Seeking to Improve Low Energy Neutral Atom Detection in Space
NASA Technical Reports Server (NTRS)
Shappirio, M.; Coplan, M.; Chornay, D.; Collier, M.; Herrero, F.; Ogilvie, K.; Williams, E.
2007-01-01
The detection of energetic neutral atoms allows for the remote examination of the interactions between plasmas and neutral populations in space. Before these neutral atoms can be measured, they must first be converted to ions. For the low energy end of this spectrum, interaction with a conversion surface is often the most efficient method to convert neutrals into ions. It is generally thought that the most efficient surfaces are low work functions materials. However, by their very nature, these surfaces are highly reactive and unstable, and therefore are not suitable for space missions where conditions cannot be controlled as they are in a laboratory. We therefore are looking to optimize a stable surface for conversion efficiency. Conversion efficiency can be increased either by changing the incident angle of the neutral particles to be grazing incidence and using stable surfaces with high conversion efficiencies. We have examined how to increase the angle of incidence from -80 degrees to -89 degrees, while maintaining or improving the total active conversion surface area without increasing the overall volume of the instrument. We are developing a method to micro-machine silicon, which will reduce the volume to surface area ratio by a factor of 60. We have also examined the material properties that affect the conversion efficiency of the surface for stable surfaces. Some of the parameters we have examined are work function, smoothness, and bond structure. We find that for stable surfaces, the most important property is the smoothness of the surface.
Numerical Analysis of Neutral Entrainment Effect on Field-Reversed Configuration Thruster Efficiency
2014-12-01
and acceleration. Whereas such a high Isp may be highly desirable for deep space missions, the low - Earth - orbit and geosynchronous- Earth - orbit ...Due to the aforementioned factors, the optimal conditions are achieved for low -Z plasma at high (∼50 eV) temperature and in strong magnetic fields...cannot capture strongly nonequilibrium velocity distributions of charged and neutral species typical for high-energy plasma –neutral interaction . A
Lambert, Nathaniel D.; Pankratz, V. Shane; Larrabee, Beth R.; Ogee-Nwankwo, Adaeze; Chen, Min-hsin; Icenogle, Joseph P.
2014-01-01
Rubella remains a social and economic burden due to the high incidence of congenital rubella syndrome (CRS) in some countries. For this reason, an accurate and efficient high-throughput measure of antibody response to vaccination is an important tool. In order to measure rubella-specific neutralizing antibodies in a large cohort of vaccinated individuals, a high-throughput immunocolorimetric system was developed. Statistical interpolation models were applied to the resulting titers to refine quantitative estimates of neutralizing antibody titers relative to the assayed neutralizing antibody dilutions. This assay, including the statistical methods developed, can be used to assess the neutralizing humoral immune response to rubella virus and may be adaptable for assessing the response to other viral vaccines and infectious agents. PMID:24391140
Efficient acceleration of neutral atoms in laser produced plasma
Dalui, M.; Trivikram, T. M.; Colgan, James Patrick; ...
2017-06-20
Recent advances in high-intensity laser-produced plasmas have demonstrated their potential as compact charge particle accelerators. Unlike conventional accelerators, transient quasi-static charge separation acceleration fields in laser produced plasmas are highly localized and orders of magnitude larger. Manipulating these ion accelerators, to convert the fast ions to neutral atoms with little change in momentum, transform these to a bright source of MeV atoms. The emittance of the neutral atom beam would be similar to that expected for an ion beam. Since intense laser-produced plasmas have been demonstrated to produce high-brightness-low-emittance beams, it is possible to envisage generation of high-flux, low-emittance, highmore » energy neutral atom beams in length scales of less than a millimeter. Here, we show a scheme where more than 80% of the fast ions are reduced to energetic neutral atoms and demonstrate the feasibility of a high energy neutral atom accelerator that could significantly impact applications in neutral atom lithography and diagnostics.« less
Phinney, David M; Frelka, John C; Cooperstone, Jessica L; Schwartz, Steven J; Heldman, Dennis R
2017-01-15
Lycopene is a high value nutraceutical and its isolation from waste streams is often desirable to maximize profits. This research investigated solvent addition order and composition on lycopene extraction efficiency from a commercial tomato waste stream (pH 12.5, solids ∼5%) that was neutralized using membrane filtration. Constant volume dilution (CVD) was used to desalinate the caustic salt to neutralize the waste. Acetone, ethanol and hexane were used as direct or blended additions. Extraction efficiency was defined as the amount of lycopene extracted divided by the total lycopene in the sample. The CVD operation reduced the active alkali of the waste from 0.66 to <0.01M and the moisture content of the pulp increased from 93% to 97% (wet basis), showing the removal of caustic salts from the waste. Extraction efficiency varied from 32.5% to 94.5%. This study demonstrates a lab scale feasibility to extract lycopene efficiently from tomato processing byproducts. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Kurt A.; Settembre, Ethan C.; Shaw, Christine A.
2012-02-07
Respiratory syncytial virus (RSV), the main cause of infant bronchiolitis, remains a major unmet vaccine need despite more than 40 years of vaccine research. Vaccine candidates based on a chief RSV neutralization antigen, the fusion (F) glycoprotein, have foundered due to problems with stability, purity, reproducibility, and potency. Crystal structures of related parainfluenza F glycoproteins have revealed a large conformational change between the prefusion and postfusion states, suggesting that postfusion F antigens might not efficiently elicit neutralizing antibodies. We have generated a homogeneous, stable, and reproducible postfusion RSV F immunogen that elicits high titers of neutralizing antibodies in immunized animals.more » The 3.2-{angstrom} X-ray crystal structure of this substantially complete RSV F reveals important differences from homology-based structural models. Specifically, the RSV F crystal structure demonstrates the exposure of key neutralizing antibody binding sites on the surface of the postfusion RSV F trimer. This unanticipated structural feature explains the engineered RSV F antigen's efficiency as an immunogen. This work illustrates how structural-based antigen design can guide the rational optimization of candidate vaccine antigens.« less
NASA Astrophysics Data System (ADS)
Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried
2017-02-01
We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.
Yang, Jih-Sheng; Wu, Jih-Jen
2018-01-31
The TiO 2 -based heterojunction nanodendrite (ND) array composed of anatase nanoparticles (ANPs) on the surface of the rutile ND (RND) array is selected as the model photoanode to demonstrate the strategies toward eco-friendly and efficient solar water splitting using neutral electrolyte and seawater. Compared with the performances in alkaline electrolyte, a non-negligible potential drop across the electrolyte as well as impeded charge injection and charge separation is monitored in the ANP/RND array photoanode with neutral electrolyte, which are, respectively, ascribed to the series resistance of neutral electrolyte, the fundamentally pH-dependent water oxidation mechanism on TiO 2 surface, as well as the less band bending at the interface of TiO 2 and neutral electrolyte. Accordingly, a TiO 2 -based dual-staggered heterojunction ND array photoanode is further designed in this work to overcome the issue of less band bending with the neutral electrolyte. The improvement of charge separation efficiency is realized by the deposition of a transparent In 2 S 3 layer on the ANP/RND array photoanode for constructing additional staggered heterojunction. Under illumination of AM 1.5G (100 mW cm -2 ), the improved photocurrent densities acquired both in neutral electrolyte and seawater at 1.23 V vs reversible hydrogen electrode (RHE), which approach the theoretical value for rutile TiO 2 , are demonstrated in the dual-staggered-heterojunction ND array photoanode. Faradaic efficiencies of ∼95 and ∼32% for solar water oxidation in neutral electrolyte and solar seawater oxidation for 2 h are acquired at 1.23 V vs RHE, respectively.
Eight-cm mercury ion thruster system technology
NASA Technical Reports Server (NTRS)
1974-01-01
The technology status of 8 cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5 cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8 cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.
Sánchez-Gómez, Susana; Martinez de Tejada, Guillermo; Dömming, Sabine; Brandenburg, Julius; Kaconis, Yani; Hornef, Mathias; Dupont, Aline; Marwitz, Sebastian; Goldmann, Torsten; Ernst, Martin; Gutsmann, Thomas; Schürholz, Tobias
2013-01-01
Bacterial infections are known to cause severe health-threatening conditions, including sepsis. All attempts to get this disease under control failed in the past, and especially in times of increasing antibiotic resistance, this leads to one of the most urgent medical challenges of our times. We designed a peptide to bind with high affinity to endotoxins, one of the most potent pathogenicity factors involved in triggering sepsis. The peptide Pep19-2.5 reveals high endotoxin neutralization efficiency in vitro, and here, we demonstrate its antiseptic/anti-inflammatory effects in vivo in the mouse models of endotoxemia, bacteremia, and cecal ligation and puncture, as well as in an ex vivo model of human tissue. Furthermore, we show that Pep19-2.5 can bind and neutralize not only endotoxins but also other bacterial pathogenicity factors, such as those from the Gram-positive bacterium Staphylococcus aureus. This broad neutralization efficiency and the additive action of the peptide with common antibiotics makes it an exceptionally appropriate drug candidate against bacterial sepsis and also offers multiple other medication opportunities. PMID:23318793
Improvement of neutral oil quality in the production of sulfonate additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhurba, A.S.; Bludilin, V.M.; Antonov, V.N.
This paper is concerned with improvement of neutral oil used as materials for sulfonation to produce additives for lubricating oils. In this article the authors analyze the basic reasons for the unsatisfactory quality of the neutral oil and attempt to define the ways in which the process technology can be improved so as to produce neutral oil with the required composition, at the same time raising the efficiency of utilization of the MSG-8 oil used as a feedstock for this process. Experimental results are presented which demonstrate the feasibility of sulfonating neutral oil in the high-speed mixer under near-optimal conditions.more » The yield of sulfonic acid approaches the theoretical yield. With the lowest contents of aromatic hydrocarbons in the original neutral oil, the aromatic hydrocarbons are almost completely converted to sulfonic acids. The yield of neutral oil is sufficiently high, and the residual content of aromatic hydrocarbons in the oil is no greater than 3%.« less
A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.
Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin; Li, Xianfeng
2017-11-20
Flow batteries (FBs) are one of the most promising stationary energy-storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc-iron FB with very low cost and high energy density is presented. By using highly soluble FeCl 2 /ZnBr 2 species, a charge energy density of 56.30 Wh L -1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe 3+ /Fe 2+ . The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm -2 and the battery can run stably for more than 100 cycles. Furthermore, a low-cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB is a promising candidate for stationary energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimizing Cationic and Neutral Lipids for Efficient Gene Delivery at High Serum Content
Majzoub, Ramsey N.; Hwu, Yeu-kuang; Liang, Keng S.; Leal, Cecília; Safinya, Cyrus R.
2014-01-01
Background Cationic liposome (CL)-DNA complexes are promising gene delivery vectors with potential applications in gene therapy. A key challenge in creating CL-DNA complexes for applications is that their transfection efficiency (TE) is adversely affected by serum. In particular, little is known about the effects of high serum contents on TE even though this may provide design guidelines for applications in vivo. Methods We prepared CL-DNA complexes in which we varied the neutral lipid (DOPC, glycerol-monooleate (GMO), cholesterol), the headgroup charge and chemical structure of the cationic lipid, and the ratio of neutral to cationic lipid; we then measured the TE of these complexes as a function of serum content and assessed their cytotoxicity. We tested selected formulations in two human cancer cell lines (M21/melanoma and PC-3/prostate cancer). Results In the absence of serum, all CL-DNA complexes of custom-synthesized multivalent lipids show high TE. Certain combinations of multivalent lipids and neutral lipids, such as MVL5(5+)/GMO-DNA complexes or complexes based on the dendritic-headgroup lipid TMVLG3(8+) exhibited high TE both in the absence and presence of serum. Although their TE still dropped to a small extent in the presence of serum, it reached or surpassed that of benchmark commercial transfection reagents, in particular at high serum content. Conclusions Two-component vectors (one multivalent cationic lipid and one neutral lipid) can rival or surpass benchmark reagents at low and high serum contents (up to 50%, v/v). We suggest guidelines for optimizing the serum resistance of CL-DNA complexes based on a given cationic lipid. PMID:24753287
Efficient Means of Detecting Neutral Atoms in Space
NASA Astrophysics Data System (ADS)
Zinicola, W. N.
2006-12-01
This summer, The Society of Physics Students granted me the opportunity to participate in an internship for The National Aeronautics and Space Administration (NASA) and The University of Maryland. Our chief interest was analyzing low energy neutral atoms that were created from random interactions of ions in space plasma. From detecting these neutrals one can project a image of what the plasma's composition is, and how this plasma changes through interactions with the solar wind. Presently, low energy neutral atom detectors have poor efficiency, typically in the range of 1%. Our goal was to increase this efficiency. To detect low energy neutrals we must first convert them from neutral molecules to negatively charged ions. Once converted, these "new" negatively charged ions can be easily detected and completely analyzed giving us information about their energy, mass, and instantaneous direction. The efficiency of the detector is drastically affected by the surface used for converting these neutrals. My job was first to create thin metal conversion surfaces. Then, using an X-ray photoelectron spectrometer, analyze atomic surface composition and gather work function values. Once the work function values were known we placed the surfaces in our neutral detector and measured their conversion efficiencies. Finally, a relation between the work function of the metal surface an its conversion efficiency was generated. With this relationship accurately measured one could use this information to help give suggestions on what surface would be the best to increase our detection efficiency. If we could increase the efficiency of these low energy neutral atom detectors by even 1% we would be able to decrease the size of the detector therefore making it cheaper and more applicable for space exploration.* * A special thanks to Dr. Michael Coplan of the University of Maryland for his support and guidance through all my research.
NASA Astrophysics Data System (ADS)
Rognlien, Thomas; Rensink, Marvin
2016-10-01
Transport simulations for the edge plasma of tokamaks and other magnetic fusion devices requires the coupling of plasma and recycling or injected neutral gas. There are various neutral models used for this purpose, e.g., atomic fluid model, a Monte Carlo particle models, transition/escape probability methods, and semi-analytic models. While the Monte Carlo method is generally viewed as the most accurate, it is time consuming, which becomes even more demanding for device simulations of high densities and size typical of fusion power plants because the neutral collisional mean-free path becomes very small. Here we examine the behavior of an extended fluid neutral model for hydrogen that includes both atoms and molecules, which easily includes nonlinear neutral-neutral collision effects. In addition to the strong charge-exchange between hydrogen atoms and ions, elastic scattering is included among all species. Comparisons are made with the DEGAS 2 Monte Carlo code. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.
In vivo emergence of HIV-1 highly sensitive to neutralizing antibodies.
Aasa-Chapman, Marlén M I; Cheney, Kelly M; Hué, Stéphane; Forsman, Anna; O'Farrell, Stephen; Pellegrino, Pierre; Williams, Ian; McKnight, Áine
2011-01-01
The rapid and continual viral escape from neutralizing antibodies is well documented in HIV-1 infection. Here we report in vivo emergence of viruses with heightened sensitivity to neutralizing antibodies, sometimes paralleling the development of neutralization escape. Sequential viral envs were amplified from seven HIV-1 infected men monitored from seroconversion up to 5 years after infection. Env-recombinant infectious molecular clones were generated and tested for coreceptor use, macrophage tropism and neutralization sensitivity to homologous and heterologous serum, soluble CD4 and monoclonal antibodies IgG1b12, 2G12 and 17b. We found that HIV-1 evolves sensitivity to contemporaneous neutralizing antibodies during infection. Neutralization sensitive viruses grow out even when potent autologous neutralizing antibodies are present in patient serum. Increased sensitivity to neutralization was associated with susceptibility of the CD4 binding site or epitopes induced after CD4 binding, and mediated by complex envelope determinants including V3 and V4 residues. The development of neutralization sensitive viruses occurred without clinical progression, coreceptor switch or change in tropism for primary macrophages. We propose that an interplay of selective forces for greater virus replication efficiency without the need to resist neutralizing antibodies in a compartment protected from immune surveillance may explain the temporal course described here for the in vivo emergence of HIV-1 isolates with high sensitivity to neutralizing antibodies.
Engle, Ronald E.; Faulk, Kristina; Wang, Richard Y.; Farci, Patrizia; Alter, Harvey J.; Purcell, Robert H.
2015-01-01
The importance of neutralizing antibodies (NAbs) in protection against hepatitis C virus (HCV) remains controversial. We infused a chimpanzee with H06 immunoglobulin from a genotype 1a HCV-infected patient and challenged with genotype strains efficiently neutralized by H06 in vitro. Genotype 1a NAbs afforded no protection against genotype 4a or 5a. Protection against homologous 1a lasted 18 weeks, but infection emerged when NAb titers waned. However, 6a infection was prevented. The differential in vivo neutralization patterns have implications for HCV vaccine development. PMID:26085160
High efficiency ion beam accelerator system
NASA Technical Reports Server (NTRS)
Aston, G.
1981-01-01
An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.
NASA Astrophysics Data System (ADS)
Akiyama, T.; Yoshimura, S.; Tomita, K.; Shirai, N.; Murakami, T.; Urabe, K.
2017-12-01
When the electron density of a plasma generated in high pressure environment is measured by a conventional interferometer, the phase shifts due to changes of the neutral gas density cause significant measurement errors. A dispersion interferometer, which measures the phase shift that arises from dispersion of medium between the fundamental and the second harmonic wavelengths of laser light, can suppress the measured phase shift due to the variations of neutral gas density. In recent years, the CO2 laser dispersion interferometer has been applied to the atmospheric pressure plasmas and its feasibility has been demonstrated. By combining a low power laser and a high efficiency nonlinear crystal for the second harmonic component generation, a compact dispersion interferometer can be designed. The optical design and preliminary experiments are conducted.
A single, continuous metric to define tiered serum neutralization potency against HIV
Hraber, Peter Thomas; Korber, Bette Tina Marie; Wagh, Kshitij; ...
2018-01-19
HIV-1 Envelope (Env) variants are grouped into tiers by their neutralization-sensitivity phenotype. This helped to recognize that tier 1 neutralization responses can be elicited readily, but do not protect against new infections. Tier 3 viruses are the least sensitive to neutralization. Because most circulating viruses are tier 2, vaccines that elicit neutralization responses against them are needed. While tier classification is widely used for viruses, a way to rate serum or antibody neutralization responses in comparable terms is needed. Logistic regression of neutralization outcomes summarizes serum or antibody potency on a continuous, tier-like scale. It also tests significance of themore » neutralization score, to indicate cases where serum response does not depend on virus tiers. The method can standardize results from different virus panels, and could lead to high-throughput assays, which evaluate a single serum dilution, rather than a dilution series, for more efficient use of limited resources to screen samples from vaccinees.« less
A single, continuous metric to define tiered serum neutralization potency against HIV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hraber, Peter Thomas; Korber, Bette Tina Marie; Wagh, Kshitij
HIV-1 Envelope (Env) variants are grouped into tiers by their neutralization-sensitivity phenotype. This helped to recognize that tier 1 neutralization responses can be elicited readily, but do not protect against new infections. Tier 3 viruses are the least sensitive to neutralization. Because most circulating viruses are tier 2, vaccines that elicit neutralization responses against them are needed. While tier classification is widely used for viruses, a way to rate serum or antibody neutralization responses in comparable terms is needed. Logistic regression of neutralization outcomes summarizes serum or antibody potency on a continuous, tier-like scale. It also tests significance of themore » neutralization score, to indicate cases where serum response does not depend on virus tiers. The method can standardize results from different virus panels, and could lead to high-throughput assays, which evaluate a single serum dilution, rather than a dilution series, for more efficient use of limited resources to screen samples from vaccinees.« less
Ryan, Laura; O'Mara, Niall; Tansey, Sana; Slattery, Tom; Hanahoe, Belinda; Vellinga, Akke; Doyle, Maeve; Cormican, Martin
2018-05-01
Immunocompromised patients are at risk of invasive fungal infection. These high-risk patients are nursed in protective isolation to reduce the risk of nosocomial aspergillosis while in hospital-ideally in a positive pressure single room with high-efficiency particulate air filtration. However, neutral pressure rooms are a potential alternative, especially for patients requiring both protective and source isolation. This study examined mold and bacterial concentrations in air samples from positive and neutral pressure rooms to assess whether neutral pressure rooms offer a similar environment to that of positive pressure rooms in terms of mold concentrations in the air. Mold concentrations were found to be similar in the positive and neutral pressure room types examined in this study. These results add to the paucity of literature in this area. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; ...
2015-01-09
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Y. L.; Southwestern Institute of Physics, Chengdu 610041; Wang, Z. H., E-mail: zhwang@swip.ac.cn
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heatmore » and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less
Shen, Jiangnan; Huang, Jie; Liu, Lifen; Ye, Wenyuan; Lin, Jiuyang; Van der Bruggen, Bart
2013-09-15
Alkaline glyphosate neutralization liquors containing a high salinity pose a severe environmental pollution problem by the pesticide industry. However, there is a high potential for glyphosate recovery due to the high concentration of glyphosate in the neutralization liquors. In the study, a three-compartment bipolar membrane electrodialysis (BMED) process was applied on pilot scale for the recovery of glyphosate and the production of base/acid with high concentration in view of zero discharge of wastewater. The experimental results demonstrate that BMED can remove 99.0% of NaCl from the feed solution and transform this fraction into HCl and NaOH with high concentration and purity. This is recycled for the hydrolysis reaction of the intermediate product generated by the means of the Mannich reaction of paraformaldehyde, glycine and dimethylphosphite catalyzed by triethylamine in the presence of HCl and reclamation of the triethylamine catalyst during the production process of glyphosate. The recovery of glyphosate in the feed solution was over 96%, which is acceptable for industrial production. The current efficiency for producing NaOH with a concentration of 2.0 mol L(-1) is above 67% and the corresponding energy consumption is 2.97 kWh kg(-1) at a current density of 60 mA cm(-2). The current efficiency increases and energy consumption decreases as the current density decreases, to 87.13% and 2.37 kWh kg(-1), respectively, at a current density of 30 mA cm(-2). Thus, BMED has a high potential for desalination of glyphosate neutralization liquor and glyphosate recovery, aiming at zero discharge and resource recycling in industrial application. Copyright © 2013 Elsevier B.V. All rights reserved.
Tomyn, Ronald L; Sleeth, Darrah K; Thiese, Matthew S; Larson, Rodney R
2016-01-01
In addition to chemical composition, the site of deposition of inhaled particles is important for determining the potential health effects from an exposure. As a result, the International Organization for Standardization adopted a particle deposition sampling convention. This includes extrathoracic particle deposition sampling conventions for the anterior nasal passages (ET1) and the posterior nasal and oral passages (ET2). This study assessed how well a polyurethane foam insert placed in an Institute of Occupational Medicine (IOM) sampler can match an extrathoracic deposition sampling convention, while accounting for possible static buildup in the test particles. In this way, the study aimed to assess whether neutralized particles affected the performance of this sampler for estimating extrathoracic particle deposition. A total of three different particle sizes (4.9, 9.5, and 12.8 µm) were used. For each trial, one particle size was introduced into a low-speed wind tunnel with a wind speed set a 0.2 m/s (∼40 ft/min). This wind speed was chosen to closely match the conditions of most indoor working environments. Each particle size was tested twice either neutralized, using a high voltage neutralizer, or left in its normal (non neutralized) state as standard particles. IOM samplers were fitted with a polyurethane foam insert and placed on a rotating mannequin inside the wind tunnel. Foam sampling efficiencies were calculated for all trials to compare against the normalized ET1 sampling deposition convention. The foam sampling efficiencies matched well to the ET1 deposition convention for the larger particle sizes, but had a general trend of underestimating for all three particle sizes. The results of a Wilcoxon Rank Sum Test also showed that only at 4.9 µm was there a statistically significant difference (p-value = 0.03) between the foam sampling efficiency using the standard particles and the neutralized particles. This is interpreted to mean that static buildup may be occurring and neutralizing the particles that are 4.9 µm diameter in size did affect the performance of the foam sampler when estimating extrathoracic particle deposition.
A novel approach in red mud neutralization using cow dung.
Patel, Sucharita; Pal, Bhatu Kumar; Patel, Raj Kishore
2018-05-01
In this study, cow dung was identified as a neutralizing agent for red mud (RM). Present research estimated a significant reduction in pH value of red mud (10 g) from 10.28 to 8.15 and reduction in alkalinity of ~148 mg/L from ~488 mg/L by adding 80 g of cow dung in 40 days of anaerobic condition. XRD results exhibit a high intensity of quartz and found new compound, the calcium carbide. The acid neutralizing capacity (ANC) of NRM reduces to ~0.87 from ~1.506 mol H + /kg. Based on the resultant research, present study proposes cow dung as an efficient neutralizing agent for reducing the pH and alkalinity in the red mud.
Boschert, V.; Frisch, C.; Back, J. W.; van Pee, K.; Weidauer, S. E.; Muth, E.-M.; Schmieder, P.; Beerbaum, M.; Knappik, A.; Timmerman, P.
2016-01-01
The glycoprotein sclerostin has been identified as a negative regulator of bone growth. It exerts its function by interacting with the Wnt co-receptor LRP5/6, blocks the binding of Wnt factors and thereby inhibits Wnt signalling. Neutralizing anti-sclerostin antibodies are able to restore Wnt activity and enhance bone growth thereby presenting a new osteoanabolic therapy approach for diseases such as osteoporosis. We have generated various Fab antibodies against human and murine sclerostin using a phage display set-up. Biochemical analyses have identified one Fab developed against murine sclerostin, AbD09097 that efficiently neutralizes sclerostin's Wnt inhibitory activity. In vitro interaction analysis using sclerostin variants revealed that this neutralizing Fab binds to sclerostin's flexible second loop, which has been shown to harbour the LRP5/6 binding motif. Affinity maturation was then applied to AbD09097, providing a set of improved neutralizing Fab antibodies which particularly bind human sclerostin with enhanced affinity. Determining the crystal structure of AbD09097 provides first insights into how this antibody might recognize and neutralize sclerostin. Together with the structure–function relationship derived from affinity maturation these new data will foster the rational design of new and highly efficient anti-sclerostin antibodies for the therapy of bone loss diseases such as osteoporosis. PMID:27558933
High efficiency direct detection of ions from resonance ionization of sputtered atoms
Gruen, Dieter M.; Pellin, Michael J.; Young, Charles E.
1986-01-01
A method and apparatus are provided for trace and other quantitative analysis with high efficiency of a component in a sample, with the analysis involving the removal by ion or other bombardment of a small quantity of ion and neutral atom groups from the sample, the conversion of selected neutral atom groups to photoions by laser initiated resonance ionization spectroscopy, the selective deflection of the photoions for separation from original ion group emanating from the sample, and the detection of the photoions as a measure of the quantity of the component. In some embodiments, the original ion group is accelerated prior to the RIS step for separation purposes. Noise and other interference are reduced by shielding the detector from primary and secondary ions and deflecting the photoions sufficiently to avoid the primary and secondary ions.
High efficiency direct detection of ions from resonance ionization of sputtered atoms
Gruen, D.M.; Pellin, M.J.; Young, C.E.
1985-01-16
A method and apparatus are provided for trace and other quantitative analysis with high efficiency of a component in a sample, with the analysis involving the removal by ion or other bombardment of a small quantity of ion and neutral atom groups from the sample, the conversion of selected neutral atom groups to photoions by laser initiated resonance ionization spectroscopy, the selective deflection of the photoions for separation from original ion group emanating from the sample, and the detection of the photoions as a measure of the quantity of the component. In some embodiments, the original ion group is accelerated prior to the RIS step for separation purposes. Noise and other interference are reduced by shielding the detector from primary and secondary ions and deflecting the photoions sufficiently to avoid the primary and secondary ions.
2012-08-02
REPORT Feasibility study for the use of green, bio-based, efficient reactive sorbent material to neutralize chemical warfare agents 14. ABSTRACT 16...way cellulose, lignin and hemicelluloses interact as well as whole wood dissolution occurs in ILs. The present project was conducted to 1. REPORT...Feasibility study for the use of green, bio-based, efficient reactive sorbent material to neutralize chemical warfare agents Report Title ABSTRACT Over the
High efficiency labeling of glycoproteins on living cells
Zeng, Ying; Ramya, T. N. C.; Dirksen, Anouk; Dawson, Philip E.; Paulson, James C.
2010-01-01
We describe a simple method for efficiently labeling cell surface glycans on virtually any living animal cell. The method employs mild Periodate oxidation to generate an aldehyde on sialic acids, followed by Aniline-catalyzed oxime Ligation with a suitable tag (PAL). Aniline catalysis dramatically accelerates oxime ligation, allowing use of low concentrations of aminooxy-biotin at neutral pH to label the majority of cell surface glycoproteins while maintaining high cell viability. PMID:19234450
Highly efficient Cu(I)-catalyzed oxidation of alcohols to ketones and aldehydes with diaziridinone.
Zhu, Yingguang; Zhao, Baoguo; Shi, Yian
2013-03-01
A novel and efficient Cu(I)-catalyzed oxidation of alcohols has been achieved with di-tert-butyldiaziridinone as the oxidant under mild conditions. A wide variety of primary and secondary alcohols with various functional groups can be oxidized to aldehydes and ketones in high yields. The reaction proceeds under neutral conditions making it compatible with acid- or base-sensitive substrates, and it is amenable to gram scale.
Highly Efficient Cu(I)-Catalyzed Oxidation of Alcohols to Ketones and Aldehydes with Diaziridinone
Zhu, Yingguang; Zhao, Baoguo
2013-01-01
A novel and efficient Cu(I)-catalyzed oxidation of alcohols has been achieved with di-tert-butyldiaziridinone as oxidant under mild conditions. A wide variety of primary and secondary alcohols with various functional groups can be oxidized to aldehydes and ketones in high yields. The reaction proceeds under neutral conditions making it compatible with acid or base-sensitive substrates, and it is amenable to gram scale. PMID:23413952
Zahran, Zaki N; Mohamed, Eman A; Naruta, Yoshinori; Haleem, Ashraf
2017-10-04
A cofacial iron porphyrin hetero-dimer, Fe2TPFPP-TMP showed high electro-catalytic activity, selectivity, and stability for the O2 reduction to H2O both in homogeneous non-aqueous and heterogeneous neutral aqueous solutions. Moreover, when it is integrated to FTO/p-CuBi2O4 (FTO = fluorine doped tin oxide) photocathode prepared by a simple novel method, a remarkable efficient solar-assisted O2 reduction is achieved in neutral potassium phosphate (KPi) or basic NaOH solutions saturated with O2. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Koen, Gerrit; van Eijk, Hetty; Koekkoek, Sylvie M.; de Jong, Menno D.; Wolthers, Katja C.
2016-01-01
Outbreaks of human enterovirus 71 (EV-71) in Asia are related to high illness and death rates among children. To gain insight into the potential threat for the population of Europe, we determined the neutralizing activity in intravenous immunoglobulin (IVIg) batches and individual serum samples from donors in the Netherlands against EV-71 strains isolated in Europe and in Asia. All IVIg batches and 41%, 79%, and 65% of serum samples from children ≤5 years of age, women of childbearing age, and HIV-positive men, respectively, showed high neutralizing activity against a Dutch C1 strain, confirming widespread circulation of EV-71 in the Netherlands. Asian B3–4 and C4 strains were efficiently cross-neutralized, predicting possible protection against extensive circulation and associated outbreaks of those types in Europe. However, C2 and C5 strains that had few mutations in the capsid region consistently escaped neutralization, emphasizing the importance of monitoring antigenic diversity among circulating EV-71 strains. PMID:27533024
Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials.
Tatin, Arnaud; Comminges, Clément; Kokoh, Boniface; Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
2016-05-17
Low-cost, efficient CO2-to-CO+O2 electrochemical splitting is a key step for liquid-fuel production for renewable energy storage and use of CO2 as a feedstock for chemicals. Heterogeneous catalysts for cathodic CO2-to-CO associated with an O2-evolving anodic reaction in high-energy-efficiency cells are not yet available. An iron porphyrin immobilized into a conductive Nafion/carbon powder layer is a stable cathode producing CO in pH neutral water with 90% faradaic efficiency. It is coupled with a water oxidation phosphate cobalt oxide anode in a home-made electrolyzer by means of a Nafion membrane. Current densities of approximately 1 mA/cm(2) over 30-h electrolysis are achieved at a 2.5-V cell voltage, splitting CO2 and H2O into CO and O2 with a 50% energy efficiency. Remarkably, CO2 reduction outweighs the concurrent water reduction. The setup does not prevent high-efficiency proton transport through the Nafion membrane separator: The ohmic drop loss is only 0.1 V and the pH remains stable. These results demonstrate the possibility to set up an efficient, low-voltage, electrochemical cell that converts CO2 into CO and O2 by associating a cathodic-supported molecular catalyst based on an abundant transition metal with a cheap, easy-to-prepare anodic catalyst oxidizing water into O2.
Zuest, Roland; Valdes, Iris; Skibinski, David; Lin, Yufang; Toh, Ying Xiu; Chan, Katherine; Hermida, Lisset; Connolly, John; Guillen, Gerardo; Fink, Katja
2015-03-17
Dengue disease is a global challenge for healthcare systems particularly during outbreaks, and millions of dollars are spent every year for vector control. An efficient and safe vaccine that is cost-effective could resolve the burden that dengue virus imposes on affected countries. We describe here the immunogenicity of a tetravalent formulation of a recombinant fusion protein consisting of E domain III and the capsid protein of dengue serotypes 1-4 (Tetra DIIIC). E domain III is an epitope for efficient neutralizing antibodies while the capsid protein contains T cell epitopes. Besides combining B and T cell epitopes, Tetra DIIIC is highly immunogenic due to its aggregate form and a two-component adjuvant. Following previous studies assessing the monovalent DIIIC formulations, we addressed here the quality and breadth of the T cell- and antibody response of Tetra DIIIC in mice. Tetra DIIIC induced a Th1-type response against all four DENV serotypes and dengue-specific antibodies were predominantly IgG1 and IgG2a and neutralizing, while the induction of neutralizing antibodies was dependent on IFN signaling. Importantly, the Th1 and IgG1/IgG2a profile of the DIIIC vaccine approach is similar to an efficient natural anti-dengue response. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimization of Neutral Atom Imagers
NASA Technical Reports Server (NTRS)
Shappirio, M.; Coplan, M.; Balsamo, E.; Chornay, D.; Collier, M.; Hughes, P.; Keller, J.; Ogilvie, K.; Williams, E.
2008-01-01
The interactions between plasma structures and neutral atom populations in interplanetary space can be effectively studied with energetic neutral atom imagers. For neutral atoms with energies less than 1 keV, the most efficient detection method that preserves direction and energy information is conversion to negative ions on surfaces. We have examined a variety of surface materials and conversion geometries in order to identify the factors that determine conversion efficiency. For chemically and physically stable surfaces smoothness is of primary importance while properties such as work function have no obvious correlation to conversion efficiency. For the noble metals, tungsten, silicon, and graphite with comparable smoothness, conversion efficiency varies by a factor of two to three. We have also examined the way in which surface conversion efficiency varies with the angle of incidence of the neutral atom and have found that the highest efficiencies are obtained at angles of incidence greater then 80deg. The conversion efficiency of silicon, tungsten and graphite were examined most closely and the energy dependent variation of conversion efficiency measured over a range of incident angles. We have also developed methods for micromachining silicon in order to reduce the volume to surface area over that of a single flat surface and have been able to reduce volume to surface area ratios by up to a factor of 60. With smooth micro-machined surfaces of the optimum geometry, conversion efficiencies can be increased by an order of magnitude over instruments like LENA on the IMAGE spacecraft without increase the instruments mass or volume.
NASA Astrophysics Data System (ADS)
Simonin, A.; Agnello, R.; Bechu, S.; Bernard, J. M.; Blondel, C.; Boeuf, J. P.; Bresteau, D.; Cartry, G.; Chaibi, W.; Drag, C.; Duval, B. P.; de Esch, H. P. L.; Fubiani, G.; Furno, I.; Grand, C.; Guittienne, Ph; Howling, A.; Jacquier, R.; Marini, C.; Morgal, I.
2016-12-01
In parallel to the developments dedicated to the ITER neutral beam (NB) system, CEA-IRFM with laboratories in France and Switzerland are studying the feasibility of a new generation of NB system able to provide heating and current drive for the future DEMOnstration fusion reactor. For the steady-state scenario, the NB system will have to provide a high NB power level with a high wall-plug efficiency (η ˜ 60%). Neutralization of the energetic negative ions by photodetachment (so called photoneutralization), if feasible, appears to be the ideal solution to meet these performances, in the sense that it could offer a high beam neutralization rate (>80%) and a wall-plug efficiency higher than 60%. The main challenge of this new injector concept is the achievement of a very high power photon flux which could be provided by 3 MW Fabry-Perot optical cavities implanted along the 1 MeV D- beam in the neutralizer stage. The beamline topology is tall and narrow to provide laminar ion beam sheets, which will be entirely illuminated by the intra-cavity photon beams propagating along the vertical axis. The paper describes the present R&D (experiments and modelling) addressing the development of a new ion source concept (Cybele source) which is based on a magnetized plasma column. Parametric studies of the source are performed using Langmuir probes in order to characterize and compare the plasma parameters in the source column with different plasma generators, such as filamented cathodes, radio-frequency driver and a helicon antenna specifically developed at SPC-EPFL satisfying the requirements for the Cybele (axial magnetic field of 10 mT, source operating pressure: 0.3 Pa in hydrogen or deuterium). The paper compares the performances of the three plasma generators. It is shown that the helicon plasma generator is a very promising candidate to provide an intense and uniform negative ion beam sheet.
Upper-Thermospheric Observations and Neutral-Gas Dynamics at High Latitudes During Solar Maximum.
1987-01-01
quickly, allowing the higher-latitude lines to spring back in towards the Earth ( Vallance -Jones, 1974). This also compresses and heats the plasma on high... Richards , and D. G. Torr. A new determination of the ultraviolet heating efficiency of the thermosphere. J. Geophys. Res., 85, 6819 - 6826, 1980b. Torr...M. R., D. G. Torr, and P. G. Richards . The solar ultraviolet heating efficiency of the midlatitude thermosphere. Geophys. Res. Lett., 7, 373 - 376
Chen, Lanlan; Ren, Xiang; Teng, Wanqing; Shi, Pengfei
2017-07-21
Electrolytic hydrogen generation needs earth-abundant oxygen evolution reaction electrocatalysts that perform efficiently at mild pH. Here, the development of amorphous nickel-cobalt-borate nanosheet arrays on macroporous nickel foam (NiCo-Bi/NF) as a 3D catalyst electrode for high-performance water oxidation in near-neutral media is reported. To drive a current density of 10 mA cm -2 , the resulting NiCo-Bi/NF demands an overpotential of only 430 mV in 0.1 m potassium borate (K-Bi, pH 9.2). Moreover, it also shows long-term electrochemical durability with maintenance of catalytic activity for 20 h, achieving a high turnover frequency of 0.21 s -1 at an overpotential of 550 mV. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Compression of a mixed antiproton and electron non-neutral plasma to high densities
NASA Astrophysics Data System (ADS)
Aghion, Stefano; Amsler, Claude; Bonomi, Germano; Brusa, Roberto S.; Caccia, Massimo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Comparat, Daniel; Consolati, Giovanni; Demetrio, Andrea; Di Noto, Lea; Doser, Michael; Evans, Craig; Fanì, Mattia; Ferragut, Rafael; Fesel, Julian; Fontana, Andrea; Gerber, Sebastian; Giammarchi, Marco; Gligorova, Angela; Guatieri, Francesco; Haider, Stefan; Hinterberger, Alexander; Holmestad, Helga; Kellerbauer, Alban; Khalidova, Olga; Krasnický, Daniel; Lagomarsino, Vittorio; Lansonneur, Pierre; Lebrun, Patrice; Malbrunot, Chloé; Mariazzi, Sebastiano; Marton, Johann; Matveev, Victor; Mazzotta, Zeudi; Müller, Simon R.; Nebbia, Giancarlo; Nedelec, Patrick; Oberthaler, Markus; Pacifico, Nicola; Pagano, Davide; Penasa, Luca; Petracek, Vojtech; Prelz, Francesco; Prevedelli, Marco; Rienaecker, Benjamin; Robert, Jacques; Røhne, Ole M.; Rotondi, Alberto; Sandaker, Heidi; Santoro, Romualdo; Smestad, Lillian; Sorrentino, Fiodor; Testera, Gemma; Tietje, Ingmari C.; Widmann, Eberhard; Yzombard, Pauline; Zimmer, Christian; Zmeskal, Johann; Zurlo, Nicola; Antonello, Massimiliano
2018-04-01
We describe a multi-step "rotating wall" compression of a mixed cold antiproton-electron non-neutral plasma in a 4.46 T Penning-Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 1013 m-3, which pave the way for an efficient pulsed antihydrogen production in AEḡIS.
Atomic and Molecular Spectroscopic Studies of the DIII-D Neutral Beam Ion Source and Neutralizer
NASA Astrophysics Data System (ADS)
Crowley, B.; Rauch, J.; Scoville, J. T.; Sharma, S. K.; Choksi, B.
2015-11-01
The neutral beam system is interesting in that it comprises two distinct low temperature plasmas. Firstly, the ion source is typically a filament or RF driven plasma from which ions are extracted by a high voltage accelerator grid system. Secondly the neutralizer is essentially a low temperature plasma system with the beam serving as the primary ionization source and the neutralizer walls serving as conducting boundaries. Atomic spectroscopy of Doppler shifted D-alpha light emanating from the fast atoms is studied to determine the composition of the source and the divergence of the beam. Molecular spectroscopy involves measuring fine structure in electron-vibrational rotational bands. The technique has applications in low temperature plasmas and here it is used to determine gas temperature in the neutralizer. We describe the experimental set-up and the physics model used to relate the spectroscopic data to the plasma parameters and we present results of recent experiments exploring how to increase neutralization efficiency. Supported by the US DOE under DE-FC02-04ER54698.
Background Selection in Partially Selfing Populations
Roze, Denis
2016-01-01
Self-fertilizing species often present lower levels of neutral polymorphism than their outcrossing relatives. Indeed, selfing automatically increases the rate of coalescence per generation, but also enhances the effects of background selection and genetic hitchhiking by reducing the efficiency of recombination. Approximations for the effect of background selection in partially selfing populations have been derived previously, assuming tight linkage between deleterious alleles and neutral loci. However, loosely linked deleterious mutations may have important effects on neutral diversity in highly selfing populations. In this article, I use a general method based on multilocus population genetics theory to express the effect of a deleterious allele on diversity at a linked neutral locus in terms of moments of genetic associations between loci. Expressions for these genetic moments at equilibrium are then computed for arbitrary rates of selfing and recombination. An extrapolation of the results to the case where deleterious alleles segregate at multiple loci is checked using individual-based simulations. At high selfing rates, the tight linkage approximation underestimates the effect of background selection in genomes with moderate to high map length; however, another simple approximation can be obtained for this situation and provides accurate predictions as long as the deleterious mutation rate is not too high. PMID:27075726
Williams, Benjamin R; Strauss, Esther H; Hultsch, David F; Hunter, Michael A
2007-07-01
Age-related differences in inconsistency of reaction time (RT) across the life span were examined on a task with differing levels of demand on executive control. A total of 546 participants, aged 5 to 76 years, completed a spatial Stroop task that permitted observations under three conditions (congruent, incongruent, and neutral) according to the correspondence between the required response (based on stimulus direction) and stimulus location. An interference effect was observed across all ages. Analyses of neutral condition data replicated previous research demonstrating RT inconsistency follows a U-shaped developmental curve across the life span. The relationship between age and inconsistency, however, depended on condition: inconsistency in the congruent condition was higher than inconsistency in both the neutral and incongruent conditions across middle-aged groups. Reaction time inconsistency may reflect processing efficiency that is maximal in young adulthood and may also be sensitive to fluctuations in performance that reflect momentarily highly efficient responding.
Development of a Computationally Efficient, High Fidelity, Finite Element Based Hall Thruster Model
NASA Technical Reports Server (NTRS)
Jacobson, David (Technical Monitor); Roy, Subrata
2004-01-01
This report documents the development of a two dimensional finite element based numerical model for efficient characterization of the Hall thruster plasma dynamics in the framework of multi-fluid model. Effect of the ionization and the recombination has been included in the present model. Based on the experimental data, a third order polynomial in electron temperature is used to calculate the ionization rate. The neutral dynamics is included only through the neutral continuity equation in the presence of a uniform neutral flow. The electrons are modeled as magnetized and hot, whereas ions are assumed magnetized and cold. The dynamics of Hall thruster is also investigated in the presence of plasma-wall interaction. The plasma-wall interaction is a function of wall potential, which in turn is determined by the secondary electron emission and sputtering yield. The effect of secondary electron emission and sputter yield has been considered simultaneously, Simulation results are interpreted in the light of experimental observations and available numerical solutions in the literature.
Evidence of an inverted hexagonal phase in self-assembled phospholipid-DNA-metal complexes
NASA Astrophysics Data System (ADS)
Francescangeli, O.; Pisani, M.; Stanic, V.; Bruni, P.; Weiss, T. M.
2004-08-01
We report the first observation of an inverted hexagonal phase of phospholipid-DNA-metal complexes. These ternary complexes are formed in a self-assembled manner when water solutions of neutral lipid dioleoylphosphatidylethanolamine (DOPE), DNA and divalent metal cations (Me2+; Me=Fe, Co, Mg, Mn) are mixed, which represents a striking example of supramolecular chemistry. The structure, derived from synchrotron X-ray diffraction, consists of cylindrical DNA strands coated by neutral lipid monolayers and arranged on a two-dimensional hexagonal lattice (HIIc). Besides the fundamental aspects, DOPE-DNA-Me2+ complexes may be of great interest as efficient nonviral delivery systems in gene therapy applications because of the low inherent cytotoxicity and the potential high transfection efficiency.
Emotional and neutral scenes in competition: orienting, efficiency, and identification.
Calvo, Manuel G; Nummenmaa, Lauri; Hyönä, Jukka
2007-12-01
To investigate preferential processing of emotional scenes competing for limited attentional resources with neutral scenes, prime pictures were presented briefly (450 ms), peripherally (5.2 degrees away from fixation), and simultaneously (one emotional and one neutral scene) versus singly. Primes were followed by a mask and a probe for recognition. Hit rate was higher for emotional than for neutral scenes in the dual- but not in the single-prime condition, and A' sensitivity decreased for neutral but not for emotional scenes in the dual-prime condition. This preferential processing involved both selective orienting and efficient encoding, as revealed, respectively, by a higher probability of first fixation on--and shorter saccade latencies to--emotional scenes and by shorter fixation time needed to accurately identify emotional scenes, in comparison with neutral scenes.
Improvement of the cloud point extraction of uranyl ions by the addition of ionic liquids.
Gao, Song; Sun, Taoxiang; Chen, Qingde; Shen, Xinghai
2013-12-15
The cloud point extraction (CPE) of uranyl ions by different kinds of extractants in Triton X-114 (TX-114) micellar solution was investigated upon the addition of ionic liquids (ILs) with various anions, i.e., bromide (Br(-)), tetrafluoroborate (BF4(-)), hexafluorophosphate (PF6(-)) and bis[(trifluoromethyl)sulfonyl]imide (NTf2(-)). A significant increase of the extraction efficiency was found on the addition of NTf2(-) based ILs when using neutral extractant tri-octylphosphine oxide (TOPO), and the extraction efficiency kept high at both nearly neutral and high acidity. However, the CPE with acidic extractants, e.g., bis(2-ethylhexyl) phosphoric acid (HDEHP) and 8-hydroxyquinoline (8-HQ) which are only effective at nearly neutral condition, was not improved by ILs. The results of zeta potential and (19)F NMR measurements indicated that the anion NTf2(-) penetrated into the TX-114 micelles and was enriched in the surfactant-rich phase during the CPE process. Meanwhile, NTf2(-) may act as a counterion in the CPE of UO2(2+) by TOPO. Furthermore, the addition of IL increased the separation factor of UO2(2+) and La(3+), which implied that in the micelle TOPO, NTf2(-) and NO3(-) established a soft template for UO2(2+). Therefore, the combination of CPE and IL provided a supramolecular recognition to concentrate UO2(2+) efficiently and selectively. Copyright © 2013 Elsevier B.V. All rights reserved.
High Efficiency Large Area Polysilicon Solar Cells
NASA Technical Reports Server (NTRS)
Johnson, S. M.; Winter, C.
1985-01-01
Large area (100 sq cm) polysilicon solar cells having efficiencies of up to 14.1% (100 mW/sq cm, 25 C) were fabricated and a detailed analysis was performed to identify the efficiency loss mechanisms. The 1-5 characteristics of the best cell were dominated by recombination in the quasi-neutral base due to the combination of minority carrier diffusion length and base resistivity. An analysis of the microstructural defects present in the material and their effect on the electrical properties is presented.
Chen, Tan; Li, Dapeng; Song, Yufeng; Yang, Xi; Liu, Qingwei; Jin, Xia; Zhou, Dongming; Huang, Zhong
2017-09-01
Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development. Copyright © 2017 Elsevier B.V. All rights reserved.
Johnston, Patrick A; Brown, Robert C
2014-08-13
A rapid method for the quantitation of total sugars in pyrolysis liquids using high-performance liquid chromatography (HPLC) was developed. The method avoids the tedious and time-consuming sample preparation required by current analytical methods. It is possible to directly analyze hydrolyzed pyrolysis liquids, bypassing the neutralization step usually required in determination of total sugars. A comparison with traditional methods was used to determine the validity of the results. The calibration curve coefficient of determination on all standard compounds was >0.999 using a refractive index detector. The relative standard deviation for the new method was 1.13%. The spiked sugar recoveries on the pyrolysis liquid samples were between 104 and 105%. The research demonstrates that it is possible to obtain excellent accuracy and efficiency using HPLC to quantitate glucose after acid hydrolysis of polymeric and oligomeric sugars found in fast pyrolysis bio-oils without neutralization.
Asati, Atul; Kachurina, Olga; Karol, Alex; Dhir, Vipra; Nguyen, Michael; Parkhill, Robert; Kouiavskaia, Diana; Chumakov, Konstantin; Warren, William; Kachurin, Anatoly
2016-01-01
Neutralizing antibodies induced by vaccination or natural infection play a critically important role in protection against the viral diseases. In general, neutralization of the viral infection occurs via two major pathways: pre- and post-attachment modes, the first being the most important for such infections as influenza and polio, the latter being significant for filoviruses. Neutralizing capacity of antibodies is typically evaluated by virus neutralization assays that assess reduction of viral infectivity to the target cells in the presence of functional antibodies. Plaque reduction neutralization test, microneutralization and immunofluorescent assays are often used as gold standard virus neutralization assays. However, these methods are associated with several important prerequisites such as use of live virus requiring safety precautions, tedious evaluation procedure and long assessment time. Hence, there is a need for a robust, inexpensive high throughput functional assay that can be performed rapidly using inactivated virus, without extensive safety precautions. Herein, we report a novel high throughput Fluorescence Adherence Inhibition assay (fADI) using inactivated virus labeled with fluorescent secondary antibodies virus and Vero cells or erythrocytes as targets. It requires only few hours to assess pre-attachment neutralizing capacity of donor sera. fADI assay was tested successfully on donors immunized with polio, yellow fever and influenza vaccines. To further simplify and improve the throughput of the assay, we have developed a mathematical approach for calculating the 50% titers from a single sample dilution, without the need to analyze multi-point titration curves. Assessment of pre- and post-vaccination human sera from subjects immunized with IPOL®, YF-VAX® and 2013–2014 Fluzone® vaccines demonstrated high efficiency of the assay. The results correlated very well with microneutralization assay performed independently by the FDA Center of Biologics Evaluation and Research, with plaque reduction neutralization test performed by Focus Diagnostics, and with hemaglutination inhibition assay performed in-house at Sanofi Pasteur. Taken together, fADI assay appears to be a useful high throughput functional immunoassay for assessment of antibody-related neutralization of the viral infections for which pre-attachment neutralization pathway is predominant, such as polio, influenza, yellow fever and dengue. PMID:26863313
Mendow, G; Veizaga, N S; Sánchez, B S; Querini, C A
2012-08-01
Industrial production of ethyl esters is impeded by difficulties in purifying the product due to high amounts of soap formed during transesterification. A simple biodiesel wash process was developed that allows successful purification of samples containing high amounts of soap. The key step was a first washing with neutral water, which removed the soaps without increasing the acidity or affecting the process yield. Afterward, the biodiesel was washed with water saturated with CO(2), a mild acid that neutralized the remaining soaps and extracted impurities. The acidity, free-glycerine, methanol and soaps concentrations were reduced to very low levels with high efficiency, and using non-corrosive acids. Independently of the initial acidity, it was possible to obtain biodiesel within EN14214 specifications. The process included the recovery of soaps by hydrolysis and esterification, making it possible to obtain the theoretical maximum amount of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, John T.; Keefer, Christopher J.; Slaughter, James C.
2014-04-15
The role of binding kinetics in determining neutralizing potency for antiviral antibodies is poorly understood. While it is believed that increased steady-state affinity correlates positively with increased virus-neutralizing activity, the relationship between association or dissociation rate and neutralization potency is unclear. We investigated the effect of naturally-occurring antibody resistance mutations in the RSV F protein on the kinetics of binding to palivizumab. Escape from palivizumab-mediated neutralization of RSV occurred with reduced association rate (K{sub on}) for binding to RSV F protein, while alteration of dissociation rate (K{sub off}) did not significantly affect neutralizing activity. Interestingly, linkage of reduced K{sub on}more » with reduced potency mirrored the effect of increased K{sub on} found in a high-affinity enhanced potency palivizumab variant (motavizumab). These data suggest that association rate is the dominant factor driving neutralization potency for antibodies to RSV F protein antigenic site A and determines the potency of antibody somatic variants or efficiency of escape of viral glycoprotein variants. - Highlights: • The relationship of affinity to neutralization for virus antibodies is uncertain. • Palivizumab binds to RSV escape mutant fusion proteins, but with reduced affinity. • Association rate (K{sub on}) correlated well with the potency of neutralization.« less
Solar hydrogen production using epitaxial SrTiO 3 on a GaAs photovoltaic
Kornblum, L.; Fenning, D. P.; Faucher, J.; ...
2016-12-22
We demonstrate an oxide-stabilized III–V photoelectrode architecture for solar fuel production from water in neutral pH. For this tunable architecture we demonstrate 100% Faradaic efficiency for hydrogen evolution, and incident photon-to-current efficiencies (IPCE) exceeding 50%. High IPCE for hydrogen evolution is a consequence of the low-loss interface achieved via epitaxial growth of a thin oxide on a GaAs solar cell. Developing optimal energetic alignment across the interfaces of the photoelectrode using well-established III–V technology is key to obtaining high performance. This advance constitutes a critical milestone towards efficient, unassisted fuel production from solar energy.
NASA Astrophysics Data System (ADS)
Chen, Lin; Wu, Wen-Bin; Liu, Pin-Yang; Xiao, Yun-Qing; Li, Guo-Peng; Liu, Yi-Ran; Jiang, Hao-Yu; Guo, Yan-Ling; Chen, Xi-Meng
2016-08-01
For Li+ and Na+ ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experimental data, we investigate the velocity-dependent neutral fraction with the modified Brako-Newns (BN) model. The calculated results are in agreement with the experimental data. We find that the parallel velocity effect plays an important role in neutralizing the Li+ and Na+ ions for large angle scattering. The nonmonotonic velocity behavior of neutral fraction is strongly related to the distance-dependent coupling strength between the atomic level and metal states. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405078 and 11474140), the Fundamental Research Funds for the Central Universities, China (Grant Nos. lzujbky-2014-169 and lzujbky-2015-244), the Project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the State Education Ministry, and the National Students’ Innovation and Entrepreneurship Training Program (Grant Nos. 201410730069 and 201510730078).
NASA Astrophysics Data System (ADS)
Zheng, Xueli; Zhang, Bo; de Luna, Phil; Liang, Yufeng; Comin, Riccardo; Voznyy, Oleksandr; Han, Lili; García de Arquer, F. Pelayo; Liu, Min; Dinh, Cao Thang; Regier, Tom; Dynes, James J.; He, Sisi; Xin, Huolin L.; Peng, Huisheng; Prendergast, David; Du, Xiwen; Sargent, Edward H.
2018-02-01
The efficiency with which renewable fuels and feedstocks are synthesized from electrical sources is limited at present by the sluggish oxygen evolution reaction (OER) in pH-neutral media. We took the view that generating transition-metal sites with high valence at low applied bias should improve the activity of neutral OER catalysts. Here, using density functional theory, we find that the formation energy of desired Ni4+ sites is systematically modulated by incorporating judicious combinations of Co, Fe and non-metal P. We therefore synthesized NiCoFeP oxyhydroxides and probed their oxidation kinetics with in situ soft X-ray absorption spectroscopy (sXAS). In situ sXAS studies of neutral-pH OER catalysts indicate ready promotion of Ni4+ under low overpotential conditions. The NiCoFeP catalyst outperforms IrO2 and retains its performance following 100 h of operation. We showcase NiCoFeP in a membrane-free CO2 electroreduction system that achieves a 1.99 V cell voltage at 10 mA cm-2, reducing CO2 into CO and oxidizing H2O to O2 with a 64% electricity-to-chemical-fuel efficiency.
Zheng, Xueli; Zhang, Bo; De Luna, Phil; ...
2017-11-20
The efficiency with which renewable fuels and feedstocks are synthesized from electrical sources is limited at present by the sluggish oxygen evolution reaction (OER) in pH-neutral media. Here, we took the view that generating transition metal sites with high valence at low applied bias should improve the activity of neutral OER catalysts. Using density functional theory, we find that the formation energy of desired Ni 4+ sites is systematically modulated by incorporating judicious combinations of Co, Fe and non-metal phosphorus. Here we synthesized NiCoFeP oxyhydroxides and probed their oxidation kinetics by employing in situ soft X-ray absorption (sXAS). In situmore » sXAS studies of neutral-pH OER catalysts indicate ready promotion of Ni 4+ under low overpotential conditions. NiCoFeP catalyst outperforms IrO 2 and retains its performance following 100 hours of operation. We showcase NiCoFeP in a membrane-free CO 2 electroreduction system that achieves a 1.99 V cell voltage at 10 mA cm -2, reducing CO 2 into CO and oxidizing H 2O to O 2 with a 64% electricity-to-chemical-fuel efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xueli; Zhang, Bo; De Luna, Phil
The efficiency with which renewable fuels and feedstocks are synthesized from electrical sources is limited at present by the sluggish oxygen evolution reaction (OER) in pH-neutral media. Here, we took the view that generating transition metal sites with high valence at low applied bias should improve the activity of neutral OER catalysts. Using density functional theory, we find that the formation energy of desired Ni 4+ sites is systematically modulated by incorporating judicious combinations of Co, Fe and non-metal phosphorus. Here we synthesized NiCoFeP oxyhydroxides and probed their oxidation kinetics by employing in situ soft X-ray absorption (sXAS). In situmore » sXAS studies of neutral-pH OER catalysts indicate ready promotion of Ni 4+ under low overpotential conditions. NiCoFeP catalyst outperforms IrO 2 and retains its performance following 100 hours of operation. We showcase NiCoFeP in a membrane-free CO 2 electroreduction system that achieves a 1.99 V cell voltage at 10 mA cm -2, reducing CO 2 into CO and oxidizing H 2O to O 2 with a 64% electricity-to-chemical-fuel efficiency.« less
Zheng, Xueli; Zhang, Bo; De Luna, Phil; Liang, Yufeng; Comin, Riccardo; Voznyy, Oleksandr; Han, Lili; García de Arquer, F Pelayo; Liu, Min; Dinh, Cao Thang; Regier, Tom; Dynes, James J; He, Sisi; Xin, Huolin L; Peng, Huisheng; Prendergast, David; Du, Xiwen; Sargent, Edward H
2018-02-01
The efficiency with which renewable fuels and feedstocks are synthesized from electrical sources is limited at present by the sluggish oxygen evolution reaction (OER) in pH-neutral media. We took the view that generating transition-metal sites with high valence at low applied bias should improve the activity of neutral OER catalysts. Here, using density functional theory, we find that the formation energy of desired Ni 4+ sites is systematically modulated by incorporating judicious combinations of Co, Fe and non-metal P. We therefore synthesized NiCoFeP oxyhydroxides and probed their oxidation kinetics with in situ soft X-ray absorption spectroscopy (sXAS). In situ sXAS studies of neutral-pH OER catalysts indicate ready promotion of Ni 4+ under low overpotential conditions. The NiCoFeP catalyst outperforms IrO 2 and retains its performance following 100 h of operation. We showcase NiCoFeP in a membrane-free CO 2 electroreduction system that achieves a 1.99 V cell voltage at 10 mA cm -2 , reducing CO 2 into CO and oxidizing H 2 O to O 2 with a 64% electricity-to-chemical-fuel efficiency.
Novel switching method for single-phase NPC three-level inverter with neutral-point voltage control
NASA Astrophysics Data System (ADS)
Lee, June-Seok; Lee, Seung-Joo; Lee, Kyo-Beum
2018-02-01
This paper proposes a novel switching method with the neutral-point voltage control in a single-phase neutral-point-clamped three-level inverter (SP-NPCI) used in photovoltaic systems. A proposed novel switching method for the SP-NPCI improves the efficiency. The main concept is to fix the switching state of one leg. As a result, the switching loss decreases and the total efficiency is improved. In addition, it enables the maximum power-point-tracking operation to be performed by applying the proposed neutral-point voltage control algorithm. This control is implemented by modifying the reference signal. Simulation and experimental results provide verification of the performance of a novel switching method with the neutral-point voltage control.
Micromotors Spontaneously Neutralize Gastric Acid for pH-Responsive Payload Release.
Li, Jinxing; Angsantikul, Pavimol; Liu, Wenjuan; Esteban-Fernández de Ávila, Berta; Thamphiwatana, Soracha; Xu, Mingli; Sandraz, Elodie; Wang, Xiaolei; Delezuk, Jorge; Gao, Weiwei; Zhang, Liangfang; Wang, Joseph
2017-02-13
The highly acidic gastric environment creates a physiological barrier for using therapeutic drugs in the stomach. While proton pump inhibitors have been widely used for blocking acid-producing enzymes, this approach can cause various adverse effects. Reported herein is a new microdevice, consisting of magnesium-based micromotors which can autonomously and temporally neutralize gastric acid through efficient chemical propulsion in the gastric fluid by rapidly depleting the localized protons. Coating these micromotors with a cargo-containing pH-responsive polymer layer leads to autonomous release of the encapsulated payload upon gastric-acid neutralization by the motors. Testing in a mouse model demonstrate that these motors can safely and rapidly neutralize gastric acid and simultaneously release payload without causing noticeable acute toxicity or affecting the stomach function, and the normal stomach pH is restored within 24 h post motor administration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Antigenic Properties of the HIV Envelope on Virions in Solution
Mengistu, Meron; Lewis, George K.; Lakowicz, Joseph R.
2014-01-01
The structural flexibility found in human immunodeficiency virus (HIV) envelope glycoproteins creates a complex relationship between antigenicity and sensitivity to antiviral antibodies. The study of this issue in the context of viral particles is particularly problematic as conventional virus capture approaches can perturb antigenicity profiles. Here, we employed a unique analytical system based on fluorescence correlation spectroscopy (FCS), which measures antibody-virion binding with all reactants continuously in solution. Panels of nine anti-envelope monoclonal antibodies (MAbs) and five virus types were used to connect antibody binding profiles with neutralizing activities. Anti-gp120 MAbs against the 2G12 or b12 epitope, which marks functional envelope structures, neutralized viruses expressing CCR5-tropic envelopes and exhibited efficient virion binding in solution. MAbs against CD4-induced (CD4i) epitopes considered hidden on functional envelope structures poorly bound these viruses and were not neutralizing. Anti-gp41 MAb 2F5 was neutralizing despite limited virion binding. Similar antigenicity patterns occurred on CXCR4-tropic viruses, except that anti-CD4i MAbs 17b and 19e were neutralizing despite little or no virion binding. Notably, anti-gp120 MAb PG9 and anti-gp41 MAb F240 bound to both CCR5-tropic and CXCR4-tropic viruses without exerting neutralizing activity. Differences in the virus production system altered the binding efficiencies of some antibodies but did not enhance antigenicity of aberrant gp120 structures. Of all viruses tested, only JRFL pseudoviruses showed a direct relationship between MAb binding efficiency and neutralizing potency. Collectively, these data indicate that the antigenic profiles of free HIV particles generally favor the exposure of functional over aberrant gp120 structures. However, the efficiency of virion-antibody interactions in solution inconsistently predicts neutralizing activity in vitro. PMID:24284318
Development of a negative ion-based neutral beam injector in Novosibirsk.
Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L
2014-02-01
A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.
Neutral beamline with improved ion energy recovery
Kim, Jinchoon
1984-01-01
A neutral beamline employing direct energy recovery of unneutralized residual ions is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell, and thus improves the overall neutral beamline efficiency. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beam direction in the neutral izer exit region. The ions which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be loosely coupled. As a result, the fractional energy ions exiting the cell are reflected onto and collected at an interior wall of the neutralizer formed by the modified end geometry, and thus do not detract from the energy recovery efficiency of full energy ions exiting the cell. Electrons within the neutralizer are prevented from exiting the neutralizer end opening by the action of crossed fields drift (ExB) and are terminated to a collector collar around the downstream opening of the neutralizer. The correct combination of the extended neutralizer end structure and the magnet region is designed so as to maximize the exit of full energy ions and to contain the fractional energy ions.
Apparatus for neutralization of accelerated ions
Fink, Joel H.; Frank, Alan M.
1979-01-01
Apparatus for neutralization of a beam of accelerated ions, such as hydrogen negative ions (H.sup.-), using relatively efficient strip diode lasers which emit monochromatically at an appropriate wavelength (.lambda. = 8000 A for H.sup.- ions) to strip the excess electrons by photodetachment. A cavity, formed by two or more reflectors spaced apart, causes the laser beams to undergo multiple reflections within the cavity, thus increasing the efficiency and reducing the illumination required to obtain an acceptable percentage (.about. 85%) of neutralization.
Antibiotic release from biodegradable PHBV microparticles.
Sendil, D; Gürsel, I; Wise, D L; Hasirci, V
1999-05-20
For the treatment of periodontal diseases, design of a controlled release system seemed very appropriate for an effective, long term result. In this study a novel, biodegradable microbial polyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV of various valerate contents containing a well established antibiotic, tetracycline, known to be effective against many of the periodontal disease related microorganisms, was used in the construction of a controlled release system. Tetracycline was loaded in the PHBV microspheres and microcapsules both in its acidic (TC) and in neutral form (TCN). Microcapsules of PHBV were prepared under different conditions using w/o/w double emulsion and their properties such as encapsulation efficiency, loading, release characteristics, and morphological properties were investigated. It was found that concentration of emulsifiers polyvinyl alcohol (PVA) and gelatin (varied between 0-4%) influenced the encapsulation efficiency appreciably. In order to increase encapsulation efficiency (from the obtained range of 18.1-30.1%) and slow down the release of the highly soluble tetracycline.HCl, it was neutralized with NaOH. Encapsulation efficiency of neutralized tetracycline was much higher (51.9-65.3%) due to the insoluble form of the drug used during encapsulation. The release behaviour of neither of the drugs was found to be of zero order. Rather the trends fitted reasonably well to Higuchi's approach for release from spherical micropheres. Biodegradability was not an appreciable parameter in the release from microcapsules because release was complete before any signs of degradation were observed.
Role of a Helix B Lysine Residue in the Photoactive Site in Channelrhodopsins
Li, Hai; Govorunova, Elena G.; Sineshchekov, Oleg A.; Spudich, John L.
2014-01-01
In most studied microbial rhodopsins two conserved carboxylic acid residues (the homologs of Asp-85 and Asp-212 in bacteriorhodopsin) and an arginine residue (the homolog of Arg-82) form a complex counterion to the protonated retinylidene Schiff base, and neutralization of the negatively charged carboxylates causes red shifts of the absorption maximum. In contrast, the corresponding neutralizing mutations in some relatively low-efficiency channelrhodopsins (ChRs) result in blue shifts. These ChRs do not contain a lysine residue in the second helix, conserved in higher efficiency ChRs (Lys-132 in the crystallized ChR chimera). By action spectroscopy of photoinduced channel currents in HEK293 cells and absorption spectroscopy of detergent-purified pigments, we found that in tested ChRs the Lys-132 homolog controls the direction of spectral shifts in the mutants of the photoactive site carboxylic acid residues. Analysis of double mutants shows that red spectral shifts occur when this Lys is present, whether naturally or by mutagenesis, and blue shifts occur when it is replaced with a neutral residue. A neutralizing mutation of the Lys-132 homolog alone caused a red spectral shift in high-efficiency ChRs, whereas its introduction into low-efficiency ChR1 from Chlamydomonas augustae (CaChR1) caused a blue shift. Taking into account that the effective charge of the carboxylic acid residues is a key factor in microbial rhodopsin spectral tuning, these findings suggest that the Lys-132 homolog modulates their pKa values. On the other hand, mutation of the Arg-82 homolog that fulfills this role in bacteriorhodopsin caused minimal spectral changes in the tested ChRs. Titration revealed that the pKa of the Asp-85 homolog in CaChR1 lies in the alkaline region unlike in most studied microbial rhodopsins, but is substantially decreased by introduction of a Lys-132 homolog or neutralizing mutation of the Asp-212 homolog. In the three ChRs tested the Lys-132 homolog also alters channel current kinetics. PMID:24739160
NASA Astrophysics Data System (ADS)
Neumann, Patrick R. C.; Bilek, Marcela; McKenzie, David R.
2016-08-01
The cathodic arc is a high current, low voltage discharge that operates in vacuum and provides a stream of highly ionised plasma from a solid conducting cathode. The high ion velocities, together with the high ionisation fraction and the quasineutrality of the exhaust stream, make the cathodic arc an attractive plasma source for spacecraft propulsion applications. The specific impulse of the cathodic arc thruster is substantially increased when the emission of neutral species is reduced. Here, we demonstrate a reduction of neutral emission by exploiting sublimation in cathode spots and enhanced ionisation of the plasma in short, high-current pulses. This, combined with the enhanced directionality due to the efficient erosion profiles created by centre-triggering, substantially increases the specific impulse. We present experimentally measured specific impulses and jet power efficiencies for titanium and magnesium fuels. Our Mg fuelled source provides the highest reported specific impulse for a gridless ion thruster and is competitive with all flight rated ion thrusters. We present a model based on cathode sublimation and melting at the cathodic arc spot explaining the outstanding performance of the Mg fuelled source. A further significant advantage of an Mg-fuelled thruster is the abundance of Mg in asteroidal material and in space junk, providing an opportunity for utilising these resources in space.
Burt, Adelaide; Hugrass, Laila; Frith-Belvedere, Tash; Crewther, David
2017-01-01
Low spatial frequency (LSF) visual information is extracted rapidly from fearful faces, suggesting magnocellular involvement. Autistic phenotypes demonstrate altered magnocellular processing, which we propose contributes to a decreased P100 evoked response to LSF fearful faces. Here, we investigated whether rapid processing of fearful facial expressions differs for groups of neurotypical adults with low and high scores on the Autistic Spectrum Quotient (AQ). We created hybrid face stimuli with low and high spatial frequency filtered, fearful, and neutral expressions. Fearful faces produced higher amplitude P100 responses than neutral faces in the low AQ group, particularly when the hybrid face contained a LSF fearful expression. By contrast, there was no effect of fearful expression on P100 amplitude in the high AQ group. Consistent with evidence linking magnocellular differences with autistic personality traits, our non-linear VEP results showed that the high AQ group had higher amplitude K2.1 responses than the low AQ group, which is indicative of less efficient magnocellular recovery. Our results suggest that magnocellular LSF processing of a human face may be the initial visual cue used to rapidly and automatically detect fear, but that this cue functions atypically in those with high autistic tendency.
Han, Zhen-Ji; Yamagiwa, Kiyofumi; Yabuuchi, Naoaki; Son, Jin-Young; Cui, Yi-Tao; Oji, Hiroshi; Kogure, Akinori; Harada, Takahiro; Ishikawa, Sumihisa; Aoki, Yasuhito; Komaba, Shinichi
2015-02-07
Poly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree. It is found that 80% NaOH-neutralized polyacrylate binder (a pH value of the resultant aqueous solution is ca. 6.7) is the most efficient binder to enhance the electrochemical lithiation and de-lithiation performance of the Si-graphite composite electrode compared to that of conventional PVdF and the other binders used in this study. The optimum polyacrylate binder highly improves the dispersion of active material in the composite electrode. The binder also provides the strong adhesion, suitable porosity, and hardness for the composite electrode with 10% (m/m) binder content, resulting in better electrochemical reversibility. From these results, the factors of alkali-neutralized polyacrylate binders affecting the electrode performance of Si-graphite composite electrodes are discussed.
Labs21 Approach to Climate Neutral Campuses | Climate Neutral Research
Campuses | NREL Labs21 Approach to Climate Neutral Campuses Labs21 Approach to Climate Neutral included a whole-building approach to energy efficiency in laboratory buildings. This website takes that approach a step further in carrying out campus-wide energy- and carbon-reduction strategies. The
Modeling of neutral entrainment in an FRC thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brackbill, Jeremiah; Gimelshein, Natalia; Gimelshein, Sergey
2012-11-27
Neutral entrainment in a field reversed configuration thruster is modeled numerically with an implicit PIC code extended to include thermal and chemical interactions between plasma and neutral particles. The contribution of charge exchange and electron impact ionization reactions is analyzed, and the sensitivity of the entrainment efficiency to the plasmoid translation velocity and neutral density is evaluated.
Beyond ITER: neutral beams for a demonstration fusion reactor (DEMO) (invited).
McAdams, R
2014-02-01
In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.
Progress of long pulse operation with high performance plasma in KSTAR
NASA Astrophysics Data System (ADS)
Bae, Young; Kstar Team
2015-11-01
Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.
Resting heart rate variability and the startle reflex to briefly presented affective pictures.
Ruiz-Padial, Elisabeth; Thayer, Julian F
2014-12-01
We have previously shown that persons with low HRV showed potentiated startle responses to neutral stimuli. In the present study we replicated our prior findings and extended them to examine the effects of HRV on the startle magnitude to pictures that were presented outside of conscious awareness. A total of 85 male and female students were stratified via median split on their resting HRV. They were presented pictures for 6 s or for 30 ms. Results indicated that the high HRV group showed the context appropriate startle magnitude increase to unpleasant foreground. The low HRV group showed startle magnitude increase from pleasant to neutral pictures but no difference between the neutral and unpleasant pictures. This pattern of results was similar for the 30 ms and the 6 s conditions. These results suggest that having high HRV may allow persons to more efficiently process emotional stimuli and to better recognize threat and safety signals. Copyright © 2014 Elsevier B.V. All rights reserved.
Filamentation instability of a fast electron beam in a dielectric target.
Debayle, A; Tikhonchuk, V T
2008-12-01
High-intensity laser-matter interaction is an efficient method for high-current relativistic electron beam production. At current densities exceeding a several kA microm{-2} , the beam propagation is maintained by an almost complete current neutralization by the target electrons. In such a geometry of two oppositely directed flows, beam instabilities can develop, depending on the target and the beam parameters. The present paper proposes an analytical description of the filamentation instability of an electron beam propagating through an insulator target. It is shown that the collisionless and resistive instabilities enter into competition with the ionization instability. This latter process is dominant in insulator targets where the field ionization by the fast beam provides free electrons for the neutralization current.
Lv, Guoping; Che, Chengchuan; Li, Li; Xu, Shujing; Guan, Wanyi; Zhao, Baohua; Ju, Jiansong
2017-07-06
The traditional CaCO3-based fermentation process generates huge amount of insoluble CaSO4 waste. To solve this problem, we have developed an efficient and green D-lactic acid fermentation process by using ammonia as neutralizer. The 106.7 g/L of D-lactic acid production and 0.89 g per g of consumed sugar were obtained by Sporolactobacillus inulinus CASD with a high optical purity of 99.7% by adding 100 mg/L betaine in the simple batch fermentation process. The addition of betaine was experimentally proven to protect cell at high concentration of ammonium ion, increase the D-lactate dehydrogenase specific activity and thus promote the production of D-lactic acid.
Zheng, Lu; Liu, Mingqing; Sun, Jiaduo; Wu, Bin; He, Bingfang
2017-05-01
Sporolactobacillus inulinus is a superior D-lactic acid-producing bacterium and proposed species for industrial production. The major pathway for D-lactic acid biosynthesis, glycolysis, is mainly regulated via the two irreversible steps catalyzed by the allosteric enzymes, phosphofructokinase (PFK) and pyruvate kinase. The activity level of PFK was significantly consistent with the cell growth and D-lactic acid production, indicating its vital role in control and regulation of glycolysis. In this study, the ATP-dependent PFK from S. inulinus was expressed in Escherichia coli and purified to homogeneity. The PFK was allosterically activated by both GDP and ADP and inhibited by phosphoenolpyruvate; the addition of activators could partly relieve the inhibition by phosphoenolpyruvate. Furthermore, monovalent cations could enhance the activity, and Na + was the most efficient one. Considering this kind activation, NaOH was investigated as the neutralizer instead of the traditional neutralizer CaCO 3 . In the early growth stage, the significant accelerated glucose consumption was achieved in the NaOH case probably for the enhanced activity of Na + -activated PFK. Using NaOH as the neutralizer at pH 6.5, the fermentation time was greatly shortened about 22 h; simultaneously, the glucose consumption rate and the D-lactic acid productivity were increased by 34 and 17%, respectively. This probably contributed to the increased pH and Na + -promoted activity of PFK. Thus, fermentations by S. inulinus using the NaOH neutralizer provide a green and highly efficient D-lactic acid production with easy subsequent purification.
Design study of a 120-keV, He-3 neutral beam injector
NASA Astrophysics Data System (ADS)
Blum, A. S.; Barr, W. L.; Dexter, W. L.; Moir, R. W.; Wilcox, T. P.; Fink, J. H.
1981-01-01
A design for a 120-keV, 2.3-MW, He-3 neutral beam injector for use on a D-(He-3) fusion reactor is described. The constraint that limits operating life when injecting He is its high sputtering rate. The sputtering is partly controlled by using an extra grid to prevent ion flow from the neutralizer duct to the electron suppressor grid, but a tradeoff between beam current and operating life is still required. Hollow grid wires functioning as mercury heat pipes cool the grid and enable steady state operation. Voltage holding and radiation effects on the acceleration grid structure are discussed. The vacuum system is also briefly described, and the use of a direct energy converter to recapture energy from unneutralized ions exiting the neutralizer is also analyzed. Of crucial importance to the technical feasibility of the (He-3)-burning reactor are the injector efficiency and cost; these are 53% and $5.5 million, respectively, when power supplies are included.
Design study of a 120-keV,3He neutral beam injector
NASA Astrophysics Data System (ADS)
Blum, A. S.; Barr, W. L.; Dexter, W. L.; Fink, J. H.; Moir, R. W.; Wilcox, T. P.
1981-01-01
We describe a design for a 120-keV, 2.3-MW,3He neutral beam injector for use on a D-3He fusion reactor. The constraint that limits operating life when injecting He is its high sputtering rate. The sputtering is partly controlled by using an extra grid to prevent ion flow from the neutralizer duct to the electron suppressor grid, but a tradeoff between beam current and operating life is still required. Hollow grid wires functioning as mercury heat pipes cool the grid and enable steady state operation. Voltage holding and radiation effects on the acceleration grid structure are discussed. We also briefly describe the vacuum system and analyze use of a direct energy converter to recapture energy from unneutralized ions exiting the neutralizer. Of crucial importance to the technical feasibility of the3He-burning reactor are the injector efficiency and cost; these are 53% and 5.5 million, respectively, when power supplies are included.
Aluminum and iron doped graphene for adsorption of methylated arsenic pollutants
NASA Astrophysics Data System (ADS)
Cortés-Arriagada, Diego; Toro-Labbé, Alejandro
2016-11-01
The ability of Al and Fe-doped graphene for the adsorption of trivalent and pentavalent methylated arsenic compounds was studied by quantum chemistry computations. The adsorption of trivalent methylarsenicals is reached with adsorption energies of 1.5-1.7 eV at neutral conditions; while, adsorption of pentavalent methylarsenicals reaches adsorption energies of 3.3-4.2 eV and 1.2-2.4 eV from neutral to low pH conditions, respectively. Moreover, the weakening of the interacting σAssbnd O bond in the pollutant structure played an important role in the stability of the adsorbent-adsorbate systems, determining the adsorption strength. In addition, the pollutant adsorption appears to be efficient in aqueous environments, with even high stability at ambient temperature; in this regard, it was determined that the trivalent and petavalent forms are mainly adsorbed in their neutral and anionic forms at neutral pH, respectively. Therefore, Al and Fe-doped graphene are considered as potential future materials for the removal of methylated arsenic pollutants.
Ren, Xiang; Wang, Weiyi; Ge, Ruixiang; Hao, Shuai; Qu, Fengli; Du, Gu; Asiri, Abdullah M; Wei, Qin; Chen, Liang; Sun, Xuping
2017-08-08
It is highly attractive to develop efficient hydrogen-evolving electrocatalysts under neutral conditions. In this communication, we report an amorphous FeMoS 4 nanorod array on carbon cloth (FeMoS 4 NRA/CC) prepared by hydrothermal treatment of an FeOOH nanorod array on carbon cloth (FeOOH NRA/CC) in (NH 4 ) 2 MoS 4 solution. As a 3D electrode for hydrogen evolution electrocatalysis, this FeMoS 4 NRA/CC demonstrates superior catalytic activity and strong long-term electrochemical durability in 1.0 M phosphate buffered saline (pH: 7). It needs an overpotential of 204 mV to drive a geometrical current density of 10 mA cm -2 , which is 450 mV less than that for FeOOH NRA/CC. Density functional theory calculations suggest that FeMoS 4 has a more favourable hydrogen adsorption free energy than FeOOH.
pH-dependent ammonia removal pathways in microbial fuel cell system.
Kim, Taeyoung; An, Junyeong; Lee, Hyeryeong; Jang, Jae Kyung; Chang, In Seop
2016-09-01
In this work, ammonia removal paths in microbial fuel cells (MFCs) under different initial pH conditions (pH 7.0, 8.0, and 8.6) were investigated. At a neutral pH condition (pH 7.0), MFC used an electrical energy of 27.4% and removed 23.3% of total ammonia by electrochemical pathway for 192h. At the identical pH condition, 36.1% of the total ammonia was also removed by the biological path suspected to be biological ammonia oxidation process (e.g., Anammox). With the initial pH increased, the electrochemical removal efficiency decreased to less than 5.0%, while the biological removal efficiency highly increased to 61.8%. In this study, a neutral pH should be maintained in the anode to utilize MFCs for ammonia recovery via electrochemical pathways from wastewater stream. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Berthias, F.; Feketeová, L.; Della Negra, R.; Dupasquier, T.; Fillol, R.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Märk, T. D.
2018-01-01
The combination of the Dispositif d'Irradiation d'Agrégats Moléculaire with the correlated ion and neutral time of flight-velocity map imaging technique provides a new way to explore processes occurring subsequent to the excitation of charged nano-systems. The present contribution describes in detail the methods developed for the quantitative measurement of branching ratios and cross sections for collision-induced dissociation processes of water cluster nano-systems. These methods are based on measurements of the detection efficiency of neutral fragments produced in these dissociation reactions. Moreover, measured detection efficiencies are used here to extract the number of neutral fragments produced for a given charged fragment.
Darvish, Maryam; Ebrahimi, Soltan Ahmad; Shahbazzadeh, Delavar; Bagheri, Kamran-Pooshang; Behdani, Mahdi; Shokrgozar, Mohammad Ali
2016-04-01
Scorpion envenoming is a serious health problem which can cause a variety of clinical toxic effects. Of the many scorpion species native to Iran, Hottentotta saulcyi is important because its venom can produce toxic effects in man. Nowadays, antivenom derived from hyper immune horses is the only effective treatment for sever scorpion stings. Current limitations of immunotherapy urgently require an efficient alternative with high safety, target affinity and more promising venom neutralizing capability. Recently, heavy chain-only antibodies (HC-Abs) found naturally in camelid serum met the above mentioned advantages. In this study, immuno-reactivities of polyclonal antibodies were tested after successful immunization of camel using H. saulcyi scorpion crude venom. The lethal potency of scorpion venom in C57BL/6 mice injected intraperitoneally was determined to be 2.7 mg/kg. These results were followed by the efficient neutralization of lethal activity of H. saulcyi scorpion venom by injection of antivenom and purified IgG fractions into mice intraperitonelly or intravenously, respectively. HC-Ab camelid antivenom could be considered as a useful serotherapeutics instead of present treatment for scorpion envenomation. Copyright © 2016. Published by Elsevier Ltd.
Assessment of iron chelates efficiency for photo-Fenton at neutral pH.
De Luca, Antonella; Dantas, Renato F; Esplugas, Santiago
2014-09-15
In this study, homogeneous photo-Fenton like at neutral pH was applied to remove sulfamethoxazole from water. The process was performed using different chelating agents in order to solubilize iron in a neutral water solution. The chelating agents tested were: ethylenediaminetetraacetic acid (EDTA); nitrilotriacetic acid (NTA); oxalic acid (OA) and tartaric acid (TA). The iron leaching was monitored over reaction time to evaluate the chelates stability and their resistance to HO· and UV-A radiation. Chelates of EDTA and NTA presented more stability than OA and TA, which also confirmed their higher efficiency. Total Organic Carbon (TOC) analyses were also performed to evaluate the contribution in terms of solution contamination related to the use of chelating agents. The better properties of biodegradability in respect of EDTA combined with better efficiency in terms of microcontaminant removal and the smallest TOC contribution indicate that NTA could represent a useful option to perform photo-Fenton processes at neutral pH. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kachko, Alla; Kochneva, Galina; Sivolobova, Galina; Grazhdantseva, Antonina; Lupan, Tatyana; Zubkova, Iryna; Wells, Frances; Merchlinsky, Michael; Williams, Ollie; Watanabe, Hisayoshi; Ivanova, Alla; Shvalov, Aleksander; Loktev, Valeriy; Netesov, Sergei; Major, Marian E
2011-12-09
One of the greatest challenges to HCV vaccine development is the induction of effective immune responses using recombinant proteins or vectors. In order to better understand which vaccine-induced antibodies contribute to neutralization of HCV the quality of polyclonal anti-E1E2 antibody responses in immunized mice and chimpanzees was assessed at the level of epitope recognition using peptide scanning and neutralization of chimeric 1a/2a, 1b/2a and 2a HCVcc after blocking or affinity elution of specific antibodies. Mice and chimpanzees were immunized with genotype 1a (H77) HCV gpE1E2; all samples contained cross-neutralizing antibody against HCVcc. By functionally dissecting the polyclonal immune responses we identified three new regions important for neutralization within E1 (aa264-318) and E2 (aa448-483 and aa496-515) of the HCV glycoproteins, the third of which (aa496-515) is highly conserved (85-95%) amongst genotypes. Antibodies to aa496-515 were isolated by affinity binding and elution from the serum of a vaccinated chimpanzee and found to specifically neutralize chimeric 1a/2a, 1b/2a and 2a HCVcc. IC50 titres (IgG ng/mL) for the aa496-515 eluate were calculated as 142.1, 239.37 and 487.62 against 1a/2a, 1b/2a and 2a HCVcc, respectively. Further analysis demonstrated that although antibody to this new, conserved neutralization epitope is efficiently induced with recombinant proteins in mice and chimpanzees; it is poorly induced during natural infection in patients and chimpanzees (7 out of 68 samples positive) suggesting the epitope is poorly presented to the immune system in the context of the viral particle. These findings have important implications for the development of HCV vaccines and strategies designed to protect against heterologous viruses. The data also suggest that recombinant or synthetic antigens may be more efficient at inducing neutralizing antibodies to certain epitopes and that screening virally infected patients may not be the best approach for finding new cross-reactive epitopes. Published by Elsevier Ltd.
Surface conversion techniques for low energy neutral atom imagers
NASA Technical Reports Server (NTRS)
Quinn, J. M.
1995-01-01
This investigation has focused on development of key technology elements for low energy neutral atom imaging. More specifically, we have investigated the conversion of low energy neutral atoms to negatively charged ions upon reflection from specially prepared surfaces. This 'surface conversion' technique appears to offer a unique capability of detecting, and thus imaging, neutral atoms at energies of 0.01 - 1 keV with high enough efficiencies to make practical its application to low energy neutral atom imaging in space. Such imaging offers the opportunity to obtain the first instantaneous global maps of macroscopic plasma features and their temporal variation. Through previous in situ plasma measurements, we have a statistical picture of large scale morphology and local measurements of dynamic processes. However, with in situ techniques it is impossible to characterize or understand many of the global plasma transport and energization processes. A series of global plasma images would greatly advance our understanding of these processes and would provide the context for interpreting previous and future in situ measurements. Fast neutral atoms, created from ions that are neutralized in collisions with exospheric neutrals, offer the means for remotely imaging plasma populations. Energy and mass analysis of these neutrals provides critical information about the source plasma distribution. The flux of neutral atoms available for imaging depends upon a convolution of the ambient plasma distribution with the charge exchange cross section for the background neutral population. Some of the highest signals are at relatively low energies (well below 1 keV). This energy range also includes some of the most important plasma populations to be imaged, for example the base of the cleft ion fountain.
Fukuda, Ikuo
2013-11-07
The zero-multipole summation method has been developed to efficiently evaluate the electrostatic Coulombic interactions of a point charge system. This summation prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large amounts of energetic noise and significant artifacts. The resulting energy function is represented by a constant term plus a simple pairwise summation, using a damped or undamped Coulombic pair potential function along with a polynomial of the distance between each particle pair. Thus, the implementation is straightforward and enables facile applications to high-performance computations. Any higher-order multipole moment can be taken into account in the neutrality principle, and it only affects the degree and coefficients of the polynomial and the constant term. The lowest and second moments correspond respectively to the Wolf zero-charge scheme and the zero-dipole summation scheme, which was previously proposed. Relationships with other non-Ewald methods are discussed, to validate the current method in their contexts. Good numerical efficiencies were easily obtained in the evaluation of Madelung constants of sodium chloride and cesium chloride crystals.
New Diamond Color Center for Quantum Communication
NASA Astrophysics Data System (ADS)
Huang, Ding; Rose, Brendon; Tyryshkin, Alexei; Sangtawesin, Sorawis; Srinivasan, Srikanth; Twitchen, Daniel; Markham, Matthew; Edmonds, Andrew; Gali, Adam; Stacey, Alastair; Wang, Wuyi; D'Haenens-Johansson, Ulrika; Zaitsev, Alexandre; Lyon, Stephen; de Leon, Nathalie
2017-04-01
Color centers in diamond are attractive for quantum communication applications because of their long electron spin coherence times and efficient optical transitions. Previous demonstrations of color centers as solid-state spin qubits were primarily focused on centers that exhibit either long coherence times or highly efficient optical interfaces. Recently, we developed a method to stabilize the neutral charge state of silicon-vacancy center in diamond (SiV0) with high conversion efficiency. We observe spin relaxation times exceeding 1 minute and spin coherence times of 1 ms for SiV0 centers. Additionally, the SiV0 center also has > 90 % of its emission into its zero-phonon line and a narrow inhomogeneous optical linewidth. The combination of a long spin coherence time and efficient optical interface make the SiV0 center a promising candidate for applications in long distance quantum communication.
Neutral mutation as the source of genetic variation in life history traits.
Brcić-Kostić, Krunoslav
2005-08-01
The mechanism underlying the maintenance of adaptive genetic variation is a long-standing question in evolutionary genetics. There are two concepts (mutation-selection balance and balancing selection) which are based on the phenotypic differences between alleles. Mutation - selection balance and balancing selection cannot properly explain the process of gene substitution, i.e. the molecular evolution of quantitative trait loci affecting fitness. I assume that such loci have non-essential functions (small effects on fitness), and that they have the potential to evolve into new functions and acquire new adaptations. Here I show that a high amount of neutral polymorphism at these loci can exist in real populations. Consistent with this, I propose a hypothesis for the maintenance of genetic variation in life history traits which can be efficient for the fixation of alleles with very small selective advantage. The hypothesis is based on neutral polymorphism at quantitative trait loci and both neutral and adaptive gene substitutions. The model of neutral - adaptive conversion (NAC) assumes that neutral alleles are not neutral indefinitely, and that in specific and very rare situations phenotypic (relative fitness) differences between them can appear. In this paper I focus on NAC due to phenotypic plasticity of neutral alleles. The important evolutionary consequence of NAC could be the increased adaptive potential of a population. Loci responsible for adaptation should be fast evolving genes with minimally discernible phenotypic effects, and the recent discovery of genes with such characteristics implicates them as suitable candidates for loci involved in adaptation.
Rosenberg, Yvonne; Sack, Markus; Montefiori, David; Forthal, Donald; Mao, Lingjun; -Abanto, Segundo Hernandez; Urban, Lori; Landucci, Gary; Fischer, Rainer; Jiang, Xiaoming
2013-01-01
Passive immunotherapy using anti-HIV broadly neutralizing monoclonal antibodies (mAbs) has shown promise as an HIV treatment, reducing mother-to-child-transmission (MTCT) of simian/human immunodeficiency virus (SHIV) in non-human primates and decreasing viral rebound in patients who ceased receiving anti-viral drugs. In addition, a cocktail of potent mAbs may be useful as mucosal microbicides and provide an effective therapy for post-exposure prophylaxis. However, even highly neutralizing HIV mAbs used today may lose their effectiveness if resistance occurs, requiring the rapid production of new or engineered mAbs on an ongoing basis in order to counteract the viral resistance or the spread of a certain HIV-1 clade in a particular region or patient. Plant-based expression systems are fast, inexpensive and scalable and are becoming increasingly popular for the production of proteins and monoclonal antibodies. In the present study, Agrobacterium-mediated transient transfection of plants, utilizing two species of Nicotiana, have been tested to rapidly produce high levels of an HIV 89.6PΔ140env and several well-studied anti-HIV neutralizing monoclonal antibodies (b12, 2G12, 2F5, 4E10, m43, VRC01) or a single chain antibody construct (m9), for evaluation in cell-based viral inhibition assays. The protein-A purified plant-derived antibodies were intact, efficiently bound HIV envelope, and were equivalent to, or in one case better than, their counterparts produced in mammalian CHO or HEK-293 cells in both neutralization and antibody dependent viral inhibition assays. These data indicate that transient plant-based transient expression systems are very adaptable and could rapidly generate high levels of newly identified functional recombinant HIV neutralizing antibodies when required. In addition, they warrant detailed cost-benefit analysis of prolonged incubation in plants to further increase mAb production. PMID:23533588
Telescope-based cavity for negative ion beam neutralization in future fusion reactors.
Fiorucci, Donatella; Hreibi, Ali; Chaibi, Walid
2018-03-01
In future fusion reactors, heating system efficiency is of the utmost importance. Photo-neutralization substantially increases the neutral beam injector (NBI) efficiency with respect to the foreseen system in the International Thermonuclear Experimental Reactor (ITER) based on a gaseous target. In this paper, we propose a telescope-based configuration to be used in the NBI photo-neutralizer cavity of the demonstration power plant (DEMO) project. This configuration greatly reduces the total length of the cavity, which likely solves overcrowding issues in a fusion reactor environment. Brought to a tabletop experiment, this cavity configuration is tested: a 4 mm beam width is obtained within a ≃1.5 m length cavity. The equivalent cavity g factor is measured to be 0.038(3), thus confirming the cavity stability.
The Beam Forming Numerical Simulation for High Power Neutral Injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, A.; Deichuli, P.; Ivanov, A.
2005-01-15
High power neutral beam injector START-4 for plasma heating has been described. The distinctive features of the injector are comparatively large initial beam aperture (200 mm) and multi holes grids with the large numbers of the holes (more than 3000). A significant focusing is realized to a beam diameter 50 mm at a length 1.2 m. The disadvantage of the multi holes optic is low transparency, which decreases the efficiency of plasma source and makes worse vacuum conditions in the source. The possible decisions of these problems are using ion-optical systems (IOS) with enlarged diameter of holes and, also, applicationmore » IOS with the azimuthal-slit holes structure. Numerical simulation and test experiments have been carried out for investigation of the ability such IOS geometries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assary, R. S.; Redfern, P. C.; Greeley, J.
2011-03-28
Efficient catalytic chemical transformation of fructose to hydroxy methyl furfural (HMF) is one of the key steps for attaining industrial level conversion of biomass to useful chemicals. We report an investigation of the reaction mechanisms for the decomposition of fructose to HMF in both neutral and acidic environments at the Gaussian-4 level of theory including calculation of enthalpies, free energies, and effective solvation interactions. In neutral water solvent, the transformation of fructose to HMF involves a four step reaction sequence with four transition states. The effective activation energy relative to fructose in neutral water at 298 K is very large,more » about 74 kcal/mol, so that transformation in neutral media around this temperature is unlikely. In contrast, the computed potential energy surface is much more favorable for the transformation in acidic media at 498 K, as the effective activation barrier is about 39 kcal/mol. The transformation in acidic media is a much more complex mechanism involving dehydration and hydrogen transfer steps, which are more favorable when protonated intermediates are involved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assary, Rajeev S.; Redfern, Paul C.; Greeley, Jeffrey P.
2011-04-21
Efficient catalytic chemical transformation of fructose to hydroxy methyl furfural (HMF) is one of the key steps for attaining industrial level conversion of biomass to useful chemicals. We report an investigation of the reaction mechanisms for the decomposition of fructose to HMF in both neutral and acidic environments at the Gaussian-4 level of theory including calculation of enthalpies, free energies, and effective solvation interactions. In neutral water solvent, the transformation of fructose to HMF involves a four step reaction sequence with four transition states. The effective activation energy relative to fructose in neutral water at 298 K is very large,more » about 74 kcal/mol, so that transformation in neutral media around this temperature is unlikely. In contrast, the computed potential energy surface is much more favorable for the transformation in acidic media at 498 K, as the effective activation barrier is about 39 kcal/mol. The transformation in acidic media is a much more complex mechanism involving dehydration and hydrogen transfer steps, which are more favorable when protonated intermediates are involved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assary, Rajeev S.; Redfern, Paul C.; Greeley, Jeffrey
2011-03-28
Efficient catalytic chemical transformation of fructose to hydroxy methyl furfural (HMF) is one of the key steps for attaining industrial level conversion of biomass to useful chemicals. We report an investigation of the reaction mechanisms for the decomposition of fructose to HMF in both neutral and acidic environments at the Gaussian-4 level of theory including calculation of enthalpies, free energies, and effective solvation interactions. In neutral water solvent, the transformation of fructose to HMF involves a four step reaction sequence with four transition states. The effective activation energy relative to fructose in neutral water at 298 K is very large,more » about 74 kcal/mol, so that transformation in neutral media around this temperature is unlikely. In contrast, the computed potential energy surface is much more favorable for the transformation in acidic media at 498 K, as the effective activation barrier is about 39 kcal/mol. The transformation in acidic media is a much more complex mechanism involving dehydration and hydrogen transfer steps, which are more favorable when protonated intermediates are involved.« less
Focsan, A. Ligia; Polyakov, Nikolay E.; Kispert, Lowell D.
2017-01-01
The antioxidant astaxanthin is known to accumulate in Haematococcus pluvialis algae under unfavorable environmental conditions for normal cell growth. The accumulated astaxanthin functions as a protective agent against oxidative stress damage, and tolerance to excessive reactive oxygen species (ROS) is greater in astaxanthin-rich cells. The detailed mechanisms of protection have remained elusive, however, our Electron Paramagnetic Resonance (EPR), optical and electrochemical studies on carotenoids suggest that astaxanthin’s efficiency as a protective agent could be related to its ability to form chelate complexes with metals and to be esterified, its inability to aggregate in the ester form, its high oxidation potential and the ability to form proton loss neutral radicals under high illumination in the presence of metal ions. The neutral radical species formed by deprotonation of the radical cations can be very effective quenchers of the excited states of chlorophyll under high irradiation. PMID:29065482
Low energy, high power hydrogen neutral beam for plasma heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deichuli, P.; Davydenko, V.; Ivanov, A., E-mail: ivanov@inp.nsk.su
A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase themore » efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.« less
Neutralizer Characterization of a NEXT Multi-Thruster Array With Electrostatic Probes
NASA Technical Reports Server (NTRS)
Foster, John E.; Patterson, Michael; Pencil, Eric; McEwen, Heather; Diaz, Esther
2006-01-01
Neutralizers in a multi-thruster array configuration were characterized using conventional diagnostics such as peak-to-peak keeper oscillation amplitude as well as unconventional methods which featured the application of electrostatic probes. The response of the array local plasma environment to neutralizer flow rate changes were documented using Langmuir probes and retarding potential analyzers. Such characterization is necessary for system efficiency and stability optimization. Because the local plasma environment was measured in conjunction with the neutralizer characterization, particle fluxes at the array and thus array lifetime impacts associated with neutralizer operating mode could also be investigated. Neutralizer operating condition was documented for a number of multithruster array configurations ranging from three-engines, three-neutralizers to a single engine, one-neutralizer all as a function of neutralizer flow rate.
Barium light source method and apparatus
NASA Technical Reports Server (NTRS)
Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)
2002-01-01
Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.
A New Instrument Design for Imaging Low Energy Neutral Atoms
NASA Technical Reports Server (NTRS)
Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy
2007-01-01
The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.
Buttafuoco, Arianna; Pedale, Tiziana; Buchanan, Tony W; Santangelo, Valerio
2018-02-01
Emotional events are thought to have privileged access to attention and memory, consuming resources needed to encode competing emotionally neutral stimuli. However, it is not clear whether this detrimental effect is automatic or depends on the successful maintenance of the specific emotional object within working memory. Here, participants viewed everyday scenes including an emotional object among other neutral objects followed by a free-recollection task. Results showed that emotional objects-irrespective of their perceptual saliency-were recollected more often than neutral objects. The probability of being recollected increased as a function of the arousal of the emotional objects, specifically for negative objects. Successful recollection of emotional objects (positive or negative) from a scene reduced the overall number of recollected neutral objects from the same scene. This indicates that only emotional stimuli that are efficient in grabbing (and then consuming) available attentional resources play a crucial role during the encoding of competing information, with a subsequent bias in the recollection of neutral representations.
Li, Hua; Li, Fei; Zhang, Biaobiao; Zhou, Xu; Yu, Fengshou; Sun, Licheng
2015-04-08
A highly active supramolecular system for visible light-driven water oxidation was developed with cyclodextrin-modified ruthenium complex as the photosensitizer, phenyl-modified ruthenium complexes as the catalysts, and sodium persulfate as the sacrificial electron acceptor. The catalysts were found to form 1:1 host-guest adducts with the photosensitizer. Stopped-flow measurement revealed the host-guest interaction is essential to facilitate the electron transfer from catalyst to sensitizer. As a result, a remarkable quantum efficiency of 84% was determined under visible light irradiation in neutral aqueous phosphate buffer. This value is nearly 1 order of magnitude higher than that of noninteraction system, indicating that the noncovalent incorporation of sensitizer and catalyst is an appealing approach for efficient conversion of solar energy into fuels.
Nie, Jianhui; Wu, Xiaohong; Ma, Jian; Cao, Shouchun; Huang, Weijin; Liu, Qiang; Li, Xuguang; Li, Yuhua; Wang, Youchun
2017-01-01
Pseudoviruses are useful virological tools because of their safety and versatility; however the low titer of these viruses substantially limits their wider applications. We developed a highly efficient pseudovirus production system capable of yielding 100 times more rabies pseudovirus than the traditional method. Employing the high-titer pseudoviruses, we have developed robust in vitro and in vivo neutralization assays for the evaluation of rabies vaccine, which traditionally relies on live-virus based assays. Compared with current rapid fluorescent focus inhibition test (RFFIT), our in vitro pseudovirus-based neutralization assay (PBNA) is much less labor-intensive while demonstrating better reproducibility. Moreover, the in vivo PBNA assay was also found to be superior to the live virus based assay. Following intravenous administration, the pseudovirus effectively infected the mice, with dynamic viral distributions being sequentially observed in spleen, liver and brain. Furthermore, data from in vivo PBNA showed great agreement with those generated from the live virus model but with the experimental time significantly reduced from 2 weeks to 3 days. Taken together, the effective pseudovirus production system facilitated the development of novel PBNA assays which could replace live virus-based traditional assays due to its safety, rapidity, reproducibility and high throughput capacity. PMID:28218278
High efficiency thermionic converter studies
NASA Technical Reports Server (NTRS)
Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, T. R.; Lieb, D.; Oettinger, P. E.; Goodale, D. B.
1977-01-01
Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion.
Woodley, Frederick W; Moore-Clingenpeel, Melissa; Machado, Rodrigo Strehl; Nemastil, Christopher J; Jadcherla, Sudarshan R; Hayes, Don; Kopp, Benjamin T; Kaul, Ajay; Di Lorenzo, Carlo; Mousa, Hayat
2017-09-01
Acid neutralization during chemical clearance is significantly prolonged in children with cystic fibrosis, compared to symptomatic children without cystic fibrosis. The absence of available reference values impeded identification of abnormal findings within individual patients with and without cystic fibrosis. The present study aimed to test the hypothesis that significantly more children with cystic fibrosis have acid neutralization durations during chemical clearance that fall outside the physiological range. Published reference value for acid neutralization duration during chemical clearance (determined using combined impedance/pH monitoring) was used to assess esophageal acid neutralization efficiency during chemical clearance in 16 children with cystic fibrosis (3 to <18 years) and 16 age-matched children without cystic fibrosis. Duration of acid neutralization during chemical clearance exceeded the upper end of the physiological range in 9 of 16 (56.3%) children with and in 3 of 16 (18.8%) children without cystic fibrosis ( p =0.0412). The likelihood ratio for duration indicated that children with cystic fibrosis are 2.1-times more likely to have abnormal acid neutralization during chemical clearance, and children with abnormal acid neutralization during chemical clearance are 1.5-times more likely to have cystic fibrosis. Significantly more (but not all) children with cystic fibrosis have abnormally prolonged esophageal clearance of acid. Children with cystic fibrosis are more likely to have abnormal acid neutralization during chemical clearance. Additional studies involving larger sample sizes are needed to address the importance of genotype, esophageal motility, composition and volume of saliva, and gastric acidity on acid neutralization efficiency in cystic fibrosis children.
2013-01-01
Background Breastfeeding is a leading cause of infant HIV-1 infection in the developing world, yet only a minority of infants exposed to HIV-1 via breastfeeding become infected. As a genetic bottleneck severely restricts the number of postnatally-transmitted variants, genetic or phenotypic properties of the virus Envelope (Env) could be important for the establishment of infant infection. We examined the efficiency of virologic functions required for initiation of infection in the gastrointestinal tract and the neutralization sensitivity of HIV-1 Env variants isolated from milk of three postnatally-transmitting mothers (n=13 viruses), five clinically-matched nontransmitting mothers (n=16 viruses), and seven postnatally-infected infants (n = 7 postnatally-transmitted/founder (T/F) viruses). Results There was no difference in the efficiency of epithelial cell interactions between Env virus variants from the breast milk of transmitting and nontransmitting mothers. Moreover, there was similar efficiency of DC-mediated trans-infection, CCR5-usage, target cell fusion, and infectivity between HIV-1 Env-pseudoviruses from nontransmitting mothers and postnatal T/F viruses. Milk Env-pseudoviruses were generally sensitive to neutralization by autologous maternal plasma and resistant to breast milk neutralization. Infant T/F Env-pseudoviruses were equally sensitive to neutralization by broadly-neutralizing monoclonal and polyclonal antibodies as compared to nontransmitted breast milk Env variants. Conclusion Postnatally-T/F Env variants do not appear to possess a superior ability to interact with and cross a mucosal barrier or an exceptional resistance to neutralization that define their capability to initiate infection across the infant gastrointestinal tract in the setting of preexisting maternal antibodies. PMID:23305422
Beynen, A C; Meijer, G W; Lemmens, A G; Glatz, J F; Versluis, A; Katan, M B; Van Zutphen, L F
1989-06-01
In 2 inbred strains of rabbits with high or low response of plasma cholesterol to dietary cholesterol, excretion of steroids in the feces and efficiency of cholesterol absorption were determined. Rates of whole-body cholesterol synthesis, measured as fecal excretion of bile acids and neutral steroids minus cholesterol intake, were similar in hypo- and hyperresponders fed a low-cholesterol (8 mumol/100 g) diet. Transfer of the rabbits to a high-cholesterol (182 mumol/100 g) diet caused an increase in fecal bile acid excretion in hypo- but not in hyperresponders. Dietary cholesterol did not affect neutral steroid excretion in either rabbit strain. Hyperresponders tended to accumulate more cholesterol in their body than did hyporesponders. After the rabbits were switched back from the high- to the low-cholesterol diet, rates of whole-body cholesterol synthesis were significantly higher in the hypo- than in the hyperresponders. With the use of the simultaneous oral administration of [3H]cholesterol and beta-[14C]sitosterol, hyperresponders were found to absorb significantly higher percentages of cholesterol than hyporesponders. It is concluded that the differences in stimulation of bile acid excretion after cholesterol feeding and the efficiency of cholesterol absorption are important determinants of the phenomenon of hypo- and hyperresponsiveness in the 2 inbred rabbit strains.
Sakurai, Toshihiro; Aoki, Motohide; Ju, Xiaohui; Ueda, Tatsuya; Nakamura, Yasunori; Fujiwara, Shoko; Umemura, Tomonari; Tsuzuki, Mikio; Minoda, Ayumi
2016-01-01
The unicellular red alga Galdieria sulphuraria grows efficiently and produces a large amount of biomass in acidic conditions at high temperatures. It has great potential to produce biofuels and other beneficial compounds without becoming contaminated with other organisms. In G. sulphuraria, biomass measurements and glycogen and lipid analyses demonstrated that the amounts and compositions of glycogen and lipids differed when cells were grown under autotrophic, mixotrophic, and heterotrophic conditions. Maximum biomass production was obtained in the mixotrophic culture. High amounts of glycogen were obtained in the mixotrophic cultures, while the amounts of neutral lipids were similar between mixotrophic and heterotrophic cultures. The amounts of neutral lipids were highest in red algae, including thermophiles. Glycogen structure and fatty acids compositions largely depended on the growth conditions. Copyright © 2015. Published by Elsevier Ltd.
Edmonds, Mark T; Hellerstedt, Jack; O'Donnell, Kane M; Tadich, Anton; Fuhrer, Michael S
2016-06-29
We perform low-temperature transport and high-resolution photoelectron spectroscopy on 20 nm thin film topological Dirac semimetal Na3Bi grown by molecular beam epitaxy. We demonstrate efficient electron depletion ∼10(13) cm(-2) of Na3Bi via vacuum deposition of molecular F4-TCNQ without degrading the sample mobility. For samples with low as-grown n-type doping (1 × 10(12) cm(-2)), F4-TCNQ doping can achieve charge neutrality and even a net p-type doping. Photoelectron spectroscopy and density functional theory are utilized to investigate the behavior of F4-TCNQ on the Na3Bi surface.
Modeling weakly-ionized plasmas in magnetic field: A new computationally-efficient approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parent, Bernard, E-mail: parent@pusan.ac.kr; Macheret, Sergey O.; Shneider, Mikhail N.
2015-11-01
Despite its success at simulating accurately both non-neutral and quasi-neutral weakly-ionized plasmas, the drift-diffusion model has been observed to be a particularly stiff set of equations. Recently, it was demonstrated that the stiffness of the system could be relieved by rewriting the equations such that the potential is obtained from Ohm's law rather than Gauss's law while adding some source terms to the ion transport equation to ensure that Gauss's law is satisfied in non-neutral regions. Although the latter was applicable to multicomponent and multidimensional plasmas, it could not be used for plasmas in which the magnetic field was significant.more » This paper hence proposes a new computationally-efficient set of electron and ion transport equations that can be used not only for a plasma with multiple types of positive and negative ions, but also for a plasma in magnetic field. Because the proposed set of equations is obtained from the same physical model as the conventional drift-diffusion equations without introducing new assumptions or simplifications, it results in the same exact solution when the grid is refined sufficiently while being more computationally efficient: not only is the proposed approach considerably less stiff and hence requires fewer iterations to reach convergence but it yields a converged solution that exhibits a significantly higher resolution. The combined faster convergence and higher resolution is shown to result in a hundredfold increase in computational efficiency for some typical steady and unsteady plasma problems including non-neutral cathode and anode sheaths as well as quasi-neutral regions.« less
NASA Astrophysics Data System (ADS)
Park, Jun-Hyuk; Ahn, Kyung-Jun; Park, Kang-Il; Na, Seok-In; Kim, Han-Ki
2010-03-01
We report the characteristics of Al-doped zinc oxide (AZO) films prepared by a highly efficient cylindrical rotating magnetron sputtering (CRMS) system for use as a transparent conducting electrode in cost-efficient bulk hetero-junction organic solar cells (OSCs). Using a rotating cylindrical type cathode with an AZO target, whose usage was above 80%, we were able to obtain a low cost and indium free AZO electrode with a low sheet resistance of ~4.59 Ω/sq, a high transparency of 85% in the visible wavelength region and a work function of 4.9 eV at a substrate temperature of 230 °C. Moreover, the neutral poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) based OSC fabricated on the CRMS-grown AZO electrode at 230 °C showed an open circuit voltage of 0.5 V, a short circuit current of 8.94 mA cm-2, a fill factor of 45% and power conversion efficiency of 2.01%, indicating that CRMS is a promising cost-efficient AZO deposition technique for low cost OSCs.
Trkola, Alexandra; Matthews, Jamie; Gordon, Cynthia; Ketas, Tom; Moore, John P.
1999-01-01
We describe here a cell line-based assay for the evaluation of human immunodeficiency virus type 1 (HIV-1) neutralization. The assay is based on CEM.NKR cells, transfected to express the HIV-1 coreceptor CCR5 to supplement the endogenous expression of CD4 and the CXCR4 coreceptor. The resulting CEM.NKR-CCR5 cells efficiently replicate primary HIV-1 isolates of both R5 and X4 phenotypes. A comparison of the CEM.NKR-CCR5 cells with mitogen-activated peripheral blood mononuclear cells (PBMC) in neutralization assays with sera from HIV-1-infected individuals or specific anti-HIV-1 monoclonal antibodies shows that the sensitivity of HIV-1 neutralization is similar in the two cell types. The CEM.NKR-CCR5 cell assay, however, is more convenient to perform and eliminates the donor-to-donor variation in HIV-1 replication efficiency, which is one of the principal drawbacks of the PBMC-based neutralization assay. We suggest that this new assay is suitable for the general measurement of HIV-1 neutralization by antibodies. PMID:10516002
Anderson, Laura L.; Arnold, John; Bergman, Robert G.
2005-01-01
Several tantalum imido complexes have been synthesized and shown to efficiently catalyze the hydroamination of internal and terminal alkynes. An unusual hydroamination/hydroarylation reaction of norbornene catalyzed by a highly electrophilic cationic tantalum imido complex is also reported. Factors affecting catalyst activity and selectivity are discussed along with mechanistic insights gained from stoichiometric reactions. PMID:15255680
Clark, Lars E; Mahmutovic, Selma; Raymond, Donald D; Dilanyan, Taleen; Koma, Takaaki; Manning, John T; Shankar, Sundaresh; Levis, Silvana C; Briggiler, Ana M; Enria, Delia A; Wucherpfennig, Kai W; Paessler, Slobodan; Abraham, Jonathan
2018-05-14
While five arenaviruses cause human hemorrhagic fevers in the Western Hemisphere, only Junin virus (JUNV) has a vaccine. The GP1 subunit of their envelope glycoprotein binds transferrin receptor 1 (TfR1) using a surface that substantially varies in sequence among the viruses. As such, receptor-mimicking antibodies described to date are type-specific and lack the usual breadth associated with this mode of neutralization. Here we isolate, from the blood of a recipient of the live attenuated JUNV vaccine, two antibodies that cross-neutralize Machupo virus with varying efficiency. Structures of GP1-Fab complexes explain the basis for efficient cross-neutralization, which involves avoiding receptor mimicry and targeting a conserved epitope within the receptor-binding site (RBS). The viral RBS, despite its extensive sequence diversity, is therefore a target for cross-reactive antibodies with activity against New World arenaviruses of public health concern.
The Use of Clay-Polymer Nanocomposites in Wastewater Pretreatment
Rytwo, Giora
2012-01-01
Some agricultural effluents are unsuitable for discharge into standard sewage-treatment plants: their pretreatment is necessary to avoid clogging of the filtering devices by colloidal matter. The colloidal stability of the effluents is mainly due to mutual repulsive forces that keep charged particles in suspension. Pretreatment processes are based on two separate stages: (a) neutralization of the charges (“coagulation”) and (b) bridging between several small particles to form larger aggregates that sink, leaving clarified effluent (“flocculation”). The consequent destabilization of the colloidal suspension lowers total suspended solids (TSSs), turbidity, and other environmental quality parameters, making the treatments that follow more efficient. Clay-based materials have been widely used for effluent pretreatment and pollutant removal. This study presents the use of nanocomposites, comprised of an anchoring particle and a polymer, as “coagoflocculants” for the efficient and rapid reduction of TSS and turbidity in wastewater with a high organic load. The use of such particles combines the advantages of coagulant and flocculant by neutralizing the charge of the suspended particles while bridging between them and anchoring them to a denser particle (the clay mineral), enhancing their precipitation. Very rapid and efficient pretreatment is achieved in one single treatment step. PMID:22454607
Momentum and Heat Flux Measurements in the Exhaust of VASIMR using Helium Propellant
NASA Technical Reports Server (NTRS)
Chavers, D. Gregory; Chang-Diaz, Franklin R.; Irvine, Claude; Squire, Jared P.
2003-01-01
Interplanetary travel requires propulsion systems that can provide high specific impulse (Isp), while also having sufficient thrust to rapidly accelerate large payloads. One such propulsion system is the Variable Specific Impulse Magneto-plasma Rocket (VASIMR), which creates, heats, and ejects plasma to provide variable thrust and Isp, designed to optimally meet the mission requirements. The fraction of the total energy invested in creating the plasma, as compared to the plasma's total kinetic energy, is an important factor in determining the overall system efficiency. In VASIMR, this 'frozen flow loss' is appreciable when at high thrust, but negligible at high Isp. The loss applies to other electric thrusters as well. If some of this energy could be recovered through recombination processes, and reinjected as neutral kinetic energy, the efficiency of VASIMR, in its low Isp/high thrust mode may be improved. An experiment is being conducted to investigate the possibility of recovering some of the energy used to create the plasma by studying the flow characteristics of the charged and neutral particles in the exhaust of the thruster. This paper will cover the measurements of momentum flux and heat flux in the exhaust of the VASIMR test facility using helium as the propellant where the heat flux is comprised of both kinetic and plasma recombination energy. The flux measurements also assist in diagnosing and verifying the plasma conditions in the existing experiment.
NASA Astrophysics Data System (ADS)
Tumakov, Dmitry A.; Telnov, Dmitry A.; Maltsev, Ilia A.; Plunien, Günter; Shabaev, Vladimir M.
2017-10-01
We develop an efficient numerical implementation of the relativistic time-dependent density functional theory (RTDDFT) to study multielectron highly-charged ions subject to intense linearly-polarized laser fields. The interaction with the electromagnetic field is described within the electric dipole approximation. The resulting time-dependent relativistic Kohn-Sham (RKS) equations possess an axial symmetry and are solved accurately and efficiently with the help of the time-dependent generalized pseudospectral method. As a case study, we calculate multiphoton ionization probabilities of the neutral argon atom and argon-like xenon ion. Relativistic effects are assessed by comparison of our present results with existing non-relativistic data.
Highly charged ion beams and their applications
NASA Astrophysics Data System (ADS)
Marler, Joan
2018-01-01
While much previous work with highly charged ions has been performed with the ions in the plasma state in which they were formed, beams of highly charged ions hold promise for exciting new experiments. Specifically low energy beams with a high degree of charge state purity are a prerequisite for momentum resolved cross section measurements and for efficient loading of highly charged ions into UHV traps for spectroscopy. The Clemson University facility is optimized for the delivery of such beams of highly charged ions with low kinetic energies. Near term experiments include energy resolved charge exchange with neutral targets.
Efficient neutralization of primary isolates by the plasma from HIV-1 infected Indian children.
Prakash, S S; Chaudhary, Alok Kumar; Lodha, Rakesh; Kabra, S K; Vajpayee, Madhu; Hazarika, Anjali; Bagga, Barun; Luthra, Kalpana
2011-10-01
We tested the plasma of 51 HIV-1-infected children (23 naïve and 28 ART treated) for neutralization against five primary isolates (PIs) generated from adult Indian HIV-1-infected patients. The plasma exhibited neutralization potential with significantly higher neutralizing antibody titers in ART-treated children than naïve children against three out of five PIs (p<0.0001). Further, in treated children, neutralizing antibody titers were higher in those children with suppressed viremia (<1000 RNA copies/mL) than non-suppressors against two of the three PIs. We report here for the first time the neutralization potential of the plasma of HIV-1-infected Indian children.
Hinkula, Jorma; Åkerström, Sara; Karlberg, Helen; Wattrang, Eva; Bereczky, Sándor; Mousavi-Jazi, Mehrdad; Risinger, Christian; Lindegren, Gunnel; Vernersson, Caroline; Paweska, Janusz; van Vuren, Petrus Jansen; Blixt, Ola; Brun, Alejandro
2017-01-01
ABSTRACT Crimean-Congo hemorrhagic fever virus (CCHFV) is a bunyavirus causing severe hemorrhagic fever disease in humans, with high mortality rates. The requirement of a high-containment laboratory and the lack of an animal model hampered the study of the immune response and protection of vaccine candidates. Using the recently developed interferon alpha receptor knockout (IFNAR−/−) mouse model, which replicates human disease, we investigated the immunogenicity and protection of two novel CCHFV vaccine candidates: a DNA vaccine encoding a ubiquitin-linked version of CCHFV Gc, Gn, and N and one using transcriptionally competent virus-like particles (tc-VLPs). In contrast to most studies that focus on neutralizing antibodies, we measured both humoral and cellular immune responses. We demonstrated a clear and 100% efficient preventive immunity against lethal CCHFV challenge with the DNA vaccine. Interestingly, there was no correlation with the neutralizing antibody titers alone, which were higher in the tc-VLP-vaccinated mice. However, the animals with a lower neutralizing titer, but a dominant cell-mediated Th1 response and a balanced Th2 response, resisted the CCHFV challenge. Moreover, we found that in challenged mice with a Th1 response (immunized by DNA/DNA and boosted by tc-VLPs), the immune response changed to Th2 at day 9 postchallenge. In addition, we were able to identify new linear B-cell epitope regions that are highly conserved between CCHFV strains. Altogether, our results suggest that a predominantly Th1-type immune response provides the most efficient protective immunity against CCHFV challenge. However, we cannot exclude the importance of the neutralizing antibodies as the surviving immunized mice exhibited substantial amounts of them. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is responsible for hemorrhagic diseases in humans, with a high mortality rate. There is no FDA-approved vaccine, and there are still gaps in our knowledge of the immune responses to infection. The recently developed mouse models mimic human CCHF disease and are useful to study the immunogenicity and the protection by vaccine candidates. Our study shows that mice vaccinated with a specific DNA vaccine were fully protected. Importantly, we show that neutralizing antibodies are not sufficient for protection against CCHFV challenge but that an extra Th1-specific cellular response is required. Moreover, we describe the identification of five conserved B-cell epitopes, of which only one was previously known, that could be of great importance for the development of diagnostics tools and the improvement of vaccine candidates. PMID:28250124
The neural fate of neutral information in emotion-enhanced memory.
Watts, Sarah; Buratto, Luciano G; Brotherhood, Emilie V; Barnacle, Gemma E; Schaefer, Alexandre
2014-07-01
In this study, we report evidence that neural activity reflecting the encoding of emotionally neutral information in memory is reduced when neutral and emotional stimuli are intermixed during encoding. Specifically, participants studied emotional and neutral pictures organized in mixed lists (in which emotional and neutral pictures were intermixed) or in pure lists (only-neutral or only-emotional pictures) and performed a recall test. To estimate encoding efficiency, we used the Dm effect, measured with event-related potentials. Recall for neutral items was lower in mixed compared to pure lists and posterior Dm activity for neutral items was reduced in mixed lists, whereas it remained robust in pure lists. These findings might be caused by an asymmetrical competition for attentional and working memory resources between emotional and neutral information, which could be a major determinant of emotional memory effects. Copyright © 2014 Society for Psychophysiological Research.
Threat facilitates subsequent executive control during anxious mood.
Birk, Jeffrey L; Dennis, Tracy A; Shin, Lisa M; Urry, Heather L
2011-12-01
Dual competition framework (DCF) posits that low-level threat may facilitate behavioral performance by influencing executive control functions. Anxiety is thought to strengthen this effect by enhancing threat's affective significance. To test these ideas directly, we examined the effects of low-level threat and experimentally induced anxiety on one executive control function, the efficiency of response inhibition. In Study 1, briefly presented stimuli that were mildly threatening (i.e., fearful faces) relative to nonthreatening (i.e., neutral faces) led to facilitated executive control efficiency during experimentally induced anxiety. No such effect was observed during an equally arousing, experimentally induced happy mood state. In Study 2, we assessed the effects of low-level threat, experimentally induced anxiety, and individual differences in trait anxiety on executive control efficiency. Consistent with Study 1, fearful relative to neutral faces led to facilitated executive control efficiency during experimentally induced anxiety. No such effect was observed during an experimentally induced neutral mood state. Moreover, individual differences in trait anxiety did not moderate the effects of threat and anxiety on executive control efficiency. The findings are partially consistent with the predictions of DCF in that low-level threat improved executive control, at least during a state of anxiety. (c) 2011 APA, all rights reserved.
A comparison of neutralization efficiency of chemicals with respect to acidic Kopili River water
NASA Astrophysics Data System (ADS)
Kapil, Nibedita; Bhattacharyya, Krishna G.
2017-09-01
Among all the renewable sources of energy, hydropower is the most potential source which is economical, non-polluting and eco-friendly. The efficiency of hydropower plant in the long run depends on many factors like water and sediment quality. Erosive and corrosive wear of machine parts like turbine is a complex phenomenon. The problem becomes more acute if the hydroenvironment is acidic in nature. The wear and tear due to corrosion/erosion caused by acid mine drainage (AMD) from coal mines reduces the efficiency and the life of the equipments. In this work, neutralization of the acidic water of the Kopili River, Assam, India was investigated using a number of basic chemicals and quantitatively estimating their effectiveness and actual requirement. The acidic water of the river, used as the cooling water, has been found responsible for damaging the equipments of the Kopili Hydro Electric Power Project (KHEP), Assam/Meghalaya, India by reducing the life of all metallic parts through corrosion. In this work, use is made of a number of basic materials like calcium carbonate, calcium hydroxide, calcium oxide, sodium carbonate, sodium hydroxide, and ammonia to examine their neutralization efficiency with respect to the acidic water and it was found that quick lime or raw lime (CaO) has the highest neutralization capacity. Suggestions have been made for meeting the problem of acidity of the river water.
High-Energy Emissions Induced by Air Density Fluctuations of Discharges
NASA Astrophysics Data System (ADS)
Köhn, C.; Chanrion, O.; Neubert, T.
2018-05-01
Bursts of X-rays and γ-rays are observed from lightning and laboratory sparks. They are bremsstrahlung from energetic electrons interacting with neutral air molecules, but it is still unclear how the electrons achieve the required energies. It has been proposed that the enhanced electric field of streamers, found in the corona of leader tips, may account for the acceleration; however, their efficiency is questioned because of the relatively low production rate found in simulations. Here we emphasize that streamers usually are simulated with the assumption of homogeneous gas, which may not be the case on the small temporal and spatial scales of discharges. Since the streamer properties strongly depend on the reduced electric field E/n, where n is the neutral number density, fluctuations may potentially have a significant effect. To explore what might be expected if the assumption of homogeneity is relaxed, we conducted simple numerical experiments based on simulations of streamers in a neutral gas with a radial gradient in the neutral density, assumed to be created, for instance, by a previous spark. We also studied the effects of background electron density from previous discharges. We find that X-radiation and γ-radiation are enhanced when the on-axis air density is reduced by more than ˜25%. Pre-ionization tends to reduce the streamer field and thereby the production rate of high-energy electrons; however, the reduction is modest. The simulations suggest that fluctuations in the neutral densities, on the temporal and spacial scales of streamers, may be important for electron acceleration and bremsstrahlung radiation.
NASA Astrophysics Data System (ADS)
May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas
2015-09-01
Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.
May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas
2015-01-01
Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators. PMID:26369620
Cesium-specific phenolic ion exchange resin
Bibler, J.P.; Wallace, R.M.
1995-08-15
A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio. 2 figs.
Cesium-specific phenolic ion exchange resin
Bibler, Jane P.; Wallace, Richard M.
1995-01-01
A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio.
Stability of high-mass molecular libraries: the role of the oligoporphyrin core
Sezer, Uĝur; Schmid, Philipp; Felix, Lukas; Mayor, Marcel; Arndt, Markus
2015-01-01
Molecular beam techniques are a key to many experiments in physical chemistry and quantum optics. In particular, advanced matter-wave experiments with high-mass molecules profit from the availability of slow, neutral and mass-selected molecular beams that are sufficiently stable to remain intact during laser heating and photoionization mass spectrometry. We present experiments on the photostability with molecular libraries of tailored oligoporphyrins with masses up to 25 000 Da. We compare two fluoroalkylsulfanyl-functionalized libraries based on two different molecular cores that offer the same number of anchor points for functionalization but differ in their geometry and electronic properties. A pentaporphyrin core stabilizes a library of chemically well-defined molecules with more than 1600 atoms. They can be neutrally desorbed with velocities as low as 20 m/s and efficiently analyzed in photoionization mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25601698
Novel baculovirus-derived p67 subunit vaccines efficacious against East Coast fever in cattle.
Kaba, Stephen A; Musoke, Anthony J; Schaap, Dick; Schetters, Theo; Rowlands, John; Vermeulen, Arno N; Nene, Vishvanath; Vlak, Just M; van Oers, Monique M
2005-04-15
Two novel baculovirus-derived recombinant Theileria parva p67 constructs were tested for their vaccine potential against East Coast fever. Boran calves were immunized with a his-GFP-p67 fusion protein (GFP:p67deltaSS) or with GP64:p67C, a protein fusion between a C-terminal domain of p67 and the baculovirus envelope protein GP64. Both GFP:p67deltaSS and GP64:p67C induced antibodies with high ELISA titers that neutralized T. parva sporozoites with high efficiency. Upon challenge, a correlation was observed between the in vitro neutralizing capacity and the reduction in severe ECF for individual animals. A protection level upto 85% was obtained. This level of protection was achieved with only two inoculations of 100 microg per dose, which is a major improvement over previous recombinant p67 products.
Zhan, Xiao; Gao, Bao-yu; Liu, Bin; Xu, Chun-hua; Yue, Qin-yan
2010-05-01
Two types of inorganic polymer coagulants, polyferric chloride (PFC) and polyaluminum chloride (PAC), were chosen to treat the Yellow River water. Different dosages were investigated in order to investigate the turbidity, UV24, DOC and permanganate index removal efficiency and their coagulation mechanisms based on the Zeta potentials. The natural organic matter removal by the combination of coagulation and adsorption with powder activated carbon were analyzed based on different coagulant and adsorbent dosages and dosing orders. The effects of combination of coagulation and adsorption on the residual chlorine decay were analyzed. The results showed that the two coagulants had high turbidity removal efficiency ( > 90%). The UV254, DOC, permanganate index removal efficiency were 29.2%, 26.1% and 27.9% respectively for PAC coagulation and were 32.3%, 23.3% and 32.9% respectively for PFC. Electric neutralization played an important role in the PAC coagulation process while both adsorption bridging and electric neutralization performed when PFC was used. The removal percentage of organic matter increased with the increase coagulant and adsorbent. The adsorption after coagulation process gave the better UV254 and DOC removal efficiency than the coagulation after adsorption. The UV254 and DOC removal efficiency were 95.2% and 99.9% for PAC coagulation after adsorption and were 90.1% and 99.9% for PFC coagulation first. But adding powder activated carbon can improve floc settlement performance and maintained persistent disinfection effect.
Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.
2010-08-17
The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.
More efficient rejection of happy than of angry face distractors in visual search.
Horstmann, Gernot; Scharlau, Ingrid; Ansorge, Ulrich
2006-12-01
In the present study, we examined whether the detection advantage for negative-face targets in crowds of positive-face distractors over positive-face targets in crowds of negative faces can be explained by differentially efficient distractor rejection. Search Condition A demonstrated more efficient distractor rejection with negative-face targets in positive-face crowds than vice versa. Search Condition B showed that target identity alone is not sufficient to account for this effect, because there was no difference in processing efficiency for positive- and negative-face targets within neutral crowds. Search Condition C showed differentially efficient processing with neutral-face targets among positive- or negative-face distractors. These results were obtained with both a within-participants (Experiment 1) and a between-participants (Experiment 2) design. The pattern of results is consistent with the assumption that efficient rejection of positive (more homogenous) distractors is an important determinant of performance in search among (face) distractors.
McCutcheon, Krista M; Gray, Julia; Chen, Natalie Y; Liu, Keyi; Park, Minha; Ellsworth, Stote; Tripp, Ralph A; Tompkins, S Mark; Johnson, Scott K; Samet, Shelly; Pereira, Lenore; Kauvar, Lawrence M
2014-01-01
Viral entry targets with therapeutic neutralizing potential are subject to multiple escape mechanisms, including antigenic drift, immune dominance of functionally irrelevant epitopes, and subtle variations in host cell mechanisms. A surprising finding of recent years is that potent neutralizing antibodies to viral epitopes independent of strain exist, but are poorly represented across the diverse human population. Identifying these antibodies and understanding the biology mediating the specific immune response is thus difficult. An effective strategy for meeting this challenge is to incorporate multiplexed antigen screening into a high throughput survey of the memory B cell repertoire from immune individuals. We used this approach to discover suites of cross-clade antibodies directed to conformational epitopes in the stalk region of the influenza A hemagglutinin (HA) protein and to select high-affinity anti-peptide antibodies to the glycoprotein B (gB) of human cytomegalovirus. In each case, our screens revealed a restricted VH and VL germline usage, including published and previously unidentified gene families. The in vivo evolution of paratope specificity with optimal neutralizing activity was understandable after correlating biological activities with kinetic binding and epitope recognition. Iterative feedback between antigen probe design based on structure and function information with high throughput multiplexed screening demonstrated a generally applicable strategy for efficient identification of safe, native, finely tuned antibodies with the potential for high genetic barriers to viral escape.
The Structural Immunology of Antibody Protection against West Nile Virus
Diamond, Michael S.; Pierson, Theodore C.; Fremont, Daved H.
2009-01-01
Summary Recent investigations of the interaction between the West Nile virus (WNV) envelope protein (E) and monoclonal antibodies (mAbs) have elucidated fundamental insights into the molecular mechanisms of neutralization. Structural studies have defined an epitope on the lateral ridge of domain III (DIII-lr) of the WNV E protein that is recognized by antibodies with the strongest neutralizing activity in vitro and in vivo. Antibodies that bind this epitope are highly potent because they efficiently block at a post-entry step of viral infection with relatively low virion occupancy requirements. In this review, we will discuss the structural, molecular, and immunologic basis for antibody-mediated protection against WNV, and its implications for novel therapeutic or vaccine strategies. PMID:18837784
A molecular molybdenum-oxo catalyst for generating hydrogen from water.
Karunadasa, Hemamala I; Chang, Christopher J; Long, Jeffrey R
2010-04-29
A growing awareness of issues related to anthropogenic climate change and an increase in global energy demand have made the search for viable carbon-neutral sources of renewable energy one of the most important challenges in science today. The chemical community is therefore seeking efficient and inexpensive catalysts that can produce large quantities of hydrogen gas from water. Here we identify a molybdenum-oxo complex that can catalytically generate gaseous hydrogen either from water at neutral pH or from sea water. This work shows that high-valency metal-oxo species can be used to create reduction catalysts that are robust and functional in water, a concept that has broad implications for the design of 'green' and sustainable chemistry cycles.
Investigation of radiofrequency plasma sources for space travel
NASA Astrophysics Data System (ADS)
Charles, C.; Boswell, R. W.; Takahashi, K.
2012-12-01
Optimization of radiofrequency (RF) plasma sources for the development of space thrusters differs from other applications such as plasma processing of materials since power efficiency, propellant usage, particle acceleration or heating become driving parameters. The development of two RF (13.56 MHz) plasma sources, the high-pressure (˜1 Torr) capacitively coupled ‘pocket rocket’ plasma micro-thruster and the low-pressure (˜1 mTorr) inductively coupled helicon double layer thruster (HDLT), is discussed within the context of mature and emerging electric propulsion devices. The density gradient in low-pressure expanding RF plasmas creates an electric field that accelerates positive ions out of the plasma. Generally, the total potential drop is similar to that of a wall sheath allowing the plasma electrons to neutralize the ion beam. A high-pressure expansion with no applied magnetic field can result in large dissociation rates and/or a collimated beam of ions of small area and a flowing heated neutral beam (‘pocket rocket’). A low-pressure expansion dominated by a magnetic field can result in the formation of electric double layers which produce a very directed neutralized beam of ions of large area (HDLT).
Chen, Zhe; Cave, Kyle R.
2013-01-01
Many studies have shown that increasing the number of neutral stimuli in a display decreases distractor interference. This result has been interpreted within two different frameworks; a perceptual load account, based on a reduction in spare resources, and a dilution account, based on a degradation in distractor representation and/or an increase in crosstalk between the distractor and the neutral stimuli that contain visually similar features. In four experiments, we systematically manipulated the extent of attentional focus, stimulus category, and preknowledge of the target to examine how these factors would interact with the display set size to influence the degree of distractor processing. Display set size did not affect the degree of distractor processing in all situations. Increasing the number of neutral items decreased distractor processing only when a task induced a broad attentional focus that included the neutral stimuli, when the neutral stimuli were in the same category as the target and distractor, and when the preknowledge of the target was insufficient to guide attention to the target efficiently. These results suggest that the effect of neutral stimuli on the degree of distractor processing is more complex than previously assumed. They provide new insight into the competitive interactions between bottom-up and top-down processes that govern the efficiency of visual selective attention. PMID:23761777
Chen, Zhe; Cave, Kyle R
2013-01-01
Many studies have shown that increasing the number of neutral stimuli in a display decreases distractor interference. This result has been interpreted within two different frameworks; a perceptual load account, based on a reduction in spare resources, and a dilution account, based on a degradation in distractor representation and/or an increase in crosstalk between the distractor and the neutral stimuli that contain visually similar features. In four experiments, we systematically manipulated the extent of attentional focus, stimulus category, and preknowledge of the target to examine how these factors would interact with the display set size to influence the degree of distractor processing. Display set size did not affect the degree of distractor processing in all situations. Increasing the number of neutral items decreased distractor processing only when a task induced a broad attentional focus that included the neutral stimuli, when the neutral stimuli were in the same category as the target and distractor, and when the preknowledge of the target was insufficient to guide attention to the target efficiently. These results suggest that the effect of neutral stimuli on the degree of distractor processing is more complex than previously assumed. They provide new insight into the competitive interactions between bottom-up and top-down processes that govern the efficiency of visual selective attention.
Yan, Jun; Shi, Songshan; Wang, Hongwei; Liu, Ruimin; Li, Ning; Chen, Yonglin; Wang, Shunchun
2016-01-20
A novel analytical method for neutral monosaccharide composition analysis of plant-derived oligo- and polysaccharides was developed using hydrophilic interaction liquid chromatography coupled to a charged aerosol detector. The effects of column type, additives, pH and column temperature on retention and separation were evaluated. Additionally, the method could distinguish potential impurities in samples, including chloride, sulfate and sodium, from sugars. The results of validation demonstrated that this method had good linearity (R(2) ≥ 0.9981), high precision (relative standard deviation ≤ 4.43%), and adequate accuracy (94.02-103.37% recovery) and sensitivity (detection limit: 15-40 ng). Finally, the monosaccharide compositions of the polysaccharide from Eclipta prostrasta L. and stachyose were successfully profiled through this method. This report represents the first time that all of these common monosaccharides could be well-separated and determined simultaneously by high performance liquid chromatography without additional derivatization. This newly developed method is convenient, efficient and reliable for monosaccharide analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wu, Qinglong; Tun, Hein Min; Law, Yee-Song; Khafipour, Ehsan; Shah, Nagendra P.
2017-01-01
Many strains of lactic acid bacteria (LAB) and bifidobacteria have exhibited strain-specific capacity to produce γ-aminobutyric acid (GABA) via their glutamic acid decarboxylase (GAD) system, which is one of amino acid-dependent acid resistance (AR) systems in bacteria. However, the linkage between bacterial AR and GABA production capacity has not been well established. Meanwhile, limited evidence has been provided to the global diversity of GABA-producing LAB and bifidobacteria, and their mechanisms of efficient GABA synthesis. In this study, genomic survey identified common distribution of gad operon-encoded GAD system in Lactobacillus brevis for its GABA production among varying species of LAB and bifidobacteria. Importantly, among four commonly distributed amino acid-dependent AR systems in Lb. brevis, its GAD system was a major contributor to maintain cytosolic pH homeostasis by consuming protons via GABA synthesis. This highlights that Lb. brevis applies GAD system as the main strategy against extracellular and intracellular acidification demonstrating its high capacity of GABA production. In addition, the abundant GadA retained its activity toward near-neutral pH (pH 5.5–6.5) of cytosolic acidity thus contributing to efficient GABA synthesis in Lb. brevis. This is the first global report illustrating species-specific characteristic and mechanism of efficient GABA synthesis in Lb. brevis. PMID:28261168
Kolodkin-Gal, Dror; Eslamizar, Leila; Owuor, Joshua O.; Mazzola, Emanuele; Gonzalez, Ana M.; Korioth-Schmitz, Birgit; Gelman, Rebecca S.; Montefiori, David C.; Haynes, Barton F.; Schmitz, Joern E.
2015-01-01
ABSTRACT To date, most therapeutic and vaccine candidates for human immunodeficiency virus type 1 (HIV-1) are evaluated preclinically for efficacy against cell-free viral challenges. However, cell-associated HIV-1 is suggested to be a major contributor to sexual transmission by mucosal routes. To determine if neutralizing antibodies or inhibitors block cell-free and cell-associated virus transmission of diverse HIV-1 strains with different efficiencies, we tested 12 different antibodies and five inhibitors against four green fluorescent protein (GFP)-labeled HIV-1 envelope (Env) variants from transmitted/founder (T/F) or chronic infection isolates. We evaluated antibody/inhibitor-mediated virus neutralization using either TZM-bl target cells, in which infectivity was determined by virus-driven luciferase expression, or A3R5 lymphoblastoid target cells, in which infectivity was evaluated by GFP expression. In both the TZM-bl and A3R5 assays, cell-free virus or infected CD4+ lymphocytes were used as targets for neutralization. We further hypothesized that the combined use of specific neutralizing antibodies targeting HIV-1 Env would more effectively prevent cell-associated virus transmission than the use of individual antibodies. The tested antibody combinations included two gp120-directed antibodies, VRC01 and PG9, or VRC01 with the gp41-directed antibody 10E8. Our results demonstrated that cell-associated virus was less sensitive to neutralizing antibodies and inhibitors, particularly using the A3R5 neutralization assay, and the potencies of these neutralizing agents differed among Env variants. A combination of different neutralizing antibodies that target specific sites on gp120 led to a significant reduction in cell-associated virus transmission. These assays will help identify ideal combinations of broadly neutralizing antibodies to use for passive preventive antibody administration and further characterize targets for the most effective neutralizing antibodies/inhibitors. IMPORTANCE Prevention of the transmission of human immunodeficiency virus type 1 (HIV-1) remains a prominent goal of HIV research. The relative contribution of HIV-1 within an infected cell versus cell-free HIV-1 to virus transmission remains debated. It has been suggested that cell-associated virus is more efficient at transmitting HIV-1 and more difficult to neutralize than cell-free virus. Several broadly neutralizing antibodies and retroviral inhibitors are currently being studied as potential therapies against HIV-1 transmission. The present study demonstrates a decrease in neutralizing antibody and inhibitor efficiencies against cell-associated compared to cell-free HIV-1 transmission among different strains of HIV-1. We also observed a significant reduction in virus transmission using a combination of two different neutralizing antibodies that target specific sites on the outermost region of HIV-1, the virus envelope. Therefore, our findings support the use of antibody combinations against both cell-free and cell-associated virus in future candidate therapy regimens. PMID:25995259
Construction of a single atom trap for quantum information protocols
NASA Astrophysics Data System (ADS)
Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.; Duke Physics Department Team
2016-05-01
The field of quantum information science addresses outstanding problems such as achieving fundamentally secure communication and solving computationally hard problems. Great progress has been made in the field, particularly using photons coupled to ions and super conducting qubits. Neutral atoms are also interesting for these applications and though the technology for control of neutrals lags behind that of trapped ions, they offer some key advantages: primarily coupling to optical frequencies closer to the telecom band than trapped ions or superconducting qubits. Here we report progress on constructing a single atom trap for 87 Rb. This system is a promising platform for studying the technical problems facing neutral atom quantum computing. For example, most protocols destroy the trap when reading out the neutral atom's state; we will investigate an alternative non-destructive state detection scheme. We detail the experimental systems involved and the challenges addressed in trapping a single atom. All of our hardware components are off the shelf and relatively inexpensive. Unlike many other systems, we place a high numerical aperture lens inside our vacuum system to increase photon collection efficiency. We gratefully acknowledge the financial support of the ARO through Grant # W911NF1520047.
Fabrichny, Igor P.; Mondielli, Grégoire; Conrod, Sandrine; Martin-Eauclaire, Marie-France; Bourne, Yves; Marchot, Pascale
2012-01-01
The Old World scorpion Androctonus australis hector (Aah) produces one of the most lethal venoms for humans. Peptidic α-toxins AahI to AahIV are responsible for its potency, with AahII accounting for half of it. All four toxins are high affinity blockers of the fast inactivation phase of mammalian voltage-activated Na+ channels. However, the high antigenic polymorphism of α-toxins prevents production of a polyvalent neutralizing antiserum, whereas the determinants dictating their trapping by neutralizing antibodies remain elusive. From an anti-AahII mAb, we generated an antigen binding fragment (Fab) with high affinity and selectivity for AahII and solved a 2.3 Å-resolution crystal structure of the complex. Sequestering of the C-terminal region of the bound toxin within a groove formed by the Fab combining loops is associated with a toxin orientation and main and side chain conformations that dictate the AahII antigenic specificity and efficient neutralization. From an anti-AahI mAb, we also preformed and crystallized a high affinity AahI-Fab complex. The 1.6 Å-resolution structure solved revealed a Fab molecule devoid of a bound AahI and with combining loops involved in packing interactions, denoting expulsion of the bound antigen upon crystal formation. Comparative analysis of the groove-like combining site of the toxin-bound anti-AahII Fab and planar combining surface of the unbound anti-AahI Fab along with complementary data from a flexible docking approach suggests occurrence of distinctive trapping orientations for the two toxins relative to their respective Fab. This study provides complementary templates for designing new molecules aimed at capturing Aah α-toxins and suitable for immunotherapy. PMID:22371498
Tan, Yanliang; Xiao, Detao; Shan, Jian; Zhou, Qingzhi; Qu, Jingnian
2014-09-01
Generally, 88% of the freshly generated 218Po ions decayed from 222Rn are positively charged. These positive ions become neutralized by recombination with negative ions, and the main source of the negative ions is the OH- ions formed by radiolysis of water vapor. However, the neutralization rate of positively charged 218Po versus the square root of the concentration of H2O will be a constant when the concentration of H2O is sufficiently high. Since the electron affinity of the hydroxyl radical formed by water vapor is high, the authors propose that the hydroxyl radical can grab an electron to become OH-. Because the average period of collision with other positively charged ions and the average life of the OH- are much longer than those of the electron, the average concentration of negative ions will grow when the water vapor concentration increases. The authors obtained a model to describe the growth of OH- ions. From this model, it was found that the maximum value of the OH- ion concentration is limited by the square root of the radon concentration. If the radon concentration is invariant, the OH- ion concentration should be approximately a constant when the water vapor concentration is higher than a certain value. The phenomenon that the neutralization rate of positively charged 218Po versus the square root of the water vapor concentration will be saturated when the water vapor concentration is sufficiently high can be explained by this mechanism. This mechanism can be used also to explain the phenomenon that the detection efficiency of a radon monitor based on the electrostatic collection method seems to be constant when the water vapor concentration is high.
Reh, Lucia; Magnus, Carsten; Schanz, Merle; Weber, Jacqueline; Uhr, Therese; Rusert, Peter; Trkola, Alexandra
2015-01-01
An increasing number of broadly neutralizing antibodies (bnAbs) are considered leads for HIV-1 vaccine development and novel therapeutics. Here, we systematically explored the capacity of bnAbs to neutralize HIV-1 prior to and post-CD4 engagement and to block HIV-1 cell-cell transmission. Cell-cell spread is known to promote a highly efficient infection with HIV-1 which can inflict dramatic losses in neutralization potency compared to free virus infection. Selection of bnAbs that are capable of suppressing HIV irrespective of the transmission mode therefore needs to be considered to ascertain their in vivo activity in therapeutic use and vaccines. Employing assay systems that allow for unambiguous discrimination between free virus and cell-cell transmission to T cells, we probed a panel of 16 bnAbs for their activity against 11 viruses from subtypes A, B and C during both transmission modes. Over a wide range of bnAb-virus combinations tested, inhibitory activity against HIV-1 cell-cell transmission was strongly decreased compared to free virus transmission. Activity loss varied considerably between virus strains and was inversely associated with neutralization of free virus spread for V1V2- and V3-directed bnAbs. In rare bnAb-virus combinations, inhibition for both transmission modes was comparable but no bnAb potently blocked cell-cell transmission across all probed virus strains. Mathematical analysis indicated an increased probability of bnAb resistance mutations to arise in cell-cell rather than free virus spread, further highlighting the need to block this pathway. Importantly, the capacity to efficiently neutralize prior to CD4 engagement correlated with the inhibition efficacy against free virus but not cell-cell transmitted virus. Pre-CD4 attachment activity proved strongest amongst CD4bs bnAbs and varied substantially for V3 and V1V2 loop bnAbs in a strain-dependent manner. In summary, bnAb activity against divergent viruses varied depending on the transmission mode and differed depending on the window of action during the entry process, underscoring that powerful combinations of bnAbs are needed for in vivo application. PMID:26158270
ELENA MCP detector: absolute detection efficiency for low-energy neutral atoms
NASA Astrophysics Data System (ADS)
Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J. A.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.
2012-09-01
Microchannel Plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission of ESA to Mercury to be launched in 2015. ELENA is a Time of Flight (TOF) sensor, based on a novel concept using an ultra-sonic oscillating shutter (Start section), which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop detector. The scientific objective of ELENA is to detect energetic neutral atoms in the range 10 eV - 5 keV, within 76° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the plasma environment and the planet’s surface, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles released from the surface, via solar wind-induced ion sputtering (< 1eV - < 100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (E < 30 eV) is a crucial point for this investigation. At the MEFISTO facility of the Physical Institute of the University of Bern (CH), measurements on three different types of MCP (with and without coating) have been performed providing the detection efficiencies in the energy range 10eV - 1keV. Outcomes from such measurements are discussed here.
ELENA MCP detector: absolute efficiency measurement for low energy neutral atoms
NASA Astrophysics Data System (ADS)
Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.
2012-04-01
MicroChannel plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission to Mercury to be launched in 2014. ELENA is a TOF sensor, based on a novel concept ultra-sonic oscillating shutter (Start section)which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop section. It is aimed to detect neutral atoms in the range 10 eV - 5 keV, within 70° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the environment and the planet, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles release from the surface, via solar wind-induced ion sputtering (<1eV and >100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (E< 30eV) is a crucial point not yet investigated. At the MEFISTO facility of the Physical Institute of University of Bern (CH), measurements on three different type of MCPs coating have been performed providing the behaviors of MCP detection efficiency in the range 10eV-1keV. Outcomes from such measurements are here discussed.
Matsushita, Yasuyuki; Imai, Masanori; Iwatsuki, Ayuko; Fukushima, Kazuhiko
2008-05-01
In this study, water-soluble anionic and cationic polymers were prepared from sulfuric acid lignin (SAL), an acid hydrolysis lignin, and the relationship between the surface tension of these polymers and industrial performance was examined. The SAL was phenolized (P-SAL) to enhance its solubility and reactivity. Sulfonation and the Mannich reaction with aminocarboxylic acids produced water-soluble anionic polymers and high-dispersibility gypsum paste. The dispersing efficiency increased as the surface tension decreased, suggesting that the fluidity of the gypsum paste increased with the polymer adsorption on the gypsum particle surface. Water-soluble cationic polymers were prepared using the Mannich reaction with dimethylamine. The cationic polymers showed high sizing efficiency under neutral papermaking conditions; the sizing efficiency increased with the surface tension. This suggests that the polymer with high hydrophilicity spread in the water and readily adhered to the pulp surface and the rosin, showing good retention.
NASA Astrophysics Data System (ADS)
Bhuiya, M. M. K.; Rasul, M. G.; Khan, M. M. K.; Ashwath, N.
2016-07-01
The Beauty Leaf Tree (Callophylum inophyllum) is regarded as an alternative source of energy to produce 2nd generation biodiesel due to its potentiality as well as high oil yield content in the seed kernels. The treating process is indispensable during the biodiesel production process because it can augment the yield as well as quality of the product. Oil extracted from both mechanical screw press and solvent extraction using n-hexane was refined. Five replications each of 25 gm of crude oil for screw press and five replications each of 25 gm of crude oil for n-hexane were selected for refining as well as biodiesel conversion processes. The oil refining processes consists of degumming, neutralization as well as dewaxing. The degumming, neutralization and dewaxing processes were performed to remove all the gums (phosphorous-based compounds), free fatty acids, and waxes from the fresh crude oil before the biodiesel conversion process carried out, respectively. The results indicated that up to 73% and 81% of mass conversion efficiency of the refined oil in the screw press and n-hexane refining processes were obtained, respectively. It was also found that up to 88% and 90% of biodiesel were yielded in terms of mass conversion efficiency in the transesterification process for the screw press and n-hexane techniques, respectively. While the entire processes (refining and transesterification) were considered, the conversion of beauty leaf tree (BLT) refined oil into biodiesel was yielded up to 65% and 73% of mass conversion efficiency for the screw press and n-hexane techniques, respectively. Physico-chemical properties of crude and refined oil, and biodiesel were characterized according to the ASTM standards. Overall, BLT has the potential to contribute as an alternative energy source because of high mass conversion efficiency.
NASA Astrophysics Data System (ADS)
Waters, Daniel F.; Cadou, Christopher P.
2014-02-01
A unique requirement of underwater vehicles' power/energy systems is that they remain neutrally buoyant over the course of a mission. Previous work published in the Journal of Power Sources reported gross as opposed to neutrally-buoyant energy densities of an integrated solid oxide fuel cell/Rankine-cycle based power system based on the exothermic reaction of aluminum with seawater. This paper corrects this shortcoming by presenting a model for estimating system mass and using it to update the key findings of the original paper in the context of the neutral buoyancy requirement. It also presents an expanded sensitivity analysis to illustrate the influence of various design and modeling assumptions. While energy density is very sensitive to turbine efficiency (sensitivity coefficient in excess of 0.60), it is relatively insensitive to all other major design parameters (sensitivity coefficients < 0.15) like compressor efficiency, inlet water temperature, scaling methodology, etc. The neutral buoyancy requirement introduces a significant (∼15%) energy density penalty but overall the system still appears to offer factors of five to eight improvements in energy density (i.e., vehicle range/endurance) over present battery-based technologies.
Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB.
Malki, Abderrahim; Le, Hai-Tuong; Milles, Sigrid; Kern, Renée; Caldas, Teresa; Abdallah, Jad; Richarme, Gilbert
2008-05-16
The acid stress chaperones HdeA and HdeB of Escherichia coli prevent the aggregation of periplasmic proteins at acidic pH. We show in this report that they also form mixed aggregates with proteins that have failed to be solubilized at acidic pH and allow their subsequent solubilization at neutral pH. HdeA, HdeB, and HdeA and HdeB together display an increasing efficiency for the solubilization of protein aggregates at pH 3. They are less efficient for the solubilization of aggregates at pH 2, whereas HdeB is the most efficient. Increasing amounts of periplasmic proteins draw increasing amounts of chaperone into pellets, suggesting that chaperones co-aggregate with their substrate proteins. We observed a decrease in the size of protein aggregates in the presence of HdeA and HdeB, from very high molecular mass aggregates to 100-5000-kDa species. Moreover, a marked decrease in the exposed hydrophobicity of aggregated proteins in the presence of HdeA and HdeB was revealed by 1,1'-bis(4-anilino)naphtalene-5,5'-disulfonic acid binding experiments. In vivo, during the recovery at neutral pH of acid stressed bacterial cells, HdeA and HdeB allow the solubilization and renaturation of protein aggregates, including those formed by the maltose receptor MalE, the oligopeptide receptor OppA, and the histidine receptor HisJ. Thus, HdeA and HdeB not only help to maintain proteins in a soluble state during acid treatment, as previously reported, but also assist, both in vitro and in vivo, in the solubilization at neutral pH of mixed protein-chaperone aggregates formed at acidic pH, by decreasing the size of protein aggregates and the exposed hydrophobicity of aggregated proteins.
Tamilvanan, Shunmugaperumal; Kumar, Balakrishnan Ajith
2011-09-01
Acetazolamide (ACZM)-loaded anionic, cationic, and neutral-charged oil-in-water nanosized emulsions were prepared and compared with their mean droplet diameter, surface charge, entrapment efficiency, freeze-thaw cycling stability, in vitro drug release, and transcorneal permeation. The present study aims to determine the influence of ACZM loading on the performances of non-phospholipid-based cationic nanosized emulsion in comparison with phospholipid-based anionic and neutral-charged nanosized emulsions. Regardless of charges, all of these emulsions exhibited a nanometer range mean particle diameter (240-443 nm) following autoclave sterilization. While the anionic and cationic emulsions did show high negative (-36.9 mV) and positive zeta potential (+41.4 mV) values, the neutral-charged emulsion did not. Presence of cryoprotectants (5% w/w sucrose + 5% w/w sorbitol) improved the stability of cationic emulsion to droplet aggregation during freeze-thaw cycling. The in vitro release kinetic behavior of drug exchange with physiological anions present in the simulated tear solution appears to be complex and difficult to characterize using mathematical fitting model equations. Augmentation in drug permeation through goat cornea, in vitro, was noticed for cationic emulsion. ACZM-loaded cationic nanosized emulsion could be suitable for topical application into eye to elicit better therapeutic effect in comparison with its anionic and neutral-charged emulsions.
Advanced ion thruster and electrochemical launcher research
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1983-01-01
The theoretical model of orificed hollow cathode operation predicted experimentally observed cathode performance with reasonable accuracy. The deflection and divergence characteristics of ion beamlets emanating from a two grid optics system as a function of the relative offset of screen and accel grids hole axes were described. Ion currents associated with discharge chamber operation were controlled to improve ion thruster performance markedly. Limitations imposed by basic physical laws on reductions in screen grid hole size and grid spacing for ion optics systems were described. The influence of stray magnetic fields in the vicinity of a neutralizer on the performance of that neutralizer was demonstrated. The ion current density extracted from a thruster was enhanced by injecting electrons into the region between its ion accelerating grids. Theoretical analysis of the electrothermal ramjet concept of launching space bound payloads at high acceleration levels is described. The operation of this system is broken down into two phases. In the light gas gun phase the payload is accelerated to the velocity at which the ramjet phase can commence. Preliminary models of operation are examined and shown to yield overall energy efficiences for a typical Earth escape launch of 60 to 70%. When shock losses are incorporated these efficiencies are still observed to remain at the relatively high values of 40 to 50%.
Fu, Hong-Ru; Zhao, Ying; Zhou, Zhan; Yang, Xiao-Gang; Ma, Lu-Fang
2018-03-12
One neutral tripodal semi-rigidity ligand tri(4-imidazolylphenyl)amine (TIPA) with excellent hole-transfer nature, was selected as a linker to construct MOFs. Two two-dimensional (2D) microporous metal-organic frameworks (MOFs) were synthesized solvothermally: [Ni(TIPA)(COO - ) 2 (H 2 O)]·2(DMF)2(H 2 O) (1) and [Cd(TIPA) 2 (ClO 4 - ) 2 ]·(DMF)3(H 2 O) (2). Compound 1 incorporated carboxylic groups into the channel and exhibited the high capacity of light hydrocarbons as well as the remarkable selectivity of C 2 H 2 /CH 4 . The value is in excess of 100 at room temperature, which is the highest value reported to date. Compound 2, as a cationic framework with high water stability, was not only applied as a sensor, displaying the ultrahigh sensitivity against Cr 2 O 7 2- with a detection limit as low as 8 ppb, but also possessed excellent Cr(vi) sorption with good repeatability in aqueous solution. This study provides an efficient strategy to design cationic MOFs for the selective separation of light hydrocarbons and the sensing and trapping of toxic chromate for the purification of water.
Rao, Huiying; Jiang, Dong; Wang, Jianghua; Xie, Xingwang; Wei, Lai
2015-01-01
Currently, there is no effective vaccine to prevent hepatitis C virus (HCV) infection, partly due to our insufficient understanding of the virus glycoprotein immunology. Most neutralizing antibodies (nAbs) were identified using glycoprotein immunogens, such as recombinant E1E2, HCV pseudoparticles or cell culture derived HCV. However, the fact that in the HCV acute infection phase, only a small proportion of patients are self-resolved accompanied with the emergence of nAbs, indicates the limited immunogenicity of glycoprotein itself to induce effective antibodies against a highly evolved virus. Secondly, in previous reports, the immunogen sequence was mostly the genotype of the 1a H77 strain. Rarely, other genotypes/subtypes have been studied, although theoretically one genotype/subtype immunogen is able to induce cross-genotype neutralizing antibodies. To overcome these drawbacks and find potential novel neutralizing epitopes, 57 overlapping peptides encompassing the full-length glycoprotein E1E2 of subtype 1b were synthesized to immunize BALB/c mice, and the neutralizing reactive of the induced antisera against HCVpp genotypes 1–6 was determined. We defined a domain comprising amino acids (aa) 192–221, 232–251, 262–281 and 292–331 of E1, and 421–543, 564–583, 594–618 and 634–673 of E2, as the neutralizing regions of HCV glycoprotein. Peptides PUHI26 (aa 444–463) and PUHI45 (aa 604–618)-induced antisera displayed the most potent broad neutralizing reactive. Two monoclonal antibodies recognizing the PUHI26 and PUHI45 epitopes efficiently precluded genotype 2 viral (HCVcc JFH and J6 strains) infection, but they did not neutralize other genotypes. Our study mapped a neutralizing epitope region of HCV glycoprotein using a novel immunization strategy, and identified two monoclonal antibodies effective in preventing genotype 2 virus infection. PMID:26406225
Evaluation of Dewatering Performance and Fractal Characteristics of Alum Sludge
Sun, Yongjun; Fan, Wei; Zheng, Huaili; Zhang, Yuxin; Li, Fengting; Chen, Wei
2015-01-01
The dewatering performance and fractal characteristics of alum sludge from a drinking-water treatment plant were investigated in this study. Variations in residual turbidity of supernatant, dry solid content (DS), specific resistance to filtration (SRF), floc size, fractal dimension, and zeta potential were analyzed. Sludge dewatering efficiency was evaluated by measuring both DS and SRF. Results showed that the optimum sludge dewatering efficiency was achieved at 16 mg∙L-1 flocculant dosage and pH 7. Under these conditions, the maximum DS was 54.6%, and the minimum SRF was 0.61 × 1010 m∙kg-1. Floc-size measurements demonstrated that high flocculant dosage significantly improved floc size. Correlation analysis further revealed a strong correlation between fractal dimension and floc size after flocculation. A strong correlation also existed between floc size and zeta potential, and flocculants with a higher cationic degree had a larger correlation coefficient between floc size and zeta potential. In the flocculation process, the main flocculation mechanisms involved adsorption bridging under an acidic condition, and a combination between charge neutralization and adsorption-bridging interaction under neutral and alkaline conditions. PMID:26121132
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.
Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulnessmore » as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.« less
Miao, Yanqin; Tao, Peng; Wang, Kexiang; Li, Hongxin; Zhao, Bo; Gao, Long; Wang, Hua; Xu, Bingshe; Zhao, Qiang
2017-11-01
Two highly efficient red neutral iridium(III) complexes, Ir1 and Ir2, were rationally designed and synthesized by selecting two pyridylimidazole derivatives as the ancillary ligands. Both Ir1 and Ir2 show nearly the same photoluminescence emission with the maximum peak at 595 nm (shoulder band at about 638 nm) and achieve high solution quantum yields of up to 0.47 for Ir1 and 0.57 for Ir2. Employing Ir1 and Ir2 as emitters, the fabricated red organic light-emitting diodes (OLEDs) show outstanding performance with the maximum external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) of 20.98%, 33.04 cd/A, and 33.08 lm/W for the Ir1-based device and 22.15%, 36.89 cd/A, and 35.85 lm/W for the Ir2-based device, respectively. Furthermore, using Ir2 as red emitter, a trichromatic hybrid white OLED, showing good warm white emission with low correlated color temperature of <2200 K under the voltage of 4-6 V, was fabricated successfully. The white device also realizes excellent device efficiencies with the maximum EQE, CE, and PE reaching 22.74%, 44.77 cd/A, and 46.89 lm/W, respectively. Such high electroluminescence performance for red and white OLEDs indicates that Ir1 and Ir2 as efficient red phosphors have great potential for future OLED displays and lightings applications.
Investigation of beam- and wave-plasma interactions in spherical tokamak Globus-M
NASA Astrophysics Data System (ADS)
Gusev, V. K.; Aminov, R. M.; Berezutskiy, A. A.; Bulanin, V. V.; Chernyshev, F. V.; Chugunov, I. N.; Dech, A. V.; Dyachenko, V. V.; Ivanov, A. E.; Khitrov, S. A.; Khromov, N. A.; Kurskiev, G. S.; Larionov, M. M.; Melnik, A. D.; Minaev, V. B.; Mineev, A. B.; Mironov, M. I.; Miroshnikov, I. V.; Mukhin, E. E.; Novokhatsky, A. N.; Panasenkov, A. A.; Patrov, M. I.; Petrov, A. V.; Petrov, Yu. V.; Podushnikova, K. A.; Rozhansky, V. A.; Rozhdestvensky, V. V.; Sakharov, N. V.; Shevelev, A. E.; Senichenkov, I. Yu.; Shcherbinin, O. N.; Stepanov, A. Yu.; Tolstyakov, S. Yu.; Varfolomeev, V. I.; Voronin, A. V.; Yagnov, V. A.; Yashin, A. Yu.; Zhilin, E. G.
2011-10-01
The experimental and theoretical results obtained in the last two years on the interaction of neutral particle beams and high-frequency waves with a plasma using the spherical tokamak Globus-M are discussed. The experiments on the injection of low-energy proton beam of ~300 eV directed particle energy are performed with a plasma gun that produces a hydrogen plasma jet of density up to 3 × 1022 m-3 and a high velocity up to 250 km s-1. A moderate density rise (up to 30%) is achieved in the central plasma region without plasma disruption. Experiments on high-energy (up to 30 keV) neutral beam injection into the D-plasma are analysed. Modelling results on confinement of fast particles inside the plasma column that follows the neutral beam injection are discussed. The influence of the magnetic field on the fast particle losses is argued. A neutral beam injection regime with primary ion heating is obtained and discussed. The new regime with fast current ramp-up and early neutral beam injection shows electron temperature rise and formation of broad Te profiles until the q = 1 flux surface enters the plasma column. An energetic particle mode in the range of frequencies 5-30 kHz and toroidal Alfvén eigenmodes in the range 50-300 kHz are recorded in that regime simultaneously with the Te rise. The energetic particle mode and toroidal Alfvén eigenmodes behaviour are discussed. The toroidal Alfvén eigenmode spectrum appears in Globus-M as a narrow band corresponding to n = 1. The first experimental results on plasma start-up and noninductive current drive generation are presented. The experiments are carried out with antennae providing mostly poloidal slowing down of waves with a frequency of 920 MHz, which is higher than a lower hybrid one existing under the experimental conditions. The high current drive efficiency is shown to be high (of about 0.25 A W-1), and its mechanism is proposed. Some near future plans of the experiments are also discussed.
Reusable self-healing hydrogels realized via in situ polymerization.
Vivek, Balachandran; Prasad, Edamana
2015-04-09
In this work, a self-healing hydrogel has been prepared using in situ polymerization of acrylic acid and acrylamide in the presence of glycogen. The hydrogel was characterized using NMR, SEM, FT-IR, rheology, and dynamic light scattering (DLS) studies. The developed hydrogel exhibits self-healing properties at neutral pH, high swelling ability, high elasticity, and excellent mechanical strength. The hydrogel exhibits modulus values (G', G″) as high as 10(6) Pa and shows an exceptionally high degree of swelling ratio (∼3.5 × 10(3)). Further, the polymer based hydrogel adsorbs toxic metal ions (Cd(2+), Pb(2+), and Hg(2+)) and organic dyes (methylene blue and methyl orange) from contaminated water with remarkable efficiency (90-98%). The mechanistic analysis indicated the presence of pseudo-second-order reaction kinetics. The reusability of the hydrogel has been demonstrated by repeating the adsorption-desorption process over five cycles with identical results in the adsorption efficiency.
Petitdemange, Caroline; Achour, Abla; Dispinseri, Stefania; Malet, Isabelle; Sennepin, Alexis; Ho Tsong Fang, Raphaël; Crouzet, Joël; Marcelin, Anne-Geneviève; Calvez, Vincent; Scarlatti, Gabriella; Debré, Patrice; Vieillard, Vincent
2013-09-01
The induction of neutralizing antibodies against conserved regions of the human immunodeficiency virus type 1 (HIV-1) envelope protein is a major goal of vaccine strategies. We previously identified 3S, a critical conserved motif of gp41 that induces the NKp44L ligand of an activating NK receptor. In vivo, anti-3S antibodies protect against the natural killer (NK) cell-mediated CD4 depletion that occurs without efficient viral neutralization. Specific substitutions within the 3S peptide motif were prepared by directed mutagenesis. Virus production was monitored by measuring the p24 production. Neutralization assays were performed with immune-purified antibodies from immunized mice and a cohort of HIV-infected patients. Expression of NKp44L on CD4(+) T cells and degranulation assay on activating NK cells were both performed by flow cytometry. Here, we show that specific substitutions in the 3S motif reduce viral infection without affecting gp41 production, while decreasing both its capacity to induce NKp44L expression on CD4(+) T cells and its sensitivity to autologous NK cells. Generation of antibodies in mice against the W614 specific position in the 3S motif elicited a capacity to neutralize cross-clade viruses, notable in its magnitude, breadth, and durability. Antibodies against this 3S variant were also detected in sera from some HIV-1-infected patients, demonstrating both neutralization activity and protection against CD4 depletion. These findings suggest that a specific substitution in a 3S-based immunogen might allow the generation of specific antibodies, providing a foundation for a rational vaccine that combine a capacity to neutralize HIV-1 and to protect CD4(+) T cells.
Antiproton powered propulsion with magnetically confined plasma engines
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.
1989-01-01
Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.
Verma, Anita; Ngundi, Miriam M; Price, Gregory A; Takeda, Kazuyo; Yu, James; Burns, Drusilla L
2018-02-27
Toxin neutralizing antibodies represent the major mode of protective immunity against a number of toxin-mediated bacterial diseases, including anthrax; however, the cellular mechanisms that lead to optimal neutralizing antibody responses remain ill defined. Here we show that the cellular binding pathway of anthrax protective antigen (PA), the binding component of anthrax toxin, determines the toxin neutralizing antibody response to this antigen. PA, which binds cellular receptors and efficiently enters antigen-presenting cells by receptor-mediated endocytosis, was found to elicit robust anti-PA IgG and toxin neutralizing antibody responses. In contrast, a receptor binding-deficient mutant of PA, which does not bind receptors and only inefficiently enters antigen-presenting cells by macropinocytosis, elicited very poor antibody responses. A chimeric protein consisting of the receptor binding-deficient PA mutant tethered to the binding subunit of cholera toxin, which efficiently enters cells using the cholera toxin receptor rather than the PA receptor, elicited an anti-PA IgG antibody response similar to that elicited by wild-type PA; however, the chimeric protein elicited a poor toxin neutralizing antibody response. Taken together, our results demonstrate that the antigen capture pathway can dictate the magnitudes of the total IgG and toxin neutralizing antibody responses to PA as well as the ratio of the two responses. IMPORTANCE Neutralizing antibodies provide protection against a number of toxin-mediated bacterial diseases by inhibiting toxin action. Therefore, many bacterial vaccines are designed to induce a toxin neutralizing antibody response. We have used protective antigen (PA), the binding component of anthrax toxin, as a model antigen to investigate immune mechanisms important for the induction of robust toxin neutralizing antibody responses. We found that the pathway used by antigen-presenting cells to capture PA dictates the robustness of the neutralizing antibody response to this antigen. These results provide new insights into immune mechanisms that play an important role in the induction of toxin neutralizing antibody responses and may be useful in the design of new vaccines against toxin-mediated bacterial diseases.
Hinkula, Jorma; Devignot, Stéphanie; Åkerström, Sara; Karlberg, Helen; Wattrang, Eva; Bereczky, Sándor; Mousavi-Jazi, Mehrdad; Risinger, Christian; Lindegren, Gunnel; Vernersson, Caroline; Paweska, Janusz; van Vuren, Petrus Jansen; Blixt, Ola; Brun, Alejandro; Weber, Friedemann; Mirazimi, Ali
2017-05-15
Crimean-Congo hemorrhagic fever virus (CCHFV) is a bunyavirus causing severe hemorrhagic fever disease in humans, with high mortality rates. The requirement of a high-containment laboratory and the lack of an animal model hampered the study of the immune response and protection of vaccine candidates. Using the recently developed interferon alpha receptor knockout (IFNAR -/- ) mouse model, which replicates human disease, we investigated the immunogenicity and protection of two novel CCHFV vaccine candidates: a DNA vaccine encoding a ubiquitin-linked version of CCHFV Gc, Gn, and N and one using transcriptionally competent virus-like particles (tc-VLPs). In contrast to most studies that focus on neutralizing antibodies, we measured both humoral and cellular immune responses. We demonstrated a clear and 100% efficient preventive immunity against lethal CCHFV challenge with the DNA vaccine. Interestingly, there was no correlation with the neutralizing antibody titers alone, which were higher in the tc-VLP-vaccinated mice. However, the animals with a lower neutralizing titer, but a dominant cell-mediated Th1 response and a balanced Th2 response, resisted the CCHFV challenge. Moreover, we found that in challenged mice with a Th1 response (immunized by DNA/DNA and boosted by tc-VLPs), the immune response changed to Th2 at day 9 postchallenge. In addition, we were able to identify new linear B-cell epitope regions that are highly conserved between CCHFV strains. Altogether, our results suggest that a predominantly Th1-type immune response provides the most efficient protective immunity against CCHFV challenge. However, we cannot exclude the importance of the neutralizing antibodies as the surviving immunized mice exhibited substantial amounts of them. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is responsible for hemorrhagic diseases in humans, with a high mortality rate. There is no FDA-approved vaccine, and there are still gaps in our knowledge of the immune responses to infection. The recently developed mouse models mimic human CCHF disease and are useful to study the immunogenicity and the protection by vaccine candidates. Our study shows that mice vaccinated with a specific DNA vaccine were fully protected. Importantly, we show that neutralizing antibodies are not sufficient for protection against CCHFV challenge but that an extra Th1-specific cellular response is required. Moreover, we describe the identification of five conserved B-cell epitopes, of which only one was previously known, that could be of great importance for the development of diagnostics tools and the improvement of vaccine candidates. Copyright © 2017 Hinkula et al.
Physical Conditions in Shocked Interstellar Gas Interacting with the Supernova Remnant IC 443
NASA Astrophysics Data System (ADS)
Ritchey, Adam M.; Federman, Steven Robert; Jenkins, Edward B.; Caprioli, Damiano; Wallerstein, George
2018-06-01
We present the results of a detailed investigation into the physical conditions in interstellar material interacting with the supernova remnant IC 443. Our analysis is based on an examination of high-resolution HST/STIS spectra of two stars probing predominantly neutral gas located both ahead of and behind the supernova shock front. The pre-shock neutral gas is characterized by densities and temperatures typical of diffuse interstellar clouds, while the post-shock material exhibits a range of more extreme physical conditions, including high temperatures (>104 K) in some cases, which may require a sudden heating event to explain. The ionization level is enhanced in the high-temperature post-shock material, which could be the result of enhanced radiation from shocks or from an increase in cosmic-ray ionization. The gas-phase abundances of refractory elements are also enhanced in the high-pressure gas, suggesting efficient destruction of dust grains by shock sputtering. Observations of highly-ionized species at very high velocity indicate a post-shock temperature of 107 K for the hot X-ray emitting plasma of the remnant’s interior, in agreement with studies of thermal X-ray emission from IC 443.
NASA Astrophysics Data System (ADS)
Ohori, Daisuke; Fukuyama, Atsuhiko; Sakai, Kentaro; Higo, Akio; Thomas, Cedric; Samukawa, Seiji; Ikari, Tetsuo
2017-05-01
GaAs quantum nanodisks (QNDs) in nanopillar (NP) arrays are considered to be an attractive candidate for photonic device applications. We report a damageless fabrication technique that can be used to produce large-area lattice-matched GaAs/AlGaAs heterostructure NP arrays through the use of a bio-template and neutral beam etching. We have successfully realized GaAs QNDs in NPs owing to nanoscale iron oxide masks included in poly(ethylene glycol)-decorated ferritin protein shells. We observed for first time the photoluminescence emission from as-etched GaAs QNDs and confirmed quantum confinement by quantum mechanical calculation. Our methodology is vital for high-efficiency pillar-based optoelectronic devices such as NP laser diodes.
Energy Efficient Building Management | Climate Neutral Research Campuses |
NREL Efficient Building Management Energy Efficient Building Management As campuses complete generate the greatest climate impact. Energy efficient management in the existing stock of buildings is the following links go to sections that describe how an energy buildings management and maintenance program may
Preliminary studies for a beam-generated plasma neutralizer test in NIO1
NASA Astrophysics Data System (ADS)
Sartori, E.; Veltri, P.; Balbinot, L.; Cavenago, M.; Veranda, M.; Antoni, V.; Serianni, G.
2017-08-01
The deployment of neutral beam injectors in future fusion plants is beset by the particularly poor efficiency of the neutralization process. Beam-generated plasma neutralizers were proposed as a passive and intrinsically safe scheme of efficient plasma neutralizers. The concept is based on the natural ionization of the gas target by the beam, and on a suitable confinement of the secondary plasma. The technological challenge of such a concept is the magnetic confinement of the secondary plasma: a proof-of-principle for the concept is needed. The possibility to test of such a system in the small negative ion beam system NIO1 is discussed in this paper. The constraints given by the facility are first discussed. A model of beam-gas interaction is developed to provide the charge-state of beam particles along the neutralizer, and to provide the source terms of plasma generation. By using a cylindrical model of plasma diffusion in magnetic fields, the ionization degree of the target is estimated. In the absence of magnetic fields the diffusion model is validated against experimental measurements of the space-charge compensation plasma in the drift region of NIO1. Finally, the feasibility study for a beam-generated plasma neutralizer in NIO is presented. The neutralizer length, required gas target thickness, and a very simple magnetic setup were considered, taking into account the integration in NIO1. For the basic design a low ionization degree (1%) is obtained, however a promising plasma density up to hundred times the beam density was calculated. The proposed test in NIO1 can be the starting point for studying advanced schemes of magnetic confinement aiming at ionization degrees in the order of 10%.
Sugimori, Daisuke; Watanabe, Mika; Utsue, Tomohiro
2013-01-01
The lipids (fats and oils) degradation capabilities of soil microorganisms were investigated for possible application in treatment of lipids-contaminated wastewater. We isolated a strain of the bacterium Raoultella planticola strain 232-2 that is capable of efficiently catabolizing lipids under acidic conditions such as in grease traps in restaurants and food processing plants. The strain 232-2 efficiently catabolized a mixture (mixed lipids) of commercial vegetable oil, lard, and beef tallow (1:1:1, w/w/w) at 20-35 °C, pH 3-9, and 1,000-5,000 ppm lipid content. Highly effective degradation rate was observed at 35 °C and pH 4.0, and the 24-h degradation rate was 62.5 ± 10.5 % for 3,000 ppm mixed lipids. The 24-h degradation rate for 3,000 ppm commercial vegetable oil, lard, beef tallow, mixed lipids, and oleic acid was 71.8 %, 58.7 %, 56.1 %, 55.3 ± 8.5 %, and 91.9 % at pH 4 and 30 °C, respectively. R. planticola NBRC14939 (type strain) was also able to efficiently catabolize the lipids after repeated subculturing. The composition of the culture medium strongly influenced the degradation efficiency, with yeast extract supporting more complete dissimilation than BactoPeptone or beef extract. The acid tolerance of strain 232-2 is proposed to result from neutralization of the culture medium by urease-mediated decomposition of urea to NH(3). The rate of lipids degradation increased with the rates of neutralization and cell growth. Efficient lipids degradation using strain 232-2 has been achieved in the batch treatment of a restaurant wastewater.
Ferrocene functionalized graphene based electrode for the electro-Fenton oxidation of ciprofloxacin.
Divyapriya, Govindaraj; Nambi, Indumathi; Senthilnathan, Jaganathan
2018-05-26
Ferrocene functionalized graphene based graphite felt electrode was firstly investigated for heterogeneous electro-Fenton oxidation of ciprofloxacin in neutral pH condition. Electrochemical reduction of Ferrocene functionalized graphene oxide (Fc-ErGO) was performed by cyclic voltammetry technique. At neutral pH condition, Fc-ErGO electrode (0.035 min ─1 ) exhibited ∼3 times and ∼9 times higher removal rates in comparison with plane ErGO (0.010 min ─1 ) and plane graphite felt (0.004 min ─1 ) electrodes respectively. The effect of pH and applied potential were studied for the degradation of ciprofloxacin in Fc-ErGO based electrode. Higher removal rate was observed at acidic pH (0.222 min ─1 ), whereas alkaline pH showed lower removal efficiency (0.014 min ─1 ). > 99% removal of ciprofloxacin was achieved with in 15 min and 120 min of reactions period at pH 3.0 and pH 7.0, respectively. H 2 O 2 generation was found to be high in plane ErGO electrode system in all of the pH conditions. Owing to the high redox ability of ferrocene, Fc-ErGO electrode generated high concentration of OH radicals (426 μM pH 3.0; 247 μM pH 7.0; 210 μM pH 9.0) than ErGO and plane graphite felt electrodes; The electrode reusability study was performed to understand the electrode stability. There was no significant change in removal efficiency even after the 5th cycle of reusability study at both acidic and neutral conditions. The possible mechanism of oxidation in Fc-ErGO based electro-Fenton process was also proposed based on the continuous monitoring of H 2 O 2 and OH radicals generated in the system. Copyright © 2018. Published by Elsevier Ltd.
Spatial structure of morphological and neutral genetic variation in Brook Trout
Kazyak, David C.; Hilderbrand, Robert H.; Keller, Stephen R.; Colaw, Mark C.; Holloway, Amanda E.; Morgan, Raymond P.; King, Timothy L.
2015-01-01
Brook Trout Salvelinus fontinalis exhibit exceptional levels of life history variation, remarkable genetic variability, and fine-scale population structure. In many cases, neighboring populations may be highly differentiated from one another to an extent that is comparable with species-level distinctions in other taxa. Although genetic samples have been collected from hundreds of populations and tens of thousands of individuals, little is known about whether differentiation at neutral markers reflects phenotypic differences among Brook Trout populations. We compared differentiation in morphology and neutral molecular markers among populations from four geographically proximate locations (all within 24 km) to examine how genetic diversity covaries with morphology. We found significant differences among and/or within streams for all three morphological axes examined and identified the source stream of many individuals based on morphology (52.3% classification efficiency). Although molecular and morphological differentiation among streams ranged considerably (mean pairwise FST: 0.023–0.264; pairwise PST: 0.000–0.339), the two measures were not significantly correlated. While in some cases morphological characters appear to have diverged to a greater extent than expected by neutral genetic drift, many traits were conserved to a greater extent than were neutral genetic markers. Thus, while Brook Trout exhibit fine-scale spatial patterns in both morphology and neutral genetic diversity, these types of biological variabilities are being structured by different ecological and evolutionary processes. The relative influences of genetic drift versus selection and phenotypic plasticity in shaping morphology appear to vary among populations occupying nearby streams.
Locomotion of neutrally buoyant fish with flexible caudal fin.
Iosilevskii, Gil
2016-06-21
Historically, burst-and-coast locomotion strategies have been given two very different explanations. The first one was based on the assumption that the drag of an actively swimming fish is greater than the drag of the same fish in motionless glide. Fish reduce the cost of locomotion by swimming actively during a part of the swimming interval, and gliding through the remaining part. The second one was based on the assumption that muscles perform efficiently only if their contraction rate exceeds a certain threshold. Fish reduce the cost of locomotion by using an efficient contraction rate during a part of the swimming interval, and gliding through the remaining part. In this paper, we suggest yet a third explanation. It is based on the assumption that propulsion efficiency of a swimmer can increase with thrust. Fish reduce the cost of locomotion by alternating high thrust, and hence more efficient, bursts with passive glides. The paper presents a formal analysis of the respective burst-and-coast strategy, shows that the locomotion efficiency can be practically as high as the propulsion efficiency during burst, and shows that the other two explanations can be considered particular cases of the present one. Copyright © 2016 Elsevier Ltd. All rights reserved.
Near-Atomic Resolution Structure of a Highly Neutralizing Fab Bound to Canine Parvovirus.
Organtini, Lindsey J; Lee, Hyunwook; Iketani, Sho; Huang, Kai; Ashley, Robert E; Makhov, Alexander M; Conway, James F; Parrish, Colin R; Hafenstein, Susan
2016-11-01
Canine parvovirus (CPV) is a highly contagious pathogen that causes severe disease in dogs and wildlife. Previously, a panel of neutralizing monoclonal antibodies (MAb) raised against CPV was characterized. An antibody fragment (Fab) of MAb E was found to neutralize the virus at low molar ratios. Using recent advances in cryo-electron microscopy (cryo-EM), we determined the structure of CPV in complex with Fab E to 4.1 Å resolution, which allowed de novo building of the Fab structure. The footprint identified was significantly different from the footprint obtained previously from models fitted into lower-resolution maps. Using single-chain variable fragments, we tested antibody residues that control capsid binding. The near-atomic structure also revealed that Fab binding had caused capsid destabilization in regions containing key residues conferring receptor binding and tropism, which suggests a mechanism for efficient virus neutralization by antibody. Furthermore, a general technical approach to solving the structures of small molecules is demonstrated, as binding the Fab to the capsid allowed us to determine the 50-kDa Fab structure by cryo-EM. Using cryo-electron microscopy and new direct electron detector technology, we have solved the 4 Å resolution structure of a Fab molecule bound to a picornavirus capsid. The Fab induced conformational changes in regions of the virus capsid that control receptor binding. The antibody footprint is markedly different from the previous one identified by using a 12 Å structure. This work emphasizes the need for a high-resolution structure to guide mutational analysis and cautions against relying on older low-resolution structures even though they were interpreted with the best methodology available at the time. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Near-Atomic Resolution Structure of a Highly Neutralizing Fab Bound to Canine Parvovirus
Organtini, Lindsey J.; Lee, Hyunwook; Iketani, Sho; Huang, Kai; Ashley, Robert E.; Makhov, Alexander M.; Conway, James F.
2016-01-01
ABSTRACT Canine parvovirus (CPV) is a highly contagious pathogen that causes severe disease in dogs and wildlife. Previously, a panel of neutralizing monoclonal antibodies (MAb) raised against CPV was characterized. An antibody fragment (Fab) of MAb E was found to neutralize the virus at low molar ratios. Using recent advances in cryo-electron microscopy (cryo-EM), we determined the structure of CPV in complex with Fab E to 4.1 Å resolution, which allowed de novo building of the Fab structure. The footprint identified was significantly different from the footprint obtained previously from models fitted into lower-resolution maps. Using single-chain variable fragments, we tested antibody residues that control capsid binding. The near-atomic structure also revealed that Fab binding had caused capsid destabilization in regions containing key residues conferring receptor binding and tropism, which suggests a mechanism for efficient virus neutralization by antibody. Furthermore, a general technical approach to solving the structures of small molecules is demonstrated, as binding the Fab to the capsid allowed us to determine the 50-kDa Fab structure by cryo-EM. IMPORTANCE Using cryo-electron microscopy and new direct electron detector technology, we have solved the 4 Å resolution structure of a Fab molecule bound to a picornavirus capsid. The Fab induced conformational changes in regions of the virus capsid that control receptor binding. The antibody footprint is markedly different from the previous one identified by using a 12 Å structure. This work emphasizes the need for a high-resolution structure to guide mutational analysis and cautions against relying on older low-resolution structures even though they were interpreted with the best methodology available at the time. PMID:27535057
De Loof, Esther; Van Opstal, Filip; Verguts, Tom
2016-04-01
Theories on visual awareness claim that predicted stimuli reach awareness faster than unpredicted ones. In the current study, we disentangle whether prior information about the upcoming stimulus affects visual awareness of stimulus location (i.e., individuation) by modulating processing efficiency or threshold setting. Analogous research on stimulus identification revealed that prior information modulates threshold setting. However, as identification and individuation are two functionally and neurally distinct processes, the mechanisms underlying identification cannot simply be extrapolated directly to individuation. The goal of this study was therefore to investigate how individuation is influenced by prior information about the upcoming stimulus. To do so, a drift diffusion model was fitted to estimate the processing efficiency and threshold setting for predicted versus unpredicted stimuli in a cued individuation paradigm. Participants were asked to locate a picture, following a cue that was congruent, incongruent or neutral with respect to the picture's identity. Pictures were individuated faster in the congruent and neutral condition compared to the incongruent condition. In the diffusion model analysis, the processing efficiency was not significantly different across conditions. However, the threshold setting was significantly higher following an incongruent cue compared to both congruent and neutral cues. Our results indicate that predictive information about the upcoming stimulus influences visual awareness by shifting the threshold for individuation rather than by enhancing processing efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Balazs, G. Bryan; Lewis, Patricia R.
1999-01-01
An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components.
Balazs, G.B.; Lewis, P.R.
1999-07-06
An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components. 2 figs.
Anda, G; Dunai, D; Lampert, M; Krizsanóczi, T; Németh, J; Bató, S; Nam, Y U; Hu, G H; Zoletnik, S
2018-01-01
A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.
NASA Astrophysics Data System (ADS)
van Rooij, Gerard; den Harder, Niek; Minea, Teofil; Shumack, Amy; de Blank, H.; Plasma Physics Team
2014-10-01
In plasma physics, material walls are generally regarded as perfect sinks for charged particles and their energy. A special case arises when the wall efficiently reflects the neutralized plasma particles (with a significant portion of their kinetic energy) and at the same time the upstream plasma is of sufficiently high density to yield strong neutral-ion coupling (i.e. reflected energy and momentum will not escape from the plasma). Under these conditions, plasma-surface interaction will feedback to the upstream plasma and a self-consistent view on the coupling between plasma and neutrals is required for correct prediction of plasma conditions and plasma-surface interaction. Here, an analytical and numerical study of the fluid equations is combined with experiments (in hydrogen and argon) to construct such a self-consistent view. It shows how plasma momentum removal builds up upstream pressure and causes plasma acceleration towards the wall. It also shows how energy reflection causes plasma heating, which recycles part of the reflected power to the wall and induces additional flow acceleration due to local sound speed increase. The findings are relevant as generic textbook example and are at play in the boundary plasma of fusion devices.
NASA Astrophysics Data System (ADS)
Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.
2018-01-01
A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.
Negatively Charged Hydrogen Production in a Multicusp Microwave Plasma
NASA Astrophysics Data System (ADS)
Trow, John Robert
1985-06-01
High energy neutral beams are necessary for the continued development of magnetically confined fusion plasma devices. Neutral beams based on positive ions are not efficient at beam energies of 100 keV or above, however negative ion based neutral beam systems are efficient, even at high beam energies. Volume production of H('-) has many advantages over the other methods, chiefly: simplicity of design and operation, and no need for alkalai metals. Since volume production requires a low electron temperature ((TURN)1 eV) but also requires molecular intermediates only formed by more energetic electrons (>20 eV), double plasma devices with a separate hot electron region are desirable. Therefore an experiment was undertaken to examine H('-) production by volume processes in a multicusp microwave discharge, part of the cusp field being enhanced to produce an ECR (electron cyclotron resonance), that would also isolate the hotter plasma formed there. This arrangement is analogous to the "magnetic filters" used in some other negative ion sources. This work describes the experiment set up and the results obtained, which are a survey of the behavior of this type of device. Also included is a discussion of the volume processes associated with H('-) production including numerical estimates, based on the experimental measurements, which indicate H('-) production is by dissociative attachment of cold electrons to vibrationally excited hydrogen molecules, and loss is by mutual neutralization with positive ions. The experimental observations are consistent with this model. These are also the same mechanisms used in the models of Bacal and Hiskes. Since magnetic fields generated by samarium cobalt permanent magnets were an important part of this experiment a set of field calculations was undertaken and is included here as a separate chapter. This device is shown to be a viable scheme of H('-) (or D('-)) produc- tion and is worthy of further development. There are several more. quantities which still need to be measured listed in the conclusion, along with suggested improvements. *This work was supported by the Director, Office of Energy Research, Office of Fusion Energy, Development & Technology Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
Aeration is commonly identified as the most significant energy use in the treatment of wastewater and therefore garners significant focus in reducing energy use in the ultimate aspirational goal of achieving net energy neutrality for water resource recovery. This research establi...
Bacher, Gary E; Chernew, Michael E; Kessler, Daniel P; Weiner, Stephen M
2013-08-01
Accountable care organizations (ACOs) are among the most widely discussed models for encouraging movement away from fee-for-service payment arrangements. Although ACOs have the potential to slow health spending growth and improve quality of care, regulating them poses special challenges. Regulations, particularly those that affect both ACOs and Medicare Advantage plans, could inadvertently favor or disfavor certain kinds of providers or payers. Such favoritism could drive efficient organizations from the market and thus increase costs or reduce quality of and access to care. To avoid this type of outcome, we propose a general principle: Regulation of ACOs should strive to preserve a level playing field among different kinds of organizations seeking the same cost, quality, and access objectives. This is known as regulatory neutrality. We describe the implications of regulatory neutrality in four key areas: antitrust, financial solvency regulation, Medicare governance requirements, and Medicare payment models. We also discuss issues relating to short-term versus long-term perspectives--to promote the goal of regulatory neutrality and allow the most efficient organizations to prevail in the marketplace.
Liang, Bo; Ngwuta, Joan O; Herbert, Richard; Swerczek, Joanna; Dorward, David W; Amaro-Carambot, Emerito; Mackow, Natalie; Kabatova, Barbora; Lingemann, Matthias; Surman, Sonja; Yang, Lijuan; Chen, Man; Moin, Syed M; Kumar, Azad; McLellan, Jason S; Kwong, Peter D; Graham, Barney S; Schaap-Nutt, Anne; Collins, Peter L; Munir, Shirin
2016-11-01
Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced "high-quality" RSV-neutralizing antibodies, defined as antibodies that neutralize RSV in vitro without added complement (B. Liang et al., J Virol 89:9499-9510, 2015, doi:10.1128/JVI.01373-15). In the present study, we modified RSV F by replacing its cytoplasmic tail (CT) domain or its CT and transmembrane (TM) domains (TMCT) with counterparts from BPIV3 F, with or without pre-F stabilization. This resulted in RSV F being packaged in the rB/HPIV3 particle with an efficiency similar to that of RSV particles. Enhanced packaging was substantially attenuating in hamsters (10- to 100-fold) and rhesus monkeys (100- to 1,000-fold). Nonetheless, TMCT-directed packaging substantially increased the titers of high-quality RSV-neutralizing serum antibodies in hamsters. In rhesus monkeys, a strongly additive immunogenic effect of packaging and pre-F stabilization was observed, as demonstrated by 8- and 30-fold increases of RSV-neutralizing serum antibody titers in the presence and absence of added complement, respectively, compared to pre-F stabilization alone. Analysis of vaccine-induced F-specific antibodies by binding assays indicated that packaging conferred substantial stabilization of RSV F in the pre-F conformation. This provides an improved version of this well-tolerated RSV/HPIV3 vaccine candidate, with potently improved immunogenicity, which can be returned to clinical trials. Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major viral agents of acute pediatric bronchiolitis and pneumonia worldwide that lack vaccines. A bivalent intranasal RSV/HPIV3 vaccine candidate consisting of a chimeric bovine/human PIV3 (rB/HPIV3) strain expressing the RSV fusion (F) protein was previously shown to be well tolerated by seronegative children but was insufficiently immunogenic for RSV F. In the present study, the RSV F protein was engineered to be packaged efficiently into vaccine virus particles. This resulted in a significantly enhanced quantity and quality of RSV-neutralizing antibodies in hamsters and nonhuman primates. In nonhuman primates, this effect was strongly additive to the previously described stabilization of the prefusion conformation of the F protein. The improved immunogenicity of RSV F by packaging appeared to involve prefusion stabilization. These findings provide a potently more immunogenic version of this well-tolerated vaccine candidate and should be applicable to other vectored vaccines. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Liang, Bo; Ngwuta, Joan O.; Herbert, Richard; Swerczek, Joanna; Dorward, David W.; Amaro-Carambot, Emerito; Mackow, Natalie; Kabatova, Barbora; Lingemann, Matthias; Surman, Sonja; Yang, Lijuan; Chen, Man; Moin, Syed M.; Kumar, Azad; McLellan, Jason S.; Kwong, Peter D.; Graham, Barney S.; Schaap-Nutt, Anne; Collins, Peter L.
2016-01-01
ABSTRACT Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced “high-quality” RSV-neutralizing antibodies, defined as antibodies that neutralize RSV in vitro without added complement (B. Liang et al., J Virol 89:9499–9510, 2015, doi:10.1128/JVI.01373-15). In the present study, we modified RSV F by replacing its cytoplasmic tail (CT) domain or its CT and transmembrane (TM) domains (TMCT) with counterparts from BPIV3 F, with or without pre-F stabilization. This resulted in RSV F being packaged in the rB/HPIV3 particle with an efficiency similar to that of RSV particles. Enhanced packaging was substantially attenuating in hamsters (10- to 100-fold) and rhesus monkeys (100- to 1,000-fold). Nonetheless, TMCT-directed packaging substantially increased the titers of high-quality RSV-neutralizing serum antibodies in hamsters. In rhesus monkeys, a strongly additive immunogenic effect of packaging and pre-F stabilization was observed, as demonstrated by 8- and 30-fold increases of RSV-neutralizing serum antibody titers in the presence and absence of added complement, respectively, compared to pre-F stabilization alone. Analysis of vaccine-induced F-specific antibodies by binding assays indicated that packaging conferred substantial stabilization of RSV F in the pre-F conformation. This provides an improved version of this well-tolerated RSV/HPIV3 vaccine candidate, with potently improved immunogenicity, which can be returned to clinical trials. IMPORTANCE Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major viral agents of acute pediatric bronchiolitis and pneumonia worldwide that lack vaccines. A bivalent intranasal RSV/HPIV3 vaccine candidate consisting of a chimeric bovine/human PIV3 (rB/HPIV3) strain expressing the RSV fusion (F) protein was previously shown to be well tolerated by seronegative children but was insufficiently immunogenic for RSV F. In the present study, the RSV F protein was engineered to be packaged efficiently into vaccine virus particles. This resulted in a significantly enhanced quantity and quality of RSV-neutralizing antibodies in hamsters and nonhuman primates. In nonhuman primates, this effect was strongly additive to the previously described stabilization of the prefusion conformation of the F protein. The improved immunogenicity of RSV F by packaging appeared to involve prefusion stabilization. These findings provide a potently more immunogenic version of this well-tolerated vaccine candidate and should be applicable to other vectored vaccines. PMID:27581977
Bale, Shridhar; Martiné, Alexandra; Wilson, Richard; Behrens, Anna-Janina; Le Fourn, Valérie; de Val, Natalia; Sharma, Shailendra K.; Tran, Karen; Torres, Jonathan L.; Girod, Pierre-Alain; Ward, Andrew B.; Crispin, Max; Wyatt, Richard T.
2018-01-01
Native flexibly linked (NFL) HIV-1 envelope glycoprotein (Env) trimers are cleavage-independent and display a native-like, well-folded conformation that preferentially displays broadly neutralizing determinants. The NFL platform simplifies large-scale production of Env by eliminating the need to co-transfect the precursor-cleaving protease, furin that is required by the cleavage-dependent SOSIP trimers. Here, we report the development of a CHO-M cell line that expressed BG505 NFL trimers at a high level of homogeneity and yields of ~1.8 g/l. BG505 NFL trimers purified by single-step lectin-affinity chromatography displayed a native-like closed structure, efficient recognition by trimer-preferring bNAbs, no recognition by non-neutralizing CD4 binding site-directed and V3-directed antibodies, long-term stability, and proper N-glycan processing. Following negative-selection, formulation in ISCOMATRIX adjuvant and inoculation into rabbits, the trimers rapidly elicited potent autologous tier 2 neutralizing antibodies. These antibodies targeted the N-glycan “hole” naturally present on the BG505 Env proximal to residues at positions 230, 241, and 289. The BG505 NFL trimers that did not expose V3 in vitro, elicited low-to-no tier 1 virus neutralization in vivo, indicating that they remained intact during the immunization process, not exposing V3. In addition, BG505 NFL and BG505 SOSIP trimers expressed from 293F cells, when formulated in Adjuplex adjuvant, elicited equivalent BG505 tier 2 autologous neutralizing titers. These titers were lower in potency when compared to the titers elicited by CHO-M cell derived trimers. In addition, increased neutralization of tier 1 viruses was detected. Taken together, these data indicate that both adjuvant and cell-type expression can affect the elicitation of tier 2 and tier 1 neutralizing responses in vivo.
Pedersen, Jannie; Jensen, Tanja B.; Carlsen, Thomas H. R.; Schønning, Kristian; Christensen, Peer Brehm; Laursen, Alex Lund; Krarup, Henrik; Bukh, Jens; Weis, Nina
2013-01-01
The correlation of neutralizing antibodies to treatment outcome in patients with chronic hepatitis C virus (HCV) infection has not been established. The aim of this study was to determine whether neutralizing antibodies could be used as an outcome predictor in patients with chronic HCV, genotype 1, infection treated with pegylated interferon-α and ribavirin. Thirty-nine patients with chronic hepatitis C, genotype 1a or 1b, with either sustained virologic response (n = 23) or non-sustained virologic response (n = 16) were enrolled. Samples taken prior to treatment were tested for their ability to neutralize 6 different HCV genotype 1 cell culture recombinants (1a: H77/JFH1, TN/JFH1, DH6/JFH1; 1b: J4/JFH1, DH1/JFH1, DH5/JFH1). The results were expressed as the highest dilution yielding 50% neutralization (NAb50-titer). We observed no genotype or subtype specific differences in NAb50-titers between patients with chronic HCV infection with and without sustained virologic response when tested against any of the included culture viruses. However, NAb50-titers varied significantly with a mean reciprocal NAb50-titer of 800 (range: 100–6400) against DH6/JFH1 compared to a mean NAb50-titer of 50 (range: <50–400) against all other included isolates. Subsequent studies demonstrated that the efficient neutralization of DH6/JFH1 could be linked to engineered adaptive mutations in the envelope-2 protein. In analysis of envelope 1 and 2 sequences of HCV, recovered from a subset of patients, we observed no apparent link between relatedness of patient sequences with culture viruses used and the corresponding neutralization results. In conclusion, pre-treatment levels of neutralizing antibodies against HCV genotype 1 isolates could not predict treatment outcome in patients with chronic HCV infection. High neutralization susceptibility of DH6/JFH1 could be correlated with adaptive envelope mutations previously highlighted as important for neutralization. Our study emphasizes the importance of using multiple culture viruses for neutralization studies and contributes to the current knowledge about neutralizing epitopes, important for future therapeutic- and vaccine-studies. PMID:23667506
NASA Astrophysics Data System (ADS)
Fu, Bao-rong; Shen, Chao; Ren, Jing; Chen, Jia-yi; Zhao, Lin
2018-03-01
In this study, ferric oxide loading graphite particle electrodes (FO/GPEs) were prepared as cathode of a three-dimensional electrode MFC-Fenton system. The properties of the composite cathode were examined with higher surface area and more mesopores. FO/GPEs could work as both cathode and Fenton iron reagents, contributing to high oxidation activity and better performance of electricity generation. The application of FO/GPEs MFC-Fenton system on degrading p-nitrophenol presented high catalytic efficiency in a wide range of pH value. The removal of p-nitrophenol and TOC attained to about 85 % within 8 and 64 h at neutral pH, respectively. A neutral FO/GPEs MFC-Fenton oxidation mechanism was also proposed. Specifically, both the surface iron sites and dissolved iron ions catalyzed the decomposition of H2O2. As results, the generated hydroxyl radicals were used for p-nitrophenol degradation and the iron oxide was recycled.
Zhang, Xing; Wu, Zishan; Zhang, Xiao; Li, Liewu; Li, Yanyan; Xu, Haomin; Li, Xiaoxiao; Yu, Xiaolu; Zhang, Zisheng; Liang, Yongye; Wang, Hailiang
2017-01-01
Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm−2 and a turnover frequency of 4.1 s−1 at the overpotential of 0.52 V in a near-neutral aqueous solution. PMID:28272403
Engineering of beam direct conversion for a 120-kV, 1-MW ion beam
NASA Technical Reports Server (NTRS)
Barr, W. L.; Doggett, J. N.; Hamilton, G. W.; Kinney, J. D.; Moir, R. W.
1977-01-01
Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H(+) component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques.
Engineering titania nanostructure to tune and improve its photocatalytic activity
Cargnello, Matteo; Montini, Tiziano; Smolin, Sergey Y.; Priebe, Jacqueline B.; Delgado Jaén, Juan J.; Doan-Nguyen, Vicky V. T.; McKay, Ian S.; Schwalbe, Jay A.; Pohl, Marga-Martina; Gordon, Thomas R.; Lu, Yupeng; Baxter, Jason B.; Brückner, Angelika; Murray, Christopher B.
2016-01-01
Photocatalytic pathways could prove crucial to the sustainable production of fuels and chemicals required for a carbon-neutral society. Electron−hole recombination is a critical problem that has, so far, limited the efficiency of the most promising photocatalytic materials. Here, we show the efficacy of anisotropy in improving charge separation and thereby boosting the activity of a titania (TiO2) photocatalytic system. Specifically, we show that H2 production in uniform, one-dimensional brookite titania nanorods is highly enhanced by engineering their length. By using complimentary characterization techniques to separately probe excited electrons and holes, we link the high observed reaction rates to the anisotropic structure, which favors efficient carrier utilization. Quantum yield values for hydrogen production from ethanol, glycerol, and glucose as high as 65%, 35%, and 6%, respectively, demonstrate the promise and generality of this approach for improving the photoactivity of semiconducting nanostructures for a wide range of reacting systems. PMID:27035977
NASA Astrophysics Data System (ADS)
Wang, Haonan; Huang, Zhenzhen; Guo, Zilong; Yang, Wensheng
2017-07-01
In this paper, we reported an approach for efficient incorporation of glutathione-capped gold nanoclusters (GSH-Au NCs) into silica particles with the assistance of a polyelectrolyte, poly-diallyldimethyl-ammoniumchloride (PDDA). In this approach, the negatively charged GSH-Au NCs were firstly mixed with the positively charged PDDA to form PDDA-Au NC complexes. Then, the complexes were added into a pre-hydrolyzed Stöber system to get the Au NCs-doped silica particles. With increased ratio of PDDA in the complexes, the negative charges on surface of the Au NCs were neutralized gradually and finally reversed to positive in presence of excess PDDA, which facilitated the incorporation of the Au NCs into the negatively charged silica matrix. Under the optimal amount of PDDA in the complexes, the incorporation efficiency of Au NCs could be as high as 88%. After being incorporated into the silica matrix, the Au NCs become much robust against pH and heavy metal ions attributed to the protection effect of silica and PDDA. This approach was also extendable to highly efficient incorporation of other negatively charged metal nanoclusters, such as bovine serum albumin-capped Cu nanoclusters, into silica matrix.
Measurements of the neutral particle spectra on Mars by MSL/RAD from 2015-11-15 to 2016-01-15
NASA Astrophysics Data System (ADS)
Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert; Hassler, Donald M.; Köhler, Jan; Ehresmann, Bent; Böttcher, Stephan; Böhm, Eckart; Brinza, David E.
2017-08-01
The Radiation Assessment Detector (RAD), onboard the Mars Science Laboratory (MSL) rover Curiosity, has been measuring the energetic charged and neutral particles and the radiation dose rate on the surface of Mars since the landing of the rover in August 2012. In contrast to charged particles, neutral particles (neutrons and γ-rays) are measured indirectly: the energy deposition spectra produced by neutral particles are complex convolutions of the incident particle spectra with the detector response functions. An inversion technique has been developed and applied to jointly unfold the deposited energy spectra measured in two scintillators of different types (CsI for high γ detection efficiency, and plastic for neutrons) to obtain the neutron and γ-ray spectra. This result is important for determining the biological impact of the Martian surface radiation contributed by neutrons, which interact with materials differently from the charged particles. These first in-situ measurements on Mars provide (1) an important reference for assessing the radiation-associated health risks for future manned missions to the red planet and (2) an experimental input for validating the particle transport codes used to model the radiation environments within spacecraft or on the surface of planets. Here we present neutral particle spectra as well as the corresponding dose and dose equivalent rates derived from RAD measurement during a period (November 15, 2015 to January 15, 2016) for which the surface particle spectra have been simulated via different transport models.
Crystal Structure of the Neutralizing Llama VHH D7 and Its Mode of HIV-1 gp120 Interaction
Hinz, Andreas; Lutje Hulsik, David; Forsman, Anna; Koh, Willie Wee-Lee; Belrhali, Hassan; Gorlani, Andrea; de Haard, Hans; Weiss, Robin A.; Verrips, Theo; Weissenhorn, Winfried
2010-01-01
HIV-1 entry into host cells is mediated by the sequential binding of the envelope glycoprotein gp120 to CD4 and a chemokine receptor. Antibodies binding to epitopes overlapping the CD4-binding site on gp120 are potent inhibitors of HIV entry, such as the llama heavy chain antibody fragment VHH D7, which has cross-clade neutralizing properties and competes with CD4 and mAb b12 for high affinity binding to gp120. We report the crystal structure of the D7 VHH at 1.5 Å resolution, which reveals the molecular details of the complementarity determining regions (CDR) and substantial flexibility of CDR3 that could facilitate an induced fit interaction with gp120. Structural comparison of CDRs from other CD4 binding site antibodies suggests diverse modes of interaction. Mutational analysis identified CDR3 as a key component of gp120 interaction as determined by surface plasmon resonance. A decrease in affinity is directly coupled to the neutralization efficiency since mutations that decrease gp120 interaction increase the IC50 required for HIV-1 IIIB neutralization. Thus the structural study identifies the long CDR3 of D7 as the key determinant of interaction and HIV-1 neutralization. Furthermore, our data confirm that the structural plasticity of gp120 can accommodate multiple modes of antibody binding within the CD4 binding site. PMID:20463957
Synthesis of linear polyethylenimine derivatives for DNA transfection.
Brissault, Blandine; Kichler, Antoine; Guis, Christine; Leborgne, Christian; Danos, Olivier; Cheradame, Hervé
2003-01-01
A series of linear polymers containing varying amounts of ethylenimine or N-propylethylenimine units were synthesized by hydrolysis and/or reduction of polyethyloxazolines. The pK(a)s of the polyamines were determined potentiometrically. Gel mobility shift assay showed that the efficiency of DNA complexation was related to the fraction of amino groups that are protonated at neutral pH. The effects of cationic charge density and molar weight of the polymers on the transfection efficiency were evaluated on HepG2 cells. The results obtained with different copolymers show that the transfection efficiency primarily depends on the fraction of ethylenimine units included in the polymer albeit the molar weight is also of importance. On the basis of the results obtained with poly(N-propylethylenimines), we also demonstrate that the high transfection efficiency of polyethylenimines does not solely rely on their capacity to capture protons which are transferred into the endo-lysosomes during acidification.
NASA Astrophysics Data System (ADS)
Brigitte Neuland, Maike; Riedo, Andreas; Scheer, Jürgen; Wurz, Peter
2014-05-01
The detection of energetic neutral atoms is a substantial requirement on every space mission mapping particle populations of a planetary magnetosphere or plasma of the interstellar medium. For imaging neutrals, these first have to be ionized. Regarding the constraints of weight, volume and power consumption, the technique of surface ionization complies with all specifications of a space mission. Particularly low energy neutral atoms, which cannot be ionized by passing through a foil, are ionized by scattering on a charge state conversion surface. Since more than 30 years intense research work is done to find suitable materials for use as charge state conversion surfaces. Crucial parameters are the ionisation efficiency of the surface material and the scattering properties. Against all expectations, insulators showed very promising characteristics for serving as conversion surfaces. Particularly diamond-like carbon was proven advantageously: While efficiently ionising incoming neutral atoms, diamond stands out by its durability and chemical inertness. In the IBEX-Lo sensor, a diamond-like carbon surface is used for ionisation of neutral atoms. Energy resolved maps of neutral atoms from the IBEX mission revealed phenomena of the interaction between heliosphere and local interstellar medium (LISM) that demand for new theory and explanations [McComas et al., 2011]. Building on the successes of the IBEX mission, a follow up mission concept to further explore the boundaries of the heliosphere already exists. The Interstellar MApping Probe (IMAP) is planned to map neutral atoms in a larger energy range and with a distinct better angular resolution and sensitivity than IBEX [McComas et al.]. The aspired performance of the IMAP sensors implies also for charge state conversion surfaces with improved characteristics. We investigated samples of diamond-like carbon, manufactured by the chemical vapour and pulsed laser deposition method, regarding their ionisation efficiency, scattering and reflexion properties. Experiments were carried out at the ILENA facility [Wahlström et al., 2013] with hydrogen and oxygen atoms, which are the species of main interest in magnetospheric research [Wurz et al., 1997]. Results of very narrow scattering cones and sufficient ionisation efficiency show that diamond-like carbon still is the preferred material for charge state conversion surfaces. But our measurements show that new surface technologies offer improved diamond conversion surfaces with different properties and hence the possibility for improvement of the performance of neutral atom imaging instruments. References: [McComas et al., 2011] D.J. McComas, H.O. Funsten, S.A. Fuselier, W.S. Lewis, E. Möbius and N.A. Schwadron, IBEX observations of Heliospheric energetic neutral atoms: Current understanding and future directions, Geophys. Res. Lett. 38, L18101, 2011 [McComas et al.] Interstellar Mapping Probe (IMAP) mission concept: Illuminating the dark boundaries at the edge of our solar system, decadal survey white paper [Wahlström et al., 2013] P. Wahlström, J.A. Scheer, A. Riedo, P. Wurz and M. Wieser, J. Spacecr. Rockets 50 (2), 402-410 [Wurz et al., 1997] P. Wurz, R. Schletti, M.R. Aellig, Hydrogen and oxygen negative ion production by surface ionization using diamond surfaces, Surf. Sci. 373, 56-66, 1997.
A feasibility study of a NBI photoneutralizer based on nonlinear gating laser recirculation
NASA Astrophysics Data System (ADS)
Fassina, A.; Pretato, F.; Barbisan, M.; Giudicotti, L.; Pasqualotto, R.
2016-02-01
The neutralization efficiency of negative ion neutral beam injectors is a major issue for future fusion reactors. Photon neutralization might be a valid alternative to present gas neutralizers, but still with several challenges for a valid implementation. Some concepts have been presented so far but none has been validated yet. A novel photoneutralization concept is discussed here, based on an annular cavity and a duplicated frequency laser beam (recirculation injection by nonlinear gating). The choice of lithium triborate as the material for the second harmonic extractor is discussed and a possible cooling method via crystal slicing is presented; laser intensity enhancement within the cavity is evaluated in order to quantify the achievable neutralization rate. Mockups of the critical components are proposed as intermediate steps toward system realization.
Origin of CH+ in diffuse molecular clouds. Warm H2 and ion-neutral drift
NASA Astrophysics Data System (ADS)
Valdivia, Valeska; Godard, Benjamin; Hennebelle, Patrick; Gerin, Maryvonne; Lesaffre, Pierre; Le Bourlot, Jacques
2017-04-01
Context. Molecular clouds are known to be magnetised and to display a turbulent and complex structure where warm and cold phases are interwoven. The turbulent motions within molecular clouds transport molecules, and the presence of magnetic fields induces a relative velocity between neutrals and ions known as the ion-neutral drift (vd). These effects all together can influence the chemical evolution of the clouds. Aims: This paper assesses the roles of two physical phenomena which have previously been invoked to boost the production of CH+ under realistic physical conditions: the presence of warm H2 and the increased formation rate due to the ion-neutral drift. Methods: We performed ideal magnetohydrodynamical (MHD) simulations that include the heating and cooling of the multiphase interstellar medium (ISM), and where we treat dynamically the formation of the H2 molecule. In a post-processing step we compute the abundances of species at chemical equilibrium using a solver that we developed. The solver uses the physical conditions of the gas as input parameters, and can also prescribe the H2 fraction if needed. We validate our approach by showing that the H2 molecule generally has a much longer chemical evolution timescale compared to the other species. Results: We show that CH+ is efficiently formed at the edge of clumps, in regions where the H2 fraction is low (0.3-30%) but nevertheless higher than its equilibrium value, and where the gas temperature is high (≳ 300 K). We show that warm and out of equilibrium H2 increases the integrated column densities of CH+ by one order of magnitude up to values still 3-10 times lower than those observed in the diffuse ISM. We balance the Lorentz force with the ion-neutral drag to estimate the ion-drift velocities from our ideal MHD simulations. We find that the ion-neutral drift velocity distribution peaks around 0.04 km s-1, and that high drift velocities are too rare to have a significant statistical impact on the abundances of CH+. Compared to previous works, our multiphase simulations reduce the spread in vd, and our self-consistent treatment of the ionisation leads to much reduced vd. Nevertheless, our resolution study shows that this velocity distribution is not converged: the ion-neutral drift has a higher impact on CH+ at higher resolution. On the other hand, our ideal MHD simulations do not include ambipolar diffusion, which would yield lower drift velocities. Conclusions: Within these limitations, we conclude that warm H2 is a key ingredient in the efficient formation of CH+ and that the ambipolar diffusion has very little influence on the abundance of CH+, mainly due to the small drift velocities obtained. However, we point out that small-scale processes and other non-thermal processes not included in our MHD simulation may be of crucial importance, and higher resolution studies with better controlled dissipation processes are needed.
Equine Immunoglobulin and Equine Neutralizing F(ab')₂ Protect Mice from West Nile Virus Infection.
Cui, Jiannan; Zhao, Yongkun; Wang, Hualei; Qiu, Boning; Cao, Zengguo; Li, Qian; Zhang, Yanbo; Yan, Feihu; Jin, Hongli; Wang, Tiecheng; Sun, Weiyang; Feng, Na; Gao, Yuwei; Sun, Jing; Wang, Yanqun; Perlman, Stanley; Zhao, Jincun; Yang, Songtao; Xia, Xianzhu
2016-12-18
West Nile virus (WNV) is prevalent in Africa, Europe, the Middle East, West Asia, and North America, and causes epidemic encephalitis. To date, no effective therapy for WNV infection has been developed; therefore, there is urgent need to find an efficient method to prevent WNV disease. In this study, we prepared and evaluated the protective efficacy of immune serum IgG and pepsin-digested F(ab')₂ fragments from horses immunized with the WNV virus-like particles (VLP) expressing the WNV M and E proteins. Immune equine F(ab')₂ fragments and immune horse sera efficiently neutralized WNV infection in tissue culture. The passive transfer of equine immune antibodies significantly accelerated the virus clearance in the spleens and brains of WNV infected mice, and reduced mortality. Thus, equine immunoglobulin or equine neutralizing F(ab')₂ passive immunotherapy is a potential strategy for the prophylactic or therapeutic treatment of patients infected with WNV.
Characterization of a 5-eV neutral atomic oxygen beam facility
NASA Technical Reports Server (NTRS)
Vaughn, J. A.; Linton, R. C.; Carruth, M. R., Jr.; Whitaker, A. F.; Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.
1991-01-01
An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm.
Neutral Silicon-Vacancy Center in Diamond: Spin Polarization and Lifetimes
NASA Astrophysics Data System (ADS)
Green, B. L.; Mottishaw, S.; Breeze, B. G.; Edmonds, A. M.; D'Haenens-Johansson, U. F. S.; Doherty, M. W.; Williams, S. D.; Twitchen, D. J.; Newton, M. E.
2017-09-01
We demonstrate optical spin polarization of the neutrally charged silicon-vacancy defect in diamond (SiV0 ), an S =1 defect which emits with a zero-phonon line at 946 nm. The spin polarization is found to be most efficient under resonant excitation, but nonzero at below-resonant energies. We measure an ensemble spin coherence time T2>100 μ s at low-temperature, and a spin relaxation limit of T1>25 s . Optical spin-state initialization around 946 nm allows independent initialization of SiV0 and NV- within the same optically addressed volume, and SiV0 emits within the telecoms down-conversion band to 1550 nm: when combined with its high Debye-Waller factor, our initial results suggest that SiV0 is a promising candidate for a long-range quantum communication technology.
Nandi, Amitabha; Kushwaha, Archana; Das, Dipanwita; Ghosh, Rajib
2018-03-07
We report the photophysical properties and excited state dynamics of 9-anthrylbenzimidazole (ANBI) which exhibits protonation-induced molecular rotor properties. In contrast to the highly emissive behavior of neutral ANBI, protonation of the benzimidazole group of ANBI induces efficient nonradiative deactivation by ultrafast torsional motion around the bond connecting the anthracene and benzimidazole units, as revealed by ultrafast transient absorption and fluorescence spectroscopy. Contrary to viscosity-independent fluorescence of neutral dyes, protonated ANBI is shown to display linear variation of emission yield and lifetime with solvent viscosity. The protonation-induced molecular rotor properties in the studied system are shown to be driven by enhanced charge transfer and are corroborated by quantum chemical calculations. Potential application as a microviscosity sensor of acidic regions in a heterogeneous environment by these proton-activated molecular rotor properties of ANBI is discussed.
Temperature relaxation in supernova remnants, revisited
NASA Technical Reports Server (NTRS)
Itoh, H.
1984-01-01
Some supernova remnants are expanding into a partially neutral medium. The neutral atoms which are engulfed by the fast blast shock are collisionally ionized to eject low-energy secondary electrons. Calculations are conducted of the temperature relaxation through Coulomb collisions among the secondary electrons, the shocked electrons, and the ions, assuming that the three species have Maxwellian velocity distributions. The results are applied to a self-similar blast wave. If the efficiency of collisionless electron heating at the shock front is high in young remnants such as Tycho, the secondary electrons may be much cooler than both the shocked electrons and the ions. In this case, the emergent X-ray continuum spectrum will have a two-temperature, or a power-law, appearance. This effect may have been observed in the bright rim of the remnant of SN 1006.
Bensghaïer, Asma; Lau Truong, Stéphanie; Seydou, Mahamadou; Lamouri, Aazdine; Leroy, Eric; Mičušik, Matej; Forro, Klaudia; Beji, Mohamed; Pinson, Jean; Omastová, Mária; Chehimi, Mohamed M
2017-07-11
Tetrafluoroborate salts of diazotized Azure A (AA-N 2 + ), Neutral Red (NR-N 2 + ) and Congo Red (CR-N 2 + ) dyes were prepared and reacted with multiwalled carbon nanotubes (MWCNTs) at room temperature, in water without any reducing agent. The as-modified MWCNTs were examined by IRATR, Raman spectroscopy, XPS, TGA, TEM, and cyclic voltammetry. The diazonium band located at ∼2350 cm -1 in the diazotized dye IR spectra vanished after attachment to the nanotubes whereas the Raman D/G peak ratio slightly increased after dye covalent attachment at a high initial diazonium/CNT mass ratio. XPS measurements show the loss of F 1s from the BF 4 - anion together with a clear change in the high-resolution C 1s region from the modified nanotubes. Thermogravimetric analyses proved substantial mass loadings of the organic grafts leveling off at 40.5, 34.3, and 50.7 wt % for AA, NR, and CR, respectively. High-resolution TEM pictures confirmed the presence of 1.5-7-nm-thick continuous amorphous layers on the nanotubes assigned to the aryl layers from the dyes. Cyclic voltammetry studies in acetonitrile (ACN) confirmed the grafting of the dyes; the latter retain their electrochemical behavior in the grafted state. The experimental results correlate remarkably well with quantum chemical calculations that indicate high binding energies between the dyes and the CNTs accounting for true covalent bonding (140-185 kJ/mol with the CNT-aryl distance <1.6 nm), though attachment by π stacking also contributes to obtaining stable hybrids. Finally, the pH-responsive character of the robust hybrids was demonstrated by a higher degree of protonation of Neutral Red-grafted CNTs at pH 2 compared to that of the neutral aqueous medium. This work demonstrates that diazotized dyes can be employed for the surface modification of MWCNTs in a very simple and efficient manner in water and at room temperature. The hybrids could be employed for many purposes such as optically pH-responsive materials, biosensors, and optothermal composite actuators to name a few.
Efficient Plasma Production in Low Background Neutral Pressures with the M2P2 Prototype
NASA Technical Reports Server (NTRS)
Ziemba, T.; Euripides, P.; Winglee, R.; Slough, J.; Giersch, L.
2003-01-01
Mini-Magnetospheric Plasma Propulsion (M2P2) seeks the creation of a large-scale (10 km radius) magnetic wall or bubble (i.e. a magnetosphere) by the electromagnetic inflation of a small-scale (20 cm radius) dipole magnet. The inflated magnetosphere will intercept the solar wind and thereby provide high-speed propulsion with modest power and fuel requirements due to the gain provided by the ambient medium. Magnetic field inflation is produced by the injection of plasma onto the dipole magnetic field eliminating the need for large mechanical structures and added material weight at launch. For successful inflation of the magnetic bubble a beta near unity must be achieved along the imposed dipole field. This is dependent on the plasma parameters that can be achieved with a plasma source that provide continuous operation at the desired power levels of 1 to 2 kilowatts. Over the last two years we have been developing a laboratory prototype to demonstrate the inflation of the magnetic field under space-like conditions. In this paper we will present some of the latest results from the prototype development at the University of Washington and show that the prototype can produce high ionization efficiencies while operating in near space like neutral background pressures producing electron temperatures of a few tens of electron volts. This allows for operation with propellant expenditures lower than originally estimated.
Dahro, Bachar; Wang, Fei; Peng, Ting; Liu, Ji-Hong
2016-03-29
Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.
Cross-Neutralization between Human and African Bat Mumps Viruses.
Katoh, Hiroshi; Kubota, Toru; Ihara, Toshiaki; Maeda, Ken; Takeda, Makoto; Kidokoro, Minoru
2016-04-01
Recently, a new paramyxovirus closely related to human mumps virus (MuV) was detected in bats. We generated recombinant MuVs carrying either or both of the fusion and hemagglutinin-neuraminidase bat virus glycoproteins. These viruses showed replication kinetics similar to human MuV in cultured cells and were neutralized efficiently by serum from healthy humans.
Li, Jinxing; Singh, Virendra V; Sattayasamitsathit, Sirilak; Orozco, Jahir; Kaufmann, Kevin; Dong, Renfeng; Gao, Wei; Jurado-Sanchez, Beatriz; Fedorak, Yuri; Wang, Joseph
2014-11-25
Threats of chemical and biological warfare agents (CBWA) represent a serious global concern and require rapid and efficient neutralization methods. We present a highly effective micromotor strategy for photocatalytic degradation of CBWA based on light-activated TiO2/Au/Mg microspheres that propel autonomously in natural water and obviate the need for external fuel, decontaminating reagent, or mechanical agitation. The activated TiO2/Au/Mg micromotors generate highly reactive oxygen species responsible for the efficient destruction of the cell membranes of the anthrax simulant Bacillus globigii spore, as well as rapid and complete in situ mineralization of the highly persistent organophosphate nerve agents into nonharmful products. The water-driven propulsion of the TiO2/Au/Mg micromotors facilitates efficient fluid transport and dispersion of the photogenerated reactive oxidative species and their interaction with the CBWA. Coupling of the photocatalytic surface of the micromotors and their autonomous water-driven propulsion thus leads to a reagent-free operation which holds a considerable promise for diverse "green" defense and environmental applications.
Salari, M; Aboutalebi, S H; Aghassi, A; Wagner, P; Mozer, A J; Wallace, G G
2015-02-28
The trade-off between performance and complexity of the device manufacturing process should be balanced to enable the economic harvest of solar energy. Here, we demonstrate a conceptual, yet practical and well-regulated strategy to achieve efficient solar photocatalytic activity in TiO2 through controlled phase transformation and disorder engineering in the surface layers of TiO2 nanotubes. This approach enabled us to fine-tune the bandgap structure of undoped TiO2 according to our needs while simultaneously obtaining robust separation of photo-excited charge carriers. Introduction of specific surface defects also assisted in utilization of the visible part of sunlight to split water molecules for the production of oxygen. The strategy proposed here can serve as a guideline to overcome the practical limitation in the realization of efficient, non-toxic, chemically stable photoelectrochemical systems with high catalytic activity at neutral pH under visible illumination conditions. We also successfully incorporated TiO2 nanotube arrays (TNTAs) with free-based porphyrin affording a pathway with an overall 140% enhanced efficiency, an oxygen evolution rate of 436 μL h(-1) and faradic efficiencies over 100%.
Ion-implanted epitaxially grown ZnSe
NASA Technical Reports Server (NTRS)
Chernow, F.
1975-01-01
The use of ZnSe to obtain efficient, short wavelength injection luminescence was investigated. It was proposed that shorter wavelength emission and higher efficiency be achieved by employing a p-i-n diode structure rather than the normal p-n diode structure. The intervening i layer minimizes concentration quenching effects and the donor-acceptor pair states leading to long wavelength emission. The surface p layer was formed by ion implantation; implantation of the i layer rather than the n substrate permits higher, uncompensated p-type doping. An ion implanted p-n junction in ZnSe is efficiency-limited by high electron injection terminating in nonradiative recombination at the front surface, and by low hole injection resulting from the inability to obtain high conductivity p-type surface layers. While the injection ratio in p-n junctions was determined by the radio of majority carrier concentrations, the injection ratio in p-i-n structures was determined by the mobility ratios and/or space charge neutrality requirements in the i layer.
Single-size thermometric measurements on a size distribution of neutral fullerenes.
Cauchy, C; Bakker, J M; Huismans, Y; Rouzée, A; Redlich, B; van der Meer, A F G; Bordas, C; Vrakking, M J J; Lépine, F
2013-05-10
We present measurements of the velocity distribution of electrons emitted from mass-selected neutral fullerenes, performed at the intracavity free electron laser FELICE. We make use of mass-specific vibrational resonances in the infrared domain to selectively heat up one out of a distribution of several fullerene species. Efficient energy redistribution leads to decay via thermionic emission. Time-resolved electron kinetic energy distributions measured give information on the decay rate of the selected fullerene. This method is generally applicable to all neutral species that exhibit thermionic emission and provides a unique tool to study the stability of mass-selected neutral clusters and molecules that are only available as part of a size distribution.
Bower, Joseph F; Green, Thomas D; Ross, Ted M
2004-10-25
DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d3) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d3. In addition, both sCD4-gp120 and sCD4-gp120-mC3d3 bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d3 or sCD4-gp120-mC3d3 elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d3-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d3 had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.
Effects of spatial frequency content on classification of face gender and expression.
Aguado, Luis; Serrano-Pedraza, Ignacio; Rodríguez, Sonia; Román, Francisco J
2010-11-01
The role of different spatial frequency bands on face gender and expression categorization was studied in three experiments. Accuracy and reaction time were measured for unfiltered, low-pass (cut-off frequency of 1 cycle/deg) and high-pass (cutoff frequency of 3 cycles/deg) filtered faces. Filtered and unfiltered faces were equated in root-mean-squared contrast. For low-pass filtered faces reaction times were higher than unfiltered and high-pass filtered faces in both categorization tasks. In the expression task, these results were obtained with expressive faces presented in isolation (Experiment 1) and also with neutral-expressive dynamic sequences where each expressive face was preceded by a briefly presented neutral version of the same face (Experiment 2). For high-pass filtered faces different effects were observed on gender and expression categorization. While both speed and accuracy of gender categorization were reduced comparing to unfiltered faces, the efficiency of expression classification remained similar. Finally, we found no differences between expressive and non expressive faces in the effects of spatial frequency filtering on gender categorization (Experiment 3). These results show a common role of information from the high spatial frequency band in the categorization of face gender and expression.
Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.
Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less
Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron
Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.; ...
2018-04-09
Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less
Diagnostic studies of ion beam formation in inductively coupled plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Jenee L.
2015-01-01
This dissertation describes a variety of studies focused on the plasma and the ion beam in inductively coupled plasma mass spectrometry (ICP-MS). The ability to use ICP-MS for measurements of trace elements in samples requires the analytes to be efficiently ionized. Updated ionization efficiency tables are discussed for ionization temperatures of 6500 K and 7000 K with an electron density of 1 x 10 15 cm -3. These values are reflective of the current operating parameters of ICP-MS instruments. Calculations are also discussed for doubly charged (M 2+) ion formation, neutral metal oxide (MO) ionization, and metal oxide (MO +)more » ion dissociation for similar plasma temperature values. Ionization efficiency results for neutral MO molecules in the ICP have not been reported previously.« less
NASA Astrophysics Data System (ADS)
Dzhioev, R. I.; Korenev, V. L.; Lazarev, M. V.; Sapega, V. F.; Gammon, D.; Bracker, A. S.
2007-01-01
We report electric field induced increase of spin orientation of negatively charged excitons (trions) localized in n -type GaAs/AlGaAs quantum well. Under resonant excitation of free neutral heavy-hole excitons, the polarization of trions increases dramatically with electrical injection of electrons. The polarization enhancement correlates strongly with trion/exciton luminescence intensity ratio. This effect results from a very efficient trapping of free neutral excitons by the quantum well interfacial fluctuations (“natural” quantum dots) containing resident electrons.
Design Features of the Neutral Particle Diagnostic System for the ITER Tokamak
NASA Astrophysics Data System (ADS)
Petrov, S. Ya.; Afanasyev, V. I.; Melnik, A. D.; Mironov, M. I.; Navolotsky, A. S.; Nesenevich, V. G.; Petrov, M. P.; Chernyshev, F. V.; Kedrov, I. V.; Kuzmin, E. G.; Lyublin, B. V.; Kozlovski, S. S.; Mokeev, A. N.
2017-12-01
The control of the deuterium-tritium (DT) fuel isotopic ratio has to ensure the best performance of the ITER thermonuclear fusion reactor. The diagnostic system described in this paper allows the measurement of this ratio analyzing the hydrogen isotope fluxes (performing neutral particle analysis (NPA)). The development and supply of the NPA diagnostics for ITER was delegated to the Russian Federation. The diagnostics is being developed at the Ioffe Institute. The system consists of two analyzers, viz., LENPA (Low Energy Neutral Particle Analyzer) with 10-200 keV energy range and HENPA (High Energy Neutral Particle Analyzer) with 0.1-4.0MeV energy range. Simultaneous operation of both analyzers in different energy ranges enables researchers to measure the DT fuel ratio both in the central burning plasma (thermonuclear burn zone) and at the edge as well. When developing the diagnostic complex, it was necessary to account for the impact of several factors: high levels of neutron and gamma radiation, the direct vacuum connection to the ITER vessel, implying high tritium containment, strict requirements on reliability of all units and mechanisms, and the limited space available for accommodation of the diagnostic hardware at the ITER tokamak. The paper describes the design of the diagnostic complex and the engineering solutions that make it possible to conduct measurements under tokamak reactor conditions. The proposed engineering solutions provide a safe—with respect to thermal and mechanical loads—common vacuum channel for hydrogen isotope atoms to pass to the analyzers; ensure efficient shielding of the analyzers from the ITER stray magnetic field (up to 1 kG); provide the remote control of the NPA diagnostic complex, in particular, connection/disconnection of the NPA vacuum beamline from the ITER vessel; meet the ITER radiation safety requirements; and ensure measurements of the fuel isotopic ratio under high levels of neutron and gamma radiation.
Dextran derivative-based pH-sensitive liposomes for cancer immunotherapy.
Yuba, Eiji; Tajima, Naoki; Yoshizaki, Yuta; Harada, Atsushi; Hayashi, Hiroshi; Kono, Kenji
2014-03-01
pH-Sensitive dextran derivatives having 3-methylglutarylated residues (MGlu-Dex) were prepared by reacting dextran with 3-methyl-glutaric anhydride. MGlu-Dex changed the protonation state and their characteristics from hydrophilic to hydrophobic in neutral and acidic pH regions. Surface modification of egg yolk phosphatidylcholine liposomes with MGlu-Dex produced highly pH-sensitive liposomes that were stable at neutral pH but which were destabilized strongly in the weakly acidic pH region. MGlu-Dex-modified liposomes were taken up efficiently by dendritic cells and delivered entrapped ovalbumin (OVA) molecules into the cytosol. When MGlu-Dex-modified liposomes loaded with OVA were administered subcutaneously to mice, the antigen-specific humoral and cellular immunity was induced more effectively than the unmodified liposomes loaded with OVA. Furthermore, administration of MGlu-Dex-modified liposomes loaded with OVA to mice bearing E.G7-OVA tumor significantly suppressed tumor growth and extended the mice survival. Results suggest that MGlu-Dex-modified liposomes are promising for the production of safe and potent antigen delivery systems that contribute to the establishment of efficient cancer immunotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.
The 15 cm diameter ion thruster research
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1974-01-01
The startup reliability of a 15 cm diameter mercury bombardment ion thruster which employs a pulsed high voltage tickler electrode on the main and neutralizer cathodes is examined. Startup of the thruster is achieved 100% of the time on the main cathode and 98.7% of the time on the neutralizer cathode over a 3640 cycle test. The thruster was started from a 20 C initial condition and operated for an hour at a 600 mA beam current. An energy efficiency of 75% and a propellant utilization efficiency of 77% was achieved over the complete cycle. The effect of a single cusp magnetic field thruster length on its performance is discussed. Guidelines are formulated for the shaping of magnetic field lines in thrusters. A model describing double ion production in mercury discharges is presented. The production route is shown to occur through the single ionic ground state. Photographs of the interior of an operating-hollow cathode are presented. A cathode spot is shown to be present if the cathode is free of low work-function surfaces. The spot is observed if a low work-function oxide coating is applied to the cathode insert. Results show that low work-function oxide coatings tend to migrate during thruster operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerbois, Mathilde; Moris, Arnaud; Combredet, Chantal
Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160DELTAV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity tomore » both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.« less
Role of intermediate state in the excited state dynamics of highly efficient TADF molecules
NASA Astrophysics Data System (ADS)
Hosokai, Takuya; Matsuzaki, Hiroyuki; Furube, Akihiro; Tokumaru, Katsumi; Tsutsui, Tetsuo; Nakanotani, Hajime; Yahiro, Masayuki; Adachi, Chihaya
2016-09-01
We hereby report the results of our direct investigation into the excited-state dynamics of thermally activated delayed fluorescence (TADF) molecules in solution using pump-probe transient absorption spectroscopy (TAS). We found that the charge-transfer (CT) state commonly stated for TADF molecules encompasses two forms: localized and delocalized CT states. A highly efficient TADF molecule, 4CzIPN [Uoyama et al., Nature, 492, 234-238 (2012)], showed both the localized and delocalized CT states, while an inefficient TADF molecule, 2CzPN, exhibited only a localized CT state. By analyzing the time profile of triplet species observed in TAS, we propose that the reverse intersystem crossing (RISC) of 4CzIPN occurs via a mutual interaction in multiple energy levels of localized neutral and CT states, and delocalized CT states.
Electrical heating of soils using high efficiency electrode patterns and power phases
Buettner, Harley M.
1999-01-01
Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.
Biomechanics of forearm rotation: force and efficiency of pronator teres.
Ibáñez-Gimeno, Pere; Galtés, Ignasi; Jordana, Xavier; Malgosa, Assumpció; Manyosa, Joan
2014-01-01
Biomechanical models are useful to assess the effect of muscular forces on bone structure. Using skeletal remains, we analyze pronator teres rotational efficiency and its force components throughout the entire flexion-extension and pronation-supination ranges by means of a new biomechanical model and 3D imaging techniques, and we explore the relationship between these parameters and skeletal structure. The results show that maximal efficiency is the highest in full elbow flexion and is close to forearm neutral position for each elbow angle. The vertical component of pronator teres force is the highest among all components and is greater in pronation and elbow extension. The radial component becomes negative in pronation and reaches lower values as the elbow flexes. Both components could enhance radial curvature, especially in pronation. The model also enables to calculate efficiency and force components simulating changes in osteometric parameters. An increase of radial curvature improves efficiency and displaces the position where the radial component becomes negative towards the end of pronation. A more proximal location of pronator teres radial enthesis and a larger humeral medial epicondyle increase efficiency and displace the position where this component becomes negative towards forearm neutral position, which enhances radial curvature. Efficiency is also affected by medial epicondylar orientation and carrying angle. Moreover, reaching an object and bringing it close to the face in a close-to-neutral position improve efficiency and entail an equilibrium between the forces affecting the elbow joint stability. When the upper-limb skeleton is used in positions of low efficiency, implying unbalanced force components, it undergoes plastic changes, which improve these parameters. These findings are useful for studies on ergonomics and orthopaedics, and the model could also be applied to fossil primates in order to infer their locomotor form. Moreover, activity patterns in human ancient populations could be deduced from parameters reported here.
Li, Weina; Fedosov, Sergey; Tan, Tianwei; Xu, Xuebing; Guo, Zheng
2014-05-01
To maintain biological functions, thousands of different reactions take place in human body at physiological pH (7.0) and mild conditions, which is associated with health and disease. Therefore, to examine the catalytic function of the intrinsically occurring molecules, such as amino acids at neutral pH, is of fundamental interests. Natural basic α-amino acid of L-lysine, L-arginine, and L-histidine neutralized to physiological pH as salts were investigated for their ability to catalyze Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate. Compared with their free base forms, although neutralized alkaline amino acid salts reduced the catalytic activity markedly, they were still capable to perform an efficient catalysis at physiological pH as porcine pancreatic lipase (PPL), one of the best enzymes that catalyze Knoevenagel condensation. In agreement with the fact that the three basic amino acids were well neutralized, stronger basic amino acid Arg and Lys showed more obvious variation in NH bend peak from the FTIR spectroscopy study. Study of ethanol/water system and quantitative kinetic analysis suggested that the microenvironment in the vicinity of amino acid salts and protonability/deprotonability of the amine moiety may determine their catalytic activity and mechanism. The kinetic study of best approximation suggested that the random binding might be the most probable catalytic mechanism for the neutralized alkaline amino acid salt-catalyzed Knoevenagel condensation.
Arndt, C; Powell, J M; Aguerre, M J; Crump, P M; Wattiaux, M A
2015-06-01
The objective was to study repeatability and sources of variation in feed conversion efficiency [FCE, milk kg/kg dry matter intake (DMI)] of lactating cows in mid to late lactation. Trials 1 and 2 used 16 cows (106 to 368 d in milk) grouped in 8 pairs of 1 high- and 1 low-FCE cow less than 16 d in milk apart. Trial 1 determined the repeatability of FCE during a 12-wk period. Trial 2 quantified the digestive and metabolic partitioning of energy and N with a 3-d total fecal and urine collection and measurement of CH4 and CO2 emission. Trial 3 studied selected ruminal methanogens in 2 pairs of cows fitted with rumen cannulas. Cows received a single diet including 28% corn silage, 27% alfalfa silage, 17% crude protein, and 28% neutral detergent fiber (dry matter basis). In trial 1, mean FCE remained repeatedly different and averaged 1.83 and 1.03 for high- and low-FCE cows, respectively. In trial 2, high-FCE cows consumed 21% more DMI, produced 98% more fat- and protein-corrected milk, excreted 42% less manure per kilogram of fat- and protein-corrected milk, but emitted the same daily amount of CH4 and CO2 compared with low-FCE cows. Percentage of gross energy intake lost in feces was higher (28.6 vs. 25.9%), but urinary (2.76 vs. 3.40%) and CH4 (5.23 vs. 6.99%) losses were lower in high- than low-FCE cows. Furthermore, high-FCE cows partitioned 15% more of gross energy intake toward net energy for maintenance, body gain, and lactation (37.5 vs. 32.6%) than low-FCE cows. Lower metabolic efficiency and greater heat loss in low-FCE cows might have been associated in part with greater energy demand for immune function related to subclinical mastitis, as somatic cell count was 3.8 fold greater in low- than high-FCE cows. As a percentage of N intake, high-FCE cows tended to have greater fecal N (32.4 vs. 30.3%) and had lower urinary N (32.2 vs. 41.7%) and greater milk N (30.3 vs. 19.1%) than low-FCE cows. In trial 3, Methanobrevibacter spp. strain AbM4 was less prevalent in ruminal content of high-FCE cows, which emitted less CH4 per unit of DMI and per unit of neutral detergent fiber digested than low-FCE cows. Thus lower digestive efficiency was more than compensated by greater metabolic efficiencies in high- compared with low-FCE cows. There was not a single factor, but rather a series of mechanisms involved in the observed differences in efficiency of energy utilization of the lactating cows in this study. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Christensen, R G; Yang, S Y; Eun, J-S; Young, A J; Hall, J O; MacAdam, J W
2015-11-01
This experiment was conducted to determine effects of feeding birdsfoot trefoil hay-based diets in comparison with an alfalfa hay-based diet on N utilization efficiency, ruminal fermentation, and lactational performance by mid-lactation dairy cows. Nine multiparous lactating Holstein cows (131 ± 22.6 d in milk), 3 of which were rumen fistulated, were fed 3 experimental diets in a replicated 3 × 3 Latin square design with 3 periods of 14 d of adaptation and 7 d of data and sample collection. Within squares, cows were randomly assigned to diets as follows: alfalfa hay-based diet (AHT), alfalfa and birdsfoot trefoil hay-based diet (ABT), and birdsfoot trefoil hay-based diet (BT). Intakes of dry matter and crude protein were similar across treatments, whereas ABT and BT diets resulted in decreased fiber intake compared with AHT. Feeding BT tended to increase neutral detergent fiber digestibility compared with AHT and ABT. Milk yield tended to increase for cows consuming ABT or BT diets. Milk true protein concentration and yield were greater for cows consuming ABT relative to those fed AHT. Concentration of total volatile fatty acids tended to increase by cows fed BT compared with those fed AHT and ABT. Feeding birdsfoot trefoil hay in a total mixed ration resulted in a tendency to decrease acetate proportion, but it tended to increase propionate proportion, leading to a tendency to decrease acetate-to-propionate ratio. Whereas concentration of ammonia-N was similar across treatments, cows offered BT exhibited greater microbial protein yield relative to those fed AHT and ABT. Cows offered birdsfoot trefoil hay diets secreted more milk N than AHT, resulting in improved N utilization efficiency for milk N. The positive effects due to feeding birdsfoot trefoil hay were attributed to enhanced neutral detergent fiber digestion, and thus it could replace alfalfa hay in high-forage dairy diets while improving N utilization efficiencies and maintaining lactational performance compared with alfalfa hay. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Variational approach to stability boundary for the Taylor-Goldstein equation
NASA Astrophysics Data System (ADS)
Hirota, Makoto; Morrison, Philip J.
2015-11-01
Linear stability of inviscid stratified shear flow is studied by developing an efficient method for finding neutral (i.e., marginally stable) solutions of the Taylor-Goldstein equation. The classical Miles-Howard criterion states that stratified shear flow is stable if the local Richardson number JR is greater than 1/4 everywhere. In this work, the case of JR > 0 everywhere is considered by assuming strictly monotonic and smooth profiles of the ambient shear flow and density. It is shown that singular neutral modes that are embedded in the continuous spectrum can be found by solving one-parameter families of self-adjoint eigenvalue problems. The unstable ranges of wavenumber are searched for accurately and efficiently by adopting this method in a numerical algorithm. Because the problems are self-adjoint, the variational method can be applied to ascertain the existence of singular neutral modes. For certain shear flow and density profiles, linear stability can be proven by showing the non-existence of a singular neutral mode. New sufficient conditions, extensions of the Rayleigh-Fjortoft stability criterion for unstratified shear flows, are derived in this manner. This work was supported by JSPS Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation # 55053270.
Fink, Joel H.
1981-08-18
Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.
Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts.
Feng, Liang-Liang; Li, Guo-Dong; Liu, Yipu; Wu, Yuanyuan; Chen, Hui; Wang, Yun; Zou, Yong-Cun; Wang, Dejun; Zou, Xiaoxin
2015-01-14
Splitting water to produce hydrogen requires the development of non-noble-metal catalysts that are able to make this reaction feasible and energy efficient. Herein, we show that cobalt pentlandite (Co9S8) nanoparticles can serve as an electrochemically active, noble-metal-free material toward hydrogen evolution reaction, and they work stably in neutral solution (pH 7) but not in acidic (pH 0) and basic (pH 14) media. We, therefore, further present a carbon-armoring strategy to increase the durability and activity of Co9S8 over a wider pH range. In particular, carbon-armored Co9S8 nanoparticles (Co9S8@C) are prepared by direct thermal treatment of a mixture of cobalt nitrate and trithiocyanuric acid at 700 °C in N2 atmosphere. Trithiocyanuric acid functions as both sulfur and carbon sources in the reaction system. The resulting Co9S8@C material operates well with high activity over a broad pH range, from pH 0 to 14, and gives nearly 100% Faradaic yield during hydrogen evolution reaction under acidic (pH 0), neutral (pH 7), and basic (pH 14) media. To the best of our knowledge, this is the first time that a transition-metal chalcogenide material is shown to have all-pH efficient and durable electrocatalytic activity. Identifying Co9S8 as the catalytically active phase and developing carbon-armoring as the improvement strategy are anticipated to give a fresh impetus to rational design of high-performance noble-metal-free water splitting catalysts.
Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis.
Ventre, Sandrine; Petronijevic, Filip R; MacMillan, David W C
2015-05-06
The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F(•) transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol.
Direct β-Alkylation of Aldehydes via Photoredox Organocatalysis
2015-01-01
Direct β-alkylation of saturated aldehydes has been accomplished by synergistically combining photoredox catalysis and organocatalysis. Photon-induced enamine oxidation provides an activated β-enaminyl radical intermediate, which readily combines with a wide range of Michael acceptors to produce β-alkyl aldehydes in a highly efficient manner. Furthermore, this redox-neutral, atom-economical C–H functionalization protocol can be achieved both inter- and intramolecularly. Mechanistic studies by various spectroscopic methods suggest that a reductive quenching pathway is operable. PMID:24754456
Hoffenberg, Simon; Powell, Rebecca; Carpov, Alexei; Wagner, Denise; Wilson, Aaron; Kosakovsky Pond, Sergei; Lindsay, Ross; Arendt, Heather; DeStefano, Joanne; Phogat, Sanjay; Poignard, Pascal; Fling, Steven P.; Simek, Melissa; LaBranche, Celia; Montefiori, David; Wrin, Terri; Phung, Pham; Burton, Dennis; Koff, Wayne; King, C. Richter; Parks, Christopher L.
2013-01-01
Broadly neutralizing antibodies (bNAbs) PG9 and PG16 were isolated from an International AIDS Vaccine Initiative (IAVI) Protocol G subject infected with human immunodeficiency virus type 1 (HIV-1) clade A. Both antibodies are highly potent and neutralize greater than 70% of viruses tested. We sought to begin immunogen design based on viral sequences from this patient; however, pseudoviruses prepared with 19 envelope sequences from this subject were resistant to neutralization by PG9 and PG16. Therefore, we used a bioinformatics approach to identify closely related viruses that were potentially sensitive to PG9 and PG16. A most-recent common ancestor (MRCA) sequence for the viral envelope (Env) was determined and aligned with 99 subtype A gp160 sequences from the Los Alamos HIV database. Virus BG505.W6M.ENV.C2 (BG505) was found to have the highest degree of homology (73%) to the MRCA sequence. Pseudoviruses prepared with this Env were sensitive to neutralization with a broad panel of bNAbs, including PG9 and PG16. When expressed by 293T cells as soluble gp120, the BG505 monomer bound well to both PG9 and PG16. We further showed that a point mutation (L111A) enabled more efficient production of a stable gp120 monomer that preserves the major neutralization epitopes. Finally, we showed that an adjuvanted formulation of this gp120 protein elicited neutralizing antibodies in rabbits (following a gp120 DNA vaccine prime) and that the antisera competed with bNAbs from 3 classes of nonoverlapping epitopes. Thus, the BG505 Env protein warrants further investigation as an HIV vaccine candidate, as a stand-alone protein, or as a component of a vaccine vector. PMID:23468492
Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides
van Dijk, Albert; van Eldik, Mandy; Veldhuizen, Edwin J. A.; Tjeerdsma-van Bokhoven, Hanne L. M.; de Zoete, Marcel R.; Bikker, Floris J.; Haagsman, Henk P.
2016-01-01
Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS). N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives. PMID:26848845
Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides.
van Dijk, Albert; van Eldik, Mandy; Veldhuizen, Edwin J A; Tjeerdsma-van Bokhoven, Hanne L M; de Zoete, Marcel R; Bikker, Floris J; Haagsman, Henk P
2016-01-01
Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS). N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives.
Kumar, Mukesh; O'Connell, Maile; Namekar, Madhuri; Nerurkar, Vivek R
2014-06-06
Herein we demonstrate that infection of mice with West Nile virus (WNV) Eg101 provides protective immunity against lethal challenge with WNV NY99. Our data demonstrated that WNV Eg101 is largely non-virulent in adult mice when compared to WNV NY99. By day 6 after infection, WNV-specific IgM and IgG antibodies, and neutralizing antibodies were detected in the serum of all WNV Eg101 infected mice. Plaque reduction neutralization test data demonstrated that serum from WNV Eg101 infected mice neutralized WNV Eg101 and WNV NY99 strains with similar efficiency. Three weeks after infection, WNV Eg101 immunized mice were challenged subcutaneously or intracranially with lethal dose of WNV NY99 and observed for additional three weeks. All the challenged mice were protected against disease and no morbidity and mortality was observed in any mice. In conclusion, our data for the first time demonstrate that infection of mice with WNV Eg101 induced high titers of WNV specific IgM and IgG antibodies, and cross-reactive neutralizing antibodies, and the resulting immunity protected all immunized animals from both subcutaneous and intracranial challenge with WNV NY99. These observations suggest that WNV Eg101 may be a suitable strain for the development of a vaccine in humans against virulent strains of WNV.
NASA Astrophysics Data System (ADS)
Brigitte Neuland, Maike; Allenbach, Marc; Föhn, Martina; Wurz, Peter
2017-04-01
The detection of energetic neutral atoms is a substantial requirement on every space mission mapping particle populations of a planetary magnetosphere or plasma of the interstellar medium. For imaging neutrals, these first have to be ionised. Regarding the constraints of weight, volume and power consumption, the technique of surface ionisation complies with all specifications of a space mission. Particularly low energy neutral atoms, which cannot be ionised by passing through a foil, are ionised by scattering on a charge state conversion surface [1]. Since more than 30 years intense research work is done to find and optimise suitable materials for use as charge state conversion surfaces for space application. Crucial parameters are the ionisation efficiency of the surface material and the scattering properties. Regarding these parameters, diamond-like carbon was proven advantageously: While efficiently ionising incoming neutral atoms, diamond stands out by its durability and chemical inertness [2]. In the IBEX-Lo sensor, a diamond-like carbon surface is used for ionisation of neutral atoms. Building on the successes of the IBEX mission [3], the follow up mission IMAP (InterstellarMApping Probe) will take up to further explore the boundaries of the heliosphere. The IMAP mission is planned to map neutral atoms in a larger energy range and with a distinct better angular resolution and sensitivity than IBEX [4]. The aspired performance of the IMAP sensors implies also for charge state conversion surfaces with improved characteristics. We investigated samples of diamond-like carbon, manufactured by the chemical vapour deposition (CVD) method, regarding their ionisation efficiency, scattering and reflexion properties. Experiments were carried out at the ILENA facility at the University of Bern [5] with hydrogen and oxygen atoms, which are the species of main interest in magnetospheric research [1]. We compare the results of earlier investigations of a metallised CVD sample [6] to our latest measurements of a Boron-doped CVD diamond sample. We additionally measured the B-concentration in the sample to prove our predictions of the B-concentration needed to reach sufficient conductibility for the sample not getting electrostatically charged during instrument operation. The results of narrower scattering cones and higher ionisation efficiency show that diamond-like carbon still is the preferred material for charge state conversion surfaces and that new surface technologies offer improved diamond conversion surfaces with different properties and hence the possibility for improvement of the performance of neutral atom imaging instruments. References: [1] P. Wurz, Detection of Energetic Neutral Atoms, in The Outer Heliosphere: Beyond the Planets, Copernicus Gesellschaft e.V., Katlenburg-Lindau, Germany, 2000, p. 251-288. [2] P. Wurz, R. Schletti, M.R. Aellig, Surf. Sci. 373(1997), 56-66. [3] D.J. McComas et al., Geophys. Res. Lett. 38(2011), L18101. [4] N.A. Schwadron et al., J. of Phys.. Conf. Series 767(2016): 012025 [5] P. Wahlström, J.A. Scheer, A. Riedo, P. Wurz and M. Wieser, J. Spacecr. Rockets 50 (2013): 402-410. [6] M.B. Neuland, J.A. Scheer, A. Riedo and P. Wurz, Appl. Surf. Sci. 313(2014):293-303.
Neutral beamline with improved ion energy recovery
Dagenhart, William K.; Haselton, Halsey H.; Stirling, William L.; Whealton, John H.
1984-01-01
A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.
Household Schooling Behaviors and Decentralization.
ERIC Educational Resources Information Center
Behrman, Jere R.; King, Elizabeth M.
2001-01-01
Presents a simple framework for (1) demonstrating how households determine schooling investments through choice and voice; and (2) considering effects of decentralization on household behaviors, given information problems. Some aspects of decentralization may increase efficiency; others may be neutral or decrease efficiency. Further research is…
BepiColombo Serena/ELENA instrument:development and testing
NASA Astrophysics Data System (ADS)
Orsini, S.; De Angelis, E.; Selci, S.; Di Lellis, A. M.:; Leoni, R.; Rispoli, R.; Colasanti, L.; Vertolli, N.; Scheer, J.; Mura, A.; Milillo, A.; Wurz, P.; D'Alessandro, M.; Maschietti, D.; Mattioli, F.; Cibella, S.; Brienza, D.; lo Spazio, Compagnia Generale per
2012-04-01
ELENA is a TOF sensor, based on a novel concept ultra-sonic oscillating shutter (Start section) which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop section. It is aimed to detect neutral atoms in the range 10 eV - 5 keV, within 70° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the environment and the planet, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles release from the surface, via solar wind-induced ion sputtering (<1eV - >100 eV) as well as Hydrogen back-scattered at hundreds eV. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission to Mercury to be launched in 2014. The instrument is now validated and tested to reach its performances: the up-graded shutter system (Start section) has been operated for the first time with neutral atom beam and tested at high frequency, the Stop section has been calibrated investigating the region of very low energy detection efficiency, the electronics boards and the entire acquisition chain has been appointed and tested with ion beam. The first results of all the ELENA capability will be presented.
Measurements of the neutral particle spectra on Mars by MSL/RAD from 2015-11-15 to 2016-01-15.
Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert; Hassler, Donald M; Köhler, Jan; Ehresmann, Bent; Böttcher, Stephan; Böhm, Eckart; Brinza, David E
2017-08-01
The Radiation Assessment Detector (RAD), onboard the Mars Science Laboratory (MSL) rover Curiosity, has been measuring the energetic charged and neutral particles and the radiation dose rate on the surface of Mars since the landing of the rover in August 2012. In contrast to charged particles, neutral particles (neutrons and γ-rays) are measured indirectly: the energy deposition spectra produced by neutral particles are complex convolutions of the incident particle spectra with the detector response functions. An inversion technique has been developed and applied to jointly unfold the deposited energy spectra measured in two scintillators of different types (CsI for high γ detection efficiency, and plastic for neutrons) to obtain the neutron and γ-ray spectra. This result is important for determining the biological impact of the Martian surface radiation contributed by neutrons, which interact with materials differently from the charged particles. These first in-situ measurements on Mars provide (1) an important reference for assessing the radiation-associated health risks for future manned missions to the red planet and (2) an experimental input for validating the particle transport codes used to model the radiation environments within spacecraft or on the surface of planets. Here we present neutral particle spectra as well as the corresponding dose and dose equivalent rates derived from RAD measurement during a period (November 15, 2015 to January 15, 2016) for which the surface particle spectra have been simulated via different transport models. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Santini, Talitha C; Malcolm, Laura I; Tyson, Gene W; Warren, Lesley A
2016-10-18
Bioremediation of alkaline tailings, based on fermentative microbial metabolisms, is a novel strategy for achieving rapid pH neutralization and thus improving environmental outcomes associated with mining and refining activities. Laboratory-scale bioreactors containing bauxite residue (an alkaline, saline tailings material generated as a byproduct of alumina refining), to which a diverse microbial inoculum was added, were used in this study to identify key factors (pH, salinity, organic carbon supply) controlling the rates and extent of microbially driven pH neutralization (bioremediation) in alkaline tailings. Initial tailings pH and organic carbon dose rates both significantly affected bioremediation extent and efficiency with lower minimum pHs and higher extents of pH neutralization occurring under low initial pH or high organic carbon conditions. Rates of pH neutralization (up to 0.13 mM H + produced per day with pH decreasing from 9.5 to ≤6.5 in three days) were significantly higher in low initial pH treatments. Representatives of the Bacillaceae and Enterobacteriaceae, which contain many known facultative anaerobes and fermenters, were identified as key contributors to 2,3-butanediol and/or mixed acid fermentation as the major mechanism(s) of pH neutralization. Initial pH and salinity significantly influenced microbial community successional trajectories, and microbial community structure was significantly related to markers of fermentation activity. This study provides the first experimental demonstration of bioremediation in bauxite residue, identifying pH and organic carbon dose rates as key controls on bioremediation efficacy, and will enable future development of bioreactor technologies at full field scale.
Deciphering the Functional Composition of Fusogenic Liposomes
Kolašinac, Rejhana; Kleusch, Christian; Braun, Tobias; Merkel, Rudolf; Csiszár, Agnes
2018-01-01
Cationic liposomes are frequently used as carrier particles for nucleic acid delivery. The most popular formulation is the equimolar mixture of two components, a cationic lipid and a neutral phosphoethanolamine. Its uptake pathway has been described as endocytosis. The presence of an aromatic molecule as a third component strongly influences the cellular uptake process and results in complete membrane fusion instead of endocytosis. Here, we systematically varied all three components of this lipid mixture and determined how efficiently the resulting particles fused with the plasma membrane of living mammalian cells. Our results show that an aromatic molecule and a cationic lipid component with conical molecular shape are essential for efficient fusion induction. While a neutral lipid is not mandatory, it can be used to control fusion efficiency and, in the most extreme case, to revert the uptake mechanism back to endocytosis. PMID:29364187
Luytjes, Willem; Leenhouts, Kees; Rottier, Peter J. M.; van Kuppeveld, Frank J. M.; Haijema, Bert Jan
2016-01-01
ABSTRACT Antibodies against the fusion (F) protein of respiratory syncytial virus (RSV) play an important role in the protective immune response to this important respiratory virus. Little is known, however, about antibody levels against multiple F-specific epitopes induced by infection or after vaccination against RSV, while this is important to guide the evaluation of (novel) vaccines. In this study, we analyzed antibody levels against RSV proteins and F-specific epitopes in human sera and in sera of vaccinated and experimentally infected cotton rats and the correlation thereof with virus neutralization. Analysis of human sera revealed substantial diversity in antibody levels against F-, G (attachment)-, and F-specific epitopes between individuals. The highest correlation with virus neutralization was observed for antibodies recognizing prefusion-specific antigenic site Ø. Nevertheless, our results indicate that high levels of antibodies targeting other parts of the F protein can also mediate a potent antiviral antibody response. In agreement, sera of experimentally infected cotton rats contained high neutralizing activity despite lacking antigenic site Ø-specific antibodies. Strikingly, vaccination with formalin-inactivated RSV (FI-RSV) exclusively resulted in the induction of poorly neutralizing antibodies against postfusion-specific antigenic site I, although antigenic sites I, II, and IV were efficiently displayed in FI-RSV. The apparent immunodominance of antigenic site I in FI-RSV likely explains the low levels of neutralizing antibodies upon vaccination and challenge and may play a role in the vaccination-induced enhancement of disease observed with such preparations. IMPORTANCE RSV is an importance cause of hospitalization of infants. The development of a vaccine against RSV has been hampered by the disastrous results obtained with FI-RSV vaccine preparations in the 1960s that resulted in vaccination-induced enhancement of disease. To get a better understanding of the antibody repertoire induced after infection or after vaccination against RSV, we investigated antibody levels against fusion (F) protein, attachment (G) protein, and F-specific epitopes in human and animal sera. The results indicate the importance of prefusion-specific antigenic site Ø antibodies as well as of antibodies targeting other epitopes in virus neutralization. However, vaccination of cotton rats with FI-RSV specifically resulted in the induction of weakly neutralizing, antigenic site I-specific antibodies, which may play a role in the enhancement of disease observed after vaccination with such preparations. PMID:27099320
McMurphy, Travis; Xiao, Run; Magee, Daniel; Slater, Andrew; Zabeau, Lennart; Tavernier, Jan; Cao, Lei
2014-01-01
Environmental and genetic activation of a brain-adipocyte axis inhibits cancer progression. Leptin is the primary peripheral mediator of this anticancer effect in a mouse model of melanoma. In this study we assessed the effect of a leptin receptor antagonist on melanoma progression. Local administration of a neutralizing nanobody targeting the leptin receptor at low dose adjacent to tumor decreased tumor mass with no effects on body weight or food intake. In contrast, systemic administration of the nanobody failed to suppress tumor growth. Daily intraperitoneal injection of high-dose nanobody led to weight gain, hyperphagia, increased adiposity, hyperleptinemia, and hyperinsulinemia, and central effects mimicking leptin deficiency. The blockade of central actions of leptin by systemic delivery of nanobody may compromise its anticancer effect, underscoring the need to develop peripherally acting leptin antagonists coupled with efficient cancer-targeting delivery.
Kitabatake, Masahiro; Inoue, Shingo; Yasui, Fumihiko; Yokochi, Shoji; Arai, Masaaki; Morita, Kouichi; Shida, Hisatoshi; Kidokoro, Minoru; Murai, Fukashi; Le, Mai Quynh; Mizuno, Kyosuke; Matsushima, Kouji; Kohara, Michinori
2007-01-08
A vaccine for severe acute respiratory syndrome (SARS) is being intensively pursued against its re-emergence. We generated a SARS coronavirus (SARS-CoV) spike protein-expressing recombinant vaccinia virus (RVV-S) using highly attenuated strain LC16m8. Intradermal administration of RVV-S into rabbits induced neutralizing (NT) antibodies against SARS-CoV 1 week after administration and the NT titer reached 1:1000 after boost immunization with RVV-S. Significantly, NT antibodies against SARS-CoV were induced by administration of RVV-S to rabbits that had been pre-immunized with LC16m8. RVV-S can induce NT antibodies against SARS-CoV despite the presence of NT antibodies against VV. These results suggest that RVV-S may be a powerful SARS vaccine, including in patients previously immunized with the smallpox vaccine.
NASA Astrophysics Data System (ADS)
Akın, Ata
2017-12-01
A theoretical framework, a partial correlation-based functional connectivity (PC-FC) analysis to functional near-infrared spectroscopy (fNIRS) data, is proposed. This is based on generating a common background signal from a high passed version of fNIRS data averaged over all channels as the regressor in computing the PC between pairs of channels. This approach has been employed to real data collected during a Stroop task. The results show a strong significance in the global efficiency (GE) metric computed by the PC-FC analysis for neutral, congruent, and incongruent stimuli (NS, CS, IcS; GEN=0.10±0.009, GEC=0.11±0.01, GEIC=0.13±0.015, p=0.0073). A positive correlation (r=0.729 and p=0.0259) is observed between the interference of reaction times (incongruent-neutral) and interference of GE values (GEIC-GEN) computed from [HbO] signals.
Yin, Jun; Yao, Xueping; Liou, Jiun-You; Sun, Wei; Sun, Ya-Sen; Wang, Yong
2013-11-26
Membranes with uniform, straight nanopores have important applications in diverse fields, but their application is limited by the lack of efficient producing methods with high controllability. In this work, we reported on an extremely simple and efficient strategy to produce such well-defined membranes. We demonstrated that neutral solvents were capable of annealing amphiphilic block copolymer (BCP) films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) with thicknesses up to 600 nm to the perpendicular orientation within 1 min. Annealing in neutral solvents was also effective to the perpendicular alignment of block copolymers with very high molecular weights, e.g., 362 000 Da. Remarkably, simply by immersing the annealed BCP films in hot ethanol followed by drying in air, the originally dense BCP films were nondestructively converted into porous membranes containing highly ordered, straight nanopores traversing the entire thickness of the membrane (up to 1.1 μm). Grazing incident small-angle X-ray spectroscopy confirmed the hexagonal ordering of the nanopores over large areas. We found that the overflow of P2VP chains from their reservoir P2VP cylinders and the deformation of the PS matrix in the swelling process contributed to the transformation of the solid P2VP cylinders to empty straight pores. The pore diameters can be tuned by either changing the swelling temperatures or depositing thin layers of metal oxides on the preformed membranes via atomic layer deposition with a subnanometer accuracy. To demonstrate the application of the obtained porous membranes, we used them as templates and produced centimeter-scale arrays of aligned nanotubes of metal oxides with finely tunable wall thicknesses.
Anisotropic Solar Wind Sputtering of the Lunar Surface Induced by Crustal Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Sarantos, M.; Halekas, J. S.; Delory, G. T.; Saito, Y.; Nishino, M.
2014-01-01
The lunar exosphere is generated by several processes each of which generates neutral distributions with different spatial and temporal variability. Solar wind sputtering of the lunar surface is a major process for many regolith-derived species and typically generates neutral distributions with a cosine dependence on solar zenith angle. Complicating this picture are remanent crustal magnetic anomalies on the lunar surface, which decelerate and partially reflect the solar wind before it strikes the surface. We use Kaguya maps of solar wind reflection efficiencies, Lunar Prospector maps of crustal field strengths, and published neutral sputtering yields to calculate anisotropic solar wind sputtering maps. We feed these maps to a Monte Carlo neutral exospheric model to explore three-dimensional exospheric anisotropies and find that significant anisotropies should be present in the neutral exosphere depending on selenographic location and solar wind conditions. Better understanding of solar wind/crustal anomaly interactions could potentially improve our results.
Hsu, Shao-Hui; Miao, Jianwei; Zhang, Liping; Gao, Jiajian; Wang, Hongming; Tao, Huabing; Hung, Sung-Fu; Vasileff, Anthony; Qiao, Shi Zhang; Liu, Bin
2018-05-01
The implementation of water splitting systems, powered by sustainable energy resources, appears to be an attractive strategy for producing high-purity H 2 in the absence of the release of carbon dioxide (CO 2 ). However, the high cost, impractical operating conditions, and unsatisfactory efficiency and stability of conventional methods restrain their large-scale development. Seawater covers 70% of the Earth's surface and is one of the most abundant natural resources on the planet. New research is looking into the possibility of using seawater to produce hydrogen through electrolysis and will provide remarkable insight into sustainable H 2 production, if successful. Here, guided by density functional theory (DFT) calculations to predict the selectivity of gas-evolving catalysts, a seawater-splitting device equipped with affordable state-of-the-art electrocatalysts composed of earth-abundant elements (Fe, Co, Ni, and Mo) is demonstrated. This device shows excellent durability and specific selectivity toward the oxygen evolution reaction in seawater with near 100% Faradaic efficiency for the production of H 2 and O 2 . Powered by a single commercial III-V triple-junction photovoltaic cell, the integrated system achieves spontaneous and efficient generation of high-purity H 2 and O 2 from seawater at neutral pH with a remarkable 17.9% solar-to-hydrogen efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Screening of full human anthrax lethal factor neutralizing antibody in transgenic mice].
Wang, Xiaolin; Chi, Xiangyang; Liu, Ju; Liu, Weicen; Liu, Shuling; Qiu, Shunfang; Wen, Zhonghua; Fan, Pengfei; Liu, Kun; Song, Xiaohong; Fu, Ling; Zhang, Jun; Yu, Changming
2016-11-25
Anthrax is a highly lethal infectious disease caused by the spore-forming bacterium Bacillus anthracis. The major virulence factor of B. anthracis consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA binds with LF to form lethal toxin (LT), and PA binds with EF to form edema toxin (ET). Antibiotics is hard to work in advanced anthrax infections, because injuries and deaths of the infected are mainly caused by lethal toxin (LT). Thus, the therapeutic neutralizing antibody is the most effective treatment of anthrax. Currently most of the anthrax toxin antibodies are monoclonal antibodies (MAbs) for PA and US FDA has approved ABTHRAX humanized PA monoclonal antibody for the treatment of inhalational anthrax. Once B. anthracis was artificially reconstructed or PA had mutations within recognized neutralization epitopes, anti-PA MAbs would no longer be effective. Therefore, anti-LF MAbs is an important supplement for anthrax treatment. Most of the anti-LF antibodies are murine or chimeric antibodies. By contrast, fully human MAbs can avoid the high immunogenicity of murine antibodies. First, we used LF to immunize the transgenic mice and used fluorescent cell sorting to get antigen-specific memory B cells from transgenic mice spleen lymphocytes. By single cell PCR method, we quickly found two strains of anti-LF MAbs with binding activity, 1D7 and 2B9. Transiently transfected Expi 293F cells to obtain MAbs protein after purification. Both 1D7 and 2B9 efficiently neutralized LT in vitro, and had good synergistic effect when mixed with anti-PA MAbs. In summary, combining the advantages of transgenic mice, fluorescent cell sorting and single-cell PCR methods, this study shows new ideas and methods for the rapid screening of fully human monoclonal antibodies.
O'Malley, Kathleen G; Jacobson, Dave P; Kurth, Ryon; Dill, Allen J; Banks, Michael A
2013-01-01
Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing. PMID:24478800
Babbar, Neha; Roy, Sandra Van; Wijnants, Marc; Dejonghe, Winnie; Caligiani, Augusta; Sforza, Stefano; Elst, Kathy
2016-01-13
The influence of different extraction methodologies was assessed on the composition of both neutral (arabinose, rhamnose, galactose) and acidic (galacturonic acid) pectic polysaccharides obtained from four agro-industrial residues, namely, berry pomace (BP), onion hulls (OH), pressed pumpkin (PP), and sugar beet pulp (SBP). For acidic pectic polysaccharides, the extraction efficiency was obtained as BP (nitric acid-assisted extraction, 2 h, 62.9%), PP (enzymatic-assisted extraction, 12 h, 75.0%), SBP (enzymatic-assisted extraction, 48 h, 89.8%; and nitric acid-assisted extraction, 4 h, 76.5%), and OH (sodium hexametaphosphate-assisted extraction, 0.5 h, 100%; and ammonium oxalate-assisted extraction, 0.5 h, 100%). For neutral pectic polysaccharides, the following results were achieved: BP (enzymatic-assisted extraction, 24 h, 85.9%), PP (nitric acid-assisted extraction, 6 h, 82.2%), and SBP (enzymatic assisted extraction, 48 h, 97.5%; and nitric acid-assisted extraction, 4 h, 83.2%). On the basis of the high recovery of pectic sugars, SBP and OH are interesting candidates for the further purification of pectin and production of pectin-derived products.
Sartori, E; Brescaccin, L; Serianni, G
2016-02-01
Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Serianni, G.; Brescaccin, L.
2016-02-15
Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production—detrimental for high current negative ion systems such as beam sources for fusion—are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient andmore » energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.« less
Elez, Loris; Orescanin, Visnja; Sofilic, Tahir; Mikulic, Nenad; Ruk, Damir
2008-10-01
The purpose of this work was development of an appropriate procedure for the neutralization/purification of electroplating wastewater (EWW) with alkaline solid residue (ASR) by-product of the alkaline extraction of zinc and lead from electric arc furnace dust (EAFD). Removal efficiency of ASR at optimum purification conditions (pH 8 and mixing time; 20 minutes) for the elements Pb, Cr (VI), Cr (III), Fe, Ni, Cu and Zn were 94.92%, 97.58%, 99.59%, 99.48%, 97.25% and 99.97%, respectively. The concentrations of all elements in the purified wastewater were significantly lower in relation to the upper permissible limit for wastewaters suitable for discharge into the environment. The remaining waste mud was regenerated in the strong alkaline medium and successfully applied once again for the neutralization/purification of EWW. Removal efficiencies of heavy metals accomplished with regenerated waste mud were comparable to these achieved by original ASR. Elemental concentrations in the leachates of the waste mud were in accordance with regulated values.
Conceptual design of the DEMO neutral beam injectors: main developments and R&D achievements
NASA Astrophysics Data System (ADS)
Sonato, P.; Agostinetti, P.; Bolzonella, T.; Cismondi, F.; Fantz, U.; Fassina, A.; Franke, T.; Furno, I.; Hopf, C.; Jenkins, I.; Sartori, E.; Tran, M. Q.; Varje, J.; Vincenzi, P.; Zanotto, L.
2017-05-01
The objectives of the nuclear fusion power plant DEMO, to be built after the ITER experimental reactor, are usually understood to lie somewhere between those of ITER and a ‘first of a kind’ commercial plant. Hence, in DEMO the issues related to efficiency and RAMI (reliability, availability, maintainability and inspectability) are among the most important drivers for the design, as the cost of the electricity produced by this power plant will strongly depend on these aspects. In the framework of the EUROfusion Work Package Heating and Current Drive within the Power Plant Physics and Development activities, a conceptual design of the neutral beam injector (NBI) for the DEMO fusion reactor has been developed by Consorzio RFX in collaboration with other European research institutes. In order to improve efficiency and RAMI aspects, several innovative solutions have been introduced in comparison to the ITER NBI, mainly regarding the beam source, neutralizer and vacuum pumping systems.
Purdy, Alexandra; Case, Laure; Duvall, Melody; Overstrom-Coleman, Max; Monnier, Nilah; Chervonsky, Alexander; Golovkina, Tatyana
2003-01-01
Selection of immune escape variants impairs the ability of the immune system to sustain an efficient antiviral response and to control retroviral infections. Like other retroviruses, mouse mammary tumor virus (MMTV) is not efficiently eliminated by the immune system of susceptible mice. In contrast, MMTV-infected I/LnJ mice are capable of producing IgG2a virus-neutralizing antibodies, sustain this response throughout their life, and secrete antibody-coated virions into the milk, thereby preventing infection of their progeny. Antibodies were produced in response to several MMTV variants and were cross-reactive to them. Resistance to MMTV infection was recessive and was dependent on interferon (IFN)-γ production, because I/LnJ mice with targeted deletion of the INF-γ gene failed to produce any virus-neutralizing antibodies. These findings reveal a novel mechanism of resistance to retroviral infection that is based on a robust and sustained IFN-γ–dependent humoral immune response. PMID:12538662
Rapid bursts and slow declines: on the possible evolutionary trajectories of enzymes
Newton, Matilda S.; Arcus, Vickery L.; Patrick, Wayne M.
2015-01-01
The evolution of enzymes is often viewed as following a smooth and steady trajectory, from barely functional primordial catalysts to the highly active and specific enzymes that we observe today. In this review, we summarize experimental data that suggest a different reality. Modern examples, such as the emergence of enzymes that hydrolyse human-made pesticides, demonstrate that evolution can be extraordinarily rapid. Experiments to infer and resurrect ancient sequences suggest that some of the first organisms present on the Earth are likely to have possessed highly active enzymes. Reconciling these observations, we argue that rapid bursts of strong selection for increased catalytic efficiency are interspersed with much longer periods in which the catalytic power of an enzyme erodes, through neutral drift and selection for other properties such as cellular energy efficiency or regulation. Thus, many enzymes may have already passed their catalytic peaks. PMID:25926697
NASA Astrophysics Data System (ADS)
Barbosa, Isaltino A.; Zanatta, Lucas D.; Espimpolo, Daniela M.; da Silva, Douglas L.; Nascimento, Leandro F.; Zanardi, Fabrício B.; de Sousa Filho, Paulo C.; Serra, Osvaldo A.; Iamamoto, Yassuko
2017-10-01
We explored the potential use of diatomite/Fe2O3/TiO2 composites as catalysts for heterogeneous photo-Fenton degradation of methylene blue under neutral pH. Such system consists in magnetic solids synthesized by co-precipitation with Fe2+/Fe3+ in the presence of diatomite, followed by impregnation of TiO2. The results showed that the optimal amount of the catalyst was 2.0 g L-1, since aggregation phenomena become significant above this concentration, which decreases the photodegradation activity. The catalyst is highly efficient in the degradation of methylene blue and shows an easy recovery by an external magnetic field. This allows for an effective catalyst reuse without significant loss of activity in catalytic cycles, which is a highly interesting prospect for recyclable dye degradation systems.
Li, Xiaodong; Li, Xiaohui; Zhang, Jianxiang; Zhao, Shifang; Shen, Jiacong
2008-06-01
Novel "micelles enhanced" polyelectrolyte (PE) capsules based on functional templates of hybrid calcium carbonate were fabricated. Evidences suggested that the structure of capsule wall was different from that of conventional PE capsules, and the wall permeability of these PE capsules changed significantly. Lysozyme, a positively charged protein in neutral solution, was studied as a model protein to be encapsulated into the "micelles enhanced" PE capsules. Confocal laser scanning microscope was used to observe the entrapping process in real time, while UV-Vis spectroscope and scanning force microscope measurements suggested the high efficiency of encapsulation. In addition, the fluorescence recovery after photobleaching technique was employed to determine the existence form of deposited molecules. Further studies showed even negatively charged water-soluble peptides or proteins can be encapsulated into these hybrid capsules by modulating the pH value in bulk solution under its isoelectronic point as well. Copyright 2007 Wiley Periodicals, Inc.
Ismail, Maznah; Tengku Ibrahim, Tengku Azmi; Zakaria, Zuki Abu Bakar
2013-01-01
The synthesised biobased calcium carbonate nanocrystals had demonstrated to be an effective carrier for delivery of anticancer drug doxorubicin (DOX). The use of these nanocrystals displayed high levels of selectivity and specificity in achieving effective cancer cell death without nonspecific toxicity. These results confirmed that DOX was intercalated into calcium carbonate nanocrystals at high loading and encapsulation efficiency (4.8 and 96%, resp.). The CaCO3/DOX nanocrystals are relatively stable at neutral pH (7.4), resulting in slow release, but the nanocrystals progressively dissociated in acidic pH (4.8) regimes, triggering faster release of DOX. The CaCO3/DOX nanocrystals exhibited high uptake by MDA MB231 breast cancer cells and a promising potential delivery of DOX to target cells. In vitro chemosensitivity using MTT, modified neutral red/trypan blue assay, and LDH on MDA MB231 breast cancer cells revealed that CaCO3/DOX nanocrystals are more sensitive and gave a greater reduction in cell growth than free DOX. Our findings suggest that CaCO3 nanocrystals hold tremendous promise in the areas of controlled drug delivery and targeted cancer therapy. PMID:24324966
Tse, Longping Victor; Klinc, Kelli A; Madigan, Victoria J; Castellanos Rivera, Ruth M; Wells, Lindsey F; Havlik, L Patrick; Smith, J Kennon; Agbandje-McKenna, Mavis; Asokan, Aravind
2017-06-13
Preexisting neutralizing antibodies (NAbs) against adeno-associated viruses (AAVs) pose a major, unresolved challenge that restricts patient enrollment in gene therapy clinical trials using recombinant AAV vectors. Structural studies suggest that despite a high degree of sequence variability, antibody recognition sites or antigenic hotspots on AAVs and other related parvoviruses might be evolutionarily conserved. To test this hypothesis, we developed a structure-guided evolution approach that does not require selective pressure exerted by NAbs. This strategy yielded highly divergent antigenic footprints that do not exist in natural AAV isolates. Specifically, synthetic variants obtained by evolving murine antigenic epitopes on an AAV serotype 1 capsid template can evade NAbs without compromising titer, transduction efficiency, or tissue tropism. One lead AAV variant generated by combining multiple evolved antigenic sites effectively evades polyclonal anti-AAV1 neutralizing sera from immunized mice and rhesus macaques. Furthermore, this variant displays robust immune evasion in nonhuman primate and human serum samples at dilution factors as high as 1:5, currently mandated by several clinical trials. Our results provide evidence that antibody recognition of AAV capsids is conserved across species. This approach can be applied to any AAV strain to evade NAbs in prospective patients for human gene therapy.
NASA Astrophysics Data System (ADS)
Doumoto, Takafumi; Akagi, Hirofumi
This paper proposes a small-sized passive EMI filter for the purpose of eliminating high-frequency shaft voltage and ground leakage current from an ac motor. The motor is driven by a general-purpose PWM inverter connected to a three-phase grounded voltage source. The passive EMI filter requires access to the ungrounded neutral point of the motor. This unique circuit configuration makes the common-mode inductor effective in reducing the high-frequency common-mode voltage generated by the PWM inverter with a carrier frequency of 15kHz. As a result, both high-frequency shaft voltage and ground leakage current can be eliminated very efficiently. However, the common-mode inductor may not play any role in reducing the low-frequency common-mode voltage generated by the diode rectifier, so that a low-frequency component still remains in the shaft voltage. Such a low-frequency shaft voltage may not produce any bad effect on motor bearings. The validity and effectiveness of the EMI filter is verified by experimental results obtained from a 200-V 5-kVA laboratory system.
Wang, Ying; Liang, Mingxing; Fang, Jiasheng; Fu, Jun; Chen, Xiaochun
2017-09-01
In this study, α-FeOOH on reduced graphene oxide (rGO-α-FeOOH) supported on an Al-doped MCM-41 catalyst (RFAM) was optimized for the visible-light photo-Fenton oxidation of phenol at neutral pH. The stability of the catalysts, effect of bubbling aeration, and degradation intermediates were investigated. Results indicated that RFAM with a large Brunauer-Emmett-Teller (BET) area and mesoporous structure displayed excellent catalytic activity for the visible-light-driven (VLD) photo-Fenton process. Phenol degradation was well described by a pseudo-first-order reaction kinetics model. Raman analysis demonstrated that an rGO-α-FeOOH (RF) composite is formed during the ferrous-ion-induced self-assembly process. Al-MCM-41 could uniformly disperse RF nanosheets and promote the mobility and diffusion of matter. The activity of the main catalyst α-FeOOH was enhanced after the incorporation of rGO nanosheets. The α-FeOOH crystal in RFAM showed catalytic activity superior to those of Fe 3 O 4 and Fe 2 O 3 . The RFAM catalyst, with an optimal GO-Fe 2+ mass ratio of 2.33, exhibited a larger BET area, pore size, and pore volume, and thus exhibited high performance and energy utilization efficiency in the VLD photo-Fenton reaction with remarkable stability. Bubbling N 2 inhibited catalytic performance, while bubbling O 2 or air only slightly accelerated the phenol degradation. Visible light played an important role in accelerating the formation of reactive oxygen species (·OH) for the highly efficient phenol degradation. Analysis of degradation intermediates indicated a high phenol mineralization level and the formation of low-molecular-weight organic acids. This work would be helpful in providing an insight into a new type of catalyst assembly and a possible route to a promising heterogeneous catalyst applicable in the visible light photo-Fenton process for effective wastewater remediation at neutral pH. Copyright © 2017. Published by Elsevier Ltd.
Self-Powered WSN for Distributed Data Center Monitoring
Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide
2016-01-01
Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation. PMID:26729135
Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer.
Hasan, Warefta; Chu, Kevin; Gullapalli, Anuradha; Dunn, Stuart S; Enlow, Elizabeth M; Luft, J Christopher; Tian, Shaomin; Napier, Mary E; Pohlhaus, Patrick D; Rolland, Jason P; DeSimone, Joseph M
2012-01-11
Nanotechnology can provide a critical advantage in developing strategies for cancer management and treatment by helping to improve the safety and efficacy of novel therapeutic delivery vehicles. This paper reports the fabrication of poly(lactic acid-co-glycolic acid)/siRNA nanoparticles coated with lipids for use as prostate cancer therapeutics made via a unique soft lithography particle molding process called Particle Replication In Nonwetting Templates (PRINT). The PRINT process enables high encapsulation efficiency of siRNA into neutral and monodisperse PLGA particles (32-46% encapsulation efficiency). Lipid-coated PLGA/siRNA PRINT particles were used to deliver therapeutic siRNA in vitro to knockdown genes relevant to prostate cancer. © 2011 American Chemical Society
Self-Powered WSN for Distributed Data Center Monitoring.
Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide
2016-01-02
Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation.
Duan, Kaili; Cui, Meng; Wu, Yanni; Huang, Xueyong; Xue, Ahui; Deng, Xunan; Luo, Liping
2018-06-16
In the present study, Chlorella vulgaris were cultured in the presence of the common plasticizer dibutyl phthalate (DBP) with different concentrations for 10 days. The cell density, DBP concentrations, neutral lipid concentrations, and lipid morphology in C. vulgaris were studied using optical microscopy, gas chromatography (GC), fluorescence spectrophotometry, and laser scanning confocal microscopy (LSCM). We observed that the neutral lipid contents and cell density of C. vulgaris were negatively influenced by DBP of high concentrations (50 and 100 mg/L), but significantly stimulated by DBP of low concentrations (5, 10, and 20 mg/L). Lipid bodies were destroyed into pieces by DBP of high concentrations (50 and 100 mg/L), but were slightly suppressed by DBP at low concentrations (5, 10, and 20 mg/L). Chlorella vulgaris treated with DBP (50 mg/L) for 2 days showed the highest removal efficiency (31.69%). The results suggested that C. vulgaris could be used in practice to remove DBP and has the potential of being oleaginous microalgae in DBP contaminated water.
Sakaguchi, Naoki; Kojima, Chie; Harada, Atsushi; Kono, Kenji
2008-05-01
We have previously shown that modification with succinylated poly(glycidol) (SucPG) provides stable egg yolk phosphatidylcholine (EYPC) liposomes with pH-sensitive fusogenic property. Toward production of efficient pH-sensitive liposomes, in this study, we newly prepared three carboxylated poly(glycidol) derivatives with varying hydrophobicities by reacting poly(glycidol) with glutaric anhydride, 3-methylglutaric anhydride, and 1,2-cyclohexanedicarboxylic anhydride, respectively, designated as GluPG, MGluPG, and CHexPG. Correlation between side-chain structures of these polymers and their respective abilities to sensitize stable liposomes to pH was investigated. These polymers are soluble in water at neutral pH but became water-insoluble in weakly acidic conditions. The pH at which the polymer precipitated was higher in the order SucPG < GluPG < MGluPG < CHexPG, which is consistent with the number of carbon atoms of these polymers' side chains. Although CHexPG destabilized EYPC liposomes even at neutral pH, attachment of other polymers provided pH-sensitive properties to the liposomes. The liposomes bearing polymers with higher hydrophobicity exhibited more intense responses, such as content release and membrane fusion, at mildly acidic pH and achieved more efficient cytoplasmic delivery of membrane-impermeable dye molecules. As a result, modification with appropriate hydrophobicity, MGluPG, produced highly potent pH-sensitive liposomes, which might be useful for efficient cytoplasmic delivery of bioactive molecules, such as proteins and genes.
Dent, Matthew; Hurtado, Jonathan; Paul, Amber M; Sun, Haiyan; Lai, Huafang; Yang, Ming; Esqueda, Adrian; Bai, Fengwei; Steinkellner, Herta; Chen, Qiang
2016-12-01
The mAb E60 has the potential to be a desirable therapeutic molecule since it efficiently neutralizes all four serotypes of dengue virus (DENV). However, mammalian-cell-produced E60 exhibits antibody-dependent enhancement of infection (ADE) activity, rendering it inefficacious in vivo, and treated animals more susceptible to developing more severe diseases during secondary infection. In this study, we evaluated a plant-based expression system for the production of therapeutically suitable E60. The mAb was transiently expressed in Nicotiana benthamianaWT and a ∆XFT line, a glycosylation mutant lacking plant-specific N-glycan residues. The mAb was efficiently expressed and assembled in leaves and exhibited highly homogenous N-glycosylation profiles, i.e. GnGnXF3 or GnGn structures, depending on the expression host. Both E60 glycovariants demonstrated equivalent antigen-binding specificity and in vitro neutralization potency against DENV serotypes 2 and 4 compared with their mammalian-cell-produced counterpart. By contrast, plant-produced E60 exhibited reduced ADE activity in Fc gamma receptor expressing human cells. Our results suggest the ability of plant-produced antibodies to minimize ADE, which may lead to the development of safe and highly efficacious antibody-based therapeutics against DENV and other ADE-prone viral diseases. Our study provides so far unknown insight into the relationship between mAb N-glycosylation and ADE, which contributes to our understanding of how sugar moieties of antibodies modulate Fc-mediated functions and viral pathogenesis.
Nanocrystalline ZnO as a Visible Active Photocatalyst for the Degradation of Benzene-1,4-diol
NASA Astrophysics Data System (ADS)
Ramachandran, Saranya; Sivasamy, A.
We have synthesized nanocrystalline ZnO by a simple precipitation method. The prepared ZnO was found to be highly phase pure and nanocrystalline hexagonal wurtzite structure. UV-Visible-DRS spectroscopy showed the material to have bandgap energy of 3.22eV. HR-SEM image revealed the material to be made up of distinct hexagonal particles with a highly porous surface. AFM analysis was employed to confirm the high surface roughness and porosity of the material. The photocatalytic activity of the prepared ZnO was evaluated by the degradation of benzene-1,4-diol (hydroquinone), under visible light irradiation. Preliminary experiments showed the catalyst to be effective at neutral pH with an optimum catalyst dosage of 4g/L. Kinetic studies showed the degradation reaction to follow pseudo-first-order kinetics. In the presence of commonly used industrial electrolytes, the catalyst exhibited a decrease in efficiency. Reusability studies showed the catalytic efficiency of ZnO to diminish marginally after the third cycle of reuse.
Effect of Surface Properties on Liposomal siRNA Delivery
Xia, Yuqiong; Tian, Jie; Chen, Xiaoyuan
2015-01-01
Liposomes are one of the most widely investigated carriers for siRNA delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations and ligand modifications. Cationic formulations dominate siRNA delivery and neutral formulations also have good performance while anionic formulations are generally not proper for siRNA delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal siRNA delivery, outlined existing problems and provided some future perspectives. PMID:26695117
NASA Astrophysics Data System (ADS)
Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.
2018-04-01
Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).
Generation and acceleration of neutral atoms in intense laser plasma experiments
NASA Astrophysics Data System (ADS)
Tata, Sheroy; Mondal, Angana; Sarkar, Shobhik; Ved, Yash; Lad, Amit D.; Pasley, John; Colgan, James; Krishnamurthy, M.
2017-10-01
The interaction of a high intensity (>=1018 W/cm2), high contrast (>=109), ultra-short (30fs) laser with solid targets generates a highly dense hot plasma. The quasi-static electric fields in such plasmas are well known for ion acceleration via the target normal sheath acceleration process. Under such conditions charge reduction to generate fast neutral atoms is almost inhibited. Improvised Thomson parabola spectrometry with improved signal to noise ratio has enabled us to measure the signals of fast neutral atoms and negative ions having energies in excess of tens of keV. A study on the neutralization of accelerated protons in plasma shows that the neutral atom to all particle ratio rises sharply from a few percent at the highest detectable energy to 50 % at 15 keV. Using usual charge transfer reactions the generation of neutral atoms can not be explained, thus we conjecture that the neutralization of the accelerated ions is not from the hot dense region of the plasma but neutral atom formation takes place by co-propagating ions with low energy electrons enhancing the effective neutral ratio.
Ionization Efficiency in the Dayside Martian Upper Atmosphere
NASA Astrophysics Data System (ADS)
Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.
2018-04-01
Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.
NASA Astrophysics Data System (ADS)
Abdollahifar, Mozaffar; Huang, Sheng-Siang; Lin, Yu-Hsiang; Lin, Yan-Cheng; Shih, Bing-Yi; Sheu, Hwo-Shuenn; Liao, Yen-Fa; Wu, Nae-Lih
2018-02-01
Although ZnMn2O4 is widely studied as Li-ion battery anodes, it remains a challenge to tailor suitable microstructures of the oxide for supercapacitor applications. Carbon-coated ZnMn2O4 (C@ZMO) nanocrystallites showing high-performance pseudocapacitor behaviours in neutral aqueous electrolyte are for the first time successfully synthesised via a novel solution combustion process using polyethylene glycol as a multifunctional microstructure-directing agent. Controlling the molecular weight and amount of the polymer in the combustion solution enables the formation of highly-crystalline C@ZMO having substantially higher, by more than 5 folds, specific surface areas with mesoporous structures and conformal carbon coating via the one-pot synthesis process. The resulting C@ZMO supercapacitor electrodes in Na2SO4(aq) electrolyte exhibit ideal capacitive behaviours with specific capacitances up to 150 F g-1 and cycle stability showing no capacitance fade after 10,000 cycles at 60% of full capacity and >99% Coulombic efficiency. This study not only illustrates a new powerful synthesis route capable of producing conductive mesoporous crystalline oxide-based nanomaterials for energy storage applications but also reveals a new class of high-performance pseudocapacitive materials for neutral aqueous electrolytes.
Blocking of valinomycin-mediated bilayer membrane conductance by substituted benzimidazoles.
Kuo, K H; Fukuto, T R; Miller, T A; Bruner, L J
1976-01-01
Valinomycin selectively transports alkali cations, e.g. potassium ions, across lipid bilayer membranes. The blocking of this carrier-mediated transport by four substituted benzimidazoles has been investigated. The compounds are 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole, (TTFB); 4,5,6,7,-tetrachloro-2-methylbenzimidazole, (TMB); 2-trifluoromethylbenzimidazole, (TFB); and 2-methylbenzimidazole, (MBM). Because of its low acidic dissociation constant (pKa = 5.04), the blocking efficiency of TTFB in both neutral and anionic forms in the aqueous phase could be studied. The compounds exhibit the blocking efficiency sequence, TTFB- greater than TTFB0 greater than TMB0 greater than TFB0 greater than MBM0. The corresponding scale of decreasing lipophilicity, as determined by octanol/water partitioning, is TTFB0 greater than TMB0 greater than TTFB- greater than TFB0 greater than MBM0. Comparison of neutral species establishes a positive correlation of blocking efficiency with lipophilicity, with the latter being conferred primarily by chlorination of the benzenoid nucleus. Anionic TTFB, on the other hand, is the most effective blocking agent studied in spite of the fact that its dissociation in the aqueous phase markedly impedes its entry (presumably as a neutral species) into a bulk hydrocarbon phase. This observation suggests that the blocking of valinomycin-mediated bilayer membrane conductance takes place at the membrane/solution interface. PMID:1247644
NASA Astrophysics Data System (ADS)
Sun, Dong; Meng, Xiangjun; Ren, Tianming; Fawcett, John Paul; Wang, Hualu; Gu, Jingkai
2018-04-01
Sensitivity is generally an issue in bioassays of prostaglandins and their synthetic analogs due to their extremely low concentration in vivo. To improve the ionization efficiency of limaprost, an oral prostaglandin E1 (PGE1) synthetic analog, we investigated a charge reversal derivatization strategy in electrospray ionization mass spectrometry (ESI-MS). We established that the cholamine derivative exhibits much greater signal intensity in the positive-ion mode compared with limaprost in the negative ion mode. Collision-induced dissociation (CID) involved exclusive neutral mass loss and positive charge migration to form stable cationic product ions with the positive charge on the limaprost residue rather than on the modifying group. This has the effect of maintaining the efficiency and specificity of multiple reaction monitoring (MRM) and avoiding cross talk. CID fragmentation patterns of other limaprost derivatives allowed us to relate the dissociation tendency of different neutral leaving groups to an internal energy distribution scale based on the survival yield method. Knowledge of the energy involved in the production of stabilized positive ions will potentially assist the selection of suitable derivatization reagents for the analysis of a wide variety of lipid acids. [Figure not available: see fulltext.
The role of weak selection and high mutation rates in nearly neutral evolution.
Lawson, Daniel John; Jensen, Henrik Jeldtoft
2009-04-21
Neutral dynamics occur in evolution if all types are 'effectively equal' in their reproductive success, where the definition of 'effectively equal' depends on the population size and the details of mutations. Empirically observed neutral genetic evolution in extremely large clonal populations can only be explained under current models if selection is completely absent. Such models typically consider the case where population dynamics occurs on a different timescale to evolution. However, this assumption is invalid when mutations are not rare in a whole population. We show that this has important consequences for the occurrence of neutral evolution in clonal populations. In highly connected type spaces, neutral dynamics can occur for all population sizes despite significant selective differences, via the forming of effectively neutral networks connecting rare neutral types. Biological implications include an explanation for the high diversity of rare types that survive in large clonal populations, and a theoretical justification for the use of neutral null models.
Efficient Coupling of Fluid-Plasma and Monte-Carlo-Neutrals Models for Edge Plasma Transport
NASA Astrophysics Data System (ADS)
Dimits, A. M.; Cohen, B. I.; Friedman, A.; Joseph, I.; Lodestro, L. L.; Rensink, M. E.; Rognlien, T. D.; Sjogreen, B.; Stotler, D. P.; Umansky, M. V.
2017-10-01
UEDGE has been valuable for modeling transport in the tokamak edge and scrape-off layer due in part to its efficient fully implicit solution of coupled fluid neutrals and plasma models. We are developing an implicit coupling of the kinetic Monte-Carlo (MC) code DEGAS-2, as the neutrals model component, to the UEDGE plasma component, based on an extension of the Jacobian-free Newton-Krylov (JFNK) method to MC residuals. The coupling components build on the methods and coding already present in UEDGE. For the linear Krylov iterations, a procedure has been developed to ``extract'' a good preconditioner from that of UEDGE. This preconditioner may also be used to greatly accelerate the convergence rate of a relaxed fixed-point iteration, which may provide a useful ``intermediate'' algorithm. The JFNK method also requires calculation of Jacobian-vector products, for which any finite-difference procedure is inaccurate when a MC component is present. A semi-analytical procedure that retains the standard MC accuracy and fully kinetic neutrals physics is therefore being developed. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and LDRD project 15-ERD-059, by PPPL under Contract DE-AC02-09CH11466, and supported in part by the U.S. DOE, OFES.
NASA Astrophysics Data System (ADS)
Franchin, Alessandro; Downard, Andy; Kangasluoma, Juha; Nieminen, Tuomo; Lehtipalo, Katrianne; Steiner, Gerhard; Manninen, Hanna E.; Petäjä, Tuukka; Flagan, Richard C.; Kulmala, Markku
2016-06-01
Reliable and reproducible measurements of atmospheric aerosol particle number size distributions below 10 nm require optimized classification instruments with high particle transmission efficiency. Almost all differential mobility analyzers (DMAs) have an unfavorable potential gradient at the outlet (e.g., long column, Vienna type) or at the inlet (nano-radial DMA), preventing them from achieving a good transmission efficiency for the smallest nanoparticles. We developed a new high-transmission inlet for the Caltech nano-radial DMA (nRDMA) that increases the transmission efficiency to 12 % for ions as small as 1.3 nm in Millikan-Fuchs mobility equivalent diameter, Dp (corresponding to 1.2 × 10-4 m2 V-1 s-1 in electrical mobility). We successfully deployed the nRDMA, equipped with the new inlet, in chamber measurements, using a particle size magnifier (PSM) and as a booster a condensation particle counter (CPC). With this setup, we were able to measure size distributions of ions within a mobility range from 1.2 × 10-4 to 5.8 × 10-6 m2 V-1 s-1. The system was modeled, tested in the laboratory and used to measure negative ions at ambient concentrations in the CLOUD (Cosmics Leaving Outdoor Droplets) 7 measurement campaign at CERN. We achieved a higher size resolution (R = 5.5 at Dp = 1.47 nm) than techniques currently used in field measurements (e.g., Neutral cluster and Air Ion Spectrometer (NAIS), which has a R ˜ 2 at largest sizes, and R ˜ 1.8 at Dp = 1.5 nm) and maintained a good total transmission efficiency (6.3 % at Dp = 1.5 nm) at moderate inlet and sheath airflows (2.5 and 30 L min-1, respectively). In this paper, by measuring size distributions at high size resolution down to 1.3 nm, we extend the limit of the current technology. The current setup is limited to ion measurements. However, we envision that future research focused on the charging mechanisms could extend the technique to measure neutral aerosol particles as well, so that it will be possible to measure size distributions of ambient aerosols from 1 nm to 1 µm.
Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qin
Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less
Photocatalytic degradation of leather dye over ZnO catalyst supported on alumina and glass surfaces.
Sakthivel, S; Neppoiian, B; Palanichamy, M; Arabindoo, B; Murugesan, V
2001-01-01
The photocatalytic degradation of leather dye, Acid green 16, has been investigated over a ZnO catalyst supported on two different materials, namely alumina and glass beads (3-5 mm diameter). Sunlight was used as the energy source. The alumina-supported ZnO outperformed the glass-supported ZnO under identical operational conditions suggesting that the dye molecules are adsorbed on the alumina supports to make a high concentration environment around the loaded ZnO. The degradation efficiency was greater at pH = 4 compared to other acidic and neutral pH. Also, the degradation efficiency was a little bit higher in alkaline medium, which correlates with the adsorption behaviour of acid green 16 on the alumina supported ZnO. The influence of inorganic oxidants like H2O2, FeCl3 and Fenton reagent on the degradation efficiency were systematically studied. The decolourisation and extent of degradation of the dye were determined by UV-VIS spectroscopy and COD reflux methods, respectively. Complete mineralisation of the dye was conformed by High performance liquid chromatography (HPLC) analysis.
NASA Astrophysics Data System (ADS)
Wang, Qi-Qiang; Gonell, Sergio; Leenders, Stefan H. A. M.; Dürr, Maximilian; Ivanović-Burmazović, Ivana; Reek, Joost N. H.
2016-03-01
Tuning reagent and catalyst concentrations is crucial in the development of efficient catalytic transformations. In enzyme-catalysed reactions the substrate is bound—often by multiple non-covalent interactions—in a well-defined pocket close to the active site of the enzyme; this pre-organization facilitates highly efficient transformations. Here we report an artificial system that co-encapsulates multiple catalysts and substrates within the confined space defined by an M12L24 nanosphere that contains 24 endohedral guanidinium-binding sites. Cooperative binding means that sulfonate guests are bound much more strongly than carboxylates. This difference has been used to fix gold-based catalysts firmly, with the remaining binding sites left to pre-organize substrates. This strategy was applied to a Au(I)-catalysed cyclization of acetylenic acid to enol lactone in which the pre-organization resulted in much higher reaction rates. We also found that the encapsulated sulfonate-containing Au(I) catalysts did not convert neutral (acid) substrates, and so could have potential in the development of substrate-selective catalysis and base-triggered on/off switching of catalysis.
Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes
Wu, Qin
2015-01-30
Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less
Anxiety, inhibition, efficiency, and effectiveness. An investigation using antisaccade task.
Derakshan, Nazanin; Ansari, Tahereh L; Hansard, Miles; Shoker, Leor; Eysenck, Michael W
2009-01-01
Effects of anxiety on the antisaccade task were assessed. Performance effectiveness on this task (indexed by error rate) reflects a conflict between volitional and reflexive responses resolved by inhibitory processes (Hutton, S. B., & Ettinger, U. (2006). The antisaccade task as a research tool in psychopathology: A critical review. Psychophysiology, 43, 302-313). However, latency of the first correct saccade reflects processing efficiency (relationship between performance effectiveness and use of resources). In two experiments, high-anxious participants had longer correct antisaccade latencies than low-anxious participants and this effect was greater with threatening cues than positive or neutral ones. The high- and low-anxious groups did not differ in terms of error rate in the antisaccade task. No group differences were found in terms of latency or error rate in the prosaccade task. These results indicate that anxiety affects performance efficiency but not performance effectiveness. The findings are interpreted within the context of attentional control theory (Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion, 7 (2), 336-353).
Zaitseva, A S; Arlyapov, V A; Yudina, N Yu; Alferov, S V; Reshetilov, A N
2017-03-01
We investigated the use of one- and two-mediator systems in amperometric BOD biosensors (BOD, biochemical oxygen demand) based on the yeast Debaryomyces hansenii. Screening of nine mediators potentially capable of electron transfer - ferrocene, 1,1'-dimethylferrocene, ferrocenecarboxaldehyde, ferroceneacetonitrile, neutral red, 2,6-dichlorophenolindophenol, thionine, methylene blue and potassium ferricyanide - showed only ferrocene and neutral red to be efficient electron carriers for the eukaryotes studied. Two-mediator systems based on combinations of the investigated compounds were used to increase the efficiency of electron transfer. The developed two-mediator biosensors exceeded their one-mediator analogs by their characteristics. The most preferable two-mediator system for developing a BOD biosensor was a ferrocene-methylene blue combination that ensured a satisfactory long-time stability (43 days), selectivity, sensitivity (the lower limit of the determined BOD 5 concentrations, 2.5mg О 2 /dm 3 ) and speed (assay time for one sample, not greater than 10min) of BOD determination. Analysis of water samples showed that the use of a ferrocene-methylene blue two-mediator system and the yeast D. hansenii enabled registration of data that highly correlated with the results of the standard method (R=0.9913). Copyright © 2017 Elsevier Inc. All rights reserved.
Neutralization efficiency of alcohol based products used for rapid hand disinfection
Chojecka, Agnieszka; Tarka, Patryk; Kierzkowska, Anna; Nitsch-Osuch, Aneta; Kanecki, Krzysztof
Alcohols are the most commonly used active substances in preparations for quick hand disinfection. They should be bactericidal in very short contact time. PN-EN 13727 + A2: 2015-12 standard, for testing hygienic and surgical handrub disinfection preparations, provides mandatory test conditions of disinfectants in contact times with the range of 30 s to 60 s (hygienic handrub disinfection) and 60 s to 5 min (surgical handrub disinfection). A short contact times for hand hygiene products require a short time of neutralization process. For contact times less than or equal to 10 minutes, the estimated neutralization time is 10 s ± 1 s. Neutralization is a process that abolishes the action of disinfectants. Correct application of this process allows for proper use of disinfectants in practice and its biocidal effect. Objectives. Verification of the effectiveness of 10-second neutralization time of alcohol based preparations for hygienic handrub disinfection Neutralization of two products with different ethanol content (89% and 70%) for hygienic handrub disinfection according to PN-EN 13727 + A2: 2015-12 was investigated. The effectiveness of the neutralizer was assessed by determining toxicity of neutralizer, activity of residual effects of the tested products and their derivatives produced during neutralization (10 s) for test organisms (Staphylococcus aureus ATCC 6538; Pseudomonas aeruginosa ATCC 15442; Enterococcus hirae ATCC 10541; Escherichia coli K12 NCTC 10538) The 10-second neutralization time was sufficient to eliminate the residual activity of products for hygienic handrub disinfection with differentiated ethanol concentration. The neutralizer used did not show toxicity to bacteria and did not produce toxic products with tested preparations after neutralization Conclusions. The use of 10-second neutralization time allows in a precise way designate the contact times for hygienic handrub disinfection products
Final review of the Campbell Creek demonstrations showcased by Tennessee Valley Authority
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehl, Anthony C.; Munk, Jeffrey D.; Jackson, Roderick K.
The Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery and Utilization Office funded and managed a showcase demonstration located in the suburbs of west Knox county, Tennessee. Work started March 2008 with the goal of documenting best practices for retrofitting existing homes and for building new high-efficiency homes. The Oak Ridge National Laboratory and the Electric Power Research Institute (EPRI) provided technical support. An analytical base was developed for helping homeowners, homebuyers, builders, practitioners and the TVA make informed economic decisions for the materials and incentives necessary to build a new high-efficiency home or retrofit an existing home.more » New approaches to more efficiently control active energy subsystems and information for selecting or upgrading to Energy Star appliances, changing all lights to 100% CFL s and upgrading windows to low-E gas filled glazing yields a 40% energy savings with neutral cash flow for the homeowner. Passive designs were reviewed and recommendations made for envelope construction that is durable and energy efficient. The Campbell Creek project complements the DOE Building Technologies Program strategic goal. Results of the project created technologies and design approaches that will yield affordable energy efficient homes. The 2010 DOE retrofit goals are to find retrofit packages that attain 30% whole house energy savings as documented by pre and post Home Energy rating scores (HERS). Campbell Creek met these goals.« less
NASA Astrophysics Data System (ADS)
Lavrik, N. L.; Mulloev, N. U.
2018-02-01
The methods of absorption and fluorescence were used to study the efficiency of the interaction between salicylic acid derivatives SAD (neutral SA form and SA monoanion) and Cd2 + ions (in CdBr2 salt) within the range pH = 1.5 ÷ 8. The efficiency was determined from the change in both the absorption band contour and the fluorescence intensity of various SAD forms. It has been established that depending on the SAD form, the addition of CdBr2 to a starting solution leads to the formation of additional absorption for both the shorter wave lengths in the absorption spectrum of the neutral form (at pH < 3) and the longer wave lengths in the absorption spectrum for the HSal- monoanion (at pH > 4). In the fluorescence spectra, the intensity was observed to increase for the neutral SAD form (at pH < 3) and to decrease for the HSal- monoanion (at pH > 4) after addition of CdBr2. The spectral changes were interpreted in the framework of common notions about the effect of three physicochemical factors that determine the interaction between the SAD and the Cd2 + ion and affect the parameters of absorption and fluorescence spectra. These factors are: (1) the decrease in pH after addition of CdBr2 to the SAD solution, (2) the decrease in the efficiency of the H-bonding of SAD molecules to the water ones, and (3) the existence of electrostatic ion-ion interaction between the HSal- monoanion and the Cd2 + ion. The bimolecular fluorescence quenching constants Kq of HSal- monoanion fluorescence quenching by the Cd2 + ion appeared to be substantially less than those of the quenching which would follow either the dynamic (diffusion) or the concentration (static) mechanisms.
Souma, S; Sato, T; Takahashi, T; Baltzer, P
2007-12-01
We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He Ialpha line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.
Tamilvanan, Shunmugaperumal; Khanum, Ramona; Senthilkumar, Sudalimuthu Ramachandran; Muthuraman, Marimuthu; Rajasekharan, Thenrajan
2013-10-01
Ocular and parenteral application potentials of azithromycin-containing, non-phospholipid-based cationic nanosized emulsion in comparison to the phospholipid-based anionic and neutral-charged nanosized emulsions were investigated. Various physical, chemical, nonclinical toxicity and antimicrobial activity studies (mean droplet diameter, surface charge, creaming index, entrapment efficiency, accelerated, long-term and freeze-thaw cycling stabilities, TLC study, modified hen's egg chorioallantoic membrane (HET-CAM) test, in vitro hemolysis test, in vitro and in vivo myotoxicity, and in vitro antimicrobial activity) were conducted for assessing the potentials of these three types of emulsions. Following autoclave sterilization, all of these emulsions exhibited a nanometer range mean particle diameter (200 ± 29 to 434 ± 13 nm). While the anionic and cationic emulsions did show high negative (-34.2 ± 1.23 mV) and positive zeta potential (42.6 ± 1.45 mV) values, the neutral-charged emulsion did not. Even with 5 freeze-thaw cycles, the cationic emulsion remained stable whereas other two emulsions underwent phase-separation. The hen's egg chorioallantoic membrane test revealed an irritation score value that was higher for the anionic emulsion than for cationic or neutral-charged emulsion. A significantly higher % hemolysis value was also noticed for the anionic emulsion when compared to the % hemolysis value of cationic emulsion (ANOVA, P ‹ 0.05). However, all of the emulsions showed a lesser intracellular creatine kinase (CK) release/plasma CK level in comparison to the positive control (phenytoin) indicating their lesser myotoxicity at the injection site . When compared to anionic and neutral-charged emulsions, the possible controlled drug release from cationic emulsion delayed the in vitro antimicrobial action against H.influenzae and S.pneumoniae.
Kasaian, Marion T; Tan, Xiang-Yang; Jin, Macy; Fitz, Lori; Marquette, Kimberly; Wood, Nancy; Cook, Timothy A; Lee, Julie; Widom, Angela; Agostinelli, Rita; Bree, Andrea; Schlerman, Franklin J; Olland, Stephane; Wadanoli, Michael; Sypek, Joseph; Gill, Davinder; Goldman, Samuel J; Tchistiakova, Lioudmila
2008-06-01
Interleukin (IL)-13 is a key cytokine driving allergic and asthmatic responses and contributes to airway inflammation in cynomolgus monkeys after segmental challenge with Ascaris suum antigen. IL-13 bioactivity is mediated by a heterodimeric receptor (IL-13Ralpha1/IL-4Ralpha) and can be inhibited in vitro by targeting IL-13 interaction with either chain. However, in cytokine systems, in vitro neutralization activity may not always predict inhibitory function in vivo. To address the efficacy of two different IL-13 neutralization mechanisms in a primate model of atopic disease, two humanized monoclonal antibodies to IL-13 were generated, with highly homologous properties, differing in epitope recognition. Ab01 blocks IL-13 interaction with IL-4Ralpha, and Ab02 blocks IL-13 interaction with IL-13Ralpha1. In a cynomolgus monkey model of IgE responses to A. suum antigen, both Ab01 and Ab02 effectively reduced serum titers of Ascaris-specific IgE and diminished ex vivo Ascaris-triggered basophil histamine release, assayed 8 weeks after a single administration of antibody. The two antibodies also produced comparable reductions in pulmonary inflammation after lung segmental challenge with Ascaris antigen. Increased serum levels of IL-13, lacking demonstrable biological activity, were seen postchallenge in animals given either anti-IL-13 antibody but not in control animals given human IgG of irrelevant specificity. These findings demonstrate a potent effect of IL-13 neutralization on IgE-mediated atopic responses in a primate system and show that IL-13 can be efficiently neutralized by targeting either the IL-4Ralpha-binding epitope or the IL-13Ralpha1-binding epitope.
Rosenfeld, Ronit; Alcalay, Ron; Mechaly, Adva; Lapidoth, Gideon; Epstein, Eyal; Kronman, Chanoch; J Fleishman, Sarel; Mazor, Ohad
2017-09-01
While potent monoclonal antibodies against ricin were introduced over the years, the question whether increasing antibody affinity enables better toxin neutralization was not fully addressed yet. The aim of this study was to characterize the contribution of antibody affinity to the ricin neutralization potential of the antibody. cHD23 monoclonal antibody that targets the toxin B-subunit and interferes with its binding to membranal receptors, was isolated. In order to create antibody clones with improved affinity toward ricin, a scFv-phage display library containing mutated versions of the variable regions of cHD23 was constructed and clones with improved binding of ricin were isolated. Structural modeling of these mutants suggests that the inserted mutations may increase the antibody conformational flexibility thus improving its ability to bind ricin. While it was found that the selected clones exhibited improved neutralization of ricin, the correlation between the KD values and potency was only minor (r = 0.55). However, a positive correlation (r = 0.84) exist between the off-rate values (koff) of the affinity matured clones and their ability to neutralize ricin. As cell membranes display inordinately large amounts of potential surface binding sites for ricin, it is suggested that antibodies with improved off-rate values block the ability of the toxin to bind to target receptors, in a highly efficient manner. Currently, antibody-based therapy is the most effective treatment for ricin intoxication and it is anticipated that the findings of this study will provide useful information and a possible strategy to design an improved antibody-based therapy for the toxin. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sugimoto, Takumi; Yamazaki, Naoko; Hayashi, Takaaki; Yuba, Eiji; Harada, Atsushi; Kotaka, Aki; Shinde, Chiharu; Kumei, Takayuki; Sumida, Yasushi; Fukushima, Mitsuhiro; Munekata, Yuki; Maruyama, Keiichi; Kono, Kenji
2017-07-01
Dual-signal-sensitive copolymers were synthesized by copolymerization of methoxy diethylene glycol methacrylate, methacrylic acid, and lauroxy tetraethylene glycol methacrylate, which respectively provide temperature sensitivity, pH sensitivity, and anchoring to liposome surfaces. These novel copolymers, with water solubility that differs depending on temperature and pH, are soluble in water under neutral pH and low-temperature conditions, but they become water-insoluble and form aggregates under acidic pH and high-temperature conditions. Liposomes modified with these copolymers exhibited enhanced content release at weakly acidic pH with increasing temperature, although no temperature-dependent content release was observed in neutral conditions. Interaction between the copolymers and the lipid monolayer at the air-water interface revealed that the copolymer chains penetrate more deeply into the monolayer with increasing temperature at acidic pH than at neutral pH, where the penetration of copolymer chains was moderate and temperature-independent at neutral pH. Interaction of the copolymer-modified liposomes with HeLa cells demonstrated that the copolymer-modified liposomes were adsorbed quickly and efficiently onto the cell surface and that they were internalized more gradually than the unmodified liposomes through endocytosis. Furthermore, the copolymer-modified liposomes enhanced the content release in endosomes with increasing temperature, but no such temperature-dependent enhancement of content release was observed for unmodified liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.
Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacomelli, L., E-mail: giacomelli@ifp.cnr.it; Tardocchi, M.; Nocente, M.
2016-11-15
This work presents measurements done at the Peking University Van de Graaff neutron source of the response of single crystal synthetic diamond (SD) detectors to quasi-monoenergetic neutrons of 14-20 MeV. The results show an energy resolution of 1% for incoming 20 MeV neutrons, which, together with 1% detection efficiency, opens up to new prospects for fast ion physics studies in high performance nuclear fusion devices such as SD neutron spectrometry of deuterium-tritium plasmas heated by neutral beam injection.
Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis
Ventre, Sandrine; Petronijevic, Filip R.; MacMillan, David W. C.
2016-01-01
The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F• transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol. PMID:25881929
NASA Technical Reports Server (NTRS)
Komatsu, G. K.; Stellen, J. M., Jr.
1976-01-01
Measurements have been made of the high energy thrust ions, (Group I), high angle/high energy ions (Group II), and high angle/low energy ions (Group IV) of a mercury electron bombardment thruster in the angular divergence range from 0 deg to greater than 90 deg. The measurements have been made as a function of thrust ion current, propellant utilization efficiency, bombardment discharge voltage, screen and accelerator grid potential (accel-decel ratio) and neutralizer keeper potential. The shape of the Group IV (charge exchange) ion plume has remained essentially fixed within the range of variation of the engine operation parameters. The magnitude of the charge exchange ion flux scales with thrust ion current, for good propellant utilization conditions. For fixed thrust ion current, charge exchange ion flux increases for diminishing propellant utilization efficiency. Facility effects influence experimental accuracies within the range of propellant utilization efficiency used in the experiments. The flux of high angle/high energy Group II ions is significantly diminished by the use of minimum decel voltages on the accelerator grid. A computer model of charge exchange ion production and motion has been developed. The program allows computation of charge exchange ion volume production rate, total production rate, and charge exchange ion trajectories for "genuine" and "facilities effects" particles. In the computed flux deposition patterns, the Group I and Group IV ion plumes exhibit a counter motion.
NASA Astrophysics Data System (ADS)
Calvano, Cosima Damiana; Cataldi, Tommaso R. I.; Kögel, Julius F.; Monopoli, Antonio; Palmisano, Francesco; Sundermeyer, Jorge
2017-08-01
The superbasic proton sponge 1,8-bis(tripyrrolidinylphosphazenyl)naphthalene (TPPN) has been successfully employed for the structural characterization of neutral saccharides, cyclodextrins, and saccharide alditols by matrix assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). Owing to its inherently high basicity, TPPN is capable of deprotonating neutral carbohydrates (M) providing an efficient and simple way to produce gas-phase [M - H]- ions. Highly informative negative ions MS/MS spectra showing several diagnostic fragment ions were obtained, mainly A-type cross-ring and C-type glycosidic cleavages. Indeed, cross-ring cleavages of monosaccharides with formation of 0,2A, 0,3A, 2,4A, 2,5A, 3,5A, and 0,3X product ions dominate the MS/MS spectra. A significant difference between reducing (e.g., lactose, maltose) and non-reducing disaccharides (e.g., sucrose, trehalose) was observed. Though disaccharides with the anomeric positions blocked give rise to deprotonated molecules, [M - H]-, at m/ z 341.1, reducing ones exhibited a peak at m/ z 340.1, most likely as radical anion, [M - H•- H]-•. The superiority of TPPN was clearly demonstrated by comparison with well recognized matrices, such as 2,5-dihydroxybenzoic acid and 2',4',6'-trihydroxyacetophenone (positive ion mode) and nor-harman (negative ion mode). MALDI MS/MS experiments on isotopically labeled sugars have greatly supported the interpretation of plausible fragmentation pathways.
Perez, Elizabeth M; Foley, Joslyn; Tison, Timelia; Silva, Rute; Ogembo, Javier Gordon
2017-03-21
Previous Epstein-Barr virus (EBV) prophylactic vaccines based on the major surface glycoprotein gp350/220 as an immunogen have failed to block viral infection in humans, suggesting a need to target other viral envelope glycoproteins. In this study, we reasoned that incorporating gH/gL or gB, critical glycoproteins for viral fusion and entry, on the surface of a virus-like particle (VLP) would be more immunogenic than gp350/220 for generating effective neutralizing antibodies to prevent viral infection of both epithelial and B cell lines. To boost the humoral response and trigger cell-mediated immunity, EBV nuclear antigen 1 (EBNA1) and latent membrane protein 2 (LMP2), intracellular latency proteins expressed in all EBV-infected cells, were also included as critical components of the polyvalent EBV VLP. gH/gL-EBNA1 and gB-LMP2 VLPs were efficiently produced in Chinese hamster ovary cells, an FDA-approved vehicle for mass-production of biologics. Immunization with gH/gL-EBNA1 and gB-LMP2 VLPs without adjuvant generated both high neutralizing antibody titers in vitro and EBV-specific T-cell responses in BALB/c mice. These data demonstrate that will be invaluable not only in preventing EBV infection, but importantly, in preventing and treating the 200,000 cases of EBV-associated cancers that occur globally every year.
Thayer, J R; Rohrer, J S; Avdalovic, N; Gearing, R P
1998-02-15
High-pH anion exchange chromatography with pulsed amperometric detection (HPAEC/PAD) (1) is routinely used to separate neutral and charged oligosaccharides differing by branch, linkage, and positional isomerism. Oligosaccharides are eluted in 0.1 M NaOH with gradients of sodium acetate (up to 0.25 M). Analyses of HPAEC/PAD-purified oligosaccharides generally require neutralization and removal of eluent salts. To facilitate the process, we designed and produced a cation-exchange system to remove sodium ions (Na+) from the eluent after oligosaccharide detection [the Carbohydrate Membrane Desalter (CMD), with a volatile regenerant]. Exchange of >99.5% of eluent Na+ for hydronium ions (H3O+) within the CMD generates dilute acetic acid (removable by vacuum evaporation). The exchange process desalts up to 0.35 M Na+ at 1.0 ml/min. Oligosaccharides collected after on-line desalting, evaporated and resuspended in their original volume of deionized water contained < or = 350 muM residual Na+ when the eluting sodium concentration was 300 mM. This represents a desalting efficiency of >99.8%. Recovery of neutral and sialylated oligosaccharides under these conditions ranged from 75 to 100%. With the CMD system and postcollection evaporation, HPAEC/PAD can purify oligosaccharides ready for further characterization. As a proof test, oligosaccharides from a human monoclonal antibody were separated by HPAEC/PAD, desalted with the CMD system, dried, and analyzed by matrix-assisted laser desorption-ionization, time-of-flight mass spectrometry. Copyright 1998 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bower, Joseph F.; Green, Thomas D.; Ross, Ted M.
2004-10-25
DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d{sub 3}) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d{sub 3}. In addition, bothmore » sCD4-gp120 and sCD4-gp120-mC3d{sub 3} bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d{sub 3} or sCD4-gp120-mC3d{sub 3} elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d{sub 3}-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d{sub 3} had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.« less
Automated image-based assay for evaluation of HIV neutralization and cell-to-cell fusion inhibition.
Sheik-Khalil, Enas; Bray, Mark-Anthony; Özkaya Şahin, Gülsen; Scarlatti, Gabriella; Jansson, Marianne; Carpenter, Anne E; Fenyö, Eva Maria
2014-08-30
Standardized techniques to detect HIV-neutralizing antibody responses are of great importance in the search for an HIV vaccine. Here, we present a high-throughput, high-content automated plaque reduction (APR) assay based on automated microscopy and image analysis that allows evaluation of neutralization and inhibition of cell-cell fusion within the same assay. Neutralization of virus particles is measured as a reduction in the number of fluorescent plaques, and inhibition of cell-cell fusion as a reduction in plaque area. We found neutralization strength to be a significant factor in the ability of virus to form syncytia. Further, we introduce the inhibitory concentration of plaque area reduction (ICpar) as an additional measure of antiviral activity, i.e. fusion inhibition. We present an automated image based high-throughput, high-content HIV plaque reduction assay. This allows, for the first time, simultaneous evaluation of neutralization and inhibition of cell-cell fusion within the same assay, by quantifying the reduction in number of plaques and mean plaque area, respectively. Inhibition of cell-to-cell fusion requires higher quantities of inhibitory reagent than inhibition of virus neutralization.
NASA Technical Reports Server (NTRS)
Meserole, J. S.; Keefer, Dennis; Ruyten, Wilhelmus; Peng, Xiaohang
1995-01-01
An ion engine is a plasma thruster which produces thrust by extracting ions from the plasma and accelerating them to high velocity with an electrostatic field. The ions are then neutralized and leave the engine as high velocity neutral particles. The advantages of ion engines are high specific impulse and efficiency and their ability to operate over a wide range of input powers. In comparison with other electric thrusters, the ion engine has higher efficiency and specific impulse than thermal electric devices such as the arcjet, microwave, radiofrequency and laser heated thrusters and can operate at much lower current levels than the MPD thruster. However, the thrust level for an ion engine may be lower than a thermal electric thruster of the same operating power, consistent with its higher specific impulse, and therefore ion engines are best suited for missions which can tolerate longer duration propulsive phases. The critical issue for the ion engine is lifetime, since the prospective missions may require operation for several thousands of hours. The critical components of the ion engine, with respect to engine lifetime, are the screen and accelerating grid structures. Typically, these are large metal screens that must support a large voltage difference and maintain a small gap between them. Metallic whisker growth, distortion and vibration can lead to arcing, and over a long period of time ion sputtering will erode the grid structures and change their geometry. In order to study the effects of long time operation of the grid structure, we are developing computer codes based on the Particle-In-Cell (PIC) technique and Laser Induced Fluorescence (LIF) diagnostic techniques to study the physical processes which control the performance and lifetime of the grid structures.
Molecular clock on a neutral network.
Raval, Alpan
2007-09-28
The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating aspects of neutral network topology from empirical measurements of the substitution process.
Molecular Clock on a Neutral Network
NASA Astrophysics Data System (ADS)
Raval, Alpan
2007-09-01
The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating aspects of neutral network topology from empirical measurements of the substitution process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadiz, Fabian, E-mail: cadiz@insa-toulouse.fr; Tricard, Simon; Gay, Maxime
Developments in optoelectronics and spin-optronics based on transition metal dichalcogenide monolayers (MLs) need materials with efficient optical emission and well-defined transition energies. In as-exfoliated MoS{sub 2} MLs, the photoluminescence (PL) spectra even at low temperature consist typically of broad, overlapping contributions from neutral, charged excitons (trions) and localized states. Here, we show that in superacid treated MoS{sub 2} MLs, the PL intensity increases by up to 60 times at room temperature. The neutral and charged exciton transitions are spectrally well separated in PL and reflectivity at T = 4 K, with linewidth for the neutral exciton of 15 meV, but both transitions have similarmore » intensities compared to the ones in as-exfoliated MLs at the same temperature. Time resolved experiments uncover picoseconds recombination dynamics analyzed separately for charged and neutral exciton emissions. Using the chiral interband selection rules, we demonstrate optically induced valley polarization for both complexes and valley coherence for only the neutral exciton.« less
Stark tuning and electrical charge state control of single divacancies in silicon carbide
NASA Astrophysics Data System (ADS)
de las Casas, Charles F.; Christle, David J.; Ul Hassan, Jawad; Ohshima, Takeshi; Son, Nguyen T.; Awschalom, David D.
2017-12-01
Neutrally charged divacancies in silicon carbide (SiC) are paramagnetic color centers whose long coherence times and near-telecom operating wavelengths make them promising for scalable quantum communication technologies compatible with existing fiber optic networks. However, local strain inhomogeneity can randomly perturb their optical transition frequencies, which degrades the indistinguishability of photons emitted from separate defects and hinders their coupling to optical cavities. Here, we show that electric fields can be used to tune the optical transition frequencies of single neutral divacancy defects in 4H-SiC over a range of several GHz via the DC Stark effect. The same technique can also control the charge state of the defect on microsecond timescales, which we use to stabilize unstable or non-neutral divacancies into their neutral charge state. Using fluorescence-based charge state detection, we show that both 975 nm and 1130 nm excitation can prepare their neutral charge state with near unity efficiency.
Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.
Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P
2012-02-01
The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.
46 CFR 111.05-27 - Grounded neutral alternating current systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the ground connection, is able to withstand the maximum available fault current without damage, and... 46 Shipping 4 2011-10-01 2011-10-01 false Grounded neutral alternating current systems. 111.05-27... Grounded neutral alternating current systems. Grounded neutral and high-impedance grounded neutral...
46 CFR 111.05-27 - Grounded neutral alternating current systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the ground connection, is able to withstand the maximum available fault current without damage, and... 46 Shipping 4 2010-10-01 2010-10-01 false Grounded neutral alternating current systems. 111.05-27... Grounded neutral alternating current systems. Grounded neutral and high-impedance grounded neutral...
Konduru, Krishnamurthy; Shurtleff, Amy C; Bavari, Sina; Kaplan, Gerardo
2018-04-01
Ebola virus (EBOV), classified as a category A agent by the CDC and NIH, requires BSL-4 containment and induces high morbidity and mortality in humans. The 2013-2015 epidemic in West Africa underscored the urgent need to develop vaccines and therapeutics to prevent and treat EBOV disease. Neutralization assays are needed to evaluate the efficacy of EBOV vaccines and antibody therapies. Pseudotyped viruses based on nonpathogenic or attenuated vectors reduce the risks involved in the evaluation of neutralizing antibodies against highly pathogenic viruses. Selectable markers, fluorescent proteins, and luciferase have been introduced into pseudotyped viruses for detection and quantitation purposes. The current study describes the development of a BSL-2 fluorescence reduction neutralization test (FRNT) using a recombinant vesicular stomatitis virus (VSV) in which the VSV-G envelope gene was replaced with the EBOV glycoprotein (GP) and green fluorescent protein (GFP) genes (rVSV-EBOVgp-GFP). Cells infected with rVSV-EBOVgp-GFP express GFP. Anti-GP neutralizing monoclonal and polyclonal antibodies blocked rVSV-EBOVgp-GFP infection preventing or reducing GFP fluorescence. The high degree of correlation between the EBOV BSL-2 FRNT and the BSL-4 plaque reduction neutralization test (PRNT), the accepted standard of EBOV neutralization tests, supports the use of the EBOV BSL-2 FRNT to evaluate neutralizing antibodies in clinical trials. Published by Elsevier B.V.
Bove, Patricia; Claveau-Mallet, Dominique; Boutet, Étienne; Lida, Félix; Comeau, Yves
2018-02-01
The main objective of this project was to develop a steel slag filter effluent neutralization process by acidification with CO 2 -enriched air coming from a bioprocess. Sub-objectives were to evaluate the neutralization capacity of different configurations of neutralization units in lab-scale conditions and to propose a design model of steel slag effluent neutralization. Two lab-scale column neutralization units fed with two different types of influent were operated at hydraulic retention time of 10 h. Tested variables were mode of flow (saturated or percolating), type of media (none, gravel, Bionest and AnoxKaldnes K3), type of air (ambient or CO 2 -enriched) and airflow rate. One neutralization field test (saturated and no media, 2000-5000 ppm CO 2 , sequential feeding, hydraulic retention time of 7.8 h) was conducted for 7 days. Lab-scale and field-scale tests resulted in effluent pH of 7.5-9.5 when the aeration rate was sufficiently high. A model was implemented in the PHREEQC software and was based on the carbonate system, CO 2 transfer and calcite precipitation; and was calibrated on ambient air lab tests. The model was validated with CO 2 -enriched air lab and field tests, providing satisfactory validation results over a wide range of CO 2 concentrations. The flow mode had a major impact on CO 2 transfer and hydraulic efficiency, while the type of media had little influence. The flow mode also had a major impact on the calcite surface concentration in the reactor: it was constant in saturated mode and was increasing in percolating mode. Predictions could be made for different steel slag effluent pH and different operation conditions (hydraulic retention time, CO 2 concentration, media and mode of flow). The pH of the steel slag filter effluent and the CO 2 concentration of the enriched air were factors that influenced most the effluent pH of the neutralization process. An increased concentration in CO 2 in the enriched air reduced calcite precipitation and clogging risks. Stoichiometric calculations showed that a typical domestic septic tank effluent with 300 mg/L of biodegradable COD provides enough biological CO 2 for neutralization of a steel slag effluent with pH of 10.5-11.5. A saturated neutralization reactor with no media operated at hydraulic retention time of 10 h and a concentration of 2000 ppm in CO 2 enriched air is recommended for full-scale applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Ping; Hübner, Wolfgang; Spinelli, Matthew A; Chen, Benjamin K
2007-11-01
Cell-free human immunodeficiency virus type 1 (HIV-1) can initiate infections, but contact between infected and uninfected T cells can enhance viral spread through intercellular structures called virological synapses (VS). The relative contribution of VS to cell-free viral transfer has not been carefully measured. Using an ultrasensitive, fluorescent virus transfer assay, we estimate that when VS between HIV-expressing Jurkat T cells and primary CD4(+) T cells are formed, cell-associated transfer of virus is 18,000-fold more efficient than uptake of cell-free virus. Furthermore, in contrast to cell-free virus uptake, the VS deposits virus rapidly into focal, trypsin-resistant compartments in target T cells. This massive virus internalization requires Env-CD4 receptor interactions but is resistant to inhibition by patient-derived neutralizing antisera that inhibit homologous cell-free virus. Deleting the Env cytoplasmic tail does not abrogate VS-mediated transfer, but it renders the VS sensitive to neutralizing antibodies, suggesting that the tail limits exposure of VS-neutralizing epitopes on the surface of infected cells. Dynamic live imaging of the VS reveals that HIV-expressing cells are polarized and make sustained, Env-dependent contacts with target cells through uropod-like structures. The polarized T-cell morphology, Env-CD4 coordinated adhesion, and viral transfer from HIV-infected to uninfected cells suggest that VS allows HIV-1 to evade antibody neutralization and to disseminate efficiently. Future studies will discern to what extent this massive viral transfer contributes to productive infection or viral dissemination through the migration of virus-carrying T cells.
Fear improves mental rotation of low-spatial-frequency visual representation.
Borst, Grégoire
2013-10-01
Previous studies have demonstrated that the brief presentation of a fearful face improves not only low-level visual processing such as contrast and orientation sensitivity but also improves visuospatial processing. In the present study, we investigated whether fear improves mental rotation efficiency (i.e., the mental rotation rate) because of the effect of fear on the sensitivity of magnocellular neurons. We asked 2 groups of participants to perform a mental rotation task with either low-pass or high-pass filtered 3-dimensional objects. Following the presentation of a fearful face, participants mentally rotated objects faster compared with when a neutral face was presented but only for low-pass filtered objects. The results suggest that fear improves mental rotation efficiency by increasing sensitivity to motion-related visual information within the magnocellular pathway.
LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien
2010-08-01
Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demandmore » for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.« less
Noy-Porat, Tal; Alcalay, Ron; Epstein, Eyal; Sabo, Tamar; Kronman, Chanoch; Mazor, Ohad
2017-03-01
The plant toxin ricin is considered a potential bioterror agent against which there is no available antidote. To date, neutralizing antibodies are the most promising post-exposure treatment for ricin intoxication, yet so far they were shown to be effective only when given within several hours post exposure. As part of an ongoing effort to develop efficient ricin-countermeasures, we tested whether high-affinity antibodies that were previously isolated from immunized non-human primates, may confer effective post-exposure therapy for ricin-intoxicated mice treated at late time-points after exposure. While each antibody is capable of providing high protection rate by itself, a formulation consisting of three neutralizing antibodies that target different epitopes was tested to provide therapeutic coverage against different variants of the malicious pathogen. Indeed, the tri-antibody based cocktail was highly effective, its administration resulting in very high survival rates (>70%) when animals were treated as late as 48 h post exposure and significant protection (>30%) even at 72 h. This study establishes for the first time that anti-ricin antibodies can serve as a highly effective antidote at such late time-points after exposure. From the clinical point of view, the extended therapeutic window documented here is of high importance allowing adequate time to accurately identify the causative agent and may permit initiation of life-saving treatment with these antibodies even after the onset of clinical signs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Selection of Clostridium spp. in biological sand filters neutralizing synthetic acid mine drainage.
Ramond, Jean-Baptiste; Welz, Pamela J; Le Roes-Hill, Marilize; Tuffin, Marla I; Burton, Stephanie G; Cowan, Don A
2014-03-01
In this study, three biological sand filter (BSF) were contaminated with a synthetic iron- [1500 mg L⁻¹ Fe(II), 500 mg L⁻¹ Fe(III)] and sulphate-rich (6000 mg L⁻¹ SO₄²⁻) acid mine drainage (AMD) (pH = 2), for 24 days, to assess the remediation capacity and the evolution of autochthonous bacterial communities (monitored by T-RFLP and 16S rRNA gene clone libraries). To stimulate BSF bioremediation involving sulphate-reducing bacteria, a readily degradable carbon source (glucose, 8000 mg L⁻¹) was incorporated into the influent AMD. Complete neutralization and average removal efficiencies of 81.5 (±5.6)%, 95.8 (±1.2)% and 32.8 (±14.0)% for Fe(II), Fe(III) and sulphate were observed, respectively. Our results suggest that microbial iron reduction and sulphate reduction associated with iron precipitation were the main processes contributing to AMD neutralization. The effect of AMD on BSF sediment bacterial communities was highly reproducible. There was a decrease in diversity, and notably a single dominant operational taxonomic unit (OTU), closely related to Clostridium beijerinckii, which represented up to 65% of the total community at the end of the study period. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun; ...
2015-07-13
Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun
Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less
Reduction of selenite to elemental selenium nanoparticles by activated sludge.
Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L
2016-01-01
Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.
Dynamics of ion beam charge neutralization by ferroelectric plasma sources
Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; ...
2016-04-27
Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar + beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15V before neutralization to 0.3more » V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established similar to –5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-mu s surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of mu s after the high voltage pulse is applied. Lastly, it is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.« less
Development of SSUBPIC code for modeling the neutral gas depletion effect in helicon discharges
NASA Astrophysics Data System (ADS)
Kollasch, Jeffrey; Sovenic, Carl; Schmitz, Oliver
2017-10-01
The SSUBPIC (steady-state unstructured-boundary particle-in-cell) code is being developed to model helicon plasma devices. The envisioned modeling framework incorporates (1) a kinetic neutral particle model, (2) a kinetic ion model, (3) a fluid electron model, and (4) an RF power deposition model. The models are loosely coupled and iterated until convergence to steady-state. Of the four required solvers, the kinetic ion and neutral particle simulation can now be done within the SSUBPIC code. Recent SSUBPIC modifications include implementation and testing of a Coulomb collision model (Lemons et al., JCP, 228(5), pp. 1391-1403) allowing efficient coupling of kineticly-treated ions to fluid electrons, and implementation of a neutral particle tracking mode with charge-exchange and electron impact ionization physics. These new simulation capabilities are demonstrated working independently and coupled to ``dummy'' profiles for RF power deposition to converge on steady-state plasma and neutral profiles. The geometry and conditions considered are similar to those of the MARIA experiment at UW-Madison. Initial results qualitatively show the expected neutral gas depletion effect in which neutrals in the plasma core are not replenished at a sufficient rate to sustain a higher plasma density. This work is funded by the NSF CAREER award PHY-1455210 and NSF Grant PHY-1206421.
Cao, Baichuan; Gao, Baoyu; Liu, Xin; Wang, Mengmeng; Yang, Zhonglian; Yue, Qinyan
2011-11-15
The adjustment of pH is an important way to enhance removal efficiency in coagulation units, and in this process, the floc size, strength and structure can be changed, influencing the subsequent solid/liquid separation effect. In this study, an inorganic polymer coagulant, polyferric chloride (PFC) was used in a low dissolved organic carbon (DOC) and high alkalinity surface water treatment. The influence of coagulation pH on removal efficiency, floc growth, strength, re-growth capability and fractal dimension was examined. The optimum dosage was predetermined as 0.150 mmol/L, and excellent particle and organic matter removal appeared in the pH range of 5.50-5.75. The structure characteristics of flocs formed under four pH conditions were investigated through the analysis of floc size, effect of shear and particle scattering properties by a laser scattering instrument. The results indicated that flocs formed at neutral pH condition gave the largest floc size and the highest growth rate. During the coagulation period, the fractal dimension of floc aggregates increased in the first minutes and then decreased and larger flocs generally had smaller fractal dimensions. The floc strength, which was assessed by the relationship of floc diameter and velocity gradient, decreased with the increase of coagulation pH. Flocs formed at pH 4.00 had better recovery capability when exposed to lower shear forces, while flocs formed at neutral and alkaline conditions had better performance under higher shear forces. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ke, Ye; Huang, Wei-Qian; Li, Jia-zhou; Xie, Ming-quan; Luo, Xiao-chun
2012-12-12
A truncated neutral protease I (NpI) from Aspergillus oryzae 3.042 was expressed in Pichia pastoris with a high enzyme yield of 43101 U/mL. Its optimum pH was about 8.0, and it was stable in the pH range of 5.0-9.0. Its optimum temperature was about 55 °C and retained >90% activity at 50 °C for 120 min. Recombinant NpI (rNpI) was inhibited by Cu(2+) and EDTA. Eight cleavage sites of rNpI in oxidized insulin B-chain were determined by mass spectrometry, and five of them had high hydrophobic amino acid affinity, which makes it efficient in producing antihypertensive peptide IPP from β-casein and a potential debittering agent. The high degree of hydrolysis (DH) of rNpI to soybean protein (8.8%) and peanut protein (11.1%) compared to papain and alcalase makes it a good candidate in the processing of oil industry byproducts. The mutagenesis of H(429), H(433), and E(453) in the deduced zinc-binding motif confirmed rNpI as a gluzincin. All of these results show the great potential of rNpI to be used in the protein hydrolysis industry.
Satellite accelerometer measurements of neutral density and winds during geomagnetic storms
NASA Technical Reports Server (NTRS)
Marcos, F. A.; Forbes, J. M.
1986-01-01
A new thermospheric wind measurement technique is reported which is based on a Satellite Electrostatic Triaxial Accelerometer (SETA) system capable of accurately measuring accelerations in the satellite's in-track, cross-track and radial directions. Data obtained during two time periods are presented. The first data set describes cross-track winds measured between 170 and 210 km during a 5-day period (25 to 29 March 1979) of mostly high geomagnetic activity. In the second data set, cross-track winds and neutral densities from SETA and exospheric temperatures from the Millstone Hill incoherent scatter radar are examined during an isolated magnetic substorm occurring on 21 March 1979. A polar thermospheric wind circulation consisting of a two cell horizontal convection pattern is reflected in both sets of cross-track acceleration measurements. The density response is highly asymmetric with respect to its day/night behavior. Latitude structures of the density response at successive times following the substorm peak suggest the equatorward propagation of a disturbance with a phase speed between 300 and 600 m/s. A deep depression in the density at high latitudes (less than 70 deg) is evident in conjunction with this phenomenon. The more efficient propagation of the disturbance to lower latitudes during the night is probably due to the midnight surge effect.
Towards developing a backing layer for proton exchange membrane electrolyzers
NASA Astrophysics Data System (ADS)
Lettenmeier, P.; Kolb, S.; Burggraf, F.; Gago, A. S.; Friedrich, K. A.
2016-04-01
Current energy policies require the urgent replacement of fossil energy carriers by carbon neutral ones, such as hydrogen. The backing or micro-porous layer plays an important role in the performance of hydrogen proton exchange membrane (PEM) fuel cells, reducing contact resistance and improving reactant/product management. Such carbon-based coating cannot be used in PEM electrolysis since it oxidizes to CO2 at high voltages. A functional titanium macro-porous layer (MPL) on the current collectors of a PEM electrolyzer is developed by thermal spraying. It improves the contact with the catalyst layers by ca. 20 mΩ cm2, increasing significantly the efficiency of the device when operating at high current densities.
Depletion region surface effects in electron beam induced current measurements.
Haney, Paul M; Yoon, Heayoung P; Gaury, Benoit; Zhitenev, Nikolai B
2016-09-07
Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p - n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.
Cho, Chang-Ho; Shin, Won-Sub; Woo, Do-Wook; Kwon, Jong-Hee
2018-06-01
Aurantiochytrium can produce significant amounts of omega-3 fatty acids, specifically docosahexaenoic acid and docosapentaenoic acid. Use of a glucose-based medium for heterotrophic growth is needed to achieve a high growth rate and production of abundant lipids. However, heat sterilization for reliable cultivation is not appropriate to heat-sensitive materials and causes a conversion of glucose via browning (Maillard) reactions. Thus, the present study investigated the use of a direct degradation of Peracetic acid (PAA) for omega-3 production by Aurantiochytrium. Polymer-based bioreactor and glucose-containing media were chemically co-sterilized by 0.04% PAA and neutralized through a reaction with ferric ion (III) in HEPES buffer. Mono-cultivation was achieved without the need for washing steps and filtration, thereby avoiding the heat-induced degradation and dehydration of glucose. Use of chemically sterilized and neutralized medium, rather than heat-sterilized medium, led to a twofold faster growth rate and greater productivity of omega-3 fatty acids.
Ambipolar surface state thermoelectric power of topological insulator Bi2Se3.
Kim, Dohun; Syers, Paul; Butch, Nicholas P; Paglione, Johnpierre; Fuhrer, Michael S
2014-01-01
We measure gate-tuned thermoelectric power of mechanically exfoliated Bi2Se3 thin films in the topological insulator regime. The sign of the thermoelectric power changes across the charge neutrality point as the majority carrier type switches from electron to hole, consistent with the ambipolar electric field effect observed in conductivity and Hall effect measurements. Near the charge neutrality point and at low temperatures, the gate-dependent thermoelectric power follows the semiclassical Mott relation using the expected surface state density of states but is larger than expected at high electron doping, possibly reflecting a large density of states in the bulk gap. The thermoelectric power factor shows significant enhancement near the electron-hole puddle carrier density ∼0.5 × 10(12) cm(-2) per surface at all temperatures. Together with the expected reduction of lattice thermal conductivity in low-dimensional structures, the results demonstrate that nanostructuring and Fermi level tuning of three-dimensional topological insulators can be promising routes to realize efficient thermoelectric devices.
A tandem mirror plasma source for a hybrid plume plasma propulsion concept
NASA Technical Reports Server (NTRS)
Yang, T. F.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.; Chang, F. R.
1985-01-01
This paper describes a tandem mirror magnetic plasma confinement device to be considered as a hot plasma source for the hybrid plume rocket concept. The hot plasma from this device is injected into an exhaust duct, which will interact with an annular layer of hypersonic neutral gas. Such a device can be used to study the dynamics of the hybrid plume and to experimentally verify the numerical predictions obtained with computer codes. The basic system design is also geared toward being lightweight and compact, as well as having high power density (i.e., several kW/sq cm) at the exhaust. This feature is aimed toward the feasibility of 'space testing'. The plasma is heated by microwaves. A 50 percent heating efficiency can be obtained by using two half-circle antennas. The preliminary Monte Carlo modeling of test particles result reported here indicates that interaction does take place in the exhaust duct. Neutrals gain energy from the ion, which confirms the hybrid plume concept.
Lin, Hui; Zhang, Zhenbin; Dong, Jing; Liu, Zhongshan; Ou, Junjie; Zou, Hanfa
2013-09-01
A new organic-inorganic hybrid monolith was prepared by the ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS) with 1,4-butanediamine (BDA) using 1-propanol, 1,4-butanediol, and PEG 10,000 as a porogenic system. Benefiting from the moderate phase separation process, the resulting poly(POSS-co-BDA) hybrid monolith possessed a uniform microstructure and exhibited excellent performance in chromatographic applications. Neutral, acidic, and basic compounds were successfully separated on the hybrid monolith in capillary LC (cLC), and high column efficiencies were achieved in all of the separations. In addition, as the amino groups could generate a strong EOF, the hybrid monolith was also applied in CEC for the separation of neutral and polar compounds, and a satisfactory performance was obtained. These results demonstrate that the poly(POSS-co-BDA) hybrid monolith is a good separation media in chromatographic separations of various types of compounds by both cLC and CEC. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterizing Peptide Neutral Losses Induced by Negative Electron-Transfer Dissociation (NETD)
Rumachik, Neil G.; McAlister, Graeme C.; Russell, Jason D.; Bailey, Derek J.; Wenger, Craig D.; Coon, Joshua J.
2012-01-01
We implemented negative electron-transfer dissociation (NETD) on a hybrid ion trap/Orbitrap mass spectrometer to conduct ion/ion reactions using peptide anions and radical reagent cations. In addition to sequence-informative ladders of a•- and x-type fragment ions, NETD generated intense neutral loss peaks corresponding to the entire or partial side-chain cleavage from amino acids constituting a given peptide. Thus, a critical step towards the characterization of this recently introduced fragmentation technique is a systematic study of synthetic peptides to identify common neutral losses and preferential fragmentation pathways. Examining 46 synthetic peptides with high mass accuracy and high resolution analysis permitted facile determination of the chemical composition of each neutral loss. We identified 19 unique neutral losses from 14 amino acids and three modified amino acids, and assessed the specificity and sensitivity of each neutral loss using a database of 1542 confidently identified peptides generated from NETD shotgun experiments employing high-pH separations and negative electrospray ionization. As residue-specific neutral losses indicate the presence of certain amino acids, we determined that many neutral losses have potential diagnostic utility. We envision this catalogue of neutral losses being incorporated into database search algorithms to improve peptide identification specificity and to further advance characterization of the acidic proteome. PMID:22290482
Bhatt, Darshak R; Maheria, Kalpana C; Parikh, Jigisha K
2015-12-30
A simple and new approach in cloud point extraction (CPE) method was developed for removal of picric acid (PA) by the addition of N,N,N,N',N',N'-hexaethyl-ethane-1,2-diammonium dibromide ionic liquid (IL) in non-ionic surfactant Triton X-114 (TX-114). A significant increase in extraction efficiency was found upon the addition of dicationic ionic liquid (DIL) at both nearly neutral and high acidic pH. The effects of different operating parameters such as pH, temperature, time, concentration of surfactant, PA and DIL on extraction of PA were investigated and optimum conditions were established. The extraction mechanism was also proposed. A developed Langmuir isotherm was used to compute the feed surfactant concentration required for the removal of PA up to an extraction efficiency of 90%. The effects of temperature and concentration of surfactant on various thermodynamic parameters were examined. It was found that the values of ΔG° increased with temperature and decreased with surfactant concentration. The values of ΔH° and ΔS° increased with surfactant concentration. The developed approach for DIL mediated CPE has proved to be an efficient and green route for extraction of PA from water sample. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Smyth, R. T.; Ballance, C. P.; Ramsbottom, C. A.; Johnson, C. A.; Ennis, D. A.; Loch, S. D.
2018-05-01
Neutral tungsten is the primary candidate as a wall material in the divertor region of the International Thermonuclear Experimental Reactor (ITER). The efficient operation of ITER depends heavily on precise atomic physics calculations for the determination of reliable erosion diagnostics, helping to characterize the influx of tungsten impurities into the core plasma. The following paper presents detailed calculations of the atomic structure of neutral tungsten using the multiconfigurational Dirac-Fock method, drawing comparisons with experimental measurements where available, and includes a critical assessment of existing atomic structure data. We investigate the electron-impact excitation of neutral tungsten using the Dirac R -matrix method, and by employing collisional-radiative models, we benchmark our results with recent Compact Toroidal Hybrid measurements. The resulting comparisons highlight alternative diagnostic lines to the widely used 400.88-nm line.
Measles Virus Hemagglutinin Protein Epitopes: The Basis of Antigenic Stability.
Tahara, Maino; Bürckert, Jean-Philippe; Kanou, Kazuhiko; Maenaka, Katsumi; Muller, Claude P; Takeda, Makoto
2016-08-02
Globally eliminating measles using available vaccines is biologically feasible because the measles virus (MV) hemagglutinin (H) protein is antigenically stable. The H protein is responsible for receptor binding, and is the main target of neutralizing antibodies. The immunodominant epitope, known as the hemagglutinating and noose epitope, is located near the receptor-binding site (RBS). The RBS also contains an immunodominant epitope. Loss of receptor binding correlates with an escape from the neutralization by antibodies that target the epitope at RBS. Another neutralizing epitope is located near RBS and is shielded by an N-linked sugar in certain genotype strains. However, human sera from vaccinees and measles patients neutralized all MV strains with similar efficiencies, regardless of the N-linked sugar modification or mutations at these epitopes. Two other major epitopes exist at a distance from RBS. One has an unstructured flexible domain with a linear neutralizing epitope. When MV-H forms a tetramer (dimer of dimers), these epitopes may form the dimer-dimer interface, and one of the two epitopes may also interact with the F protein. The neutralization mechanisms of antibodies that recognize these epitopes may involve inhibiting the H-F interaction or blocking the fusion cascade after MV-H binds to its receptors.
Lomonte, Bruno; Sasa, Mahmood; Rey-Suárez, Paola; Bryan, Wendy; Gutiérrez, José María
2016-05-05
Micrurus clarki is an uncommon coral snake distributed from the Southeastern Pacific of Costa Rica to Western Colombia, for which no information on its venom could be found in the literature. Using a 'venomics' approach, proteins of at least nine families were identified, with a moderate predominance of three-finger toxins (3FTx; 48.2%) over phospholipase A₂ (PLA₂; 36.5%). Comparison of this venom profile with those of other Micrurus species suggests that it may represent a more balanced, 'intermediate' type within the dichotomy between 3FTx- and PLA₂-predominant venoms. M. clarki venom was strongly cross-recognized and, accordingly, efficiently neutralized by an equine therapeutic antivenom against M. nigrocinctus, revealing their high antigenic similarity. Lethal activity for mice could be reproduced by a PLA₂ venom fraction, but, unexpectedly, not by fractions corresponding to 3FTxs. The most abundant venom component, hereby named clarkitoxin-I, was identified as a short-chain (type I) 3FTx, devoid of lethal effect in mice, whose target remains to be defined. Its amino acid sequence of 66 residues shows high similarity with predicted sequences of venom gland transcripts described for M. fulvius, M. browni, and M. diastema.
Chen, Kai; Xu, Jing; Luft, J Christopher; Tian, Shaomin; Raval, Jay S; DeSimone, Joseph M
2014-07-16
Lowering the modulus of hydrogel particles could enable them to bypass in vivo physical barriers that would otherwise filter particles with similar size but higher modulus. Incorporation of electrolyte moieties into the polymer network of hydrogel particles to increase the swelling ratio is a straightforward and quite efficient way to decrease the modulus. In addition, charged groups in hydrogel particles can also help secure cargoes. However, the distribution of charged groups on the surface of a particle can accelerate the clearance of particles. Herein, we developed a method to synthesize highly swollen microgels of precise size with near-neutral surface charge while retaining interior charged groups. A strategy was employed to enable a particle to be highly cross-linked with very small mesh size, and subsequently PEGylated to quench the exterior amines only without affecting the internal amines. Acidic degradation of the cross-linker allows for swelling of the particles to microgels with a desired size and deformability. The microgels fabricated demonstrated extended circulation in vivo compared to their counterparts with a charged surface, and could potentially be utilized in in vivo applications including as oxygen carriers or nucleic acid scavengers.
Development of a High-Content Orthopoxvirus Infectivity and Neutralization Assays
Gates, Irina; Olson, Victoria; Smith, Scott; Patel, Nishi; Damon, Inger; Karem, Kevin
2015-01-01
Currently, a number of assays measure Orthopoxvirus neutralization with serum from individuals, vaccinated against smallpox. In addition to the traditional plaque reduction neutralization test (PRNT), newer higher throughput assays are based on neutralization of recombinant vaccinia virus, expressing reporter genes such as β-galactosidase or green fluorescent protein. These methods could not be used to evaluate neutralization of variola virus, since genetic manipulations of this virus are prohibited by international agreements. Currently, PRNT is the assay of choice to measure neutralization of variola virus. However, PRNT assays are time consuming, labor intensive, and require considerable volume of serum sample for testing. Here, we describe the development of a high-throughput, cell-based imaging assay that can be used to measure neutralization, and characterize replication kinetics of various Orthopoxviruses, including variola, vaccinia, monkeypox, and cowpox. PMID:26426117
Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3SiO4.nH2O (M = H, Na).
Solbrå, S; Allison, N; Waite, S; Mikhalovsky, S V; Bortun, A I; Bortun, L N; Clearfield, A
2001-02-01
The ion exchange properties of the titanium silicate, M2Ti2O3SiO4.nH2O (M = H, Na), toward stable and radioactive 137Cs+ and 89Sr2+, have been examined. By studying the cesium and strontium uptake in the presence of NaNO3, CaCl2, NaOH, and HNO3 (in the range of 0.01-6 M) the sodium titanium silicate was found to be an efficient Cs+ ion exchanger in acid, neutral, and alkaline media and an efficient Sr2+ ion exchanger in neutral and alkaline media, which makes it promising for treatment of contaminated environmental media and biological systems.
Estimating the Efficiency of Phosphopeptide Identification by Tandem Mass Spectrometry
NASA Astrophysics Data System (ADS)
Hsu, Chuan-Chih; Xue, Liang; Arrington, Justine V.; Wang, Pengcheng; Paez Paez, Juan Sebastian; Zhou, Yuan; Zhu, Jian-Kang; Tao, W. Andy
2017-06-01
Mass spectrometry has played a significant role in the identification of unknown phosphoproteins and sites of phosphorylation in biological samples. Analyses of protein phosphorylation, particularly large scale phosphoproteomic experiments, have recently been enhanced by efficient enrichment, fast and accurate instrumentation, and better software, but challenges remain because of the low stoichiometry of phosphorylation and poor phosphopeptide ionization efficiency and fragmentation due to neutral loss. Phosphoproteomics has become an important dimension in systems biology studies, and it is essential to have efficient analytical tools to cover a broad range of signaling events. To evaluate current mass spectrometric performance, we present here a novel method to estimate the efficiency of phosphopeptide identification by tandem mass spectrometry. Phosphopeptides were directly isolated from whole plant cell extracts, dephosphorylated, and then incubated with one of three purified kinases—casein kinase II, mitogen-activated protein kinase 6, and SNF-related protein kinase 2.6—along with 16O4- and 18O4-ATP separately for in vitro kinase reactions. Phosphopeptides were enriched and analyzed by LC-MS. The phosphopeptide identification rate was estimated by comparing phosphopeptides identified by tandem mass spectrometry with phosphopeptide pairs generated by stable isotope labeled kinase reactions. Overall, we found that current high speed and high accuracy mass spectrometers can only identify 20%-40% of total phosphopeptides primarily due to relatively poor fragmentation, additional modifications, and low abundance, highlighting the urgent need for continuous efforts to improve phosphopeptide identification efficiency. [Figure not available: see fulltext.
Tracer constraints on organic particle transfer efficiency to the deep ocean
NASA Astrophysics Data System (ADS)
Weber, T. S.; Cram, J. A.; Deutsch, C. A.
2016-02-01
The "transfer efficiency" of sinking organic particles through the mesopelagic zone is a critical determinant of ocean carbon sequestration timescales, and the atmosphere-ocean partition of CO2. Our ability to detect large-scale variations in transfer efficiency is limited by the paucity of particle flux data from the deep ocean, and the potential biases of bottom-moored sediment traps used to collect it. Here we show that deep-ocean particle fluxes can be reconstructed by diagnosing the rate of phosphate accumulation and oxygen disappearance along deep circulation pathways in an observationally constrained Ocean General Circulation Model (OGCM). Combined with satellite and model estimates of carbon export from the surface ocean, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1000m and 2000m that is high ( 20%) at high latitudes and negligible (<5%) throughout subtropical gyres, with intermediate values in the tropics. This pattern is at odds with previous estimates of deep transfer efficiency derived from bottom-moored sediment traps, but is consistent with upper-ocean flux profiles measured by neutrally buoyant sediment traps, which show strong attenuation of low latitude particle fluxes over the top 500m. Mechanistically, the pattern can be explained by spatial variations in particle size distributions, and the temperature-dependence of remineralization. We demonstrate the biogeochemical significance of our findings by comparing estimates of deep-ocean carbon sequestration in a scenario with spatially varying transfer efficiency to one with a globally uniform "Martin-curve" particle flux profile.
NASA Astrophysics Data System (ADS)
Deane, R. P.; Obreschkow, D.; Heywood, I.
2015-09-01
Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21-cm radio emission from neutral hydrogen has only been detected directly out to z ˜ 0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed H I emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic H I discs (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind H I surveys with the SKA are predicted to be efficient at discovering lensed H I systems, increasingly so at z ≳ 2. This will be enabled by the combination of the magnification boosts, the steepness of the H I luminosity function at the high-mass end, and the fact that the H I spectral line is relatively isolated in frequency. These surveys will simultaneously provide a new technique for foreground lens selection and yield the highest redshift H I emission detections. More near term (and existing) cm-wave facilities will push the high-redshift H I envelope through targeted surveys of known lenses.
Rapid bursts and slow declines: on the possible evolutionary trajectories of enzymes.
Newton, Matilda S; Arcus, Vickery L; Patrick, Wayne M
2015-06-06
The evolution of enzymes is often viewed as following a smooth and steady trajectory, from barely functional primordial catalysts to the highly active and specific enzymes that we observe today. In this review, we summarize experimental data that suggest a different reality. Modern examples, such as the emergence of enzymes that hydrolyse human-made pesticides, demonstrate that evolution can be extraordinarily rapid. Experiments to infer and resurrect ancient sequences suggest that some of the first organisms present on the Earth are likely to have possessed highly active enzymes. Reconciling these observations, we argue that rapid bursts of strong selection for increased catalytic efficiency are interspersed with much longer periods in which the catalytic power of an enzyme erodes, through neutral drift and selection for other properties such as cellular energy efficiency or regulation. Thus, many enzymes may have already passed their catalytic peaks. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Direct recovery of boiler residue by combustion synthesis.
Nourbaghaee, Homan; Ghaderi Hamidi, Ahmad; Pourabdoli, Mahdi
2018-04-01
Boiler residue (BR) of thermal power plants is one of the important secondary sources for vanadium production. In this research, the aluminothermic self-propagating high-temperature synthesis (SHS) was used for recovering the transition metals of BR for the first time. The effects of extra aluminum as reducing agent and flux to aluminum ratio (CaO/Al) were studied and the efficiency of recovery and presence of impurities were measured. Aluminothermic reduction of vanadium and other metals was carried out successfully by SHS without any foreign heat source. Vanadium, iron, and nickel principally were reduced and gone into metallic master alloy as SHS product. High levels of efficiency (>80%) were achieved and the results showed that SHS has a great potential to be an industrial process for BR recovery. SHS produced two useful products. Metallic master alloy and fused glass slag that is applicable for ceramic industries. SHS can also neutralize the environmental threats of BR by a one step process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fukahori, S; Fujiwara, T; Funamizu, N; Matsukawa, K; Ito, R
2013-01-01
The adsorptive removal of seven sulfonamide antibiotics using the high-silica zeolite HSZ-385 from distilled water, synthetic urine and real porcine urine was investigated. The pH greatly affected the adsorption efficiency, and the amounts of all sulfonamide antibiotics adsorbed on HSZ-385 decreased at alkaline conditions compared with that at neutral conditions. During storage, the pH and ammonium-ion concentration increased with urea hydrolysis for porcine urine. We clarified that the adsorption efficiency of sulfonamides in synthetic urine was equivalent to that in distilled water, suggesting that adsorption behavior was not affected by coexistent ions. HSZ-385 could adsorb sulfonamide antibiotics in real porcine urine even though the non-purgeable organic carbon concentration of porcine urine was 4-7 g/L and was two orders of magnitude higher than those of sulfonamides (10 mg/L each). Moreover, the adsorption of sulfonamides reached equilibrium within 15 min, suggesting that HSZ-385 is a promising adsorbent for removing sulfonamides from porcine urine.
NASA Astrophysics Data System (ADS)
Bucay, Igal; Helal, Ahmed; Dunsky, David; Leviyev, Alex; Mallavarapu, Akhila; Sreenivasan, S. V.; Raizen, Mark
2017-04-01
Ionization of atoms and molecules is an important process in many applications and processes such as mass spectrometry. Ionization is typically accomplished by electron bombardment, and while it is scalable to large volumes, is also very inefficient due to the small cross section of electron-atom collisions. Photoionization methods can be highly efficient, but are not scalable due to the small ionization volume. Electric field ionization is accomplished using ultra-sharp conducting tips biased to a few kilovolts, but suffers from a low ionization volume and tip fabrication limitations. We report on our progress towards an efficient, robust, and scalable method of atomic and molecular ionization using orderly arrays of sharp, gold-doped silicon nanowires. As demonstrated in earlier work, the presence of the gold greatly enhances the ionization probability, which was attributed to an increase in available acceptor surface states. We present here a novel process used to fabricate the nanowire array, results of simulations aimed at optimizing the configuration of the array, and our progress towards demonstrating efficient and scalable ionization.
Nandagopal, Paneerselvam; Bhattacharya, Jayanta; Srikrishnan, Aylur K; Goyal, Rajat; Ravichandran Swathirajan, Chinnambedu; Patil, Shilpa; Saravanan, Shanmugam; Deshpande, Suprit; Vignesh, Ramachandran; Solomon, Sunil Suhas; Singla, Nikhil; Mukherjee, Joyeeta; Murugavel, Kailapuri G
2018-02-05
Broadly neutralizing antibodies (bnAbs) have been considered to be potent therapeutic tools and potential vaccine candidates to enable protection against various clades of human immunodeficiency virus (HIV). The generation of bnAbs has been associated with enhanced exposure to antigen, high viral load and low CD4+ T cell counts, among other factors. However, only limited data are available on the generation of bnAbs in viraemic non-progressors that demonstrate moderate to high viraemia. Further, since HIV-1 subtype C viruses account for more than 50 % of global HIV infections, the identification of bnAbs with novel specificities is crucial to enable the development of potent tools to aid in HIV therapy and prevention. In the present study, we analysed and compared the neutralization potential of responses in 70 plasma samples isolated from ART-naïve HIV-1 subtype C-infected individuals with various disease progression profiles against a panel of 30 pseudoviruses. Among the seven samples that exhibited a neutralization breadth of ≥70 %, four were identified as 'elite neutralizers', and three of these were from viraemic non-progressors while the fourth was from a typical progressor. Analysis of the neutralization specificities revealed that none of the four elite neutralizers were reactive to epitopes in the membrane proximal external region (MPER), CD4-binding site and V1V2 or V3 glycan. However, two of the four elite neutralizers exhibited enhanced sensitivity towards viruses lacking N332 glycan, indicating high neutralization potency. Overall, our findings indicate that the identification of potent neutralization responses with distinct epitope specificities is possible from the as yet unexplored Indian population, which has a high prevalence of HIV-1 subtype C infection.
Zhan, Jun; Tang, Fan; He, Mei; Fan, Jin; Xiao, Jing; Liu, Chang; Luo, Jing
2017-01-01
Unlike the strategy of cognitive regulation that relies heavily on the top-down control function of the prefrontal cortex (PFC), which was recently found may be critically impaired in stressful situations, traditional Chinese philosophy and medicine views different types of emotionality as having mutual promotion and counteraction (MPMC) relationships, implying a novel approach that requires less cognition to emotional regulation. Actually, our previous studies have indicated that anger responses could be successfully regulated via the induction of sadness, and this efficiency could not be influenced by stress, thus providing evidences for the hypothesis of “sadness counteracts anger” (SCA) proposed by the MPMC theory of emotionality (Zhan et al., 2015, 2017). In this study, we experimentally examined the MPMC hypothesis that “anger counteracts rumination” (ACR) which postulates that rumination may be alleviated by the anger emotion. In Study 1, all participants were initially caused state rumination and then induced anger, joy or neutral mood, the results showed that the rumination-related affect was alleviated after anger induction relative to that after joy or neutral mood induction. In Study 2, female participants with high trait rumination were recruited and divided into two groups for exposure to an anger or neutral emotion intervention, the result indicated that the anger intervention group exhibited a greater decline in trait rumination than the neutral emotion intervention group. These findings provided preliminary evidence supporting the hypothesis of ACR, which suggested a new strategy that employs less cognitive resources to regulating state and trait rumination by inducing anger. PMID:29249998
Chiou, Victor Y-Neng
2008-07-01
Immunotherapy for treatment of snake bites has been based on mammalian IgG. Recently, polyvalent ovine Fab has become available. However, papain, used in the Fab fragmentation process, is a human allergen. Avian eggs are a source of antibodies and a truncated version of IgY, IgY(DeltaFc), is found in ducks. In this study, we induced duck antibodies by using detoxified cobra and krait venoms and then purified IgY(DeltaFc) antibodies from the hyperimmune duck egg yolk. Ducks were used for immunization and their eggs were collected for antibody production. ICR strain female mice were used in the in vivo neutralization test. Monovalent antivenoms to Formosan cobra venom and Formosan multi-banded krait venom were raised and purified from hyper-immune duck egg yolk individually. The LD(50) of venoms were determined by subcutaneous injection of different venom doses into the mice. The survival/death ratios were recorded after 24 hours. The antibody purified from egg yolk showed high titer response to its immunogen (cobra or krait venom) by an ELISA. Overall, the antibodies from duck eggs efficiently protected mice from envenomations. The antivenoms purified from the egg yolk of ducks immunized with cobra venom and krait venom neutralized the lethal effects of these venoms with good efficacy in a mouse model. The antivenoms were effective in neutralizing lethality in mice injected at 4xLD(50) of venoms. These results indicate that antibodies derived from ducks can serve as a new source for the generation of antivenoms.
Processing of emotional information in the human subthalamic nucleus.
Buot, Anne; Welter, Marie-Laure; Karachi, Carine; Pochon, Jean-Baptiste; Bardinet, Eric; Yelnik, Jérôme; Mallet, Luc
2013-12-01
The subthalamic nucleus (STN) is an efficient target for treating patients with Parkinson's disease as well as patients with obsessive-compulsive disorder (OCD) using high frequency stimulation (HFS). In both Parkinson's disease and OCD patients, STN-HFS can trigger abnormal behaviours, such as hypomania and impulsivity. To investigate if this structure processes emotional information, and whether it depends on motor demands, we recorded subthalamic local field potentials in 16 patients with Parkinson's disease using deep brain stimulation electrodes. Recordings were made with and without dopaminergic treatment while patients performed an emotional categorisation paradigm in which the response varied according to stimulus valence (pleasant, unpleasant and neutral) and to the instruction given (motor, non-motor and passive). Pleasant, unpleasant and neutral stimuli evoked an event related potential (ERP). Without dopamine medication, ERP amplitudes were significantly larger for unpleasant compared with neutral pictures, whatever the response triggered by the stimuli; and the magnitude of this effect was maximal in the ventral part of the STN. No significant difference in ERP amplitude was observed for pleasant pictures. With dopamine medication, ERP amplitudes were significantly increased for pleasant compared with neutral pictures whatever the response triggered by the stimuli, while ERP amplitudes to unpleasant pictures were not modified. These results demonstrate that the ventral part of the STN processes the emotional valence of stimuli independently of the motor context and that dopamine enhances processing of pleasant information. These findings confirm the specific involvement of the STN in emotional processes in human, which may underlie the behavioural changes observed in patients with deep brain stimulation.
Zhan, Jun; Tang, Fan; He, Mei; Fan, Jin; Xiao, Jing; Liu, Chang; Luo, Jing
2017-01-01
Unlike the strategy of cognitive regulation that relies heavily on the top-down control function of the prefrontal cortex (PFC), which was recently found may be critically impaired in stressful situations, traditional Chinese philosophy and medicine views different types of emotionality as having mutual promotion and counteraction (MPMC) relationships, implying a novel approach that requires less cognition to emotional regulation. Actually, our previous studies have indicated that anger responses could be successfully regulated via the induction of sadness, and this efficiency could not be influenced by stress, thus providing evidences for the hypothesis of "sadness counteracts anger" (SCA) proposed by the MPMC theory of emotionality (Zhan et al., 2015, 2017). In this study, we experimentally examined the MPMC hypothesis that "anger counteracts rumination" (ACR) which postulates that rumination may be alleviated by the anger emotion. In Study 1, all participants were initially caused state rumination and then induced anger, joy or neutral mood, the results showed that the rumination-related affect was alleviated after anger induction relative to that after joy or neutral mood induction. In Study 2, female participants with high trait rumination were recruited and divided into two groups for exposure to an anger or neutral emotion intervention, the result indicated that the anger intervention group exhibited a greater decline in trait rumination than the neutral emotion intervention group. These findings provided preliminary evidence supporting the hypothesis of ACR, which suggested a new strategy that employs less cognitive resources to regulating state and trait rumination by inducing anger.
Baek, Seung-Ho; Kwon, Eunice Y; Kim, Yong Hwan; Hahn, Ji-Sook
2016-03-01
There is an increasing demand for microbial production of lactic acid (LA) as a monomer of biodegradable poly lactic acid (PLA). Both optical isomers, D-LA and L-LA, are required to produce stereocomplex PLA with improved properties. In this study, we developed Saccharomyces cerevisiae strains for efficient production of D-LA. D-LA production was achieved by expressing highly stereospecific D-lactate dehydrogenase gene (ldhA, LEUM_1756) from Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 in S. cerevisiae lacking natural LA production activity. D-LA consumption after glucose depletion was inhibited by deleting DLD1 encoding D-lactate dehydrogenase and JEN1 encoding monocarboxylate transporter. In addition, ethanol production was reduced by deleting PDC1 and ADH1 genes encoding major pyruvate decarboxylase and alcohol dehydrogenase, respectively, and glycerol production was eliminated by deleting GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase. LA tolerance of the engineered D-LA-producing strain was enhanced by adaptive evolution and overexpression of HAA1 encoding a transcriptional activator involved in weak acid stress response, resulting in effective D-LA production up to 48.9 g/L without neutralization. In a flask fed-batch fermentation under neutralizing condition, our evolved strain produced 112.0 g/L D-LA with a yield of 0.80 g/g glucose and a productivity of 2.2 g/(L · h).
NASA Astrophysics Data System (ADS)
Roy, J. C.; Ferri, A.; Salaün, F.; Giraud, S.; Chen, G.; Jinping, G.
2017-10-01
Chitosan-based emulsions were prepared at pH from 4.0 to 6.0. The zeta potential and droplet size were monitored at different pH. Double emulsions (wateroil- water) were observed due to the stiff conformation of chitosan at pH 4.0. At pH 5.0, the emulsion droplets were the smallest (2.9 μm) of the experimental pH range. The emulsion droplets were well dispersed due to high surface charge of chitosan (for example, +50 mV at pH 5.5) in entire pH range. The emulsion was treated with carboxymethyl cellulose (CMC) for neutralizing the charged chitosan on the surface of emulsion droplets. Above 10×10-2 mg/ml of CMC, no change in zeta potential was observed indicating no more free chitosan existed after neutralization with CMC. The emulsion was then crosslinked with different amount of glutaraldehyde. Upon increasing the amount of glutaraldehyde, the amount of core content inside the microcapsule and encapsulation efficiency of shell materials decreased gradually. The Dynamic Scanning Calorimetry data confirmed no interaction between core and shell material in the microencapsulation process. The thermal degradation of the microcapsules was examined by thermogravimetric analysis and a gradual decrease in the degradation temperature upon increasing glutaraldehyde concentration was found. The tuning of CMC concentration can provide valuable information regarding stable emulsion and efficient microcapsule formulation via coacervation.
Effect of pH on polyethylene glycol (PEG)-induced silk microsphere formation for drug delivery.
Wu, Jianbing; Xie, Xusheng; Zheng, Zhaozhu; Li, Gang; Wang, Xiaoqin; Wang, Yansong
2017-11-01
The effects of changing solution pH in the range of 3.6-10.0 during a one-step silk microsphere preparation process, by mixing silk and polyethylene glycol (PEG), was assessed. The microspheres prepared at low pH (3.6) showed a more homogeneous size (1-3μm) and less porous texture than those prepared at neutral pH. High pH (10.0) inhibited microsphere formation, yielding small and inhomogeneous microspheres. Compared to neutral pH, low pH also increased the content of silk crystalline β-sheet structure from approx. 30% to above 40%. As a result, the microspheres produced at low pH were more thermally stable as well as resistant to chemical (8M urea) and enzymatic (protease XIV) degradation when compared to microspheres prepared at neutral pH. Doxorubicin hydrochloride (DOX) and curcumin (CUR) were successfully loaded in silk microspheres via control of solution pH. The loading efficiency of DOX was approx. 95% at pH7.0 and approx. 60% for CUR at pH3.6, attributed to charge-charge interactions and hydrophobic interactions between the silk and drug molecules, respectively. When PBS, pH7.4, was used as a medium for release studies, the pH3.6 microspheres released both drugs more slowly than the pH7.0 microspheres, likely due to the high content of crystalline β-sheet structure that enhanced drug-silk interactions as well as restricted drug molecule diffusion. Copyright © 2017. Published by Elsevier B.V.
Perez, Elizabeth M.; Foley, Joslyn; Tison, Timelia; Silva, Rute; Ogembo, Javier Gordon
2017-01-01
Previous Epstein-Barr virus (EBV) prophylactic vaccines based on the major surface glycoprotein gp350/220 as an immunogen have failed to block viral infection in humans, suggesting a need to target other viral envelope glycoproteins. In this study, we reasoned that incorporating gH/gL or gB, critical glycoproteins for viral fusion and entry, on the surface of a virus-like particle (VLP) would be more immunogenic than gp350/220 for generating effective neutralizing antibodies to prevent viral infection of both epithelial and B cell lines. To boost the humoral response and trigger cell-mediated immunity, EBV nuclear antigen 1 (EBNA1) and latent membrane protein 2 (LMP2), intracellular latency proteins expressed in all EBV-infected cells, were also included as critical components of the polyvalent EBV VLP. gH/gL-EBNA1 and gB-LMP2 VLPs were efficiently produced in Chinese hamster ovary cells, an FDA-approved vehicle for mass-production of biologics. Immunization with gH/gL-EBNA1 and gB-LMP2 VLPs without adjuvant generated both high neutralizing antibody titers in vitro and EBV-specific T-cell responses in BALB/c mice. These data demonstrate that EBV glycoprotein(s)-based VLPs have excellent immunogenicity, and represent a potentially safe vaccine that will be invaluable not only in preventing EBV infection, but importantly, in preventing and treating the 200,000 cases of EBV-associated cancers that occur globally every year. PMID:27926486
Efficient simulation and likelihood methods for non-neutral multi-allele models.
Joyce, Paul; Genz, Alan; Buzbas, Erkan Ozge
2012-06-01
Throughout the 1980s, Simon Tavaré made numerous significant contributions to population genetics theory. As genetic data, in particular DNA sequence, became more readily available, a need to connect population-genetic models to data became the central issue. The seminal work of Griffiths and Tavaré (1994a , 1994b , 1994c) was among the first to develop a likelihood method to estimate the population-genetic parameters using full DNA sequences. Now, we are in the genomics era where methods need to scale-up to handle massive data sets, and Tavaré has led the way to new approaches. However, performing statistical inference under non-neutral models has proved elusive. In tribute to Simon Tavaré, we present an article in spirit of his work that provides a computationally tractable method for simulating and analyzing data under a class of non-neutral population-genetic models. Computational methods for approximating likelihood functions and generating samples under a class of allele-frequency based non-neutral parent-independent mutation models were proposed by Donnelly, Nordborg, and Joyce (DNJ) (Donnelly et al., 2001). DNJ (2001) simulated samples of allele frequencies from non-neutral models using neutral models as auxiliary distribution in a rejection algorithm. However, patterns of allele frequencies produced by neutral models are dissimilar to patterns of allele frequencies produced by non-neutral models, making the rejection method inefficient. For example, in some cases the methods in DNJ (2001) require 10(9) rejections before a sample from the non-neutral model is accepted. Our method simulates samples directly from the distribution of non-neutral models, making simulation methods a practical tool to study the behavior of the likelihood and to perform inference on the strength of selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lao, D. B.; Galan, B. R.; Linehan, J. C.
2016-08-10
Combining carbon capture and reduction is an efficient strategy to alleviate the high energy requirements for seperation, compression, and storage of CO2 prior to reduction. Recent studies have shown that catalytic hydrogenations of CO2 can be performed without added pressure of CO2 using switchable ionic liquids. It’s ambiguous whether the alkylcarbonate (captured CO2) is reduced as it is in dynamic equilibrium with neutral CO2 in solution. New studies are presented to elucidate the reactivity of CO2 and CO2 captured in solution.
Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots.
Bracker, A S; Stinaff, E A; Gammon, D; Ware, M E; Tischler, J G; Shabaev, A; Efros, Al L; Park, D; Gershoni, D; Korenev, V L; Merkulov, I A
2005-02-04
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots
NASA Astrophysics Data System (ADS)
Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.
2005-02-01
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Conversion of Azides into Diazo Compounds in Water
Chou, Ho-Hsuan; Raines, Ronald T.
2013-01-01
Diazo compounds are in widespread use in synthetic organic chemistry, but have untapped potential in chemical biology. We report on the design and optimization of a phosphinoester that mediates the efficient conversion of azides into diazo compounds in phosphate buffer at neutral pH and room temperature. High yields are maintained in the presence of common nucleophilic or electrophilic functional groups, and reaction progress can be monitored by colorimetry. As azido groups are easy to install and maintain in biopolymers or their ligands, this new mode of azide reactivity could have substantial utility in chemical biology. PMID:24053717
Holographic heat engine within the framework of massive gravity
NASA Astrophysics Data System (ADS)
Mo, Jie-Xiong; Li, Gu-Qiang
2018-05-01
Heat engine models are constructed within the framework of massive gravity in this paper. For the four-dimensional charged black holes in massive gravity, it is shown that the existence of graviton mass improves the heat engine efficiency significantly. The situation is more complicated for the five-dimensional neutral black holes since the constant which corresponds to the third massive potential also contributes to the efficiency. It is also shown that the existence of graviton mass can improve the heat engine efficiency. Moreover, we probe how the massive gravity influences the behavior of the heat engine efficiency approaching the Carnot efficiency.
NASA Technical Reports Server (NTRS)
Rafelski, Marc; Gardner, Jonathan P.; Fumagalli, Michele; Neeleman, Marcel; Teplitz, Harry I.; Grogin, Norman; Koekemoer, Anton M.; Scarlata, Claudia
2016-01-01
Current observational evidence suggests that the star formation rate (SFR)efficiency of neutral atomic hydrogen gas measured in damped Ly(alpha) systems (DLAs) at z approx. 3 is more than 10 times lower than predicted by the Kennicutt-Schmidt (KS)relation. To understand the origin of this deficit, and to investigate possible evolution with redshift and galaxy properties, we measure the SFR efficiency of atomic gas at z approx. 1, z approx. 2, and z approx. 3 around star-forming galaxies. We use new robust photometric redshifts in the Hubble Ultra Deep Field to create galaxy stacks in these three redshift bins, and measure the SFR efficiency by combining DLA absorber statistics with the observed rest-frame UV emission in the galaxies' outskirts. We find that the SFR efficiency of H I gas at z > 1 is approx. 1%-3% of that predicted by the KS relation. Contrary to simulations and models that predict a reduced SFR efficiency with decreasing metallicity and thus with increasing redshift, we find no significant evolution in the SFR efficiency with redshift. Our analysis instead suggests that the reduced SFR efficiency is driven by the low molecular content of this atomic-dominated phase, with metallicity playing a secondary effect in regulating the conversion between atomic and molecular gas. This interpretation is supported by the similarity between the observed SFR efficiency and that observed in local atomic-dominated gas, such as in the outskirts of local spiral galaxies and local dwarf galaxies.
Yang, Zhen-Zhen
2014-01-01
Summary Highly efficient CO2 absorption was realized through formation of zwitterionic adducts, combining synthetic strategies to ionic liquids (ILs) and coordination. The essence of our strategy is to make use of multidentate cation coordination between Li+ and an organic base. Also PEG-functionalized organic bases were employed to enhance the CO2-philicity. The ILs were reacted with CO2 to form the zwitterionic adduct. Coordination effects between various lithium salts and neutral ligands, as well as the CO2 capacity of the chelated ILs obtained were investigated. For example, the CO2 capacity of PEG150MeBu2N increased steadily from 0.10 to 0.66 (mol CO2 absorbed per mol of base) through the formation of zwitterionic adducts being stabilized by Li+. PMID:25246955
Chapter A6. Section 6.6. Alkalinity and Acid Neutralizing Capacity
Rounds, Stewart A.; Wilde, Franceska D.
2002-01-01
Alkalinity (determined on a filtered sample) and Acid Neutralizing Capacity (ANC) (determined on a whole-water sample) are measures of the ability of a water sample to neutralize strong acid. Alkalinity and ANC provide information on the suitability of water for uses such as irrigation, determining the efficiency of wastewater processes, determining the presence of contamination by anthropogenic wastes, and maintaining ecosystem health. In addition, alkalinity is used to gain insights on the chemical evolution of an aqueous system. This section of the National Field Manual (NFM) describes the USGS field protocols for alkalinity/ANC determination using either the inflection-point or Gran function plot methods, including calculation of carbonate species, and provides guidance on equipment selection.
System catalytic neutralization control of combustion engines waste gases in mining technologies
NASA Astrophysics Data System (ADS)
Korshunov, G. I.; Solnitsev, R. I.
2017-10-01
The paper presents the problems solution of the atmospheric air pollution with the exhaust gases of the internal combustion engines, used in mining technologies. Such engines are used in excavators, bulldozers, dump trucks, diesel locomotives in loading and unloading processes and during transportation of minerals. NOx, CO, CH emissions as the waste gases occur during engine operation, the concentration of which must be reduced to the standard limits. The various methods and means are used for the problem solution, one of which is neutralization based on platinum catalysts. A mathematical model of a controlled catalytic neutralization system is proposed. The simulation results confirm the increase in efficiency at start-up and low engine load and the increase in the catalyst lifetime.
Bandura, D R; Baranov, V I; Tanner, S D
2001-07-01
A low-level review of the fundamentals of ion-molecule interactions is presented. These interactions are used to predict the efficiencies of collisional fragmentation, energy damping and reaction for a variety of neutral gases as a function of pressure in a rf-driven collision/reaction cell. It is shown that the number of collisions increases dramatically when the ion energies are reduced to near-thermal (< 0.1 eV), because of the ion-induced dipole and ion-dipole interaction. These considerations suggest that chemical reaction can be orders of magnitude more efficient at improving the analyte signal/background ratio than can collisional fragmentation. Considerations that lead to an appropriate selection of type of gas, operating pressure, and ion energies for efficient operation of the cell for the alleviation of spectral interferences are discussed. High efficiency (large differences between reaction efficiencies of the analyte and interference ions, and concomitant suppression of secondary chemistry) might be required to optimize the chemical resolution (determination of an analyte in the presence of an isobaric interference) when using ion-molecule chemistry to suppress the interfering ion. In many instances atom transfer to the analyte, which shifts the analytical m/z by the mass of the atom transferred, provides high chemical resolution, even when the efficiency of reaction is relatively low. Examples are given of oxidation, hydroxylation, and chlorination of analyte ions (V+, Fe+, As+, Se+, Sr+, Y+, and Zr+) to improve the capability of determination of complex samples. Preliminary results are given showing O-atom abstraction by CO from CaO+ to enable the determination of Fe in high-Ca samples.
Production of high-density highly-ionized helicon plasmas in the ProtoMPEX
NASA Astrophysics Data System (ADS)
Caneses, J. F.; Kafle, N.; Showers, M.; Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.; Bigelow, T.; Rapp, J.
2017-10-01
High-density (2-6e19 m-3) Deuterium helicon plasmas in the ProtoMPEX have been produced that successfully use differential pumping to produce neutral gas pressures suitable for testing the RF electron and ion heating concepts. To minimize collisional losses when heating electrons and ions, plasmas with very low neutral gas content (<< 0.1 Pa) in the heating sections are required. This requirement is typically not compatible with the neutral gas pressures (1-2 Pa) commonly used in high-density light-ion helicon sources. By using skimmers, a suitable gas injection scheme and long duration discharges (>0.3 s), high-density plasmas with very low neutral gas pressures (<< 0.1 Pa) in the RF heating sections have been produced. Measurements indicate the presence of a highly-ionized plasma column and that discharges lasting at least 0.3 s are required to significantly reduce the neutral gas pressure in the RF heating sections to levels suitable for investigating electron/ion RF heating concepts in this linear configuration. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.
Possibility of deriving the Hermean surface composition through low energy neutral atom detection
NASA Astrophysics Data System (ADS)
Milillo, A.; Orsini, S.; Massetti, S.; Mura, A.; de Angelis, E.; Lammer, H.; Wurz, P.; di Lellis, A. M.
2003-04-01
The release processes induced by ion sputtering and/or micrometeoroids impacts induces erosion of the Mercury surface. The sputtered neutrals exhibit spectra peaked at low energies (few eV). Nevertheless, a high-energy neutral signal also emerges, due to these release processes. In principle, the directional neutral signal can be detected, providing information on the local surface composition. In this study, we simulate the neutral signal due to ion sputtering below the cusp regions, assuming a highly anisotropic surface composition. The NPA SERENA / ELENA instrument proposed on board the ESA mission BepiColombo is a nadir-pointing 1-D sensor, able to detect neutral atoms, form tens of eV to about 5 keV with a capability of resolving the major species. The ELENA field-of-view (FOV) is ~ 60 degrees, with the FOV plane perpendicular to the MPO orbital plane. Here, we speculate on the possibility of discriminating composition anisotropies by detecting the high-energy portion of the sputtered signal.
Nam, Sungho; Seo, Jooyeok; Woo, Sungho; Kim, Wook Hyun; Kim, Hwajeong; Bradley, Donal D. C.; Kim, Youngkyoo
2015-01-01
Polymer solar cells have been spotlighted due to their potential for low-cost manufacturing but their efficiency is still less than required for commercial application as lightweight/flexible modules. Forming a dipole layer at the electron-collecting interface has been suggested as one of the more attractive approaches for efficiency enhancement. However, only a few dipole layer material types have been reported so far, including only one non-ionic (charge neutral) polymer. Here we show that a further neutral polymer, namely poly(2-ethyl-2-oxazoline) (PEOz) can be successfully used as a dipole layer. Inclusion of a PEOz layer, in particular with a nanodot morphology, increases the effective work function at the electron-collecting interface within inverted solar cells and thermal annealing of PEOz layer leads to a state-of-the-art 10.74% efficiency for single-stack bulk heterojunction blend structures comprising poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] as donor and [6,6]-phenyl-C71-butyric acid methyl ester as acceptor. PMID:26656447
Ion collector design for an energy recovery test proposal with the negative ion source NIO1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Variale, V., E-mail: vincenzo.variale@ba.infn.it; Cavenago, M.; Agostinetti, P.
2016-02-15
Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D{sup −} beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D{sup −} and D{sup +}), so that an ion beammore » energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H{sup −} each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.« less
Yang, Yong; Wang, Mei; Zhang, Peili; Wang, Weihan; Han, Hongxian; Sun, Licheng
2016-11-09
Modification of p-type Si surface by active and stable earth-abundant electrocatalysts is an effective strategy to improve the sluggish kinetics for the hydrogen evolution reaction (HER) at p-Si/electrolyte interface and to develop highly efficient and low-cost photocathodes for hydrogen production from water. To this end, Si nanowire (Si-NW) array has been loaded with highly efficient electrocatalysts, M-B (M = Ni, Co), by facile and quick electroless plating to build M-B catalyst-modified Si nanowire-array-textured photocathodes for water reduction to H 2 . Compared with the bare Si-NW array, composite Si-NWs/M-B arrays display evidently enhanced photoelectrochemical (PEC) performance. The onset potential (V phon ) of cathodic photocurrent is positively shifted by 530-540 mV to 0.44-0.45 V vs RHE, and the short-circuit current density (J sc ) is up to 19.5 mA cm -2 in neutral buffer solution under simulated 1 sun illumination. Impressively, the half-cell photopower conversion efficiencies (η hc ) of the optimized Si-NWs/Co-B (2.53%) and Si-NWs/Ni-B (2.45%) are comparable to that of Si-NWs/Pt (2.46%). In terms of the large J sc , V phon , and η hc values, as well as the high Faradaic efficiency, Si-NWs/M-B electrodes are among the top performing Si photocathodes which are modified with HER electrocatalysts but have no buried solid/solid junction.
NASA Technical Reports Server (NTRS)
DeVor, R. W.; Santiago-Maldonado, E.; Parkerson, J. K.
2010-01-01
A candidate scrubber media, alpha-ketoglutaric acid (aKGA) adsorbed onto a silica-based substrate was examined as a potential alternative to the hydrazine-family hypergolic fuel neutralization techniques currently utilized at NASA/Kennedy Space Center (KSC). Helvenson et. al. has indicated that aKGA will react with hydrazines to produce non-hazardous, possibly biodegradable products. Furthermore, the authors have previously tested and demonstrated the use of aKGA aqueous solutions as a replacement neutralizing agent for citric acid, which is currently used as a scrubbing agent in liquid scrubbers at KSC. Specific properties examined include reaction efficiency, the loading capacity of aKGA onto various silica substrates, and the comparison of aKGA media performance to that of the citric acid vapor scrubber systems at KSC and a commercial vapor scrubber media. Preliminary investigations showed hydrophobic aerogel particles to be an ideal substrate for the deposition of the aKGA. Current studies have shown that the laboratory produced aKGA-Aerogel absorbent media are more efficient and cost effective than a commercially available fixed bed scrubber media, although much less cost effective than liquid-based citric acid scrubbers (although possibly safer and less labor intensive). A comparison of all three alternative scrubber technologies (liquid aKGA, solid-phase aKGA, and commercially available sorbent materials) is given considering both hypergolic neutralization capabilities and relative costs (as compared to the current citric acid scrubbing technology in use at NASA/KSC).
Aggregate complexes of HIV-1 induced by multimeric antibodies.
Stieh, Daniel J; King, Deborah F; Klein, Katja; Liu, Pinghuang; Shen, Xiaoying; Hwang, Kwan Ki; Ferrari, Guido; Montefiori, David C; Haynes, Barton; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Michael, Nelson L; Robb, Merlin L; Kim, Jerome H; Denny, Thomas N; Tomaras, Georgia D; Shattock, Robin J
2014-10-02
Antibody mediated viral aggregation may impede viral transfer across mucosal surfaces by hindering viral movement in mucus, preventing transcytosis, or reducing inter-cellular penetration of epithelia thereby limiting access to susceptible mucosal CD4 T cells and dendritic cells. These functions may work together to provide effective immune exclusion of virus from mucosal tissue; however little is known about the antibody characteristics required to induce HIV aggregation. Such knowledge may be critical to the design of successful immunization strategies to facilitate viral immune exclusion at the mucosal portals of entry. The potential of neutralizing and non-neutralizing IgG and IgA monoclonals (mAbs) to induce HIV-1 aggregation was assessed by Dynamic light scattering (DLS). Although neutralizing and non-neutralizing IgG mAbs and polyclonal HIV-Ig efficiently aggregated soluble Env trimers, they were not capable of forming viral aggregates. In contrast, dimeric (but not monomeric) IgA mAbs induced stable viral aggregate populations that could be separated from uncomplexed virions. Epitope specificity influenced both the degree of aggregation and formation of higher order complexes by dIgA. IgA purified from serum of uninfected RV144 vaccine trial responders were able to efficiently opsonize viral particles in the absence of significant aggregation, reflective of monomeric IgA. These results collectively demonstrate that dIgA is capable of forming stable viral aggregates providing a plausible basis for testing the effectiveness of aggregation as a potential protection mechanism at the mucosal portals of viral entry.
Du, Lanying; Jin, Lei; Zhao, Guangyu; Sun, Shihui; Li, Junfeng; Yu, Hong; Li, Ye; Zheng, Bo-Jian; Liddington, Robert C.
2013-01-01
The unabated circulation of the highly pathogenic avian influenza A virus/H5N1 continues to be a serious threat to public health worldwide. Because of the high frequency of naturally occurring mutations, the emergence of H5N1 variants with high virulence has raised great concerns about the potential transmissibility of the virus in humans. Recent studies have shown that laboratory-mutated or reassortant H5N1 viruses could be efficiently transmitted among mammals, particularly ferrets, the best animal model for humans. Thus, it is critical to establish effective strategies to combat future H5N1 pandemics. In this study, we identified a broadly neutralizing monoclonal antibody (MAb), HA-7, that potently neutralized all tested strains of H5N1 covering clades 0, 1, 2.2, 2.3.4, and 2.3.2.1 and completely protected mice against lethal challenges of H5N1 viruses from clades 1 and 2.3.4. HA-7 specifically targeted the globular head of the H5N1 virus hemagglutinin (HA). Using electron microscopy technology with three-dimensional reconstruction (3D-EM), we discovered that HA-7 bound to a novel and highly conserved conformational epitope that was centered on residues 81 to 83 and 117 to 122 of HA1 (H5 numbering). We further demonstrated that HA-7 inhibited viral entry during postattachment events but not at the receptor-binding step, which is fully consistent with the 3D-EM result. Taken together, we propose that HA-7 could be humanized as an effective passive immunotherapeutic agent for antiviral stockpiling for future influenza pandemics caused by emerging unpredictable H5N1 strains. Our study also provides a sound foundation for the rational design of vaccines capable of inducing broad-spectrum immunity against H5N1. PMID:23221567
PAPER-64 Constraints On Reionization. II. The Temperature of the z =8.4 Intergalactic Medium
NASA Astrophysics Data System (ADS)
Pober, Jonathan C.; Ali, Zaki S.; Parsons, Aaron R.; McQuinn, Matthew; Aguirre, James E.; Bernardi, Gianni; Bradley, Richard F.; Carilli, Chris L.; Cheng, Carina; DeBoer, David R.; Dexter, Matthew R.; Furlanetto, Steven R.; Grobbelaar, Jasper; Horrell, Jasper; Jacobs, Daniel C.; Klima, Patricia J.; Kohn, Saul A.; Liu, Adrian; MacMahon, David H. E.; Maree, Matthys; Mesinger, Andrei; Moore, David F.; Razavi-Ghods, Nima; Stefan, Irina I.; Walbrugh, William P.; Walker, Andre; Zheng, Haoxuan
2015-08-01
We present constraints on both the kinetic temperature of the intergalactic medium (IGM) at z = 8.4, and on models for heating the IGM at high-redshift with X-ray emission from the first collapsed objects. These constraints are derived using a semi-analytic method to explore the new measurements of the 21 cm power spectrum from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), which were presented in a companion paper, Ali et al. Twenty-one cm power spectra with amplitudes of hundreds of mK2 can be generically produced if the kinetic temperature of the IGM is significantly below the temperature of the cosmic microwave background (CMB); as such, the new results from PAPER place lower limits on the IGM temperature at z = 8.4. Allowing for the unknown ionization state of the IGM, our measurements find the IGM temperature to be above ≈5 K for neutral fractions between 10% and 85%, above ≈7 K for neutral fractions between 15% and 80%, or above ≈10 K for neutral fractions between 30% and 70%. We also calculate the heating of the IGM that would be provided by the observed high redshift galaxy population, and find that for most models, these galaxies are sufficient to bring the IGM temperature above our lower limits. However, there are significant ranges of parameter space that could produce a signal ruled out by the PAPER measurements; models with a steep drop-off in the star formation rate density at high redshifts or with relatively low values for the X-ray to star formation rate efficiency of high redshift galaxies are generally disfavored. The PAPER measurements are consistent with (but do not constrain) a hydrogen spin temperature above the CMB temperature, a situation which we find to be generally predicted if galaxies fainter than the current detection limits of optical/NIR surveys are included in calculations of X-ray heating.
NASA Technical Reports Server (NTRS)
Heard, Walter L., Jr.; Lake, Mark S.
1993-01-01
A procedure that enables astronauts in extravehicular activity (EVA) to perform efficient on-orbit assembly of large paraboloidal precision reflectors is presented. The procedure and associated hardware are verified in simulated Og (neutral buoyancy) assembly tests of a 14 m diameter precision reflector mockup. The test article represents a precision reflector having a reflective surface which is segmented into 37 individual panels. The panels are supported on a doubly curved tetrahedral truss consisting of 315 struts. The entire truss and seven reflector panels were assembled in three hours and seven minutes by two pressure-suited test subjects. The average time to attach a panel was two minutes and three seconds. These efficient assembly times were achieved because all hardware and assembly procedures were designed to be compatible with EVA assembly capabilities.
The influence of personality on neural mechanisms of observational fear and reward learning
Hooker, Christine I.; Verosky, Sara C.; Miyakawa, Asako; Knight, Robert T.; D’Esposito, Mark
2012-01-01
Fear and reward learning can occur through direct experience or observation. Both channels can enhance survival or create maladaptive behavior. We used fMRI to isolate neural mechanisms of observational fear and reward learning and investigate whether neural response varied according to individual differences in neuroticism and extraversion. Participants learned object-emotion associations by observing a woman respond with fearful (or neutral) and happy (or neutral) facial expressions to novel objects. The amygdala-hippocampal complex was active when learning the object-fear association, and the hippocampus was active when learning the object-happy association. After learning, objects were presented alone; amygdala activity was greater for the fear (vs. neutral) and happy (vs. neutral) associated object. Importantly, greater amygdala-hippocampal activity during fear (vs. neutral) learning predicted better recognition of learned objects on a subsequent memory test. Furthermore, personality modulated neural mechanisms of learning. Neuroticism positively correlated with neural activity in the amygdala and hippocampus during fear (vs. neutral) learning. Low extraversion/high introversion was related to faster behavioral predictions of the fearful and neutral expressions during fear learning. In addition, low extraversion/high introversion was related to greater amygdala activity during happy (vs. neutral) learning, happy (vs. neutral) object recognition, and faster reaction times for predicting happy and neutral expressions during reward learning. These findings suggest that neuroticism is associated with an increased sensitivity in the neural mechanism for fear learning which leads to enhanced encoding of fear associations, and that low extraversion/high introversion is related to enhanced conditionability for both fear and reward learning. PMID:18573512
Overview of the design of the ITER heating neutral beam injectors
NASA Astrophysics Data System (ADS)
Hemsworth, R. S.; Boilson, D.; Blatchford, P.; Dalla Palma, M.; Chitarin, G.; de Esch, H. P. L.; Geli, F.; Dremel, M.; Graceffa, J.; Marcuzzi, D.; Serianni, G.; Shah, D.; Singh, M.; Urbani, M.; Zaccaria, P.
2017-02-01
The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7 MW of 1 MeV D0 or 0.87 MeV H0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam (NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation of H- and D- remains acceptable (≈56%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: • negative ions are harder to create so that they can be extracted and accelerated from the ion source; • electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; • negative ions are easily lost by collisions with the background gas in the accelerator; • electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; • positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; • electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and the NB cell, where the beams are housed, will be activated and all maintenance will have to be performed remotely. This paper describes the design of the HNB injectors, but not the associated power supplies, cooling system, cryogenic system etc, or the high voltage bushing which separates the vacuum of the beamline from the high pressure SF6 of the high voltage (1 MV) transmission line, through which the power, gas and cooling water are supplied to the beam source. Also the magnetic field reduction system is not described.
Craig, S R; Gatlin, D M
1995-12-01
The ability of juvenile red drum (Sciaenops ocellatus) to utilize medium-chain triglycerides (MCT) and other saturated dietary lipids was investigated in two 6-wk feeding experiments. Diets contained solvent-extracted menhaden fish meal to which menhaden fish oil (control), coconut oil, corn oil, beef tallow or various levels of MCT as tricaprylin (30, 46, 65 and 80% of total lipid) were added. Diets were fed to triplicate groups of juvenile red drum in aquaria containing brackish (6%) water. In the first feeding experiment, red drum fed the control diet had the greatest weight gains and feed efficiencies. Weight gain, but not feed was slightly, of fish fed corn oil and fish fed coconut oil was slightly (P < 0.05) lower. In the second feeding experiment, fish fed coconut oil and those fed beef tallow had significantly higher weight gains and feed efficiencies than did fish fed the control diet. Fish fed the diets containing tricaprylin at all inclusion levels in both feeding experiments had significantly lower weight gains and feed efficiencies and higher levels of beta-hydroxybutyric acid in plasma. Fish fed diets with high levels of MCT also had lower (n-3) and greater (n-6) fatty acid levels in the neutral lipid fraction of muscle tissue compared with fish fed the control diet. Coconut oil and beef tallow consistently resulted in greater liver lipid deposition but had variable effects on other tissue indices. Saturated dietary lipids had variable effects on fatty acid composition of muscle polar and neutral lipid fractions.(ABSTRACT TRUNCATED AT 250 WORDS)
Gadolinium-based nanoparticles for highly efficient T1-weighted magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Jang, Eunji; Han, Seungmin; Lee, Kwangyeol; Suh, Jin-Suck; Haam, Seungjoo; Huh, Yong-Min
2014-06-01
We developed Pyrene-Gadolinium (Py-Gd) nanoparticles as pH-sensitive magnetic resonance imaging (MRI) contrast agents capable of showing a high-Mr signal in cancer-specific environments, such as acidic conditions. Py-Gd nanoparticles were prepared by coating Py-Gd, which is a complex of gadolinium with pyrenyl molecules, with pyrenyl polyethyleneglycol PEG using a nano-emulsion method. These particles show better longitudinal relaxation time (T1) MR signals in acidic conditions than they do in neutral conditions. Furthermore, the particles exhibit biocompatibility and MR contrast effects in both in vitro and in vivo studies. From these results, we confirm that Py-Gd nanoparticles have the potential to be applied for accurate cancer diagnosis and therapy.
Measles Virus Hemagglutinin Protein Epitopes: The Basis of Antigenic Stability
Tahara, Maino; Bürckert, Jean-Philippe; Kanou, Kazuhiko; Maenaka, Katsumi; Muller, Claude P.; Takeda, Makoto
2016-01-01
Globally eliminating measles using available vaccines is biologically feasible because the measles virus (MV) hemagglutinin (H) protein is antigenically stable. The H protein is responsible for receptor binding, and is the main target of neutralizing antibodies. The immunodominant epitope, known as the hemagglutinating and noose epitope, is located near the receptor-binding site (RBS). The RBS also contains an immunodominant epitope. Loss of receptor binding correlates with an escape from the neutralization by antibodies that target the epitope at RBS. Another neutralizing epitope is located near RBS and is shielded by an N-linked sugar in certain genotype strains. However, human sera from vaccinees and measles patients neutralized all MV strains with similar efficiencies, regardless of the N-linked sugar modification or mutations at these epitopes. Two other major epitopes exist at a distance from RBS. One has an unstructured flexible domain with a linear neutralizing epitope. When MV-H forms a tetramer (dimer of dimers), these epitopes may form the dimer-dimer interface, and one of the two epitopes may also interact with the F protein. The neutralization mechanisms of antibodies that recognize these epitopes may involve inhibiting the H-F interaction or blocking the fusion cascade after MV-H binds to its receptors. PMID:27490564
Absolute and angular efficiencies of a microchannel-plate position-sensitive detector
NASA Technical Reports Server (NTRS)
Gao, R. S.; Gibner, P. S.; Newman, J. H.; Smith, K. A.; Stebbings, R. F.
1984-01-01
This paper presents a characterization of a commercially available position-sensitive detector of energetic ions and neutrals. The detector consists of two microchannel plates followed by a resistive position-encoding anode. The work includes measurement of absolute efficiencies of H(+), He(+), and O(+) ions in the energy range between 250 and 5000 eV, measurement of relative detection efficiencies as a function of particle impact angle, and a simple method for accurate measurement of the time at which a particle strikes the detector.
Olsen, Shira A; Beck, J Gayle
2012-01-01
This study investigated the effects of high and low levels of dissociation on information processing for analogue trauma and neutral stimuli. Fifty-four undergraduate females who reported high and low levels of trait dissociation were presented with two films, one depicting traumatic events, the other containing neutral material. Participants completed a divided attention task (yielding a proxy measure of attention), as well as explicit memory (free-recall) and implicit memory (word-stem completion) tasks for both films. Results indicated that the high DES group showed less attention and had poorer recall for the analogue trauma stimuli, relative to the neutral stimuli and the low DES group. These findings suggest that high levels of trait dissociation are associated with reductions in attention and memory for analogue trauma stimuli, relative to neutral stimuli and relative to low trait dissociation. Implications for the role of cognitive factors in the etiology of negative post-trauma responses are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fast-ion transport in low density L-mode plasmas at TCV using FIDA spectroscopy and the TRANSP code
NASA Astrophysics Data System (ADS)
Geiger, B.; Karpushov, A. N.; Duval, B. P.; Marini, C.; Sauter, O.; Andrebe, Y.; Testa, D.; Marascheck, M.; Salewski, M.; Schneider, P. A.; the TCV Team; the EUROfusion MST1 Team
2017-11-01
Experiments with the new neutral beam injection source of TCV have been performed with high fast-ion fractions (>20%) that exhibit a clear reduction of the loop voltage and a clear increase of the plasma pressure in on- and off-axis heating configurations. However, good quantitative agreement between the experimental data and TRANSP predictions is only found when including strong additional fast-ion losses. These losses could in part be caused by turbulence or MHD activity as, e.g. high frequency modes near the frequency of toroidicity induced Alfvén eignmodes are observed. In addition, a newly installed fast-ion D-alpha (FIDA) spectroscopy system measures strong passive radiation and, hence, indicates the presence of high background neutral densities such that charge-exchange losses are substantial. Also the active radiation measured with the FIDA diagnostic, as well as data from a neutral particle analyzer, suggest strong fast-ion losses and large neutral densities. The large neutral densities can be justified since high electron temperatures (3-4 keV), combined with low electron densities (about 2× {10}19 m-3) yield long mean free paths of the neutrals which are penetrating from the walls.
Dynamics of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources
NASA Astrophysics Data System (ADS)
Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.; Ji, Qing; Persaud, Arun; Seidl, Peter A.; Schenkel, Thomas
2016-10-01
Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams. Here we present experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a FEPS plasma. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Near-complete charge neutralization is established 5 μs after the driving pulse is applied to the FEPS, and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub- μs surface discharge. Measurements of current flow in the driving circuit of the FEPS suggest that plasma can be generated for tens of μs after the high voltage pulse is applied. This is confirmed by fast photography of the plasma in the 1-meter long FEPS on NDCX-II, where effective charge neutralization of the beam was achieved with the optimized FEPS timing. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0209CH11466 (PPPL) and DE-AC0205CH11231 (LBNL).
Cravotta, Charles A.
2010-01-01
A variety of passive and semi-passive treatment systems were constructed by state and local agencies to neutralize acidic mine drainage (AMD) and reduce the transport of dissolved metals in the upper Swatara Creek Basin in the Southern Anthracite Coalfield in eastern Pennsylvania. To evaluate the effectiveness of selected treatment systems installed during 1995–2001, the US Geological Survey collected water-quality data at upstream and downstream locations relative to each system eight or more times annually for a minimum of 3 years at each site during 1996–2007. Performance was normalized among treatment types by dividing the acid load removed by the size of the treatment system. For the limestone sand, open limestone channel, oxic limestone drain, anoxic limestone drain (ALD), and limestone diversion well treatment systems, the size was indicated by the total mass of limestone; for the aerobic wetland systems, the size was indicated by the total surface area of ponds and wetlands. Additionally, the approximate cost per tonne of acid treated over an assumed service life of 20 years was computed. On the basis of these performance metrics, the limestone sand, ALD, oxic limestone drain, and limestone diversion wells had similar ranges of acid-removal efficiency and cost efficiency. However, the open limestone channel had lower removal efficiency and higher cost per ton of acid treated. The wetlands effectively attenuated metals transport but were relatively expensive considering metrics that evaluated acid removal and cost efficiency. Although the water-quality data indicated that all treatments reduced the acidity load from AMD, the ALD was most effective at producing near-neutral pH and attenuating acidity and dissolved metals. The diversion wells were effective at removing acidity and increasing pH of downstream water and exhibited unique potential to treat moderate to high flows associated with storm flow conditions.
Wang, Mei; Wang, Yan-Hong; Avula, Bharathi; Radwan, Mohamed M.; Wanas, Amira S.; van Antwerp, John; Parcher, Jon F.; ElSohly, Mahmoud A.; Khan, Ikhlas A.
2016-01-01
Abstract Introduction: Decarboxylation is an important step for efficient production of the major active components in cannabis, for example, Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabigerol (CBG). These cannabinoids do not occur in significant concentrations in cannabis but can be formed by decarboxylation of their corresponding acids, the predominant cannabinoids in the plant. Study of the kinetics of decarboxylation is of importance for phytocannabinoid isolation and dosage formulation for medical use. Efficient analytical methods are essential for simultaneous detection of both neutral and acidic cannabinoids. Methods: C. sativa extracts were used for the studies. Decarboxylation conditions were examined at 80°C, 95°C, 110°C, 130°C, and 145°C for different times up to 60 min in a vacuum oven. An ultra-high performance supercritical fluid chromatography/photodiode array-mass spectrometry (UHPSFC/PDA-MS) method was used for the analysis of acidic and neutral cannabinoids before and after decarboxylation. Results: Decarboxylation at different temperatures displayed an exponential relationship between concentration and time indicating a first-order or pseudo-first-order reaction. The rate constants for Δ9-tetrahydrocannabinolic acid-A (THCA-A) were twice those of the cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA). Decarboxylation of THCA-A was forthright with no side reactions or by-products. Decarboxylation of CBDA and CBGA was not as straightforward due to the unexplained loss of reactants or products. Conclusion: The reported UHPSFC/PDA-MS method provided consistent and sensitive analysis of phytocannabinoids and their decarboxylation products and degradants. The rate of change of acidic cannabinoid concentrations over time allowed for determination of rate constants. Variations of rate constants with temperature yielded values for reaction energy. PMID:28861498
Wi, Ga Ram; Hwang, Jee Youn; Kwon, Mun-Gyeong; Kim, Hyoung Jin; Kang, Hyun Ah; Kim, Hong-Jin
2015-05-15
Infection with nervous necrosis virus (NNV) causes viral nervous necrosis, which inflicts serious economic losses in marine fish cultivation. Virus-like particles (VLPs) are protein complexes consisting of recombinant virus capsid proteins, whose shapes are similar to native virions. VLPs are considered a novel vaccine platform because they are not infectious and have the ability to induce neutralizing antibodies efficiently. However, there have been few studies of protective immune responses employing virus challenge following immunization with NNV VLPs, and this is important for evaluating the utility of the vaccine. In the present study, we produced red-spotted grouper (Epinephelus akaara) NNV (RGNNV) VLPs in Saccharomyces cerevisiae and investigated protective immune responses in convict grouper (Epinephelus septemfasciatus) following intraperitoneal injection and oral immunization with the RGNNV VLPs. The parenterally administered VLPs elicited neutralizing antibody with high efficacy, and provided the fish with full protection against RGNNV challenge: 100% of the immunized fish survived compared with only 37% of the control fish receiving phosphate-buffered saline. RGNNV VLPs administered orally provoked neutralizing antibody systemically and conferred protective immunity against virus challenge: however only 57% of the fish survived. Our results demonstrate that RGNNV VLP produced in yeast has great potential as vaccine in fish. Copyright © 2015 Elsevier B.V. All rights reserved.
Briney, Bryan S.; Willis, Jordan R.; Crowe, James E.
2012-01-01
A number of antibodies that efficiently neutralize microbial targets contain long heavy chain complementarity determining region 3 (HCDR3) loops. For HIV, several of the most broad and potently neutralizing antibodies have exceptionally long HCDR3s. Two broad potently neutralizing HIV-specific antibodies, PG9 and PG16, exhibit secondary structure. Two other long HCDR3 antibodies, 2F5 and 4E10, protect against mucosal challenge with SHIV. Induction of such long HCDR3 antibodies may be critical to the design of an effective vaccine strategy for HIV and other pathogens, however it is unclear at present how to induce such antibodies. Here, we present genetic evidence that human peripheral blood antibodies containing long HCDR3s are not primarily generated by insertions introduced during the somatic hypermutation process. Instead, they are typically formed by processes occurring as part of the original recombination event. Thus, the response of B cells encoding antibodies with long HCDR3s results from selection of unusual clones from the naïve repertoire rather than through accumulation of insertions. These antibodies typically use a small subset of D and J gene segments that are particularly suited to encoding long HCDR3s, resulting in the incorporation of highly conserved genetic elements in the majority of antibody sequences encoding long HCDR3s. PMID:22590602
Fast targeted analysis of 132 acidic and neutral drugs and poisons in whole blood using LC-MS/MS.
Di Rago, Matthew; Saar, Eva; Rodda, Luke N; Turfus, Sophie; Kotsos, Alex; Gerostamoulos, Dimitri; Drummer, Olaf H
2014-10-01
The aim of this study was to develop an LC-MS/MS based screening technique that covers a broad range of acidic and neutral drugs and poisons by combining a small sample volume and efficient extraction technique with simple automated data processing. After protein precipitation of 100μL of whole blood, 132 common acidic and neutral drugs and poisons including non-steroidal anti-inflammatory drugs, barbiturates, anticonvulsants, antidiabetics, muscle relaxants, diuretics and superwarfarin rodenticides (47 quantitated, 85 reported as detected) were separated using a Shimadzu Prominence HPLC system with a C18 separation column (Kinetex XB-C18, 4.6mm×150mm, 5μm), using gradient elution with a mobile phase of 25mM ammonium acetate buffer (pH 7.5)/acetonitrile. The drugs were detected using an ABSciex(®) API 2000 LC-MS/MS system (ESI+ and -, MRM mode, two transitions per analyte). The method was fully validated in accordance with international guidelines. Quantification data obtained using one-point calibration compared favorably to that using multiple calibrants. The presented LC-MS/MS assay has proven to be applicable for determination of the analytes in blood. The fast and reliable extraction method combined with automated processing gives the opportunity for high throughput and fast turnaround times for forensic and clinical toxicology. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Sustainable and efficient biohydrogen production via electrohydrogenesis.
Cheng, Shaoan; Logan, Bruce E
2007-11-20
Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier for vehicles, but most hydrogen is generated from nonrenewable fossil fuels such as natural gas. Here, we show that efficient and sustainable hydrogen production is possible from any type of biodegradable organic matter by electrohydrogenesis. In this process, protons and electrons released by exoelectrogenic bacteria in specially designed reactors (based on modifying microbial fuel cells) are catalyzed to form hydrogen gas through the addition of a small voltage to the circuit. By improving the materials and reactor architecture, hydrogen gas was produced at yields of 2.01-3.95 mol/mol (50-99% of the theoretical maximum) at applied voltages of 0.2 to 0.8 V using acetic acid, a typical dead-end product of glucose or cellulose fermentation. At an applied voltage of 0.6 V, the overall energy efficiency of the process was 288% based solely on electricity applied, and 82% when the heat of combustion of acetic acid was included in the energy balance, at a gas production rate of 1.1 m(3) of H(2) per cubic meter of reactor per day. Direct high-yield hydrogen gas production was further demonstrated by using glucose, several volatile acids (acetic, butyric, lactic, propionic, and valeric), and cellulose at maximum stoichiometric yields of 54-91% and overall energy efficiencies of 64-82%. This electrohydrogenic process thus provides a highly efficient route for producing hydrogen gas from renewable and carbon-neutral biomass resources.
Sustainable and efficient biohydrogen production via electrohydrogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, S.; Logan, B.E.
2007-11-20
Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier for vehicles, but most hydrogen is generated from nonrenewable fossil fuels such as natural gas. Here, the authors show that efficient and sustainable hydrogen production is possible from any type of biodegradable organic matter by electrohydrogenesis. In this process, protons and electrons released by exoelectrogenic bateria in specially designed reactors (based on modifying microbial fuel cells) are catalyzed to form hydrogen gas through the addition of a small voltage to the circuit. By improving the materials and reactor architecture, hydrogen gas was produced at yields of 2.01-3.95 mol/mol (50-99%more » of the theoretical maximum) at applied voltages of 0.2 to 0.8 V using acetic acid, a typical dead-end product of glucose or cellulose fermentation. At an applied voltage of 0.6 V, the overall energy efficiency of the process was 288% based solely on electricity applied, and 82% when the heat of combusion of acetic acid was included in the energy balance, at a gas production rate of 1.1 m{sup 3} of H{sub 2} per cubic meter of reactor per day. Direct high-yield hydrogen gas production was further demonstrated by using glucose, several volatile acids (acetic, butyric, lactic, propionic, and valeric), and cellulose at maximum stoichiometric yields of 54-91% and overall energy efficiencies of 64-82%. This electrohydrogenic process thus provides a highly efficient route for producting hydrogen gas from renewable and carbon-neutral biomass resources.« less
Wasilewski, Lisa N.; Ray, Stuart C.
2016-01-01
A better understanding of natural variation in neutralization resistance and fitness of diverse hepatitis C virus (HCV) envelope (E1E2) variants will be critical to guide rational development of an HCV vaccine. This work has been hindered by inadequate genetic diversity in viral panels and by a lack of standardization of HCV entry assays. Neutralization assays generally use lentiviral pseudoparticles expressing HCV envelope proteins (HCVpp) or chimeric full-length viruses that are replication competent in cell culture (HCVcc). There have been few systematic comparisons of specific infectivities of E1E2-matched HCVcc and HCVpp, and to our knowledge, neutralization of E1E2-matched HCVpp and HCVcc has never been compared using a diverse panel of human broadly neutralizing monoclonal antibodies (bNAbs) targeting distinct epitopes. Here, we describe an efficient method for introduction of naturally occurring E1E2 genes into a full-length HCV genome, producing replication-competent chimeric HCVcc. We generated diverse panels of E1E2-matched HCVcc and HCVpp and measured the entry-mediating fitness of E1E2 variants using the two systems. We also compared neutralization of E1E2-matched HCVcc and HCVpp by a diverse panel of human bNAbs targeting epitopes across E1E2. We found no correlation between specific infectivities of E1E2-matched HCVcc versus HCVpp, but found a very strong positive correlation between relative neutralization resistance of these same E1E2-matched HCVcc and HCVpp variants. These results suggest that quantitative comparisons of neutralization resistance of E1E2 variants can be made with confidence using either HCVcc or HCVpp, allowing the use of either or both systems to maximize diversity of neutralization panels. PMID:27667373
Wasilewski, Lisa N; Ray, Stuart C; Bailey, Justin R
2016-11-01
A better understanding of natural variation in neutralization resistance and fitness of diverse hepatitis C virus (HCV) envelope (E1E2) variants will be critical to guide rational development of an HCV vaccine. This work has been hindered by inadequate genetic diversity in viral panels and by a lack of standardization of HCV entry assays. Neutralization assays generally use lentiviral pseudoparticles expressing HCV envelope proteins (HCVpp) or chimeric full-length viruses that are replication competent in cell culture (HCVcc). There have been few systematic comparisons of specific infectivities of E1E2-matched HCVcc and HCVpp, and to our knowledge, neutralization of E1E2-matched HCVpp and HCVcc has never been compared using a diverse panel of human broadly neutralizing monoclonal antibodies (bNAbs) targeting distinct epitopes. Here, we describe an efficient method for introduction of naturally occurring E1E2 genes into a full-length HCV genome, producing replication-competent chimeric HCVcc. We generated diverse panels of E1E2-matched HCVcc and HCVpp and measured the entry-mediating fitness of E1E2 variants using the two systems. We also compared neutralization of E1E2-matched HCVcc and HCVpp by a diverse panel of human bNAbs targeting epitopes across E1E2. We found no correlation between specific infectivities of E1E2-matched HCVcc versus HCVpp, but found a very strong positive correlation between relative neutralization resistance of these same E1E2-matched HCVcc and HCVpp variants. These results suggest that quantitative comparisons of neutralization resistance of E1E2 variants can be made with confidence using either HCVcc or HCVpp, allowing the use of either or both systems to maximize diversity of neutralization panels.
Discharge Characterization of 40 cm-Microwave ECR Ion Source and Neutralizer
NASA Technical Reports Server (NTRS)
Foster, John E.; Patterson, Michael J.; Britton, Melissa
2003-01-01
Discharge characteristics of a 40 cm, 2.45 GHz Electron Cyclotron Resonance (ECR) ion thruster discharge chamber and neutralizer were acquired. Thruster bulk discharge plasma characteristics were assessed using a single Langmuir probe. Total extractable ion current was measured as a function of input microwave power and flow rate. Additionally, radial ion current density profiles at the thruster.s exit plane were characterized using five equally spaced Faraday probes. Distinct low and high density operating modes were observed as discharge input power was varied from 0 to 200 W. In the high mode, extractable ion currents as high as 0.82 A were measured. Neutralizer emission current was characterized as a function of flow rate and microwave power. Neutralizer extraction currents as high as 0.6 A were measured.
Maximize Energy Efficiency in Buildings | Climate Neutral Research Campuses
Buildings on a research campus, especially laboratory buildings, often represent the most cost-effective plans, campuses can evaluate the following: Energy Management Building Management New Buildings Design
A Novel Treatment for Acid Mine Drainage Utilizing Reclaimed Limestone Residual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horace K. Moo-Young; Charles E. Ochola
2004-08-31
The viability of utilizing Reclaimed Limestone Residual (RLR) to remediate Acid Mine Drainage (AMD) was investigated. Physical and chemical characterization of RLR showed that it is composed of various minerals that contain significant quantities of limestone or calcium bearing compounds that can be exploited for acid neutralization. Acid Neutralization Potential (ANP) test results showed that RLR has a neutralization potential of approximately 83% as calcium carbonate (CaCO{sub 3}). Neutralization tests with most of the heavy metals associated with AMD showed removal efficiencies of over 99%. An unexpected benefit of utilizing RLR was the removal of hexavalent chromium Cr (VI) frommore » the aqueous phase. Due to an elevation in pH by RLR most AMD heavy metals are removed from solution by precipitation as their metal hydroxides. Cr (VI) however is not removed by pH elevation and therefore subsequent ongoing tests to elucidate the mechanism responsible for this reaction were conducted.« less
The PRIMA Test Facility: SPIDER and MITICA test-beds for ITER neutral beam injectors
NASA Astrophysics Data System (ADS)
Toigo, V.; Piovan, R.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Fiorentin, A.; Gambetta, G.; Gnesotto, F.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Moresco, M.; Ocello, E.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Recchia, M.; Rizzolo, A.; Rostagni, G.; Sartori, E.; Siragusa, M.; Sonato, P.; Sottocornola, A.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Kashiwagi, M.; Hanada, M.; Tobari, H.; Watanabe, K.; Maejima, T.; Kojima, A.; Umeda, N.; Yamanaka, H.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Heinemann, B.; Kraus, W.; Hanke, S.; Hauer, V.; Ochoa, S.; Blatchford, P.; Chuilon, B.; Xue, Y.; De Esch, H. P. L.; Hemsworth, R.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Cavenago, M.; D'Arienzo, M.; Sandri, S.; Tonti, A.
2017-08-01
The ITER Neutral Beam Test Facility (NBTF), called PRIMA (Padova Research on ITER Megavolt Accelerator), is hosted in Padova, Italy and includes two experiments: MITICA, the full-scale prototype of the ITER heating neutral beam injector, and SPIDER, the full-size radio frequency negative-ions source. The NBTF realization and the exploitation of SPIDER and MITICA have been recognized as necessary to make the future operation of the ITER heating neutral beam injectors efficient and reliable, fundamental to the achievement of thermonuclear-relevant plasma parameters in ITER. This paper reports on design and R&D carried out to construct PRIMA, SPIDER and MITICA, and highlights the huge progress made in just a few years, from the signature of the agreement for the NBTF realization in 2011, up to now—when the buildings and relevant infrastructures have been completed, SPIDER is entering the integrated commissioning phase and the procurements of several MITICA components are at a well advanced stage.
Gil, Geun-Cheol; Iliff, Bryce; Cerny, Ron; Velander, William H.; Van Cott, Kevin E.
2010-01-01
Appropriate glycosylation of recombinant therapeutic glycoproteins has been emphasized in biopharmaceutical industries because the carbohydrate component can affect safety, efficacy, and consistency of the glycoproteins. Reliable quantification methods are essential to ensure consistency of their products with respect to glycosylation, particularly sialylation. Mass spectrometry (MS) has become a popular tool to analyze glycan profiles and structures, showing high resolution and sensitivity with structure identification ability. However, quantification of sialylated glycans using MS is not as reliable because of the different ionization efficiency between neutral and acidic glycans. We report here that amidation in mild acidic conditions can be used to neutralize acidic N-glycans still attached to the protein. The resulting amidated N-glycans can then released from the protein using PNGase F, and labeled with permanent charges on the reducing end to avoid any modification and the formation of metal adducts during MS analysis. The N-glycan modification, digestion, and desalting steps were performed using a single-pot method that can be done in microcentrifuge tubes or 96-well microfilter plates, enabling high throughput glycan analysis. Using this method we were able to perform quantitative MALDI-TOF MS of a recombinant human glycoprotein to determine changes in fucosylation and changes in sialylation that were in very good agreement with a normal phase HPLC oligosaccharide mapping method. PMID:20586471
Sirinonthanawech, Naraporn; Surichan, Somchaiya; Namsai, Aphinya; Puthavathana, Pilaipan; Auewarakul, Prasert; Kongchanagul, Alita
2016-11-01
Formulation and quality control of trivalent live-attenuated influenza vaccine requires titration of infectivity of individual strains in the trivalent mix. This is usually performed by selective neutralization of two of the three strains and titration of the un-neutralized strain in cell culture or embryonated eggs. This procedure requires standard sera with high neutralizing titer against each of the three strains. Obtaining standard sera, which can specifically neutralize only the corresponding strain of influenza viruses and is able to completely neutralize high concentration of virus in the vaccine samples, can be a problem for many vaccine manufacturers as vaccine stocks usually have very high viral titers and complete neutralization may not be obtained. Here an alternative approach for titration of individual strain in trivalent vaccine without the selective neutralization is presented. This was done by detecting individual strains with specific antibodies in an end-point titration of a trivalent vaccine in cell culture. Similar titers were observed in monovalent and trivalent vaccines for influenza A H3N2 and influenza B strains, whereas the influenza A H1N1 strain did not grow well in cell culture. Viral interference among the vaccine strains was not observed. Therefore, providing that vaccine strains grow well in cell culture, this assay can reliably determine the potency of individual strains in trivalent live-attenuated influenza vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.
Potential of Equine Herpesvirus 1 as a Vector for Immunization
Trapp, Sascha; von Einem, Jens; Hofmann, Helga; Köstler, Josef; Wild, Jens; Wagner, Ralf; Beer, Martin; Osterrieder, Nikolaus
2005-01-01
Key problems using viral vectors for vaccination and gene therapy are antivector immunity, low transduction efficiencies, acute toxicity, and limited capacity to package foreign genetic information. It could be demonstrated that animal and human cells were efficiently transduced with equine herpesvirus 1 (EHV-1) reconstituted from viral DNA maintained and manipulated in Escherichia coli. Between 13 and 23% of primary human CD3+, CD4+, CD8+, CD11b+, and CD19+ cells and more than 70% of CD4+ MT4 cells or various human tumor cell lines (MeWo, Huh7, HeLa, 293T, or H1299) could be transduced with one infectious unit of EHV-1 per cell. After intranasal instillation of EHV-1 into mice, efficient transgene expression in lungs was detectable. Successful immunization using EHV-1 was shown after delivery of the human immunodeficiency virus type 1 Pr55gag precursor by the induction of a Gag-specific CD8+ immune response in mice. Because EHV-1 was not neutralized by human sera containing high titers of antibodies directed against human herpesviruses 1 to 5, it is concluded that this animal herpesvirus has enormous potential as a vaccine vector, because it is able to efficiently transduce a variety of animal and human cells, has high DNA packaging capacity, and can conveniently be maintained and manipulated in prokaryotic cells. PMID:15827159
Ion-neutral-atom sympathetic cooling in a hybrid linear rf Paul and magneto-optical trap
NASA Astrophysics Data System (ADS)
Goodman, D. S.; Sivarajah, I.; Wells, J. E.; Narducci, F. A.; Smith, W. W.
2012-09-01
Long-range polarization forces between ions and neutral atoms result in large elastic scattering cross sections (e.g., ˜106a.u. for Na-Na+ or Na-Ca+ at cold and ultracold temperatures). This suggests that a hybrid ion-neutral trap should offer a general means for significant sympathetic cooling of atomic or molecular ions. We present simion 7.0 simulation results concerning the advantages and limitations of sympathetic cooling within a hybrid trap apparatus consisting of a linear rf Paul trap concentric with a Na magneto-optical trap (MOT). This paper explores the impact of various heating mechanisms on the hybrid system and how parameters related to the MOT, Paul trap, number of ions, and ion species affect the efficiency of the sympathetic cooling.
AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges
Gardner, Matthew R.; Kattenhorn, Lisa M.; Kondur, Hema R.; von Schaewen, Markus; Dorfman, Tatyana; Chiang, Jessica J.; Haworth, Kevin G.; Decker, Julie M.; Alpert, Michael D.; Bailey, Charles C.; Neale, Ernest S.; Fellinger, Christoph H.; Joshi, Vinita R.; Fuchs, Sebastian P.; Martinez-Navio, Jose M.; Quinlan, Brian D.; Yao, Annie Y.; Mouquet, Hugo; Gorman, Jason; Zhang, Baoshan; Poignard, Pascal; Nussenzweig, Michel C.; Burton, Dennis R.; Kwong, Peter D.; Piatak, Michael; Lifson, Jeffrey D.; Gao, Guangping; Desrosiers, Ronald C.; Evans, David T.; Hahn, Beatrice H.; Ploss, Alexander; Cannon, Paula M.; Seaman, Michael S.; Farzan, Michael
2015-01-01
Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs)1,2. However even the best bNAbs neutralize 10–50% of HIV-1 isolates inefficiently (IC80 > 5 μg/ml), suggesting that high concentrations of these antibodies would be necessary to achieve general protection3–6. Here we show that eCD4-Ig, a fusion of CD4-Ig with a small CCR5-mimetic sulfopeptide, binds avidly and cooperatively to the HIV-1 envelope glycoprotein (Env) and is more potent than the best bNAbs (geometric mean IC50 < 0.05 μg/ml). Because eCD4-Ig binds only conserved regions of Env, it is also much broader than any bNAb. For example, eCD4-Ig efficiently neutralized 100% of a diverse panel of neutralization-resistant HIV-1, HIV-2, and SIV isolates, including a comprehensive set of isolates resistant to the CD4-binding site bNAbs VRC01, NIH45-46, and 3BNC117. Rhesus macaques inoculated with an AAV vector stably expressed 17 to 77 μg/ml of fully functional rhesus eCD4-Ig for 40 weeks, and these macaques were protected from multiple infectious challenges with SHIV-AD8. Rhesus eCD4-Ig was also markedly less immunogenic than rhesus forms of four well characterized bNAbs. Our data suggest that AAV-delivered eCD4-Ig can function like an effective HIV-1 vaccine. PMID:25707797
Improvement in Thermal Stability of Sucralose by γ-Cyclodextrin Metal-Organic Frameworks.
Lv, Nana; Guo, Tao; Liu, Botao; Wang, Caifen; Singh, Vikaramjeet; Xu, Xiaonan; Li, Xue; Chen, Dawei; Gref, Ruxandra; Zhang, Jiwen
2017-02-01
To explain thermal stability enhancement of an organic compound, sucralose, with cyclodextrin based metal organic frameworks. Micron and nanometer sized basic CD-MOFs were successfully synthesized by a modified vapor diffusion method and further neutralized with glacial acetic acid. Sucralose was loaded into CD-MOFs by incubating CD-MOFs with sucralose ethanol solutions. Thermal stabilities of sucralose-loaded basic CD-MOFs and neutralized CD-MOFs were investigated using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and high performance liquid chromatography with evaporative light-scattering detection (HPLC-ELSD). Scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD) results showed that basic CD-MOFs were cubic crystals with smooth surface and uniform sizes. The basic CD-MOFs maintained their crystalline structure after neutralization. HPLC-ELSD analysis indicated that the CD-MOF crystal size had significant influence on sucralose loading (SL). The maximal SL of micron CD-MOFs (CD-MOF-Micro) was 17.5 ± 0.9% (w/w). In contrast, 27.9 ± 1.4% of sucralose could be loaded in nanometer-sized basic CD-MOFs (CD-MOF-Nano). Molecular docking modeling showed that sucralose molecules preferentially located inside the cavities of γ-CDs pairs in CD-MOFs. Raw sucralose decomposed fast at 90°C, with 86.2 ± 0.2% of the compound degraded within only 1 h. Remarkably, sucralose stability was dramatically improved after loading in neutralized CD-MOFs, with only 13.7 ± 0.7% degradation at 90°C within 24 h. CD-MOFs efficiently incorporated sucralose and maintained its integrity upon heating at elevated temperatures.
Path toward a high-energy solid-state laser
NASA Astrophysics Data System (ADS)
Wood, Gary L.; Merkle, Larry D.; Dubinskii, Mark; Zandi, Bahram
2004-04-01
Lasers have come a long way since the first demonstration by Maiman of a ruby crystal laser in 1960. Lasers are used as scientific tools as well as for a wide variety of applications for both commercial industry and the military. Today lasers come in all types, shapes and sizes depending on their application. The solid-state laser has some distinct advantages in that it can be rugged, compact, and self contained, making it reliable over long periods of time. With the advent of diode laser pumping a ten times increase in overall laser efficiency has been realized. This significant event, and others, is changing the way solid-state lasers are applied and allows new possibilities. One of those new areas of exploration is the high energy laser. Solid-state lasers for welding are already developed and yield energies in the 0.5 to 6 kilojoule range. These lasers are at the forefront of what is possible in terms of high energy solid-state lasers. It is possible to achieve energies of greater than 100 kJ. These sorts of energies would allow applications, in addition to welding, such as directed energy weapons, extremely remote sensing, power transfer, propulsion, biological and chemical agent neutralization and unexploded and mine neutralization. This article will review these new advances in solid-state lasers and the different paths toward achieving a high energy laser. The advantages and challenges of each approach will be highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.
Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less
Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection
Malinge, Pauline; Magistrelli, Giovanni; Fischer, Nicolas; Sahin, Mehmet; Bergthaler, Andreas; Igonet, Sebastien; ter Meulen, Jan; Rigo, Dorothée; Meda, Paolo; Rabah, Nadia; Coutard, Bruno; Bowden, Thomas A.; Lambert, Paul-Henri; Siegrist, Claire-Anne; Pinschewer, Daniel D.
2015-01-01
Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein’s globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy. PMID:26587982
Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.; ...
2017-06-21
Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less
Parallel processing of general and specific threat during early stages of perception
2016-01-01
Differential processing of threat can consummate as early as 100 ms post-stimulus. Moreover, early perception not only differentiates threat from non-threat stimuli but also distinguishes among discrete threat subtypes (e.g. fear, disgust and anger). Combining spatial-frequency-filtered images of fear, disgust and neutral scenes with high-density event-related potentials and intracranial source estimation, we investigated the neural underpinnings of general and specific threat processing in early stages of perception. Conveyed in low spatial frequencies, fear and disgust images evoked convergent visual responses with similarly enhanced N1 potentials and dorsal visual (middle temporal gyrus) cortical activity (relative to neutral cues; peaking at 156 ms). Nevertheless, conveyed in high spatial frequencies, fear and disgust elicited divergent visual responses, with fear enhancing and disgust suppressing P1 potentials and ventral visual (occipital fusiform) cortical activity (peaking at 121 ms). Therefore, general and specific threat processing operates in parallel in early perception, with the ventral visual pathway engaged in specific processing of discrete threats and the dorsal visual pathway in general threat processing. Furthermore, selectively tuned to distinctive spatial-frequency channels and visual pathways, these parallel processes underpin dimensional and categorical threat characterization, promoting efficient threat response. These findings thus lend support to hybrid models of emotion. PMID:26412811
Microalgal bacterial floc properties are improved by a balanced inorganic/organic carbon ratio.
Van Den Hende, Sofie; Vervaeren, Han; Saveyn, Hans; Maes, Guy; Boon, Nico
2011-03-01
Microalgal bacterial floc (MaB-floc) reactors have been suggested as a more sustainable secondary wastewater treatment. We investigated whether MaB-flocs could be used as tertiary treatment. Tertiary influent has a high inorganic/organic carbon ratio, depending on the efficiency of the secondary treatment. In this study, the effect of this inorganic/organic carbon ratio on the MaB-flocs performance was determined, using three sequencing batch photobioreactors. The MaB-flocs were fed with synthetic wastewater containing 84, 42, and 0 mg L(-1) C-KHCO(3) supplemented with 0, 42, 84 mg L(-1) C-sucrose, respectively, representing inorganic versus organic carbon. Bicarbonate significantly decreased the autotrophic index of the MaB-flocs and resulted in poorly settling flocs. Moreover, sole bicarbonate addition led to a high pH of 9.5 and significant lower nitrogen removal efficiencies. Sucrose without bicarbonate resulted in good settling MaB-flocs, high nitrogen removal efficiencies and neutral pH levels. Despite the lower chlorophyll a content of the biomass and the lower in situ oxygen concentration, 92-96% of the soluble COD-sucrose was removed. This study shows that the inorganic/organic carbon ratio of the wastewater is of major importance and that organic carbon is requisite to guarantee a good performance of the MaB-flocs for wastewater treatment. Copyright © 2010 Wiley Periodicals, Inc.
Modeling of the coupled magnetospheric and neutral wind dynamos
NASA Technical Reports Server (NTRS)
Thayer, Jeffrey P.
1994-01-01
This report summarizes the progress made in the first year of NASA Grant No. NAGW-3508 entitled 'Modeling of the Coupled Magnetospheric and Neutral Wind Dynamos.' The approach taken has been to impose magnetospheric boundary conditions with either pure voltage or current characteristics and solve the neutral wind dynamo equation under these conditions. The imposed boundary conditions determine whether the neutral wind dynamo will contribute to the high-latitude current system or the electric potential. The semi-annual technical report, dated December 15, 1993, provides further detail describing the scientific and numerical approach of the project. The numerical development has progressed and the dynamo solution for the case when the magnetosphere acts as a voltage source has been evaluated completely using spectral techniques. The simulation provides the field-aligned current distribution at high latitudes due to the neutral wind dynamo. A number of geophysical conditions can be simulated to evaluate the importance of the neutral wind dynamo contribution to the field-aligned current system. On average, field-aligned currents generated by the neutral wind dynamo contributed as much as 30 percent to the large-scale field-aligned current system driven by the magnetosphere. A term analysis of the high-latitude neutral wind dynamo equation describing the field aligned current distribution has also been developed to illustrate the important contributing factors involved in the process. The case describing the neutral dynamo response for a magnetosphere acting as a pure current generator requires the existing spectral code to be extended to a pseudo-spectral method and is currently under development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tulej, M., E-mail: marek.tulej@space.unibe.ch; Meyer, S.; Lüthi, M.
2015-08-15
High-energy e{sup –} and π{sup –} were measured by the multichannel plate (MCP) detector at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute, Villigen, Switzerland. The measurements provide the absolute detection efficiencies for these particles: 5.8% ± 0.5% for electrons in the beam momenta range 17.5–300 MeV/c and 6.0% ± 1.3% for pions in the beam momenta range 172–345 MeV/c. The pulse height distribution determined from the measurements is close to an exponential function with negative exponent, indicating that the particles penetrated the MCP material before producing the signal somewhere insidemore » the channel. Low charge extraction and nominal gains of the MCP detector observed in this study are consistent with the proposed mechanism of the signal formation by penetrating radiation. A very similar MCP ion detector will be used in the Neutral Ion Mass (NIM) spectrometer designed for the JUICE mission of European Space Agency (ESA) to the Jupiter system, to perform measurements of the chemical composition of the Galilean moon exospheres. The detection efficiency for penetrating radiation determined in the present studies is important for the optimisation of the radiation shielding of the NIM detector against the high-rate and high-energy electrons trapped in Jupiter’s magnetic field. Furthermore, the current studies indicate that MCP detectors can be useful to measure high-energy particle beams at high temporal resolution.« less
Qiu, Chao; Huang, Yang; Wang, Qian; Tian, Di; Zhang, Wanju; Hu, Yunwen; Yuan, Zhenghong; Zhang, Xiaoyan; Xu, Jianqing
2012-01-01
A mass vaccination has been implemented to prevent the spread of 2009 pandemic influenza virus in China. Highly limited information is available on whether this vaccine induces cross-reactive neutralization antibodies against other subtypes of influenza viruses. We employed pseudovirus-based assays to analyze heterosubtypic neutralization responses in serum samples of 23 recipients of 2009 pandemic influenza vaccine. One dose of pandemic vaccine not only stimulated good neutralization antibodies against cognate influenza virus 2009 influenza A (H1N1), but also raised broad cross-reactive neutralization activities against seasonal H3N2 and highly pathogenic avian influenza virus H5N1 and lesser to H2N2. The cross-reactive neutralization activities were completely abolished after the removal of immunoglobin G (IgG). In contrast, H1N1 vaccination alone in influenza-naive mice elicited only vigorous homologous neutralizing activities but not cross-reactive neutralization activities. Our data suggest that the cross-reactive neutralization epitopes do exist in this vaccine and could elicit significant cross-reactive neutralizing IgG antibodies in the presence of preexisting responses. The exposure to H1N1 vaccine is likely to modify the hierarchical order of preexisting immune responses to influenza viruses. These findings provide insights into the evolution of human immunity to influenza viruses after experiencing multiple influenza virus infections and vaccinations.
Neutral beam dump with cathodic arc titanium gettering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, A.; Korepanov, S. A.; Putvinski, S.
An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features amore » new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.« less
Depletion region surface effects in electron beam induced current measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haney, Paul M.; Zhitenev, Nikolai B.; Yoon, Heayoung P.
2016-09-07
Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However, we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and chargedmore » surfaces. For neutral surfaces, we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find that the experimental data on FIB-prepared Si solar cells are most consistent with a charged surface and discuss the implications for EBIC experiments on polycrystalline materials.« less
Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy.
Chen, Jianhua; Gao, Pei; Yuan, Sujing; Li, Rongxin; Ni, Aimin; Chu, Liang; Ding, Li; Sun, Ying; Liu, Xin-Yuan; Duan, Yourong
2016-12-27
Oncolytic adenovirus (Onco Ad ) is a promising therapeutic agent for treating cancer. However, the therapeutic potential of Onco Ad is hindered by hepatic sequestration and the host immune response in vivo. Here, we constructed a PEG/Lipids/calcium phosphate (CaP)-Onco Ad (PLC-Onco Ad ) delivery system for ZD55-IL-24, an oncolytic adenovirus that carries the IL-24 gene. The negatively charged PLC-ZD55-IL-24 were disperse and resisted serum-induced aggregation. Compared to naked ZD55-IL-24, the systemic administration of PLC-ZD55-IL-24 in BALB/c mice resulted in reduced liver sequestration and systemic toxicity and evaded the innate immune response. In addition, masking the surface of Onco Ad protected it from neutralization by pre-existing neutralizing antibody. PLC-Onco Ad achieved efficient targeted delivery in Huh-7-bearing nude mice, and intravenous administration of a high dose of PLC-ZD55-IL-24 increased therapeutic efficacy without inducing toxicity. The developed PLC-Onco Ad delivery system represents a promising improvement for oncolytic adenovirus-based cancer gene therapy in vivo.
Perrin, P; Thibodeau, L; Sureau, P
1985-09-01
Rabies immunosomes (glycoprotein anchored on pre-formed liposomes) have been prepared in order to study their structural, biological and immunological properties. The glycoprotein molecules appear to have the same orientation on the immunosome as on the viral particle: (1) electron microscopy analysis shows particles of 40 to 70 nm with spikes protruding outward, (2) one particular epitope shows the same accessibility to a neutralizing monoclonal antibody as on the viral particle. When injected into animals, rabies immunosomes are cleared from the organism by a process different from that for the liposomes used to anchor the glycoprotein: a higher rate of transition through the spleen is observed with immunosomes than with purified glycoprotein or liposomes. Immunosomes induce high levels of neutralizing antibodies and protect animals against challenge with virulent strains. This protective activity is not altered after several months of storage at 4 degrees C. Furthermore, rabies immunosomes were shown to be efficient in post-exposure treatment of laboratory animals that had been experimentally infected with a lethal dose of a rabies wild strain.
Update on progress in HIV vaccine development.
Watkins, David I
2012-01-01
The 19th Conference on Retroviruses and Opportunistic Infections heralded the arrival of a new crop of potent, broadly neutralizing antibodies against HIV. This advance has given the entire vaccine field enormous hope that it will be possible one day to develop an antibody-based vaccine for HIV. However, substantial obstacles still exist in the induction of these antibodies by vaccination, given the enormous number of somatic mutations needed to develop these highly efficient antibodies. It is likely that follicular helper T cells will be involved in the development of these antibodies, and this will be a key area of interest in the future. Cellular immune responses will also be an important part of any vaccine regimen. Evidence showed that protection provided by an attenuated vaccine correlated with the frequency of vaccine-induced helper cells and killer cells, underlining the importance of these key immune cells. An alternative approach to the development of potent neutralizing antibodies was presented as part of an update on the Thai Phase III Vaccine Trial RV144. Data were shown suggesting that binding antibodies may play a role in protection from HIV infection.
Protective efficacy of Zika vaccine in AG129 mouse model
Sumathy, K.; Kulkarni, Bharathi; Gondu, Ravi Kumar; Ponnuru, Sampath Kumar; Bonguram, Nagaraju; Eligeti, Rakesh; Gadiyaram, Sindhuja; Praturi, Usha; Chougule, Bhushan; Karunakaran, Latha; Ella, Krishna M.
2017-01-01
Zika virus (ZIKV) is a mosquito-borne flavivirus that causes asymptomatic infection or presents only mild symptoms in majority of those infected. However, vaccination for ZIKV is a public health priority due to serious congenital and neuropathological abnormalities observed as a sequelae of the virus infection in the recent epidemics. We have developed an inactivated virus vaccine with the African MR 766 strain. Here we show that two doses of the vaccine provided 100% efficacy against mortality and disease following challenge with homotypic MR 766 and the heterotypic FSS 13025 ZIKV strains in the Type I and Type II interferon deficient AG129 mice. Two doses of the vaccine elicited high titer of neutralizing antibodies in Balb/c mice, and the vaccine antisera conferred protection against virus challenge in passively immunized mice. The studies were useful to rationalize vaccine doses for protective efficacy. Furthermore, the vaccine antisera neutralized the homotypic and heterotypic ZIKV strains in vitro with equivalent efficiency. Our study suggests a single ZIKV serotype, and that the development of an effective vaccine may not be limited by the choice of virus strain. PMID:28401907
Protective efficacy of Zika vaccine in AG129 mouse model.
Sumathy, K; Kulkarni, Bharathi; Gondu, Ravi Kumar; Ponnuru, Sampath Kumar; Bonguram, Nagaraju; Eligeti, Rakesh; Gadiyaram, Sindhuja; Praturi, Usha; Chougule, Bhushan; Karunakaran, Latha; Ella, Krishna M
2017-04-12
Zika virus (ZIKV) is a mosquito-borne flavivirus that causes asymptomatic infection or presents only mild symptoms in majority of those infected. However, vaccination for ZIKV is a public health priority due to serious congenital and neuropathological abnormalities observed as a sequelae of the virus infection in the recent epidemics. We have developed an inactivated virus vaccine with the African MR 766 strain. Here we show that two doses of the vaccine provided 100% efficacy against mortality and disease following challenge with homotypic MR 766 and the heterotypic FSS 13025 ZIKV strains in the Type I and Type II interferon deficient AG129 mice. Two doses of the vaccine elicited high titer of neutralizing antibodies in Balb/c mice, and the vaccine antisera conferred protection against virus challenge in passively immunized mice. The studies were useful to rationalize vaccine doses for protective efficacy. Furthermore, the vaccine antisera neutralized the homotypic and heterotypic ZIKV strains in vitro with equivalent efficiency. Our study suggests a single ZIKV serotype, and that the development of an effective vaccine may not be limited by the choice of virus strain.
Control of C-H Bond Activation by Mo-Oxo Complexes: pKa or Bond Dissociation Free Energy (BDFE)?
Nazemi, Azadeh; Cundari, Thomas R
2017-10-16
A density functional theory (DFT) study (BMK/6-31+G(d)) was initiated to investigate the activation of benzylic carbon-hydrogen bonds by a molybdenum-oxo complex with a potentially redox noninnocent supporting ligand-a simple mimic of the active species of the enzyme ethylbenzene dehydrogenase (EBDH)-through deprotonation (C-H bond heterolysis) or hydrogen atom abstraction (C-H bond homolysis) routes. Activation free-energy barriers for neutral and anionic Mo-oxo complexes were high, but lower for anionic complexes than neutral complexes. Interesting trends as a function of substituents were observed that indicated significant H δ+ character in the transition states (TS), which was further supported by the preference for [2 + 2] addition over HAA for most complexes. Hence, it was hypothesized that C-H activation by these EBDH mimics is controlled more by the pK a than by the bond dissociation free energy of the C-H bond being activated. Therefore, the results suggest promising pathways for designing more efficient and selective catalysts for hydrocarbon oxidation based on EBDH active-site mimics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzoughi, Alinaghi; Burgos, Rolando; Boroyevich, Dushan
This paper presents the design procedure and comparison of converters currently used in medium-voltage high-power motor drive applications. For this purpose, the cascaded H-bridge (CHB), modular multilevel converter (MMC), and five-level active neutral point clamped (5-L ANPC) topologies are targeted. The design is performed using 1.7-kV insulated gate bipolar transistors (IGBTs) for CHB and MMC converters, and utilizing 3.3- and 4.5-kV IGBTs for 5-L ANPC topology as normally done in industry. The comparison is done between the designed converter topologies at three different voltage levels (4.16, 6.9, and 13.8 kV, with only the first two voltage levels in case ofmore » the 5-L ANPC) and two different power levels (3 and 5 MVA), in order to elucidate the dependence of different parameters on voltage and power rating. Finally, the comparison is done from several points of view such as efficiency, capacitive energy storage, semiconductor utilization, parts count (for measure of reliability), and power density.« less
Fragmentation of neutral amino acids and small peptides by intense, femtosecond laser pulses.
Duffy, Martin J; Kelly, Orla; Calvert, Christopher R; King, Raymond B; Belshaw, Louise; Kelly, Thomas J; Costello, John T; Timson, David J; Bryan, William A; Kierspel, Thomas; Turcu, I C Edmond; Cacho, Cephise M; Springate, Emma; Williams, Ian D; Greenwood, Jason B
2013-09-01
High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.
T-bet expression by Th cells promotes type 1 inflammation but is dispensable for colitis.
Zimmermann, J; Kühl, A A; Weber, M; Grün, J R; Löffler, J; Haftmann, C; Riedel, R; Maschmeyer, P; Lehmann, K; Westendorf, K; Mashreghi, M-F; Löhning, M; Mack, M; Radbruch, A; Chang, H D
2016-11-01
The transcription factor T-bet is highly expressed by Th cells isolated from the inflamed intestine of Crohn's disease patients, and has been regarded a critical driver of murine T cell-induced colitis. However, we show here that T-bet expression by Th cells is not required for the manifestation of T-cell-induced colitis in the presence of segmented filamentous bacteria and Helicobacter hepaticus. T-bet expression by Th cells controls their survival and localization, their repertoire of chemokine and chemokine receptor expression, the accumulation of monocytes and macrophages in the inflamed colon, and their differentiation to the M1 type, i.e., type 1 inflammation. Nevertheless, T-bet-deficient Th cells efficiently induce colitis, as reflected by weight loss, diarrhea, and colon histopathology. T-bet-deficient Th cells differentiate into Th1/17 cells, able to express IFN-γ and IL-17A upon restimulation. While neutralization of IL-17A exacerbated colitis induced by wild-type or T-bet-deficient Th cells, neutralization of IFN-γ completely abolished colitis.
NASA Astrophysics Data System (ADS)
Niemi, K.; O'Neill, C.; Cox, L. J.; Waskoenig, J.; Hyland, W. B.; McMahon, S. J.; Reuter, S.; Currell, F. J.; Graham, W. G.; O'Connell, D.; Gans, T.
2012-05-01
Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations.
Layered Double Hydroxide Nanotransporter for Molecule Delivery to Intact Plant Cells
Bao, Wenlong; Wang, Junya; Wang, Qiang; O’Hare, Dermot; Wan, Yinglang
2016-01-01
Here we report a powerful method that facilitates the transport of biologically active materials across the cell wall barrier in plant cells. Positively charged delaminated layered double hydroxide lactate nanosheets (LDH-lactate-NS) with a 0.5‒2 nm thickness and 30‒60 nm diameter exhibit a high adsorptive capacity for negatively charged biomolecules, including fluorescent dyes such as tetramethyl rhodamine isothiocyanate (TRITC), fluorescein isothiocyanate isomer I(FITC) and DNA molecules, forming neutral LDH-nanosheet conjugates. These neutral conjugates can shuttle the bound fluorescent dye into the cytosol of intact plant cell very efficiently. Furthermore, typical inhibitors of endocytosis and low temperature incubation did not prevent LDH-lactate-NS internalization, suggesting that LDH-lactate-NS penetrated the plasma membrane via non-endocytic pathways, which will widen the applicability to a variety of plant cells. Moreover, the absence of unwanted side effects in our cytological studies, and the nuclear localization of ssDNA-FITC suggest that nano-LDHs have potential application as a novel gene carrier to plants. PMID:27221055
NASA Astrophysics Data System (ADS)
Johansen, K. M.; Zubiaga, A.; Tuomisto, F.; Monakhov, E. V.; Kuznetsov, A. Yu.; Svensson, B. G.
2011-09-01
The interaction of hydrogen (H) with lithium (Li) and zinc vacancies (VZn) in hydrothermally grown n-type zinc oxide (ZnO) has been investigated by positron annihilation spectroscopy (PAS) and secondary ion mass spectrometry. Li on Zn-site (LiZn) is found to be the dominant trap for migrating H atoms, while the trapping efficiency of VZn is considerably smaller. After hydrogenation, where the LiZn acceptor is passivated via formation of neutral LiZn-H pairs, VZn occurs as the prime PAS signature and with a concentration similar to that observed in nonhydrogenated Li-poor samples. Despite a low efficiency as an H trap, the apparent concentration of VZn in Li-poor samples decreases after hydrogenation, as detected by PAS, and evidence for formation of the neutral VZnH2 complex is presented.
Respaud, Renaud; Marchand, Denis; Pelat, Thibaut; Tchou-Wong, Kam-Meng; Roy, Chad J; Parent, Christelle; Cabrera, Maria; Guillemain, Joël; Mac Loughlin, Ronan; Levacher, Eric; Fontayne, Alexandre; Douziech-Eyrolles, Laurence; Junqua-Moullet, Alexandra; Guilleminault, Laurent; Thullier, Philippe; Guillot-Combe, Emmanuelle; Vecellio, Laurent; Heuzé-Vourc'h, Nathalie
2016-07-28
The high toxicity of ricin and its ease of production have made it a major bioterrorism threat worldwide. There is however no efficient and approved treatment for poisoning by ricin inhalation, although there have been major improvements in diagnosis and therapeutic strategies. We describe the development of an anti-ricin neutralizing monoclonal antibody (IgG 43RCA-G1) and a device for its rapid and effective delivery into the lungs for an application in humans. The antibody is a full-length IgG and binds to the ricin A-chain subunit with a high affinity (KD=53pM). Local administration of the antibody into the respiratory tract of mice 6h after pulmonary ricin intoxication allowed the rescue of 100% of intoxicated animals. Specific operational constraints and aerosolization stresses, resulting in protein aggregation and loss of activity, were overcome by formulating the drug as a dry-powder that is solubilized extemporaneously in a stabilizing solution to be nebulized. Inhalation studies in mice showed that this formulation of IgG 43RCA-G1 did not induce pulmonary inflammation. A mesh nebulizer was customized to improve IgG 43RCA-G1 deposition into the alveolar region of human lungs, where ricin aerosol particles mostly accumulate. The drug delivery system also comprises a semi-automatic reconstitution system to facilitate its use and a specific holding chamber to maximize aerosol delivery deep into the lung. In vivo studies in monkeys showed that drug delivery with the device resulted in a high concentration of IgG 43RCA-G1 in the airways for at least 6h after local deposition, which is consistent with the therapeutic window and limited passage into the bloodstream. Copyright © 2016. Published by Elsevier B.V.
Li, Shi-Weng; Song, Hong-Ping; Leng, Yan
2014-01-01
Lovastatin, a hypocholesterolemic drug, is produced by submerged fermentation of Aspergillus terreus Thom (Trichocomaceae). High performance liquid chromatography is usually used to determine lovastatin in samples of the fermentation broth. However, this method is inconvenient and costly, especially in the context of high-throughput sample analysis. A direct and simple dual-wavelength ultraviolet spectrophotometric method for quantifying lovastatin in the fermentation broth of A. terreus was developed. A. terreus Z15-7 was used for all experiments. The liquid fermentation was conducted at 30 °C in a rotary shaker at 150 rpm for 15 d. Silica gel and neutral alumina column chromatography were used for the separation and purification of lovastatin from the fermentation broth. The limits of detection of lovastatin were 0.320 μg/ml in the lovastatin standard solution and 0.490 μg/ml in the fermentation broth sample and the limits of quantification of lovastatin were 1.265 μg/ml in the lovastatin standard solution and 3.955 μg/ml in the fermentation broth sample. The amounts of lovastatin in the fermentation broth ranged from 876.614 to 911.967 μg/ml, with relative standard deviations from 1.203 to 1.709%. The mean recoveries of lovastatin using silica gel and neutral alumina column chromatography were 84.2 ± 0.82 and 87.2 ± 0.21%, respectively. Dual-wavelength UV spectrophotometry is a rapid, sensitive, accurate, and convenient method for quantifying lovastatin in fermentation broth. Neutral alumina column chromatography is more efficient than silica gel column chromatography for the purification and determination lovastatin using the developed dual-wavelength UV spectrophotometry method.
Silicon chemistry in interstellar clouds
NASA Technical Reports Server (NTRS)
Langer, William D.; Glassgold, A. E.
1989-01-01
Interstellar SiO was discovered shortly after CO but it has been detected mainly in high density and high temperature regions associated with outflow sources. A new model of interstellar silicon chemistry that explains the lack of SiO detections in cold clouds is presented which contains an exponential temperature dependence for the SiO abundance. A key aspect of the model is the sensitivity of SiO production by neutral silicon reactions to density and temperature, which arises from the dependence of the rate coefficients on the population of the excited fine structure levels of the silicon atom. This effect was originally pointed out in the context of neutral reactions of carbon and oxygen by Graff, who noted that the leading term in neutral atom-molecule interactions involves the quadrupole moment of the atom. Similar to the case of carbon, the requirement that Si has a quadrupole moment requires population of the J = 1 level, which lies 111K above the J = 0 ground state and has a critical density n(cr) equal to or greater than 10(6)/cu cm. The SiO abundance then has a temperature dependence proportional to exp(-111/T) and a quadratic density dependence for n less than n(cr). As part of the explanation of the lack of SiO detections at low temperatures and densities, this model also emphasizes the small efficiencies of the production routes and the correspondingly long times needed to reach equilibrium. Measurements of the abundance of SiO, in conjunction with theory, can provide information on the physical properties of interstellar clouds such as the abundances of oxygen bearing molecules and the depletion of interstellar silicon.
Conceptual design of the beam source for the DEMO Neutral Beam Injectors
NASA Astrophysics Data System (ADS)
Sonato, P.; Agostinetti, P.; Fantz, U.; Franke, T.; Furno, I.; Simonin, A.; Tran, M. Q.
2016-12-01
DEMO (DEMOnstration Fusion Power Plant) is a proposed nuclear fusion power plant that is intended to follow the ITER experimental reactor. The main goal of DEMO will be to demonstrate the possibility to produce electric energy from the fusion reaction. The injection of high energy neutral beams is one of the main tools to heat the plasma up to fusion conditions. A conceptual design of the Neutral Beam Injector (NBI) for the DEMO fusion reactor, is currently being developed by Consorzio RFX in collaboration with other European research institutes. High efficiency and low recirculating power, which are fundamental requirements for the success of DEMO, have been taken into special consideration for the DEMO NBI. Moreover, particular attention has been paid to the issues related to reliability, availability, maintainability and inspectability. A conceptual design of the beam source for the DEMO NBI is here presented featuring 20 sub-sources (two adjacent columns of 10 sub-sources each), following a modular design concept, with each sub-source featuring its radio frequency driver, capable of increasing the reliability and availability of the DEMO NBI. Copper grids with increasing size of the apertures have been adopted in the accelerator, with three main layouts of the apertures (circular apertures, slotted apertures and frame-like apertures for each sub-source). This design, permitting to significantly decrease the stripping losses in the accelerator without spoiling the beam optics, has been investigated with a self-consistent model able to study at the same time the magnetic field, the electrostatic field and the trajectory of the negative ions. Moreover, the status on the R&D carried out in Europe on the ion sources is presented.
Ringe, Rajesh P.; Ozorowski, Gabriel; Yasmeen, Anila; Cupo, Albert; Cruz Portillo, Victor M.; Pugach, Pavel; Golabek, Michael; Rantalainen, Kimmo; Holden, Lauren G.; Cottrell, Christopher A.; Wilson, Ian A.; Sanders, Rogier W.; Ward, Andrew B.; Klasse, P. J.
2017-01-01
ABSTRACT Soluble, recombinant native-like envelope glycoprotein (Env) trimers of various human immunodeficiency virus type 1 (HIV-1) genotypes are being developed for structural studies and as vaccine candidates aimed at the induction of broadly neutralizing antibodies (bNAbs). The prototypic design is designated SOSIP.664, but many HIV-1 env genes do not yield fully native-like trimers efficiently. One such env gene is CZA97.012 from a neutralization-resistant (tier 2) clade C virus. As appropriately purified, native-like CZA97.012 SOSIP.664 trimers induce autologous neutralizing antibodies (NAbs) efficiently in immunized rabbits, we sought to improve the efficiency with which they can be produced and to better understand the limitations to the original design. By using structure- and antigenicity-guided mutagenesis strategies focused on the V2 and V3 regions and the gp120-gp41 interface, we developed the CZA97 SOSIP.v4.2-M6.IT construct. Fully native-like, stable trimers that display multiple bNAb epitopes could be expressed from this construct in a stable CHO cell line and purified at an acceptable yield using either a PGT145 or a 2G12 bNAb affinity column. We also show that similar mutagenesis strategies can be used to improve the yields and properties of SOSIP.664 trimers of the DU422, 426c, and 92UG037 genotypes. IMPORTANCE Recombinant trimeric proteins based on HIV-1 env genes are being developed for future vaccine trials in humans. A feature of these proteins is their mimicry of the envelope glycoprotein (Env) structure on virus particles that is targeted by neutralizing antibodies, i.e., antibodies that prevent cells from becoming infected. The vaccine concept under exploration is that recombinant trimers may be able to elicit virus-neutralizing antibodies when delivered as immunogens. Because HIV-1 is extremely variable, a practical vaccine may need to incorporate Env trimers derived from multiple different virus sequences. Accordingly, we need to understand how to make recombinant trimers from many different env genes. Here, we show how to produce trimers from a clade C virus, CZA97.012, by using an array of protein engineering techniques to improve a prototypic construct. We also show that the methods may have wider utility for other env genes, thereby further guiding immunogen design. PMID:28381572
[A new method of investigation of "child's" behavior (infant-mother attachment) of newborn rats].
Stovolosov, I S; Dubynin, V A; Kamenskiĭ, A A
2010-01-01
A new method of studying "child's" (maternal bonding) behavior of newborn rats was developed. The efficiency of the method was proved in estimation of dopaminergic control of the infant-mother attachment. Selective D2-antagonist clebopride applied in subthreshold for motor activity doses caused a decrease in aspiration of pups to be in contact with a dam. On the basis of features analyzed (latent periods and expression of various behavioral components), the integrated criterion for the estimation of "child's" reactions was suggested. Application of this criterion made it possible to neutralize high individual variability of the behavior typical of newborns.
Extraction and quantification of adenosine triphosphate in mammalian tissues and cells.
Chida, Junji; Kido, Hiroshi
2014-01-01
Adenosine 5'-triphosphate (ATP) is the "energy currency" of organisms and plays central roles in bioenergetics, whereby its level is used to evaluate cell viability, proliferation, death, and energy transmission. In this chapter, we describe an improved and efficient method for extraction of ATP from tissues and cells using phenol-based reagents. The chaotropic extraction reagents reported so far co-precipitate ATP with insoluble proteins during extraction and with salts during neutralization. In comparison, the phenol-based reagents extract ATP well without the risks of co-precipitation. The extracted ATP can be quantified by the luciferase assay or high-performance liquid chromatography.
High Power Helicon Plasma Source for Plasma Processing
NASA Astrophysics Data System (ADS)
Prager, James; Ziemba, Timothy; Miller, Kenneth E.
2015-09-01
Eagle Harbor Technologies (EHT), Inc. is developing a high power helicon plasma source. The high power nature and pulsed neutral gas make this source unique compared to traditional helicon source. These properties produce a plasma flow along the magnetic field lines, and therefore allow the source to be decoupled from the reaction chamber. Neutral gas can be injected downstream, which allows for precision control of the ion-neutral ratio at the surface of the sample. Although operated at high power, the source has demonstrated very low impurity production. This source has applications to nanoparticle productions, surface modification, and ionized physical vapor deposition.
Efficient uranium capture by polysulfide/layered double hydroxide composites.
Ma, Shulan; Huang, Lu; Ma, Lijiao; Shim, Yurina; Islam, Saiful M; Wang, Pengli; Zhao, Li-Dong; Wang, Shichao; Sun, Genban; Yang, Xiaojing; Kanatzidis, Mercouri G
2015-03-18
There is a need to develop highly selective and efficient materials for capturing uranium (normally as UO2(2+)) from nuclear waste and from seawater. We demonstrate the promising adsorption performance of S(x)-LDH composites (LDH is Mg/Al layered double hydroxide, [S(x)](2-) is polysulfide with x = 2, 4) for uranyl ions from a variety of aqueous solutions including seawater. We report high removal capacities (q(m) = 330 mg/g), large K(d)(U) values (10(4)-10(6) mL/g at 1-300 ppm U concentration), and high % removals (>95% at 1-100 ppm, or ∼80% for ppb level seawater) for UO2(2+) species. The S(x)-LDHs are exceptionally efficient for selectively and rapidly capturing UO2(2+) both at high (ppm) and trace (ppb) quantities from the U-containing water including seawater. The maximum adsorption coeffcient value K(d)(U) of 3.4 × 10(6) mL/g (using a V/m ratio of 1000 mL/g) observed is among the highest reported for U adsorbents. In the presence of very high concentrations of competitive ions such as Ca(2+)/Na(+), S(x)-LDH exhibits superior selectivity for UO2(2+), over previously reported sorbents. Under low U concentrations, (S4)(2-) coordinates to UO2(2+) forming anionic complexes retaining in the LDH gallery. At high U concentrations, (S4)(2-) binds to UO2(2+) to generate neutral UO2S4 salts outside the gallery, with NO3(-) entering the interlayer to form NO3-LDH. In the presence of high Cl(-) concentration, Cl(-) preferentially replaces [S4](2-) and intercalates into LDH. Detailed comparison of U removal efficiency of S(x)-LDH with various known sorbents is reported. The excellent uranium adsorption ability along with the environmentally safe, low-cost constituents points to the high potential of S(x)-LDH materials for selective uranium capture.
Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis.
Lanz, Christian; Mattsson, Johan; Soydaner, Umut; Brenneisen, Rudolf
2016-01-01
Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot) and total CBD (CBDtot) in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3%) and CBD (≥ 94.6%). The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis.
Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis
Lanz, Christian; Mattsson, Johan; Soydaner, Umut; Brenneisen, Rudolf
2016-01-01
Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot) and total CBD (CBDtot) in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3%) and CBD (≥ 94.6%). The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis. PMID:26784441
Efficient Dual-Site Carbon Monoxide Electro-Catalysts via Interfacial Nano-Engineering.
Liu, Zhen; Huang, Zhongyuan; Cheng, Feifei; Guo, Zhanhu; Wang, Guangdi; Chen, Xu; Wang, Zhe
2016-09-21
Durable, highly efficient, and economic sound electrocatalysts for CO electrooxidation (COE) are the emerging key for wide variety of energy solutions, especially fuel cells and rechargeable metal-air batteries. Herein, we report the novel system of nickel-aluminum double layered hydroxide (NiAl-LDH) nanoplates on carbon nanotubes (CNTs) network. The formulation of such complexes system was to be induced through the assistance of gold nanoparticles in order to form dual-metal active sites so as to create a extended Au/NiO two phase zone. Bis (trifluoromethylsulfonyl)imide (NTf2) anion of ionic liquid electrolyte was selected to enhance the CO/O2 adsorption and to facilitate electro-catalyzed oxidation of Ni (OH)2 to NiOOH by increasing the electrophilicity of catalytic interface. The resulting neutral catalytic system exhibited ultra-high electrocatalytic activity and stability for CO electrooxidation than commercial and other reported precious metal catalysts. The turnover frequency (TOF) of the LDH-Au/CNTs COE catalyst was much higher than the previous reported other similar electrocatalysts, even close to the activity of solid-gas chemical catalysts at high temperature. Moreover, in the long-term durability testing, the negligible variation of current density remains exsisting after 1000 electrochemistry cycles.
Efficient Dual-Site Carbon Monoxide Electro-Catalysts via Interfacial Nano-Engineering
Liu, Zhen; Huang, Zhongyuan; Cheng, Feifei; Guo, Zhanhu; Wang, Guangdi; Chen, Xu; Wang, Zhe
2016-01-01
Durable, highly efficient, and economic sound electrocatalysts for CO electrooxidation (COE) are the emerging key for wide variety of energy solutions, especially fuel cells and rechargeable metal−air batteries. Herein, we report the novel system of nickel−aluminum double layered hydroxide (NiAl-LDH) nanoplates on carbon nanotubes (CNTs) network. The formulation of such complexes system was to be induced through the assistance of gold nanoparticles in order to form dual-metal active sites so as to create a extended Au/NiO two phase zone. Bis (trifluoromethylsulfonyl)imide (NTf2) anion of ionic liquid electrolyte was selected to enhance the CO/O2 adsorption and to facilitate electro-catalyzed oxidation of Ni (OH)2 to NiOOH by increasing the electrophilicity of catalytic interface. The resulting neutral catalytic system exhibited ultra-high electrocatalytic activity and stability for CO electrooxidation than commercial and other reported precious metal catalysts. The turnover frequency (TOF) of the LDH-Au/CNTs COE catalyst was much higher than the previous reported other similar electrocatalysts, even close to the activity of solid-gas chemical catalysts at high temperature. Moreover, in the long-term durability testing, the negligible variation of current density remains exsisting after 1000 electrochemistry cycles. PMID:27650532
Efficient Dual-Site Carbon Monoxide Electro-Catalysts via Interfacial Nano-Engineering
NASA Astrophysics Data System (ADS)
Liu, Zhen; Huang, Zhongyuan; Cheng, Feifei; Guo, Zhanhu; Wang, Guangdi; Chen, Xu; Wang, Zhe
2016-09-01
Durable, highly efficient, and economic sound electrocatalysts for CO electrooxidation (COE) are the emerging key for wide variety of energy solutions, especially fuel cells and rechargeable metal-air batteries. Herein, we report the novel system of nickel-aluminum double layered hydroxide (NiAl-LDH) nanoplates on carbon nanotubes (CNTs) network. The formulation of such complexes system was to be induced through the assistance of gold nanoparticles in order to form dual-metal active sites so as to create a extended Au/NiO two phase zone. Bis (trifluoromethylsulfonyl)imide (NTf2) anion of ionic liquid electrolyte was selected to enhance the CO/O2 adsorption and to facilitate electro-catalyzed oxidation of Ni (OH)2 to NiOOH by increasing the electrophilicity of catalytic interface. The resulting neutral catalytic system exhibited ultra-high electrocatalytic activity and stability for CO electrooxidation than commercial and other reported precious metal catalysts. The turnover frequency (TOF) of the LDH-Au/CNTs COE catalyst was much higher than the previous reported other similar electrocatalysts, even close to the activity of solid-gas chemical catalysts at high temperature. Moreover, in the long-term durability testing, the negligible variation of current density remains exsisting after 1000 electrochemistry cycles.
Modeling of the coupled magnetospheric and neutral wind dynamos
NASA Technical Reports Server (NTRS)
Thayer, Jeff P.
1993-01-01
The solar wind interaction with the earth's magnetosphere generates electric fields and currents that flow from the magnetosphere to the ionosphere at high latitudes. Consequently, the neutral atmosphere is subject to the dissipation and conversion of this electrical energy to thermal and mechanical energy through Joule heating and Lorentz forcing. As a result of the mechanical energy stored within the neutral wind (caused in part by Lorentz--and pressure gradient--forces set up by the magnetospheric flux of electrical energy), electric currents and fields can be generated in the ionosphere through the neutral wind dynamo mechanism. At high latitudes this source of electrical energy has been largely ignored in past studies, owing to the assumed dominance of the solar wind/magnetospheric dynamo as an electrical energy source to the ionosphere. However, other researchers have demonstrated that the available electrical energy provided by the neutral wind is significant at high latitudes, particularly in the midnight sector of the polar cap and in the region of the magnetospheric convection reversal. As a result, the conclusions of a number of broad ranging high-latitude investigations may be modified if the neutral-wind contribution to high-latitude electrodynamics is properly accounted for. These include the following: studies assessing solar wind-magnetospheric coupling by comparing the cross polar cap potential with solar wind parameters; research based on the alignment of particle precipitation with convection or field aligned current boundaries; and synoptic investigations attributing seasonal variations in the observed electric field and current patterns to external sources. These research topics have been initiated by satellite and ground-based observations and have been attributed to magnetospheric causes. However, the contribution of the neutral wind to the high-latitude electric field and current systems and their seasonal and local time dependence has yet to be quantitatively evaluated. In this program, we are evaluating the coupled magnetospheric and neutral wind dynamos at high latitudes under various conditions. In addition to examining the impact of seasonal variations, we are investigating the consequences of the separate dynamos having pure current-source or voltage-source behaviors.
Zhang, Yitong; Qian, Zijun; Liu, Peng; Liu, Lei; Zheng, Zhaojuan; Ouyang, Jia
2018-02-01
To get rid of the dependence on lactic acid neutralizer, a simple and economical approach for efficient in situ separation and production of L-lactic acid was established by Bacillus coagulans using weak basic anion-exchange resin. During ten tested resins, the 335 weak basic anion-exchange resins demonstrated the highest adsorption capacity and selectivity for lactic acid recovery. The adsorption study of the 335 resins for lactic acid confirmed that it is an efficient adsorbent under fermentation condition. Langmuir models gave a good fit to the equilibrium data at 50 °C and the maximum adsorption capacity for lactic acid by 335 resins was about 402 mg/g. Adsorption kinetic experiments showed that pseudo-second-order kinetics model gave a good fit to the adsorption rate. When it was used for in situ fermentation, the yield of L-lactic acid by B. coagulans CC17 was close to traditional fermentation and still maintained at about 82% even after reuse by ten times. These results indicated that in situ separation and production of L-lactic acid using the 335 resins were efficient and feasible. This process could greatly reduce the dosage of neutralizing agent and potentially be used in industry.
Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys.
Oswald, Wendelien B; Geisbert, Thomas W; Davis, Kelly J; Geisbert, Joan B; Sullivan, Nancy J; Jahrling, Peter B; Parren, Paul W H I; Burton, Dennis R
2007-01-01
Prophylaxis with high doses of neutralizing antibody typically offers protection against challenge with viruses producing acute infections. In this study, we have investigated the ability of the neutralizing human monoclonal antibody, KZ52, to protect against Ebola virus in rhesus macaques. This antibody was previously shown to fully protect guinea pigs from infection. Four rhesus macaques were given 50 mg/kg of neutralizing human monoclonal antibody KZ52 intravenously 1 d before challenge with 1,000 plaque-forming units of Ebola virus, followed by a second dose of 50 mg/kg antibody 4 d after challenge. A control animal was exposed to virus in the absence of antibody treatment. Passive transfer of the neutralizing human monoclonal antibody not only failed to protect macaques against challenge with Ebola virus but also had a minimal effect on the explosive viral replication following infection. We show that the inability of antibody to impact infection was not due to neutralization escape. It appears that Ebola virus has a mechanism of infection propagation in vivo in macaques that is uniquely insensitive even to high concentrations of neutralizing antibody.
Wang, Joshua W; Matsui, Ken; Pan, Yuanji; Kwak, Kihyuck; Peng, Shiwen; Kemp, Troy; Pinto, Ligia; Roden, Richard B.S
2015-01-01
Immunization with Human Papillomavirus (HPV) L1 virus-like particles or L2 capsid protein elicits neutralizing antibodies that mediate protection. A high throughput and sensitive in vitro neutralization assay is therefore valuable for prophylactic HPV vaccine studies. Over several hours during infection of the genital tract, virions take on a distinct intermediate conformation, including a required furin cleavage of L2 at its N-terminus. This intermediate is an important target for neutralization by L2-specific antibody, but it is very transiently exposed during in vitro infection of most cell lines resulting in insensitive measurement for L2, but not L1-specific neutralizing antibodies. To model this intermediate, we describe a protocol to generate furin-cleaved HPV pseudovirions (fc-PsV) which deliver an encapsidated reporter plasmid to facilitate infectivity measurements. We also describe a protocol for use of fc-PsV in a high throughput in vitro neutralization assay for the sensitive measurement of both L1 and L2-specific neutralizing antibodies. PMID:26237105
Larsen, Tove A
2015-12-15
CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Preparatory neural activity predicts performance on a conflict task.
Stern, Emily R; Wager, Tor D; Egner, Tobias; Hirsch, Joy; Mangels, Jennifer A
2007-10-24
Advance preparation has been shown to improve the efficiency of conflict resolution. Yet, with little empirical work directly linking preparatory neural activity to the performance benefits of advance cueing, it is not clear whether this relationship results from preparatory activation of task-specific networks, or from activity associated with general alerting processes. Here, fMRI data were acquired during a spatial Stroop task in which advance cues either informed subjects of the upcoming relevant feature of conflict stimuli (spatial or semantic) or were neutral. Informative cues decreased reaction time (RT) relative to neutral cues, and cues indicating that spatial information would be task-relevant elicited greater activity than neutral cues in multiple areas, including right anterior prefrontal and bilateral parietal cortex. Additionally, preparatory activation in bilateral parietal cortex and right dorsolateral prefrontal cortex predicted faster RT when subjects responded to spatial location. No regions were found to be specific to semantic cues at conventional thresholds, and lowering the threshold further revealed little overlap between activity associated with spatial and semantic cueing effects, thereby demonstrating a single dissociation between activations related to preparing a spatial versus semantic task-set. This relationship between preparatory activation of spatial processing networks and efficient conflict resolution suggests that advance information can benefit performance by leading to domain-specific biasing of task-relevant information.
On the SIMS Ionization Probability of Organic Molecules.
Popczun, Nicholas J; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas
2017-06-01
The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α + ) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10 -5 . Our lab has developed a method for the direct determination of α + in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C 24 H 12 ), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C 60 cluster projectiles is of the order of 10 -3 , with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event. Graphical Abstract .
Hamorsky, Krystal Teasley; Grooms-Williams, Tiffany W.; Husk, Adam S.; Bennett, Lauren J.; Palmer, Kenneth E.
2013-01-01
Broadly neutralizing monoclonal antibodies (bnMAbs) may offer powerful tools for HIV-1 preexposure prophylaxis, such as topical microbicides. However, this option is hampered due to expensive MAb biomanufacturing based on mammalian cell culture. To address this issue, we developed a new production system for bnMAb VRC01 in Nicotiana benthamiana plants using a tobamovirus replicon vector. Unlike conventional two-vector-based expression, this system was designed to overexpress full-length IgG1 from a single polypeptide by means of kex2p-like enzyme recognition sites introduced between the heavy and light chains. An enzyme-linked immunosorbent assay (ELISA) revealed that gp120-binding VRC01 IgG1 was maximally accumulated on 5 to 7 days following vector inoculation, yielding ∼150 mg of the bnMAb per kg of fresh leaf material. The plant-made VRC01 (VRC01p) was efficiently purified by protein A affinity followed by hydrophobic-interaction chromatography. ELISA, surface plasmon resonance, and an HIV-1 neutralization assay demonstrated that VRC01p has gp120-binding affinity and HIV-1-neutralization capacity virtually identical to the human-cell-produced counterpart. To advance VRC01p's use in topical microbicides, we analyzed combinations of the bnMAb with other microbicide candidates holding distinct antiviral mechanisms in an HIV-1 neutralization assay. VRC01p exhibited clear synergy with the antiviral lectin griffithsin, the CCR5 antagonist maraviroc, and the reverse transcriptase inhibitor tenofovir in multiple CCR5-tropic HIV-1 strains from clades A, B, and C. In summary, VRC01p is amenable to robust, rapid, and large-scale production and may be developed as an active component in combination microbicides with other anti-HIV agents such as antiviral lectins, CCR5 antagonists, and reverse transcriptase inhibitors. PMID:23403432
Engineering quantum hyperentangled states in atomic systems
NASA Astrophysics Data System (ADS)
Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor
2017-11-01
Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger-Horne-Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.
Collaboration essential for an energy neutral urban water cycle.
Frijns, Jos; Mulder, Mirabella; Roorda, Jelle; Schepman, Hans; Voskamp, Tom
2013-01-01
Two Dutch water boards prepared a Master Plan with measures to substantially reduce their energy use by 2027. In total, more than 100 measures were identified such as bubble aeration and heat recovery from effluent. Together these measures result in a 90-95% reduction in energy use at the water boards. However, for the whole urban water cycle, thus including the energy required for warm water use in households, the total energy reduction from these measures at the water boards is only 5-6%. To attain the objective to have an energy neutral urban water cycle, collaboration with other sectors such as housing, energy, agriculture and industry will be essential. Active collaboration of the water boards through the incorporation of energy efficient water measures as part of the carbon neutral effort of cities is recognized to be a promising strategy.
Noradrenergic Mechanisms of Arousal’s Bidirectional Effects on Episodic Memory
Clewett, David; Sakaki, Michiko; Nielsen, Shawn; Petzinger, Giselle; Mather, Mara
2016-01-01
Arousal’s selective effects on cognition go beyond the simple enhancement of emotional stimuli, sometimes enhancing and other times impairing processing of proximal neutral information. Past work shows that arousal impairs encoding of subsequent neutral stimuli regardless of their top-down priority via the engagement of β-adrenoreceptors. In contrast, retrograde amnesia induced by emotional arousal can flip to enhancement when preceding neutral items are prioritized in top-down attention. Whether β-adrenoreceptors also contribute to this retrograde memory enhancement of goal-relevant neutral stimuli is unclear. In this pharmacological study, we administered 40mg of propranolol or 40mg of placebo to healthy young adults to examine whether emotional arousal’s bidirectional effects on declarative memory relies on β-adrenoreceptor activation. Following pill intake, participants completed an emotional oddball task in which they were asked to prioritize a neutral object appearing just before an emotional or neutral oddball image within a sequence of 7 neutral objects. Under placebo, emotional oddballs impaired memory for lower priority oddball+1 objects but had no effect on memory for high priority oddball−1 objects. Propranolol blocked this anterograde amnesic effect of arousal. Emotional oddballs also enhanced selective memory trade-offs significantly more in the placebo than drug condition, such that high priority oddball−1 objects were more likely to be remembered at the cost of their corresponding lower priority oddball+1 objects under arousal. Lastly, those who recalled more high priority oddball−1 objects preceding an emotional versus neutral oddball image showed greater increases in salivary alpha-amylase, a biomarker of noradrenergic system activation, across the task. Together these findings suggest that different noradrenergic mechanisms contribute to the anterograde and retrograde mnemonic effects of arousal on proximal neutral memoranda. PMID:27815214
NASA Astrophysics Data System (ADS)
Connor, H. K.; Carter, J. A.
2017-12-01
Soft X-rays can be emitted when highly charged solar wind ions and exospheric neutrals exchange electrons. Astrophysics missions, such as XMM-Newton and ROSAT X-ray telescopes, have found that such solar wind charge exchange happens at the Earth's exosphere. The Earth's magnetosphere can be imaged via soft X-rays in order to understand its interaction with solar wind. Consequently, two soft X-ray telescope missions (CuPID and SMILE) are scheduled to launch in 2019 and 2021. They will provide wide field-of-view soft X-ray images of the Earth's dayside magnetosphere. The imagers will track the location and movement of the cusps, magnetopause, and bow shock in response to solar wind variations. To support these missions, an understanding of exospheric neutral density profile is needed. The neutral density is one of the controlling factors of soft X-ray signals. Strong neutral density can help to obtain high-resolution and high-cadence of soft X-ray images. In this study, we estimate the exospheric neutral density at 10 RE subsolar point using XMM X-ray observations, Cluster plasma observations, and OpenGGCM global magnetosphere - ionosphere MHD model. XMM-Newton observes line-of-sight, narrow field-of-view, integrated soft X-ray emissions when it looks through the dayside magnetosphere. OpenGGCM reproduces soft X-ray signals seen by the XMM spacecraft, assuming exospheric neutral density as a function of the neutral density at the 10RE subsolar point and the radial distance. Cluster observations are used to confirm OpenGGCM plasma results. Finally, we deduce the neutral density at 10 RE subsolar point by adjusting the model results to the XMM-Newton soft X-ray observations.
Noradrenergic mechanisms of arousal's bidirectional effects on episodic memory.
Clewett, David; Sakaki, Michiko; Nielsen, Shawn; Petzinger, Giselle; Mather, Mara
2017-01-01
Arousal's selective effects on cognition go beyond the simple enhancement of emotional stimuli, sometimes enhancing and other times impairing processing of proximal neutral information. Past work shows that arousal impairs encoding of subsequent neutral stimuli regardless of their top-down priority via the engagement of β-adrenoreceptors. In contrast, retrograde amnesia induced by emotional arousal can flip to enhancement when preceding neutral items are prioritized in top-down attention. Whether β-adrenoreceptors also contribute to this retrograde memory enhancement of goal-relevant neutral stimuli is unclear. In this pharmacological study, we administered 40mg of propranolol or 40mg of placebo to healthy young adults to examine whether emotional arousal's bidirectional effects on declarative memory relies on β-adrenoreceptor activation. Following pill intake, participants completed an emotional oddball task in which they were asked to prioritize a neutral object appearing just before an emotional or neutral oddball image within a sequence of 7 neutral objects. Under placebo, emotional oddballs impaired memory for lower priority oddball+1 objects but had no effect on memory for high priority oddball-1 objects. Propranolol blocked this anterograde amnesic effect of arousal. Emotional oddballs also enhanced selective memory trade-offs significantly more in the placebo than drug condition, such that high priority oddball-1 objects were more likely to be remembered at the cost of their corresponding lower priority oddball+1 objects under arousal. Lastly, those who recalled more high priority oddball-1 objects preceding an emotional versus neutral oddball image showed greater increases in salivary alpha-amylase, a biomarker of noradrenergic system activation, across the task. Together these findings suggest that different noradrenergic mechanisms contribute to the anterograde and retrograde mnemonic effects of arousal on proximal neutral memoranda. Copyright © 2016 Elsevier Inc. All rights reserved.
Pellett, Sabine; Tepp, William H.; Bradshaw, Marite; Kalb, Suzanne R.; Dykes, Janet K.; Lin, Guangyun; Nawrocki, Erin M.; Pier, Christina L.; Barr, John R.; Maslanka, Susan E.
2016-01-01
ABSTRACT Botulinum neurotoxins (BoNTs), produced by neurotoxigenic clostridial species, are the cause of the severe disease botulism in humans and animals. Early research on BoNTs has led to their classification into seven serotypes (serotypes A to G) based upon the selective neutralization of their toxicity in mice by homologous antibodies. Recently, a report of a potential eighth serotype of BoNT, designated “type H,” has been controversial. This novel BoNT was produced together with BoNT/B2 in a dual-toxin-producing Clostridium botulinum strain. The data used to designate this novel toxin as a new serotype were derived from culture supernatant containing both BoNT/B2 and novel toxin and from sequence information, although data from two independent laboratories indicated neutralization by antibodies raised against BoNT/A1, and classification as BoNT/FA was proposed. The sequence data indicate a chimeric structure consisting of a BoNT/A1 receptor binding domain, a BoNT/F5 light-chain domain, and a novel translocation domain most closely related to BoNT/F1. Here, we describe characterization of this toxin purified from the native strain in which expression of the second BoNT (BoNT/B) has been eliminated. Mass spectrometry analysis indicated that the toxin preparation contained only BoNT/FA and confirmed catalytic activity analogous to that of BoNT/F5. The in vivo mouse bioassay indicated a specific activity of this toxin of 3.8 × 107 mouse 50% lethal dose (mLD50) units/mg, whereas activity in cultured human neurons was very high (50% effective concentration [EC50] = 0.02 mLD50/well). Neutralization assays in cells and mice both indicated full neutralization by various antibodies raised against BoNT/A1, although at 16- to 20-fold-lower efficiency than for BoNT/A1. IMPORTANCE Botulinum neurotoxins (BoNTs), produced by anaerobic bacteria, are the cause of the potentially deadly, neuroparalytic disease botulism. BoNTs have been classified into seven serotypes, serotypes A to G, based upon their selective neutralization by homologous antiserum, which is relevant for clinical and diagnostic purposes. Even though supportive care dramatically reduces the death rate of botulism, the only pharmaceutical intervention to reduce symptom severity and recovery time is early administration of antitoxin (antiserum raised against BoNTs). A recent report of a novel BoNT serotype, serotype H, raised concern of a “treatment-resistant” and highly potent toxin. However, the toxin’s chimeric structure and characteristics indicate a chimeric BoNT/FA. Here we describe the first characterization of this novel toxin in purified form. BoNT/FA was neutralized by available antitoxins, supporting classification as BoNT/FA. BoNT/FA required proteolytic activation to achieve full toxicity and had relatively low potency in mice compared to BoNT/A1 but surprisingly high activity in cultured neurons. PMID:27303710
Li, Peng; Song, Xinxin; Wang, Jing; Zhou, Xiaoran; Li, Jiayi; Lin, Fengtong; Hu, Zhonghua; Zhang, Xinxin; Cui, Hewei; Wang, Wenmiao; Li, Hong; Cong, Fengyu; Roberson, Debi
2015-11-01
Many previous event-related potential (ERP) studies have linked the feedback related negativity (FRN) component with medial frontal cortex processing and associated this component with depression. Few if any studies have investigated the processing of neutral feedback in mildly depressive subjects in the normal population. Two experiments compared brain responses to neutral feedback with behavioral performance in mildly depressed subjects who scored highly on the Beck Depression Inventory (high BDI) and a control group with lower BDI scores (low BDI). In the first study, the FRN component was recorded when neutral, negative or positive feedback was pseudo-randomly delivered to the two groups in a time estimation task. In the second study, real feedback was provided to the two groups in the same task in order to measure their actual accuracy of performance. The results of experiment one (Exp. 1) revealed that a larger FRN effect was elicited by neutral feedback than by negative feedback in the low BDI group, but no significant difference was found between neutral condition and negative condition in the High BDI group. The present findings demonstrated that depressive tendencies influence the processing of neutral feedback in medial frontal cortex. The FRN effect may work as a helpful index for investigating cognitive bias in depression in future studies. Copyright © 2015 Elsevier Inc. All rights reserved.
High-field plasma acceleration in a high-ionization-potential gas
Corde, S.; Adli, E.; Allen, J. M.; ...
2016-06-17
Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m -1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less
Pira, S L; El Mahdi, O; Raibaut, L; Drobecq, H; Dheur, J; Boll, E; Melnyk, O
2016-07-26
The bis(2-sulfanylethyl)amide (SEA) N,S-acyl shift thioester surrogate has found a variety of useful applications in the field of protein total synthesis. Here we present novel insights into the SEA amide/thioester equilibrium in water which is an essential step in any reaction involving the thioester surrogate properties of the SEA group. We also show that the SEA amide thioester equilibrium can be efficiently displaced at neutral pH for accessing peptide alkylthioesters, i.e. the key components of the native chemical ligation (NCL) reaction.
Random Access Frame (RAF) System Neutral Buoyancy Evaluations
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Polit-Casillas, Raul; Akin, David L.; McBryan, Katherine; Carlsen, Christopher
2015-01-01
The Random Access Frame (RAF) concept is a system for organizing internal layouts of space habitats, vehicles, and outposts. The RAF system is designed as a more efficient improvement over the current International Standard Payload Rack (ISPR) used on the International Space Station (ISS), which was originally designed to allow for swapping and resupply by the Space Shuttle. The RAF system is intended to be applied in variable gravity or microgravity environments. This paper discusses evaluations and results of testing the RAF system in a neutral buoyancy facility simulating low levels of gravity that might be encountered in a deep space environment.
NASA Astrophysics Data System (ADS)
Lee, Jongmin; Eichenfield, Matt; Douglas, Erica; Mudrick, John; Biedermann, Grant; Jau, Yuan-Yu
2017-04-01
Trapping neutral atoms in the evanescent fields generated by microfabricated nano-waveguides will provide a new platform for neutral atom quantum controls via strong atom-photon interactions. At Sandia National Labs, we are aiming at developing the related technology that can enable the efficient optical coupling to the waveguide at multiple wavelengths, fabrication nano-waveguides to handle required optical power, more robust waveguide structure, and the new fabrication geometry to facilitate the cold-atom experiments. We will report our latest results on the related subjects. Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
Negative hydrogen ions in a linear helicon plasma device
NASA Astrophysics Data System (ADS)
Corr, Cormac; Santoso, Jesse; Samuell, Cameron; Willett, Hannah; Manoharan, Rounak; O'Byrne, Sean
2015-09-01
Low-pressure negative ion sources are of crucial importance to the development of high-energy (>1 MeV) neutral beam injection systems for the ITER experimental tokamak device. Due to their high power coupling efficiency and high plasma densities, helicon devices may be able to reduce power requirements and potentially remove the need for caesium. In helicon sources, the RF power can be coupled efficiently into the plasma and it has been previously observed that the application of a small magnetic field can lead to a significant increase in the plasma density. In this work, we investigate negative ion dynamics in a high-power (20 kW) helicon plasma source. The negative ion fraction is measured by probe-based laser photodetachment, electron density and temperature are determined by a Langmuir probe and tuneable diode laser absorption spectroscopy is used to determine the density of the H(n = 2) excited atomic state and the gas temperature. The negative ion density and excited atomic hydrogen density display a maximum at a low applied magnetic field of 3 mT, while the electron temperature displays a minimum. The negative ion density can be increased by a factor of 8 with the application of the magnetic field. Spatial and temporal measurements will also be presented. The Australian Research Grants Council is acknowledged for funding.
Lin, Hui; Ou, Junjie; Tang, Shouwan; Zhang, Zhenbin; Dong, Jing; Liu, Zhongshan; Zou, Hanfa
2013-08-02
An organic-inorganic hybrid monolith was prepared by a single-step ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS) with poly(ethylenimine) (PEI). The obtained hybrid monoliths possessed high ordered 3D skeletal microstructure with dual retention mechanism that exhibits reversed-phase (RP) mechanism under polar mobile phase and hydrophilic-interaction liquid chromatography (HILIC) retention mechanism under less polar mobile phase. The high column efficiencies of 110,000N/m can be achieved for separation of alkylbenzenes in capillary reversed-phase liquid chromatography (cLC). Due to the robust property of hybrid monolith and the rich primary and secondary amino groups on its surface, the resulting hybrid monolith was easily modified with γ-gluconolactone and physically coated with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC), respectively. The former was successfully applied for HILIC separation of neutral, basic and acidic polar compounds as well as small peptides, and the latter for enantioseparation of racemates in cLC. The high column efficiencies were achieved in all of those separations. These results demonstrated that the hybrid monolith (POSS-PEI) possessed high stability and good surface tailorbility, potentially being applied for other research fields. Copyright © 2013 Elsevier B.V. All rights reserved.
Investigation of Recombination Processes In A Magnetized Plasma
NASA Technical Reports Server (NTRS)
Chavers, Greg; Chang-Diaz, Franklin; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Interplanetary travel requires propulsion systems that can provide high specific impulse (Isp), while also having sufficient thrust to rapidly accelerate large payloads. One such propulsion system is the Variable Specific Impulse Magneto-plasma Rocket (VASIMR), which creates, heats, and exhausts plasma to provide variable thrust and Isp, optimally meeting the mission requirements. A large fraction of the energy to create the plasma is frozen in the exhaust in the form of ionization energy. This loss mechanism is common to all electromagnetic plasma thrusters and has an impact on their efficiency. When the device operates at high Isp, where the exhaust kinetic energy is high compared to the ionization energy, the frozen flow component is of little consequence; however, at low Isp, the effect of the frozen flow may be important. If some of this energy could be recovered through recombination processes, and re-injected as neutral kinetic energy, the efficiency of VASIMR, in its low Isp/high thrust mode may be improved. In this operating regime, the ionization energy is a large portion of the total plasma energy. An experiment is being conducted to investigate the possibility of recovering some of the energy used to create the plasma. This presentation will cover the progress and status of the experiment involving surface recombination of the plasma.
NASA Astrophysics Data System (ADS)
Tailleux, R.
2016-02-01
A new materially-conserved quasi-neutral density variable has been constructed, called thermodynamic neutral density. It is composed of two parts. The first part is the Lorenz reference density entering Lorenz theory of available potential energy, which can be interpreted as the potential density of a fluid parcel referenced to the pressure it would have in Lorenz reference state of minimum potential energy. The second part is an empirical correction for pressure, which can be suitably chosen to make thermodynamic neutral density a very good approximation of Jackett and McDougall (1997) neutral density over most of the ocean water masses for which the latter is defined. Thermodynamic neutral density possesses many advantages over the empirically constructed Jackett and McDougall (1997) neutral density: 1) it is physically-based; 2) it is easily computed using fast and efficient methods for arbitrary states of the ocean, not just the present state, using the recently developed methodology by Saenz et al. (2015); 3) it is exactly neutral in a state of rest, and approximately neutral in the present ocean; 4) it is exactly materially conserved (it is a function of salinity and potential temperature only) and not plagued by unphysical nonmaterial effects, so can be used unambiguously to define and diagnose diapycnal and isopycnal mixing; 5) it is based on available potential energy, and therefore is the most suitable variable to discuss the energy cost of adiabatic stirring; 6) it is the variable that should be used to define the isopycnal and diapycnal directions in rotated diffusion tensor, as it can be shown that using the directions defined by the local neutral tangent plane as currently done causes spurious destruction of water masses. References: J. A. Saenz, R. Tailleux, E.D. Butler, G.O. Hughes, and K.I.C. Oliver, 2015: Estimating Lorenz's reference state in an ocean with a nonlinear equation of state for seawater. J. Phys. Oceanogr., 45, 1242—1257
Rethinking Equity--There Are Alternatives.
ERIC Educational Resources Information Center
Picus, Lawrence O.
1998-01-01
Defines "equity" in terms of three concepts (horizontal equity, vertical equity, and fiscal neutrality), summarizes school finance litigation history, and presents alternative distribution formats to improve student achievement. Enhancing equity and efficiency requires reallocation of existing resources, incentives for improved performance, a more…
NASA Astrophysics Data System (ADS)
Butakova, M. V.; Orlov, K. A.; Guseva, O. V.
2017-11-01
An overview of the development for neutralizing amine based reagent for water chemistry of steam boilers for medium and high pressures was given. Total values of the neutralization constants and the distribution coefficients of the compositions selected as a main criteria for reagent composition. Experimental results of using this new reagent for water chemistry in HRSG of power plant in oil-production company are discussed.
Expression and regulation of the neutral amino acid transporter B0AT1 in rat small intestine
Jando, Julia; Camargo, Simone M. R.; Herzog, Brigitte
2017-01-01
Absorption of neutral amino acids across the luminal membrane of intestinal enterocytes is mediated by the broad neutral amino acid transporter B0AT1 (SLC6A19). Its intestinal expression depends on co-expression of the membrane-anchored peptidase angiotensin converting enzyme 2 (ACE2) and is additionally enhanced by aminopeptidase N (CD13). We investigated in this study the expression of B0AT1 and its auxiliary peptidases as well as its transport function along the rat small intestine. Additionally, we tested its possible short- and long-term regulation by dietary proteins and amino acids. We showed by immunofluorescence that B0AT1, ACE2 and CD13 co-localize on the luminal membrane of small intestinal villi and by Western blotting that their protein expression increases in distal direction. Furthermore, we observed an elevated transport activity of the neutral amino acid L-isoleucine during the nocturnal active phase compared to the inactive one. Gastric emptying was delayed by intragastric application of an amino acid cocktail but we observed no acute dietary regulation of B0AT1 protein expression and L-isoleucine transport. Investigation of the chronic dietary regulation of B0AT1, ACE2 and CD13 by different diets revealed an increased B0AT1 protein expression under amino acid-supplemented diet in the proximal section but not in the distal one and for ACE2 protein expression a reverse localization of the effect. Dietary regulation for CD13 protein expression was not as distinct as for the two other proteins. Ring uptake experiments showed a tendency for increased L-isoleucine uptake under amino acid-supplemented diet and in vivo L-isoleucine absorption was more efficient under high protein and amino acid-supplemented diet. Additionally, plasma levels of branched-chain amino acids were elevated under high protein and amino acid diet. Taken together, our experiments did not reveal an acute amino acid-induced regulation of B0AT1 but revealed a chronic dietary adaptation mainly restricted to the proximal segment of the small intestine. PMID:28915252
Sączyńska, Violetta; Romanik, Agnieszka; Florys, Katarzyna; Cecuda-Adamczewska, Violetta; Kęsik-Brodacka, Małgorzata; Śmietanka, Krzysztof; Olszewska, Monika; Domańska-Blicharz, Katarzyna; Minta, Zenon; Szewczyk, Bogusław; Płucienniczak, Grażyna; Płucienniczak, Andrzej
2017-01-01
The highly pathogenic (HP) H5N1 avian influenza viruses (AIVs) cause a mortality rate of up to 100% in infected chickens and pose a permanent pandemic threat. Attempts to obtain effective vaccines against H5N1 HPAIVs have focused on hemagglutinin (HA), an immunodominant viral antigen capable of eliciting neutralizing antibodies. The vast majority of vaccine projects have been performed using eukaryotic expression systems. In contrast, we used a bacterial expression system to produce vaccine HA protein (bacterial HA) according to our own design. The HA protein with the sequence of the H5N1 HPAIV strain was efficiently expressed in Escherichia coli, recovered in the form of inclusion bodies and refolded by dilution between two chromatographic purification steps. Antigenicity studies showed that the resulting antigen, referred to as rH5-E. coli, preserves conformational epitopes targeted by antibodies specific for H5-subtype HAs, inhibiting hemagglutination and/or neutralizing influenza viruses in vitro. The proper conformation of this protein and its ability to form functional oligomers were confirmed by a hemagglutination test. Consistent with the biochemical characteristics, prime-boost immunizations with adjuvanted rH5-E. coli protected 100% and 70% of specific pathogen-free, layer-type chickens against challenge with homologous and heterologous H5N1 HPAIVs, respectively. The observed protection was related to the positivity in the FluAC H5 test (IDVet) but not to hemagglutination-inhibiting antibody titers. Due to full protection, the effective contact transmission of the homologous challenge virus did not occur. Survivors from both challenges did not or only transiently shed the viruses, as established by viral RNA detection in oropharyngeal and cloacal swabs. Our results demonstrate that vaccination with rH5-E. coli could confer control of H5N1 HPAIV infection and transmission rates in chicken flocks, accompanied by reduced virus shedding. Moreover, the role of H5 subtype-specific neutralizing antibodies in anti-influenza immunity and a novel correlate of protection are indicated. PMID:28212428
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor-Pashow, K.
2011-06-08
H-Canyon will begin dissolving High Aluminum - Low Uranium (High Al/Low U) Used Nuclear Fuel (UNF) following approval by DOE which is anticipated in CY2011. High Al/Low U is an aluminum/enriched uranium UNF with small quantities of uranium relative to aluminum. The maximum enrichment level expected is 93% {sup 235}U. The High Al/Low U UNF will be dissolved in H-Canyon in a nitric acid/mercury/gadolinium solution. The resulting solution will be neutralized and transferred to Tank 39H in the Tank Farm. To confirm that the solution generated could be poisoned with Gd, neutralized, and discarded to the Savannah River Site (SRS)more » high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of simulant solutions was examined. Experiments were performed with three simulant solutions representative of the H-Canyon estimated concentrations in the final solutions after dissolution. The maximum U, Gd, and Al concentration were selected for testing from the range of solution compositions provided. Simulants were prepared in three different nitric acid concentrations, ranging from 0.5 to 1.5 M. The simulant solutions were neutralized to four different endpoints: (1) just before a solid phase was formed (pH 3.5-4), (2) the point where a solid phase was obtained, (3) 0.8 M free hydroxide, and (4) 1.2 M free hydroxide, using 50 wt % sodium hydroxide (NaOH). The settling behavior of the neutralized solutions was found to be slower compared to previous studies, with settling continuing over a one week period. Due to the high concentration of Al in these solutions, precipitation of solids was observed immediately upon addition of NaOH. Precipitation continued as additional NaOH was added, reaching a point where the mixture becomes almost completely solid due to the large amount of precipitate. As additional NaOH was added, some of the precipitate began to redissolve, and the solutions neutralized to the final two endpoints mixed easily and had expected densities of typical neutralized waste. Based on particle size and scanning electron microscopy analyses, the neutralized solids were found to be homogeneous and less than 20 microns in size. The majority of solids were less than 4 microns in size. Compared to previous studies, a larger percentage of the Gd was found to precipitate in the partially neutralized solutions (at pH 3.5-4). In addition the Gd:U mass ratio was found to be at least 1.0 in all of the solids obtained after partial or full neutralization. The hydrogen to U (H:U) molar ratios for two accident scenarios were also determined. The first was for transient neutralization and agitator failure. Experimentally this scenario was determined by measuring the H:U ratio of the settled solids. The minimum H:U molar ratio for solids from fully neutralized solutions was 388:1. The second accident scenario is for the solids drying out in an unagitiated pump box. Experimentally, this scenario was determined by measuring the H:U molar ratio in centrifuged solids. The minimum H:U atom ratios for centrifuged precipitated solids was 250:1. It was determined previously that a 30:1 H:Pu atom ratio was sufficient for a 1:1 Gd:Pu mass ratio. Assuming a 1:1 equivalence with {sup 239}Pu, the results of these experiments show Gd is a viable poison for neutralizing U/Gd solutions with the tested compositions.« less
Evolutionary advantage via common action of recombination and neutrality
NASA Astrophysics Data System (ADS)
Saakian, David B.; Hu, Chin-Kun
2013-11-01
We investigate evolution models with recombination and neutrality. We consider the Crow-Kimura (parallel) mutation-selection model with the neutral fitness landscape, in which there is a central peak with high fitness A, and some of 1-point mutants have the same high fitness A, while the fitness of other sequences is 0. We find that the effect of recombination and neutrality depends on the concrete version of both neutrality and recombination. We consider three versions of neutrality: (a) all the nearest neighbor sequences of the peak sequence have the same high fitness A; (b) all the l-point mutations in a piece of genome of length l≥1 are neutral; (c) the neutral sequences are randomly distributed among the nearest neighbors of the peak sequences. We also consider three versions of recombination: (I) the simple horizontal gene transfer (HGT) of one nucleotide; (II) the exchange of a piece of genome of length l, HGT-l; (III) two-point crossover recombination (2CR). For the case of (a), the 2CR gives a rather strong contribution to the mean fitness, much stronger than that of HGT for a large genome length L. For the random distribution of neutral sequences there is a critical degree of neutrality νc, and for μ<μc and (μc-μ) is not large, the 2CR suppresses the mean fitness while HGT increases it; for ν much larger than νc, the 2CR and HGT-l increase the mean fitness larger than that of the HGT. We also consider the recombination in the case of smooth fitness landscapes. The recombination gives some advantage in the evolutionary dynamics, where recombination distinguishes clearly the mean-field-like evolutionary factors from the fluctuation-like ones. By contrast, mutations affect the mean-field-like and fluctuation-like factors similarly. Consequently, recombination can accelerate the non-mean-field (fluctuation) type dynamics without considerably affecting the mean-field-like factors.
ERIC Educational Resources Information Center
Lawlor, Francis X.
1970-01-01
Indicates that the use of verbal rewards which are not congruent with behavior will result in less efficient problem-solving than either a neutral, no-reward situation, or the use of rewards which are congruent with the problem-solving behavior. The giving of congruent rewards improved the problem-solving efficiency of girls but not of boys. (LS)
Azarifar, Davood; Khosravi, Kaveh; Soleimanei, Fatemeh
2010-03-08
SrCl2 x 6 H2O has been shown to act as an efficient catalyst for the conversion of aldehydes or ketones into the corresponding gem-dihydroperoxides (DHPs) by treatment with aqueous H2O2 (30%) in acetonitrile. The reactions proceed under mild and neutral conditions at room temperature to afford good to excellent yields of product.
Operating characteristics of a new ion source for KSTAR neutral beam injection system.
Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul
2014-02-01
A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnaswami, Hariharan
The DISTINCT project research objective is to develop an innovative N-port power converter for a utility-scale PV system that is modular, compact and cost-effective and that will enable the integration of a high-frequency, high-voltage solid-state transformer. The novelty of the proposed research is the electrical power conversion architecture using an N-port converter system that replaces the output 60Hz transformer with an integrated high-frequency low-weight solid-state transformer reducing power electronics and BOS costs to meet SunShot goals through modularity and direct high-voltage interconnection. A challenge in direct integration with a 13.8kV line is the high voltage handling capacity of the convertersmore » combined with high efficiency operation. The front-end converter for each port is a Neutral-Point Clamped (NPC) Multi-Level dc-dc Dual-Active Bridge (ML-DAB) which allows Maximum Power Point Tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is an inverter with H-bridge configuration or NPC configuration. N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e. 13.8 kV). The cascaded inverters have the inherent advantage of using lower rated devices, smaller filters and low Total Harmonic Distortion (THD) required for PV grid interconnection. Our analysis and simulation results show improved performance on cost, efficiency, service life with zero downtime and THD. A comprehensive control scheme is presented to ensure the maximum power from each port and each phase are sent to the grid. A functional prototype of a 2-port converter with ML-DAB and cascaded H-bridges has been designed, built, and tested in a laboratory setup to verify the target technical metrics. The N-port converter system due to its modular structure with individual control per port can be easily adapted to integrate functionalities that go well beyond the conventional grid support functions and mitigates impacts of forecasted fast ramp downs or ramp ups and single-fault conditions by automatic reconfiguration of the output.« less
Speckmeier, Elisabeth; Klimkait, Michael; Zeitler, Kirsten
2018-04-06
Orthogonal protection and deprotection of amines remain important tools in synthetic design as well as in chemical biology and material research applications. A robust, highly efficient, and sustainable method for the formation of phenacyl-based carbamate esters was developed using CO 2 for the in situ preparation of the intermediate carbamates. Our mild and broadly applicable protocol allows for the formation of phenacyl urethanes of anilines, primary amines, including amino acids, and secondary amines in high to excellent yields. Moreover, we demonstrate the utility by a mild and convenient photocatalytic deprotection protocol using visible light. A key feature of the [Ru(bpy) 3 ](PF 6 ) 2 -catalyzed method is the use of ascorbic acid as reductive quencher in a neutral, buffered, two-phase acetonitrile/water mixture, granting fast and highly selective deprotection for all presented examples.
NASA Astrophysics Data System (ADS)
Dutta, Tanoy; Chandra, Falguni; Koner, Apurba L.
2018-02-01
A ;naked-eye; detection of health hazardous bisulfite (HSO3-) and hypochlorite (ClO-) using an indicator dye (Quinaldine Red, QR) in a wide range of pH is demonstrated. The molecule contains a quinoline moiety linked to an N,N-dimethylaniline moiety with a conjugated double bond. Treatment of QR with HSO3- and ClO-, in aqueous solution at near-neutral pH, resulted in a colorless product with high selectivity and sensitivity. The detection limit was 47.8 μM and 0.2 μM for HSO3- and ClO- respectively. However, ClO- was 50 times more sensitive and with 2 times faster response compared to HSO3-. The detail characterization and related analysis demonstrate the potential of QR for a rapid, robust and highly efficient colorimetric sensor for the practical applications to detect hypochlorite in water samples.
Production and characterization of vaccines based on flaviviruses defective in replication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, Peter W.; Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1019; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1019
2006-08-01
To develop new vaccine candidates for flavivirus infections, we have engineered two flaviviruses, yellow fever virus (YFV) and West Nile virus (WNV), that are deficient in replication. These defective pseudoinfectious viruses (PIVs) lack a functional copy of the capsid (C) gene in their genomes and are incapable of causing spreading infection upon infection of cells both in vivo and in vitro. However, they produce extracellular E protein in form of secreted subviral particles (SVPs) that are known to be an effective immunogen. PIVs can be efficiently propagated in trans-complementing cell lines making high levels of C or all three viralmore » structural proteins. PIVs derived from YFV and WNV, demonstrated very high safety and immunization produced high levels of neutralizing antibodies and protective immune response. Such defective flaviviruses can be produced in large scale under low biocontainment conditions and should be useful for diagnostic or vaccine applications.« less
Martin, Guillaume; Chapuis, Elodie; Goudet, Jérôme
2008-01-01
Neutrality tests in quantitative genetics provide a statistical framework for the detection of selection on polygenic traits in wild populations. However, the existing method based on comparisons of divergence at neutral markers and quantitative traits (Qst–Fst) suffers from several limitations that hinder a clear interpretation of the results with typical empirical designs. In this article, we propose a multivariate extension of this neutrality test based on empirical estimates of the among-populations (D) and within-populations (G) covariance matrices by MANOVA. A simple pattern is expected under neutrality: D = 2Fst/(1 − Fst)G, so that neutrality implies both proportionality of the two matrices and a specific value of the proportionality coefficient. This pattern is tested using Flury's framework for matrix comparison [common principal-component (CPC) analysis], a well-known tool in G matrix evolution studies. We show the importance of using a Bartlett adjustment of the test for the small sample sizes typically found in empirical studies. We propose a dual test: (i) that the proportionality coefficient is not different from its neutral expectation [2Fst/(1 − Fst)] and (ii) that the MANOVA estimates of mean square matrices between and among populations are proportional. These two tests combined provide a more stringent test for neutrality than the classic Qst–Fst comparison and avoid several statistical problems. Extensive simulations of realistic empirical designs suggest that these tests correctly detect the expected pattern under neutrality and have enough power to efficiently detect mild to strong selection (homogeneous, heterogeneous, or mixed) when it is occurring on a set of traits. This method also provides a rigorous and quantitative framework for disentangling the effects of different selection regimes and of drift on the evolution of the G matrix. We discuss practical requirements for the proper application of our test in empirical studies and potential extensions. PMID:18245845
NASA Astrophysics Data System (ADS)
Orsini, S.; Selci, S.; Di Lellis, A. M.; Mura, A.; De Angelis, E.; Milillo, A.; Leoni, R.; Dandouras, I.; Scheer, J.; Wurz, P.
2012-04-01
The neutral sensor ELENA (Emitted Low-Energy Neutral Atoms) for the ESA cornerstone BepiColombo mission to Mercury (in the SERENA instrument package) is a new kind of low energetic neutral atoms instrument, mostly devoted to sputtering emission from planetary surfaces, from E ~20 eV up to E~5 keV, within 1-D (4.5°x76°). ELENA is a Time-of-Flight (TOF) system, based on oscillating shutter (operated at frequencies up to 50 kHz) and mechanical gratings: the incoming neutral particles directly impinge upon the entrance with a definite timing (START) and arrive to a STOP detector after a flight path. In this way the low-energy neutral particles are directly detected, without using elements of interaction. The new results of the development of the BepiColombo SERENA/ELENA instrument are presented in the frame of the scientific items (instrument simulations, laboratory testing, etc.). In particular, the actual status of the ELENA TOF sections (shuttering system and MCPs) are reported in the light of recent testing results. The sensor performances are investigated, as well as their capability to accomplish the scientific requirements (new deflector system, shuttering functionality test, MCP efficiency, piezo driver and proximity boards, etc.).
Ngo, Kien Xuan; Umakoshi, Hiroshi; Shimanouchi, Toshinori; Kuboi, Ryoichi
2009-10-15
The interaction between the neutral 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) liposomes and cell membrane of Streptomyces griseus induced by the heat treatment at specific temperature was investigated, focusing on the internalization of the neutral POPC liposomes with S. griseus cells. In an attempt to clarify the modes of liposome internalization, various kinds of inhibitors of endocytotic pathways were used to treat S. griseus cells. The efficiency of the heat treatment on liposome-cell membrane interactions was finally characterized based on the hydrophobic, electrostatic interactions and hydration effect. In fact, the internalization of the neutral liposomes into these cells was found to show higher rate and greater amount at higher temperatures. The kinetic study showed that the maximum amount of the internalized liposomes was, respectively, 469 x 10(5) and 643 x 10(5) liposomes/cell at 37 and 41 degrees C. The internalization of the neutral liposomes induced by the heat treatment was characterized, implying that the endocytosis occurred. The interactions involving the internalization, adsorption, and fusion of these liposomes with S. griseus cells were mainly contributed by the hydrophobic interaction and the unstable hydrogen bonds caused by the loss of water of surface hydration of cell membrane rather than the electrostatic interaction under the specific heat condition.
Design of a toroidal device with a high temperature superconductor coil for non-neutral plasma trap
NASA Astrophysics Data System (ADS)
Ogawa, Yuichi; Morikawa, Junji; Nihei, Hitoshi; Ozawa, Daisaku; Yoshida, Zensho; Mito, Toshiyuki; Yanagi, Nagato; Iwakuma, Masataka
2002-01-01
The non-neutral plasma confinement device with a floating internal coil is under construction, where the high temperature superconductor (HTS) Ag-sheathed BSCCO-2223 is employed as the floating coil. We have two topics with this device: one is a trap of a non-neutral plasma consisting of one species, and another is an exploration of a high beta plasma based on two-fluid MHD relaxation theory. In the latter case the plasma should be non-neutralized in order to drive the plasma flow in the toroidal direction. The expected plasma parameters are discussed. Key elements of engineering issues have already developed. In addition, we have fabricated a small HTS coil and succeeded in levitating it within an accuracy of 25˜30 μm for 4 min or more.
Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis
Pinheiro, Marina; Ribeiro, Ricardo; Vieira, Alexandre; Andrade, Fernanda; Reis, Salette
2016-01-01
This work aimed to design, develop, and characterize a lipid nanocarrier system for the selective delivery of rifabutin (RFB) to alveolar macrophages. Lipid nanoparticles, specifically nanostructured lipid carriers (NLC), were synthetized by the high-shear homogenization and ultrasonication techniques. These nanoparticles were designed to exhibit both passive and active targeting strategies to be efficiently internalized by the alveolar macrophages, traffic to the acidified phagosomes and phagolysosomes, and release bactericidal concentrations of the antituberculosis drug intracellularly. NLC that could entrap RFB were prepared, characterized, and further functionalized with mannose. Particles’ diameter, zeta potential, morphology, drug% entrapping efficiency, and drug release kinetics were evaluated. The mannose coating process was confirmed by Fourier transform infrared. Further, the cytotoxicity of the formulations was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay in A549, Calu-3, and Raw 264.7 cells. The diameter of NLC formulations was found to be in the range of 175–213 nm, and drug entrapping efficiency was found to be above 80%. In addition, high storage stability for the formulations was expected since they maintained the initial characteristics for 6 months. Moreover, the drug release was pH-sensitive, with a faster drug release at acidic pH than at neutral pH. These results pose a strong argument that the developed nanocarrier can be explored as a promising carrier for safer and more efficient management of tuberculosis by exploiting the pulmonary route of administration. PMID:27536067
Neutral-depletion-induced axially asymmetric density in a helicon source and imparted thrust
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Takao, Yoshinori; Ando, Akira
2016-02-01
The high plasma density downstream of the source is observed to be sustained only for a few hundreds of microsecond at the initial phase of the discharge, when pulsing the radiofrequency power of a helicon plasma thruster. Measured relative density of argon neutrals inside the source implies that the neutrals are significantly depleted there. A position giving a maximum plasma density temporally moves to the upstream side of the source due to the neutral depletion and then the exhausted plasma density significantly decreases. The direct thrust measurement demonstrates that the higher thrust-to-power ratio is obtained by using only the initial phase of the high density plasma, compared with the steady-state operation.
Kaever, Thomas; Meng, Xiangzhi; Matho, Michael H.; Schlossman, Andrew; Li, Sheng; Sela-Culang, Inbal; Ofran, Yanay; Buller, Mark; Crump, Ryan W.; Parker, Scott; Frazier, April; Crotty, Shane; Zajonc, Dirk M.; Peters, Bjoern
2014-01-01
ABSTRACT Vaccinia virus (VACV) L1 is an important target for viral neutralization and has been included in multicomponent DNA or protein vaccines against orthopoxviruses. To further understand the protective mechanism of the anti-L1 antibodies, we generated five murine anti-L1 monoclonal antibodies (MAbs), which clustered into 3 distinct epitope groups. While two groups of anti-L1 failed to neutralize, one group of 3 MAbs potently neutralized VACV in an isotype- and complement-independent manner. This is in contrast to neutralizing antibodies against major VACV envelope proteins, such as H3, D8, or A27, which failed to completely neutralize VACV unless the antibodies are of complement-fixing isotypes and complement is present. Compared to nonneutralizing anti-L1 MAbs, the neutralization antibodies bound to the recombinant L1 protein with a significantly higher affinity and also could bind to virions. By using a variety of techniques, including the isolation of neutralization escape mutants, hydrogen/deuterium exchange mass spectrometry, and X-ray crystallography, the epitope of the neutralizing antibodies was mapped to a conformational epitope with Asp35 as the key residue. This epitope is similar to the epitope of 7D11, a previously described potent VACV neutralizing antibody. The epitope was recognized mainly by CDR1 and CDR2 of the heavy chain, which are highly conserved among antibodies recognizing the epitope. These antibodies, however, had divergent light-chain and heavy-chain CDR3 sequences. Our study demonstrates that the conformational L1 epitope with Asp35 is a common site of vulnerability for potent neutralization by a divergent group of antibodies. IMPORTANCE Vaccinia virus, the live vaccine for smallpox, is one of the most successful vaccines in human history, but it presents a level of risk that has become unacceptable for the current population. Studying the immune protection mechanism of smallpox vaccine is important for understanding the basic principle of successful vaccines and the development of next-generation, safer vaccines for highly pathogenic orthopoxviruses. We studied antibody targets in smallpox vaccine by developing potent neutralizing antibodies against vaccinia virus and comprehensively characterizing their epitopes. We found a site in vaccinia virus L1 protein as the target of a group of highly potent murine neutralizing antibodies. The analysis of antibody-antigen complex structure and the sequences of the antibody genes shed light on how these potent neutralizing antibodies are elicited from immunized mice. PMID:25031354
NASA Astrophysics Data System (ADS)
M, Chabot; K, Béroff; T, Pino; G, Féraud; N, Dothi; Padellec A, Le; G, Martinet; S, Bouneau; Y, Carpentier
2012-11-01
We measured absolute double capture cross section of Cn+ ions (n=1,5) colliding, at 2.3 and 2.6 a.u velocities, with an Helium target atom and the branching ratios of fragmentation of the so formed electronically excited anions Cn-*. We also measured absolute cross section for the electronic attachment on neutral Cn clusters colliding at same velocities with He atom. This is to our knowledge the first measurement of neutral-neutral charge exchange in high velocity collision.
STORAGE STABILITY OF PESTICIDES IN EXTRACT SOLVENTS AND SAMPLING MEDIA
Demonstrating that pesticides are stable in field media and their extracts over extended storage periods allows operational flexibility and cost efficiency. Stability of the 31 neutral pesticides and 2 acid herbicides of the Agricultural Health Study exposure pilot was evaluate...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xinsheng, E-mail: xzhang@iavi.org; Molecular and Cellular Biology Program, State University of New York, Brooklyn, NY; Wallace, Olivia L.
Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions,more » which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies. - Highlights: • Screened 146 serum samples for measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb). • MV nAb is prevalent in the sera. • CDV neutralizing activity is generally low or absent and when detected it is present in sera with high MV nAb titers. • A neutralization-resistant CDV mutant was isolated using human serum selection. • A mutation was identified in the receptor-binding region of CDV hemagglutinin protein that confers the neutralization resistance.« less
Broad protection against influenza infection by vectored immunoprophylaxis in mice
Balazs, Alejandro B.; Bloom, Jesse D.; Hong, Christin M.; Rao, Dinesh S.; Baltimore, David
2014-01-01
Neutralizing antibodies that target epitopes conserved among many strains of influenza virus have been recently isolated from humans. Here we demonstrate that adeno-associated viruses (AAV) encoding two such broadly neutralizing antibodies are protective against diverse influenza strains. Serum from mice that received a single intramuscular AAV injection efficiently neutralized all H1, H2 and H5 influenza strains tested. After infection with diverse strains of H1N1 influenza, treated mice showed minimal weight loss and lung inflammation. Protection lasted for at least 11 months after AAV injection. Notably, even immunodeficient and older mice were protected by this method, suggesting that expression of a monoclonal antibody alone is sufficient to protect mice from illness. If translated to humans, this prophylactic approach may be uniquely capable of protecting immunocompromised or elderly patient populations not reliably protected by existing vaccines. PMID:23728362
NASA Astrophysics Data System (ADS)
Zanuttini, David; Blum, Ivan; Rigutti, Lorenzo; Vurpillot, François; Douady, Julie; Jacquet, Emmanuelle; Anglade, Pierre-Matthieu; Gervais, Benoit
2017-06-01
We investigate the dynamics of dicationic metal-oxide molecules under large electric-field conditions, on the basis of ab initio calculations coupled to molecular dynamics. Applied to the case of ZnO2 + in the field of atom probe tomography (APT), our simulation reveals the dissociation into three distinct exit channels. The proportions of these channels depend critically on the field strength and on the initial molecular orientation with respect to the field. For typical field strength used in APT experiments, an efficient dissociation channel leads to emission of neutral oxygen atoms, which escape detection. The calculated composition biases and their dependence on the field strength show remarkable consistency with recent APT experiments on ZnO crystals. Our work shows that bond breaking in strong static fields may lead to significant neutral atom production, and therefore to severe elemental composition biases in measurements.
Vital Role for CD8+ Cells in Controlling Retroviral Infections ▿
Kane, Melissa; Case, Laure K.; Golovkina, Tatyana V.
2011-01-01
Antiviral adaptive immune defenses consist of humoral and cell-mediated responses, which together eliminate extracellular and intracellular virus. As most retrovirus-infected individuals do not raise efficient protective antivirus immune responses, the relative importance of humoral and cell-mediated responses in restraining retroviral infection is not well understood. We utilized retrovirus-resistant I/LnJ mice, which control infection with mouse mammary tumor virus (MMTV) and murine leukemia virus (MuLV) via an adaptive immune mechanism, to assess the contribution of cellular responses and virus-neutralizing antibodies (Abs) to the control of retroviral infection. We found that in retrovirus-infected CD8-deficient I/LnJ mice, viral titers exceed the neutralizing capability of antiviral Abs, resulting in augmented virus spread and disease induction. Thus, even in the presence of robust neutralizing Ab responses, CD8-mediated responses are essential for full protection against retroviral infection. PMID:21248041
Rota, Jennifer S.; Hickman, Carole J.; Mercader, Sara; Redd, Susan; McNall, Rebecca J.; Williams, Nobia; McGrew, Marcia; Walls, M. Laura; Rota, Paul A.; Bellini, William J.
2016-01-01
In the United States, approximately 9% of the measles cases reported from 2012 to 2014 occurred in vaccinated individuals. Laboratory confirmation of measles in vaccinated individuals is challenging since IgM assays can give inconclusive results. Although a positive reverse transcription (RT)-PCR assay result from an appropriately timed specimen can provide confirmation, negative results may not rule out a highly suspicious case. Detection of high-avidity measles IgG in serum samples provides laboratory evidence of a past immunologic response to measles from natural infection or immunization. High concentrations of measles neutralizing antibody have been observed by plaque reduction neutralization (PRN) assays among confirmed measles cases with high-avidity IgG, referred to here as reinfection cases (RICs). In this study, we evaluated the utility of measuring levels of measles neutralizing antibody to distinguish RICs from noncases by receiver operating characteristic curve analysis. Single and paired serum samples with high-avidity measles IgG from suspected measles cases submitted to the CDC for routine surveillance were used for the analysis. The RICs were confirmed by a 4-fold rise in PRN titer or by RT-quantitative PCR (RT-qPCR) assay, while the noncases were negative by both assays. Discrimination accuracy was high with serum samples collected ≥3 days after rash onset (area under the curve, 0.953; 95% confidence interval [CI], 0.854 to 0.993). Measles neutralizing antibody concentrations of ≥40,000 mIU/ml identified RICs with 90% sensitivity (95% CI, 74 to 98%) and 100% specificity (95% CI, 82 to 100%). Therefore, when serological or RT-qPCR results are unavailable or inconclusive, suspected measles cases with high-avidity measles IgG can be confirmed as RICs by measles neutralizing antibody concentrations of ≥40,000 mIU/ml. PMID:27335386