, interconnected by high-affinity cohesin-dockerin interactions. In this chapter, we introduce an optimized method for comparative binding among different cohesins or cohesin mutants to the dockerin partner. This assay offers advantages over other methods (such as ELISA, cELIA, SPR, and ITC) for particularly high-affinity binding interactions. In this approach, the high-affinity interaction of interest occurs in the liquid phase during the equilibrated binding step, whereas the interaction with the immobilized phase is used only for detection of the unbound dockerins that remain in the solution phase. Once equilibrium conditions are reached, the change in free energy of binding (ΔΔG(binding)), as well as the affinity constant of mutants, can be estimated against the known affinity constant of the wild-type interaction. In light of the above, we propose this method as a preferred alternative for the relative quantification of high-affinity protein interactions. PMID:22608739

  1. High-frequency ultrasound imaging for breast cancer biopsy guidance.

    PubMed

    Cummins, Thomas; Yoon, Changhan; Choi, Hojong; Eliahoo, Payam; Kim, Hyung Ham; Yamashita, Mary W; Hovanessian-Larsen, Linda J; Lang, Julie E; Sener, Stephen F; Vallone, John; Martin, Sue E; Kirk Shung, K

    2015-10-01

    Image-guided core needle biopsy is the current gold standard for breast cancer diagnosis. Microcalcifications, an important radiographic finding on mammography suggestive of early breast cancer such as ductal carcinoma in situ, are usually biopsied under stereotactic guidance. This procedure, however, is uncomfortable for patients and requires the use of ionizing radiation. It would be preferable to biopsy microcalcifications under ultrasound guidance since it is a faster procedure, more comfortable for the patient, and requires no radiation. However, microcalcifications cannot reliably be detected with the current standard ultrasound imaging systems. This study is motivated by the clinical need for real-time high-resolution ultrasound imaging of microcalcifications, so that biopsies can be accurately performed under ultrasound guidance. We have investigated how high-frequency ultrasound imaging can enable visualization of microstructures in ex vivo breast tissue biopsy samples. We generated B-mode images of breast tissue and applied the Nakagami filtering technique to help refine image output so that microcalcifications could be better assessed during ultrasound-guided core biopsies. We describe the preliminary clinical results of high-frequency ultrasound imaging of ex vivo breast biopsy tissue with microcalcifications and without Nakagami filtering and the correlation of these images with the pathology examination by hematoxylin and eosin stain and whole slide digital scanning. PMID:26693167

  2. Cavity design for high-frequency axion dark matter detectors

    SciTech Connect

    Stern, I.; Chisholm, A. A.; Hoskins, J.; Sikivie, P.; Sullivan, N. S.; Tanner, D. B.; Carosi, G.; van Bibber, K.

    2015-12-30

    In this paper, in an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 μeV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Finally, multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  3. A detector for high frequency modulation in auroral particle fluxes

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Oehme, D.; Loewenstein, R. F.; Murphree, J.; Anderson, H. R.; Anderson, R.

    1974-01-01

    A high time resolution electron detector has been developed for use in sounding rocket studies of the aurora. The detector is used to look for particle bunching in the range 50 kHz-10 MHz. The design uses an electron multiplier and an onboard frequency spectrum analyzer. By using the onboard analyzer, the data can be transmitted back to ground on a single 93-kHz voltage-controlled oscillator. The detector covers the 50 kHz-10 MHz range six times per second and detects modulation on the order of a new percent of the total electron flux. Spectra are presented for a flight over an auroral arc.

  4. High-resolution frequency domain second harmonic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Su, Jianping; Tomov, I. V.; Jiang, Yi; Chen, Zhongping

    2007-02-01

    We used continuum generated in an 8.5 cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain SH-OCT to 12μm. The acquisition time was shortened by more than two orders of magnitude compared to time domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on second harmonic has been used to obtain polarization resolved images.

  5. Acoustic trapping with a high frequency linear phased array

    NASA Astrophysics Data System (ADS)

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K. Kirk

    2012-11-01

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array.

  6. Kapitza thermal resistance studied by high-frequency photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Horny, Nicolas; Chirtoc, Mihai; Fleming, Austin; Hamaoui, Georges; Ban, Heng

    2016-07-01

    Kapitza thermal resistance is determined using high-frequency photothermal radiometry (PTR) extended for modulation up to 10 MHz. Interfaces between 50 nm thick titanium coatings and silicon or stainless steel substrates are studied. In the used configuration, the PTR signal is not sensitive to the thermal conductivity of the film nor to its optical absorption coefficient, thus the Kapitza resistance is directly determined from single thermal parameter fits. Results of thermal resistances show the significant influence of the nature of the substrate, as well as of the presence of free electrons at the interface.

  7. A fast directional algorithm for high-frequency electromagnetic scattering

    SciTech Connect

    Tsuji, Paul; Ying Lexing

    2011-06-20

    This paper is concerned with the fast solution of high-frequency electromagnetic scattering problems using the boundary integral formulation. We extend the O(N log N) directional multilevel algorithm previously proposed for the acoustic scattering case to the vector electromagnetic case. We also detail how to incorporate the curl operator of the magnetic field integral equation into the algorithm. When combined with a standard iterative method, this results in an almost linear complexity solver for the combined field integral equations. In addition, the butterfly algorithm is utilized to compute the far field pattern and radar cross section with O(N log N) complexity.

  8. [A new method of high-frequency electrosurgery (coblation technology)].

    PubMed

    Sergeev, V N; Belov, S V

    2003-01-01

    A new method of electrosurgical intervention, i.e. a high-frequency cold-plasma ablation or coblation-technology, is presented in the article. The method is based on an ionic "bombardment" of the biological tissue at the intervention site, which leads to ruptures of intermolecular cohesions. The method has been widely used in arthrosurgery, cardiosurgery, otorhinolaryngology, spinal surgery and cosmetology. The "ArthroCare" Company (USA) was the first to start developing the discussed method. As for Russia, the Research Institute for Medical Instrument-Making of the Russian Academy of Medical Sciences and Stavropol State Medical Academy are the leaders in promoting the technology in question.

  9. Generation of sheet currents by high frequency fast MHD waves

    NASA Astrophysics Data System (ADS)

    Núñez, Manuel

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium.

  10. Acoustic trapping with a high frequency linear phased array.

    PubMed

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K Kirk

    2012-11-19

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array.

  11. Explanation of persistent high frequency density structure in coalesced bunches

    SciTech Connect

    Jackson, Gerald P.

    1988-07-01

    It has been observed that after the Main Ring rf manipulation of coalescing (where 5 to 13 primary bunches are transferred into a single rf bucket) the new secondary bunch displays evidence of high frequency density structure superimposed on the approximately Gaussian longitudinal bunch length distribution. This structure is persistent over a period of many seconds (hundreds of synchrotron oscillation periods). With the help of multiparticle simulation programs, an explanation of this phenomenon is given in terms of single particle longitudinal phase space dynamics. No coherent effects need be taken into account. 6 refs., 10 figs.

  12. High frequency chest compression therapy: a case study.

    PubMed

    Butler, S; O'Neill, B

    1995-01-01

    A new device, the ThAIRapy Bronchial Drainage System, enables patients with cystic fibrosis to self-administer the technique of high frequency chest compression (HFCC) to assist with mucociliary clearance. We review the literature on HFCC and outline a case study of a patient currently using the ThAIRapy Bronchial Drainage System. While mucociliary clearance and lung function may be enhanced by HFCC therapy, more research is needed to determine its efficacy, cost benefits, and optimum treatment guidelines. Although our initial experience with the patient using this device has been positive, we were unable to accurately evaluate the ThAIRapy Bronchial Drainage System.

  13. Fluctuation patterns in high-frequency financial asset returns

    NASA Astrophysics Data System (ADS)

    Preis, T.; Paul, W.; Schneider, J. J.

    2008-06-01

    We introduce a new method for quantifying pattern-based complex short-time correlations of a time series. Our correlation measure is 1 for a perfectly correlated and 0 for a random walk time series. When we apply this method to high-frequency time series data of the German DAX future, we find clear correlations on short time scales. In order to subtract trivial autocorrelation parts from the pattern conformity, we introduce a simple model for reproducing the antipersistent regime and use alternatively level 1 quotes. When we remove the pattern conformity of this stochastic process from the original data, remaining pattern-based correlations can be observed.

  14. Excitation and Ionisation dynamics in high-frequency plasmas

    NASA Astrophysics Data System (ADS)

    O'Connell, D.

    2008-07-01

    Non-thermal low temperature plasmas are widely used for technological applications. Increased demands on plasma technology have resulted in the development of various discharge concepts based on different power coupling mechanisms. Despite this, power dissipation mechanisms in these discharges are not yet fully understood. Of particular interest are low pressure radio-frequency (rf) discharges. The limited understanding of these discharges is predominantly due to the complexity of the underlying mechanisms and difficult diagnostic access to important parameters. Optical measurements are a powerful diagnostic tool offering high spatial and temporal resolution. Optical emission spectroscopy (OES) provides non-intrusive access, to the physics of the plasma, with comparatively simple experimental requirements. Improved advances in technology and modern diagnostics now allow deeper insight into fundamental mechanisms. In low pressure rf discharges insight into the electron dynamics within the rf cycle can yield vital information. This requires high temporal resolution on a nano-second time scale. The optical emission from rf discharges exhibits temporal variations within the rf cycle. These variations are particularly strong, in for example capacitively coupled plasmas (CCPs), but also easily observable in inductively coupled plasmas (ICPs), and can be exploited for insight into power dissipation. Interesting kinetic and non-linear coupling effects are revealed in capacitive systems. The electron dynamics exhibits a complex spatio-temporal structure. Excitation and ionisation, and, therefore, plasma sustainment is dominated through directed energetic electrons created through the dynamics of the plasma boundary sheath. In the relatively simple case of an asymmetric capacitively coupled rf plasma the complexity of the power dissipation is exposed and various mode transitions can be clearly observed and investigated. At higher pressure secondary electrons dominate the

  15. Electrokinetic particle-electrode interactions at high frequencies

    NASA Astrophysics Data System (ADS)

    Yariv, Ehud; Schnitzer, Ory

    2013-01-01

    We provide a macroscale description of electrokinetic particle-electrode interactions at high frequencies, where chemical reactions at the electrodes are negligible. Using a thin-double-layer approximation, our starting point is the set of macroscale equations governing the “bounded” configuration comprising of a particle suspended between two electrodes, wherein the electrodes are governed by a capacitive charging condition and the imposed voltage is expressed as an integral constraint. In the large-cell limit the bounded model is transformed into an effectively equivalent “unbounded” model describing the interaction between the particle and a single electrode, where the imposed-voltage condition is manifested in a uniform field at infinity together with a Robin-type condition applying at the electrode. This condition, together with the standard no-flux condition applying at the particle surface, leads to a linear problem governing the electric potential in the fluid domain in which the dimensionless frequency ω of the applied voltage appears as a governing parameter. In the high-frequency limit ω≫1 the flow is dominated by electro-osmotic slip at the particle surface, the contribution of electrode electro-osmosis being O(ω-2) small. That simplification allows for a convenient analytical investigation of the prevailing case where the clearance between the particle and the adjacent electrode is small. Use of tangent-sphere coordinates allows to calculate the electric and flows fields as integral Hankel transforms. At large distances from the particle, along the electrode, both fields decay with the fourth power of distance.

  16. Electrokinetic particle-electrode interactions at high frequencies.

    PubMed

    Yariv, Ehud; Schnitzer, Ory

    2013-01-01

    We provide a macroscale description of electrokinetic particle-electrode interactions at high frequencies, where chemical reactions at the electrodes are negligible. Using a thin-double-layer approximation, our starting point is the set of macroscale equations governing the "bounded" configuration comprising of a particle suspended between two electrodes, wherein the electrodes are governed by a capacitive charging condition and the imposed voltage is expressed as an integral constraint. In the large-cell limit the bounded model is transformed into an effectively equivalent "unbounded" model describing the interaction between the particle and a single electrode, where the imposed-voltage condition is manifested in a uniform field at infinity together with a Robin-type condition applying at the electrode. This condition, together with the standard no-flux condition applying at the particle surface, leads to a linear problem governing the electric potential in the fluid domain in which the dimensionless frequency ω of the applied voltage appears as a governing parameter. In the high-frequency limit ω>1 the flow is dominated by electro-osmotic slip at the particle surface, the contribution of electrode electro-osmosis being O(ω(-2)) small. That simplification allows for a convenient analytical investigation of the prevailing case where the clearance between the particle and the adjacent electrode is small. Use of tangent-sphere coordinates allows to calculate the electric and flows fields as integral Hankel transforms. At large distances from the particle, along the electrode, both fields decay with the fourth power of distance.

  17. Trans-Ionospheric High Frequency Signal Ray Tracing

    NASA Astrophysics Data System (ADS)

    Wright, S.; Gillespie, R. J.

    2012-09-01

    All electromagnetic radiation undergoes refraction as it propagates through the atmosphere. Tropospheric refraction is largely governed by interaction of the radiation with bounded electrons; ionospheric refraction is primarily governed by free electron interactions. The latter phenomenon is important for propagation and refraction of High Frequency (HF) through Extremely High Frequency (EHF) signals. The degree to which HF to EHF signals are bent is dependent upon the integrated refractive effect of the ionosphere: a result of the signal's angle of incidence with the boundaries between adjacent ionospheric regions, the magnitude of change in electron density between two regions, as well as the frequency of the signal. In the case of HF signals, the ionosphere may bend the signal so much that it is directed back down towards the Earth, making over-the-horizon HF radio communication possible. Ionospheric refraction is a major challenge for space-based geolocation applications, where the ionosphere is typically the biggest contributor to geolocation error. Accurate geolocation requires an algorithm that accurately reflects the physical process of a signal transiting the ionosphere, and an accurate specification of the ionosphere at the time of the signal transit. Currently implemented solutions are limited by both the algorithm chosen to perform the ray trace and by the accuracy of the ionospheric data used in the calculations. This paper describes a technique for adapting a ray tracing algorithm to run on a General-Purpose Graphics Processing Unit (GPGPU or GPU), and using a physics-based model specifying the ionosphere at the time of signal transit. This technique allows simultaneous geolocation of significantly more signals than an equivalently priced Central Processing Unit (CPU) based system. Additionally, because this technique makes use of the most widely accepted numeric algorithm for ionospheric ray tracing and a timely physics-based model of the ionosphere

  18. Calorimetry at high-pressure using high-frequency Joule-heating

    NASA Astrophysics Data System (ADS)

    Geballe, Zachary; Struzhkin, Viktor

    2015-03-01

    Calorimetric measurements of materials at 1 to 100 GPa of pressure would provide intriguing tests of condensed matter theories, sensitive probes of chemical reactions during high-pressure synthesis, and useful inputs for models of the Earth's interior. We present the design and first results of quantitative heat capacity measurements at >10 GPa of pressure. High-frequency AC voltage heats a small metal strip pressed between diamond anvils, creating temperature oscillations whose amplitudes are determined from the higher harmonics of voltage. Thermal models show that frequencies >100 kHz are required to contain heat in the ng-mass samples, while electrical models show that frequencies >100 MHz are not practical. Our experimental results show that the heat capacity of iron and nickel can indeed be measured at high frequencies in diamond anvil cells, paving the way for studies of the energetics of a wide-variety of entropy-driven phase changes at high pressure.

  19. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  20. Spatial characterization of interictal high frequency oscillations in epileptic neocortex

    PubMed Central

    Trevelyan, A. J.; Schroeder, C. E.; Goodman, R. R.; McKhann, G.; Emerson, R. G.

    2009-01-01

    Interictal high frequency oscillations (HFOs), in particular those with frequency components in excess of 200 Hz, have been proposed as important biomarkers of epileptic cortex as well as the genesis of seizures. We investigated the spatial extent, classification and distribution of HFOs using a dense 4 × 4 mm2 two dimensional microelectrode array implanted in the neocortex of four patients undergoing epilepsy surgery. The majority (97%) of oscillations detected included fast ripples and were concentrated in relatively few recording sites. While most HFOs were limited to single channels, ∼10% occurred on a larger spatial scale with simultaneous but morphologically distinct detections in multiple channels. Eighty per cent of these large-scale events were associated with interictal epileptiform discharges. We propose that large-scale HFOs, rather than the more frequent highly focal events, are the substrates of the HFOs detected by clinical depth electrodes. This feature was prominent in three patients but rarely seen in only one patient recorded outside epileptogenic cortex. Additionally, we found that HFOs were commonly associated with widespread interictal epileptiform discharges but not with locally generated ‘microdischarges’. Our observations raise the possibility that, rather than being initiators of epileptiform activity, fast ripples may be markers of a secondary local response. PMID:19745024

  1. 10 K high frequency pulse tube cryocooler with precooling

    NASA Astrophysics Data System (ADS)

    Liu, Sixue; Chen, Liubiao; Wu, Xianlin; Zhou, Yuan; Wang, Junjie

    2016-07-01

    A high frequency pulse tube cryocooler with precooling (HPTCP) has been developed and tested to meet the requirement of weak magnetic signals measurement, and the performance characteristics are presented in this article. The HPTCP is a two-stage pulse tube cryocooler with the precooling-stage replaced by liquid nitrogen. Two regenerators completely filled with stainless steel (SS) meshes are used in the cooler. Together with cold inertance tubes and cold gas reservoir, a cold double-inlet configuration is used to control the phase relationship of the HPTCP. The experimental result shows that the cold double-inlet configuration has improved the performance of the cooler obviously. The effects of operation parameters on the performance of the cooler are also studied. With a precooling temperature of 78.5 K, the maximum refrigeration capacity is 0.26 W at 15 K and 0.92 W at 20 K when the input electric power are 174 W and 248 W respectively, and the minimum no-load temperature obtained is 10.3 K, which is a new record on refrigeration temperature for high frequency pulse tube cryocooler reported with SS completely used as regenerative matrix.

  2. Corrosion monitoring using high-frequency guided waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  3. High-frequency ultrasonic arrays for ocular imaging

    NASA Astrophysics Data System (ADS)

    Jaeger, M. D.; Kline-Schoder, R. J.; Douville, G. M.; Gagne, J. R.; Morrison, K. T.; Audette, W. E.; Kynor, D. B.

    2007-03-01

    High-resolution ultrasound imaging of the anterior portion of the eye has been shown to provide important information for sizing of intraocular lens implants, diagnosis of pathological conditions, and creation of detailed maps of corneal topography to guide refractive surgery. Current ultrasound imaging systems rely on mechanical scanning of a single acoustic element over the surface of the eye to create the three-dimensional information needed by clinicians. This mechanical scanning process is time-consuming and subject to errors caused by eye movement during the scanning period. This paper describes development of linear ultrasound imaging arrays intended to increase the speed of image acquisition and reduce problems associated with ocular motion. The arrays consist of a linear arrangement of high-frequency transducer elements designed to operate in the 50 - 75 MHz frequency range. The arrays are produced using single-crystal lithium niobate piezoelectric material, thin film electrodes, and epoxy-based acoustic layers. The array elements have been used to image steel test structures and bovine cornea.

  4. Optoacoustics for high-frequency ultrasonic imaging and manipulation

    NASA Astrophysics Data System (ADS)

    O'Donnell, Matthew; Buma, Takashi

    2001-05-01

    Pulsed lasers can generate ultrasound through thermoelastic expansion of a thin optical absorber. By carefully designing the optical absorbing structure, efficient transduction is possible for a number of biomedical applications including high-frequency imaging, microfluidics, and sensing. The major key for efficient optoacoustic transduction in biomedical applications is to engineer a nearly perfect optical absorber possessing a large coefficient of thermal expansion with acoustic properties well matched to a water medium. We have obtained an optoacoustic efficiency increase of over 20 dB compared to conventional approaches using a thin, optically absorbing layer consisting of polydimethylsiloxane (PDMS) and carbon black spin coated onto a clear PDMS substrate. This structure has been extensively analyzed both experimentally and analytically and seems to provide opportunities for a wide range of optoacoustic devices. In this talk we show how PDMS-based optoacoustic transduction can be used for high-frequency imaging using longitudinal waves and acoustic tweezing using Lamb waves. The basic mechanism of optoacoustic transduction will be described, and specific devices will be presented.

  5. Advantages of polymer transducers in high frequency inspections

    SciTech Connect

    Samari, S.; Stanton, M.

    1993-12-31

    Since the discovery of piezoelectricity in PVDF in 1969 the polymer transducers have now emerged as a significant tool in many ultrasonic inspections that otherwise would have been very difficult or impossible for conventional ceramic transducers. The major advantage, of Polymer transducers is in their inherent broadband characteristics in immersion applications which leads to their superior resolution and improved signal to noise ration over conventional ceramic transducers. This paper will show empirical results of high frequency polymer transducer in inspection of different materials including engineering materials such as ceramics. Other advantages of the polymer transducers are their low acoustic impedance as well as the compliance of the plastic material during construction. The compliance of the plastic PVDF film allows the manufacture of the high frequency polymer transducers without the use of permanent delays which can interfere with ultrasonic measurements. This paper will also give experimental results that will show how polymer transducers are instrument dependent, and how an operator can achieve optimum results by using an impedance matching network between the instrument and the polymer transducer.

  6. Development of high frequency and wide bandwidth Johnson noise thermometry

    SciTech Connect

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip; Ohki, Thomas A.; Fong, Kin Chung

    2015-01-12

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K.

  7. High-frequency health data and spline functions.

    PubMed

    Martín-Rodríguez, Gloria; Murillo-Fort, Carlos

    2005-03-30

    Seasonal variations are highly relevant for health service organization. In general, short run movements of medical magnitudes are important features for managers in this field to make adequate decisions. Thus, the analysis of the seasonal pattern in high-frequency health data is an appealing task. The aim of this paper is to propose procedures that allow the analysis of the seasonal component in this kind of data by means of spline functions embedded into a structural model. In the proposed method, useful adaptions of the traditional spline formulation are developed, and the resulting procedures are capable of capturing periodic variations, whether deterministic or stochastic, in a parsimonious way. Finally, these methodological tools are applied to a series of daily emergency service demand in order to capture simultaneous seasonal variations in which periods are different.

  8. A baker's yeast mutant (fil1) with a specific, partially inactivating mutation in adenylate cyclase maintains a high stress resistance during active fermentation and growth.

    PubMed

    Van Dijck, P; Ma, P; Versele, M; Gorwa, M F; Colombo, S; Lemaire, K; Bossi, D; Loïez, A; Thevelein, J M

    2000-10-01

    The initiation of fermentation in the yeast Saccharomyces cerevisiae is associated with a rapid drop in stress resistance. This is disadvantageous for several biotechnological applications, e.g. the preparation of freeze doughs. We have isolated mutants in a laboratory strain which are deficient in fermentation-induced loss of stress resistance ('fil' mutants) using a heat shock selection protocol. We show that the fil1 mutant contains a mutation in the CYR1 gene which encodes adenylate cyclase. It causes a change at position 1682 of glutamate into lysine and results in a tenfold drop in adenylate cyclase activity. The fil1 mutant displays a reduction in the glucose-induced cAMP increase, trehalase activation and loss of heat resistance. Interestingly, the fil1 mutant shows the same growth and fermentation rate as the wild type strain, as opposed to other mutants with reduced activity of the cAMP pathway. Introduction of the fil1 mutation in the vigorous Y55 strain and cultivation of the mutant under pilot scale conditions resulted in a yeast that displayed a higher freeze and drought resistance during active fermentation compared to the wild type Y55 strain. These results show that high stress resistance and high fermentation activity are compatible biological properties. Isolation of fil-type mutations appears a promising avenue for development of industrial yeast strains with improved stress resistance during active fermentation.

  9. A baker's yeast mutant (fil1) with a specific, partially inactivating mutation in adenylate cyclase maintains a high stress resistance during active fermentation and growth.

    PubMed

    Van Dijck, P; Ma, P; Versele, M; Gorwa, M F; Colombo, S; Lemaire, K; Bossi, D; Loïez, A; Thevelein, J M

    2000-10-01

    The initiation of fermentation in the yeast Saccharomyces cerevisiae is associated with a rapid drop in stress resistance. This is disadvantageous for several biotechnological applications, e.g. the preparation of freeze doughs. We have isolated mutants in a laboratory strain which are deficient in fermentation-induced loss of stress resistance ('fil' mutants) using a heat shock selection protocol. We show that the fil1 mutant contains a mutation in the CYR1 gene which encodes adenylate cyclase. It causes a change at position 1682 of glutamate into lysine and results in a tenfold drop in adenylate cyclase activity. The fil1 mutant displays a reduction in the glucose-induced cAMP increase, trehalase activation and loss of heat resistance. Interestingly, the fil1 mutant shows the same growth and fermentation rate as the wild type strain, as opposed to other mutants with reduced activity of the cAMP pathway. Introduction of the fil1 mutation in the vigorous Y55 strain and cultivation of the mutant under pilot scale conditions resulted in a yeast that displayed a higher freeze and drought resistance during active fermentation compared to the wild type Y55 strain. These results show that high stress resistance and high fermentation activity are compatible biological properties. Isolation of fil-type mutations appears a promising avenue for development of industrial yeast strains with improved stress resistance during active fermentation. PMID:11075928

  10. A defective signal peptide in the maize high-lysine mutant floury 2.

    PubMed Central

    Coleman, C E; Lopes, M A; Gillikin, J W; Boston, R S; Larkins, B A

    1995-01-01

    The maize floury 2 (fl2) mutation enhances the lysine content of the grain, but the soft texture of the endosperm makes it unsuitable for commercial production. The mutant phenotype is linked with the appearance of a 24-kDa alpha-zein protein and increased synthesis of binding protein, both of which are associated with irregularly shaped protein bodies. We have cloned the gene encoding the 24-kDa protein and show that it is expressed as a 22-kDa alpha-zein with an uncleaved signal peptide. Comparison of the deduced N-terminal amino acid sequence of the 24-kDa alpha-zein protein with other alpha-zeins revealed an alanine to valine substitution at the C-terminal position of the signal peptide, a histidine insertion within the seventh alpha-helical repeat, and an alanine to threonine substitution with the same alpha-helical repeat of the protein. Structural defects associated with this alpha-zein explain many of the phenotypic effects of the fl2 mutation. Images Fig. 1 Fig. 2 Fig. 5 PMID:7624327

  11. Assessing mutant p53 in primary high-grade serous ovarian cancer using immunohistochemistry and massively parallel sequencing

    PubMed Central

    Cole, Alexander J.; Dwight, Trisha; Gill, Anthony J.; Dickson, Kristie-Ann; Zhu, Ying; Clarkson, Adele; Gard, Gregory B.; Maidens, Jayne; Valmadre, Susan; Clifton-Bligh, Roderick; Marsh, Deborah J.

    2016-01-01

    The tumour suppressor p53 is mutated in cancer, including over 96% of high-grade serous ovarian cancer (HGSOC). Mutations cause loss of wild-type p53 function due to either gain of abnormal function of mutant p53 (mutp53), or absent to low mutp53. Massively parallel sequencing (MPS) enables increased accuracy of detection of somatic variants in heterogeneous tumours. We used MPS and immunohistochemistry (IHC) to characterise HGSOCs for TP53 mutation and p53 expression. TP53 mutation was identified in 94% (68/72) of HGSOCs, 62% of which were missense. Missense mutations demonstrated high p53 by IHC, as did 35% (9/26) of non-missense mutations. Low p53 was seen by IHC in 62% of HGSOC associated with non-missense mutations. Most wild-type TP53 tumours (75%, 6/8) displayed intermediate p53 levels. The overall sensitivity of detecting a TP53 mutation based on classification as ‘Low’, ‘Intermediate’ or ‘High’ for p53 IHC was 99%, with a specificity of 75%. We suggest p53 IHC can be used as a surrogate marker of TP53 mutation in HGSOC; however, this will result in misclassification of a proportion of TP53 wild-type and mutant tumours. Therapeutic targeting of mutp53 will require knowledge of both TP53 mutations and mutp53 expression. PMID:27189670

  12. High-frequency homogenization for travelling waves in periodic media

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Davit; Milton, Graeme W.; Craster, Richard V.

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector k and frequency ω1 plus a modulated Bloch carrier wave having crystal wavevector m and frequency ω2. We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω1=ω2 and (k -m )⊙Λ ∈2 π Zd, where Λ=(λ1λ2…λd) is the periodicity cell of the medium and for any two vectors a =(a1,a2,…,ad),b =(b1,b2,…,bd)∈Rd, the product a⊙b is defined to be the vector (a1b1,a2b2,…,adbd). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  13. [Design of a high-voltage insulation testing system of X-ray high frequency generators].

    PubMed

    Huang, Yong; Mo, Guo-Ming; Wang, Yan; Wang, Hong-Zhi; Yu, Jie-Ying; Dai, Shu-Guang

    2007-09-01

    In this paper, we analyze the transformer of X-ray high-voltage high-frequency generators and, have designed and implemented a high-voltage insulation testing system for its oil tank using full-bridge series resonant soft switching PFM DC-DC converter.

  14. Fabrication of carbon nanotube high-frequency nanoelectronic biosensor for sensing in high ionic strength solutions.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2013-01-01

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber onto the device, and (d) carry out high frequency sensing in different ionic strength solutions. PMID:23912795

  15. Fabrication of carbon nanotube high-frequency nanoelectronic biosensor for sensing in high ionic strength solutions.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2013-01-01

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber onto the device, and (d) carry out high frequency sensing in different ionic strength solutions.

  16. Fabrication of Carbon Nanotube High-Frequency Nanoelectronic Biosensor for Sensing in High Ionic Strength Solutions

    PubMed Central

    Kulkarni, Girish S.; Zhong, Zhaohui

    2013-01-01

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) 1-4 make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density5 in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded6-8. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers9-11. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies11-12. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube13, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber14 onto the device, and (d) carry out high frequency sensing in different ionic strength solutions11. PMID:23912795

  17. Comparative transcriptome analysis using high papaverine mutant of Papaver somniferum reveals pathway and uncharacterized steps of papaverine biosynthesis.

    PubMed

    Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Mishra, Brij Kishore; Shukla, Sudhir; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2013-01-01

    The benzylisoquinoline alkaloid papaverine, synthesized in low amount in most of the opium poppy varieties of Papaver somniferum, is used as a vasodilator muscle relaxant and antispasmodic. Papaverine biosynthesis remains controversial as two different routes utilizing either (S)-coclaurine or (S)-reticuline have been proposed with uncharacterized intermediate steps. In an attempt to elucidate papaverine biosynthesis and identify putative genes involved in uncharacterized steps, we carried out comparative transcriptome analysis of high papaverine mutant (pap1) and normal cultivar (BR086) of P. somniferum. This natural mutant synthesizes more than 12-fold papaverine in comparison to BR086. We established more than 238 Mb transcriptome data separately for pap1 and BR086. Assembly of reads generated 127,342 and 106,128 unigenes in pap1 and BR086, respectively. Digital gene expression analysis of transcriptomes revealed 3,336 differentially expressing unigenes. Enhanced expression of (S)-norcoclaurine-6-O-methyltransferase (6OMT), (S)-3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'OMT), norreticuline 7-O-methyltransferase (N7OMT) and down-regulation of reticuline 7-O-methyltransferase (7OMT) in pap1 in comparison to BR086 suggest (S)-coclaurine as the route for papaverine biosynthesis. We also identified several methyltransferases and dehydrogenases with enhanced expression in pap1 in comparison to BR086. Our analysis using natural mutant, pap1, concludes that (S)-coclaurine is the branch-point intermediate and preferred route for papaverine biosynthesis. Differentially expressing methyltransferases and dehydrogenases identified in this study will help in elucidating complete biosynthetic pathway of papaverine. The information generated will be helpful in developing strategies for enhanced biosynthesis of papaverine through biotechnological approaches.

  18. A novel high-throughput in vivo molecular screen for shade avoidance mutants identifies a novel phyA mutation.

    PubMed

    Wang, Xuewen; Roig-Villanova, Irma; Khan, Safina; Shanahan, Hugh; Quail, Peter H; Martinez-Garcia, Jaime F; Devlin, Paul F

    2011-05-01

    The shade avoidance syndrome (SAS) allows plants to anticipate and avoid shading by neighbouring plants by initiating an elongation growth response. The phytochrome photoreceptors are able to detect a reduction in the red:far red ratio in incident light, the result of selective absorption of red and blue wavelengths by proximal vegetation. A shade-responsive luciferase reporter line (PHYB::LUC) was used to carry out a high-throughput screen to identify novel SAS mutants. The dracula 1 (dra1) mutant, that showed no avoidance of shade for the PHYB::LUC response, was the result of a mutation in the PHYA gene. Like previously characterized phyA mutants, dra1 showed a long hypocotyl in far red light and an enhanced hypocotyl elongation response to shade. However, dra1 additionally showed a long hypocotyl in red light. Since phyB levels are relatively unaffected in dra1, this gain-of-function red light phenotype strongly suggests a disruption of phyB signalling. The dra1 mutation, G773E within the phyA PAS2 domain, occurs at a residue absolutely conserved among phyA sequences. The equivalent residue in phyB is absolutely conserved as a threonine. PAS domains are structurally conserved domains involved in molecular interaction. Structural modelling of the dra1 mutation within the phyA PAS2 domain shows some similarity with the structure of the phyB PAS2 domain, suggesting that the interference with phyB signalling may be the result of non-functional mimicry. Hence, it was hypothesized that this PAS2 residue forms a key distinction between the phyA and phyB phytochrome species.

  19. A novel high-throughput in vivo molecular screen for shade avoidance mutants identifies a novel phyA mutation

    PubMed Central

    Roig-Villanova, Irma; Khan, Safina; Shanahan, Hugh; Quail, Peter H.; Martinez-Garcia, Jaime F.; Devlin, Paul F.

    2011-01-01

    The shade avoidance syndrome (SAS) allows plants to anticipate and avoid shading by neighbouring plants by initiating an elongation growth response. The phytochrome photoreceptors are able to detect a reduction in the red:far red ratio in incident light, the result of selective absorption of red and blue wavelengths by proximal vegetation. A shade-responsive luciferase reporter line (PHYB::LUC) was used to carry out a high-throughput screen to identify novel SAS mutants. The dracula 1 (dra1) mutant, that showed no avoidance of shade for the PHYB::LUC response, was the result of a mutation in the PHYA gene. Like previously characterized phyA mutants, dra1 showed a long hypocotyl in far red light and an enhanced hypocotyl elongation response to shade. However, dra1 additionally showed a long hypocotyl in red light. Since phyB levels are relatively unaffected in dra1, this gain-of-function red light phenotype strongly suggests a disruption of phyB signalling. The dra1 mutation, G773E within the phyA PAS2 domain, occurs at a residue absolutely conserved among phyA sequences. The equivalent residue in phyB is absolutely conserved as a threonine. PAS domains are structurally conserved domains involved in molecular interaction. Structural modelling of the dra1 mutation within the phyA PAS2 domain shows some similarity with the structure of the phyB PAS2 domain, suggesting that the interference with phyB signalling may be the result of non-functional mimicry. Hence, it was hypothesized that this PAS2 residue forms a key distinction between the phyA and phyB phytochrome species. PMID:21398429

  20. [Use of high frequency jet ventilation in extracorporeal shockwave lithotripsy].

    PubMed

    Schulte am Esch, J; Kochs, E; Meyer, W H

    1985-06-01

    High frequency jet ventilation (HFJV) was used in 68 patients which were treated with extracorporal shock wave lithotripsy (ESWL) because of stone diseases in the upper urinary tract. The question was whether HFJV in combination with a semiclosed conventional circle system offered a practicable and safe technique to minimize the oscillations which are proportional to the applied tidal volume and to the diaphragmatic movements. With IPPV the mean distance of the stone movement was 32 mm, whereas with the application of HFJV the stones oscillated around their resting position within limits of 2 to 3 mm (ventilation frequency: 200-300/min, driving pressure: 0.6-1.1 bar, tidal volume: 3-8 1/min). The effectiveness of HFJV was monitored by the end-tidal carbon dioxide tension (PeCO2) during intermittently conventional ventilation with "adequate" tidal volumes (TV 15 ml/kg bw). The correlation between PeCO2 and simultaneous measured PaCO2 was r = 0,91. The application of HFJV enhances the efficiency of ESWL. So the treatment of stones of the upper urinary tract can be varied by more subtle dosage of the incoming shock wave energy and by stabilisation of the stones in the underlying ellipsoid of the energy focus.

  1. High-Frequency Stimulation of Excitable Cells and Networks

    PubMed Central

    Weinberg, Seth H.

    2013-01-01

    High-frequency (HF) stimulation has been shown to block conduction in excitable cells including neurons and cardiac myocytes. However, the precise mechanisms underlying conduction block are unclear. Using a multi-scale method, the influence of HF stimulation is investigated in the simplified FitzhHugh-Nagumo and biophysically-detailed Hodgkin-Huxley models. In both models, HF stimulation alters the amplitude and frequency of repetitive firing in response to a constant applied current and increases the threshold to evoke a single action potential in response to a brief applied current pulse. Further, the excitable cells cannot evoke a single action potential or fire repetitively above critical values for the HF stimulation amplitude. Analytical expressions for the critical values and thresholds are determined in the FitzHugh-Nagumo model. In the Hodgkin-Huxley model, it is shown that HF stimulation alters the dynamics of ionic current gating, shifting the steady-state activation, inactivation, and time constant curves, suggesting several possible mechanisms for conduction block. Finally, we demonstrate that HF stimulation of a network of neurons reduces the electrical activity firing rate, increases network synchronization, and for a sufficiently large HF stimulation, leads to complete electrical quiescence. In this study, we demonstrate a novel approach to investigate HF stimulation in biophysically-detailed ionic models of excitable cells, demonstrate possible mechanisms for HF stimulation conduction block in neurons, and provide insight into the influence of HF stimulation on neural networks. PMID:24278435

  2. High frequency dynamic engine simulation. [TF-30 engine

    NASA Technical Reports Server (NTRS)

    Schuerman, J. A.; Fischer, K. E.; Mclaughlin, P. W.

    1977-01-01

    A digital computer simulation of a mixed flow, twin spool turbofan engine was assembled to evaluate and improve the dynamic characteristics of the engine simulation to disturbance frequencies of at least 100 Hz. One dimensional forms of the dynamic mass, momentum and energy equations were used to model the engine. A TF30 engine was simulated so that dynamic characteristics could be evaluated against results obtained from testing of the TF30 engine at the NASA Lewis Research Center. Dynamic characteristics of the engine simulation were improved by modifying the compression system model. Modifications to the compression system model were established by investigating the influence of size and number of finite dynamic elements. Based on the results of this program, high frequency engine simulations using finite dynamic elements can be assembled so that the engine dynamic configuration is optimum with respect to dynamic characteristics and computer execution time. Resizing of the compression systems finite elements improved the dynamic characteristics of the engine simulation but showed that additional refinements are required to obtain close agreement simulation and actual engine dynamic characteristics.

  3. Ultra High-Speed Radio Frequency Switch Based on Photonics

    PubMed Central

    Ge, Jia; Fok, Mable P.

    2015-01-01

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches. PMID:26608349

  4. Why high-frequency pulse tubes can be tipped

    SciTech Connect

    Swift, Gregory W092710; Backhaus, Scott N

    2010-01-01

    The typical low-frequency pulse-tube refrigerator loses significant cooling power when it is tipped with the pulse tube's cold end above its hot end, because natural convection in the pulse tube loads the cold heat exchanger. Yet most high-frequency pulse-tube refrigerators work well in any orientation with respect to gravity. In such a refrigerator, natural convection is suppressed by sufficiently fast velocity oscil1ations, via a nonlinear hydrodynamic effect that tends to align the density gradients in the pulse tube parallel to the oscillation direction. Since gravity's tendency to cause convection is only linear in the pulse tube's end-to-end temperature difference while the oscillation's tendency to align density gradients with oscillating velocity is nonlinear, it is easiest to suppress convection when the end-to-end temperature difference is largest. Simple experiments demonstrate this temperature dependence, the strong dependence on the oscillating velocity, and little dependence on the magnitude or phase of the oscillating pressure. In some circumstances in this apparatus, the suppression of convection is a hysteretic function of oscillating velocity. In some other circumstances, a time-dependent convective state seems more difficult to suppress.

  5. Digital avionics susceptibility to high energy radio frequency fields

    NASA Astrophysics Data System (ADS)

    Larsen, William E.

    Generally, noncritical avionic systems for transport category aircraft have been designed to meet radio frequency (RF) susceptibility requirements set forth in RTCA DO 160B, environmental conditions and test procedures for airborne equipment. Section 20 of this document controls the electromagnetic interference (EMI) hardening for avionics equipment to levels of 1 and 2 V/m. Currently, US equipment manufacturers are designing flight-critical fly-by-wire avionics to a much higher level. The US Federal Aviation Administration (FAA) has requested that the RTCA SC-135 high-energy radio frequency (HERF) working group develop appropriate testing procedures for section 20 of RTCA DO 160B for radiated and conducted susceptibility at the box and systems level. The FAA has also requested the SAE AE4R committee to address installed systems testing, airframe shielding effects and RF environment monitoring. Emitters of interest include radar (ground, ship, and aircraft) commercial broadcast and TV station, mobile communication, and other transmitters that could possibly affect commercial aircraft.

  6. Design, analysis, and testing of high frequency passively damped struts

    NASA Technical Reports Server (NTRS)

    Yiu, Y. C.; Davis, L. Porter; Napolitano, Kevin; Ninneman, R. Rory

    1993-01-01

    Objectives of the research are: (1) to develop design requirements for damped struts to stabilize control system in the high frequency cross-over and spill-over range; (2) to design, fabricate and test viscously damped strut and viscoelastically damped strut; (3) to verify accuracy of design and analysis methodology of damped struts; and (4) to design and build test apparatus, and develop data reduction algorithm to measure strut complex stiffness. In order to meet the stringent performance requirements of the SPICE experiment, the active control system is used to suppress the dynamic responses of the low order structural modes. However, the control system also inadvertently drives some of the higher order modes unstable in the cross-over and spill-over frequency range. Passive damping is a reliable and effective way to provide damping to stabilize the control system. It also improves the robustness of the control system. Damping is designed into the SPICE testbed as an integral part of the control-structure technology.

  7. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  8. High Frequency Scattering from Arbitrarily Oriented Dielectric Disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Meneghini, R.; Lang, R. H.; Seker, S. S.

    1982-01-01

    Calculations have been made of electromagnetic wave scattering from dielectric disks of arbitrary shape and orientation in the high frequency (physical optics) regime. The solution is obtained by approximating the fields inside the disk with the fields induced inside an identically oriented slab (i.e. infinite parallel planes) with the same thickness and dielectric properties. The fields inside the disk excite conduction and polarization currents which are used to calculate the scattered fields by integrating the radiation from these sources over the volume of the disk. This computation has been executed for observers in the far field of the disk in the case of disks with arbitrary orientation and for arbitrary polarization of the incident radiation. The results have been expressed in the form of a dyadic scattering amplitude for the disk. The results apply to disks whose diameter is large compared to wavelength and whose thickness is small compared to diameter, but the thickness need not be small compared to wavelength. Examples of the dependence of the scattering amplitude on frequency, dielectric properties of the disk and disk orientation are presented for disks of circular cross section.

  9. HIGH FREQUENCY POWER TRANSMISSION LINE FOR CYCLOTRONS AND THE LIKE

    DOEpatents

    Armstrong, W.J.

    1954-04-20

    High-frequency power transmission systems, particularly a stacked capacitance alternating power current transmission line wherein maximum utilization of the effective conductios skin of the line conductors is achieved while enabling a low impedance to be obtained are reported. The transmission line consists of a number of flat metal strips with interleaved dielectric strips. The metal dielectric strips are coiled spirally with the axis of the spiral extending along the length of the strips, and the alternating metal strips at the output end have outwardly extending aligned lugs which are directly strapped together and connected to the respective terminals on the load. At the input end of the transmission line, similarly, the alternate metal strips are directly strapped together and connected to an altereating current source. With the arrangement described each metal strip conducts on both sides, so that the metal strips are designed to have a thickness corresponding to twice the depth of the "skin effect" conducting lamina of each conductor at the source frequency.

  10. Feasibility of High Frequency Acoustic Imaging for Inspection of Containments

    SciTech Connect

    C.N. Corrado; J.E. Bondaryk; V. Godino

    1998-08-01

    The Nuclear Regulatory Commission has a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and Ieaktightness of metal containment vessels and steel liners of concrete containment in nuclear power plants. One of the program objectives is to identify a technique(s) for inspection of inaccessible portions of the containment pressure boundary. Acoustic imaging has been identified as one of these potential techniques. A numerical feasibility study investigated the use of high-frequency bistatic acoustic imaging techniques for inspection of inaccessible portions of the metallic pressure boundary of nuclear power plant containment. The range-dependent version of the OASES Code developed at the Massachusetts Institute of Technology was utilized to perform a series of numerical simulations. OASES is a well developed and extensively tested code for evaluation of the acoustic field in a system of stratified fluid and/or elastic layers. Using the code, an arbitrary number of fluid or solid elastic layers are interleaved, with the outer layers modeled as halfspaces. High frequency vibrational sources were modeled to simulate elastic waves in the steel. The received field due to an arbitrary source array can be calculated at arbitrary depth and range positions. In this numerical study, waves that reflect and scatter from surface roughness caused by modeled degradations (e.g., corrosion) are detected and used to identify and map the steel degradation. Variables in the numerical study included frequency, flaw size, interrogation distance, and sensor incident angle.Based on these analytical simulations, it is considered unlikely that acoustic imaging technology can be used to investigate embedded steel liners of reinforced concrete containment. The thin steel liner and high signal losses to the concrete make this application difficult. Results for portions of steel containment

  11. Variable Temperature High-Frequency Response of Heterostructure Transistors

    NASA Astrophysics Data System (ADS)

    Laskar, Joy

    1992-01-01

    The development of high performance heterostructure transistors is essential for emerging opto-electronic integrated circuits (OEICs) and monolithic microwave integrated circuits (MMICs). Applications for OEICs and MMICs include the rapidly growing telecommunications and personal communications markets. The key to successful OEIC and MMIC chip sets is the development of high performance, cost-effective technologies. In this work, several different transistor structures are investigated to determine the potential for high speed performance and the physical mechanisms controlling the ultimate device operation. A cryogenic vacuum microwave measurement system has been developed to study the high speed operation of modulation doped field-effect transistors (MODFETs), doped channel metal insulator field-effect transistors (MISFETs), and metal semiconductor field-effect transistors (MESFETs). This study has concluded that the high field velocity and not the low field mobility is what controls high frequency operation of GaAs based field-effect transistors. Both Al_{rm x} Ga_{rm 1-x}As/GaAs and InP/In_{rm y}Ga _{rm 1-y}As heterostructure bipolar transistors (HBTs) have also been studied at reduced lattice temperatures to understand the role of diffusive transport in the Al_{rm x} Ga_{rm 1-x}As/GaAs HBT and nonequilibrium transport in the InP/In _{rm y}Ga_ {rm 1-y}As HBT. It is shown that drift/diffusion formulation must be modified to accurately estimate the base delay time in the conventional Al _{rm x}Ga_ {rm 1-x}As/GaAs HBT. The reduced lattice temperature operation of the InP/In_ {rm y}Ga_{rm 1-y}As HBT demonstrates extreme nonequilibrium transport in the neutral base and collector space charge region with current gain cut-off frequency exceeding 300 GHz, which is the fastest reported transistor to date. Finally, the MODFET has been investigated as a three-terminal negative differential resistance (NDR) transistor. The existence of real space transfer is confirmed by

  12. High-frequency radar observations of ocean surface currents.

    PubMed

    Paduan, Jeffrey D; Washburn, Libe

    2013-01-01

    This article reviews the discovery, development, and use of high-frequency (HF) radio wave backscatter in oceanography. HF radars, as the instruments are commonly called, remotely measure ocean surface currents by exploiting a Bragg resonant backscatter phenomenon. Electromagnetic waves in the HF band (3-30 MHz) have wavelengths that are commensurate with wind-driven gravity waves on the ocean surface; the ocean waves whose wavelengths are exactly half as long as those of the broadcast radio waves are responsible for the resonant backscatter. Networks of HF radar systems are capable of mapping surface currents hourly out to ranges approaching 200 km with a horizontal resolution of a few kilometers. Such information has many uses, including search and rescue support and oil-spill mitigation in real time and larval population connectivity assessment when viewed over many years. Today, HF radar networks form the backbone of many ocean observing systems, and the data are assimilated into ocean circulation models.

  13. High-Frequency Wave Propagation by the Segment Projection Method

    NASA Astrophysics Data System (ADS)

    Engquist, Björn; Runborg, Olof; Tornberg, Anna-Karin

    2002-05-01

    Geometrical optics is a standard technique used for the approximation of high-frequency wave propagation. Computational methods based on partial differential equations instead of the traditional ray tracing have recently been applied to geometrical optics. These new methods have a number of advantages but typically exhibit difficulties with linear superposition of waves. In this paper we introduce a new partial differential technique based on the segment projection method in phase space. The superposition problem is perfectly resolved and so is the problem of computing amplitudes in the neighborhood of caustics. The computational complexity is of the same order as that of ray tracing. The new algorithm is described and a number of computational examples are given, including a simulation of waveguides.

  14. High Frequency QPOs due to Black Hole Spin

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.

  15. High frequency properties of YBCO bridges fabricated by MOCVD

    SciTech Connect

    Chen, J.; Yamoshita, T. ); Suzuki, H.; Kurosawa, H. ); Yamane, H.; Hirai, T. . Inst. for Materials Research)

    1991-03-01

    This paper reports on the high frequency properties of YBCO bridges at 4.2% and 77K. The YBCO films were prepared by MOCVD. For small bridges with the width(w) of about 1 {mu}m and thickness(t) of less than 0.5{mu}m, the constant voltage steps at integral multiples of {phi}{sub 0}fr = 20 {mu}V were observed up to 1 mV, which is much higher than the IcR{sub N} ({lt}0.13 mV) product of these bridges at 77K. The magnitudes of the current steps as functions of the rf current at 4.2K and 77K were in quantitative agreement with the theoretical results based on the RSJ model.

  16. Convective mixing mechanisms in high frequency intermittent jet ventilation.

    PubMed

    Scherer, P W; Muller, W J; Raub, J B; Haselton, F R

    1989-01-01

    A liquid flow visualization technique was used to identify the location of neutrally buoyant bead clouds injected into airway models during flows simulating high frequency intermittent jet ventilation (HFIJV) in neonatal lungs. The motions of these bead clouds show that the convective or bulk mixing that occurs during HFIJV is made up of two parts; a turbulent convective exchange with the atmosphere caused by the jet in the trachea and a streaming motion along the airways driven by an interaction between the jet and the expansion and contraction of the airways due to their compliance. These convective streaming motions combine with molecular diffusion to produce augmented diffusion which transports O2 and CO2 between the trachea and the peripheral alveoli. Optimizing HFIJV (as well as other forms of HFV) depends on maximizing these airway convective streaming flows which depend on many more lung and fluid mechanical parameters than are necessary to describe conventional mechanical ventilation.

  17. High Frequency Monitoring Reveals Aftershocks in Subcritical Crack Growth

    NASA Astrophysics Data System (ADS)

    Stojanova, M.; Santucci, S.; Vanel, L.; Ramos, O.

    2014-03-01

    By combining direct imaging and acoustic emission measurements, the subcritical propagation of a crack in a heterogeneous material is analyzed. Both methods show that the fracture proceeds through a succession of discrete events. However, the macroscopic opening of the fracture captured by the images results from the accumulation of more-elementary events detected by the acoustics. When the acoustic energy is cumulated over large time scales corresponding to the image acquisition rate, a similar statistics is recovered. High frequency acoustic monitoring reveals aftershocks responsible for a time scale dependent exponent of the power law energy distributions. On the contrary, direct imaging, which is unable to resolve these aftershocks, delivers a misleading exponent value.

  18. High-Frequency Cutoff in Type III Bursts

    NASA Astrophysics Data System (ADS)

    Stanislavsky, A. A.; Konovalenko, A. A.; Volvach, Ya. S.; Koval, A. A.

    In this article we report about a group of solar bursts with high-frequency cutoff, observed on 19 August of 2012 near 8:23 UT, simultaneously by three different radio telescopes: the Ukrainian decameter radio telescope (8-33 MHz), the French Nancay Decametric Array (10-70 MHz) and the Italian San Vito Solar Observatory of RSTN (25-180 MHz). Morphologically the bursts are very similar to the type III bursts. The solar activity is connected with the emergency of a new group of solar spots on the far side of the Sun with respect to observers on Earth. The solar bursts accompany many moderate flares over eastern limb. The refraction of the behind-limb radio bursts towards the Earth is favorable, if CMEs generate low-density cavities in solar corona.

  19. High frequency ultrasonic characterization of sintered SiC

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Generazio, Edward R.; Kiser, James D.

    1987-01-01

    High frequency (60 to 160 MHz) ultrasonic nondestructive evaluation was used to characterize variations in density and microstructural constituents of sintered SiC bars. Ultrasonic characterization methods included longitudinal velocity, reflection coefficient, and precise attenuation measurements. The SiC bars were tailored to provide bulk densities ranging from 90 to 98 percent of theoretical, average grain sizes ranging from 3.0 to 12.0 microns, and average pore sizes ranging from 1.5 to 4.0 microns. Velocity correlated with specimen bulk density irrespective of specimen average grain size, average pore size, and average pore orientation. Attenuation coefficient was found to be sensitive to both density and average pore size variations, but was not affected by large differences in average grain size.

  20. Development of a Multi-Channel, High Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    DePalma, Jude L.

    2003-01-01

    With the advent of the ISS era and the potential requirement for increased cardiovascular monitoring of crewmembers during extended EVAs, NASA flight surgeons would stand to benefit from an evolving technology that allows for a more rapid diagnosis of myocardial ischemia compared to standard electrocardiography. Similarly, during the astronaut selection process, NASA flight surgeons and other physicians would also stand to benefit from a completely noninvasive technology that, either at rest or during maximal exercise tests, is more sensitive than standard ECG in identifying the presence of ischemia. Perhaps most importantly, practicing cardiologists and emergency medicine physicians could greatly benefit from such a device as it could augment (or even replace) standard electrocardiography in settings where the rapid diagnosis of myocardial ischemia (or the lack thereof) is required for proper clinical decision-making. A multi-channel, high-frequency QRS electrocardiograph is currently under development in the Life Sciences Research Laboratories at JSC. Specifically the project consisted of writing software code, some of which contained specially-designed digital filters, which will be incorporated into an existing commercial software program that is already designed to collect, plot and analyze conventional 12-lead ECG signals on a desktop, portable or palm PC. The software will derive the high-frequency QRS signals, which will be analyzed (in numerous ways) and plotted alongside of the conventional ECG signals, giving the PC-viewing clinician advanced diagnostic information that has never been available previously in all 12 ECG leads simultaneously. After the hardware and software for the advanced digital ECG monitor have been fully integrated, plans are to use the monitor to begin clinical studies both on healthy subjects and on patients with known coronary artery disease in both the outpatient and hospital settings. The ultimate goal is to get the technology

  1. High-frequency dynamics of hybrid oxide Josephson heterostructures

    NASA Astrophysics Data System (ADS)

    Komissinskiy, P.; Ovsyannikov, G. A.; Constantinian, K. Y.; Kislinski, Y. V.; Borisenko, I. V.; Soloviev, I. I.; Kornev, V. K.; Goldobin, E.; Winkler, D.

    2008-07-01

    We summarize our results on Josephson heterostructures Nb/Au/YBa2Cu3Ox that combine conventional (S) and oxide high- Tc superconductors with a dominant d -wave symmetry of the superconducting order parameter (D). The heterostructures were fabricated on (001) and (1 1 20) YBa2Cu3Ox films grown by pulsed laser deposition. The structural and surface studies of the (1 1 20) YBa2Cu3Ox thin films reveal nanofaceted surface structure with two facet domain orientations, which are attributed as (001) and (110)-oriented surfaces of YBa2Cu3Ox and result in S/D(001) and S/D(110) nanojunctions formed on the facets. Electrophysical properties of the Nb/Au/YBa2Cu3Ox heterostructures are investigated by the electrical and magnetic measurements at low temperatures and analyzed within the faceting scenario. The superconducting current-phase relation (CPR) of the heterostructures with finite first and second harmonics is derived from the Shapiro steps, which appear in the I-V curves of the heterostructures irradiated at frequencies up to 100 GHz. The experimental positions and amplitudes of the Shapiro steps are explained within the modified resistive Josephson junction model, where the second harmonic of the CPR and capacitance of the Josephson junctions are taken into account. We experimentally observe a crossover from a lumped to a distributed Josephson junction limit for the size of the heterostructures smaller than Josephson penetration depth. The effect is attributed to the variations of the harmonics of the superconducting CPR across the heterojunction, which may give rise to splintered vortices of magnetic flux quantum. Our investigations of parameters and phenomena that are specific for superconductors having d -wave symmetry of the superconducting order parameter may be of importance for applications such as high-frequency detectors and novel elements of a possible quantum computer.

  2. Frequency conversion of high-intensity, femtosecond laser pulses

    SciTech Connect

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  3. Directed breeding of an Arthrobacter mutant for high-yield production of cyclic adenosine monophosphate by N + ion implantation

    NASA Astrophysics Data System (ADS)

    Song, He; Chen, Xiaochun; Cao, Jiaming; Fang, Ting; Bai, Jianxin; Xiong, Jian; Ying, Hanjie

    2010-08-01

    To obtain a cyclic adenosine monophosphate (cAMP) high-yield production strain, Arthrobacter NG-1 was mutated by N + ion implantation with an energy level of 10 keV and dose of 7×10 15 ions/cm 2. Combined with directed screening methods, a xanthine-defective and 8-azaguanine (8-AG)-resistant mutant Arthrobacter A302 was selected. The concentration of cAMP produced by this mutant was 41.7% higher than that of the original strain and reached 9.78 g/L. Through ten-generation investigation, the capability of cAMP production of A302 was found to be stable. Compared with the original strain, the special activities of key enzymes in A302, which influenced the cAMP biosynthesis, was analyzed. IMP dehydrogenase activity was defective, whereas PRPP amidotransferase, sAMP synthetase and adenylate cyclase activities were increased by 61.5%, 147% and 21.7%, respecitively, which might explain the mutagenesis mechanism by N + ions implantation under the enzymatic level.

  4. High frequency strain measurements with fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Koch, J.; Angelmahr, M.; Schade, W.

    2015-05-01

    In recent years fiber Bragg grating sensors gained interest in structural health monitoring and concepts for smart structures. They are small, lightweight, and immune to electromagnetic interference. Using multiplexing techniques, several sensors can be addressed by a single fiber. Therefore, well-established structures and materials in industrial applications can be easily equipped with fiber optical sensors with marginal influence on their mechanical properties. In return, critical components can be monitored in real-time, leading to reduced maintenance intervals and a great reduction of costs. Beside of generally condition monitoring, the localization of failures in a structure is a desired feature of the condition monitoring system. Detecting the acoustic emission of a sudden event, its place of origin can be determined by analyzing the delay time of distributed sensor signals. To achieve high localization accuracies for the detection of cracks, breaks, and impacts high sampling rates combined with the simultaneous interrogation of several fiber Bragg grating sensors are required. In this article a fiber Bragg grating interrogator for high frequency measurements up to the megahertz range is presented. The interrogator is based on a passive wavelength to intensity conversion applying arrayed waveguide gratings. Light power fluctuations are suppressed by a differential data evaluation, leading to a reduced signal-to-noise ratio and a low strain detection limit. The measurement system is used to detect, inter alia, wire breaks in steel wire ropes for dockside cranes.

  5. High frequency flow-structural interaction in dense subsonic fluids

    NASA Technical Reports Server (NTRS)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  6. High-frequency voltage oscillations in cultured astrocytes

    PubMed Central

    Fleischer, Wiebke; Theiss, Stephan; Slotta, Johannes; Holland, Christine; Schnitzler, Alfons

    2015-01-01

    Because of their close interaction with neuronal physiology, astrocytes can modulate brain function in multiple ways. Here, we demonstrate a yet unknown astrocytic phenomenon: Astrocytes cultured on microelectrode arrays (MEAs) exhibited extracellular voltage fluctuations in a broad frequency spectrum (100–600 Hz) after electrical stimulation. These aperiodic high-frequency oscillations (HFOs) could last several seconds and did not spread across the MEA. The voltage-gated calcium channel antagonist cilnidipine dose-dependently decreased the power of the oscillations. While intracellular calcium was pivotal, incubation with bafilomycin A1 showed that vesicular release of transmitters played only a minor role in the emergence of HFOs. Gap junctions and volume-regulated anionic channels had just as little functional impact, which was demonstrated by the addition of carbenoxolone (100 μmol/L) and NPPB (100 μmol/L). Hyperpolarization with low potassium in the extracellular solution (2 mmol/L) dramatically raised oscillation power. A similar effect was seen when we added extra sodium (+50 mmol/L) or if we replaced it with NMDG+ (50 mmol/L). The purinergic receptor antagonist PPADS suppressed the oscillation power, while the agonist ATP (100 μmol/L) had only an increasing effect when the bath solution pH was slightly lowered to pH 7.2. From these observations, we conclude that astrocytic voltage oscillations are triggered by activation of voltage-gated calcium channels and driven by a downstream influx of cations through channels that are permeable for large ions such as NMDG+. Most likely candidates are subtypes of pore-forming P2X channels with a low affinity for ATP. PMID:25969464

  7. Gravitational Wave Astronomy:The High Frequency Window

    NASA Astrophysics Data System (ADS)

    Andersson, Nils; Kokkotas, Kostas D.

    As several large scale interferometers are beginning to take data at sensitivities where astrophysical sources are predicted, the direct detection of gravitational waves may well be imminent. This would (finally) open the long anticipated gravitational-wave window to our Universe, and should lead to a much improved understanding of the most violent processes imaginable; the formation of black holes and neutron stars following core collapse supernovae and the merger of compact objects at the end of binary inspiral. Over the next decade we can hope to learn much about the extreme physics associated with, in particular, neutron stars. This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated bread-and-butter source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100 Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from these sources is truly inspiring, there is strong motivation for the development of future generations of ground based detectors sensitive in the range from hundreds of Hz to several kHz.

  8. Pressure levels and pulsation frequencies can be varied on high pressure/frequency testing device

    NASA Technical Reports Server (NTRS)

    Routson, J. W.

    1967-01-01

    Hydraulic system components test device obtains a pulsating pressure from a hydraulic actuator that is being driven by a vibration exciter of sufficient force and displacement. Input to the exciter controls the frequency of pressure variation.

  9. FPGA implementation of high-frequency multiple PWM for variable voltage variable frequency controller

    NASA Astrophysics Data System (ADS)

    Boumaaraf, Abdelâali; Mohamadi, Tayeb; Gourmat, Laïd

    2016-07-01

    In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10hz to 60 hz with a small frequency and reduce the cost of the control system.

  10. Theory of High Frequency Rectification by Silicon Crystals

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1942-10-29

    The excellent performance of British "red dot" crystals is explained as due to the knife edge contact against a polished surface. High frequency rectification depends critically on the capacity of the rectifying boundary layer of the crystal, C. For high conversion efficiency, the product of this capacity and of the "forward" (bulk) resistance R {sub b} of the crystal must be small. For a knife edge, this product depends primarily on the breadth of the knife edge and very little upon its length. The contact can therefore have a rather large area which prevents burn-out. For a wavelength of 10 cm. the computations show that the breadth of the knife edge should be less than about 10 {sup -3} cm. For a point contact the radius must be less than 1.5 x 10 {sup -3} cm. and the resulting small area is conducive to burn-out. The effect of "tapping" is probably to reduce the area of contact. (auth)

  11. High-frequency electrostatic waves in the magnetosphere.

    NASA Technical Reports Server (NTRS)

    Young, T. S. T.

    1973-01-01

    High-frequency electrostatic microinstabilities in magnetospheric plasmas are considered in detail. Rather special plasma parameters are found to be required to match the theoretical wave spectrum with satellite observations in the magnetosphere. In particular, it is necessary to have a cold and a warm species of electrons such that (1) the warm component has an anomalous velocity distribution function that is nonmonotonic in the perpendicular component of velocity and is the source of free energy driving the instabilities, (2) the density ratio of the cold component to the hot component is greater than about 0.01, and (3) the temperature ratio of the two components for cases of high particle density is no less than 0.1. These requirements and the corresponding instability criteria are satisfied only in the trapping region; this is also the region in which the waves are most frequently observed. The range of unstable wavelengths and an estimate of the diffusion coefficient are also obtained. The wave are found to induce strong diffusion in velocity space for low-energy electrons during periods of moderate wave amplitude.

  12. Measurement of bone conduction levels for high frequencies.

    PubMed

    Lenhardt, Martin L; Richards, Douglas G; Madsen, Alan G; Goldstein, Barbara A; Shulman, Abraham; Guinta, Robert

    2002-01-01

    For assessment of safety, it is necessary to measure the maximum possible force exerted by a bone conduction device coupled to the human head. Calibration of bone conduction hearing aids and vibrators in the audiometric range is based on measurement of acceleration and force using an artificial mastoid. Extending the measurement to the high audio range was accomplished using a live head. To assess safety of the UltraQuiet tinnitus treatment system, as an example, acceleration was measured from 5 to 20 kHz on a live human head as compared with calibrated levels at 6 kHz on an artificial mastoid and the live head. Using head acceleration and anchoring it to established calibration levels is a means of establishing clinical safety. Stimulation in the high audio frequencies at low levels was found to be safe. In contrast, stimulation with ultrasound requires more energy (approximately 75-90 dB re 6 kHz), which may increase the risk of damage to the car.

  13. Remote Sensing: Radio Frequency Detection for High School Physics Students

    NASA Astrophysics Data System (ADS)

    Huggett, Daniel; Jeandron, Michael; Maddox, Larry; Yoshida, Sanichiro

    2011-10-01

    In an effort to give high school students experience in real world science applications, we have partnered with Loranger High School in Loranger, LA to mentor 9 senior physics students in radio frequency electromagnetic detection. The effort consists of two projects: Mapping of 60 Hz noise around the Laser Interferometer Gravitational Wave Observatory (LIGO), and the construction of a 20 MHz radio telescope for observations of the Sun and Jupiter (Radio Jove, NASA). The results of the LIGO mapping will aid in strategies to reduce the 60 Hz line noise in the LIGO noise spectrum. The Radio Jove project will introduce students to the field of radio astronomy and give them better insight into the dynamic nature of large solar system objects. Both groups will work together in the early stages as they learn the basics of electromagnetic transmission and detection. The groups will document and report their progress regularly. The students will work under the supervision of three undergraduate mentors. Our program is designed to give them theoretical and practical knowledge in radiation and electronics. The students will learn how to design and test receiver in the lab and field settings.

  14. High-frequency nano-optomechanical disk resonators in liquids.

    PubMed

    Gil-Santos, E; Baker, C; Nguyen, D T; Hease, W; Gomez, C; Lemaître, A; Ducci, S; Leo, G; Favero, I

    2015-09-01

    Nano- and micromechanical resonators are the subject of research that aims to develop ultrasensitive mass sensors for spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits generally diminish in liquids because of an increased dissipation. The development of faster and lighter miniaturized devices would enable improved performances, provided the dissipation was controlled and novel techniques were available to drive and readout their minute displacement. Here we report a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine a mechanical motion at high frequencies (gigahertz and above) with an ultralow mass (picograms) and a moderate dissipation in liquids. We show that high-sensitivity optical measurements allow their Brownian vibrations to be resolved directly, even in the most-dissipative liquids. We investigate their interaction with liquids of arbitrary properties, and analyse measurements in light of new models. Nano-optomechanical disks emerge as probes of rheological information of unprecedented sensitivity and speed, which opens up applications in sensing and fundamental science.

  15. Protection Circuits for Very High Frequency Ultrasound Systems

    PubMed Central

    Shung, K. Kirk

    2014-01-01

    The purpose of protection circuits in ultrasound applications is to block noise signals from the transmitter from reaching the transducer and also to prevent unwanted high voltage signals from reaching the receiver. The protection circuit using a resistor and diode pair is widely used due to its simple architecture, however, it may not be suitable for very high frequency (VHF) ultrasound transducer applications (>100 MHz) because of its limited bandwidth. Therefore, a protection circuit using MOSFET devices with unique structure is proposed in this paper. The performance of the designed protection circuit was compared with that of other traditional protection schemes. The performance characteristics measured were the insertion loss (IL), total harmonic distortion (THD) and transient response time (TRT). The new protection scheme offers the lowest IL (−1.0 dB), THD (−69.8 dB) and TRT (78 ns) at 120 MHz. The pulse-echo response using a 120 MHz LiNbO3 transducer with each protection circuit was measured to validate the feasibility of the protection circuits in VHF ultrasound applications. The sensitivity and bandwidth of the transducer using the new protection circuit improved by 252.1 and 50.9 %, respectively with respect to the protection circuit using a resistor and diode pair. These results demonstrated that the new protection circuit design minimizes the IL, THD and TRT for VHF ultrasound transducer applications. PMID:24682684

  16. High Frequency Mechanical Pyroshock Simulations for Payload Systems

    SciTech Connect

    BATEMAN,VESTA I.; BROWN,FREDERICK A.; CAP,JEROME S.; NUSSER,MICHAEL A.

    1999-12-15

    Sandia National Laboratories (SNL) designs mechanical systems with components that must survive high frequency shock environments including pyrotechnic shock. These environments have not been simulated very well in the past at the payload system level because of weight limitations of traditional pyroshock mechanical simulations using resonant beams and plates. A new concept utilizing tuned resonators attached to the payload system and driven with the impact of an airgun projectile allow these simulations to be performed in the laboratory with high precision and repeatability without the use of explosives. A tuned resonator has been designed and constructed for a particular payload system. Comparison of laboratory responses with measurements made at the component locations during actual pyrotechnic events show excellent agreement for a bandwidth of DC to 4 kHz. The bases of comparison are shock spectra. This simple concept applies the mechanical pyroshock simulation simultaneously to all components with the correct boundary conditions in the payload system and is a considerable improvement over previous experimental techniques and simulations.

  17. Photodetachment of H- from intense, short, high-frequency pulses

    NASA Astrophysics Data System (ADS)

    Shao, Hua-Chieh; Robicheaux, F.

    2016-05-01

    We study the photodetachment of an electron from the hydrogen anion due to short, high-frequency laser pulses by numerically solving the time-dependent Schrödinger equation. Simulations are performed to investigate the dependence of the photoelectron spectra on the duration, chirp, and intensity of the pulses. Specifically, we concentrate on the low-energy distributions in the spectra that result from the Raman transitions of the broadband pulses. Contrary to the one-photon ionization, the low-energy distribution maintains a similar width as the laser bandwidth is expanded by chirping the pulses. In addition, we study the transitions of the ionization dynamics from the perturbative to strong-field regime. At high intensities, the positions of the net one- and two-photon absorption peaks in the spectrum shifts and the peaks split to multiple subpeaks because of the multiphoton effects. Moreover, although the one- and two-photon peaks and low-energy distribution exhibit saturation of the ionization yields, the latter shows relatively mild saturation. This work has been supported by DOE under Award No. DE-SC0012193.

  18. Low temperature high frequency coaxial pulse tube for space application

    SciTech Connect

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard; Duval, Jean-Marc

    2014-01-29

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for the ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.

  19. Velocity field measurements on high-frequency, supersonic microactuators

    NASA Astrophysics Data System (ADS)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  20. High-frequency nano-optomechanical disk resonators in liquids

    NASA Astrophysics Data System (ADS)

    Gil-Santos, E.; Baker, C.; Nguyen, D. T.; Hease, W.; Gomez, C.; Lemaître, A.; Ducci, S.; Leo, G.; Favero, I.

    2015-09-01

    Nano- and micromechanical resonators are the subject of research that aims to develop ultrasensitive mass sensors for spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits generally diminish in liquids because of an increased dissipation. The development of faster and lighter miniaturized devices would enable improved performances, provided the dissipation was controlled and novel techniques were available to drive and readout their minute displacement. Here we report a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine a mechanical motion at high frequencies (gigahertz and above) with an ultralow mass (picograms) and a moderate dissipation in liquids. We show that high-sensitivity optical measurements allow their Brownian vibrations to be resolved directly, even in the most-dissipative liquids. We investigate their interaction with liquids of arbitrary properties, and analyse measurements in light of new models. Nano-optomechanical disks emerge as probes of rheological information of unprecedented sensitivity and speed, which opens up applications in sensing and fundamental science.

  1. A novel probe head for high-field, high-frequency electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Annino, G.; Cassettari, M.; Longo, I.; Martinelli, M.; Van Bentum, P. J. M.; Van der Horst, E.

    1999-03-01

    A probe head especially useful for electron paramagnetic resonance (EPR) spectrometers working at high field—high frequency is presented. The probe head is based on the whispering gallery mode dielectric resonators that proved very effective in the ultrahigh frequency range. The excitation network uses a properly shaped dielectric waveguide sharing its external field pattern with the field of the resonators. Very simple resonators made with polyethylene in both single and doubly stacked disk configurations are used. The experimental characterization by a submillimeter network analyzer shows for the resonances studied in a wide range of frequencies up to ≈400 GHz high loaded merit factor QL values and good coupling factors. Resonators also maintain their general characteristics when large quantities of low loss samples for EPR measurements are properly inserted. Preliminary EPR spectra of diphenylpicrylhyldrazyl at 7 and 10 T obtained with the novel apparatus are finally presented.

  2. Development and evaluation of rice giant embryo mutants for high oil content originated from a high-yielding cultivar ‘Mizuhochikara’

    PubMed Central

    Sakata, Mitsukazu; Seno, Mari; Matsusaka, Hiroaki; Takahashi, Kiyomi; Nakamura, Yuki; Yamagata, Yoshiyuki; Angeles, Enrique R.; Mochizuki, Toshihiro; Kumamaru, Toshihiro; Sato, Masao; Enomoto, Akiko; Tashiro, Kosuke; Kuhara, Satoru; Satoh, Hikaru; Yoshimura, Atsushi

    2016-01-01

    Rice bran oil is a byproduct of the milling of rice (Oryza sativa L.). It offers various health benefits and has a beneficial fatty acid composition. To increase the amount of rice bran as a sink for triacylglycerol (TAG), we developed and characterized new breeding materials with giant embryos. To induce mutants, we treated fertilized egg cells of the high-yielding cultivar ‘Mizuhochikara’ with N-methyl-N-nitrosourea (MNU). By screening M2 seeds, we isolated four giant embryo mutant lines. Genetic analysis revealed that the causative loci in lines MGE12 and MGE13 were allelic to giant embryo (ge) on chromosome 7, and had base changes in the causal gene Os07g0603700. On the other hand, the causative loci in lines MGE8 and MGE14 were not allelic to ge, and both were newly mapped on chromosome 3. The TAG contents of all four mutant lines increased relative to their wild type, ‘Mizuhochikara’. MGE13 was agronomically similar to ‘Mizuhochikara’ and would be useful for breeding for improved oil content. PMID:27436953

  3. Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes.

    PubMed

    Fang, Mingyue; Jin, Lihua; Zhang, Chong; Tan, Yinyee; Jiang, Peixia; Ge, Nan; Heping Li; Xing, Xinhui

    2013-01-01

    In this paper, we aimed to improve the carbohydrate productivity of Spirulina platensis by generating mutants with increased carbohydrate content and growth rate. ARTP was used as a new mutagenesis tool to generate a mutant library of S. platensis with diverse phenotypes. Protocol for rapid mutation of S. platensis by 60 s treatment with helium driven ARTP and high throughput screening method of the mutants using the 96-well microplate and microplate reader was established. A mutant library of 62 mutants was then constructed and ideal mutants were selected out. The characteristics of the mutants after the mutagenesis inclined to be stable after around 9(th) subculture, where the total mutation frequency and positive mutation frequency in terms of specific growth rate reached 45% and 25%, respectively. The mutants in mutant library showed diverse phenotypes in terms of cell growth rate, carbohydrate content and flocculation intensity. The positive mutation frequency in terms of cellular carbohydrate content with the increase by more than 20% percent than the wild strain was 32.3%. Compared with the wild strain, the representative mutants 3-A10 and 3-B2 showed 40.3% and 78.0% increase in carbohydrate content, respectively, while the mutant 4-B3 showed 10.5% increase in specific growth rate. The carbohydrate contents of the representative mutants were stable during different subcultures, indicating high genetic stability. ARTP was demonstrated to be an effective and non-GMO mutagenesis tool to generate the mutant library for multicellular microalgae. PMID:24319517

  4. Rapid Mutation of Spirulina platensis by a New Mutagenesis System of Atmospheric and Room Temperature Plasmas (ARTP) and Generation of a Mutant Library with Diverse Phenotypes

    PubMed Central

    Zhang, Chong; Tan, Yinyee; Jiang, Peixia; Ge, Nan; Heping Li; Xing, Xinhui

    2013-01-01

    In this paper, we aimed to improve the carbohydrate productivity of Spirulina platensis by generating mutants with increased carbohydrate content and growth rate. ARTP was used as a new mutagenesis tool to generate a mutant library of S. platensis with diverse phenotypes. Protocol for rapid mutation of S. platensis by 60 s treatment with helium driven ARTP and high throughput screening method of the mutants using the 96-well microplate and microplate reader was established. A mutant library of 62 mutants was then constructed and ideal mutants were selected out. The characteristics of the mutants after the mutagenesis inclined to be stable after around 9th subculture, where the total mutation frequency and positive mutation frequency in terms of specific growth rate reached 45% and 25%, respectively. The mutants in mutant library showed diverse phenotypes in terms of cell growth rate, carbohydrate content and flocculation intensity. The positive mutation frequency in terms of cellular carbohydrate content with the increase by more than 20% percent than the wild strain was 32.3%. Compared with the wild strain, the representative mutants 3-A10 and 3-B2 showed 40.3% and 78.0% increase in carbohydrate content, respectively, while the mutant 4-B3 showed 10.5% increase in specific growth rate. The carbohydrate contents of the representative mutants were stable during different subcultures, indicating high genetic stability. ARTP was demonstrated to be an effective and non-GMO mutagenesis tool to generate the mutant library for multicellular microalgae. PMID:24319517

  5. Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes.

    PubMed

    Fang, Mingyue; Jin, Lihua; Zhang, Chong; Tan, Yinyee; Jiang, Peixia; Ge, Nan; Heping Li; Xing, Xinhui

    2013-01-01

    In this paper, we aimed to improve the carbohydrate productivity of Spirulina platensis by generating mutants with increased carbohydrate content and growth rate. ARTP was used as a new mutagenesis tool to generate a mutant library of S. platensis with diverse phenotypes. Protocol for rapid mutation of S. platensis by 60 s treatment with helium driven ARTP and high throughput screening method of the mutants using the 96-well microplate and microplate reader was established. A mutant library of 62 mutants was then constructed and ideal mutants were selected out. The characteristics of the mutants after the mutagenesis inclined to be stable after around 9(th) subculture, where the total mutation frequency and positive mutation frequency in terms of specific growth rate reached 45% and 25%, respectively. The mutants in mutant library showed diverse phenotypes in terms of cell growth rate, carbohydrate content and flocculation intensity. The positive mutation frequency in terms of cellular carbohydrate content with the increase by more than 20% percent than the wild strain was 32.3%. Compared with the wild strain, the representative mutants 3-A10 and 3-B2 showed 40.3% and 78.0% increase in carbohydrate content, respectively, while the mutant 4-B3 showed 10.5% increase in specific growth rate. The carbohydrate contents of the representative mutants were stable during different subcultures, indicating high genetic stability. ARTP was demonstrated to be an effective and non-GMO mutagenesis tool to generate the mutant library for multicellular microalgae.

  6. High frequency of a single nucleotide substitution (c.-6-180T>G) of the canine MDR1/ABCB1 gene associated with phenobarbital-resistant idiopathic epilepsy in Border Collie dogs.

    PubMed

    Mizukami, Keijiro; Yabuki, Akira; Chang, Hye-Sook; Uddin, Mohammad Mejbah; Rahman, Mohammad Mahbubur; Kushida, Kazuya; Kohyama, Moeko; Yamato, Osamu

    2013-01-01

    A single nucleotide substitution (c.-6-180T>G) associated with resistance to phenobarbital therapy has been found in the canine MDR1/ABCB1 gene in Border Collies with idiopathic epilepsy. In the present study, a PCR-restriction fragment length polymorphism assay was developed for genotyping this mutation, and a genotyping survey was carried out in a population of 472 Border Collies in Japan to determine the current allele frequency. The survey demonstrated the frequencies of the T/T wild type, T/G heterozygote, and G/G mutant homozygote to be 60.0%, 30.3%, and 9.8%, respectively, indicating that the frequency of the mutant G allele is extremely high (24.9%) in Border Collies. The results suggest that this high mutation frequency of the mutation is likely to cause a high prevalence of phenobarbital-resistant epilepsy in Border Collies.

  7. Tay-Sachs disease: high gene frequency in a non-Jewish population.

    PubMed

    Kelly, T E; Chase, G A; Kaback, M M; Kumor, K; McKusick, V A

    1975-05-01

    A non-Amish "Pennsylvania Dutch" semi-isolate was found to have a high frequency of Tay-Sachs gene. This high frequency could be ascribed to founder effect and may represent, in microcosm, how this mechanism could have produced the high gene frequency among Ashkenazi Jews. PMID:803011

  8. Epitaxial single crystalline ferrite films for high frequency applications

    SciTech Connect

    Suzuki, Y.; Dover, R.B. van; Korenivski, V.; Werder, D.; Chen, C.H.; Felder, R.J.; Phillips, J.M.

    1996-11-01

    The successful growth of single crystal ferrites in thin film form is an important step towards their future incorporation into integrated circuits operating at microwave frequencies. The authors have successfully grown high quality single crystalline spinel ferrite thin films of (Mn,Zn)Fe{sub 2}O{sub 4} and CoFe{sub 2}O{sub 4} on (100) and (110) SrTiO{sub 3} and MgAl{sub 2}O{sub 4} at low temperature. These ferrite films are buffered with spinel structure layers that are paramagnetic at room temperature. In contrast to ferrite films grown directly on the substrates, ferrite films grown on buffered substrates exhibit excellent crystallinity and bulk saturation magnetization values, thus indicating the importance of lattice match and structural similarity between the film and the immediately underlying layer. X-ray, RBS, AFM and TEM analysis provide a consistent picture of the structural properties of these ferrite films. The authors then use this technique to grow exchange-coupled bilayers of single crystalline CoFe{sub 2}O{sub 4} and (Mn,Zn)Fe{sub 2}O{sub 4}. In these bilayers, they observe strong exchange coupling across the interface that is similar in strength to the exchange coupling in the individual layers.

  9. Challenges in graphene integration for high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Giannazzo, F.; Fisichella, G.; Greco, G.; Roccaforte, F.

    2016-06-01

    This paper provides an overview of the state-of-the-art research on graphene (Gr) for high-frequency (RF) devices. After discussing current limitations of lateral Gr RF transistors, novel vertical devices concepts such as the Gr Base Hot Electron Transistor (GBHET) will be introduced and the main challenges in Gr integration within these architectures will be discussed. In particular, a GBHET device based on Gr/AlGaN/GaN heterostructure will be considered. An approach to the fabrication of this heterostructure by transfer of CVD grown Gr on copper to the AlGaN surface will be presented. The morphological and electrical properties of this system have been investigated at nanoscale by atomic force microscopy (AFM) and conductive atomic force microscopy (CAFM). In particular, local current-voltage measurements by the CAFM probe revealed the formation of a Schottky contact with low barrier height (˜0.41 eV) and excellent lateral uniformity between Gr and AlGaN. Basing on the electrical parameters extracted from this characterization, the theoretical performances of a GBHET formed by a metal/Al2O3/Gr/AlGaN/GaN stack have been evaluated.

  10. Resting high frequency heart rate variability selectively predicts cooperative behavior.

    PubMed

    Beffara, Brice; Bret, Amélie G; Vermeulen, Nicolas; Mermillod, Martial

    2016-10-01

    This study explores whether the vagal connection between the heart and the brain is involved in prosocial behaviors. The Polyvagal Theory postulates that vagal activity underlies prosocial tendencies. Even if several results suggest that vagal activity is associated with prosocial behaviors, none of them used behavioral measures of prosociality to establish this relationship. We recorded the resting state vagal activity (reflected by High Frequency Heart Rate Variability, HF-HRV) of 48 (42 suitale for analysis) healthy human adults and measured their level of cooperation during a hawk-dove game. We also manipulated the consequence of mutual defection in the hawk-dove game (severe vs. moderate). Results show that HF-HRV is positively and linearly related to cooperation level, but only when the consequence of mutual defection is severe (compared to moderate). This supports that i) prosocial behaviors are likely to be underpinned by vagal functioning ii) physiological disposition to cooperate interacts with environmental context. We discuss these results within the theoretical framework of the Polyvagal Theory. PMID:27343804

  11. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling.

    PubMed

    Lindh, Markus V; Sjöstedt, Johanna; Andersson, Anders F; Baltar, Federico; Hugerth, Luisa W; Lundin, Daniel; Muthusamy, Saraladevi; Legrand, Catherine; Pinhassi, Jarone

    2015-07-01

    Multiyear comparisons of bacterioplankton succession reveal that environmental conditions drive community shifts with repeatable patterns between years. However, corresponding insight into bacterioplankton dynamics at a temporal resolution relevant for detailed examination of variation and characteristics of specific populations within years is essentially lacking. During 1 year, we collected 46 samples in the Baltic Sea for assessing bacterial community composition by 16S rRNA gene pyrosequencing (nearly twice weekly during productive season). Beta-diversity analysis showed distinct clustering of samples, attributable to seemingly synchronous temporal transitions among populations (populations defined by 97% 16S rRNA gene sequence identity). A wide spectrum of bacterioplankton dynamics was evident, where divergent temporal patterns resulted both from pronounced differences in relative abundance and presence/absence of populations. Rates of change in relative abundance calculated for individual populations ranged from 0.23 to 1.79 day(-1) . Populations that were persistently dominant, transiently abundant or generally rare were found in several major bacterial groups, implying evolution has favoured a similar variety of life strategies within these groups. These findings suggest that high temporal resolution sampling allows constraining the timescales and frequencies at which distinct populations transition between being abundant or rare, thus potentially providing clues about physical, chemical or biological forcing on bacterioplankton community structure.

  12. Turbofan Noise Propagation and Radiation at High Frequencies

    NASA Technical Reports Server (NTRS)

    Koch, Danielle (Technical Monitor); Eversman, Walter

    2003-01-01

    This report summarizes progress on NASA Glenn Research Center Grant NAG3-2718 to the University of Missouri at Rolla This grant was awarded on February 22, 2002 and this report covers the performance period to September 30, 2002. There is considerable overlap in research effort with previous NASA Glenn Grant NAG3-2340, as the current effort represents a continuation and extension of this previous grant, which with a no cost supplement terminated on January 31, 2002. This report outlines progress on each task in the original proposal. In addition to progress on several of the specifically proposed tasks, considerable progress has been made in FEM algorithm development with the intent of introducing computational efficiencies required to model high frequency propagation and radiation and to open the possibility of expanding the scope of the modeling capability to three dimensional duct and nacelle geometries. Appended to this document is a paper presented at the 8th AIAA/CEAS Aeroacoustics Conference in June 2002. This paper overlaps the present grant and the previous grant identified above, and it is noted that this paper has also been appended to the final report for NAG3-2304.

  13. High-Frequency Gravitational Wave Induced Nuclear Fusion

    NASA Astrophysics Data System (ADS)

    Fontana, Giorgio; Baker, Robert M. L.

    2007-01-01

    Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely — even inside solid materials.

  14. High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes

    PubMed Central

    Weed, Scott A.

    2015-01-01

    High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse  model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological  analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease. PMID:26274059

  15. High-frequency techniques for RCS prediction of plate geometries

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polka, Lesley A.

    1991-01-01

    Radar cross section (RCS) prediction of several rectangular plate geometries is discussed using high-frequency techniques such as the Uniform Theory of Diffraction (UTD) for perfectly conducting and impedance wedges and the Method of Equivalent Currents (MEC). Previous reports have presented detailed solutions to the principal-plane scattering by a perfectly conducting and a coated rectangular plate and nonprincipal-plane scattering by a perfectly conducting plate. These solutions are briefly reviewed and a modified model is presented for the coated plate. Theoretical and experimental data are presented for the perfectly conducting geometries. Agreement between theory and experiment is very good near and at normal incidence. In regions near and at grazing incidence, the disagreement between the data vary according to diffraction distances and angles involved. It is these areas of disagreement which are of extreme interest as an explanation for the disagreement will yield invaluable insight into scattering mechanisms which are not yet identified as major contributors near and at grazing incidence. Areas of disagreement between theory and experiment are identified and examined in an attempt to better understand and predict near-grazing incidence, grazing incidence, and nonprincipal-plane diffractions.

  16. High-Frequency Gravitational Wave Induced Nuclear Fusion

    SciTech Connect

    Fontana, Giorgio; Baker, Robert M. L. Jr.

    2007-01-30

    Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely - even inside solid materials.

  17. Refraction of high frequency noise in an arbitrary jet flow

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Krejsa, Eugene A.

    1994-01-01

    Refraction of high frequency noise by mean flow gradients in a jet is studied using the ray-tracing methods of geometrical acoustics. Both the two-dimensional (2D) and three-dimensional (3D) formulations are considered. In the former case, the mean flow is assumed parallel and the governing propagation equations are described by a system of four first order ordinary differential equations. The 3D formulation, on the other hand, accounts for the jet spreading as well as the axial flow development. In this case, a system of six first order differential equations are solved to trace a ray from its source location to an observer in the far field. For subsonic jets with a small spreading angle both methods lead to similar results outside the zone of silence. However, with increasing jet speed the two prediction models diverge to the point where the parallel flow assumption is no longer justified. The Doppler factor of supersonic jets as influenced by the refraction effects is discussed and compared with the conventional modified Doppler factor.

  18. High-frequency longitudinal and transverse dynamics in water

    SciTech Connect

    Pontecorvo, E.; Ruocco, G.; Krisch, M.; Monaco, G.; Mermet, A.; Verbeni, R.; Sette, F.; Cunsolo, A.

    2005-01-01

    High-resolution, inelastic x-ray scattering measurements of the dynamic structure factor S(Q,{omega}) of liquid water have been performed for wave vectors Q between 4 and 30 nm{sup -1} in distinctly different thermodynamic conditions (T=263-420 K; at, or close to, ambient pressure and at P=2 kbar). In agreement with previous inelastic x-ray and neutron studies, the presence of two inelastic contributions (one dispersing with Q and the other almost nondispersive) is confirmed. The study of their temperature and Q dependence provides strong support for a dynamics of liquid water controlled by the structural relaxation process. A viscoelastic analysis of the Q-dispersing mode, associated with the longitudinal dynamics, reveals that the sound velocity undergoes a complete transition from the adiabatic sound velocity (c{sub 0}) (viscous limit) to the infinite-frequency sound velocity (c{sub {infinity}}) (elastic limit). On decreasing Q, as the transition regime is approached from the elastic side, we observe a decrease of the intensity of the second, weakly dispersing feature, which completely disappears when the viscous regime is reached. These findings unambiguously identify the second excitation to be a signature of the transverse dynamics with a longitudinal symmetry component, which becomes visible in S(Q,{omega}) as soon as the purely viscous regime is left.

  19. High frequency chest compression effects heart rate variability.

    PubMed

    Lee, Jongwon; Lee, Yong W; Warwick, Warren J

    2007-01-01

    High frequency chest compression (HFCC) supplies a sequence of air pulses through a jacket worn by a patient to remove excessive mucus for the treatment or prevention of lung disease patients. The air pulses produced from the pulse generator propagates over the thorax delivering the vibration and compression energy. A number of studies have demonstrated that the HFCC system increases the ability to clear mucus and improves lung function. Few studies have examined the change in instantaneous heart rate (iHR) and heart rate variability (HRV) during the HFCC therapy. The purpose of this study is to measure the change of HRV with four experimental protocols: (a) without HFCC, (b) during Inflated, (c)HFCC at 6Hz, and (d) HFCC at 21Hz. The nonlinearity and regularity of HRV was assessed by approximate entropy (ApEn), a method used to quantify the complexities and randomness. To compute the ApEn, we sectioned with a total of eight epochs and displayed the ApEn over the each epoch. Our results show significant differences in the both the iHR and HRV between the experimental protocols. The iHR was elevated at both the (c) 6Hz and (d) 21Hz condition from without HFCC (10%, 16%, respectively). We also found that the HFCC system tends to increase the HRV. Our study suggests that monitoring iHR and HRV are very important physiological indexes during HFCC therapy.

  20. High-frequency chest compression: a summary of the literature.

    PubMed

    Dosman, Cara F; Jones, Richard L

    2005-01-01

    The purpose of the present literature summary is to describe high-frequency chest compression (HFCC), summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have shown that HFCC leads to more mucus clearance and better lung function compared with conventional chest physiotherapy. However, HFCC also decreases end-expiratory lung volume, which can lead to increased airway resistance and a decreased oscillated volume. Adding positive end-expiratory pressure to HFCC has been shown to prevent this decrease in end-expiratory lung volume and to increase the oscillated volume. It is possible that the HFCC-induced decrease in end-expiratory lung volume may result in more mucus clearance in airways that remain open by reducing airway size. Adjunctive methods, such as positive end-expiratory pressure, may not always be needed to make HFCC more effective.

  1. High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes.

    PubMed

    Walk, Elyse L; McLaughlin, Sarah L; Weed, Scott A

    2015-01-01

    High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse  model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological  analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease. PMID:26274059

  2. Resting high frequency heart rate variability selectively predicts cooperative behavior.

    PubMed

    Beffara, Brice; Bret, Amélie G; Vermeulen, Nicolas; Mermillod, Martial

    2016-10-01

    This study explores whether the vagal connection between the heart and the brain is involved in prosocial behaviors. The Polyvagal Theory postulates that vagal activity underlies prosocial tendencies. Even if several results suggest that vagal activity is associated with prosocial behaviors, none of them used behavioral measures of prosociality to establish this relationship. We recorded the resting state vagal activity (reflected by High Frequency Heart Rate Variability, HF-HRV) of 48 (42 suitale for analysis) healthy human adults and measured their level of cooperation during a hawk-dove game. We also manipulated the consequence of mutual defection in the hawk-dove game (severe vs. moderate). Results show that HF-HRV is positively and linearly related to cooperation level, but only when the consequence of mutual defection is severe (compared to moderate). This supports that i) prosocial behaviors are likely to be underpinned by vagal functioning ii) physiological disposition to cooperate interacts with environmental context. We discuss these results within the theoretical framework of the Polyvagal Theory.

  3. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  4. Cobalt Nanoparticle Inks for Printed High Frequency Applications on Polycarbonate

    NASA Astrophysics Data System (ADS)

    Nelo, Mikko; Myllymäki, Sami; Juuti, Jari; Uusimäki, Antti; Jantunen, Heli

    2015-12-01

    In this work the high frequency properties of low curing temperature cobalt nanoparticle inks printed on polycarbonate substrates were investigated. The inks consisted of 30-70 vol.% metallic cobalt nanoparticles and poly (methylene methacrylate) polymer, having excellent adhesion on polycarbonate and a curing temperature of 110°C. The influence of binder material content on the electromagnetic properties of the ink was investigated using the shorted microstrip transmission-line perturbation method. Changes in mechanical properties were evaluated with adhesion tests using the pull-out strength test and the ASTM D 3359-B cross-hatch tape peel test. The microstructure of the printed patterns was investigated with field emission scanning electron microscopy (FESEM). The inks remained mechanically durable with metal contents up to 60 vol.%, achieving pull-off strength of up to 5.2 MPa and the highest marks in adhesion of the tape peel test. The inks obtained a relative permeability of 1.5-3 in the 45 MHz-10 GHz band with a magnetic loss tangent of 0.01-0.06. The developed inks can be utilized in various printed electronics applications such as antenna miniaturization, antenna substrates and magnetic sensors or sensing.

  5. Gas transport in branched airways during high-frequency ventilation.

    PubMed

    Scherer, P W; Haselton, F R; Seybert, J R

    1984-01-01

    A theoretical model of high-frequency ventilation (HFV) is presented based on the physical convective exchange process that occurs due to the irreversibility of gas velocity profiles in oscillatory flow through the bronchial airways. Mass transport during the convective exchange process can be characterized by a convective exchange length, LE, which depends only on the irreversibility of bronchial velocity profiles and can be measured by the experimental technique of photographic flow visualization in bronchial tree models. Using the exchange length and the molecular diffusivity, a simple model of overall bronchial mass transfer is developed. The model allows a prediction of the mean gas concentration profiles along the airways, the site of maximum mass transfer resistance, and overall flow rate of the gas of interest in or out of the lung as functions of the parameters of HFV. The results predicted by the model agree with the limited experimental data available for animals and humans. For normal unassisted ventilation, total bronchial cross-sectional area around the 15th Weibel bronchial generation is predicted to be the single most important parameter in controlling the total gas transport rate along the airways. For the breathing of room air, values of the respiratory quotient around 0.78 are predicted, which are insensitive to VT and f. The model represents a fruitful combination of fluid mechanical theory and experiment with physiologic data to yield new and deeper insight into the operation of the human respiratory system during HFV and normal breathing.

  6. Most mutant OccR proteins that are defective in positive control hold operator DNA in a locked high-angle bend.

    PubMed

    Tsai, Ching-Sung; Chen, Chia-Sui; Winans, Stephen C

    2011-10-01

    OccR is a LysR-type transcriptional regulator of Agrobacterium tumefaciens that positively regulates the octopine catabolism operon of the Ti plasmid. Positive control of the occ genes occurs in response to octopine, a nutrient released from crown gall tumors. OccR also functions as an autorepressor in the presence or absence of octopine. OccR binds to a site between occQ and occR in the presence or absence of octopine, although octopine triggers a conformational change that shortens the DNA footprint and relaxes a DNA bend. In order to determine the roles of this conformational change in transcriptional activation, we isolated 11 OccR mutants that were defective in activation of the occQ promoter but were still capable of autorepression. The mutations in these mutants spanned most of the length of the protein. Two additional positive-control mutants were isolated using site-directed mutagenesis. Twelve mutant proteins displayed a high-angle DNA bend in the presence or absence of octopine. One mutant, the L26A mutant, showed ligand-responsive DNA binding similar to that of wild-type OccR and therefore must be impaired in a subsequent step in activation. PMID:21804007

  7. High shock, high frequency characteristics of a mechanical isolator for a piezoresistive accelerometer

    SciTech Connect

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1995-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories. An Extended Technical Assistance Program with the accelerometer manufacturer has resulted in a commercial isolator that will be available to the general public. This mechanical isolator has ten times the bandwidth of any other commercial isolator and has acceptable frequency domain performance from DC to 10 kHz ({plus_minus} 10%) over a temperature range of -65{degrees}F to +185{degrees}F as demonstrated in this paper.

  8. High-frequency resonant tunnelling diode oscillator with high-output power

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Alharbi, Khalid; Ofiare, Afesomeh; Khalid, Ata; Cumming, David; Wasige, Edward

    2015-10-01

    In this paper, a prototype G-band (140 GHz-220 GHz) monolithic microwave integrated circuit (MMIC) resonant tunneling diode (RTD) oscillator is reported. The oscillator employs two In0.53Ga0.47As/AlAs RTD devices in the circuit to increase the output power. The measured output power was about 0.34 mW (-4.7 dBm) at 165.7 GHz, which is the highest power reported for RTD oscillator in G-band frequency range. This result demonstrates the validity of the high frequency/high power RTD oscillator design. It indicates that RTD devices, as one of the terahertz (THz) source candidates, have promising future for room-temperature THz applications in such as imaging, wireless communication and spectroscopy analysis, etc. By optimizing RTD oscillator design, it is expected that considerably higher power (>1 mW) at THz frequencies (>300 GHz) will be obtained.

  9. REVIEW ARTICLE: The high-frequency dynamics of liquid water

    NASA Astrophysics Data System (ADS)

    Ruocco, Giancarlo; Sette, Francesco

    1999-06-01

    This article is dedicated to reviewing the recent inelastic x-ray scattering (IXS) work on the high-frequency collective dynamics in liquid water. The results obtained with the IXS technique are directly compared with existing ones from inelastic neutron scattering (INS) and molecular dynamics simulation investigations that were carried out with the aim of achieving an understanding of the collective properties of water at the microscopic level. The IXS work has made it possible to demonstrate experimentally the existence, in the range of exchange momentum (Q) examined (1-10 nm-1), of two branches of collective modes: one linearly dispersing with Q (with the apparent sound velocity of icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>3200 m s-1) and the other at almost constant energy (5-7 meV). It has been possible to show that the dispersing branch originates from an upwards bend of the ordinary sound branch observed in low-frequency measurements. The study of this sound velocity dispersion, marking a transition from the ordinary sound, co, to the `fast' sound, cicons/Journals/Common/infty" ALT="infty" ALIGN="MIDDLE"/>, as a function of temperature, has made it possible to relate the origin of this phenomenon to a structural relaxation process, which presents many analogies with those observed for glass-forming systems. The possibility of estimating from the IXS data the value of the relaxation time, icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/>, as a function of temperature leads to a relating of the relaxation process to the structural rearrangements induced by the making and breaking of hydrogen bonds. In this framework, it is then possible to recognize a hydrodynamical `normal' regime, i.e. one for which the density fluctuations have a period of oscillation that is on a timescale that is long with respect to icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/>, and a solid-like regime in the opposite limit. In the latter regime, the density

  10. High-frequency solitons in media with induced scattering from damped low-frequency waves with nonuniform dispersion and nonlinearity

    SciTech Connect

    Aseeva, N. V. Gromov, E. M.; Tyutin, V. V.

    2015-12-15

    The dynamics of high-frequency field solitons is considered using the extended nonhomogeneous nonlinear Schrödinger equation with induced scattering from damped low-frequency waves (pseudoinduced scattering). This scattering is a 3D analog of the stimulated Raman scattering from temporal spatially homogeneous damped low-frequency modes, which is well known in optics. Spatial inhomogeneities of secondorder linear dispersion and cubic nonlinearity are also taken into account. It is shown that the shift in the 3D spectrum of soliton wavenumbers toward the short-wavelength region is due to nonlinearity increasing in coordinate and to decreasing dispersion. Analytic results are confirmed by numerical calculations.

  11. [Isolation of a high hydrogen-producing mutant TB34 generated by transposon insertion and analysis of hydrogen production].

    PubMed

    Liu, Hong-Yan; Wang, Guang-Ce; Shi, Liu-Yang; Zhu, Da-Ling

    2012-07-01

    To increase the hydrogen-producing capacity of Pantoea agglomerans BH18, isolated from mangrove sludge, we constructed a stable transposon mutagenesis library of this strain. A Tn7-based transposon was randomly inserted into the genomic DNA. Mutants were screened by kanamycin resistance and identified by amplification of the inserted transposon sequences. A mutant strain TB34 was isolated, whose hydrogen production capacity was significantly improved compared to the wild type strain. In seawater-containing medium supplemented with 10 g x L(-1) glucose and had an initial pH of 7.0, the hydrogen yield (H2/glucose) of the mutant strain was (2.04 +/- 0.04) mol x mol(-1), which was 43% higher than that of the wild type strain. The mutant TB34 showed steady hydrogen production capacity for five consecutive passages. Different carbon sources were tested in the hydrogen production by the mutant TB34 and the results showed that both the mutant strain TB34 and the wild type strain BH18 were able to produce hydrogen on sucrose, glucose and fructose. However, different from the wild type strain, the mutant strain TB34 was also able to produce hydrogen using xylose as substrate, with a hydrogen yield (H2/xylose) of (1.34 +/- 0.09) mol x mol(-1), indicating a broader substrate spectrum in the mutant.

  12. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS

    PubMed Central

    Hodgkin, Jonathan; Horvitz, H. Robert; Brenner, Sydney

    1979-01-01

    The frequency of males (5AA; XO) among the self progeny of wild-type Caenorhabditis elegans hermaphrodites (5AA; XX) is about one in 500. Fifteen him (for "high incidence of males") mutations have been identified that increase this frequency by a factor of ten to 150, as a result of increased X-chromosome nondisjunction. The mutations define ten complementation groups, which have been mapped: nine are autosomal, and one sex linked. Most of the mutants are superficially wild type in anatomy and behavior; however, him-4 mutants display gonadal abnormalities, and unc-86 mutants, which have a Him phenotype, exhibit a variety of anatomical and behavioral abnormalities. All the mutants segregate fertile 3X hermaphrodite progeny as well as XO male progeny. Some produce large numbers of inviable zygotes. Mutants in all ten genes produce diplo-X and nullo-X exceptional ova, and in the four strains tested, diplo-X and nullo-X exceptional sperm are produced by 2X "transformed" males. It appears likely that most of the mutants have defects in both gamete lines of the hermaphrodite. XO males of him strains other than him-4 and unc-86 are similar to wild-type males in anatomy and behavior, and all produce equal or almost equal numbers of haplo-X and nullo-X sperm, and no diplo-X sperm. Male fertility is reduced to varying extents in all him mutants. In four of the strains, nondisjunction during oogenesis has been shown to occur at a reductional division, and in three of these strains, abnormalities in recombination have been demonstrated. One mutant also exhibits autosomal nondisjunction, but many of the others probably do not. Therefore, the X chromosome of C. elegans may differ from the autosomes in the mechanisms controlling its meiotic behavior.——3X hermaphrodites are shorter and less fertile than 2X hermaphrodites, and they produce many inviable zygotes among their self progeny: these are probably 4X zygotes. Haplo-X and diplo-X ova are produced in 2:1 ratio by 3X

  13. Extremely high frequency sensitivity in a 'simple' ear.

    PubMed

    Moir, Hannah M; Jackson, Joseph C; Windmill, James F C

    2013-08-23

    An evolutionary war is being played out between the bat, which uses ultrasonic calls to locate insect prey, and the moth, which uses microscale ears to listen for the approaching bat. While the highest known frequency of bat echolocation calls is 212 kHz, the upper limit of moth hearing is considered much lower. Here, we show that the greater wax moth, Galleria mellonella, is capable of hearing ultrasonic frequencies approaching 300 kHz; the highest frequency sensitivity of any animal. With auditory frequency sensitivity that is unprecedented in the animal kingdom, the greater wax moth is ready and armed for any echolocation call adaptations made by the bat in the on-going bat-moth evolutionary war.

  14. Source conductance scaling for high frequency superconducting quasiparticle receivers

    NASA Technical Reports Server (NTRS)

    Ke, Qing; Feldman, M. J.

    1992-01-01

    It has been suggested that the optimum source conductance G(sub s) for the superconductor-insulator-superconductor (SIS) quasiparticle mixer should have a l/f dependence. This would imply that the critical current density of SIS junctions used for mixing should increase as frequency squared, a stringent constraint on the design of submillimeter SIS mixers, rather than in simple proportion to frequency as previously believed. We have used Tucker's quantum theory of mixing for extensive numerical calculations to determine G(sub s) for an optimized SIS receiver. We find that G(sub s) is very roughly independent of frequency (except for the best junctions at low frequency), and discuss the implications of our results for the design of submillimeter SIS mixers.

  15. High-frequency and high-quality silicon carbide optomechanical microresonators

    PubMed Central

    Lu, Xiyuan; Lee, Jonathan Y.; Lin, Qiang

    2015-01-01

    Silicon carbide (SiC) exhibits excellent material properties attractive for broad applications. We demonstrate the first SiC optomechanical microresonators that integrate high mechanical frequency, high mechanical quality, and high optical quality into a single device. The radial-breathing mechanical mode has a mechanical frequency up to 1.69 GHz with a mechanical Q around 5500 in atmosphere, which corresponds to a fm · Qm product as high as 9.47 × 1012 Hz. The strong optomechanical coupling allows us to efficiently excite and probe the coherent mechanical oscillation by optical waves. The demonstrated devices, in combination with the superior thermal property, chemical inertness, and defect characteristics of SiC, show great potential for applications in metrology, sensing, and quantum photonics, particularly in harsh environments that are challenging for other device platforms. PMID:26585637

  16. High-frequency and high-quality silicon carbide optomechanical microresonators.

    PubMed

    Lu, Xiyuan; Lee, Jonathan Y; Lin, Qiang

    2015-01-01

    Silicon carbide (SiC) exhibits excellent material properties attractive for broad applications. We demonstrate the first SiC optomechanical microresonators that integrate high mechanical frequency, high mechanical quality, and high optical quality into a single device. The radial-breathing mechanical mode has a mechanical frequency up to 1.69 GHz with a mechanical Q around 5500 in atmosphere, which corresponds to a fm · Qm product as high as 9.47 × 10(12) Hz. The strong optomechanical coupling allows us to efficiently excite and probe the coherent mechanical oscillation by optical waves. The demonstrated devices, in combination with the superior thermal property, chemical inertness, and defect characteristics of SiC, show great potential for applications in metrology, sensing, and quantum photonics, particularly in harsh environments that are challenging for other device platforms. PMID:26585637

  17. Lateralization of High-Frequency Clicks Based on Interaural Time: Additivity of Information across Frequency

    NASA Astrophysics Data System (ADS)

    Wenzel, Elizabeth Marie

    Lateralization performance based on interaural differences of time (IDTs) was measured for trains of Gaussian clicks which varied in spectral content. In the first experiment, thresholds ((DELTA)IDTs) were measured as a function of the number of clicks in the train (n = 1 to 32), the interclick interval (ICI = 2.5 or 5 ms), and the spectral content (1 vs. 2 or 4 carriers). Subjects' performance was compared to perfect statistical summation which predicts slopes of -.50 when log-(DELTA)IDT vs. long -n is plotted. The results showed that increasing the spectral content of the clicks decreased the intercepts of the log -log functions (decreased thresholds) while having little effect on their slopes. Shortening the ICIs caused the slopes of the functions to decrease in absolute value. To estimate the bandwidth of frequency-interaction in lateralization, d's were measured for clicks with constant IDTs (n = 1) with a fixed carrier (FF = 4000, 5200, 6000 or 7200 Hz), both alone and combined with a second click whose carrier (F) varied from 3500 to 8500 Hz. Performance in combined conditions was compared to independent summation of the information carried by the two frequency-bands. Performance improved as the separation between F and FF increased until the level predicted by independence was reached. The final experiment investigated the interaction of frequency content with IDT. d's were measured as a function of the IDT in clicks with carriers of 5200, 6000 or 7200 Hz, both alone and combined with a 4000-Hz click with a fixed IDT. Performance in combined conditions was again compared to independent additivity. The improvement with frequency was explained by an increase in the number of samples of the IDT reaching the binaural centers due to spread of excitation along the basilar membrane. Less than independent summation was explained by correlation between overlapping bands which reduced the amount of information exciting independent channels. The data also suggest that

  18. Magnetoencephalography Detection of High-Frequency Oscillations in the Developing Brain

    PubMed Central

    Leiken, Kimberly; Xiang, Jing; Zhang, Fawen; Shi, Jingping; Tang, Lu; Liu, Hongxing; Wang, Xiaoshan

    2014-01-01

    Increasing evidence from invasive intracranial recordings suggests that the matured brain generates both physiological and pathological high-frequency signals. The present study was designed to detect high-frequency brain signals in the developing brain using newly developed magnetoencephalography (MEG) methods. Twenty healthy children were studied with a high-sampling rate MEG system. Functional high-frequency brain signals were evoked by electrical stimulation applied to the index fingers. To determine if the high-frequency neuromagnetic signals are true brain responses in high-frequency range, we analyzed the MEG data using the conventional averaging as well as newly developed time-frequency analysis along with beamforming. The data of healthy children showed that very high-frequency brain signals (>1000 Hz) in the somatosensory cortex in the developing brain could be detected and localized using MEG. The amplitude of very high-frequency brain signals was significantly weaker than that of the low-frequency brain signals. Very high-frequency brain signals showed a much earlier latency than those of a low-frequency. Magnetic source imaging (MSI) revealed that a portion of the high-frequency signals was from the somatosensory cortex, another portion of the high-frequency signals was probably from the thalamus. Our results provide evidence that the developing brain generates high-frequency signals that can be detected with the non-invasive technique of MEG. MEG detection of high-frequency brain signals may open a new window for the study of developing brain function. PMID:25566015

  19. High bandwidth synaptic communication and frequency tracking in human neocortex.

    PubMed

    Testa-Silva, Guilherme; Verhoog, Matthijs B; Linaro, Daniele; de Kock, Christiaan P J; Baayen, Johannes C; Meredith, Rhiannon M; De Zeeuw, Chris I; Giugliano, Michele; Mansvelder, Huibert D

    2014-11-01

    Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from connected pairs of pyramidal neurons in acute brain slices of adult human and mouse temporal cortex and probed the dynamical properties of use-dependent plasticity. We found that human synaptic connections were purely depressing and that they recovered three to four times more swiftly from depression than synapses in rodent neocortex. Thereby, during realistic spike trains, the temporal resolution of synaptic information exchange in human synapses substantially surpasses that in mice. Using information theory, we calculate that information transfer between human pyramidal neurons exceeds that of mouse pyramidal neurons by four to nine times, well into the beta and gamma frequency range. In addition, we found that human principal cells tracked fine temporal features, conveyed in received synaptic inputs, at a wider bandwidth than for rodents. Action potential firing probability was reliably phase-locked to input transients up to 1,000 cycles/s because of a steep onset of action potentials in human pyramidal neurons during spike trains, unlike in rodent neurons. Our data show that, in contrast to the widely held views of limited information transfer in rodent depressing synapses, fast recovering synapses of human neurons can actually transfer substantial amounts of information during spike trains. In addition, human pyramidal neurons are equipped to encode high synaptic information content. Thus, adult human cortical microcircuits relay information at a wider bandwidth than rodent microcircuits.

  20. Catchment Very-High Frequency Hydrochemistry: the Critex Chemical House

    NASA Astrophysics Data System (ADS)

    Floury, P.; Gaillardet, J.; Tallec, G.; Blanchouin, A.; Ansart, P.

    2015-12-01

    Exploring the variations of river quality at very high frequency is still a big challenge that has fundamental implications both for understanding catchment ecosystems and for water quality monitoring. Within the French Critical Zone program CRITEX, we have proposed to develop a prototype called "Chemical House", applying the "lab on field" concept to one of the stream of the Orgeval Critical Zone Observatory. The Orgeval catchment (45 km2) is part of the Critical Zone RBV ("Réseau des bassins versants") network. It is a typical temperate agricultural catchment that has been intensively monitored for the last 50 years for hydrology and nutrient chemistry. Agricultural inputs and land use are also finely monitored making Orgeval an ideal basin to test the response of the Critical Zone to agricultural forcing. Geology consists of a typical sedimentary basin of Cenozoic age with horizontal layers of limestones, silcrete and marls, covered by a thin loamy layer. Two main aquifers are present within the catchment: the Brie and the Champigny aquifers. Mean runoff is 780 mm/yr. The Chemical House is a fully automated lab and installed directly along the river, which performs measurement of all major dissolved elements such as Na, Cl, Mg, Ca, NO3, SO4 and K every half hour. It also records all physical parameters (Temperature, pH, conductivity, O2 dissolved, Turbidity) of the water every minute. Orgeval Chemical House started to measure river chemistry on June 12, 2015 and has successfully now recorded several months of data. We will present the architecture of the Chemical House and the first reproducibility and accuracy tests made during the summer drought 2015 period. Preliminary results show that the chemical house is recoding significant nychtemeral (day/night) cycles for each element. We also observe that each element has its own behaviour along a day. First results open great prospects.

  1. Achieving High-Frequency Optical Control of Synaptic Transmission

    PubMed Central

    Jackman, Skyler L.; Beneduce, Brandon M.; Drew, Iain R.

    2014-01-01

    The optogenetic tool channelrhodopsin-2 (ChR2) is widely used to excite neurons to study neural circuits. Previous optogenetic studies of synapses suggest that light-evoked synaptic responses often exhibit artificial synaptic depression, which has been attributed to either the inability of ChR2 to reliably fire presynaptic axons or to ChR2 elevating the probability of release by depolarizing presynaptic boutons. Here, we compare light-evoked and electrically evoked synaptic responses for high-frequency stimulation at three synapses in the mouse brain. At synapses from Purkinje cells to deep cerebellar nuclei neurons (PC→DCN), light- and electrically evoked synaptic currents were remarkably similar for ChR2 expressed transgenically or with adeno-associated virus (AAV) expression vectors. For hippocampal CA3→CA1 synapses, AAV expression vectors of serotype 1, 5, and 8 led to light-evoked synaptic currents that depressed much more than electrically evoked currents, even though ChR2 could fire axons reliably at up to 50 Hz. The disparity between optical and electrical stimulation was eliminated when ChR2 was expressed transgenically or with AAV9. For cerebellar granule cell to stellate cell (grc→SC) synapses, AAV1 also led to artificial synaptic depression and AAV9 provided superior performance. Artificial synaptic depression also occurred when stimulating over presynaptic boutons, rather than axons, at CA3→CA1 synapses, but not at PC→DCN synapses. These findings indicate that ChR2 expression methods and light stimulation techniques influence synaptic responses in a neuron-specific manner. They also identify pitfalls associated with using ChR2 to study synapses and suggest an approach that allows optogenetics to be applied in a manner that helps to avoid potential complications. PMID:24872574

  2. Spatial and frequency coherence of oblique, one-hop, high-frequency paths

    SciTech Connect

    Fitzgerald, T.J.

    1995-10-01

    We consider the effect of random index of refraction fluctuations upon long-distance, ionospherically-reflected, hf paths. Along with deterministic effects such as multipath and dispersion, such fluctuations have a deleterious impact on hf communication including nonabsorptive fading, time-of-arrival spread, angle-of-arrival spread, and Doppler spread. We develop a formalism to calculate the mutual coherence functions for spatial and frequency separations based upon a path integral solution of the parabolic wave equation for a single refracted path through an ionosphere which contains random electron density fluctuations. The statistics of the hf path depend directly on the strength and statistics of the electron density fluctuations; we model the spatial power spectrum of the density fluctuation as a power law behavior versus frequency and with outer and inner scales.

  3. High frequency ultrasonic-assisted CO2 absorption in a high pressure water batch system.

    PubMed

    Tay, W H; Lau, K K; Shariff, A M

    2016-11-01

    Physical absorption process is always nullified by the presence of cavitation under low frequency ultrasonic irradiation. In the present study, high frequency ultrasonic of 1.7MHz was used for the physical absorption of CO2 in a water batch system under elevated pressure. The parameters including ultrasonic power and initial feed pressure for the system have been varied from 0 to 18W and 6 to 41bar, respectively. The mass transfer coefficient has been determined via the dynamic pressure-step method. Besides, the actual ultrasonic power that transmitted to the liquid was measured based on calorimetric method prior to the absorption study. Subsequently, desorption study was conducted as a comparison with the absorption process. The mechanism for the ultrasonic assisted absorption has also been discussed. Based on the results, the mass transfer coefficient has increased with the increasing of ultrasonic power. It means that, the presence of streaming effect and the formation of liquid fountain is more favorable under high frequency ultrasonic irradiation for the absorption process. Therefore, high frequency ultrasonic irradiation is suggested to be one of the potential alternatives for the gas separation process with its promising absorption enhancement and compact design. PMID:27245970

  4. High frequency ultrasonic-assisted CO2 absorption in a high pressure water batch system.

    PubMed

    Tay, W H; Lau, K K; Shariff, A M

    2016-11-01

    Physical absorption process is always nullified by the presence of cavitation under low frequency ultrasonic irradiation. In the present study, high frequency ultrasonic of 1.7MHz was used for the physical absorption of CO2 in a water batch system under elevated pressure. The parameters including ultrasonic power and initial feed pressure for the system have been varied from 0 to 18W and 6 to 41bar, respectively. The mass transfer coefficient has been determined via the dynamic pressure-step method. Besides, the actual ultrasonic power that transmitted to the liquid was measured based on calorimetric method prior to the absorption study. Subsequently, desorption study was conducted as a comparison with the absorption process. The mechanism for the ultrasonic assisted absorption has also been discussed. Based on the results, the mass transfer coefficient has increased with the increasing of ultrasonic power. It means that, the presence of streaming effect and the formation of liquid fountain is more favorable under high frequency ultrasonic irradiation for the absorption process. Therefore, high frequency ultrasonic irradiation is suggested to be one of the potential alternatives for the gas separation process with its promising absorption enhancement and compact design.

  5. High-resolution mapping and genetic characterization of the Lazy-2 gravitropic mutant of tomato

    NASA Technical Reports Server (NTRS)

    Behringer, F. J.; Lomax, T. L.

    1999-01-01

    Mutation of the Lazy-2 (Lz-2) gene in tomato (Lycopersicon esculentum mill.) produces a phytochrome-dependent reversal of shoot gravitropism, providing a unique genetic resource for investigating how signals from light modulate gravitropism. We mapped the Lz-2 gene using RFLPs and a PCR-based technique to assess the feasibility of positional cloning. Analysis of a 1338 plant backcross population between L. esculentum and L. pennellii placed Lz-2 within a 1.2 cM interval on chromosome 5, 0.4 cM from TG504-CT201A interval. The inabililty to resolve these markers indicates that Lz-2 resides in a centromeric region in which recombination is highly suppressed. Lazy-2 is tightly linked to but does not encode the gene for ACC4, an enzyme involved in ethylene biosynthesis. We also observed that Lz-2 is partially dominant under certain conditions and stages of development.

  6. Nonlinear low frequency water waves in a cylindrical shell subjected to high frequency excitations - Part I: Experimental study

    NASA Astrophysics Data System (ADS)

    Dajun, Wang; Chunyan, Zhou; Li, Junbao; Shen, Song; Li, Min; Liu, Xijun

    2013-07-01

    This paper presents an experimental investigation on nonlinear low frequency gravity water waves in a partially filled cylindrical shell subjected to high frequency horizontal excitations. The characteristics of natural frequencies and mode shapes of the water-shell coupled system are discussed. The boundaries for onset of gravity waves are measured and plotted by curves of critical excitation force magnitude with respect to excitation frequency. For nonlinear water waves, the time history signals and their spectrums of motion on both water surface and shell are recorded. The shapes of water surface are also measured using scanning laser vibrometer. In particular, the phenomenon of transitions between different gravity wave patterns is observed and expressed by the waterfall graphs. These results exhibit pronounced nonlinear properties of shell-fluid coupled system.

  7. Inherited structural cytogenetic abnormalities detected incidentally in fetuses diagnosed prenatally: frequency, parental-age associations, sex-ratio trends, and comparisons with rates of mutants.

    PubMed Central

    Hook, E B; Schreinemachers, D M; Willey, A M; Cross, P K

    1984-01-01

    Rates of structural chromosome abnormalities were analyzed in 24,951 fetuses studied prenatally in which there were no grounds to suspect an inherited abnormality. In about one in 200 prenatal cytogenetic diagnoses, an unexpected structural abnormality was found. The observed rate was 5.3 per 1,000, of which 1.7 per 1,000 were unbalanced and 3.6 per 1,000 balanced. The rate of inherited abnormalities was 3.1-3.7 per 1,000 (0.4-0.9 per 1,000 for unbalanced abnormalities and 2.6-2.8 per 1,000 for balanced abnormalities). The rate of mutants in this series was, by contrast, 1.6-2.2 per 1,000 (0.8-1.2 per 1,000 for unbalanced abnormalities and 0.8-1.0 per 1,000 for balanced abnormalities). The rate of balanced Robertsonian translocation carriers was 0.6 per 1,000 (about 0.25 per 1,000 for mutants and 0.35 per 1,000 for inherited abnormalities), and for other balanced abnormalities, 3.0 per 1,000 (about 0.6 per 1,000 for mutants and 2.4 per 1,000 for inherited abnormalities). The rates of unbalanced Robertsonian translocations was about 0.1 per 1,000, almost all of which were mutants. For supernumerary rearrangements, the rate was 0.9 per 1,000 (about 0.4 per 1,000 inherited and 0.5 per 1,000 mutant). The rates of all unbalanced (nonmosaic) inherited abnormalities (4.0-5.2 per 10,000) were intermediate between higher rates estimated in all conceptuses (9.1-15.8 per 10,000) and rates observed in newborns (1.5-2.5 per 10,000). This trend is probably attributable to fetal mortality associated with unbalanced rearrangements. The rates of balanced (nonmosaic) inherited abnormalities (26.0-28.0 per 10,000), however, were considerably higher than the rates in all conceptuses (13-16.7 per 10,000) or in all live births (12.2-16.0 per 10,000). The major difference was in the rate of inversions. The use of "banding" methods in the studies of amniocentesis but not in most of the live births or abortus studies probably contributes to at least some of these differences. One trend in

  8. The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high levels of Dsz enzymes in the presence of sulfate.

    PubMed

    Tanaka, Yasuhiro; Yoshikawa, Osamu; Maruhashi, Kenji; Kurane, Ryuichiro

    2002-11-01

    Two mutants of the dibenzothiophene-desulfurizing Rhodococcus erythropolis KA2-5-1, strains MS51 and MS316, which express a high level of desulfurizing activity in the presence of sulfate, were isolated using the transposome technique. The level of dibenzothiophene-desulfurization by cell-free extracts prepared from mutants MS51 and MS316 grown on sulfate was about five-fold higher than that by cell-free extracts of the wild-type. This result was consistent with results of Western-blot analysis using antisera specific for DszA, DszB and DszC, the enzymes involved in the desulfurization of dibenzothiophene. Gene analysis of the mutants revealed that the same gene was disrupted in mutants MS51 and MS316 and that the transposon-inserted gene in these strains was the gene for cystathionine beta-synthase, cbs. The cbs mutants also expressed high levels of Dsz enzymes when methionine was used as the sole source of sulfur.

  9. Evolved Streptavidin Mutants Reveal Key Role of Loop Residue in High-affinity Binding

    SciTech Connect

    M Magalhaes; C Melo Czekster; R Guan; V Malashkevich; S Almo; M Levy

    2011-12-31

    We have performed a detailed analysis of streptavidin variants with altered specificity towards desthiobiotin. In addition to changes in key residues which widen the ligand binding pocket and accommodate the more structurally flexible desthiobiotin, the data revealed the role of a key, non-active site mutation at the base of the flexible loop (S52G) which slows dissociation of this ligand by approximately sevenfold. Our data suggest that this mutation results in the loss of a stabilizing contact which keeps this loop open and accessible in the absence of ligand. When this mutation was introduced into the wild-type protein, destabilization of the opened loop conferred a {approx}10-fold decrease in both the on-rate and off-rate for the ligand biotin-4-fluoroscein. A similar effect was observed when this mutation was added to a monomeric form of this protein. Our results provide key insight into the role of the streptavidin flexible loop in ligand binding and maintaining high affinity interactions.

  10. Dual-Beam Histotripsy: A Low-Frequency Pump Enabling a High-Frequency Probe for Precise Lesion Formation

    PubMed Central

    Lin, Kuang-Wei; Duryea, Alexander P.; Kim, Yohan; Hall, Timothy L.; Xu, Zhen; Cain, Charles A.

    2014-01-01

    Histotripsy produces tissue fractionation through dense energetic bubble clouds generated by short, high-pressure, ultrasound pulses. When using pulses shorter than 2 cycles, the generation of these energetic bubble clouds only depends on where the peak negative pressure (P–) exceeds an intrinsic threshold of a medium (26 – 30 MPa in soft tissue with high water content). This paper investigates a strategic method for precise lesion generation in which a low-frequency pump pulse is applied to enable a sub-threshold high-frequency probe pulse to exceed the intrinsic threshold. This pump-probe method of controlling a supra-threshold volume can be called “dual-beam histotripsy.” A 20-element dual-frequency (500 kHz and 3 MHz elements confocally aligned) array transducer was used to generate dual-beam histotripsy pulses in RBC phantoms and porcine hepatic tissue specimens. The results showed that, when sub-intrinsic-threshold pump (500 kHz) and probe (3 MHz) pulses were applied together, dense bubble clouds (and resulting lesions) were only generated when their peak negative pressures combined constructively to exceed the intrinsic threshold. The smallest reproducible lesion varied with the relative amplitude between the pump and probe pulses, and, with a higher proportion of the probe pulse, smaller lesions could be generated. When the propagation direction of the probe pulse relative to the pump pulse was altered, the shape of the produced lesion changed based on the region that exceeded intrinsic threshold. Since the low-frequency pump pulse is more immune to attenuation and aberrations, and the high-frequency probe pulse can provide precision in lesion formation, this dual-beam histotripsy approach would be very useful in situations where precise lesion formation is required through a highly attenuative and aberrative medium, such as transcranial therapy. This is particularly true if a small low-attenuation acoustic window is available for the high-frequency

  11. Dual-beam histotripsy: a low-frequency pump enabling a high-frequency probe for precise lesion formation.

    PubMed

    Lin, Kuang-Wei; Duryea, Alexander P; Kim, Yohan; Hall, Timothy L; Xu, Zhen; Cain, Charles A

    2014-02-01

    Histotripsy produces tissue fractionation through dense energetic bubble clouds generated by short, high-pressure, ultrasound pulses. When using pulses shorter than 2 cycles, the generation of these energetic bubble clouds only depends on where the peak negative pressure (P-) exceeds the intrinsic threshold of the medium (26 to 30 MPa in soft tissue with high water content). This paper investigates a strategic method for precise lesion generation in which a low-frequency pump pulse is applied to enable a sub-threshold high-frequency probe pulse to exceed the intrinsic threshold. This pump-probe method of controlling a supra-threshold volume can be called dual-beam histotripsy. A 20-element dual-frequency (500-kHz and 3-MHz elements confocally aligned) array transducer was used to generate dual-beam histotripsy pulses in red blood cell phantoms and porcine hepatic tissue specimens. The results showed that when sub-intrinsic-threshold pump (500-kHz) and probe (3-MHz) pulses were applied together, dense bubble clouds (and resulting lesions) were only generated when their peak negative pressures combined constructively to exceed the intrinsic threshold. The smallest reproducible lesion varied with the relative amplitude between the pump and probe pulses, and, with a higher proportion of the probe pulse, smaller lesions could be generated. When the propagation direction of the probe pulse relative to the pump pulse was altered, the shape of the produced lesion changed based on the region that exceeded intrinsic threshold. Because the low-frequency pump pulse is more immune to attenuation and aberrations, and the high-frequency probe pulse can provide precision in lesion formation, this dual-beam histotripsy approach would be very useful in situations in which precise lesion formation is required through a highly attenuative and aberrative medium, such as transcranial therapy. This is particularly true if a small low-attenuation acoustic window is available for the high-frequency

  12. Dual-beam histotripsy: a low-frequency pump enabling a high-frequency probe for precise lesion formation.

    PubMed

    Lin, Kuang-Wei; Duryea, Alexander P; Kim, Yohan; Hall, Timothy L; Xu, Zhen; Cain, Charles A

    2014-02-01

    Histotripsy produces tissue fractionation through dense energetic bubble clouds generated by short, high-pressure, ultrasound pulses. When using pulses shorter than 2 cycles, the generation of these energetic bubble clouds only depends on where the peak negative pressure (P-) exceeds the intrinsic threshold of the medium (26 to 30 MPa in soft tissue with high water content). This paper investigates a strategic method for precise lesion generation in which a low-frequency pump pulse is applied to enable a sub-threshold high-frequency probe pulse to exceed the intrinsic threshold. This pump-probe method of controlling a supra-threshold volume can be called dual-beam histotripsy. A 20-element dual-frequency (500-kHz and 3-MHz elements confocally aligned) array transducer was used to generate dual-beam histotripsy pulses in red blood cell phantoms and porcine hepatic tissue specimens. The results showed that when sub-intrinsic-threshold pump (500-kHz) and probe (3-MHz) pulses were applied together, dense bubble clouds (and resulting lesions) were only generated when their peak negative pressures combined constructively to exceed the intrinsic threshold. The smallest reproducible lesion varied with the relative amplitude between the pump and probe pulses, and, with a higher proportion of the probe pulse, smaller lesions could be generated. When the propagation direction of the probe pulse relative to the pump pulse was altered, the shape of the produced lesion changed based on the region that exceeded intrinsic threshold. Because the low-frequency pump pulse is more immune to attenuation and aberrations, and the high-frequency probe pulse can provide precision in lesion formation, this dual-beam histotripsy approach would be very useful in situations in which precise lesion formation is required through a highly attenuative and aberrative medium, such as transcranial therapy. This is particularly true if a small low-attenuation acoustic window is available for the high-frequency

  13. High frequency magnetization dynamics of ferromagnetic nano-structures

    NASA Astrophysics Data System (ADS)

    Zohar, Sioan

    The development of smaller high frequency magnetic devices with new functionalities requires a more thorough understanding of magnetization dynamics. This thesis documents research into ultrafast magnetization dynamics in ferromagnetic nanoscale materials and summarizes the theoretical foundations and measurement techniques. We present our investigation into the microwave properties of monodisperse, superparamagnetic Fe2O3 nanoparticle arrays using broadband ferromagnetic resonance. We identified a novel field-for resonance relationship in the films. Compared with ferromagnetic films of equal magnetization, resonance frequencies are decreased for in-plane magnetization and increased for out-of-plane magnetization, over the range 0--8 Ghz. The behavior identified is that of a superparamagnetic thin film, where thin-film dipolar fields act on a gradually saturating magnetization described by the Langevin function. Resonance linewidths can be described by the natural dispersion in properties of the system. The second section addresses magnetization dynamics in metalic heterostructures, where the component ultrathin films have nanometer scale dimensions. We have searched for a signature of nonlocal magnetization dynamics, or magnetization dynamics driven by pure spin currents ("spin pumping"), in magnetically soft, polycrystalline Ni81Fe19/Cu/Co93Zr7 tri-layers using ferromagnetic resonance. An interface-related enhancement of damping is expected for each ferromagnetic layer when incorporated in a tri-layer; the enhancement should be absent where layer resonances overlap. While size effects in Gilbert damping have been identified, we note that expectations specific to spin pumping are not confirmed. We have also observed this effect in Ni81Fe19/Cu/Ni81Fe19/Mn 50Fe50 exchange biased spin valves with clearly defined giant magneto-resistance (GMR). Finally, we have investigated the dynamic effects in these films using a novel time-resolved x-ray technique. The reciprocal

  14. Measurements and Predictions of High Frequency Ambient Noise

    NASA Astrophysics Data System (ADS)

    Holden, Andrew

    2004-11-01

    A great deal has been published on ambient noise. Most of this has covered (a) omni directional levels, and (b) the vertical and horizontal directivity of shipping noise at low frequencies. There is some published material on the vertical directivity of wind generated noise at lower frequencies, but very little at higher frequencies. In order to study wind generated ambient noise at higher frequencies, work has recently started using a small planar array from QinetiQ Bincleaves. As well as measurements, a model called CANARY has been written to predict ambient noise vertical directivity and array responses to this noise. This paper contains some comparisons between CANARY predictions and (a) previous measured vertical directivity data at 4.5 kHz, (b) measured omni-directional data, and (c) initial analysis of the planar array measurements. The paper shows the nature of the ambient noise vertical structure at higher frequencies and that the CANARY predictions are in good agreement with the measurements.

  15. High-frequency electrostatic waves near earth's bow shock

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Holzworth, R. H.; Koons, H. C.; Bauer, O. H.; Gurnett, D. A.

    1989-01-01

    Electrostatic wave measurements from the Active Magnetospheric Particle Tracer Explorer Ion Release Module have been used to investigate the wave modes and their possible generation mechanisms in the earth's bow shock and magnetosheath. It is demonstrated that electrostatic waves are present in the bow shock and magnetosheath with frequencies above the maximum frequency for Doppler-shifted ion acoustic waves, yet below the plasma frequency. Waves in this frequency range are tentatively identified as electron beam mode waves. Data from 45 bow shock crossings are then used to investigate possible correlations between the electrostatic wave properties and the near-shock plasma parameters. The most significant relationships found are anticorrelations with Alfven Mach number and electron beta. Mechanisms which might produce electron beams in the shock and magnetosheath are discussed in terms of the correlation study results. These mechanisms include acceleration by the cross-shock electric field and by lower hybrid frequency waves. A magnetosheath 'time of flight' mechanism, in analogy to the electron foreshock region, is introduced as another possible beam generation mechanism.

  16. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  17. High-frequency applications of high-temperature superconductor thin films

    NASA Astrophysics Data System (ADS)

    Klein, N.

    2002-10-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.

  18. High Bone Mass-Causing Mutant LRP5 Receptors Are Resistant to Endogenous Inhibitors In Vivo.

    PubMed

    Niziolek, Paul J; MacDonald, Bryan T; Kedlaya, Rajendra; Zhang, Minjie; Bellido, Teresita; He, Xi; Warman, Matthew L; Robling, Alexander G

    2015-10-01

    Certain missense mutations affecting LRP5 cause high bone mass (HBM) in humans. Based on in vitro evidence, HBM LRP5 receptors are thought to exert their effects by providing resistance to binding/inhibition of secreted LRP5 inhibitors such as sclerostin (SOST) and Dickkopf homolog-1 (DKK1). We previously reported the creation of two Lrp5 HBM knock-in mouse models, in which the human p.A214V or p.G171V missense mutations were knocked into the endogenous Lrp5 locus. To determine whether HBM knock-in mice are resistant to SOST- or DKK1-induced osteopenia, we bred Lrp5 HBM mice with transgenic mice that overexpress human SOST in osteocytes ((8kb) Dmp1-SOST) or mouse DKK1 in osteoblasts and osteocytes ((2.3kb) Col1a1-Dkk1). We observed that the (8kb) Dmp1-SOST transgene significantly lowered whole-body bone mineral density (BMD), bone mineral content (BMC), femoral and vertebral trabecular bone volume fraction (BV/TV), and periosteal bone-formation rate (BFR) in wild-type mice but not in mice with Lrp5 p.G171V and p.A214V alleles. The (2.3kb) Col1a1-Dkk1 transgene significantly lowered whole-body BMD, BMC, and vertebral BV/TV in wild-type mice and affected p.A214V mice more than p.G171V mice. These in vivo data support in vitro studies regarding the mechanism of HBM-causing mutations, and imply that HBM LRP5 receptors differ in their relative sensitivity to inhibition by SOST and DKK1.

  19. High-bone-mass causing mutant LRP5 receptors are resistant to endogenous inhibitors in vivo†

    PubMed Central

    Niziolek, Paul J.; MacDonald, Bryan T.; Kedlaya, Rajendra; Zhang, Minjie; Bellido, Teresita; He, Xi; Warman, Matthew L.; Robling, Alexander G.

    2015-01-01

    Certain missense mutations affecting LRP5 cause high bone mass (HBM) in humans. Based on in vitro evidence, HBM LRP5 receptors are thought to exert their effects by providing resistance to binding/inhibition of secreted LRP5 inhibitors such as sclerostin (SOST) and Dickkopf homolog-1 (DKK1). We previously reported the creation of two Lrp5 HBM knock-in mouse models, in which the human p.A214V or p.G171V missense mutations were knocked into the endogenous Lrp5 locus. To determine whether HBM knock-in mice are resistant to SOST- or DKK1-induced osteopenia, we bred Lrp5 HBM mice with transgenic mice that overexpress human SOST in osteocytes (8kbDmp1-SOST) or mouse DKK1 in osteoblasts and osteocytes (2.3kbCol1a1-Dkk1). We observed that the 8kbDmp1-SOST transgene significantly lowered whole body BMD, BMC, femoral and vertebral BV/TV, and periosteal BFR in wild-type mice but not in mice with Lrp5 p.G171V and p.A214V alleles. The 2.3kbCol1a1-Dkk1 transgene significantly lowered whole body BMD, BMC, and vertebral BV/TV in wild-type mice and affected p.A214V mice more than p.G171V mice. These in vivo data support in vitro studies regarding the mechanism of HBM-causing mutations, and imply that HBM LRP5 receptors differ in their relative sensitivity to inhibition by SOST and DKK1. PMID:25808845

  20. A new genetic method for isolating functionally interacting genes: high plo1(+)-dependent mutants and their suppressors define genes in mitotic and septation pathways in fission yeast.

    PubMed Central

    Cullen, C F; May, K M; Hagan, I M; Glover, D M; Ohkura, H

    2000-01-01

    We describe a general genetic method to identify genes encoding proteins that functionally interact with and/or are good candidates for downstream targets of a particular gene product. The screen identifies mutants whose growth depends on high levels of expression of that gene. We apply this to the plo1(+) gene that encodes a fission yeast homologue of the polo-like kinases. plo1(+) regulates both spindle formation and septation. We have isolated 17 high plo1(+)-dependent (pld) mutants that show defects in mitosis or septation. Three mutants show a mitotic arrest phenotype. Among the 14 pld mutants with septation defects, 12 mapped to known loci: cdc7, cdc15, cdc11 spg1, and sid2. One of the pld mutants, cdc7-PD1, was selected for suppressor analysis. As multicopy suppressors, we isolated four known genes involved in septation in fission yeast: spg1(+), sce3(+), cdc8(+), and rho1(+), and two previously uncharacterized genes, mpd1(+) and mpd2(+). mpd1(+) exhibits high homology to phosphatidylinositol 4-phosphate 5-kinase, while mpd2(+) resembles Saccharomyces cerevisiae SMY2; both proteins are involved in the regulation of actin-mediated processes. As chromosomal suppressors of cdc7-PD1, we isolated mutations of cdc16 that resulted in multiseptation without nuclear division. cdc16(+), dma1(+), byr3(+), byr4(+) and a truncated form of the cdc7 gene were isolated by complementation of one of these cdc16 mutations. These results demonstrate that screening for high dose-dependent mutants and their suppressors is an effective approach to identify functionally interacting genes. PMID:10924454