Science.gov

Sample records for high neutron fluences

  1. Embrittlement of low copper VVER 440 surveillance samples neutron-irradiated to high fluences

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Russell, K. F.; Kocik, J.; Keilova, E.

    2000-11-01

    An atom probe tomography microstructural characterization of low copper (0.06 at.% Cu) surveillance samples from a VVER 440 reactor has revealed manganese and silicon segregation to dislocations and other ultrafine features in neutron-irradiated base and weld materials (fluences 1×10 25 m-2 and 5×10 24 m-2, E>0.5 MeV, respectively). The results indicate that there is an additional mechanism of embrittlement during neutron irradiation that manifests itself at high fluences.

  2. Swelling of several commercial alloys following high fluence neutron irradiation

    NASA Astrophysics Data System (ADS)

    Powell, R. W.; Peterson, D. T.; Zimmerschied, M. K.; Bates, J. F.

    Swelling values have been determined for a set of commercial alloys irradiated to a peak fluence of 1.8 × 10 23 n/cm 2 (E >0.1 MeV) over the temperature range of 400 to 650°C. The alloys studied fall into three classes: the ferritic alloys AISI 430F, AISI 416, EM-12, H-11 and 2 {1}/{4}Cr-1Mo; the superalloys Inconel 718 and Inconel X-750; and the refractory alloys TZM and Nb-1Zr. All of these alloys display swelling resistance far superior to cold worked AISI 316. Of the three alloy classes examined the swelling resistance of the ferritics is the least sensitive to composition.

  3. Irradiation embrittlement of reactor pressure vessel steel at very high neutron fluence

    NASA Astrophysics Data System (ADS)

    Kryukov, A.; Debarberis, L.; von Estorff, U.; Gillemot, F.; Oszvald, F.

    2012-03-01

    For the prediction of radiation embrittlement of RPV materials beyond the NPP design time the analysis of research data and extended surveillance data up to a fluence ˜23 × 1020 cm-2 (E > 0.5 MeV) has been carried out. The experimental data used for the analysis are extracted from the International Database of RPV materials. Key irradiation embrittlement mechanisms, direct matrix damage, precipitation and element segregation have been considered. The essential part of the analysis concerns the assessment of irradiation embrittlement of WWER-440 steel irradiated with very high neutron fluence. The analysis of several surveillance sets irradiated at a fluence up to 23 × 1020 cm-2 (E > 0.5 MeV) has been performed. The effect of the main influencing chemical elements phosphorus and copper has been verified up to a fluence of 4.6 × 1020 cm-2 (E > 0.5 MeV). The data are indicating good radiation stability, in terms of the Charpy transition temperature shift and yield strength increase for steels with relatively low concentrations of copper and phosphorus. The linear dependence between ΔTk and ΔRp0.2 can be an evidence of strengthening mechanisms of irradiation embrittlement and absence of non-hardening embrittlement even at very high neutron fluence.

  4. Neutron dose per fluence and weighting factors for use at high energy accelerators.

    PubMed

    Cossairt, J Donald; Vaziri, Kamran

    2009-06-01

    In June 2007, the United States Department of Energy incorporated revised values of neutron weighting factors into its occupational radiation protection regulation Title 10, Code of Federal Regulations Part 835, as part of updating its radiation dosimetry system. This has led to a reassessment of neutron radiation fields at high energy accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab) in the context of the amended regulation and contemporary guidance of the International Commission on Radiological Protection (ICRP). Values of dose per fluence factors appropriate for accelerator radiation fields calculated elsewhere are collated and radiation weighting factors compared. The results of this revision to the dosimetric system are applied to americium-beryllium neutron energy spectra commonly used for instrument calibrations. Also, a set of typical accelerator neutron energy spectra previously measured at Fermilab are reassessed in light of the new dosimetry system. The implications of this revision and of recent ICRP publications are found to be of moderate significance.

  5. Neutron dose per fluence and weighting factors for use at high energy accelerators

    SciTech Connect

    Cossairt, J.Donald; Vaziri, Kamran; /Fermilab

    2008-07-01

    In June 2007, the United States Department of Energy incorporated revised values of neutron weighting factors into its occupational radiation protection Regulation 10 CFR Part 835 as part of updating its radiation dosimetry system. This has led to a reassessment of neutron radiation fields at high energy proton accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab). Values of dose per fluence factors appropriate for accelerator radiation fields calculated elsewhere are collated and radiation weighting factors compared. The results of this revision to the dosimetric system are applied to americium-beryllium neutron energy spectra commonly used for instrument calibrations. A set of typical accelerator neutron energy spectra previously measured at Fermilab are reassessed in light of the new dosimetry system. The implications of this revision are found to be of moderate significance.

  6. Fluence measurement of fast neutron fields with a highly efficient recoil proton telescope using active pixel sensors.

    PubMed

    Taforeau, J; Higueret, S; Husson, D; Kachel, M; Lebreton, L

    2014-10-01

    The spectrometer ATHENA (Accurate Telescope for High-Energy Neutron metrology Applications) is being developed at the LNE-IRSN and aims at characterising energy and fluence of fast neutron fields. The detector is a recoil proton telescope and measures neutron fields in the range of 5-20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50-µm-thick silicon sensors that use CMOS technology for proton tracking and a 3-mm-thick silicon diode to measure the residual proton energy. The use of CMOS sensors and silicon diode, owing to a large detection solid angle, increases the intrinsic efficiency of the detector by a factor of 10 compared with conventional designs. The ability of the spectrometer to determine the neutron energy was demonstrated and reported elsewhere. This paper focuses on the fluence measurement of monoenergetic neutron fields in the range of 5-20 MeV. Experimental investigations, performed at the AMANDE facility, indicate a good estimation of neutron fluence at various energies. In addition, a complete description of uncertainties budget is presented in this paper and a Monte Carlo propagation of uncertainty sources leads to a fluence measurement with a precision ∼3-5 % depending on the neutron energy.

  7. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-02-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5×1019 n/cm2, and a maximum gamma dose of 2×103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.

  8. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    SciTech Connect

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-02-04

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125{mu}m in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.

  9. Neutron-capture Cl-36, Ca-41, Ar-36, and Sm-150 in large chondrites: Evidence for high fluences of thermalized neutrons

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Nyquist, L. E.; Bansal, B. M.; Garrison, D. H.; Wiesmann, H.; Herzog, G. F.; Albrecht, A. A.; Vogt, S.; Klein, J.

    1995-01-01

    We have measured significant concentrations of Cl-36, Ca-41, Ar-36 from decay of Cl-36, and Sm-150 produced from the capture of thermalized neutrons in the large Chico L6 chondrite. Activities of Cl-36 and Ca-41, corrected for a high-energy spallogenic component and a terrestrial age of approximately 50 ka, give average neutron-capture production rates of 208 atoms/min/g-Cl and 1525 atoms/min/kg-Ca, which correspond to thermal neutron (n) fluxes of 6.2 n/sq cm/s and 4.3 n/sq cm/s, respectively. If sustained for the approximately 65 Ma single-stage, cosmic ray exposure age of Chico, these values correspond to thermal neutron fluences of approximately 1.3 x 10(exp 16) and 0.8 x 10(exp 16) n/sq cm for Cl-36 and Ca-41, respectively. Stepwise temperature extraction of Ar in Chico impact melt shows Ar-36/Ar-38 ratios as large as approximately 9. The correlation of high Ar-36/Ar-38 with high Cl/Ca phases in neutron-irradiated Chico indicates that the excess Ar-36 above that expected from spallation is due to decay of neutron-produced Cl-36. Excess Ar-36 in Chico requires a thermal neutron fluence of 0.9-1.7 x 10(exp 16) n/sq cm. Decreases in Sm-149/Sm-152 due to neutron-capture by Sm-149 correlate with increases in Sm-150/Sm-152 for three samples of Chico, and one of the Torino H-chondrite. The 0.08% decrease in Sm-149 shown by Chico corresponds to a neutron fluence of 1.23 x 10(exp 16) n/sq cm. This fluence derived from Sm considers capture of epithermal neutrons and effects of chemical composition on the neutron energy distribution. Excess Ar-36 identified in the Arapahoe, Bruderheim, and Torino chondrites and the Shallowater aubrite suggest exposure to neutron fluences of approximately 0.2-0.2 x 10(exp 16) n/sq cm. Depletion of Sm-149 in Torino and the LEW86010 angrite suggest neutron fluences of 0.8 x 10(exp 16) n/sq cm and 0.25 x 10(exp 16) n/sq cm, respectively. Neutron fluences of approximately 10(exp 16) n/sq cm in Chico are almost as large as those previously

  10. Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence

    SciTech Connect

    Remy, L.; Cheymol, G.; Morana, A.; Marin, E.; Girard, S.

    2015-07-01

    In the framework of the development by CEA and SCK.CEN of a Fabry Perot Sensor (FPS) able to measure dimensional changes in Material Testing Reactor (MTR), the first goal of the SAKE 1 (Smirnof extention - Additional Key-tests on Elongation of glass fibres) irradiation was to measure the linear compaction of single mode fibres under high fast neutron fluence. Indeed, the compaction of the fibre which forms one side of the Fabry Perot cavity, may in particular cause a noticeable measurement error. An accurate quantification of this effect is then required to predict the radiation-induced drift and optimize the sensor design. To achieve this, an innovative approach was used. Approximately seventy uncoated fibre tips (length: 30 to 50 mm) have been prepared from several different fibre samples and were installed in the SCK.CEN BR2 reactor (Mol Belgium). After 22 days of irradiation a total fast (E > 1 MeV) fluence of 3 to 5x10{sup 19} n{sub fast}/cm{sup 2}, depending on the sample location, was accumulated. The temperature during irradiation was 291 deg. C, which is not far from the condition of the intended FPS use. A precise measurement of each fibre tip length was made before the irradiation and compared to the post irradiation measurement highlighting a decrease of the fibres' length corresponding to about 0.25% of linear compaction. The amplitude of the changes is independent of the capsule, which could mean that the compaction effect saturates even at the lowest considered fluence. In the prospect of performing distributed temperature measurement in MTR, several fibre Bragg gratings written using a femtosecond laser have been also irradiated. All the gratings were written in radiation hardened fibres, and underwent an additional treatment with a procedure enhancing their resistance to ionizing radiations. A special mounting made it possible to test the reflection and the transmission of the gratings on fibre samples cut down to 30 to 50 mm. The comparison of

  11. Low-level measuring techniques for neutrons: High accuracy neutron source strength determination and fluence rate measurement at an underground laboratory

    SciTech Connect

    Zimbal, Andreas; Reginatto, Marcel; Schuhmacher, Helmut; Wiegel, Burkhard; Degering, Detlev; Zuber, Kai

    2013-08-08

    We report on measuring techniques for neutrons that have been developed at the Physikalisch-Technische Bundesanstalt (PTB), the German National Metrology Institute. PTB has characterized radioactive sources used in the BOREXINO and XENON100 experiments. For the BOREXINO experiment, a {sup 228}Th gamma radiation source was required which would not emit more than 10 neutrons per second. The determination of the neutron emission rate of this specially designed {sup 228}Th source was challenging due to the low neutron emission rate and because the ratio of neutron to gamma radiation was expected to be extremely low, of the order of 10{sup −6}. For the XENON100 detector, PTB carried out a high accuracy measurement of the neutron emission rate of an AmBe source. PTB has also done measurements in underground laboratories. A two month measurement campaign with a set of {sup 3}He-filled proportional counters was carried out in PTB's former UDO underground laboratory at the Asse salt mine. The aim of the campaign was to determine the intrinsic background of detectors, which is needed for the analysis of data taken in lowintensity neutron fields. At a later time, PTB did a preliminary measurement of the neutron fluence rate at the underground laboratory Felsenkeller operated by VKTA. By taking into account data from UDO, Felsenkeller, and detector calibrations made at the PTB facility, it was possible to estimate the neutron fluence rate at the Felsenkeller underground laboratory.

  12. High fluence neutron source for nondestructive characterization of nuclear materials. 1997 mid-year progress report

    SciTech Connect

    Pickrell, M.M.

    1997-06-01

    'The author is addressing the need to measure nuclear wastes, residues, and spent fuel in order to process these for final disposition. For example, TRU wastes destined for the WIPP must satisfy extensive characterization criteria outlined in the Waste Acceptance Criteria, the Quality Assurance Program Plan, and the Performance Demonstration Plan. Similar requirements exist for spent fuel and residues. At present, no nondestructive assay instrumentation is capable of satisfying all of the PDP test cycles. One of the primary methods for waste assay is by active neutron intezrooation. The authors plan to improve the capability of all active neutron systems by providing a higher intensity neutron source (by about a factor of 1,000) for essentially the same cost, power, and space requirements as existing systems. This high intensity neutron source will be an electrostatically confined (IEC) plasma device. The IEC is a symmetric sphere that was originally developed in the 1950s as a possible fusion reactor. It operates as D-T neutron generator. Although it was not believed to scale to fusion reactor levels, these experiments demonstrated a neutron yield of 2 x 10 10 neutrons/second on table-top experiments that could be powered from ordinary laboratory circuits (1 kilowatt). Subsequently, the IEC physics has been extensively studied at the University of Illinois. The basis for scaling the output up to 1 x 10 11 n/s has been established. In addition, IEC devices have run for cumulative times approaching 10,000 hours. They have been operated in pulsed-and continuous mode.'

  13. Characterization of high fluence neutron induced defect levels in high resistivity silicon detectors using a laser deep level transient spectroscopy (L-DLTS)

    NASA Astrophysics Data System (ADS)

    Chengji, Li; Li, Zheng

    1994-03-01

    Neutron irradiated high resistivity (4-6 kΩ-cm) silicon detectors in the neutron fluence ( Φn) range of 5 × 10 11 n/cm 2 to 1 × 10 14 n/cm 2 have been studied using a laser deep level transient spectroscopy (L-DLTS). It has been found that the A-center (oxygen-vacancy, Ec = 0.17 eV) concentration increases with neutron fluence, reaching a maximum at Φn ≈ 5×10 12 n/cm 2 before decreasing with Φn. A broad peak has been found between 200 K and 300 K, which is the result of the overlap of three single levels: the V-V - ( Ec = 0.38 eV), the E-center (P-v, Ec = 0.44 eV), and a level at Ec = 0.56 eV that is probably V-V 0. At low neutron fluences ( Φn < 5 × 10 12 n/cm 2), this broad peak is dominated by V-V - and the E-centers. However, as the fluence increases ( Φn ≥ 5 × 10 12 n/cm 2), the peak becomes dominated by the level of Ec = 0.56 eV.

  14. Studies of deep levels in high resistivity silicon detectors irradiated by high fluence fast neutrons using a thermally stimulated current spectrometer

    SciTech Connect

    Li, Z.; Kraner, H.W.; Chen, W.; Beuttenmuller, R.; Biggeri, U.; Bruzzi, M.; Borchi, E.; Baldini, A.; Spillantini, P. |

    1993-04-01

    Measurements of deep level spectrum of high resistivity silicon detectors irradiated by high fluence fast neutrons ({Phi}{sub n}: 2 {times} 10{sup 12}n/cm{sup 2}) have been made using a thermally stimulated current (TSC) spectrometer. It has been found that at least nine new defect levels, with peaking temperature of 19K, 27K, 36K, 44K, 49K, 83K, 93K, 105K, and 120K, begin to appear when {Phi}{sub n} {ge} 1 {times} 10{sup 13}n/cm. All peaks have strong dependences on the filling voltage (V{sub fill}, forward bias) or injection current especially for high fluence ({Phi}{sub n} {ge} 10{sup 13} n/cm{sup 2}) situations. The defect concentration, energy level in the band gap, and cross section of each deep level, totaling, at least 13, have been studied systematically and possible identifications of the levels have been discussed.

  15. Application of low-cost Gallium Arsenide light-emitting-diodes as kerma dosemeter and fluence monitor for high-energy neutrons.

    PubMed

    Mukherjee, B; Simrock, S; Khachan, J; Rybka, D; Romaniuk, R

    2007-01-01

    Displacement damage (DD) caused by fast neutrons in unbiased Gallium Arsenide (GaAs) light emitting diodes (LED) resulted in a reduction of the light output. On the other hand, a similar type of LED irradiated with gamma rays from a (60)Co source up to a dose level in excess of 1.0 kGy (1.0 x 10(5) rad) was found to show no significant drop of the light emission. This phenomenon was used to develop a low cost passive fluence monitor and kinetic energy released per unit mass dosemeter for accelerator-produced neutrons. These LED-dosemeters were used to assess the integrated fluence of photoneutrons, which were contaminated with a strong bremsstrahlung gamma-background generated by the 730 MeV superconducting electron linac driving the free electron laser in Hamburg (FLASH) at Deutsches Elektronen-Synchrotron. The applications of GaAs LED as a routine neutron fluence monitor and DD precursor for the electronic components located in high-energy accelerator environment are highlighted.

  16. Anisotropy of the neutron fluence from a plasma focus.

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Shomo, L. P.; Kim, K. H.

    1972-01-01

    The fluence of neutrons from a plasma focus was measured by gamma spectrometry of an activated silver target. This method results in a significant increase in accuracy over the beta-counting method. Multiple detectors were used in order to measure the anisotropy of the fluence of neutrons. The fluence was found to be concentrated in a cone with a half-angle of 30 deg about the axis, and to drop off rapidly outside of this cone; the anisotropy was found to depend upon the total yield of neutrons. This dependence was strongest on the axis. Neither the axial concentration of the fluence of neutrons nor its dependence on the total yield of neutrons is explained by any of the currently proposed models. Some other explanations, including the possibility of an axially distributed source, are considered.

  17. Neutron detector simultaneously measures fluence and dose equivalent

    NASA Technical Reports Server (NTRS)

    Dvorak, R. F.; Dyer, N. C.

    1967-01-01

    Neutron detector acts as both an area monitoring instrument and a criticality dosimeter by simultaneously measuring dose equivalent and fluence. The fluence is determined by activation of six foils one inch below the surface of the moderator. Dose equivalent is determined from activation of three interlocked foils at the center of the moderator.

  18. Spectral fluence of neutrons generated by radiotherapeutic linacs.

    PubMed

    Králík, Miloslav; Šolc, Jaroslav; Vondráček, Vladimir; Šmoldasová, Jana; Farkašová, Estera; Tichá, Ivana

    2015-02-01

    Spectral fluences of neutrons generated in the heads of the radiotherapeutic linacs Varian Clinac 2100 C/D and Siemens ARTISTE were measured by means of the Bonner spheres spectrometer whose active detector of thermal neutrons was replaced by an activation detector, i.e. a tablet made of pure manganese. Measurements with different collimator settings reveal an interesting dependence of neutron fluence on the area defined by the collimator jaws. The determined neutron spectral fluences were used to derive ambient dose equivalent rate along the treatment coach. To clarify at which components of the linac neutrons are mainly created, the measurements were complemented with MCNPX calculations based on a realistic model of the Varian Clinac.

  19. Characterization of a measurement reference standard and neutron fluence determination method in IRSN monoenergetic neutron fields

    NASA Astrophysics Data System (ADS)

    Gressier, V.; Lacoste, V.; Martin, A.; Pepino, M.

    2014-10-01

    The variation in the response of instruments with neutron energy has to be determined in well-characterized monoenergetic neutron fields. The quantities associated with these fields are the neutron fluence and the mean energy of the monoenergetic neutron peak needed to determine the related dosimetric quantities. At the IRSN AMANDE facility, the reference measurement standard for neutron fluence is based on a long counter calibrated in the IRSN reference 252Cf neutron field. In this paper, the final characterization of this device is presented as well as the method used to determine the reference fluence at the calibration point in monoenergetic neutron fields.

  20. Contribution to Neutron Fluence and Neutron Absorbed Dose from Double Scattering Proton Therapy System Components

    PubMed Central

    Pérez-Andújar, A.; Newhauser, W. D.; DeLuca, P. M.

    2010-01-01

    Proton therapy offers low integral dose and good tumor comformality in many deep-seated tumors. However, secondary particles generated during proton therapy, such as neutrons, are a concern, especially for passive scattering systems. In this type of system, the proton beam interacts with several components of the treatment nozzle that lie along the delivery path and can produce secondary neutrons. Neutron production along the beam's central axis in a double scattering passive system was examined using Monte Carlo simulations. Neutron fluence and energy distribution were determined downstream of the nozzle's major components at different radial distances from the central axis. In addition, the neutron absorbed dose per primary proton around the nozzle was investigated. Neutron fluence was highest immediately downstream of the range modulator wheel (RMW) but decreased as distance from the RMW increased. The nozzle's final collimator and snout also contributed to the production of high-energy neutrons. In fact, for the smallest treatment volume simulated, the neutron absorbed dose per proton at isocenter increased by a factor of 20 due to the snout presence when compared with a nozzle without a snout. The presented results can be used to design more effective local shielding components inside the treatment nozzle as well as to better understand the treatment room shielding requirements. PMID:20871789

  1. Estimation of thermal neutron fluences in the concrete of proton accelerator facilities from 36Cl production

    NASA Astrophysics Data System (ADS)

    Bessho, K.; Matsumura, H.; Miura, T.; Wang, Q.; Masumoto, K.; Hagura, H.; Nagashima, Y.; Seki, R.; Takahashi, T.; Sasa, K.; Sueki, K.; Matsuhiro, T.; Tosaki, Y.

    2007-06-01

    The thermal neutron fluence that poured into the shielding concrete of proton accelerator facilities was estimated from the in situ production of 36Cl. The thermal neutron fluences at concrete surfaces during 10-30 years of operation were in the range of 1012-1014 n/cm2. The maxima in thermal neutron fluences were observed at ≈5-15 cm in the depths analyzed for 36Cl/35Cl by AMS. These characteristics imply that thermalization of neutrons occurred inside the concrete. Compared to the several tens of MeV cyclotrons, secondary neutrons penetrate deeper into the concrete at the high-energy accelerators possessing acceleration energies of 400 MeV and 12 GeV. The attenuation length of neutrons reflects the energy spectra of secondary neutrons emitted by the nuclear reaction at the beam-loss points. Increasing the energy of secondary neutrons shifts the maximum in the thermal neutron fluences to deeper positions. The data obtained in this study will be useful for the radioactive waste management at accelerator facilities.

  2. Fluence and dose measurements for an accelerator neutron beam

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Byun, S. H.; McNeill, F. E.; Mothersill, C. E.; Seymour, C. B.; Prestwich, W. V.

    2007-10-01

    The 3 MV Van de Graaff accelerator at McMaster University accelerator laboratory is extended to a neutron irradiation facility for low-dose bystander effects research. A long counter and an Anderson-Braun type neutron monitor have been used as monitors for the determination of the total fluence. Activation foils were used to determine the thermal neutron fluence rate (around 106 neutrons s-1). Meanwhile, the interactions of neutrons with the monitors have been simulated using a Monte Carlo N Particle (MCNP) code. Bystander effects, i.e. damage occurring in cells that were not traversed by radiation but were in the same radiation environment, have been well observed following both alpha and gamma irradiation of many cell lines. Since neutron radiation involves mixed field (including gamma and neutron radiations), we need to differentiate the doses for the bystander effects from the two radiations. A tissue equivalent proportional counter (TEPC) filled with propane based tissue equivalent gas simulating a 2 μm diameter tissue sphere has been investigated to estimate the neutron and gamma absorbed doses. A photon dose contamination of the neutron beam is less than 3%. The axial dose distribution follows the inverse square law and lateral and vertical dose distributions are relatively uniform over the irradiation area required by the biological study.

  3. High fluence boron implantation into polymers

    NASA Astrophysics Data System (ADS)

    Vacik, J.; Cervena, J.; Fink, D.; Klett, R.; Hnatowicz, V.; Popok, V.; Odzhaev, V.

    100 keV B+ ions are implanted at high fluence into three polymers of technological importance and into a polymeric mixture, respectively. The boron depth distributions are measured by the neutron depth profiling technique. It is shown that the boron atoms redistribute after their implantation according to the nuclear (collisional) energy transfer distribution. This contrasts to low fluence implantation, where the boron atoms redistribute according to their electronic energy transfer distributions. Subsequently, the samples are annealed isochronally. The change of the boron depth profiles with annealing temperature is then evaluated to determine the diffusional, trapping and detrapping behavior of the boron atoms. At, or slightly above room temperature, intrinsic boron impurities of the examined polymer foils become mobile and getter in the ion-implanted region. At higher temperatures, the thermal desorption spectra show a nearly continuous desorption of both the implanted and gettered boron, with no pronounced desorption peaks. Due to the high polymeric destruction yield, the different polymers show little difference in their desorption behavior.

  4. High fluence boron implantation into polyimide

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Hnatowicz, V.; Červená, J.; Peřina, V.; Popok, V.; Odzhaev, V.; Fink, D.

    1999-01-01

    100 keV B + ions are implanted at high fluences into polyimide and the boron depth distributions are measured by the neutron depth profiling technique. Subsequently the implanted samples are annealed isochronally to determine the diffusional, trapping and detrapping behaviour of the boron atoms. The boron depth profiles of as-implanted samples differ significantly from those predicted by TRIM code. Pronounced inward and outward profile tails point at increased mobility and redistribution of boron atoms after implantation. Thermal annealing to the temperatures below 150°C does not change the total boron content in 1 μm thick surface layer and the boron depth profiles as well. For higher annealing temperatures a continuous desorption and significant redistribution of boron atoms is observed.

  5. Determination of the neutron fluence spectra in the neutron therapy room of KIRAMS.

    PubMed

    Kim, B H; Kim, J S; Kim, J L; Kim, Y S; Yang, T G; Lee, M Y

    2007-01-01

    High energy proton induced neutron fluence spectra were determined at the Korea Institute of Radiological and Medical Sciences (KIRAMS) using an extended Bonner Sphere (BS) set from the Korea Atomic Energy Research Institute (KAERI) in a series of measurements to quantify the neutron field. At the facility of the MC50 cyclotron of KIRAMS, two Be targets of different thicknesses, 1.0 and 10.5 mm, were bombarded by 35 and 45-MeV protons to produce six kinds of neutron fields, which were classified according to the measurement position and the use or no use of a beam collimator such as the gantry of the neutron therapy unit. In order to obtain a priori information to unfold the measured BS data the MCNPX code was used to calculate the neutron spectrum, and the influence of the surrounding materials for cooling the target assembly were also reviewed through this calculation. Some dosimetric quantities were determined by using the spectra determined in this measurement. Dose equivalent rates of these neutron fields ranged from 0.21 to 5.66 mSv h(-1)nA(-1) and the neutron yields for a thick Be target were 3.05 and 4.77% in the case of using a 35 and a 45-MeV proton, respectively.

  6. The response of dispersion-strengthened copper alloys to high fluence neutron irradiation at 415 degree C

    SciTech Connect

    Edwards, D.J.; Newkirk, J.W. ); Garner, F.A.; Hamilton, M.L. ); Nadkarny, A.; Samal, P. )

    1992-06-01

    Various oxide-dispersion-strengthened copper alloys have been irradiated to 150 dpa at 415{degree}C in the Fast Flux Test Facility (FFTF). The Al{sub 2}0{sub 3} - strengthened GlidCop{trademark} alloys, followed closely by a HfO{sub 2} - strengthened alloy, displayed the best swelling resistance, electrical conductivity, and tensile properties. The conductivity of the HfO{sub 2} - strengthened alloy reached a plateau at the higher levels of irradiation, instead of exhibiting the steady decrease in conductivity observed in the other alloys. A high initial oxygen content resulted in significantly higher swelling for a series of castable oxide-dispersion-strengthened alloys, while a Cr{sub 2}0{sub 3} - strengthened alloy showed poor resistance to radiation.

  7. The response of dispersion-strengthened copper alloys to high fluence neutron irradiation at 415{degree}C

    SciTech Connect

    Edwards, D.J.; Newkirk, J.W.; Garner, F.A.; Hamilton, M.L.; Nadkarny, A.; Samal, P.

    1992-06-01

    Various oxide-dispersion-strengthened copper alloys have been irradiated to 150 dpa at 415{degree}C in the Fast Flux Test Facility (FFTF). The Al{sub 2}0{sub 3} - strengthened GlidCop{trademark} alloys, followed closely by a HfO{sub 2} - strengthened alloy, displayed the best swelling resistance, electrical conductivity, and tensile properties. The conductivity of the HfO{sub 2} - strengthened alloy reached a plateau at the higher levels of irradiation, instead of exhibiting the steady decrease in conductivity observed in the other alloys. A high initial oxygen content resulted in significantly higher swelling for a series of castable oxide-dispersion-strengthened alloys, while a Cr{sub 2}0{sub 3} - strengthened alloy showed poor resistance to radiation.

  8. Radial fast-neutron fluence gradients during rotating 40Ar/39Ar sample irradiation recorded with metallic fluence monitors and geological age standards

    NASA Astrophysics Data System (ADS)

    Rutte, Daniel; Pfänder, Jörg A.; Koleška, Michal; Jonckheere, Raymond; Unterricker, Sepp

    2015-01-01

    the neutron-irradiation parameter J is one of the major uncertainties in 40Ar/39Ar dating. The associated uncertainty of the individual J-value for a sample of unknown age depends on the accuracy of the age of the geological standards, the fast-neutron fluence distribution in the reactor, and the distances between standards and samples during irradiation. While it is generally assumed that rotating irradiation evens out radial neutron fluence gradients, we observed axial and radial variations of the J-values in sample irradiations in the rotating channels of two reactors. To quantify them, we included three-dimensionally distributed metallic fast (Ni) and thermal- (Co) neutron fluence monitors in three irradiations and geological age standards in three more. Two irradiations were carried out under Cd shielding in the FRG1 reactor in Geesthacht, Germany, and four without Cd shielding in the LVR-15 reactor in Řež, Czech Republic. The 58Ni(nf,p)58Co activation reaction and γ-spectrometry of the 811 keV peak associated with the subsequent decay of 58Co to 58Fe allow one to calculate the fast-neutron fluence. The fast-neutron fluences at known positions in the irradiation container correlate with the J-values determined by mass-spectrometric 40Ar/39Ar measurements of the geological age standards. Radial neutron fluence gradients are up to 1.8 %/cm in FRG1 and up to 2.2 %/cm in LVR-15; the corresponding axial gradients are up to 5.9 and 2.1 %/cm. We conclude that sample rotation might not always suffice to meet the needs of high-precision dating and gradient monitoring can be crucial.

  9. Maine Yankee dosimetry capsule and pressure vessel neutron fluence calculations

    SciTech Connect

    White, J.R.; Spinney, K.B.; Morrissey, K.J.; Cacciapouti, R.J.

    1994-12-31

    In-house capability for deterministic neutron and gamma transport analyses has been implemented at Yankee Atomic Electric Company (YAEC). A detailed R-Theta (R-{theta}) calculational model of Maine Yankee was developed to help in validation of the methods and to establish appropriate models for support of the ongoing Maine Yankee pressure vessel surveillance program. Several data and modeling sensitivity studies were performed and comparisons to measured dosimetry capsule data were emphasized. The calculated results establish confidence in the YAEC in-house computational methodology for general pressure vessel fluence analyses.

  10. Energy spectra and fluence of the neutrons produced in deformed space-time conditions

    NASA Astrophysics Data System (ADS)

    Cardone, F.; Rosada, A.

    2016-10-01

    In this work, spectra of energy and fluence of neutrons produced in the conditions of deformed space-time (DST), due to the violation of the local Lorentz invariance (LLI) in the nuclear interactions are shown for the first time. DST-neutrons are produced by a mechanical process in which AISI 304 steel bars undergo a sonication using ultrasounds with 20 kHz and 330 W. The energy spectrum of the DST-neutrons has been investigated both at low (less than 0.4 MeV) and at high (up to 4 MeV) energy. We could conclude that the DST-neutrons have different spectra for different energy intervals. It is therefore possible to hypothesize that the DST-neutrons production presents peculiar features not only with respect to the time (asynchrony) and space (asymmetry) but also in the neutron energy spectra.

  11. Absolute monitoring of DD and DT neutron fluences using the associated-particle technique

    NASA Astrophysics Data System (ADS)

    Hertel, N. E.; Wehring, B. W.

    1980-06-01

    An associated-particle system was constructed for use with a Texas Nuclear neutron generator. Associated-particle and neutron energy spectra were measured simultaneously using this system and an NE-213 proton recoil spectrometer, respectively. The associated-particle system proved to be not only an accurate monitor of DT neutron fluence, but also an accurate monitor of DD contamination in the DT spectrum. The DD and DT neutron fluences calculated from the measured associated-particle counting rates showed the best agreement with the measured neutron fluences when the laboratory distributions were assumed to be isotropic.

  12. Monte Carlo simulation of the neutron spectral fluence and dose equivalent for use in shielding a proton therapy vault.

    PubMed

    Zheng, Yuanshui; Newhauser, Wayne; Klein, Eric; Low, Daniel

    2009-11-21

    Neutron production is of principal concern when designing proton therapy vault shielding. Conventionally, neutron calculations are based on analytical methods, which do not accurately consider beam shaping components and nozzle shielding. The goal of this study was to calculate, using Monte Carlo modeling, the neutron spectral fluence and neutron dose equivalent generated by a realistic proton therapy nozzle and evaluate how these data could be used in shielding calculations. We modeled a contemporary passive scattering proton therapy nozzle in detail with the MCNPX simulation code. The neutron spectral fluence and dose equivalent at various locations in the treatment room were calculated and compared to those obtained from a thick iron target bombarded by parallel proton beams, the simplified geometry on which analytical methods are based. The neutron spectral fluence distributions were similar for both methods, with deeply penetrating high-energy neutrons (E > 10 MeV) being most prevalent along the beam central axis, and low-energy neutrons predominating the neutron spectral fluence in the lateral region. However, unlike the inverse square falloff used in conventional analytical methods, this study shows that the neutron dose equivalent per therapeutic dose in the treatment room decreased with distance approximately following a power law, with an exponent of about -1.63 in the lateral region and -1.73 in the downstream region. Based on the simulated data according to the detailed nozzle modeling, we developed an empirical equation to estimate the neutron dose equivalent at any location and distance in the treatment vault, e.g. for cases in which detailed Monte Carlo modeling is not feasible. We applied the simulated neutron spectral fluence and dose equivalent to a shielding calculation as an example.

  13. A new active method for the measurement of slow-neutron fluence in modern radiotherapy treatment rooms

    NASA Astrophysics Data System (ADS)

    Gómez, F.; Iglesias, A.; Sánchez Doblado, F.

    2010-02-01

    This work focuses on neutron monitoring at clinical linac facilities during high-energy modality radiotherapy treatments. Active in-room measurement of neutron fluence is a complex problem due to the pulsed nature of the fluence and the presence of high photon background, and only passive methods have been considered reliable until now. In this paper we present a new active method to perform real-time measurement of neutron production around a medical linac. The device readout is being investigated as an estimate of patient neutron dose exposure on each radiotherapy session. The new instrument was developed based on neutron interaction effects in microelectronic memory devices, in particular using neutron-sensitive SRAM devices. This paper is devoted to the description of the instrument and measurement techniques, presenting the results obtained together with their comparison and discussion. Measurements were performed in several standard clinical linac facilities, showing high reliability, being insensitive to the photon fluence and EM pulse present inside the radiotherapy room, and having detector readout statistical relative uncertainties of about 2% on measurement of neutron fluence produced by 1000 monitor units irradiation runs.

  14. Neutron fluence vessel assessment in the 1300 MWe NPP French fleet: the FLUOLE program in EOLE

    SciTech Connect

    Blaise, P.; Thiollay, N.; Fougeras, P.; Destouches, C.; Beretz, D.; Pont, T.; Garnier, D.

    2006-07-01

    The Vessel Neutron fluence assessment is a key parameter for vessel embrittlement determination and plant lifetime estimation To validate this parameters, the CEA and its Industrial Partner EdF have decided to launch a devoted experimental program in the EOLE facility of the Cadarache Research Centre The aim of this proposed FLUOLE experimental program (acronym of Fluence in EOLE) is to provide the most accurate neutron propagation measurements in representative PWR neutron spectrum material and geometry in order to enable a reduction of uncertainties on calculated vessel fluence with Monte-Carlo codes such as MCNP or TRIPOLI. (authors)

  15. Measured Thermal and Fast Neutron Fluence Rates for ATF-1 Holders During ATR Cycle 157D

    SciTech Connect

    Smith, Larry Don; Miller, David Torbet

    2016-03-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 157D which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains measurements of the fluence rates corresponding to the particular elevations relative to the 80-ft. core elevation. The data in this report consist of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, and (3) plots of both the thermal and fast neutron fluence rates. The fluence rates reported are for the average power levels given in the table of power history and distribution.

  16. A new Recoil Proton Telescope for energy and fluence measurement of fast neutron fields

    SciTech Connect

    Lebreton, Lena; Bachaalany, Mario

    2015-07-01

    The spectrometer ATHENA (Accurate Telescope for High Energy Neutron metrology Applications), is being developed at the IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons) and aims at characterizing energy and fluence of fast neutron fields. The detector is a Recoil Proton Telescope and measures neutron fields in the range of 5 to 20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50{sub m} thick silicon sensors that use CMOS technology for the proton tracking and a 3 mm thick silicon diode to measure the residual proton energy. This first prototype used CMOS sensors called MIMOSTAR, initially developed for heavy ion physics. The use of CMOS sensors and silicon diode increases the intrinsic efficiency of the detector by a factor of ten compared with conventional designs. The first prototype has already been done and was a successful study giving the results it offered in terms of energy and fluence measurements. For mono energetic beams going from 5 to 19 MeV, the telescope offered an energy resolution between 5 and 11% and fluence difference going from 5 to 7% compared to other home standards. A second and final prototype of the detector is being designed. It will hold upgraded CMOS sensors called FastPixN. These CMOS sensors are supposed to run 400 times faster than the older version and therefore give the telescope the ability to support neutron flux in the order of 107 to 108cm{sup 2}:s{sup 1}. The first prototypes results showed that a 50 m pixel size is enough for a precise scattering angle reconstruction. Simulations using MCNPX and GEANT4 are already in place for further improvements. A DeltaE diode will replace the third CMOS sensor and will be installed right before the silicon diode for a better recoil proton selection. The final prototype with

  17. Neutron-fluence-to-dose conversion coefficients in an anthropomorphic phantom.

    PubMed

    Alghamdi, A A; Ma, A; Tzortzis, M; Spyrou, N M

    2005-01-01

    A set of fluence-to-effective-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a high-resolution anthropomorphic phantom (Zubal model) and the MCNPX code. The calculation used 13 monodirectional monoenergetic neutron beams in the energy range 10(-9) to 20 MeV, under three different source irradiation configurations: anterior-posterior, posterior-anterior and left lateral. Dose calculations were performed for 18 selected organs of the body, for which the International Commission on Radiological Protection and the International Commission on Radiological Units and Measurements have set tissue weighting factors for the determination of the effective dose. Another set of neutron-fluence-to-effective-dose conversion coefficients was also calculated with the proposed modification wR from ICRP Publication 92. From comparison between the dose results calculated and the data reported for the MIRD and VIPMAN models, it can be concluded that, although some discrepancies exist between the Zubal model and the two other models, there is good agreement in the left lateral irradiation geometry.

  18. A Technique For Determining Neutron Beam Fluence to 0.01% Uncertainty

    NASA Astrophysics Data System (ADS)

    Yue, A. T.; Dewey, M. S.; Gilliam, D. M.; Nico, J. S.; Fomin, N.; Greene, G. L.; Snow, W. M.; Wietfeldt, F. E.

    2014-03-01

    The achievable uncertainty in neutron lifetime measurements using the beam technique has been limited by the uncertainty in the determination of the neutron density in the decay volume. In the Sussex-ILL-NIST series of beam lifetime experiments, the density was determined with a neutron fluence monitor that detected the charged particle products from neutron absorption in a thin layer of 6Li or 10B. In each of the experiments, the absolute detection efficiency of the neutron monitor was determined from the measured density of the neutron absorber, the thermal neutron cross section for the absorbing material, and the solid angle of the charged particle detectors. The efficiency of the neutron monitor used in the most recent beam lifetime experiment has since been measured directly by operating it on a monochromatic neutron beam in which the total neutron rate is determined with a totally absorbing neutron detector. The absolute nature of this technique does not rely on any knowledge of neutron absorption cross sections or a measurement of the density of the neutron absorbing deposit. This technique has been used to measure the neutron monitor efficiency to 0.06% uncertainty. We show that a new monitor and absolute neutron detector employing the same technique would be capable of achieving determining neutron fluence to an uncertainty of 0.01%.

  19. A Technique for Determining Neutron Beam Fluence to 0.01% Uncertainty

    SciTech Connect

    Yue, A. T.; Dewey, M. S.; Gilliam, D. M.; Nico, J. S.; Fomin, N.; Greene, G. L.; Snow, W. M.; Wietfeldt, F. E.

    2014-01-01

    The achievable uncertainty in neutron lifetime measurements using the beam technique has been limited by the uncertainty in the determination of the neutron density in the decay volume. In the Sussex-ILL-NIST series of beam lifetime experiments, the density was determined with a neutron fluence mon itor that detected the charged particle products from neutron absorption in a thin layer of 6Li or lOB. In each of the experiments, the absolute detection efficiency of the neutron monitor was determined from the measured density of the neutron absorber, the thermal neutron cross section for the absorbing ma terial, and the solid angle of the charged particle detectors. The efficiency of the neutron monitor used in the most recent beam lifetime experiment has since been measured directly by operating it on a monochromatic neutron beam in which the total neutron rate is determined with a totally absorbing neutron detector. The absolute nature of this technique does not rely on any knowl edge of neutron absorption cross sections or a measurement of the density of the neutron absorbing deposit. This technique has been used to measure the neutron monitor efficiency to 0.06% uncertainty. VVe show that a new monitor and absolute neutron detector employing the same technique would be capable of achieving determining neutron fluence to an uncertainty of 0.01%.

  20. Accelerator-based Neutron Fluence Standard of the National Metrology Institute of Japan

    NASA Astrophysics Data System (ADS)

    Harano, Hideki; Matsumoto, Tetsuro; Nishiyama, Jun; Uritani, Akira; Kudo, Katsuhisa

    2009-03-01

    We report the present status of the national standard on accelerator-based fast neutron fluences in Japan. Monoenergetic neutron fluence standards have been established at 144 keV, 565 keV, 5.0 MeV and 8.0 MeV by using a Van de Graaff accelerator and at 2.5 MeV and 14.8 MeV by using a Cockcroft Walton accelerator. These standards are prepared to measure the detection efficiency and the energy response of neutron sensitive devices, such as personal dosimeters and survey meters. Neutron production and absolute fluence measurement for these energies are described. We are developing a new standard in the energy region of a few tens of keV, which is also introduced here as well as our future plans.

  1. Heat-to-heat variability of irradiation creep and swelling of HT9 irradiated to high neutron fluence at 400-600{degrees}C

    SciTech Connect

    Toloczko, M.B.; Garner, F.A.

    1996-10-01

    Irradiation creep data on ferritic/martensitic steels are difficult and expensive to obtain, and are not available for fusion-relevant neutron spectra and displacement rates. Therefore, an extensive creep data rescue and analysis effort is in progress to characterize irradiation creep of ferritic/martensitic alloys in other reactors and to develop a methodology for applying it to fusion applications. In the current study, four tube sets constructed from three nominally similar heats of HT9 subjected to one of two heat treatments were constructed as helium-pressurized creep tubes and irradiated in FFTF-MOTA at four temperatures between 400 and 600{degrees}C. Each of the four heats exhibited a different stress-free swelling behavior at 400{degrees}C, with the creep rate following the swelling according to the familiar B{sub o} + DS creep law. No stress-free swelling was observed at the other three irradiation temperatures. Using a stress exponent of n = 1.0 as the defining criterion, {open_quotes}classic{close_quotes} irradiation creep was found at all temperatures, but, only over limited stress ranges that decreased with increasing temperature. The creep coefficient B{sub o} is a little lower ({approx}50%) than that observed for austenitic steel, but the swelling-creep coupling coefficient D is comparable to that of austenitic steels. Primary transient creep behavior was also observed at all temperatures except 400{degrees}C, and thermal creep behavior was found to dominate the deformation at high stress levels at 550 and 600{degrees}C.

  2. Fission foil measurements of neutron and proton fluences in the A0015 experiment

    NASA Technical Reports Server (NTRS)

    Frank, A. L.; Benton, E. V.; Armstrong, T. W.; Colborn, B. L.

    1995-01-01

    Results are given from sets of fission foil detectors (FFD's) (Ta-181, Bi-209, Th-232, U-238) which were included in the A0015 experiment to measure combined proton/neutron fluences. Use has been made of recent FFD high energy proton calibrations for improved accuracy of response. Comparisons of track density measurements have been made with the predictions of environmental modeling based on simple 1-D (slab) geometry. At 1 g/cm(exp 2) (trailing edge) the calculations were approximately 25 percent lower than measurements; at 13 g/cm(exp 2) (Earthside) calculations were more than a factor of 2 lower. A future 3-D modeling of the experiment is needed for a more meaningful comparison. Approximate mission proton doses and neutron dose equivalents were found. At Earthside (13 g/cm(exp 2) the dose was 171 rad and dose equivalent was 82 rem. At the trailing edge (1 g/cm(exp 2) dose was 315 rad and dose equivalent was 33 rem. The proton doses are less than expected from TLD doses by 16 percent and 37 percent, respectively. These differences can be explained by uncertainties in the proton and neutron spectra and in the method used to separate proton and neutron contributions to the measurements.

  3. A Multigroup Method for the Calculation of Neutron Fluence with a Source Term

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Clowdsley, M. S.

    1998-01-01

    Current research on the Grant involves the development of a multigroup method for the calculation of low energy evaporation neutron fluences associated with the Boltzmann equation. This research will enable one to predict radiation exposure under a variety of circumstances. Knowledge of radiation exposure in a free-space environment is a necessity for space travel, high altitude space planes and satellite design. This is because certain radiation environments can cause damage to biological and electronic systems involving both short term and long term effects. By having apriori knowledge of the environment one can use prediction techniques to estimate radiation damage to such systems. Appropriate shielding can be designed to protect both humans and electronic systems that are exposed to a known radiation environment. This is the goal of the current research efforts involving the multi-group method and the Green's function approach.

  4. Measurement of neutron fluence spectra up to 150 MeV using a stacked scintillator neutron spectrometer.

    PubMed

    Brooks, F D; Allie, M S; Buffler, A; Dangendorf, V; Herbert, M S; Makupula, S A; Nolte, R; Smit, F D

    2004-01-01

    A stacked scintillator neutron spectrometer (S3N) consisting of three slabs of liquid organic scintillator is described. A pulsed beam providing a broad spectrum of neutron energies is used to determine the detection efficiency of the spectrometer as a function of incident neutron energy and to measure the pulse height response matrix of the system. Neutron spectra can then be determined for beams with any kind of time structure by unfolding pulse height spectra measured by the S3N. Examples of fluence spectrum measurements in the energy range 20-150 MeV are presented.

  5. Analysis and comparison of monoenergetic fast neutron fluence determination using 238U samples at different positions with respect to the neutron source.

    PubMed

    Zhang, Guohui; Liu, Xiang; Gao, Zhiqi; Wu, Hao; Liu, Jiaming

    2012-05-01

    Using two (238)U samples placed in a gridded ionization chamber and a parallel-plate fission chamber, fluence of monoenergetic fast neutrons was determined. Four runs of measurements were performed. Analysis showed that although the neutron fluences for the two (238)U samples differ by 20-33 times in the present work, the fluences at the position of the sample in the gridded ionization chamber determined by the two ways are in agreement within experimental uncertainties.

  6. Absolute thermal neutron fluence determination by thin film of natural uranium

    NASA Astrophysics Data System (ADS)

    Bigazzi, G.; Hadler N., J. C.; Iunes, P. J.; Oddone, M.; Paulo, S. R.; Zúñiga G., A.

    1995-01-01

    An absolute monitor of thermal neutron fluence based on the 235U induced fission was developed. This monitor is constituted by a solid state nuclear track detector juxtaposed to a natural uranium film with a negligible self-absorption to fission fragments. In order to perform the calibration of the films, the alpha-activity was measured by using nuclear emulsions. The preparation, calibration and employment procedures of this monitor are presented.

  7. Inferences of Shell Asymmetry in ICF Implosions using Fluence Compensated Neutron Images at the NIF

    NASA Astrophysics Data System (ADS)

    Casey, D.; Fittinghoff, D.; Bionta, R.; Smalyuk, V.; Grim, G.; Munro, D.; Spears, B.; Raman, K.; Clark, D.; Kritcher, A.; Hinkel, D.; Hurricane, O.; Callahan, D.; Döppner, T.; Landen, O.; Ma, T.; Le Pape, S.; Ross, S.; Meezan, N.; Pak, A.; Park, H.-S.; Volegov, P.; Merill, F.

    2016-10-01

    In ICF experiments, a dense shell is imploded and used to compress and heat a hotspot of DT fuel. Controlling the symmetry of this process is both important and challenging. It is therefore important to observe the symmetry of the stagnated shell assembly. The Neutron Imaging System at the NIF is used to observe the primary 14 MeV neutrons from the hotspot and the down-scattered neutrons (6-12 MeV), from the assembled shell but with a strong imprint from the primary-neutron fluence. Using a characteristic scattering angle approximation, we have compensated the image for this fluence effect, revealing information about shell asymmetry that is otherwise difficult to extract without models. Preliminary observations with NIF data show asymmetries in imploded shell, which will be compared with other nuclear diagnostics and postshot simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Lifetime Neutron Fluence Analysis of the Ringhals Unit 1 Boiling Water Reactor

    NASA Astrophysics Data System (ADS)

    Kulesza, Joel A.; Roudén, Jenny; Green, Eva-Lena

    2016-02-01

    This paper describes a neutron fluence assessment considering the entire commercial operating history (35 cycles or ˜ 25 effective full power years) of the Ringhals Unit 1 reactor pressure vessel beltline region. In this assessment, neutron (E >1.0 MeV) fluence and iron atom displacement distributions were calculated on the moderator tank and reactor pressure vessel structures. To validate those calculations, five in-vessel surveillance chain dosimetry sets were evaluated as well as material samples taken from the upper core grid and wide range neutron monitor tubes to act as a form of retrospective dosimetry. During the analysis, it was recognized that delays in characterizing the retrospective dosimetry samples reduced the amount of reactions available to be counted and complicated the material composition determination. However, the comparisons between the surveillance chain dosimetry measurements (M) and calculated (C) results show similar and consistent results with the linear average M/C ratio of 1.13 which is in good agreement with the resultant least squares best estimate (BE)/C ratios of 1.10 for both neutron (E >1.0 MeV) flux and iron atom displacement rate.

  9. Measurement of the fluence response of the GSI neutron ball dosemeter in the energy range from thermal to 19 MeV.

    PubMed

    Fehrenbacher, G; Kozlova, E; Gutermuth, F; Radon, T; Schütz, R; Nolte, R; Böttger, R

    2007-01-01

    At high-energy particle accelerators, area monitoring needs to be performed in a wide range of neutron energies. In principle, neutrons occur from thermal energies up to the energy of the accelerated ions, which is for the present GSI (Gesellschaft für Schwerionenforschung) accelerator facility approximately 1-2 GeV per nucleon. There are no passive dosemeters available, which are designed for the use at high-energy accelerators. At GSI, a neutron dosemeter was developed, which is suitable for the measurement of high-energy neutron radiation by the insertion of a lead layer around Thermoluminescence (TL) detection elements (pairs of TL 600/700) at the centre of the dosemeter. The design of the sphere was derived from the construction of the extended range rem-counters for the measurement of ambient dose equivalent H(10). In this work, the dosemeter fluence response was measured in the quasi-monoenergetic neutron fields of the accelerator facility of the PTB in Braunschweig and in the thermal neutron field of the GKSS research reactor FRG-1 in Geesthacht. For the accelerator measurements, the reactions (7)Li(p,n)(7)Be, (3)H(p,n)(3)He and (2)H(d,n)(3)He were used to produce neutron fields with energy peaks between 144 keV and 19 MeV. The measured fluence responses are 27% too low for thermal energies and show an agreement with approximately 14% for the accelerator produced neutron fields related to the computed fluence responses (MCNP, FLUKA calculations). The measured as well as the computed fluence responses of the dosemeter are compared with the corresponding conversion coefficients.

  10. Measuring neutron fluences and gamma/x ray fluxes with CCD cameras

    NASA Astrophysics Data System (ADS)

    Yates, G. J.; Smith, G. W.; Zagarino, P.; Thomas, M. C.

    The capability to measure bursts of neutron fluences and gamma/x-ray fluxes directly with charge coupled device (CCD) cameras while being able to distinguish between the video signals produced by these two types of radiation, even when they occur simultaneously, has been demonstrated. Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCD's) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (4-12 MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate approx. = .05 V/rad responsivity with greater than or = 1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or 'peaks' binned by area and amplitude as functions of fluence in the 105 to 107 n/cc range indicate smearing over approx. 1 to 10 percent of the CCD array with charge per pixel ranging between noise and saturation levels.

  11. Measuring neutron fluences and gamma/x ray fluxes with CCD cameras

    NASA Astrophysics Data System (ADS)

    Yates, G. J.; Smith, G. W.; Zagarino, P.; Thomas, M. C.

    Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCDs) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (16-MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate approximately 0.5 V/rad responsivity with greater than or equal to 1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or 'peaks' binned by area and amplitude as functions of fluence in the 10(exp 5) to 10(exp 7) n/sq cm range indicate smearing over approximately 1 to 10 percent of CCD array with charge per pixel ranging between noise and saturation levels.

  12. International key comparison of thermal neutron fluence measurements—CCRI(III)-K8

    NASA Astrophysics Data System (ADS)

    Nolte, R.; Böttger, R.; Chen, J.; Harano, H.; Thomas, D. J.

    2015-01-01

    After more than thirty years a new key comparison of thermal neutron fluence measurements was organized by section III of CCRI. The comparison was carried out by rotating four transfer instruments among the four participants (CIAE, PTB, NMIJ and NPL). The stability of the detectors was repeatedly verified by the pilot laboratory between the measurements. Each of the four transfer devices had a different dependence of the fluence response on the neutron energy. Hence the comparison was also sensitive to the knowledge of the spectral distributions of the facilities used by the participants for their measurements. The results of the comparison showed signs of inconsistencies which could not be resolved during the analysis. Therefore the arithmetic mean of the results was used to calculate the key comparison reference value. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  13. Characterisation of kilo electron volt neutron fluence standard with the 45Sc(p,n)45Ti reaction at NMIJ.

    PubMed

    Matsumoto, T; Harano, H; Shimoyama, T; Kudo, K; Uritani, A

    2007-01-01

    We are developing a national standard of a monoenergetic kilo electron volt neutron field with the (45)Sc(p,n)(45)Ti resonance reaction. A wide resonance yields 27.4 keV neutrons at 0 degrees with respect to the proton beam. The proton energy was precisely determined in the measurement of the relative neutron yield as a function of the proton energy from the threshold energy to 2.942 MeV. Absolute measurement of the monoenergetic neutron fluence was performed using a (3)He proportional counter. Relative measurement was also carried out using a Bonner sphere calibrated at our 144 keV standard neutron field. Calibration factors were obtained between the count of a neutron monitor and the neutron fluence. A silicon-surface barrier detector with a (6)LiF foil converter was also being developed for the neutron fluence measurement. Successful results were obtained in the tests in the 144 keV standard neutron field.

  14. Final report on LDRD project 105967 : exploring the increase in GaAs photodiode responsivity with increased neutron fluence.

    SciTech Connect

    Blansett, Ethan L.; Geib, Kent Martin; Cich, Michael Joseph; Wrobel, Theodore Frank; Peake, Gregory Merwin; Fleming, Robert M.; Serkland, Darwin Keith; Wrobel, Diana L.

    2008-01-01

    A previous LDRD studying radiation hardened optoelectronic components for space-based applications led to the result that increased neutron irradiation from a fast-burst reactor caused increased responsivity in GaAs photodiodes up to a total fluence of 4.4 x 10{sup 13} neutrons/cm{sup 2} (1 MeV Eq., Si). The silicon photodiodes experienced significant degradation. Scientific literature shows that neutrons can both cause defects as well as potentially remove defects in an annealing-like process in GaAs. Though there has been some modeling that suggests how fabrication and radiation-induced defects can migrate to surfaces and interfaces in GaAs and lead to an ordering effect, it is important to consider how these processes affect the performance of devices, such as the basic GaAs p-i-n photodiode. In this LDRD, we manufactured GaAs photodiodes at the MESA facility, irradiated them with electrons and neutrons at the White Sands Missile Range Linac and Fast Burst Reactor, and performed measurements to show the effect of irradiation on dark current, responsivity and high-speed bandwidth.

  15. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  16. The development of a high sensitivity neutron displacement damage sensor

    DOE PAGES

    Tonigan, Andrew M.; Parma, Edward J.; Martin, William J.

    2016-11-23

    Here, the capability to characterize the neutron energy spectrum and fluence received by a test object is crucial to under-standing the damage effects observed in electronic components. For nuclear research reactors and high energy density physics fa-cilities this can pose exceptional challenges, especially with low level neutron fluences. An ASTM test method for characterizing neutron environments utilizes the 2N2222A transistor as a 1-MeV equivalent neutron fluence sensor and is applicable for environ-ments with 1 x 1012 - 1 x 1014 1-MeV(Si)-Eqv.-n/cm2. In this work we seek to extend the range of this test method to lower fluence environments utilizing themore » 2N1486 transistor. Here, the 2N1486 is shown to be an effective neutron displacement damage sensor as low as 1 x 1010 1-MeV(Si)-Eqv.-n/cm2.« less

  17. Advanced Models of LWR Pressure Vessel Embrittlement for Low Flux-HighFluence Conditions

    SciTech Connect

    Odette, G. Robert; Yamamoto, Takuya

    2013-06-17

    Neutron embrittlement of reactor pressure vessels (RPVs) is an unresolved issue for light water reactor life extension, especially since transition temperature shifts (TTS) must be predicted for high 80-year fluence levels up to approximately 1,020 n/cm{sup 2}, far beyond the current surveillance database. Unfortunately, TTS may accelerate at high fluence, and may be further amplified by the formation of late blooming phases that result in severe embrittlement even in low-copper (Cu) steels. Embrittlement by this mechanism is a potentially significant degradation phenomenon that is not predicted by current regulatory models. This project will focus on accurately predicting transition temperature shifts at high fluence using advanced physically based, empirically validated and calibrated models. A major challenge is to develop models that can adjust test reactor data to account for flux effects. Since transition temperature shifts depend on synergistic combinations of many variables, flux-effects cannot be treated in isolation. The best current models systematically and significantly under-predict transition temperature at high fluence, although predominantly for irradiations at much higher flux than actual RPV service. This project will integrate surveillance, test reactor and mechanism data with advanced models to address a number of outstanding RPV embrittlement issues. The effort will include developing new databases and preliminary models of flux effects for irradiation conditions ranging from very low (e.g., boiling water reactor) to high (e.g., accelerated test reactor). The team will also develop a database and physical models to help predict the conditions for the formation of Mn-Ni-Si late blooming phases and to guide future efforts to fully resolve this issue. Researchers will carry out other tasks on a best-effort basis, including prediction of transition temperature shift attenuation through the vessel wall, remediation of embrittlement by annealing

  18. Monte Carlo simulations of neutron spectral fluence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit

    NASA Astrophysics Data System (ADS)

    Zheng, Yuanshui; Fontenot, Jonas; Taddei, Phil; Mirkovic, Dragan; Newhauser, Wayne

    2008-01-01

    Stray neutron exposures pose a potential risk for the development of secondary cancer in patients receiving proton therapy. However, the behavior of the ambient dose equivalent is not fully understood, including dependences on neutron spectral fluence, radiation weighting factor and proton treatment beam characteristics. The objective of this work, therefore, was to estimate neutron exposures resulting from the use of a passively scattered proton treatment unit. In particular, we studied the characteristics of the neutron spectral fluence, radiation weighting factor and ambient dose equivalent with Monte Carlo simulations. The neutron spectral fluence contained two pronounced peaks, one a low-energy peak with a mode around 1 MeV and one a high-energy peak that ranged from about 10 MeV up to the proton energy. The mean radiation weighting factors varied only slightly, from 8.8 to 10.3, with proton energy and location for a closed-aperture configuration. For unmodulated proton beams stopped in a closed aperture, the ambient dose equivalent from neutrons per therapeutic absorbed dose (H*(10)/D) calculated free-in-air ranged from about 0.3 mSv/Gy for a small scattered field of 100 MeV proton energy to 19 mSv/Gy for a large scattered field of 250 MeV proton energy, revealing strong dependences on proton energy and field size. Comparisons of in-air calculations with in-phantom calculations indicated that the in-air method yielded a conservative estimation of stray neutron radiation exposure for a prostate cancer patient.

  19. Probabilistic Forecast of Solar Particle Fluence for Mission Durations and Exposure Assessment in Consideration of Integral Proton Fluence at High Energies

    NASA Astrophysics Data System (ADS)

    Kim, M. Y.; Tylka, A. J.; Dietrich, W. F.; Cucinotta, F. A.

    2012-12-01

    The occasional occurrence of solar particle events (SPEs) with large amounts of energy is non-predictable, while the expected frequency is strongly influenced by solar cycle activity. The potential for exposure to large SPEs with high energy levels is the major concern during extra-vehicular activities (EVAs) on the Moon, near Earth object, and Mars surface for future long duration space missions. We estimated the propensity for SPE occurrence with large proton fluence as a function of time within a typical future solar cycle from a non-homogeneous Poisson model using the historical database for measurements of protons with energy > 30 MeV, Φ30. The database includes a comprehensive collection of historical data set for the past 5 solar cycles. Using all the recorded proton fluence of SPEs, total fluence distributions of Φ30, Φ60, and Φ100 were simulated ranging from its 5th to 95th percentile for each mission durations. In addition to the total particle intensity of SPEs, the detailed energy spectra of protons, especially at high energy levels, were recognized as extremely important for assessing the radiation cancer risk associated with energetic particles for large events. For radiation exposure assessments of major SPEs, we used the spectral functional form of a double power law in rigidity (the so-called Band function), which have provided a satisfactory representation of the combined satellite and neutron monitor data from ~10 MeV to ~10 GeV. The dependencies of exposure risk were evaluated as a function of proton fluence at a given energy threshold of 30, 60, and 100 MeV, and overall risk prediction was improved as the energy level threshold increases from 30 to 60 to 100 MeV. The results can be applied to the development of approaches of improved radiation protection for astronauts, as well as the optimization of mission planning and shielding for future space missions.

  20. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    SciTech Connect

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  1. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    SciTech Connect

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V.

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV

  2. Three-dimensional Monte Carlo calculations of the neutron and. gamma. -ray fluences in the TFTR diagnostic basement and comparisons with measurements

    SciTech Connect

    Liew, S.L.; Ku, L.P.; Kolibal, J.G.

    1985-10-01

    Realistic calculations of the neutron and ..gamma..-ray fluences in the TFTR diagnostic basement have been carried out with three-dimensional Monte Carlo models. Comparisons with measurements show that the results are well within the experimental uncertainties.

  3. Fluence-to-dose conversion coefficients based on the VIP-Man anatomical model and MCNPX code for monoenergetic neutrons above 20 MeV.

    PubMed

    Bozkurt, A; Chao, T C; Xu, X G

    2001-08-01

    A new set of fluence-to-absorbed dose and fluence-to-effective dose conversion coefficients has been calculated for high-energy neutrons using a whole-body anatomical model, VIP-Man, developed from the high-resolution transversal color photographic images of the National Library of Medicine's Visible Human Project. Organ dose calculations were performed using the Monte Carlo code MCNPX for 20 monoenergetic neutron beams between 20 MeV and 10,000 MeV under 6 different irradiation geometries: anterior-posterior, posterior-anterior, left lateral, right lateral, isotropic, and rotational. For neutron Monte Carlo calculations, results based on an image-based whole-body model were not available in the literature. The absorbed dose results for 24 major organs of VIP-Man are presented in the form of tables and selected figures that compare with those based on simplified mathematical phantoms reported in the literature. VIP-Man yields up to 40% larger values of effective dose and many organ doses, thus suggesting that the results reported in the past may not be conservative.

  4. Fluence-to-dose conversion coefficients from monoenergetic neutrons below 20 MeV based on the VIP-Man anatomical model

    NASA Astrophysics Data System (ADS)

    Bozkurt, A.; Chao, T. C.; Xu, X. G.; Bozkurt, A.; Chao, T. C.

    2000-10-01

    A new set of fluence-to-absorbed dose and fluence-to-effective dose conversion coefficients have been calculated for neutrons below 20 MeV using a whole-body anatomical model, VIP-Man, developed from the high-resolution transverse colour photographic images of the National Library of Medicine's Visible Human Project®. Organ dose calculations were performed using the Monte Carlo code MCNP for 20 monoenergetic neutron beams between 1×10-9 MeV and 20 MeV under six different irradiation geometries: anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic. The absorbed dose for 24 major organs and effective dose results based on the realistic VIP-Man are presented and compared with those based on the simplified MIRD-based phantoms reported in the literature. Effective doses from VIP-Man are not significantly different from earlier results for neutrons in the energy range studied. There are, however, remarkable deviations in organ doses due to the anatomical differences between the image-based and the earlier mathematical models.

  5. Fluence-to-dose conversion coefficients from monoenergetic neutrons below 20 MeV based on the VIP-man anatomical model.

    PubMed

    Bozkurt, A; Chao, T C; Xu, X G

    2000-10-01

    A new set of fluence-to-absorbed dose and fluence-to-effective dose conversion coefficients have been calculated for neutrons below 20 MeV using a whole-body anatomical model, VIP-Man, developed from the high-resolution transverse colour photographic images of the National Library of Medicine's Visible Human Project. Organ dose calculations were performed using the Monte Carlo code MCNP for 20 monoenergetic neutron beams between 1 x 10(-9) MeV and 20 MeV under six different irradiation geometries: anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic. The absorbed dose for 24 major organs and effective dose results based on the realistic VIP-Man are presented and compared with those based on the simplified MIRD-based phantoms reported in the literature. Effective doses from VIP-Man are not significantly different from earlier results for neutrons in the energy range studied. There are, however, remarkable deviations in organ doses due to the anatomical differences between the image-based and the earlier mathematical models.

  6. Aging and Embrittlement of High Fluence Stainless Steels

    SciTech Connect

    Was, gary; Jiao, Zhijie; der ven, Anton Van; Bruemmer, Stephen; Edwards, Dan

    2012-12-31

    Irradiation of austenitic stainless steels results in the formation of dislocation loops, stacking fault tetrahedral, Ni-Si clusters and radiation-induced segregation (RIS). Of these features, it is the formation of precipitates which is most likely to impact the mechanical integrity at high dose. Unlike dislocation loops and RIS, precipitates exhibit an incubation period that can extend from 10 to 46 dpa, above which the cluster composition changes and a separate phase, (G-phase) forms. Both neutron and heavy ion irradiation showed that these clusters develop slowly and continue to evolve beyond 100 dpa. Overall, this work shows that the irradiated microstructure features produced by heavy ion irradiation are remarkably comparable in nature to those produced by neutron irradiation at much lower dose rates. The use of a temperature shift to account for the higher damage rate in heavy ion irradiation results in a fairly good match in the dislocation loop microstructure and the precipitate microstructure in austenitic stainless steels. Both irradiations also show segregation of the same elements and in the same directions, but to achieve comparable magnitudes, heavy ion irradiation must be conducted at a much higher temperature than that which produces a match with loops and precipitates. First-principles modeling has confirmed that the formation of Ni-Si precipitates under irradiation is likely caused by supersaturation of solute to defect sinks caused by highly correlated diffusion of Ni and Si. Thus, the formation and evolution of Ni-Si precipitates at high dose in austenitic stainless steels containing Si is inevitable.

  7. Accelerator mass spectrometry of 63Ni at the Munich Tandem Laboratory for estimating fast neutron fluences from the Hiroshima atomic bomb.

    PubMed

    Rühm, W; Knie, K; Rugel, G; Marchetti, A A; Faestermann, T; Wallner, C; McAninch, J E; Straume, T; Korschinek, G

    2000-10-01

    After the release of the present dosimetry system DS86 in 1987, measurements have shown that DS86 may substantially underestimate thermal neutron fluences at large distances (>1,000 m) from the hypocenter in Hiroshima. This discrepancy casts doubts on the DS86 neutron source term and, consequently, the survivors' estimated neutron doses. However, the doses were caused mainly by fast neutrons. To determine retrospectively fast neutron fluences in Hiroshima, the reaction 63Cu(n, p)63Ni can be used, if adequate copper samples can be found. Measuring 63Ni (half life 100 y) in Hiroshima samples requires a very sensitive technique, such as accelerator mass spectrometry (AMS), because of the relatively small amounts of 63Ni expected (approximately 10(5)-10(6) atoms per gram of copper). Experiments performed at Lawrence Livermore National Laboratory have demonstrated in 1996 that AMS can be used to measure 63Ni in Hiroshima copper samples. Subsequently, a collaboration was established with the Technical University of Munich in view of its potential to perform more sensitive measurements of 63Ni than the Livermore facility and in the interest of interlaboratory validation. This paper presents the progress made at the Munich facility in the measurement of 63Ni by AMS. The Munich accelerator mass spectrometry facility is a combination of a high energy tandem accelerator and a detection system featuring a gas-filled magnet. It is designed for high sensitivity measurements of long-lived radioisotopes. Optimization of the ion source setup has further improved the sensitivity for 63Ni by reducing the background level of the 63Cu isobar interference by about two orders of magnitude. Current background levels correspond to a ratio of 63Ni/Ni<2x10(-14) and suggest that, with adequate copper samples, the assessment of fast neutron fluences in Hiroshima and Nagasaki is possible for ground distances of up to 1500 m, and--under favorable conditions--even beyond. To demonstrate this

  8. Effects of neutron fluence on the operating characteristics of diode lasers used in atomic frequency standards. Technical report

    SciTech Connect

    Frueholz, R.P.; Camparo, J.C.; Delcamp, S.B.; Barnes, C.E.

    1990-08-15

    One of the next major advances in rubidium and cesium atomic clock technology will center on the use of diode lasers for optical pumping. The atomic clocks used on board satellites have the potential to interact with various forms of radiation that are not present in the laboratory environment, and the effects of this radiation on the laser's operating characteristics relevant to clock applications are not well known. The present report describes an ongoing experiment to study the effects of neutron fluence on the operating characteristics of Mitsubishi Transverse Junction Stripe (TJS) AlGaAs diode lasers. Different models of the TJS diode laser produce optical radiation in both the 780 and 850 nm range, appropriate for optical pumping in rubidium and cesium atomic clocks, respectively. In this phase, a set of TJS diode lasers has been exposed to a neutron fluence of 2 x 1012 n/cm2, and four laser characteristics were examined after each exposure. The laser's light output versus injection current and single-mode linewidth versus output power both influence the efficiency of optical pumping and hence the atomic clock's signal-to-noise ratio. We have also measured the laser's single-mode wavelength versus injection current (laser tuning). Since the diode laser must remain tuned to the appropriate atomic transition, any degradation in the ability to tune the laser will impact atomic clock reliability. Finally, the diode laser's gain curve has been studied at several injection currents below threshold. This diode laser characteristic is taken as an indicator of the neutron damage mechanisms in the laser's semiconductor material. Changes in these characteristics due to the neutron exposure are reported.

  9. Microstructural behavior of VVER-440 reactor pressure vessel steels under irradiation to neutron fluences beyond the design operation period

    NASA Astrophysics Data System (ADS)

    Kuleshova, E. A.; Gurovich, B. A.; Shtrombakh, Ya. I.; Nikolaev, Yu. A.; Pechenkin, V. A.

    2005-06-01

    Electron-microscopy and fractographic studies of the surveillance specimens from base and weld metals of VVER-440/213 reactor pressure vessel (RPV) in the original state and after irradiations to different fast neutron fluences from ˜5 × 10 23 n m -2 ( E > 0.5 MeV) up to over design values have been carried out. The maximum specimens irradiation time was 84 480 h. It is shown that there is an evolution in radiation-induced structural behavior with radiation dose increase, which causes a change in relative contribution of the mechanisms responsible for radiation embrittlement of RPV materials. Particularly, radiation coalescence of copper-enriched precipitates and extensive density increase of dislocation loops was observed. Increase in dislocation loop density was shown to provide the dominant contribution to radiation hardening at the late irradiation stages (after reaching double the design end-of-life neutron fluence of ˜4 × 10 24 n m -2). The fracture mechanism of the base metal at those stages was observed to change from transcrystalline to intercrystalline.

  10. Determination of radionuclides produced by neutrons in heavily exposed workers of the JCO criticality accident in Tokai-mura for estimating an individual's neutron fluence.

    PubMed

    Muramatsu, Y; Noda, Y; Yonehara, H; Ishigure, N; Yoshida, S; Yukawa, M; Tagami, K; Ban-Nai, T; Uchida, S; Hirama, T; Akashi, M; Nakamura, Y

    2001-09-01

    In the Tokai-mura criticality accident, three workers were heavily exposed. Biological materials, such as blood, urine, vomit and hair, were collected from the workers and analyzed for radioactivities, produced by the neutron irradiation. Activation products. such as 24Na, -K and 82Br, were found in these materials by gamma-ray spectrometry. The radionuclide of the highest activity observed in biological materials was 24Na, e.g. the concentrations of this nuclide in the blood samples from the three patients at the accident time were 169, 92 and 23 Bq/ml, respectively. The concentrations of stable sodium in the same samples were determined by ICP-AES to obtain specific activities of 24Na (concentration ratio between the produced 24Na and stable 23Na), which are essential for estimating the neutron fluences and radiation doses. The specific activities of 24Na obtained for the three patients through the blood analysis were 8.2 x 10(4),4.3 x 10(4) and 1.2 x 10(4) Bq24Na/g23Na. Based on these values, individual's neutron fluences were estimated to be 5.7 x 10(11), 3.0 x 10(-1) and 0.85 x 10(11) cm(-2), respectively.

  11. Neutron fluences and energy spectra in the Cosmos-2044 biosatellite orbit

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Akopova, A. B.; Melkumyan, L. V.; Benton, E. V.; Frank, A. L.

    1992-01-01

    Joint Soviet-American measurements of the neutron component of space radiation (SR) were carried out during the flight of the Soviet biosatellite Cosmos-2044. Neutron flux densities and differential energy spectra were measured inside and on the external surface of the spacecraft. Three energy intervals were employed: thermal (En < or = 0.2 eV), resonance (0.2 eV < En < 1.0 MeV) and fast (En > or = 1.0 MeV) neutrons. The first two groups were measured with U.S. 6LiF detectors, while fast neutrons were recorded both by U.S. fission foils and Soviet nuclear emulsions. Estimations were made of the contributions to absorbed and equivalent doses from each neutron energy interval and a correlation was presented between fast neutron fluxes, measured outside the satellite, and the phase of solar activity (SA). Average dose equivalent rates of 0.018 and 0.14 mrem d-1 were measured for thermal and resonance neutrons, respectively, outside the spacecraft. The corresponding values for fast neutrons were 3.3 (U.S.) and 1.8 (U.S.S.R.) mrem d-1. Inside the spacecraft, a value of 3.5 mrem d-1 was found.

  12. Fast neutron fluence of yonggwang nuclear unit 1 reactor pressure vessel

    SciTech Connect

    Yoo, C.; Km, B.; Chang, K.; Leeand, S.; Park, J.

    2006-07-01

    The Code of Federal Regulations, Title 10, Part 50, Appendix H, requires that the neutron dosimetry be present to monitor the reactor vessel throughout plant life. The Ex-Vessel Neutron Dosimetry System has been installed for Yonggwang Nuclear Unit 1 after complete withdrawal of all six in-vessel surveillance capsules. This system has been installed in the reactor cavity annulus in order to measure the fast neutron spectrum coming out through the reactor pressure vessel. Cycle specific neutron transport calculations were performed to obtain the energy dependent neutron flux throughout the reactor geometry including dosimetry positions. Comparisons between calculations and measurements were performed for the reaction rates of each dosimetry sensors and results show good agreements. (authors)

  13. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    DOE PAGES

    Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; ...

    2014-04-14

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detectionmore » of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×106 cm-2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.« less

  14. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    SciTech Connect

    Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Hohenberger, M.; Sangster, T. C.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Landen, O. L.; Zacharias, R. A.; Kim, Y.; Herrmann, H. W.; Kilkenny, J. D.

    2014-04-14

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×106 cm-2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.

  15. Comparison of Calculated and Measured Neutron Fluence in Fuel/Cladding Irradiation Experiments in HFIR

    SciTech Connect

    Ellis, Ronald James

    2011-01-01

    A recently-designed thermal neutron irradiation facility has been used for a first series of irradiations of PWR fuel pellets in the high flux isotope reactor (HFIR) at Oak Ridge National Laboratory. Since June 2010, irradiations of PWR fuel pellets made of UN or UO{sub 2}, clad in SiC, have been ongoing in the outer small VXF sites in the beryllium reflector region of the HFIR, as seen in Fig. 1. HFIR is a versatile, 85 MW isotope production and test reactor with the capability and facilities for performing a wide variety of irradiation experiments. HFIR is a beryllium-reflected, light-water-cooled and -moderated, flux-trap type reactor that uses highly enriched (in {sup 235}U) uranium (HEU) as the fuel. The reactor core consists of a series of concentric annular regions, each about 2 ft (0.61 m) high. A 5-in. (12.70-cm)-diam hole, referred to as the flux trap, forms the center of the core. The fuel region is composed of two concentric fuel elements made up of many involute-shaped fuel plates: an inner element that contains 171 fuel plates, and an outer element that contains 369 fuel plates. The fuel plates are curved in the shape of an involute, which provides constant coolant channel width between plates. The fuel (U{sub 3}O{sub 8}-Al cermet) is nonuniformly distributed along the arc of the involute to minimize the radial peak-to-average power density ratio. A burnable poison (B{sub 4}C) is included in the inner fuel element primarily to reduce the negative reactivity requirements of the reactor control plates. A typical HEU core loading in HFIR is 9.4 kg of {sup 235}U and 2.8 g of {sup 10}B. The thermal neutron flux in the flux trap region can exceed 2.5 x 10{sup 15} n/cm{sup 2} {center_dot} s while the fast flux in this region exceeds 1 x 10{sup 15} n/cm{sup 2} {center_dot} s. The inner and outer fuel elements are in turn surrounded by a concentric ring of beryllium reflector approximately 1 ft (0.30 m) thick. The beryllium reflector consists of three regions

  16. Estimation of Covariances on Prompt Fission Neutron Spectra and Impact of the PFNS Model on the Vessel Fluence

    NASA Astrophysics Data System (ADS)

    Berge, Léonie; Litaize, Olivier; Serot, Olivier; Archier, Pascal; De Saint Jean, Cyrille; Pénéliau, Yannick; Regnier, David

    2016-02-01

    As the need for precise handling of nuclear data covariances grows ever stronger, no information about covariances of prompt fission neutron spectra (PFNS) are available in the evaluated library JEFF-3.2, although present in ENDF/B-VII.1 and JENDL-4.0 libraries for the main fissile isotopes. The aim of this work is to provide an estimation of covariance matrices related to PFNS, in the frame of some commonly used models for the evaluated files, such as the Maxwellian spectrum, the Watt spectrum, or the Madland-Nix spectrum. The evaluation of PFNS through these models involves an adjustment of model parameters to available experimental data, and the calculation of the spectrum variance-covariance matrix arising from experimental uncertainties. We present the results for thermal neutron induced fission of 235U. The systematic experimental uncertainties are propagated via the marginalization technique available in the CONRAD code. They are of great influence on the final covariance matrix, and therefore, on the spectrum uncertainty band width. In addition to this covariance estimation work, we have also investigated the importance on a reactor calculation of the fission spectrum model choice. A study of the vessel fluence depending on the PFNS model is presented. This is done through the propagation of neutrons emitted from a fission source in a simplified PWR using the TRIPOLI-4® code. This last study includes thermal fission spectra from the FIFRELIN Monte-Carlo code dedicated to the simulation of prompt particles emission during fission.

  17. Characteristics and mechanism of cell apoptosis induced by high fluence low-power laser irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Shengnan; Xing, Da

    2008-02-01

    High fluence low-power laser irradiation (LPLI) can induce cell apoptosis which is mediated by a high level of mitochondrial reactive oxygen species (ROS) production; however the mechanism is still unclear. Here, we further studied the mitochondrial signaling pathways involved in the apoptotic process. Activation of caspase-9 indicated an apoptotic process occurred under the high fluence LPLI treatment. Increasing of dichlorodihydrofluorescein diacetate (H IIDCFDA) fluorescence products showed a high level of mitochondrial ROS generation after irradiation. Cyclosporine A (CsA) has been reported to inhibit some kinds of apoptosis, which are especially mediated by ROS. The question is whether CsA has some effect on high fluence LPLI induced apoptosis. Results showed that CsA significantly delayed mitochondria depolarization, observably delayed cell death in response to high fluence LPLI treatment demonstrating a significant protective role of CsA on the apoptotic process. These results suggest that high fluence LPLI induced cell apoptosis via some CsA-sensitive mitochondrial signal pathways.

  18. Solid-state track recorder dosimetry device to measure absolute reaction rates and neutron fluence as a function of time

    DOEpatents

    Gold, Raymond; Roberts, James H.

    1989-01-01

    A solid state track recording type dosimeter is disclosed to measure the time dependence of the absolute fission rates of nuclides or neutron fluence over a period of time. In a primary species an inner recording drum is rotatably contained within an exterior housing drum that defines a series of collimating slit apertures overlying windows defined in the stationary drum through which radiation can enter. Film type solid state track recorders are positioned circumferentially about the surface of the internal recording drum to record such radiation or its secondary products during relative rotation of the two elements. In another species both the recording element and the aperture element assume the configuration of adjacent disks. Based on slit size of apertures and relative rotational velocity of the inner drum, radiation parameters within a test area may be measured as a function of time and spectra deduced therefrom.

  19. The effect of low-fluence neutron irradiation on silver-electroded lead-zirconate-titanate piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Broomfield, G. H.

    1980-06-01

    The properties of several different versions of near equi-molar proportioned lead-zirconate-titanate ceramic piezoelectric plates were measured after irradiation for up to 48 h in an MTR hollow fuel element. The irradiation temperature was 180 ± 50°C and the maximum fluences 3.5 × 10 19 thermal and 1.4 × 10 19 fission neutrons/cm 2. The irradiation decreased the capacitance, increased the thickness-mode resonant frequencies and decreased the elevated temperature electromechanical coupling in all of the samples tested. The effects are considered to be due to a change in the electrode bonding and a reduction in the polarisation of the ceramic.

  20. The development of a high sensitivity neutron displacement damage sensor

    SciTech Connect

    Tonigan, Andrew M.; Parma, Edward J.; Martin, William J.

    2016-11-23

    Here, the capability to characterize the neutron energy spectrum and fluence received by a test object is crucial to under-standing the damage effects observed in electronic components. For nuclear research reactors and high energy density physics fa-cilities this can pose exceptional challenges, especially with low level neutron fluences. An ASTM test method for characterizing neutron environments utilizes the 2N2222A transistor as a 1-MeV equivalent neutron fluence sensor and is applicable for environ-ments with 1 x 1012 - 1 x 1014 1-MeV(Si)-Eqv.-n/cm2. In this work we seek to extend the range of this test method to lower fluence environments utilizing the 2N1486 transistor. Here, the 2N1486 is shown to be an effective neutron displacement damage sensor as low as 1 x 1010 1-MeV(Si)-Eqv.-n/cm2.

  1. Neutron Spectra, Fluence and Dose Rates from Bare and Moderated Cf-252 Sources

    SciTech Connect

    Radev, Radoslav P.

    2016-04-01

    A new, stronger 252Cf source (serial number SR-CF-3050-OR) was obtained from Oak Ridge National Laboratory (ORNL) in 2014 to supplement the existing 252Cf sources which had significantly decayed. A new instrument positioning track system was designed and installed by Hopewell Designs, Inc. in 2011. The neutron field from the new, stronger 252Cf source in the modified calibration environment needed to be characterized as well as the modified neutron fields produced by the new source and seven different neutron moderators. Comprehensive information about our 252Cf source, its origin, production, and isotopic content and decay characteristics needed to be compiled as well. This technical report is intended to address these issues.

  2. Validation of 3D Code KATRIN For Fast Neutron Fluence Calculation of VVER-1000 Reactor Pressure Vessel by Ex-Vessel Measurements and Surveillance Specimens Results

    NASA Astrophysics Data System (ADS)

    Dzhalandinov, A.; Tsofin, V.; Kochkin, V.; Panferov, P.; Timofeev, A.; Reshetnikov, A.; Makhotin, D.; Erak, D.; Voloschenko, A.

    2016-02-01

    Usually the synthesis of two-dimensional and one-dimensional discrete ordinate calculations is used to evaluate neutron fluence on VVER-1000 reactor pressure vessel (RPV) for prognosis of radiation embrittlement. But there are some cases when this approach is not applicable. For example the latest projects of VVER-1000 have upgraded surveillance program. Containers with surveillance specimens are located on the inner surface of RPV with fast neutron flux maximum. Therefore, the synthesis approach is not suitable enough for calculation of local disturbance of neutron field in RPV inner surface behind the surveillance specimens because of their complicated and heterogeneous structure. In some cases the VVER-1000 core loading consists of fuel assemblies with different fuel height and the applicability of synthesis approach is also ambiguous for these fuel cycles. Also, the synthesis approach is not enough correct for the neutron fluence estimation at the RPV area above core top. Because of these reasons only the 3D neutron transport codes seem to be satisfactory for calculation of neutron fluence on the VVER-1000 RPV. The direct 3D calculations are also recommended by modern regulations.

  3. Energy and fluence calibration of the neutron spectrometer ROSPEC at the IRSN AMANDE facility between 70 keV and 4.5 MeV.

    PubMed

    Benmosbah, M; Asselineau, B

    2009-07-01

    The ROSPEC device is a multi-detector system, which has been designed by Bubble Technologies Industries (BTI at Chalk River, ON, Canada) to assess neutron spectra, and hence neutron dose quantities, at workplace fields. It is made up of six gaseous proportional counters that detect neutrons via the elastic (n,p) scattering (four hydrogenous counters) and with the (3)He(n,p)T reaction (two (3)He-filled counters). Results of the calibration of a similar rotating spectrometer (ROSPEC) have been described by Rosenstock et al.((1)). For energy and fluence calibration purposes, measurements were performed with the accelerator for metrology and neutron applications in external dosimetry (AMANDE) facility at the Laboratory of Neutron Metrology and Dosimetry (Institute of Radiation Protection and Nuclear Safety, IRSN, France). This facility provides monoenergetic neutron radiation fields from 2 keV to 20 MeV. Two kinds of experiments were carried out. First, the ROSPEC was used in its rotational mode for the ISO energies. Then, each detector was irradiated with all the available neutron energies, in a well defined position with the rotation of the device stopped. The energy values of the neutron beam were calculated using the TARGET code. A BC501-A liquid scintillation spectrometer provided the fluence values for energies beyond 1.2 MeV, a methane-filled SP2 counter from 800 keV to 1.4 MeV and an H(2)-filled SP2 counter from 144 to 800 keV. Reference data for 70 keV monoenergetic neutrons were obtained using the IRSN Long Counter. Results showed that the ROSPEC device was in agreement with the absolute neutron fluences within 10%. Moreover, the new energy calibration factors are in good agreement with those derived by BTI.

  4. Fluence to Hp(3) conversion coefficients for neutrons from thermal to 15 MeV.

    PubMed

    Gualdrini, G; Ferrari, P; Tanner, R

    2013-12-01

    The recent statement on tissue reactions issued by the International Commission on Radiological Protection in April 2011 recommends a very significant reduction in the equivalent dose annual limit for the eye lens from 150 to 20 mSv y(-1); this has stimulated a lot of interest in eye lens dosimetry in the radiation protection community. Until now no conversion coefficients were available for the operational quantity Hp(3) for neutrons. The scope of the present work was to extend previous evaluations of H*(10) and Hp(10) performed at the PTB in 1995 to provide also Hp(3) data for neutrons. The present work is also intended to complete the studies carried out on photons during the last 4 y within the European Union-funded ORAMED (optimisation of radiation protection for medical staff) project.

  5. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    SciTech Connect

    Koyanagi, Takaaki; Shimoda, Kazuya; Kondo, Sosuke; Hinoki, Tatsuya; Ozawa, Kazumi; Katoh, Yutai

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. Microstructural observation and data analysis were performed.

  6. Improvements and Extensions of the Neutron Cross Section and Fluence Standards

    NASA Astrophysics Data System (ADS)

    Carlson, A. D.; Pronyaev, V. G.; Capote, R.; Hambsch, F.-J.; Käppeler, F.; Lederer, C.; Mannhart, W.; Mengoni, A.; Nelson, R. O.; Plompen, A. J. M.; Schillebeeckx, P.; Simakov, S.; Talou, P.; Tagesen, S.; Vonach, H.; Vorobyev, A.; Wallner, A.

    2014-04-01

    Improvements have been made to the nuclear data standards largely as a result of an IAEA Data Development Project. The work includes the traditional activities related to standards, extending the energy ranges of some standards, and reference data that are not as well known as the standards but can be very useful in the measurements of certain types of cross sections. Also included is an effort to improve evaluations of 235U thermal and 252Cf spontaneous fission neutron spectra.

  7. Deep levels induced by high fluence proton irradiation in undoped GaAs diodes

    SciTech Connect

    Castaldini, A.; Cavallini, A.; Polenta, L.; Canali, C.; Nava, F.; Ferrini, R.; Galli, M.

    1998-12-31

    Semi-insulating liquid encapsulated Czochralski grown GaAs has been investigated after irradiation at high fluences of high-energy protons. Electron beam induced current observations of scanning electron microscopy evidenced a radiation stimulated ordering. An analysis has been carried out of the deep levels associated with defects as a function of the irradiation fluence, using complementary current transient spectroscopies. By increasing the irradiation fluence, the concentration of the native traps at 0.37 eV together with that of the EL2 defect significantly increases and, at the same time, two new electron traps at 0.15 eV and 0.18 eV arise and quickly increase in density.

  8. Epithermal Neutron Source for Neutron Resonance Spectroscopy (NRS) using High Intensity, Short Pulse Lasers

    SciTech Connect

    Higginson, D P; McNaney, J M; Swift, D C; Bartal, T; Hey, D S; Pape, S L; Mackinnon, A; Mariscal, D; Nakamura, H; Nakanii, N; Beg, F N

    2010-04-22

    A neutron source for neutron resonance spectroscopy (NRS) has been developed using high intensity, short pulse lasers. This measurement technique will allow for robust measurements of interior ion temperature of laser-shocked materials and provide insight into equation of state (EOS) measurements. The neutron generation technique uses protons accelerated by lasers off of Cu foils to create neutrons in LiF, through (p,n) reactions with {sup 7}Li and {sup 19}F. The distribution of the incident proton beam has been diagnosed using radiochromic film (RCF). This distribution is used as the input for a (p,n) neturon prediction code which is compared to experimentally measured neutron yields. From this calculation, a total fluence of 1.8 x 10{sup 9} neutrons is infered, which is shown to be a reasonable amount for NRS temperature measurement.

  9. Neutron Fluence and Energy Reconstruction with the LNE-IRSN/MIMAC Recoil Detector MicroTPC at 27 keV

    SciTech Connect

    Maire, D.; Lebreton, L.; Querre, Ph.; Bosson, G.; Guillaudin, O.; Muraz, J.F.; Riffard, Q.; Santos, D.

    2015-07-01

    The French Institute for Radiation protection and Nuclear Safety (IRSN), designated by the French Metrology Institute (LNE) for neutron metrology, is developing a time projection chamber using a Micromegas anode: microTPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize the energy distribution of neutron fluence in the energy range 8 keV - 5 MeV with a primary procedure. The time projection chambers are gaseous detectors able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gas is used as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulation of the detector response. The μTPC is a new reliable detector able to measure energy distribution of the neutron fluence without unfolding procedure or prior neutron calibration contrary to usual gaseous counters. The microTPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27 keV and 144 keV are shown and compared to the complete detector response simulation. This work

  10. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures.

    PubMed

    Barboza, L L; Campos, V M A; Magalhães, L A G; Paoli, F; Fonseca, A S

    2015-10-01

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm2) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols.

  11. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures

    PubMed Central

    Barboza, L.L.; Campos, V.M.A.; Magalhães, L.A.G.; Paoli, F.; Fonseca, A.S.

    2015-01-01

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm2) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols. PMID:26445339

  12. Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation

    SciTech Connect

    Hu Haofeng; Wang Xiaolei; Zhai Hongchen; Zhang Nan; Wang Pan

    2010-08-09

    Shadowgraphs of dynamic processes outside and inside transparent target during the intense femtosecond laser ablation of silica glass are recorded. Two material ejections outside the target and two corresponding stress waves inside the target are observed at different energy fluences. In particular, a third stress wave can be observed at energy fluence as high as 40 J/cm{sup 2}. The first wave is a thermoelastic wave, while the second and the third may be generated subsequently by the mechanical expansions. In addition, the magnitudes of the three stress waves decrease sequentially based on our analysis.

  13. Neutron fluence and energy reconstruction with the IRSN recoil detector μ-TPC at 27 keV, 144 keV and 565 keV

    SciTech Connect

    Maire, D.; Lebreton, L.; Richer, J.P.; Bosson, G.; Bourrion, O.; Guillaudin, O.; Riffard, Q.; Santos, D.

    2015-07-01

    The French Institute for Radioprotection and Nuclear Safety (IRSN), associated to the French Metrology Institute (LNE), is developing a time projection chamber using a Micromegas anode: μ-TPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize with a primary procedure the energy distribution of neutron fluence in the energy range 8 keV - 1 MeV. The time projection chambers are gaseous detectors, which are able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gas is used as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulated detector response. The μ-TPC is a new reliable detector which enables to measure energy distribution of the neutron fluence without deconvolution or neutron calibration contrary to usual gaseous counters. The μ-TPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27.2 keV, 144 keV and 565 keV are shown and compared to the complete detector simulation. This work shows the first direct

  14. Nova laser system at ultra high fluence levels

    SciTech Connect

    Hunt, J.T.

    1985-01-01

    The Nova experimental facility consists of a ten arm laser system and five experimental stations and was completed in December 1984. Two of these stations are used for inertial confinement fusion (ICF) experiments and the other three are dedicated to doing large aperture (30 to 74 cm) laser experiments. The laser system is deployed in a master oscillator-power amplifier architecture and uses Nd: phosphate glass for the active medium. The fundamental wavelength of the system is 1.05 microns. Frequency converters constructed from potassium dihydrogen phosphate (KDP) crystals are located at the end of each of the ten arms and are used to produce high power frequency doubled (0.53 microns) and tripled (0.35 microns) beams for either ICF or laser experiments. Thus, the Nova laser system can produce high power beams with wavelengths ranging from the infrared to the ultraviolet.

  15. Neutron production from flattening filter free high energy medical linac: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Najem, M. A.; Abolaban, F. A.; Podolyák, Z.; Spyrou, N. M.

    2015-11-01

    One of the problems arising from using a conventional linac at high energy (>8 MV) is the production of neutrons. One way to reduce neutron production is to remove the flattening filter (FF). The main purpose of this work was to study the effect of FF removal on neutron fluence and neutron dose equivalent inside the treatment room at different photon beam energies. Several simulations based on Monte Carlo techniques were carried out in order to calculate the neutron fluence at different locations in the treatment room from different linac energies with and without a FF. In addition, a step-and-shoot intensity modulated radiotherapy (SnS IMRT) for prostate cancer was modelled using the 15 MV photon beam with and without a FF on a water phantom to calculate the neutron dose received in a full treatment. The results obtained show a significant drop-off in neutrons fluence and dose equivalent when the FF was removed. For example, the neutron fluence was decreased by 54%, 76% and 75% for 10, 15 and 18 MV, respectively. This can decrease the neutron dose to the patient as well as reduce the shielding cost of the treatment room. The neutron dose equivalent of the SnS IMRT for prostate cancer was reduced significantly by 71.3% when the FF was removed. It can be concluded that the flattening filter removal from the head of the linac could reduce the risk of causing secondary cancers and the shielding cost of radiotherapy treatment rooms.

  16. Irradiation Programs and Test Plans to Assess High-Fluence Irradiation Assisted Stress Corrosion Cracking Susceptibility.

    SciTech Connect

    Teysseyre, Sebastien

    2015-03-01

    . Irradiation assisted stress corrosion cracking (IASCC) is a known issue in current reactors. In a 60 year lifetime, reactor core internals may experience fluence levels up to 15 dpa for boiling water reactors (BWR) and 100+ dpa for pressurized water reactors (PWR). To support a safe operation of our fleet of reactors and maintain their economic viability it is important to be able to predict any evolution of material behaviors as reactors age and therefore fluence accumulated by reactor core component increases. For PWR reactors, the difficulty to predict high fluence behavior comes from the fact that there is not a consensus of the mechanism of IASCC and that little data is available. It is however possible to use the current state of knowledge on the evolution of irradiated microstructure and on the processes that influences IASCC to emit hypotheses. This report identifies several potential changes in microstructure and proposes to identify their potential impact of IASCC. The susceptibility of a component to high fluence IASCC is considered to not only depends on the intrinsic IASCC susceptibility of the component due to radiation effects on the material but to also be related to the evolution of the loading history of the material and interaction with the environment as total fluence increases. Single variation type experiments are proposed to be performed with materials that are representative of PWR condition and with materials irradiated in other conditions. To address the lack of IASCC propagation and initiation data generated with material irradiated in PWR condition, it is proposed to investigate the effect of spectrum and flux rate on the evolution of microstructure. A long term irradiation, aimed to generate a well-controlled irradiation history on a set on selected materials is also proposed for consideration. For BWR, the study of available data permitted to identify an area of concern for long term performance of component. The efficiency of

  17. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    PubMed Central

    Sengbusch, E.; Pérez-Andújar, A.; DeLuca, P. M.; Mackie, T. R.

    2009-01-01

    energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility. PMID:19291975

  18. Effects of Neutron Fluence on the Operating Characteristics of Diode Lasers Used in Atomic Frequency Standards

    DTIC Science & Technology

    1990-08-15

    Threshold Laser (E) Before (X) and After (0) N eutron Exposure ........................................................ 8 3. Wavelength Versus...Injection Current for a Low Threshold Laser (D) and a High Threshold Laser (E) Before (X) and After (0) N eutron Exposure...9 4. Energy of Gain Curve for a Low Threshold Laser (C) and a High Threshold Laser (E) Before (X) and After (0) N eutron

  19. Thermal neutron fluence from ultra low-level gamma-ray spectrometry of spoons activated during the JCO criticality accident at Tokai-mura in 1999.

    PubMed

    Hult, Mikael; Martínez Canet, María Jose; Johnston, Peter N; Komura, Kazuhisa

    2002-01-01

    During the JCO-accident in Tokai-mura in 1999, the surrounding village was irradiated by an uncontrolled neutron flux. At some locations in that village, the thermal neutron flux was determined retrospectively by measurement of the very low activity of 51Cr and 60Co in stainless-steel spoons using gamma-ray spectrometry in underground laboratories. Activities determined in the HADES underground facility are presented here, together with calibrations performed using a well-defined thermal neutron flux to directly estimate the fluence of thermal neutrons independent of most assumptions. The results show measurable 51Cr in three samples and 60Co in four samples taken from locations at distances of up to 430m from the accident location despite the elapse of 4 half-lives of 51Cr before measurement. Effects of air transport of the samples were considered and shown to be negligible.

  20. Depth profiling and stoichiometric changes due to high-fluence ion bombardments

    NASA Astrophysics Data System (ADS)

    Nakagawa, S. T.; Yamamura, Y.

    1988-06-01

    In order to investigate the depth profiles and stoichiometric changes of two component targets due to high-fluence bombardments, the ACAT-DIFFUSE code has been developed. This ACAT-DIFFUSE code is composed of the ACAT code (slowing down process) and a part of the DIFFUSE code (diffusion process of thermalized particles). This ACAT-DIFFUSE code is applied to calculations of depth profiles and stoichiometric changes due to low energy Ar ion bombardments on two component target. It is found that the replacement reaction and ion-induced diffusion play a role in the stoichiometric change due to high-fluence ion bombardment, and reasonable agreement with experimental results is obtained.

  1. Fractal hydrodynamic model of high-fluence laser ablation plasma expansion

    SciTech Connect

    Agop, M.; Nica, P.; Gurlui, S.; Focsa, C.

    2010-10-08

    Optical/electrical characterization of transient plasmas generated by high-fluence (up to 1 kJ/cm{sup 2}) laser ablation of various targets revealed as a general feature the splitting of the plume in two structures. In order to account for this behavior, a new fractal hydrodynamic model has been developed in a non-differentiable space-time. The model successfully retrieves the kinetics of the two structures.

  2. Damage accumulation and annealing behavior in high fluence implanted MgZnO

    NASA Astrophysics Data System (ADS)

    Azarov, A. Yu.; Hallén, A.; Svensson, B. G.; Du, X. L.; Kuznetsov, A. Yu.

    2012-02-01

    Molecular beam epitaxy grown Mg xZn 1-xO ( x ⩽ 0.3) layers were implanted at room temperature with 150 keV 166Er + ions in a fluence range of 5 × 10 15-3 × 10 16 cm -2. Evolution of ion-induced damage and structural changes were studied by a combination of Rutherford backscattering spectrometry, nuclear reaction analysis and time-of-flight elastic recoil detection analysis. Results show that damage production enhances in both Zn- and O-sublattices with increasing the Mg content in the MgZnO. However, MgZnO as well as pure ZnO exhibits a high degree of dynamic annealing and MgZnO can not be amorphized even at the highest ion fluence used. Annealing of heavily damaged ZnO leads to a strong surface erosion and thinning of the film. Increasing the Mg content suppresses the surface evaporation in high fluence implanted MgZnO but leads to a strong surface decomposition accompanied with a Mg-rich surface layer formation during post-implantation annealing.

  3. Neutron testing of high-power optical fibers

    NASA Astrophysics Data System (ADS)

    Cheeseman, M.; Bowden, M.; Akinci, A.; Knowles, S.; Webb, L.

    2012-11-01

    A selection of commercially available high-power optical fibres have been characterised for radiation susceptibility in Sandia's Annular Core Research Reactor (ACRR). The fibres were subjected to a total gamma and neutron dose >2 Mrad(Si) in a 7 ms pulse. The neutron fluence was >1015 n/cm2. Changes in the transmission characteristics of optical fibres carrying high energy, short duration laser pulses (power densities of around 1.5 GW/cm2) were measured. All fibres survived at least two consecutive radiation exposures, showing typical transient transmission losses of around 20%. Post radiation exposure, the transmission characteristics returned to those of pristine fibres within one minute.

  4. Fluence correction factor for graphite calorimetry in a clinical high-energy carbon-ion beam

    NASA Astrophysics Data System (ADS)

    Lourenço, A.; Thomas, R.; Homer, M.; Bouchard, H.; Rossomme, S.; Renaud, J.; Kanai, T.; Royle, G.; Palmans, H.

    2017-04-01

    The aim of this work is to develop and adapt a formalism to determine absorbed dose to water from graphite calorimetry measurements in carbon-ion beams. Fluence correction factors, {{k}\\text{fl}} , needed when using a graphite calorimeter to derive dose to water, were determined in a clinical high-energy carbon-ion beam. Measurements were performed in a 290 MeV/n carbon-ion beam with a field size of 11  ×  11 cm2, without modulation. In order to sample the beam, a plane-parallel Roos ionization chamber was chosen for its small collecting volume in comparison with the field size. Experimental information on fluence corrections was obtained from depth-dose measurements in water. This procedure was repeated with graphite plates in front of the water phantom. Fluence corrections were also obtained with Monte Carlo simulations through the implementation of three methods based on (i) the fluence distributions differential in energy, (ii) a ratio of calculated doses in water and graphite at equivalent depths and (iii) simulations of the experimental setup. The {{k}\\text{fl}} term increased in depth from 1.00 at the entrance toward 1.02 at a depth near the Bragg peak, and the average difference between experimental and numerical simulations was about 0.13%. Compared to proton beams, there was no reduction of the {{k}\\text{fl}} due to alpha particles because the secondary particle spectrum is dominated by projectile fragmentation. By developing a practical dose conversion technique, this work contributes to improving the determination of absolute dose to water from graphite calorimetry in carbon-ion beams.

  5. Temperature and high fluence induced ripple rotation on Si(100) surface

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debasree; Satpati, Biswarup; Ghose, Debabrata

    2016-12-01

    The topography evolution of Si(100) surface due to oblique incidence low energy ion beam sputtering (IBS) is investigated. Experiments were carried out at different elevated temperatures from 20 °C-450 °C and at each temperature, the ion fluence is systematically varied in a wide range from 1 × 1018 cm-2 to 1 × 1020 cm-2. The ion sputtered surface morphologies are characterized by atomic force microscopy and high-resolution cross-sectional transmission electron microscopy. At room temperature, the ion sputtered surfaces show periodic ripple nanopatterns where their wave-vector remains parallel to ion beam projection for the entire fluence range. With an increase of substrate temperature, these patterns tend to demolish and reduce into randomly ordered mound-like structures around 350 °C. A further rise in temperature above 400 °C leads orthogonally rotated ripples beyond fluence 5 × 1019 cm-2. All the results are discussed combining the theoretical framework of linear, non-linear and recently developed mass redistribution continuum models of pattern formation by IBS. These results have technological importance regarding the control over ion-induced pattern formation, as well providing useful information for further progress in the theoretical field.

  6. Cation disorder in high-dose, neutron-irradiated spinel

    SciTech Connect

    Sickafus, K.E.; Larson, A.C.; Yu, N.

    1995-04-01

    The objective of this effort is to determine whether MgAl{sub 2}O{sub 4} spinel is a suitable ceramic for fusion applications. The crystal structures of MgAl{sub 2}O{sub 4} spinel single crystals irradiated to high neutron fluences [>5{times}10{sup 26} n/m{sup 2} (E{sub n}>0.1 MeV)] were examined by neutron diffraction. Crystal structure refinement of the highese dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by {approx}20% while increasing by {approx}8% on octahedral sites.

  7. X-ray two-photon absorption with high fluence XFEL pulses

    DOE PAGES

    Hoszowska, Joanna; Szlachetko, J.; Dousse, J. -Cl.; ...

    2015-09-07

    Here, we report on nonlinear interaction of solid Fe with intense femtosecond hard x-ray free-electron laser (XFEL) pulses. The experiment was performed at the CXI end-station of the Linac Coherent Light Source (LCLS) by means of high- resolution x-ray emission spectroscopy. The focused x-ray beam provided extreme fluence of ~105 photons/Å2. Two-photon absorption leading to K-shell hollow atom formation and to single K-shell ionization of solid Fe was investigated.

  8. X-ray two-photon absorption with high fluence XFEL pulses

    SciTech Connect

    Hoszowska, Joanna; Szlachetko, J.; Dousse, J. -Cl.; Błachucki, W.; Kayser, Y.; Milne, Ch.; Pajek, M.; Boutet, S.; Messerschmidt, M.; Williams, G.; Chantler, C. T.

    2015-09-07

    Here, we report on nonlinear interaction of solid Fe with intense femtosecond hard x-ray free-electron laser (XFEL) pulses. The experiment was performed at the CXI end-station of the Linac Coherent Light Source (LCLS) by means of high- resolution x-ray emission spectroscopy. The focused x-ray beam provided extreme fluence of ~105 photons/Å2. Two-photon absorption leading to K-shell hollow atom formation and to single K-shell ionization of solid Fe was investigated.

  9. Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Powers, K. A.; Nanstad, R. K.; Efsing, P.

    2013-06-01

    The Ringhals Units 3 and 4 reactors in Sweden are pressurized water reactors (PWRs) designed and supplied by Westinghouse Electric Company, with commercial operation in 1981 and 1983, respectively. The reactor pressure vessels (RPVs) for both reactors were fabricated with ring forgings of SA 508 class 2 steel. Surveillance blocks for both units were fabricated using the same weld wire heat, welding procedures, and base metals used for the RPVs. The primary interest in these weld metals is because they have very high nickel contents, with 1.58 and 1.66 wt.% for Unit 3 and Unit 4, respectively. The nickel content in Unit 4 is the highest reported nickel content for any Westinghouse PWR. Although both welds contain less than 0.10 wt.% copper, the weld metals have exhibited high irradiation-induced Charpy 41-J transition temperature shifts in surveillance testing. The Charpy impact 41-J shifts and corresponding fluences are 192 °C at 5.0 × 1023 n/m2 (>1 MeV) for Unit 3 and 162 °C at 6.0 × 1023 n/m2 (>1 MeV) for Unit 4. These relatively low-copper, high-nickel, radiation-sensitive welds relate to the issue of so-called late-blooming nickel-manganese-silicon phases. Atom probe tomography measurements have revealed ˜2 nm-diameter irradiation-induced precipitates containing manganese, nickel, and silicon, with phosphorus evident in some of the precipitates. However, only a relatively few number of copper atoms are contained within the precipitates. The larger increase in the transition temperature shift in the higher copper weld metal from the Ringhals R3 Unit is associated with copper-enriched regions within the manganese-nickel-silicon-enriched precipitates rather than changes in their size or number density.

  10. High power neutron production targets

    SciTech Connect

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  11. Propensity and risk assessment for solar particle events: Consideration of integral fluence at high proton energies

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee; Hayat, Matthew; Feiveson, Alan; Cucinotta, Francis A.

    For future space missions with longer duration, exposure to large solar particle events (SPEs) with high energy levels is the major concern during extra-vehicular activities (EVAs) on the lunar and Mars surface. The propensity for SPE occurrence with large proton fluence was estimated as a function of time within a solar cycle from a non-homogeneous Poisson model using the historical database for measurements of protons with energy >30 MeV, Φ30 . The database includes a continuous data set for the past 5 solar cycles. The resultant SPE risk analysis for a specific mission period was made for blood forming organ (BFO) dose ranging from its 5th to 95th percentile. In addition to the total particle intensity of SPEs, the detailed energy spectra of protons, especially at high energy levels, were recognized as extremely important for assessing the cancer risk associated with energetic particles for large events. Using all the recorded proton fluence of SPEs for energies >60 and >100 MeV, Φ60 and Φ100 , respectively, the expected numbers of SPEs abundant with high energy protons were estimated from the same non-homogeneous Poisson model and the representative cancer risk was analyzed. The dependencies of risk with different energy spectra, for e.g. between soft and hard SPEs, were evaluated. Finally, we describe approaches to improve radiation protection of astronauts and optimize mission planning for future space missions.

  12. Propensity and Risk Assessment for Solar Particle Events: Consideration of Integral Fluence at High Proton Energies

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Hayat, Matthew J.; Feiveson, alan H.; Cucinotta, Francis A.

    2008-01-01

    For future space missions with longer duration, exposure to large solar particle events (SPEs) with high energy levels is the major concern during extra-vehicular activities (EVAs) on the lunar and Mars surface. The expected SPE propensity for large proton fluence was estimated from a non-homogeneous Poisson model using the historical database for measurements of protons with energy > 30 MeV, Phi(sub 30). The database includes a continuous data set for the past 5 solar cycles. The resultant SPE risk analysis for a specific mission period was made including the 95% confidence level. In addition to total particle intensity of SPE, the detailed energy spectra of protons especially at high energy levels were recognized as extremely important parameter for the risk assessment, since there remains a significant cancer risks from those energetic particles for large events. Using all the recorded proton fluence of SPEs for energies >60 and >100 MeV, Phi(sub 60) and Phi(sub 100), respectively, the expected propensities of SPEs abundant with high energy protons were estimated from the same non-homogeneous Poisson model and the representative cancer risk was analyzed. The dependencies of risk with different energy spectra, for e.g. between soft and hard SPEs, were evaluated. Finally, we describe approaches to improve radiation protection of astronauts and optimize mission planning for future space missions.

  13. A Programmable Beam Shaping System for Tailoring the Profile of High Fluence Laser Beams

    SciTech Connect

    Heebner, J; Borden, M; Miller, P; Stolz, C; Suratwala, T; Wegner, P; Hermann, M; Henesian, M; Haynam, C; Hunter, S; Christensen, K; Wong, N; Seppala, L; Brunton, G; Tse, E; Awwal, A; Franks, M; Marley, E; Williams, K; Scanlan, M; Budge, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J

    2010-11-10

    Customized spatial light modulators have been designed and fabricated for use as precision beam shaping devices in fusion class laser systems. By inserting this device in a low-fluence relay plane upstream of the amplifier chain, 'blocker' obscurations can be programmed into the beam profile to shadow small isolated flaws on downstream optical components that might otherwise limit the system operating energy. In this two stage system, 1920 x 1080 bitmap images are first imprinted on incoherent, 470 nm address beams via pixilated liquid crystal on silicon (LCoS) modulators. To realize defined masking functions with smooth apodized shapes and no pixelization artifacts, address beam images are projected onto custom fabricated optically-addressable light valves. Each valve consists of a large, single pixel liquid cell in series with a photoconductive Bismuth silicon Oxide (BSO) crystal. The BSO crystal enables bright and dark regions of the address image to locally control the voltage supplied to the liquid crystal layer which in turn modulates the amplitude of the coherent beams at 1053 nm. Valves as large as 24 mm x 36 mm have been fabricated with low wavefront distortion (<0.5 waves) and antireflection coatings for high transmission (>90%) and etalon suppression to avoid spectral and temporal ripple. This device in combination with a flaw inspection system and optic registration strategy represents a new approach for extending the operational lifetime of high fluence laser optics.

  14. High intensity, pulsed thermal neutron source

    DOEpatents

    Carpenter, J.M.

    1973-12-11

    This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)

  15. Measurement of thermal neutron fluence distribution with use of 23Na radioactivation around a medical compact cyclotron.

    PubMed

    Fujibuchi, Toshioh; Yamaguchi, Ichiro; Kasahara, Tetsuharu; Iimori, Takashi; Masuda, Yoshitada; Kimura, Ken-ichi; Watanabe, Hiroshi; Isobe, Tomonori; Sakae, Takeji

    2009-07-01

    A medical compact cyclotron produces about 10(15) neutrons per day along with 100 GBq of (18)F. Therefore, it is important to establish radiation safety guidelines on residual radioactivity for routine operation, maintenance work, and decommissioning. Thus, we developed a simple method for measuring the thermal neutrons in a cyclotron room. In order to verify the feasibility of our proposed method, we measured the thermal neutron distribution around a cyclotron by using the activation of (23)Na in salt. We installed 78 salt dosimeters in the cyclotron room with a 50 cm mesh. The photopeak of (24)Na was measured, and the neutron flux distribution was estimated. Monitoring the neutron flux distribution in a cyclotron room appears to be useful for not only obtaining an accurate estimate of the distribution of induced radioactivity, but also optimizing the shield design for radiation safety in preparation for the decommissioning process.

  16. High-pressure neutron diffraction

    SciTech Connect

    Xu, Hongwu

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  17. Deuterium trapping and surface modification of polycrystalline tungsten exposed to a high-flux plasma at high fluences

    NASA Astrophysics Data System (ADS)

    Zibrov, M.; Balden, M.; Morgan, T. W.; Mayer, M.

    2017-04-01

    Deuterium (D) retention and surface modifications of hot-rolled polycrystalline tungsten (W) exposed to a low-energy (~40 eV D‑1), high-flux (2–5  ×  1023 D m‑2 s‑1) D plasma at temperatures of ~380 K and ~1140 K to fluences up to 1.2  ×  1028 D m‑2 have been examined by using nuclear reaction analysis, thermal desorption spectroscopy, and scanning electron microscopy. The samples exposed at ~380 K exhibited various types of surface modifications: dome-shaped blister-like structures, stepped flat-topped protrusions, and various types of nanostructures. It was observed that a large fraction of the surface was covered with blisters and protrusions, but their average size and the number density showed almost no fluence dependence. The D depth distributions and total D inventories also barely changed with increasing fluence at ~380 K. A substantial amount of D was retained in the subsurface region, and thickness correlated with the depth where the cavities of blisters and protrusions were located. It is therefore suggested that defects appearing during creation of blisters and protrusions govern the D trapping in the investigated fluence range. In addition, a large number of small cracks was observed on the exposed surfaces, which can serve as fast D release channels towards the surface, resulting in a reduction of the effective D influx into the W bulk. On the samples exposed at ~1140 K no blisters and protrusions were found. However, wave-like and faceted terrace-like structures were formed instead. The concentrations of trapped D were very low (<10‑5 at. fr.) after the exposure at ~1140 K.

  18. Optical tuning a dichroic multilayer for a high fluence laser application

    SciTech Connect

    R. Chow, Loomis, G.E.; Bibeau, C.; Molau, N.E.; Kanz, V.K.; Beach, R.J.

    1995-10-11

    We report on the design and successful fabrication of a dichroic multilayer stack using a procedure that allowed shifting from high reflectance to high transmittance within 89 rim and surviving high laser fluences. A design approach based on quarter-wave thick layers allowed the multilayer stack to be optically tuned in the last layers of the stack. In our case, this necessitated removing the samples from the coating chamber for a transmittance scan prior to depositing the last layers. This procedure is not commonly practiced due to thermal stress-induced failures in an oxide multilayer. However, D.J. Smith and co-workers reported that reactive e-beam evaporated hafnia from a Hf source produced laser-resistant coatings that had less coating stress compared to coatings evaporated from a HfO{sub 2} source. Tuned dichroic coatings were made that had high transmittance at 941 rim and high reflectance at 1030 nm. The coating was exposed for 5 minutes to a 100 kW/cm{sup 2} 1064 nm (180-ns pulsewidth, 10.7 kHz) laser beam and survived without microscopic damage. The same coating survived a 140 kW/cm{sup 2} of laser intensity without catastrophic damage before optical tuning were performed.

  19. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration

    PubMed Central

    Mamalis, Andrew; Koo, Eugene; Isseroff, R. Rivkah; Murphy, William; Jagdeo, Jared

    2015-01-01

    Background Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL) is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease. Objective The goal of our study was to investigate the how reactive oxygen species (ROS) free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed. Methods High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR). For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2) on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2. Results High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158

  20. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or

  1. Magnetic properties of a highly neutron-irradiated nuclear reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Gillemot, F.; Horváth, Á.; Székely, R.

    2012-02-01

    We report results of minor B- H loop measurements on a highly neutron-irradiated A533B-type reactor pressure vessel steel. A minor-loop coefficient, which is a sensitive indicator of internal stress, changes with neutron fluence, but depends on relative orientation to the rolling direction in the low fluence regime. At a higher fluence of ˜10 × 10 23 m -2, on the other hand, an anomalous increase of the coefficient was detected irrespective of the orientation. The results were interpreted as due to competing irradiation mechanisms of the formation of Cu-rich precipitates, recovery process, and the formation of late-blooming Mn-Ni-Si-rich clusters.

  2. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    SciTech Connect

    Barrera, M. T. Barros, H.; Pino, F.; Sajo-Bohus, L.; Dávila, J.

    2015-07-23

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e’n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction {sup 10}B(n,α){sup 7}Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (∼1.6 10{sup 4} neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  3. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    NASA Astrophysics Data System (ADS)

    Barrera, M. T.; Barros, H.; Pino, F.; Dávila, J.; Sajo-Bohus, L.

    2015-07-01

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e'n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction 10B(n,α)7Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (˜1.6 104 neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  4. A High Temperature-Tolerant and Radiation-Resistant In-Core Neutron Sensor for Advanced Reactors. Final report

    SciTech Connect

    Cao, Lei; Miller, Don

    2015-01-23

    The objectives of this project are to develop a small and reliable gallium nitride (GaN) neutron sensor that is capable of withstanding high neutron fluence and high temperature, isolating gamma background, and operating in a wide dynamic range. The first objective will be the understanding of the fundamental materials properties and electronic response of a GaN semiconductor materials and device in an environment of high temperature and intense neutron field. To achieve such goal, an in-situ study of electronic properties of GaN device such as I-V, leakage current, and charge collection efficiency (CCE) in high temperature using an external neutron beam will be designed and implemented. We will also perform in-core irradiation of GaN up to the highest yet fast neutron fluence and an off-line performance evaluation.

  5. Using high-energy proton fluence to improve risk prediction for consequences of solar particle events

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Hayat, Matthew J.; Feiveson, Alan H.; Cucinotta, Francis A.

    2009-12-01

    The potential for exposure to large solar particle events (SPEs) with high energy levels is a major concern during interplanetary transfer and extra-vehicular activities (EVAs) on the lunar and Mars surface. Previously, we have used data from the last 5 solar cycles to estimate percentiles of dose to a typical blood-forming organ (BFO) for a hypothetical astronaut in a nominally shielded spacecraft during a 120-d lunar mission. As part of this process, we made use of complete energy spectra for 34 large historical SPEs to calculate what the BFO mGy-Eq dose would have been in the above lunar scenario for each SPE. From these calculated doses, we then developed a prediction model for BFO dose based solely on an assumed value of integrated fluence above 30 MeV ( Φ30) for an otherwise unspecified future SPE. In this study, we reasoned that since BFO dose is determined more by protons with higher energies than by those with lower energies, more accurate BFO dose prediction models could be developed using integrated fluence above 60 ( Φ60) and above 100 MeV ( Φ100) as predictors instead of Φ30. However to calculate the unconditional probability of a BFO dose exceeding a pre-specified limit ("BFO dose risk"), one must also take into account the distribution of the predictor ( Φ30,Φ60, or Φ100), as estimated from historical SPEs. But Φ60 and Φ100 have more variability, and less available historical information on which to estimate their distributions over many SPE occurrences, than does Φ30. Therefore, when estimating BFO dose risk there is a tradeoff between increased BFO dose prediction at a given energy threshold and decreased accuracy of models for describing the distribution of that threshold over future SPEs as the threshold increases. Even when taking the second of these two factors into account, we still arrived at the conclusion that overall prediction improves as the energy level threshold increases from 30 to 60 to 100 MeV. These results can be applied

  6. Applicability of self-activation of an NaI scintillator for measurement of photo-neutrons around a high-energy X-ray radiotherapy machine.

    PubMed

    Wakabayashi, Genichiro; Nohtomi, Akihiro; Yahiro, Eriko; Fujibuchi, Toshioh; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Nakamura, Katsumasa; Hosono, Makoto; Itoh, Tetsuo

    2015-01-01

    The applicability of the activation of an NaI scintillator for neutron monitoring at a clinical linac was investigated experimentally. Thermal neutron fluence rates are derived by measurement of the I-128 activity generated in an NaI scintillator irradiated by neutrons; β-rays from I-128 are detected efficiently by the NaI scintillator. In order to verify the validity of this method for neutron measurement, we irradiated an NaI scintillator at a research reactor, and the neutron fluence rate was estimated. The method was then applied to neutron measurement at a 10-MV linac (Varian Clinac 21EX), and the neutron fluence rate was estimated at the isocenter and at 30 cm from the isocenter. When the scintillator was irradiated directly by high-energy X-rays, the production of I-126 was observed due to photo-nuclear reactions, in addition to the generation of I-128 and Na-24. From the results obtained by these measurements, it was found that the neutron measurement by activation of an NaI scintillator has a great advantage in estimates of a low neutron fluence rate by use of a quick measurement following a short-time irradiation. Also, the future application of this method to quasi real-time monitoring of neutrons during patient treatments at a radiotherapy facility is discussed, as well as the method of evaluation of the neutron dose.

  7. High-fluence Ga-implanted silicon—The effect of annealing and cover layers

    SciTech Connect

    Fiedler, J. Heera, V.; Hübner, R.; Voelskow, M.; Germer, S.; Schmidt, B.; Skorupa, W.

    2014-07-14

    The influence of SiO{sub 2} and SiN{sub x} cover layers on the dopant distribution as well as microstructure of high fluence Ga implanted Si after thermal processing is investigated. The annealing temperature determines the layer microstructure and the cover layers influence the obtained Ga profile. Rapid thermal annealing at temperatures up to 750 °C leads to a polycrystalline layer structure containing amorphous Ga-rich precipitates. Already after a short 20 ms flash lamp annealing, a Ga-rich interface layer is observed for implantation through the cover layers. This effect can partly be suppressed by annealing temperatures of at least 900 °C. However, in this case, Ga accumulates in larger, cone-like precipitates without disturbing the surrounding Si lattice parameters. Such a Ga-rich crystalline Si phase does not exist in the equilibrium phase diagram according to which the Ga solubility in Si is less than 0.1 at. %. The Ga-rich areas are capped with SiO{sub x} grown during annealing which only can be avoided by the usage of SiN{sub x} cover layers.

  8. Detecting charged fusion products in high-fluence conditions on OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Waugh, C.; Rosenberg, M.; Zylstra, A.; Rinderknecht, H.; Sinenian, N.; Manuel, M.; Casey, D.; Gatu Johnson, M.; Li, C. K.; Seguin, F.; Frenje, J.; Petrasso, R.; Glebov, V.; Sangster, T. C.; Pape, S.; Bionta, R.; MacKinnon, A.; Landen, O.; Kim, Y.; Hermann, H.; Kilkenny, J.; Nikroo, A.

    2011-10-01

    CR-39 solid state nuclear track plastic, used as charged particle detectors on the ``back-end'' of OMEGA and NIF diagnostics/spectrometers, is ideally suited to record particle fluences up to ~ 3x104 / cm2. However, conditions on OMEGA and the NIF can often result in fluences two orders of magnitude greater. By using shorter etch times than the standard (6 hrs), and cross calibrating to CR39 shot on the MIT accelerator to the equivalent (ICF) fluence, the dynamic range of the CR39 can be significantly extended. Specific examples of this analysis from both OMEGA and the NIF will be presented for the case of D3He exploding pushers. This work was supported in part by LLE, the NLUF, the FSC, the US DOE, LLNL, and GA.

  9. Comparison of high-fluence, single-pass diode laser to low-fluence, multiple-pass diode laser for laser hair reduction with 18 months of follow up.

    PubMed

    Braun, Martin

    2011-01-01

    Laser hair removal is the most popular laser procedure in the United States (U.S.), yet there has not been a prospective study demonstrating long-term efficacy of diode laser hair removal beyond six months. A prospective, single-center, bilaterally paired, blinded, randomized comparison split leg study was carried out with 22 patients comparing high-fluence, single-pass diode laser to low-fluence, multiple-pass diode laser. Hair counts were done six and 18 months following five treatment sessions and were found to be comparable t90-94 percent hair reduction. Hair counts at six months following the fifth treatment were comparable to hair counts at 18 months, indicating that sixth-month hair counts can be considered indicative of long-term results. The low-fluence, multiple-pass in-motion technique was associated with significantly less pain compared to the high-fluence, single-pass technique. Multiple passes of a diode laser at low fluences but with high average power results in permanent hair removal with less discomfort and fewer adverse effects, especially in darker skin.

  10. Modeling of ground albedo neutrons to investigate seasonal cosmic ray-induced neutron variations measured at high-altitude stations

    NASA Astrophysics Data System (ADS)

    Hubert, G.; Pazianotto, M. T.; Federico, C. A.

    2016-12-01

    This paper investigates seasonal cosmic ray-induced neutron variations measured over a long-term period (from 2011 to 2016) in both the high-altitude stations located in medium geomagnetic latitude and Antarctica (Pic-du-Midi and Concordia, respectively). To reinforce analysis, modeling based on ground albedo neutrons simulations of extensive air showers and the solar modulation potential was performed. Because the local environment is well known and stable over time in Antarctica, data were used to validate the modeling approach. A modeled scene representative to the Pic-du-Midi was simulated with GEANT4 for various hydrogen properties (composition, density, and wet level) and snow thickness. The orders of magnitudes of calculated thermal fluence rates are consistent with measurements obtained during summers and winters. These variations are dominant in the thermal domain (i.e., En < 0.5 eV) and lesser degree in epithermal and evaporation domains (i.e., 0.5 eV < En < 0.1 MeV and 0.1 MeV < En < 20 MeV, respectively). Cascade neutron (En > 20 MeV) is weakly impacted. The role of hydrogen content on ground albedo neutron generation was investigated with GEANT4 simulations. These investigations focused to mountain environment; nevertheless, they demonstrate the complexity of the local influences on neutron fluence rates.

  11. Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event

    NASA Astrophysics Data System (ADS)

    Kadler, M.; Krauß, F.; Mannheim, K.; Ojha, R.; Müller, C.; Schulz, R.; Anton, G.; Baumgartner, W.; Beuchert, T.; Buson, S.; Carpenter, B.; Eberl, T.; Edwards, P. G.; Eisenacher Glawion, D.; Elsässer, D.; Gehrels, N.; Gräfe, C.; Gulyaev, S.; Hase, H.; Horiuchi, S.; James, C. W.; Kappes, A.; Kappes, A.; Katz, U.; Kreikenbohm, A.; Kreter, M.; Kreykenbohm, I.; Langejahn, M.; Leiter, K.; Litzinger, E.; Longo, F.; Lovell, J. E. J.; McEnery, J.; Natusch, T.; Phillips, C.; Plötz, C.; Quick, J.; Ros, E.; Stecker, F. W.; Steinbring, T.; Stevens, J.; Thompson, D. J.; Trüstedt, J.; Tzioumis, A. K.; Weston, S.; Wilms, J.; Zensus, J. A.

    2016-08-01

    The astrophysical sources of the extraterrestrial, very high-energy neutrinos detected by the IceCube collaboration remain to be identified. Gamma-ray (γ-ray) blazars have been predicted to yield a cumulative neutrino signal exceeding the atmospheric background above energies of 100 TeV, assuming that both the neutrinos and the γ-ray photons are produced by accelerated protons in relativistic jets. As the background spectrum falls steeply with increasing energy, the individual events with the clearest signature of being of extraterrestrial origin are those at petaelectronvolt energies. Inside the large positional-uncertainty fields of the first two petaelectronvolt neutrinos detected by IceCube, the integrated emission of the blazar population has a sufficiently high electromagnetic flux to explain the detected IceCube events, but fluences of individual objects are too low to make an unambiguous source association. Here, we report that a major outburst of the blazar PKS B1424-418 occurred in temporal and positional coincidence with a third petaelectronvolt-energy neutrino event (HESE-35) detected by IceCube. On the basis of an analysis of the full sample of γ-ray blazars in the HESE-35 field, we show that the long-term average γ-ray emission of blazars as a class is in agreement with both the measured all-sky flux of petaelectronvolt neutrinos and the spectral slope of the IceCube signal. The outburst of PKS B1424-418 provides an energy output high enough to explain the observed petaelectronvolt event, suggestive of a direct physical association.

  12. Elastic stability of high dose neutron irradiated spinel

    SciTech Connect

    Li, Z.; Chan, S.K.; Garner, F.A.

    1995-04-01

    The objective of this effort is to identify ceramic materials that are suitable for fusion reactor applications. Elastic constants (C{sub 11}, C{sub 12}, and C{sub 44}) of spinel (MgAl{sub 2}O{sub 4}) single crystals irradiated to very high neutron fluences have geen measured by an ultrasonic technique. Although results of a neutron diffraction study show that cation occupation sites are significantly changed in the irradiated samples, no measurable differences occurred in their elastic properties. In order to understand such behavior, the elastic properties of a variety of materials with either normal or inverse spinel structures were studied. The cation valence and cation distribution appear to have little influence on the elastic properties of spinel materials.

  13. Methodology of Fuel Burn Up Fitting in VVER-1000 Reactor Core by Using New Ex-Vessel Neutron Dosimetry and In-Core Measurements and its Application for Routine Reactor Pressure Vessel Fluence Calculations

    NASA Astrophysics Data System (ADS)

    Borodkin, Pavel; Borodkin, Gennady; Khrennikov, Nikolay

    2016-02-01

    Paper describes the new approach of fitting axial fuel burn-up patterns in peripheral fuel assemblies of VVER-1000 type reactors, on the base of ex-core neutron leakage measurements, neutron-physical calculations and in-core SPND measured data. The developed approach uses results of new ex-vessel measurements on different power units through different reactor cycles and their uncertainties to clear the influence of a fitted fuel burn-up profile to the RPV neutron fluence calculations. The new methodology may be recommended to be included in the routine fluence calculations used in RPV lifetime management and may be taken into account during VVER-1000 core burn-up pattern correction.

  14. High precision thermal neutron detectors

    SciTech Connect

    Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B.

    1994-12-31

    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.

  15. Photon and neutron fluence-to-kerma conversion factors for ICRP-1975 reference man using improved elemental compositions for bone and marrow of the skeleton

    SciTech Connect

    Kerr, G.D.

    1982-11-01

    A twelve-element approximation of the total-body, soft-tissue and skeletal components of ICRP-1975 Reference Man is used to investigate particle fluence-to-kerma conversion factors for photons with energies between 1 keV and 20 MeV and neutrons with energies between 0.0253 eV and 20 MeV. Several recent ICRP revisions to the elemental composition of Reference Man, which have not been included in other kerma-factor calculations, are taken into account. This work suggests some additional revisions to the major-element content (i.e., H, C, N, and O) and to the mineral and trace-element content (i.e., Na, Mg, P, S, Cl, K, Ca, and Fe) of various total-body, soft-tissue, and skeletal components of Reference Man. The revisions to the bone and red marrow of the skeleton offer significant new refinements in red-bone-marrow dosimetry.

  16. Fluence-to-dose conversion coefficients for neutrons and protons calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Zankl, Maria; Petoussi-Henss, Nina; Niita, Koji

    2009-04-07

    The fluence to organ-dose and effective-dose conversion coefficients for neutrons and protons with energies up to 100 GeV was calculated using the PHITS code coupled to male and female adult reference computational phantoms, which are to be released as a common ICRP/ICRU publication. For the calculation, the radiation and tissue weighting factors, w(R) and w(T), respectively, as revised in ICRP Publication 103 were employed. The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of the absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. By comparing these data with the corresponding data for the effective dose, we found that the numerical compatibilities of the revised w(R) with the Q(L) and Q(y) relationships are fairly established. The calculated data of these dose conversion coefficients are indispensable for constructing the radiation protection systems based on the new recommendations given in ICRP103 for aircrews and astronauts, as well as for workers in accelerators and nuclear facilities.

  17. High Voltage Piezoelectric System for Generating Neutrons

    DTIC Science & Technology

    2013-06-01

    Piezoelectric transformer structural modeling - a review,” Ultrasonics , Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 54, pp...1 High Voltage Piezoelectric System for Generating Neutrons Brady Gall, Student Member, IEEE, Scott D. Kovaleski, Senior Member, IEEE, James A...Compact electrical neutron generators are a desir- able alternative to radioisotope neutron sources. A piezoelectric transformer system is presented

  18. Correlating Fast Fluence to dpa in Atypical Locations

    NASA Astrophysics Data System (ADS)

    Drury, Thomas H.

    2016-02-01

    Damage to a nuclear reactor's materials by high-energy neutrons causes changes in the ductility and fracture toughness of the materials. The reactor vessel and its associated piping's ability to withstand stress without brittle fracture are paramount to safety. Theoretically, the material damage is directly related to the displacements per atom (dpa) via the residual defects from induced displacements. However in practice, the material damage is based on a correlation to the high-energy (E > 1.0 MeV) neutron fluence. While the correlated approach is applicable when the material in question has experienced the same neutron spectrum as test specimens which were the basis of the correlation, this approach is not generically acceptable. Using Monte Carlo and discrete ordinates transport codes, the energy dependent neutron flux is determined throughout the reactor structures and the reactor vessel. Results from the models provide the dpa response in addition to the high-energy neutron flux. Ratios of dpa to fast fluence are calculated throughout the models. The comparisons show a constant ratio in the areas of historical concern and thus the validity of the correlated approach to these areas. In regions above and below the fuel however, the flux spectrum has changed significantly. The correlated relationship of material damage to fluence is not valid in these regions without adjustment. An adjustment mechanism is proposed.

  19. Variability in fluence and spectrum of high-energy photon bursts produced by lightning leaders

    NASA Astrophysics Data System (ADS)

    Celestin, Sebastien; Xu, Wei; Pasko, Victor P.

    2015-12-01

    In this paper, we model the production and acceleration of thermal runaway electrons during negative corona flash stages of stepping lightning leaders and the corresponding terrestrial gamma ray flashes (TGFs) or negative cloud-to-ground (-CG) lightning-produced X-ray bursts in a unified fashion. We show how the source photon spectrum and fluence depend on the potential drop formed in the lightning leader tip region during corona flash and how the X-ray burst spectrum progressively converges toward typical TGF spectrum as the potential drop increases. Additionally, we show that the number of streamers produced in a negative corona flash, the source electron energy distribution function, the corresponding number of photons, and the photon energy distribution and transport through the atmosphere up to low-orbit satellite altitudes exhibit a very strong dependence on this potential drop. This leads to a threshold effect causing X-rays produced by leaders with potentials lower than those producing typical TGFs extremely unlikely to be detected by low-orbit satellites. Moreover, from the number of photons in X-ray bursts produced by -CGs estimated from ground observations, we show that the proportionality between the number of thermal runaway electrons and the square of the potential drop in the leader tip region during negative corona flash proposed earlier leads to typical photon fluences on the order of 1 ph/cm2 at an altitude of 500 km and a radial distance of 200 km for intracloud lightning discharges producing 300 MV potential drops, which is consistent with observations of TGF fluences and spectra from satellites.

  20. Damage to Macor glass-ceramic from high-dose 14 MeV neutrons

    SciTech Connect

    Coghlan, W.A.; Clinard, F.W. Jr. . Dept. of Physics; Los Alamos National Lab., NM )

    1989-01-01

    Macor machinable glass-ceramic was irradiated to fluences up to 1 {times} 10{sup 23} 14 MeV n/m{sup 2} at room temperature. Post-irradiation measurements were carried out to determine changes in high-frequency electrical conductivity, hardness, and density. It was found that neutron damage caused slight increases in conductivity and hardness. The major changes noted was in density, where a fluence of 4 {times} 10{sup 22} n/m{sup 2} caused swelling of 1.55 vol % while a dose of 1 {times} 10{sup 23} n/m{sup 2} resulted in a lower swelling value (0.82 vol %). This unusual behavior is explained by a model involving expansion of the mica phase of Macor and contraction of the glassy phase. Implications of the present results for engineering performance of Macor at these and higher fluences are discussed. 11 refs., 5 figs.

  1. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy

    PubMed Central

    Kry, Stephen F.; Howell, Rebecca M.; Salehpour, Mohammad; Followill, David S.

    2009-01-01

    Neutrons are by-products of high-energy radiation therapy and a source of dose to normal tissues. Thus, the presence of neutrons increases a patient’s risk of radiation-induced secondary cancer. Although neutrons have been thoroughly studied in air, little research has been focused on neutrons at depths in the patient where radiosensitive structures may exist, resulting in wide variations in neutron dose equivalents between studies. In this study, we characterized properties of neutrons produced during high-energy radiation therapy as a function of their depth in tissue and for different field sizes and different source-to-surface distances (SSD). We used a previously developed Monte Carlo model of an accelerator operated at 18 MV to calculate the neutron fluences, energy spectra, quality factors, and dose equivalents in air and in tissue at depths ranging from 0.1 to 25 cm. In conjunction with the sharply decreasing dose equivalent with increased depth in tissue, the authors found that the neutron energy spectrum changed drastically as a function of depth in tissue. The neutron fluence decreased gradually as the depth increased, while the average neutron energy decreased sharply with increasing depth until a depth of approximately 7.5 cm in tissue, after which it remained nearly constant. There was minimal variation in the quality factor as a function of depth. At a given depth in tissue, the neutron dose equivalent increased slightly with increasing field size and decreasing SSD; however, the percentage depth-dose equivalent curve remained constant outside the primary photon field. Because the neutron dose equivalent, fluence, and energy spectrum changed substantially with depth in tissue, we concluded that when the neutron dose equivalent is being determined at a depth within a patient, the spectrum and quality factor used should be appropriate for depth rather than for in-air conditions. Alternately, an appropriate percent depth-dose equivalent curve should

  2. Retention behavior in tungsten and molybdenum exposed to high fluences of deuterium ions in TPE

    SciTech Connect

    J.P. Sharpe; R.D. Kolasinski; M. Shimada; P. Calderoni; R.A. Causey

    2009-06-01

    The Tritium Plasma Experiment (TPE) has been used to investigate deuterium fuel retention behavior in tungsten and molybdenum– materials utilized for plasma-facing surfaces in some existing tokamak plasma devices and under consideration for future devices. Although several studies have been performed over the past several years on these metals, many issues remain unresolved, including for example blister formation mechanisms and correlation to surface conditions. In this study we expose several metal samples to deuterium ion fluences up to 1026 ions/m2 and measure retention behavior with thermal desportion spectroscopy. Fractional retention of up to 2.0×10-5 is found for W at 600 K, and Mo similarly retains deuterium at a fraction of 1.5×10-5 at 600 K. Blistering was found for W samples exposed at temperatures above 453 K, whereas blistering was not observed for Mo samples at any experiment temperature.

  3. Simulation study on retention and reflection from tungsten carbide under high fluence of helium ions

    NASA Astrophysics Data System (ADS)

    Ono, T.; Kawamura, T.; Kenmotsu, T.; Yamamura, Y.

    2001-03-01

    We have studied, with a Monte Carlo simulation code ACAT-DIFFUSE, the fluence-dependence of the amount of helium atoms retained in tungsten carbide at room temperature under helium ion bombardment. The retention behavior may be understood qualitatively in terms of irradiation-dependent diffusion coefficient assumed and range. The re-emission, reflection and sputtering from tungsten carbide under helium ion irradiation were derived and compared with each other. We have discussed the retention curves for incident energy of 5 keV at incident angles of 0° and 80° and of 500 eV at 0°. The energy spectra of helium atoms reflected from tungsten carbide for incident energy of 500 eV at 0° and 80° were compared with those from graphite and tungsten.

  4. Low versus High Fluence Parameters in the Treatment of Facial Laceration Scars with a 1,550 nm Fractional Erbium-Glass Laser.

    PubMed

    Shim, Hyung-Sup; Jun, Dai-Won; Kim, Sang-Wha; Jung, Sung-No; Kwon, Ho

    2015-01-01

    Purpose. Early postoperative fractional laser treatment has been used to reduce scarring in many institutions, but the most effective energy parameters have not yet been established. This study sought to determine effective parameters in the treatment of facial laceration scars. Methods. From September 2012 to September 2013, 57 patients were enrolled according to the study. To compare the low and high fluence parameters of 1,550 nm fractional erbium-glass laser treatment, we virtually divided the scar of each individual patient in half, and each half was treated with a high and low fluence setting, respectively. A total of four treatment sessions were performed at one-month intervals and clinical photographs were taken at every visit. Results. Results were assessed using the Vancouver Scar Scale (VSS) and global assessment of the two portions of each individual scar. Final evaluation revealed that the portions treated with high fluence parameter showed greater difference compared to pretreatment VSS scores and global assessment values, indicating favorable cosmetic results. Conclusion. We compared the effects of high fluence and low fluence 1,550 nm fractional erbium-glass laser treatment for facial scarring in the early postoperative period and revealed that the high fluence parameter was more effective for scar management.

  5. Structural characterization of nanoscale intermetallic precipitates in highly neutron irradiated reactor pressure vessel steels

    SciTech Connect

    Sprouster, D. J.; Sinsheimer, J.; Dooryhee, E.; Ghose, S.; Wells, P.; Stan, T.; Almirall, N.; Odette, G. R.; Ecker, L. E.

    2015-10-21

    Here, massive, thick-walled pressure vessels are permanent nuclear reactor structures that are exposed to a damaging flux of neutrons from the adjacent core. The neutrons cause embrittlement of the vessel steel that increases with dose (fluence or service time), as manifested by an increasing temperature transition from ductile-to-brittle fracture. Moreover, extending reactor life requires demonstrating that large safety margins against brittle fracture are maintained at the higher neutron fluence associated with 60 to 80 years of service. Here synchrotron-based x-ray diffraction and small angle x-ray scattering measurements are used to characterize a new class of highly embrittling nm-scale Mn-Ni-Si precipitates that develop in the irradiated steels at high fluence. Furthermore, these precipitates can lead to severe embrittlement that is not accounted for in current regulatory models. Application of the complementarity techniques has, for the very first time, successfully characterized the crystal structures of the nanoprecipitates, while also yielding self-consistent compositions, volume fractions and size distributions.

  6. Structural characterization of nanoscale intermetallic precipitates in highly neutron irradiated reactor pressure vessel steels

    DOE PAGES

    Sprouster, D. J.; Sinsheimer, J.; Dooryhee, E.; ...

    2015-10-21

    Here, massive, thick-walled pressure vessels are permanent nuclear reactor structures that are exposed to a damaging flux of neutrons from the adjacent core. The neutrons cause embrittlement of the vessel steel that increases with dose (fluence or service time), as manifested by an increasing temperature transition from ductile-to-brittle fracture. Moreover, extending reactor life requires demonstrating that large safety margins against brittle fracture are maintained at the higher neutron fluence associated with 60 to 80 years of service. Here synchrotron-based x-ray diffraction and small angle x-ray scattering measurements are used to characterize a new class of highly embrittling nm-scale Mn-Ni-Si precipitatesmore » that develop in the irradiated steels at high fluence. Furthermore, these precipitates can lead to severe embrittlement that is not accounted for in current regulatory models. Application of the complementarity techniques has, for the very first time, successfully characterized the crystal structures of the nanoprecipitates, while also yielding self-consistent compositions, volume fractions and size distributions.« less

  7. Multi-Billion Shot, High-Fluence Exposure of Cr(4+): YAG Passive Q-Switch

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Dallas, Joseph L.; Afzal, Robert S.

    1997-01-01

    NASA's Goddard Space Flight Center is developing the Geoscience Laser Altimeter System (GLAS) employing a diode pumped, Q-Switched, ND:YAG laser operating at 40 Hz repetition rate. To meet the five-year mission lifetime goal, a single transmitter would accumulate over 6.3 billion shots. Cr(4+):YAG is a promising candidate material for passively Q-switching the laser. Historically, the performance of saturable absorbers has degraded over long-duration usage. To measure the multi-billion shot performance of Cr(4+):YAG, a passively Q-switched GLAS-like oscillator was tested at an accelerated repetition rate of 500 Hz. The intracavity fluence was calculated to be approximately 2.5 J/cm(exp 2). The laser was monitored autonomously for 165 days. There was no evidence of change in the material optical properties during the 7.2 billion shot test.. All observed changes in laser operation could be attributed to pump laser diode aging. This is the first demonstration of multi-billion shot exposure testing of Cr(4+):YAG in this pulse energy regime

  8. Intercomparison of high energy neutron personnel dosimeters

    SciTech Connect

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the {sup 9}Be(p,n){sup 9}B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work.

  9. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane.

    PubMed

    Goldhagen, P; Reginatto, M; Kniss, T; Wilson, J W; Singleterry, R C; Jones, I W; Van Steveninck, W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was eight times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56-201 g cm-2 atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  10. High Brightness Neutron Source for Radiography

    SciTech Connect

    Cremer, J. T.; Piestrup, Melvin, A.; Gary, Charles, K.; Harris, Jack, L. Williams, David, J.; Jones, Glenn, E.; Vainionpaa, J. , H.; Fuller, Michael, J.; Rothbart, George, H.; Kwan, J., W.; Ludewigt, B., A.; Gough, R.., A..; Reijonen, Jani; Leung, Ka-Ngo

    2008-12-08

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  11. Computational Transport Modeling of High-Energy Neutrons Found in the Space Environment

    NASA Technical Reports Server (NTRS)

    Cox, Brad; Theriot, Corey A.; Rohde, Larry H.; Wu, Honglu

    2012-01-01

    The high charge and high energy (HZE) particle radiation environment in space interacts with spacecraft materials and the human body to create a population of neutrons encompassing a broad kinetic energy spectrum. As an HZE ion penetrates matter, there is an increasing chance of fragmentation as penetration depth increases. When an ion fragments, secondary neutrons are released with velocities up to that of the primary ion, giving some neutrons very long penetration ranges. These secondary neutrons have a high relative biological effectiveness, are difficult to effectively shield, and can cause more biological damage than the primary ions in some scenarios. Ground-based irradiation experiments that simulate the space radiation environment must account for this spectrum of neutrons. Using the Particle and Heavy Ion Transport Code System (PHITS), it is possible to simulate a neutron environment that is characteristic of that found in spaceflight. Considering neutron dosimetry, the focus lies on the broad spectrum of recoil protons that are produced in biological targets. In a biological target, dose at a certain penetration depth is primarily dependent upon recoil proton tracks. The PHITS code can be used to simulate a broad-energy neutron spectrum traversing biological targets, and it account for the recoil particle population. This project focuses on modeling a neutron beamline irradiation scenario for determining dose at increasing depth in water targets. Energy-deposition events and particle fluence can be simulated by establishing cross-sectional scoring routines at different depths in a target. This type of model is useful for correlating theoretical data with actual beamline radiobiology experiments. Other work exposed human fibroblast cells to a high-energy neutron source to study micronuclei induction in cells at increasing depth behind water shielding. Those findings provide supporting data describing dose vs. depth across a water-equivalent medium. This

  12. Managing NIF safety equipment in a high neutron and gamma radiation environment.

    PubMed

    Datte, Philip; Eckart, Mark; Jackson, Mark; Khater, Hesham; Manuel, Stacie; Newton, Mark

    2013-06-01

    The National Ignition Facility (NIF) is a 192 laser beam facility that supports the Inertial Confinement Fusion program. During the ignition experimental campaign, the NIF is expected to perform shots with varying fusion yield producing 14 MeV neutrons up to 20 MJ or 7.1 × 10(18) neutrons per shot and a maximum annual yield of 1,200 MJ. Several infrastructure support systems will be exposed to varying high yield shots over the facility's 30-y life span. In response to this potential exposure, analysis and testing of several facility safety systems have been conducted. A detailed MCNP (Monte Carlo N-Particle Transport Code) model has been developed for the NIF facility, and it includes most of the major structures inside the Target Bay. The model has been used in the simulation of expected neutron and gamma fluences throughout the Target Bay. Radiation susceptible components were identified and tested to fluences greater than 10(13) (n cm(-2)) for 14 MeV neutrons and γ-ray equivalent. The testing includes component irradiation using a 60Co gamma source and accelerator-based irradiation using 4- and 14- MeV neutron sources. The subsystem implementation in the facility is based on the fluence estimates after shielding and survivability guidelines derived from the dose maps and component tests results. This paper reports on the evaluation and implementation of mitigations for several infrastructure safety support systems, including video, oxygen monitoring, pressure monitors, water sensing systems, and access control interfaces found at the NIF.

  13. Mechanism study on mitochondrial fragmentation under oxidative stress caused by high-fluence low-power laser irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Shengnan; Zhou, Feifan; Xing, Da

    2012-03-01

    Mitochondria are dynamic organelles that undergo continual fusion and fission to maintain their morphology and functions, but the mechanism involved is still not clear. Here, we investigated the effect of mitochondrial oxidative stress triggered by high-fluence low-power laser irradiation (HF-LPLI) on mitochondrial dynamics in human lung adenocarcinoma cells (ASTC-a-1). Upon HF-LPLI-triggered oxidative stress, mitochondria displayed a fragmented structure, which was abolished by exposure to dehydroascorbic acid (DHA), a reactive oxygen species scavenger, indicating that oxidative stress can induce mitochondrial fragmentation. Mitochondrial translocation of the profission protein dynamin-related protein 1 (Drp1) was observed following HF-LPLI, demonstrating apoptosis-related activation of Drp1. Notably, DHA pre-treatment prevented HF-LPLI-induced Drp1 activation. We conclude that mitochondrial oxidative stress through activation of Drp1 causes mitochondrial fragmentation.

  14. NEUTRONIC REACTOR HAVING LOCALIZED AREAS OF HIGH THERMAL NEUTRON DENSITIES

    DOEpatents

    Newson, H.W.

    1958-06-01

    A nuclear reactor for the irradiation of materials designed to provide a localized area of high thermal neutron flux density in which the materials to be irradiated are inserted is described. The active portion of the reactor is comprised of a cubicle graphite moderator of about 25 feet in length along each axis which has a plurality of cylindrical channels for accommodatirg elongated tubular-shaped fuel elements. The fuel elements have radial fins for spacing the fuel elements from the channel walls, thereby providing spaces through which a coolant may be passed, and also to serve as a heatconductirg means. Ducts for accommnodating the sample material to be irradiated extend through the moderator material perpendicular to and between parallel rows of fuel channels. The improvement is in the provision of additional fuel element channels spaced midway between 2 rows of the regular fuel channels in the localized area surrounding the duct where the high thermal neutron flux density is desired. The fuel elements normally disposed in the channels directly adjacent the duct are placed in the additional channels, and the channels directly adjacent the duct are plugged with moderator material. This design provides localized areas of high thermal neutron flux density without the necessity of providing additional fuel material.

  15. Surprisingly Large Generation and Retention of Helium and Hydrogen in Pure Nickel Irradiated at High Temperatures and High Neutron Exposures

    SciTech Connect

    Greenwood, Lawrence R.; Garner, Francis A.; Oliver, Brian M.; Grossbeck, Martin L.; Wolfer, W. G.

    2004-04-01

    Hydrogen and helium measurements in pure nickel irradiated to 100 dpa in HFIR at temperatures between 300 and 600C show higher gas concentrations than predicted from fast-neutron reactions and the two-step 58Ni(n,g)59Ni(n,p and n,a) reactions. This additional gas production suggests previously unidentified nuclear sources of helium and possibly hydrogen that assert themselves at very high neutron exposure. The elevated hydrogen measurements are especially surprising since it is generally accepted that hydrogen is very mobile in nickel at elevated temperatures and therefore is easily lost, never reaching large concentrations. However, it appears that relatively large hydrogen concentrations can be reached and retained for many years after irradiation at reactor-relevant temperatures. These new effects may have a significant impact on the performance of nickel-bearing alloys at high neutron fluences in both fission and fusion reactor irradiations.

  16. Report on Status of Shipment of High Fluence Austenitic Steel Samples for Characterization and Stress Corrosion Crack Testing

    SciTech Connect

    Clark, Scarlett R.; Leonard, Keith J.

    2016-09-01

    The goal of the Mechanisms of Irradiation Assisted Stress Corrosion Cracking (IASCC) task in the LWRS Program is to conduct experimental research into understanding how multiple variables influence the crack initiation and crack growth in materials subjected to stress under corrosive conditions. This includes understanding the influences of alloy composition, radiation condition, water chemistry and metallurgical starting condition (i.e., previous cold work or heat treatments and the resulting microstructure) has on the behavior of materials. Testing involves crack initiation and growth testing on irradiated specimens of single-variable alloys in simulated Light Water Reactor (LWR) environments, tensile testing, hardness testing, microstructural and microchemical analysis, and detailed efforts to characterize localized deformation. Combined, these single-variable experiments will provide mechanistic understanding that can be used to identify key operational variables to mitigate or control IASCC, optimize inspection and maintenance schedules to the most susceptible materials/locations, and, in the long-term, design IASCC-resistant materials. In support of this research, efforts are currently underway to arrange shipment of “free” high fluence austenitic alloys available through Électricité de France (EDF) for post irradiation testing at the Oak Ridge National Laboratory (ORNL) and IASCC testing at the University of Michigan. These high fluence materials range in damage values from 45 to 125 displacements per atom (dpa). The samples identified for transport to the United States, which include nine, no-cost, 304, 308 and 316 tensile bars, were relocated from the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad, Ulyanovsk Oblast, Russia, and received at the Halden Reactor in Halden, Norway, on August 23, 2016. ORNL has been notified that a significant amount of work is required to prepare the samples for further shipment to Oak Ridge, Tennessee. The

  17. Estimation of the fluence of high-energy electron bursts produced by thunderclouds and the resulting radiation doses received in aircraft

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.; Smith, D. M.; Uman, M. A.; Saleh, Z.; Grefenstette, B.; Hazelton, B.; Rassoul, H. K.

    2010-05-01

    Using recent X-ray and gamma-ray observations of terrestrial gamma-ray flashes (TGFs) from spacecraft and of natural and rocket-triggered lightning from the ground, along with detailed models of energetic particle transport, we calculate the fluence (integrated flux) of high-energy (million electronvolt) electrons, X rays, and gamma rays likely to be produced inside or near thunderclouds in high electric field regions. We find that the X-ray/gamma-ray fluence predicted for lightning leaders propagating inside thunderclouds agrees well with the fluence calculated for TGFs, suggesting a possible link between these two phenomena. Furthermore, based on reasonable meteorological assumptions about the magnitude and extent of the electric fields, we estimate that the fluence of high-energy runaway electrons can reach biologically significant levels at aircraft altitudes. If an aircraft happened to be in or near the high-field region when either a lightning discharge or a TGF event is occurring, then the radiation dose received by passengers and crew members inside that aircraft could potentially approach 0.1 Sv (10 rem) in less than 1 ms. Considering that commercial aircraft are struck by lightning, on average, one to two times per year, the risk of such large radiation doses should be investigated further.

  18. High Sensitive Neutron-Detection by Using a Self-Activation of Iodine-Containing Scintillators for the Photo-Neutron Monitoring around X-ray Radiotherapy Machines

    NASA Astrophysics Data System (ADS)

    Nohtomi, Akihiro; Wakabayashi, Genichiro; Kinoshita, Hiroyuki; Honda, Soichiro; Kurihara, Ryosuke; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Ohga, Saiji; Nakamura, Katsumasa

    A novel method for evaluating the neutron dose-equivalent as well as neutron fluence around high-energy X-ray radiotherapy machines has been proposed and examined by using the self-activation of a CsI scintillator. Several filtering conditions were used to extract energy information of the neutron field. The shapes of neutron energy spectra were assumed to be practically unchanged at each three energy regions (thermal, epi-thermal and fast regions) for different irradiations around an X-ray linac whose acceleration potential was fixed to be a certain value. In order to know the actual neutron energy spectrum, an unfolding process was carried out for saturated activities of 128I generated inside the CsI scintillator under different filtering conditions; the response function matrix for each filtering condition was calculated by a Monte Carlo simulation. As the result, neutron dose-equivalent was estimated to be 0.14 (mSv/Gy) at 30 cm from the isocenter of linac. It has been revealed that fast neutron component dominated the total dose-equivalent.

  19. Response of solute and precipitation-strengthened copper alloys at high neutron exposure

    SciTech Connect

    Garner, F.A.; Hamilton, M.L. ); Shikama, T. ); Edwards, D.J.; Newkirk, J.W. )

    1991-11-01

    A variety of solute and precipitation strengthened copper base alloys have been irradiated to neutron-induced displacement levels of 34 to 150 dpa at 415{degrees}C and 32 dpa at 529{degrees}C in the Fast Flux Test Facility to assess their potential for high heat flux applications in fusion reactors. Several MZC-type alloys appear to offer the most promise for further study. For low fluence applications CuBeNi and spinodally strengthened CuNiTi alloys may also be suitable. Although Cu-2Be resists swelling, it is not recommended for fusion reactor applications because of its low conductivity.

  20. Comparison of MCNP calculation and measurement of neutron fluence in a channel for short-time irradiation in the LVR-15 reactor

    SciTech Connect

    Lahodova, Z.; Flibor, S.; Klupak, V.; Kucera, J.; Marek, M.; Viererbl, L.

    2006-07-01

    The main purpose of this work was to evaluate the neutron energy distribution in a channel of the LVR-15 reactor used mostly for short-time neutron activation analysis. Twenty types of activation monitors were irradiated in this channel equipped with a pneumatic facility with a transport time of 3.5 s. The activities measured and the corresponding reaction rates were used to determinate the neutron spectrum. The reaction rates were compared with MCNP calculations to confirm the results. The second purpose of this work was to verify our nuclear data library used for the reaction rate calculations. The experiment results were also incorporated into our database system of neutron energy distribution at the reactor core. (authors)

  1. Measurements of the absolute neutron fluence spectrum emitted at 0/sup 0/ and 90/sup 0/ from the Little-Boy replica

    SciTech Connect

    Roberts, J.H.; Gold, R.; Preston, C.C.

    1985-01-01

    Nuclear research emulsions (NRE) have been used to characterize the neutron spectrum emitted by the Little-Boy replica. NRE were irradiated at the Little-Boy surface as well as approximately 2m from the center of the Little-Boy replica using polar angles of 0/sup 0/, 30/sup 0/, 60/sup 0/ and 90/sup 0/. For the NRE exposed at 2m, neutron background was determined using shadow shields of borated polyethylene. Emulsion scanning to date has concentrated exclusively on the 2m, 0/sup 0/ and 2m, 90/sup 0/ locations. Approximately 5000 proton-recoil tracks have been measured in NRE irradiated at each of these locations. At the 2m, 90/sup 0/ location the NRE neutron spectrum extends from 0.37 up to 8.2 MeV, whereas the NRE neutron spectrum at the 2m, 0/sup 0/ location is much softer and extends only up to 2.7 MeV. NRE neutron spectrometry results at these two locations are compared with both liquid scintillator neutron spectrometry and Monte Carlo calculations. 7 refs., 3 figs.

  2. A high-throughput neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Stampfl, Anton; Noakes, Terry; Bartsch, Friedl; Bertinshaw, Joel; Veliscek-Carolan, Jessica; Nateghi, Ebrahim; Raeside, Tyler; Yethiraj, Mohana; Danilkin, Sergey; Kearley, Gordon

    2010-03-01

    A cross-disciplinary high-throughput neutron spectrometer is currently under construction at OPAL, ANSTO's open pool light-water research reactor. The spectrometer is based on the design of a Be-filter spectrometer (FANS) that is operating at the National Institute of Standards research reactor in the USA. The ANSTO filter-spectrometer will be switched in and out with another neutron spectrometer, the triple-axis spectrometer, Taipan. Thus two distinct types of neutron spectrometers will be accessible: one specialised to perform phonon dispersion analysis and the other, the filter-spectrometer, designed specifically to measure vibrational density of states. A summary of the design will be given along with a detailed ray-tracing analysis. Some preliminary results will be presented from the spectrometer.

  3. High resolution mapping of martian neutron albedo

    NASA Astrophysics Data System (ADS)

    Sanin, A.

    It is known from data of High Energy Neutron Detector (HEND) on Mars Odyssey that there is very large regional variation of leakage flux of epithermal neutrons on the surface of Mars. The factor of regional variations is about 10 for mapping with linear resolution of about 200-300 km. Two circumpolar depressions of epithermal neutrons emission were found above latitudes of 50 - 60, which correspond to Northern and Southern permafrost regions with very high (up to 50 wt%) content of water ice. Also, according to the HEND mapping data, there are two opposite equatorial regions Arabia Terra and Memnonia, which contain about 10 wt% of water under the top layer of dry soil with a column density of about 30 g/cm2. The surface resolution of orbital data about 300 km is determined by natural collimation of neutrons in the subsurface and in the atmosphere. For a territory larger than this size, the average content of water could be estimated by the large area approximation. In this case the comparison is performed between the average counts of neutrons over the territory and predicted counts for the planet with the same model of the entire surface. The content of water is found, as the best fitting parameter of this model. For local spots of depression with much smaller sizes this procedure underestimates the content of water. Thus, according this approximation, the spot with largest depression in the Arabia Terra at 10-12 N and 30-32 E contains at least 16 wt% of water, but in reality this value could be much larger. The content of water at this spot will be obtained with better spatial resolution by so-called inverse projection procedure. This model-dependent procedure allows to test water content for areas much smaller than the size of HEND surface resolution. The results of water content according to this procedure will be presented for the Arabia spot with the greatest depression of epithermal neutrons.

  4. Thermal neutron calibration channel at LNMRI/IRD.

    PubMed

    Astuto, A; Salgado, A P; Leite, S P; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T

    2014-10-01

    The Brazilian Metrology Laboratory of Ionizing Radiations (LNMRI) standard thermal neutron flux facility was designed to provide uniform neutron fluence for calibration of small neutron detectors and individual dosemeters. This fluence is obtained by neutron moderation from four (241)Am-Be sources, each with 596 GBq, in a facility built with blocks of graphite/paraffin compound and high-purity carbon graphite. This study was carried out in two steps. In the first step, simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The quality of the resulting neutron fluence in terms of spectrum, cadmium ratio and gamma-neutron ratio was evaluated. In the second step, the system was assembled based on the results obtained on the simulations, and new measurements are being made. These measurements will validate the system, and other intercomparisons will ensure traceability to the International System of Units.

  5. s-process studies in the light of new experimental cross sections - Distribution of neutron fluences and r-process residuals

    NASA Technical Reports Server (NTRS)

    Kaeppeler, F.; Beer, H.; Wisshak, K.; Clayton, D. D.; Macklin, R. L.; Ward, R. A.

    1982-01-01

    A best set of neutron-capture cross sections has been evaluated for the most important s-process isotopes. With this data base, s-process studies have been carried out using the traditional model which assumes a steady neutron flux and an exponential distribution of neutron irradiations. The calculated sigma-N curve is in excellent agreement with the empirical sigma-N-values of pure s-process nuclei. Simultaneously, good agreement is found between the difference of solar and s-process abundances and the abundances of pure r-process nuclei. The abundance pattern of the iron group elements where s-process results complement the abundances obtained from explosive nuclear burning is discussed. The results obtained from the traditional s-process model such as seed abundances, mean neutron irradiations, or neutron densities are compared to recent stellar model calculations which assume the He-burning shells of red giant stars as the site for the s-process.

  6. S-process studies in the light of new experimental cross sections - Distribution of neutron fluences and r-process residuals

    NASA Astrophysics Data System (ADS)

    Kaeppeler, F.; Beer, H.; Wisshak, K.; Clayton, D. D.; Macklin, R. L.; Ward, R. A.

    1982-06-01

    A best set of neutron-capture cross sections has been evaluated for the most important s-process isotopes. With this data base, s-process studies have been carried out using the traditional model which assumes a steady neutron flux and an exponential distribution of neutron irradiations. The calculated sigma-N curve is in excellent agreement with the empirical sigma-N-values of pure s-process nuclei. Simultaneously, good agreement is found between the difference of solar and s-process abundances and the abundances of pure r-process nuclei. The abundance pattern of the iron group elements where s-process results complement the abundances obtained from explosive nuclear burning is discussed. The results obtained from the traditional s-process model such as seed abundances, mean neutron irradiations, or neutron densities are compared to recent stellar model calculations which assume the He-burning shells of red giant stars as the site for the s-process.

  7. Nano-Crystal Formation and Growth from High-Fluence Ion Implantation of Au, Ag or Cu in Silica

    NASA Astrophysics Data System (ADS)

    Ila, D.; Baglin, J. E. E.; Zimmerman, R. L.

    The linear and non-linear optical properties of silica may be tailored by the introduction of a random distribution of nanocrystallites of an immiscible metal within a near-surface region. The size, size distribution, and spatial distribution of these crystallites must be controllable in order to optimize the functional properties for device applications. In this paper, we present a novel fabrication technique that offers such control. Energetic metal ions are implanted in silica at room temperature. Subsequent heat treatment leads to diffusion of the implanted atoms, nucleation and growth of metal crystallites, and Ostwald ripening of the resulting clusters. We have observed the kinetics and effective activation energies describing the multiple processes involved, for the cases of Au, Ag or Cu implanted at MeV energies, at various fluences, and then annealed at fixed temperatures in the range 500 °C-1000 °C. Effective activation energies found for nanocrystal nucleation and growth at temperatures below 800 °C (e.g. 64 meV for Ag) are replaced above this temperature range by much higher activation energies (e.g. 400 meV for Ag). We may attribute this to the depletion of un-attached mobile metal atoms (so that ripening of clusters will be limited by energy barriers for escape of such mobile atoms from small crystallites), and/or the annealing of implant-caused stress in the silica structure at high temperatures, that creates new channels for thermal diffusion of metal atoms within the silica host.

  8. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, Ionel Dragos

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  9. Portable, high intensity isotopic neutron source provides increased experimental accuracy

    NASA Technical Reports Server (NTRS)

    Mohr, W. C.; Stewart, D. C.; Wahlgren, M. A.

    1968-01-01

    Small portable, high intensity isotopic neutron source combines twelve curium-americium beryllium sources. This high intensity of neutrons, with a flux which slowly decreases at a known rate, provides for increased experimental accuracy.

  10. Efficacy of a Low Fluence, High Repetition Rate 810nm Diode Laser for Permanent Hair Reduction in Indian Patients with Skin Types IV–VI

    PubMed Central

    Velaskar, Sangeeta; Gold, Michael H.

    2016-01-01

    Background: The study’s aim is to evaluate the novel “in motion” technique for permanent hair removal using a low level fluence/high repetition rate on patients with a dark skin type over different areas of the body. Objectives: To assess fluence, accumulative energy, and number of treatments needed to achieve a significant hair reduction and patient satisfaction with minimal side effects, low discomfort levels, and high safety profile in a skin type IV–VI Indian patients. Methods: Seventy-one Indian female patients with skin type IV–VI were enrolled in the study. All patients were treated with a low fluence, high repetition rate 810nm diode laser using a predetermined set of parameters for 5 to 6 treatments in 1- to 3-month intervals. Hair reduction was measured by patients’ satisfaction and all adverse effects were documented. Results: Results obtained a high degree of patient satisfaction and a very low record of adverse events. Treatments were complication-free for dark skins and a reasonable schedule or sessions and intervals. The discomfort during the sessions was negligible. PMID:28210387

  11. Magnetic and Mössbauer effect studies of ZnO thin film implanted with iron ions to high fluence

    NASA Astrophysics Data System (ADS)

    Zinnatullin, A. L.; Gumarov, A. I.; Gilmutdinov, I. F.; Valeev, V. F.; Khaibullin, R. I.; Vagizov, F. G.

    2017-01-01

    We present the results of magnetic and Mössbauer effect studies of zinc oxide thin film obtained by RF magnetron sputtering and implanted with 40 keV iron ions to a fluence of 1.5·1017 ion/cm2. As-implanted and post-annealed sample shows ferromagnetic properties at room temperature and consists of paramagnetic and ferromagnetic phases according to Mössbauer spectroscopy.

  12. Extended use of alanine irradiated in experimental reactor for combined gamma- and neutron-dose assessment by ESR spectroscopy and thermal neutron fluence assessment by measurement of (14)C by LSC.

    PubMed

    Bartoníček, B; Kučera, J; Světlík, I; Viererbl, L; Lahodová, Z; Tomášková, L; Cabalka, M

    2014-11-01

    Gamma- and neutron doses in an experimental reactor were measured using alanine/electron spin resonance (ESR) spectrometry. The absorbed dose in alanine was decomposed into contributions caused by gamma and neutron radiation using neutron kerma factors. To overcome a low sensitivity of the alanine/ESR response to thermal neutrons, a novel method has been proposed for the assessment of a thermal neutron flux using the (14)N(n,p) (14)C reaction on nitrogen present in alanine and subsequent measurement of (14)C by liquid scintillation counting (LSC).

  13. High-dose neutron detector project update

    SciTech Connect

    Menlove, Howard Olsen; Henzlova, Daniela

    2016-08-10

    These are the slides for a progress review meeting by the sponsor. This is an update on the high-dose neutron detector project. In summary, improvements in both boron coating and signal amplification have been achieved; improved boron coating materials and procedures have increased efficiency by ~ 30-40% without the corresponding increase in the detector plate area; low dead-time via thin cell design (~ 4 mm gas gaps) and fast amplifiers; prototype PDT 8” pod has been received and testing is in progress; significant improvements in efficiency and stability have been verified; use commercial PDT 10B design and fabrication to obtain a faster path from the research to practical high-dose neutron detector.

  14. The power distribution and neutron fluence measurements and calculations in the VVER-1000 Mock-Up on the LR-0 research reactor

    SciTech Connect

    Kostal, M.; Juricek, V.; Rypar, V.; Svadlenkova, M.; Cvachovec, F.

    2011-07-01

    The power density distribution in a reactor has significant influence on core structures and pressure vessel mechanical resistance, as well as on the physical characteristics of nuclear fuel. This quantity also has an effect on the leakage neutron and photon field. This issue has become of increasing importance, as it touches on actual questions of the VVER nuclear power plant life time extension. This paper shows the comparison of calculated and experimentally determined pin by pin power distributions. The calculation has been performed with deterministic and Monte Carlo approaches. This quantity is accompanied by the neutron and photon flux density calculation and measurements at different points of the light water zero-power (LR-0) research reactor mock-up core, reactor built-in component (core barrel), and reactor pressure vessel and model. The effect of the different data libraries used for calculation is discussed. (authors)

  15. An improved long counter for neutron fluence measurement with a flat response over a wide energy range from 1 keV to 15 MeV

    NASA Astrophysics Data System (ADS)

    Hu, Q. Y.; Zhang, J. H.; Zhang, D.; Guo, H. S.; Yang, G. Z.; Li, B. J.; Ye, F.; Si, F. N.; Liu, J.; Fu, Y. C.; Ning, J. M.; Yang, J.; Yang, H. H.; Wang, W. C.

    2014-12-01

    A new long counter has been developed with a flat energy response over a wide range from 1 keV to 15 MeV. It consists of five 3He proportional counter tubes and a number of carefully designed polyethylene moderators. The structure of this detector was determined by careful Monte Carlo simulations. The calculated results show that the efficiency of this counter is uniform from 1 keV neutron energy to 15 MeV. Calibration was performed on an Am-Be source and the accelerator-produced monoenergetic D-D and D-T neutron sources. Fluctuation of the response curve is less than 10% over this energy range.

  16. High sensitivity neutron detector for Z

    SciTech Connect

    Ruggles, L.E.; Porter, J.L. Jr.; Simpson, W.W.; Vargas, M.F.; Zagar, D.M.; Hartke, R.; Buersgens, F.; Symes, D.R.; Ditmire, T.

    2004-10-01

    We have developed, calibrated, and tested a high sensitivity neutron detector that can be operated in the harsh x-ray bremsstrahlung environment that exists in experiments conducted on the 20 MA Z z-pinch facility located at Sandia National Laboratories in Albuquerque, New Mexico. The detector uses a scintillator coupled to a microchannel-plate photomultiplier tube detector and extensive x-ray shielding.

  17. Microchannel plate response to high-energy neutrons

    SciTech Connect

    Persing, R.; Medley, S.S.

    1981-07-01

    The response of a chevron microchannel plate (MCP) to high energy neutrons was measured. The large area (4.6 cm x 13 cm) multi-anode MCP performance characteristics in the saturated pulse counting mode of operation were examined prior to neutron testing. This established a linear operating regime in which the neutron detection efficiency was measured to be 0.17% for 2.5 MeV-DD neutrons and 0.64% for 14 MeV-DT neutrons. The higher response measured for the 14 MeV-DT neutrons is attributed to gamma ray contamination induced by neutron collisions with materials located between the neutron source and the MCP detector. Due to their lower energy, the 2.5 MeV-DD response measurements are expected to be relatively free of gamma contamination and, hence, indicative of actual response of the MCP detector to neutrons in the 1 to 10 MeV energy range.

  18. High Intensity, Pulsed, D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, B. A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2009-03-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1010 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  19. High conduction neutron absorber to simulate fast reactor environment in an existing test reactor

    SciTech Connect

    Donna Post Guillen; Larry R. Greenwood; James R. Parry

    2014-06-22

    A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluence monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.

  20. SU-E-T-90: Accuracy of Calibration of Lithium-6 and -7 Enriched LiF TLDs for Neutron Measurements in High Energy Radiotherapy

    SciTech Connect

    Keehan, S; Franich, R; Taylor, M; Lonski, P; Kron, T

    2015-06-15

    Purpose: To determine the potential error involved in the interpretation of neutron measurements from medical linear accelerators (linacs) using TLD-600H and TLD-700H if standard AmBe and {sup 252}Cf neutron sources are used for calibration without proper inclusion of neutron energy spectrum information. Methods: The Kerma due to neutrons can be calculated from the energy released by various nuclear interactions (elastic and inelastic scatter, (n,α), (n,p), (n,d), (n,t), (n,2n), etc.). The response of each TLD can be considered the sum of the neutron and gamma components; each proportional to the Kerma. Using the difference between the measured TLD responses and the ratio of the calculated Kerma for each material, the neutron component of the response can be calculated. The Monte Carlo code MCNP6 has been used to calculate the neutron energy spectra resulting from photonuclear interactions in a Varian 21EX linac. TLDs have been exposed to the mixed (γ-n) field produced by a linac and AmBe and {sup 252}Cf standard neutron sources. Results: For dosimetry of neutrons from AmBe or {sup 252}Cf sources, assuming TLD-700H insensitivity to neutrons will Result in 10% or 20% overestimation of neutron doses respectively.For dosimetry of neutrons produced in a Varian 21EX, applying a calibration factor derived from a standard AmBe or {sup 252}Cf source will Result in an overestimation of neutron fluence, by as much as a factor of 47.The assumption of TLD-700H insensitivity to neutrons produced by linacs leads to a negligible error due to the extremely high Kerma ratio (600H/700H) of 3000 for the assumed neutron spectrum. Conclusion: Lithium-enriched TLDs calibrated with AmBe and/or {sup 252}Cf neutron sources are not accurate for use under the neutron energy spectrum produced by a medical linear accelerator.

  1. A bismuth activation counter for high sensitivity pulsed 14 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Burns, E. J. T.; Thacher, P. D.; Hassig, G. J.; Decker, R. D.; Romero, J. A.; Barrett, K. P.

    2011-08-01

    We have built a fast neutron bismuth activation counter that measures activation counts from pulsed 14-MeV neutron generators for incident neutron fluences between 30 and 300 neutrons/cm2 at 15.2 cm (6 in.). The activation counter consists of a large bismuth germanate (BGO) detector surrounded by a bismuth metal shield in front of and concentric with the cylindrical detector housing. The 14 MeV neutrons activate the 2.6-millisecond (ms) isomer in the shield and the detector by the reaction 209Bi (n,2nγ) 208mBi. The use of millisecond isomers and activation counting times minimizes the background from other activated materials and the environment. In addition to activation, the bismuth metal shields against other outside radiation sources. We have tested the bismuth activation counter, simultaneously, with two data acquisition systems (DASs) and both give similar results. The two-dimensional (2D) DAS and three dimensional (3D) DAS both consist of pulse height analysis (PHA) systems that can be used to discriminate against gamma radiations below 300 keV photon energy, so that the detector can be used strictly as a counter. If the counting time is restricted to less than 25 ms after the neutron pulse, there are less than 10 counts of background for single pulse operation in all our operational environments tested so far. High-fluence neutron generator operations are restricted by large dead times and pulse height saturation. When we operate our 3D DAS PHA system in list mode acquisition (LIST), real-time corrections to dead time or live time can be made on the scale of 1 ms time windows or dwell times. The live time correction is consistent with nonparalyzable models for dead time of 1.0±0.2 μs for our 3D DAS and 1.5±0.3 μs for our 2D DAS dominated by our fixed time width analog to digital converters (ADCs). With the same solid angle, we have shown that the bismuth activation counter has a factor of 4 increase in sensitivity over our lead activation counter

  2. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    NASA Astrophysics Data System (ADS)

    Geslot, B.; Vermeeren, L.; Filliatre, P.; Lopez, A. Legrand; Barbot, L.; Jammes, C.; Bréaud, S.; Oriol, L.; Villard, J.-F.

    2011-03-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 1020 n/cm2. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  3. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    SciTech Connect

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F.; Lopez, A. Legrand

    2011-03-15

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10{sup 20} n/cm{sup 2}. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  4. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions.

    PubMed

    Geslot, B; Vermeeren, L; Filliatre, P; Lopez, A Legrand; Barbot, L; Jammes, C; Bréaud, S; Oriol, L; Villard, J-F

    2011-03-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 10(20) n∕cm(2). A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  5. Laser generated neutron source for neutron resonance spectroscopy

    SciTech Connect

    Higginson, D. P.; Bartal, T.; McNaney, J. M.; Swift, D. C.; Hey, D. S.; Le Pape, S.; Mackinnon, A.; Kodama, R.; Tanaka, K. A.; Mariscal, D.; Beg, F. N.; Nakamura, H.; Nakanii, N.

    2010-10-15

    A neutron source for neutron resonance spectroscopy has been developed using high-intensity, short-pulse lasers. This technique will allow robust measurement of interior ion temperature of laser-shocked materials and provide insight into material equation of state. The neutron generation technique uses laser-accelerated protons to create neutrons in LiF through (p,n) reactions. The incident proton beam has been diagnosed using radiochromic film. This distribution is used as the input for a (p,n) neutron prediction code which is validated with experimentally measured neutron yields. The calculation infers a total fluence of 1.8x10{sup 9} neutrons, which are expected to be sufficient for neutron resonance spectroscopy temperature measurements.

  6. High resolution neutron imaging of water in PEM fuel cells

    SciTech Connect

    Mukundan, Rangachary; Borup, Rodney L; Davey, John R; Spendelow, Jacob S

    2008-01-01

    Optimal water management in Polymer Electrolyte Membrane (PEM) fuel cells is critical to improving the performance and durability of fuel cell systems especially during transient, start-up and shut-down operations. For example, while a high water content is desirable for improved membrane and catalyst ionomer conductivity, high water content can also block gas access to the triple-phase boundary resulting in lowered performance due to catalyst and gas diffusion layer (GDL) flooding. Visualizing liquid water by neutron imaging has been used over the past decade to study the water distribution inside operating fuel cells. In this paper, the results from our imaging at NIST using their recently installed higher resolution ({approx} 25 mm) Microchannel Plate (MCP) detector with a pixel pitch of 14.7 mm are presented. This detector is capable of quantitatively imaging the water inside the MEA (Membrane Electrode Assembly)/GDL (Gas Diffusion Layer) of working fuel cells and can provide the water profiles within these various components in addition to the channel water. Specially designed fuel cells (active area = 2.25 cm{sup 2}) have been used in order to take advantage of the full detector resolution. The cell design is illustrated in a figure where one of the current collector/end plates is shown. The serpentine pattern was machined into a block of aluminum and plated with nickel and then gold to form the flow field. The measurements were performed using beam no. 1 and aperture no. 2 with a fluence rate of 1.9 x 10{sup 6} neutrons cm{sup -2} sec{sup -1}. The cells were assembled with Gore{sup TM} Primea{sup R} MEAs and SGL Sigracet {sup R} 24 series GDLs (PRIMEA, GORE-SELECT and GORE are trademarks of W. L. Gore & Associates, Inc). All the cells were tested at 80 {sup o}C with 1.2 stoichiometry H{sub 2} and 2.0 stoichiometry air flows.

  7. Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current

    SciTech Connect

    J. Grames, R. Suleiman, P.A. Adderley, J. Clark, J. Hansknecht, D. Machie, M. Poelker, M.L. Stutzman

    2011-04-01

    GaAs-based dc high voltage photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed high average current facilities that must operate at tens of milliamperes or more. This paper describes techniques to maintain good vacuum while delivering beam, and techniques that minimize the ill effects of ion bombardment, the dominant mechanism that reduces photocathode yield of a GaAs-based dc high voltage photogun. Experimental results presented here demonstrate enhanced lifetime at high beam currents by: (a) operating with the drive laser beam positioned away from the electrostatic center of the photocathode, (b) limiting the photocathode active area to eliminate photoemission from regions of the photocathode that do not support efficient beam delivery, (c) using a large drive laser beam to distribute ion damage over a larger area, and (d) by applying a relatively low bias voltage to the anode to repel ions created within the downstream beam line. A combination of these techniques provided the best total charge extracted lifetimes in excess of 1000 C at dc beam currents up to 9.5 mA, using green light illumination of bulk GaAs inside a 100 kV photogun.

  8. High resolution characterization of modifications in fused silica after exposure to low fluence 355 nm laser at different repetition frequencies.

    PubMed

    Li, C H; Ju, X; Jiang, X D; Huang, J; Zhou, X D; Zheng, Z; Wu, W D; Zheng, W G; Li, Z X; Wang, B Y; Yu, X H

    2011-03-28

    We report on the characterization of modifications in fused silica after exposure to low fluence (2 J/cm2) 355 nm laser at repetition frequencies of 1 Hz, 5 Hz and 10 Hz. Synchrotron based XRF spectroscopy is employed to study concentration variation of metal inclusions in the surface layer. Positron annihilation lifetime spectroscopy is used to probe atomic size defects variation in bulk silica. FT-IR is used to characterize changes of bond length and angle of Si-O-Si covalent bond of irradiated silica. Compared to the basic frequency, the big loss of cerium and iron concentration, the size enlargement of vacancy cluster and the decrease of Si-O-Si covalent bond length after 10 Hz laser irradiation are illustrated by our data. These tiny modifications provide important data to investigate laser damage mechanism.

  9. Development of a High Fluence, High Conversion Efficiency X-Ray Silver Metal Foam Source at the NIF

    NASA Astrophysics Data System (ADS)

    May, M. J.; Colvin, J. D.; Kemp, G. E.; Thorn, D.; Widmann, K.; Blue, B. E.,

    2016-10-01

    High x-ray conversion efficiency (XRCE) L-shell Ag sources are being developed for High Energy Density experiments. The targets are nominally 4 mm in diameter, 4 mm tall cylinders of free standing Ag metal foam with densities of 10 - 30 mg/cm3 and made by a new technique of freeze drying an aqueous suspension of Ag nano wires. 192 laser beams from NIF are used to heat the targets with 150 TW of power in a 4 ns square in time pulse depositing 600 kJ into the target. XRCEs from these targets have been measured by using the Dante diode spectrometer to be 7% which is much less than the predictions from simulations. The nano wires at nominal solid density might not be homogenized sufficiently by the laser heating pulse which could limit the XRCE. To increase the XRCE, we plan to use a laser prepulse of 1 kJ to preheat the nano wires in the target before the main laser heating pulse. The results of these experiments will be discussed. This work was performed under the auspices of the US Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  10. High efficiency proportional neutron detector with solid liner internal structures

    SciTech Connect

    Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.

    2014-08-05

    A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.

  11. Interplanetary proton cumulated fluence model update

    NASA Astrophysics Data System (ADS)

    Glover, A.; Hilgers, A.; Rosenqvist, L.; Bourdarie, S.

    2008-11-01

    Solar particle events leading to important increase of particle fluxes at energies of order of magnitude ranging from MeV to GeV constitute an important hazard for space missions. They may lead to effects seen in microelectronics or damage to solar cells and constitute a potential hazard for manned missions. Cumulative damage is commonly expressed as a function of fluence which is defined as the integral of the flux over time. A priori deterministic estimates of the expected fluence cannot be made because over the time scale of a space mission, the fluence can be dominated by the contribution of a few rare and unpredictable high intensity events. Therefore, statistical approaches are required in order to estimate fluences likely to be encountered by a space mission in advance. This paper extends work done by Rosenqvist et al. [Rosenqvist, L., Hilgers, A., Evans, H., Daly, E., Hapgood, M., Stamper, R., Zwickl, R., Bourdarie, S., Boscher, D. Toolkit for updating interplanetary proton-cumulated fluence models. J. Spacecraft Rockets, 42(6), 1077 1090, 2005] to describe an updated predictive engineering model for the proton interplanetary fluence with energies >30 MeV. This model is derived from a complete list of solar proton fluences based on data from a number of calibrated sources covering almost three solar cycles.

  12. High-energy neutron spectroscopy with thick silicon detectors

    NASA Technical Reports Server (NTRS)

    Kinnison, James D.; Maurer, Richard H.; Roth, David R.; Haight, Robert C.

    2003-01-01

    The high-energy neutron component of the space radiation environment in thick structures such as the International Space Station contributes to the total radiation dose received by an astronaut. Detector design constraints such as size and mass have limited the energy range of neutron spectrum measurements in orbit to about 12 MeV in Space Shuttle studies. We present a new method for high-energy neutron spectroscopy using small silicon detectors that can extend these measurements to more than 500 MeV. The methodology is based on measurement of the detector response function for high-energy neutrons and inversion of this response function with measured deposition data to deduce neutron energy spectra. We also present the results of an initial shielding study performed with the thick silicon detector system for high-energy neutrons incident on polyethylene.

  13. The Jülich high-brilliance neutron source project

    NASA Astrophysics Data System (ADS)

    Rücker, U.; Cronert, T.; Voigt, J.; Dabruck, J. P.; Doege, P.-E.; Ulrich, J.; Nabbi, R.; Beßler, Y.; Butzek, M.; Büscher, M.; Lange, C.; Klaus, M.; Gutberlet, T.; Brückel, T.

    2016-01-01

    With the construction of the European Spallation Source ESS, the European neutron user community is looking forward to the brightest source worldwide. At the same time there is an ongoing concentration of research with neutrons to only a few but very powerful neutron facilities. Responding to this situation the Jülich Centre for Neutron Science has initiated a project for a compact accelerator driven high-brilliance neutron source, optimized for neutron scattering on small samples and to be realized at reasonable costs. The project deals with the optimization of potential projectiles, target and moderator concepts, versatile accelerator systems, cold sources, beam extraction systems and optimized instrumentation. A brief outline of the project, the achievements already reached, will be presented, as well as a vision for the future neutron landscape in Europe.

  14. Long-term biochemical and histological changes in the central nervous system of rats exposed to low fluences of high charge and high energy particles

    NASA Astrophysics Data System (ADS)

    Azzam, Edouard; Rabin, Bernard

    Accumulating evidence indicates that exposure of rodents to even low fluences of high charge (Z) and high energy (E) ions (HZE particles) can disrupt their cognitive and behavioral per-formance. Understanding the mechanisms underlying these effects has been considered critical for adequately estimating the risks to astronauts during and subsequent to prolonged space flights. To gain a greater understanding of the biochemical and molecular changes underlying radiation effects in the central nervous system, we targeted the head of male Sprague-Dawley rats with mean doses ranging from 0.1 to 50 cGy from titanium or oxygen ions of different energies. Molecular, biochemical and histological analyses in the different compartment of the central nervous system of rats sacrificed 20 months after irradiation will be reported. The effect of radiation dose, energy and quality will be highlighted. Particular focus will be on changes in protein level, protein oxidation, lipid peroxidation, mitochondrial function, the antioxidative network and apoptosis. The changes in brain tissues will be contrasted with biochemical and molecular changes in non-targeted tissues of the irradiated rats. Supported by grants from the US National Aeronautics and Space Administration

  15. Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators.

    PubMed

    Followill, David S; Stovall, Marilyn S; Kry, Stephen F; Ibbott, Geoffrey S

    2003-01-01

    The shielding calculations for high energy (>10 MV) linear accelerators must include the photoneutron production within the head of the accelerator. Procedures have been described to calculate the treatment room door shielding based on the neutron source strength (Q value) for a specific accelerator and energy combination. Unfortunately, there is currently little data in the literature stating the neutron source strengths for the most widely used linear accelerators. In this study, the neutron fluence for 36 linear accelerators, including models from Varian, Siemens, Elekta/Philips, and General Electric, was measured using gold-foil activation. Several of the models and energy combinations had multiple measurements. The neutron fluence measured in the patient plane was independent of the surface area of the room, suggesting that neutron fluence is more dependent on the direct neutron fluence from the head of the accelerator than from room scatter. Neutron source strength, Q, was determined from the measured neutron fluences. As expected, Q increased with increasing photon energy. The Q values ranged from 0.02 for a 10 MV beam to 1.44(x10(12)) neutrons per photon Gy for a 25 MV beam. The most comprehensive set of neutron source strength values, Q, for the current accelerators in clinical use are presented for use in calculating room shielding.

  16. Evaluation of the Fluence Conversion Factor for 32P in Sulfur

    SciTech Connect

    Wong, C. T.

    2016-03-18

    When 32S is exposed to neutrons it undergoes a 32S(n,p)32P reaction with a neutron cross section as shown in Figure 1. This reaction may be used to characterize the neutron fluence for neutrons greater than 3 MeV.

  17. High-Energy Neutron Backgrounds for Underground Dark Matter Experiments

    SciTech Connect

    Chen, Yu

    2016-01-01

    Direct dark matter detection experiments usually have excellent capability to distinguish nuclear recoils, expected interactions with Weakly Interacting Massive Particle (WIMP) dark matter, and electronic recoils, so that they can efficiently reject background events such as gamma-rays and charged particles. However, both WIMPs and neutrons can induce nuclear recoils. Neutrons are then the most crucial background for direct dark matter detection. It is important to understand and account for all sources of neutron backgrounds when claiming a discovery of dark matter detection or reporting limits on the WIMP-nucleon cross section. One type of neutron background that is not well understood is the cosmogenic neutrons from muons interacting with the underground cavern rock and materials surrounding a dark matter detector. The Neutron Multiplicity Meter (NMM) is a water Cherenkov detector capable of measuring the cosmogenic neutron flux at the Soudan Underground Laboratory, which has an overburden of 2090 meters water equivalent. The NMM consists of two 2.2-tonne gadolinium-doped water tanks situated atop a 20-tonne lead target. It detects a high-energy (>~ 50 MeV) neutron via moderation and capture of the multiple secondary neutrons released when the former interacts in the lead target. The multiplicity of secondary neutrons for the high-energy neutron provides a benchmark for comparison to the current Monte Carlo predictions. Combining with the Monte Carlo simulation, the muon-induced high-energy neutron flux above 50 MeV is measured to be (1.3 ± 0.2) ~ 10-9 cm-2s-1, in reasonable agreement with the model prediction. The measured multiplicity spectrum agrees well with that of Monte Carlo simulation for multiplicity below 10, but shows an excess of approximately a factor of three over Monte Carlo prediction for multiplicities ~ 10 - 20. In an effort to reduce neutron backgrounds for the dark matter experiment SuperCDMS SNO- LAB, an active neutron veto was developed

  18. High-Energy Neutron Spectra and Flux Measurements Below Ground

    NASA Astrophysics Data System (ADS)

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; Vetter, Kai

    2016-03-01

    High-energy neutrons are a ubiquitous and often poorly measured background. Below ground, these neutrons could potentially interfere with antineutrino based reactor monitoring experiments as well as other rare-event neutral particle detectors. We have designed and constructed a transportable fast neutron detection system for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The spectrometer uses a multiplicity technique in order to have a higher effective area than traditional transportable high-energy neutron spectrometers. Transportability ensures a common detector-related systematic bias for future measurements. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. A high-energy neutron may interact in the lead producing many secondary neutrons. The detector records the correlated secondary neutron multiplicity. Over many events, the response can be used to infer the incident neutron energy spectrum and flux. As a validation of the detector response, surface measurements have been performed; results confirm agreement with previous experiments. Below ground measurements have been performed at 3 depths (380, 600, and 1450 m.w.e.); results from these measurements will be presented.

  19. Design of a transportable high efficiency fast neutron spectrometer

    DOE PAGES

    Roecker, C.; Bernstein, A.; Bowden, N. S.; ...

    2016-04-12

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV andmore » a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. As a result, the multiplicity mode was found to be sensitive to the incident neutron angular distribution.« less

  20. Design of a transportable high efficiency fast neutron spectrometer

    SciTech Connect

    Roecker, C.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Dazeley, S.; Gerling, M.; Marleau, P.; Sweany, M. D.; Vetter, K.

    2016-04-12

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. As a result, the multiplicity mode was found to be sensitive to the incident neutron angular distribution.

  1. Design of a transportable high efficiency fast neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Roecker, C.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Dazeley, S.; Gerling, M.; Marleau, P.; Sweany, M. D.; Vetter, K.

    2016-08-01

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. The multiplicity mode was found to be sensitive to the incident neutron angular distribution.

  2. Superheavy Elements Production in High Intensive Neutron Fluxes

    NASA Astrophysics Data System (ADS)

    Lutostansky, Yu. S.; Lyashuk, V. I.; Panov, I. V.

    2013-06-01

    The possibility of superheavy elements production in high intensive neutron fluxes is being studied. A model of the transuranium isotopes production under conditions of pulse nucleosynthesis in a neutron flux with densities of up to ~1025 neutron/cm2 is considered. The pulse process allows us to divide it in time into two stages: the process of multiple neutron captures (with t < 10-6 s) and the subsequent β-decay of neutron-rich nuclei. The modeling of the transuranium yields takes into account the adiabatic character of the process, the probability of delayed fission, and the emission of delayed neutrons. A target with a binary composition of 238U and 239Pu, 248Cm, and 251Cf isotopes is used to predict the yields of heavy and superheavy isotopes.

  3. Gadolinium loaded plastic scintillators for high efficiency neutron detection

    NASA Astrophysics Data System (ADS)

    Ovechkina, Lena; Riley, Kent; Miller, Stuart; Bell, Zane; Nagarkar, Vivek

    2009-08-01

    Gadolinium has the highest thermal neutron absorption cross section of any naturally occurring element, and emits conversion electrons as well as atomic X-rays in over 50% of its neutron captures, which makes it a useful dopant in scintillators for detecting thermal neutrons. Gadolinium isopropoxide was studied as a possible dopant for styrene-based plastic scintillators as a convenient and inexpensive method to produce high-efficiency thermal neutron detectors. Plastic scintillators with gadolinium weight concentrations of up to 3% were transparent, uniform and defect-free and were characterized with spectral measurements performed under x-ray and neutron irradiation. The new material has the same characteristic emission of styrene with a maximum at approximately 425 nm, and a light output of 76% relative to the undoped plastic. A 13 mm thick sample containing 0.5% gadolinium by weight detected 46% of incident thermal neutrons, which makes this an attractive material for a variety of applications.

  4. Neutron dosimetry and damage calculations for the HFIR-JP-23 irradiations

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1996-10-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiment JP-23, which was conducted in target position G6 of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The maximum neutron fluence at midplane was 4.4E+22 n/cm{sup 2} resulting in about 9.0 dpa in type 316 stainless steel.

  5. Neutron dosimetry and damage calculations for the HFIR-JP-23 irradiations

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1997-04-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint U.S. Japanese experiment JP-23, which was conducted in target position G6 of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The maximum neutron fluence at midplanes was 4.4E+22 n/cm{sup 2} resulting in about 9.0 dpa in type 316 stainless steel.

  6. Medical Isotope Production using High Intensity Accelerator Neutrons

    NASA Astrophysics Data System (ADS)

    Nagai, Yasuki

    We proposed aprototype facility for the generation of radioisotopes with accelerator neutrons by deuterons. The neutrons are producedbynatC(d,n) with 40MeV 2 mA deuteron beams, and about 8.1 TBq/week of 99Mois produced by irradiating an enriched 100Mo sample with the neutrons.High-quality 99mTc can be separatedfrom an irradiated 100MoO3 sample by thermo-chromatographic separation.In this contribution we present the system to produce medical radioisotopes, such as 99Mo, 90Y, and 67Cu, and experimental studies on 99Mo and 67Cu produced by using accelerator neutrons.

  7. Polarized neutron reflectometry in high magnetic fields

    SciTech Connect

    Fritzsche, H.

    2005-11-15

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe{sub 2}/DyFe{sub 2} multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada.

  8. A High Count Rate Neutron Beam Monitor for Neutron Scattering Facilities

    SciTech Connect

    Barnett, Amanda; Crow, Lowell; Diawara, Yacouba; Hayward, J P; Hayward, Jason P; Menhard, Kocsis; Sedov, Vladislav N; Funk, Loren L

    2013-01-01

    Abstract Beam monitors are an important diagnostic tool in neutron science facilities. Present beam monitors use either ionization chambers in integration mode, which are slow and have no timing information, or pulse counters which can easily be saturated by high beam intensities. At high flux neutron scattering facilities, neutron beam monitors with very low intrinsic efficiency (10-5) are presently selected to keep the counting rate within a feasible range, even when a higher efficiency would improve the counting statistics and yield a better measurement of the incident beam. In this work, we report on a high count rate neutron beam monitor. This beam monitor offers good timing with an intrinsic efficiency of 10-3 and a counting rate capability of over 1,000,000 cps without saturation.

  9. Test of radiation hardness of CMOS transistors under neutron irradiation

    SciTech Connect

    Sadrozinski, H.F.W.; Rowe, W.A.; Seiden, A.; Spencer, E.; Hoffman, C.M.; Holtkamp, D.; Kinnison, W.W.; Sommer, W.F. Jr.; Ziock, H.J.

    1989-01-01

    We have tested 2 micron CMOS test structures from various foundries in the LAMPF Beam stop for radiation damage under prolongued neutron irradiation. The fluxes employed covered the region expected to be encountered at the SSC and led to fluences of up to 10/sup 14/ neutrons/cm/sup 2/ in about 500 hrs of running. We show that test structures which have been measured to survive ionizing radiation of the order MRad also survive these high neutron fluences. 5 refs., 4 figs.

  10. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2014-12-01

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  11. Development of high efficiency neutron detectors

    SciTech Connect

    Pickrell, M.M.; Menlove, H.O.

    1993-08-01

    We have designed a novel neutron detector system using conventional {sup 3}He detector tubes and composites of polyethylene, and graphite. At this time the design consists entirely of MCNP simulations of different detector configurations and materials. These detectors are applicable to low-level passive and active neutron assay systems such as the passive add-a-source and the {sup 252}Cf shuffler. Monte Carlo simulations of these neutron detector designs achieved efficiencies of over 35% for assay chambers that can accommodate 55-gal. drums. Only slight increases in the number of detector tubes and helium pressure are required. The detectors also have reduced die-away times. Potential applications are coincident and multiplicity neutron counting for waste disposal and safeguards. We will present the general design philosophy, underlying physics, calculation mechanics, and results.

  12. High-dose neutron detector development

    SciTech Connect

    Henzlova, Daniela; Menlove, Howard Olsen

    2016-01-14

    The development of advanced sustainable nuclear fuel cycles relying on used nuclear fuel is one of the key programs pursued by the DOE Office of Nuclear Energy to minimize waste generation, limit proliferation risk and maximize energy production using nuclear energy. Safeguarding of advanced nuclear fuel cycles is essential to ensure the safety and security of the nuclear material. Current non-destructive assay (NDA) systems typically employ fission chambers or 3He-based tubes for the measurement of used fuel. Fission chambers are capable of withstanding the high gamma-ray backgrounds; however, they provide very low detection efficiency on the order of 0.01%. To benefit from the additional information provided by correlated neutron counting [1] higher detection efficiencies are required. 3He-based designs allow for higher detection efficiencies; however, at the expense of slow signal rise time characteristics and higher sensitivity to the gamma-ray backgrounds. It is therefore desirable to evaluate and develop technologies with potential to exceed performance parameters of standard fission chamber-based or 3He-based detection systems currently used in the NDA instrumentation.

  13. Characterization of neutron yield and x-ray spectra of a High Flux Neutron Generator (HFNG)

    NASA Astrophysics Data System (ADS)

    Nnamani, Nnaemeka; HFNG Collaboration

    2015-04-01

    The High Flux Neutron Generator (HFNG) is a DD plasma-based source, with a self-loading target intended for fundamental science and engineering applications, including 40 Ar/39 Ar geochronology, neutron cross section measurements, and radiation hardness testing of electronics. Our first estimate of the neutron yield, based on the population of the 4.486 hour 115 In isomer gave a neutron yield of the order 108 n/sec; optimization is ongoing to achieve the design target of 1011 n/sec. Preliminary x-ray spectra showed prominent energy peaks which are likely due to atomic line-emission from back-streaming electrons accelerated up to 100 keV impinging on various components of the HFNG chamber. Our x-ray and neutron diagnostics will aid us as we continue to evolve the design to suppress back-streaming electrons, necessary to achieve higher plasma beam currents, and thus higher neutron flux. This talk will focus on the characterization of the neutron yield and x-ray spectra during our tests. A collimation system is being installed near one of the chamber ports for improved observation of the x-ray spectra. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and the UC Office of the President Award 12-LR-238745.

  14. Nontargeted Stressful Effects in Normal Human Fibroblast Cultures Exposed to Low Fluences of High Charge, High Energy (HZE) Particles: Kinetics of Biologic Responses and Significance of Secondary Radiations

    PubMed Central

    Gonon, Géraldine; Groetz, Jean-Emmanuel; de Toledo, Sonia M.; Howell, Roger W.; Fromm, Michel; Azzam, Edouard I.

    2014-01-01

    The induction of nontargeted stressful effects in cell populations exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation. We investigated the up-regulation of stress markers in confluent normal human fibroblast cultures exposed to 1,000 MeV/u iron ions [linear energy transfer (LET) ~151 keV/μm] or 600 MeV/u silicon ions (LET ~50 keV/μm) at mean absorbed doses as low as 0.2 cGy, wherein 1–3% of the cells were targeted through the nucleus by a primary particle. Within 24 h postirradiation, significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation were detected, which suggested participation in the stress response of cells not targeted by primary particles. This was supported by in situ studies that indicated greater increases in 53BP1 foci formation, a marker of DNA damage. than expected from the number of primary particle traversals. The effect was expressed as early as 15 min after exposure, peaked at 1 h and decreased by 24 h. A similar tendency occurred after exposure of the cell cultures to 0.2 cGy of 3.7 MeV α particles (LET ~109 keV/μm) that targets ~1.6% of nuclei, but not after 0.2 cGy from 290 MeV/u carbon ions (LET ~13 keV/μm) by which, on average, ~13% of the nuclei were hit, which highlights the importance of radiation quality in the induced effect. Simulations with the FLUKA multi-particle transport code revealed that fragmentation products, other than electrons, in cell cultures exposed to HZE particles comprise <1% of the absorbed dose. Further, the radial spread of dose due to secondary heavy ion fragments is confined to approximately 10–20 μm. Thus, the latter are unlikely to significantly contribute to stressful effects in cells not targeted by primary HZE particles. PMID:23465079

  15. 90° Neutron emission from high energy protons and lead ions on a thin lead target

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Birattari, C.; Foglio Para, A.; Mitaroff, A.; Silari, M.; Ulrici, L.

    2002-01-01

    The neutron emission from a relatively thin lead target bombarded by beams of high energy protons/pions and lead ions was measured at CERN in one of the secondary beam lines of the Super Proton Synchrotron for radiation protection and shielding calculations. Measurements were performed with three different beams: 208Pb 82+ lead ions at 40 GeV/ c per nucleon and 158 GeV/ c per nucleon, and 40 GeV/ c mixed protons/pions. The neutron yield and spectral fluence per incident ion on target were measured at 90° with respect to beam direction. Monte-Carlo simulations with the FLUKA code were performed for the case of protons and pions and the results found in good agreement with the experimental data. A comparison between simulations and experiment for protons, pions and lead ions have shown that—for such high energy heavy ion beams—a reasonable estimate can be carried out by scaling the result of a Monte-Carlo calculation for protons by the projectile mass number to the power of 0.80-0.84.

  16. A phoswich detector for high-energy neutrons.

    PubMed

    Takada, M; Nakamura, T

    2007-01-01

    A phoswich detector was developed to measure neutron energy spectra from a few MeV to a few hundreds MeV in aircrafts and space crafts. Radiation fields, which both crafts are exposured, consist of neutrons, gamma rays, protons, etc. The phoswich detector can measure neutrons separately from gamma rays and protons. The capability of particle discrimination was tested at HIMAC and was found to be excellent. Detector response functions to neutrons were simulated with the MCNPX code using the measured light outputs of charged particles and were measured with quasi-mono-energetic neutrons produced by the p-Li reaction at the NIRS cyclotron. Test flight measurements at high altitudes, 6.5 and 8.5 km, were performed above the middle part of Japan (cut-off rigidity, 12 GV).

  17. Property changes of G347A graphite due to neutron irradiation

    DOE PAGES

    Campbell, Anne A.; Katoh, Yutai; Snead, Mary A.; ...

    2016-08-18

    A new, fine-grain nuclear graphite, grade G347A from Tokai Carbon Co., Ltd., has been irradiated in the High Flux Isotope Reactor at Oak Ridge National Laboratory to study the materials property changes that occur when exposed to neutron irradiation at temperatures of interest for Generation-IV nuclear reactor applications. Specimen temperatures ranged from 290°C to 800 °C with a maximum neutron fluence of 40 × 1025 n/m2 [E > 0.1 MeV] (~30dpa). Lastly, observed behaviors include: anisotropic behavior of dimensional change in an isotropic graphite, Young's modulus showing parabolic fluence dependence, electrical resistivity increasing at low fluence and additional increase atmore » high fluence, thermal conductivity rapidly decreasing at low fluence followed by continued degradation, and a similar plateau value of the mean coefficient of thermal expansion for all irradiation temperatures.« less

  18. Property changes of G347A graphite due to neutron irradiation

    SciTech Connect

    Campbell, Anne A.; Katoh, Yutai; Snead, Mary A.; Takizawa, Kentaro

    2016-08-18

    A new, fine-grain nuclear graphite, grade G347A from Tokai Carbon Co., Ltd., has been irradiated in the High Flux Isotope Reactor at Oak Ridge National Laboratory to study the materials property changes that occur when exposed to neutron irradiation at temperatures of interest for Generation-IV nuclear reactor applications. Specimen temperatures ranged from 290°C to 800 °C with a maximum neutron fluence of 40 × 1025 n/m2 [E > 0.1 MeV] (~30dpa). Lastly, observed behaviors include: anisotropic behavior of dimensional change in an isotropic graphite, Young's modulus showing parabolic fluence dependence, electrical resistivity increasing at low fluence and additional increase at high fluence, thermal conductivity rapidly decreasing at low fluence followed by continued degradation, and a similar plateau value of the mean coefficient of thermal expansion for all irradiation temperatures.

  19. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  20. Algorithms for optimizing CT fluence control

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-03-01

    The ability to customize the incident x-ray fluence in CT via beam-shaping filters or mA modulation is known to improve image quality and/or reduce radiation dose. Previous work has shown that complete control of x-ray fluence (ray-by-ray fluence modulation) would further improve dose efficiency. While complete control of fluence is not currently possible, emerging concepts such as dynamic attenuators and inverse-geometry CT allow nearly complete control to be realized. Optimally using ray-by-ray fluence modulation requires solving a very high-dimensional optimization problem. Most optimization techniques fail or only provide approximate solutions. We present efficient algorithms for minimizing mean or peak variance given a fixed dose limit. The reductions in variance can easily be translated to reduction in dose, if the original variance met image quality requirements. For mean variance, a closed form solution is derived. The peak variance problem is recast as iterated, weighted mean variance minimization, and at each iteration it is possible to bound the distance to the optimal solution. We apply our algorithms in simulations of scans of the thorax and abdomen. Peak variance reductions of 45% and 65% are demonstrated in the abdomen and thorax, respectively, compared to a bowtie filter alone. Mean variance shows smaller gains (about 15%).

  1. A High-Sensitivity Fast Neutron Imager

    SciTech Connect

    Goldsmith, John E. M.; Brennan, James S.; Brubaker, Erik; Cabrera-Palmer, Belkis; Gerling, Mark D; Marleau, Peter; Mascarenhas, Nicholas; Reyna, David

    2014-10-01

    A wide range of NSC (Neutron Scatter Camera) activities were conducted under this lifecycle plan. This document outlines the highlights of those activities, broadly characterized as system improvements, laboratory measurements, and deployments, and presents sample results in these areas. Additional information can be found in the documents that reside in WebPMIS.

  2. A U.S. high-flux neutron facility for fusion materials development

    SciTech Connect

    Rei, Donald J

    2010-01-01

    Materials for a fusion reactor first wall and blanket structure must be able to reliably function in an extreme environment that includes 10-15 MW-year/m{sup 2} neutron and heat fluences. The various materials and structural challenges are as difficult and important as achieving a burning plasma. Overcoming radiation damage degradation is the rate-controlling step in fusion materials development. Recent advances with oxide dispersion strengthened ferritic steels show promise in meeting reactor requirements, while multi-timescale atomistic simulations of defect-grain boundary interactions in model copper systems reveal surprising self-annealing phenomenon. While these results are promising, simultaneous evaluation of radiation effects displacement damage ({le} 200 dpa) and in-situ He generation ({le} 2000 appm) at prototypical reactor temperatures and chemical environments is still required. There is currently no experimental facility in the U.S. that can meet these requirements for macroscopic samples. The E.U. and U.S. fusion communities have recently concluded that a fusion-relevant, high-flux neutron source for accelerated characterization of the effects of radiation damage to materials is a top priority for the next decade. Data from this source will be needed to validate designs for the multi-$B next-generation fusion facilities such as the CTF, ETF, and DEMO, that are envisioned to follow ITER and NIF.

  3. Neutron dosimetry with TL albedo dosemeters at high energy accelerators.

    PubMed

    Haninger, T; Fehrenbacher, G

    2007-01-01

    The GSF-Personal Monitoring Service uses the TLD albedo dosemeter as standard neutron personal dosemeter. Due to its low sensitivity for fast neutrons however, it is generally not recommended for workplaces at high-energy accelerators. Test measurements with the albedo dosemeter were performed at the accelerator laboratories of GSI in Darmstadt and DESY in Hamburg to reconsider this hypothesis. It revealed that the albedo dosemeter can also be used as personal dosemeter at these workplaces, because at all measurement locations a significant part of neutrons with lower energies could be found, which were produced by scattering at walls or the ground.

  4. Velocity of chloroplast avoidance movement is fluence rate dependent.

    PubMed

    Kagawa, Takatoshi; Wada, Masamitsu

    2004-06-01

    In Arabidopsis leaves, chloroplast movement is fluence rate dependent. At optimal, lower light fluences, chloroplasts accumulate at the cell surface to maximize photosynthetic potential. Under high fluence rates, chloroplasts avoid incident light to escape photodamage. In this paper, we examine the phenomenon of chloroplast avoidance movement in greater detail and demonstrate a proportional relationship between fluence rate and the velocity of chloroplast avoidance. In addition we show that the amount of light-activated phototropin2, the photoreceptor for the avoidance response, likely plays a role in this phenomenon, as heterozygous mutant plants show a reduced avoidance velocity compared to that of homozygous wild type plants.

  5. High-Yield D-T Neutron Generator

    SciTech Connect

    Ludewigt, B.A.; Wells, R.P.; Reijonen, J.

    2006-11-15

    A high-yield D-T neutron generator has been developed for neutron interrogation in homeland security applications such as cargo screening. The generator has been designed as a sealed tube with a performance goal of producing 5 {center_dot} 10{sup 11} n/s over a long lifetime. The key generator components developed are a radio-frequency (RF) driven ion source and a beam-loaded neutron production target that can handle a beam power of 10 kW. The ion source can provide a 100 mA D{sup +}/T{sup +} beam current with a high fraction of atomic species and can be pulsed up to frequencies of several kHz for pulsed neutron generator operation. Testing in D-D operation has been started.

  6. A neutron diagnostic for high current deuterium beams

    SciTech Connect

    Rebai, M.; Perelli Cippo, E.; Cavenago, M.; Dalla Palma, M.; Pasqualotto, R.; Tollin, M.; Croci, G.; Gervasini, G.; Ghezzi, F.; Grosso, G.; Tardocchi, M.; Murtas, F.; Gorini, G.

    2012-02-15

    A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.

  7. Future directions in high-pressure neutron diffraction

    NASA Astrophysics Data System (ADS)

    Guthrie, M.

    2015-04-01

    The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy.

  8. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Bedogni, R.; Caresana, M.; Charitonidis, N.; Chiti, M.; Esposito, A.; Ferrarini, M.; Severino, C.; Silari, M.

    2012-12-01

    The accurate determination of the ambient dose equivalent in the mixed neutron-photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an "in-field" calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H*(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well

  9. High yield neutron generators using the DD reaction

    SciTech Connect

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-19

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  10. High yield neutron generators using the DD reaction

    NASA Astrophysics Data System (ADS)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-01

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 × 109 n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 μs have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  11. Fluorescence and Raman spectra on surface of K9 glass by high fluence ultraviolet laser irradiation at 355 nm

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Huang, Jin; Geng, Feng; Zhou, Xiaoyan; Feng, Shiquan; Ren, Dahua; Cheng, Xinlu; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo; Tang, Yongjian

    2013-11-01

    In order to explore the damage mechanisms of K9 glass irradiated by high energy density ultraviolet laser, laser-induced fluorescence and Raman spectra were investigated. Compared the fluorescence spectra of damaged area, undamaged area and sub-damaged area, it can be conclude that the fluorescence spectrum of sub-damaged area is different from the structure of the other two areas. Especially, the main peak of the spectra at 415 nm reveals the unique characteristics of K9 glass. The structure at the sub-damaged area enhances intensity of the Raman scattering spectra. Three peaks of the spectra at about 500 nm and two characteristic peaks at about 550 nm exhibit the characterization of damaged area. A peak of the Raman scattering spectra at 350 nm which related to water can be observed. The relationship between intensity of Raman scattering and laser intensity at 355 nm is investigated by confocal Raman microscopy. At sub-damage area, signal of Raman scattering is rather high and decreased dramatically with respect to energy density. The major band at about 1470 cm-1 sharpened and moved to higher frequency with densification. These phenomena demonstrate that the structure of sub-damaged area has some characterization compared with the damaged area. The investigation of defect induced fluorescence and Raman spectra on surface of K9 glass is important to explore the damage mechanisms of optical materials irradiated by ultraviolet laser irradiation at 355 nm.

  12. High sensitivity, solid state neutron detector

    DOEpatents

    Stradins, Pauls; Branz, Howard M; Wang, Qi; McHugh, Harold R

    2015-05-12

    An apparatus (200) for detecting slow or thermal neutrons (160). The apparatus (200) includes an alpha particle-detecting layer (240) that is a hydrogenated amorphous silicon p-i-n diode structure. The apparatus includes a bottom metal contact (220) and a top metal contact (250) with the diode structure (240) positioned between the two contacts (220, 250) to facilitate detection of alpha particles (170). The apparatus (200) includes a neutron conversion layer (230) formed of a material containing boron-10 isotopes. The top contact (250) is pixilated with each contact pixel extending to or proximate to an edge of the apparatus to facilitate electrical contacting. The contact pixels have elongated bodies to allow them to extend across the apparatus surface (242) with each pixel having a small surface area to match capacitance based upon a current spike detecting circuit or amplifier connected to each pixel. The neutron conversion layer (860) may be deposited on the contact pixels (830) such as with use of inkjet printing of nanoparticle ink.

  13. High sensitivity, solid state neutron detector

    DOEpatents

    Stradins, Pauls; Branz, Howard M.; Wang, Qi; McHugh, Harold R.

    2013-10-29

    An apparatus (200) for detecting slow or thermal neutrons (160) including an alpha particle-detecting layer (240) that is a hydrogenated amorphous silicon p-i-n diode structure. The apparatus includes a bottom metal contact (220) and a top metal contact (250) with the diode structure (240) positioned between the two contacts (220, 250) to facilitate detection of alpha particles (170). The apparatus (200) includes a neutron conversion layer (230) formed of a material containing boron-10 isotopes. The top contact (250) is pixilated with each contact pixel extending to or proximate to an edge of the apparatus to facilitate electrical contacting. The contact pixels have elongated bodies to allow them to extend across the apparatus surface (242) with each pixel having a small surface area to match capacitance based upon a current spike detecting circuit or amplifier connected to each pixel. The neutron conversion layer (860) may be deposited on the contact pixels (830) such as with use of inkjet printing of nanoparticle ink.

  14. Neutronics Modeling of the High Flux Isotope Reactor using COMSOL

    SciTech Connect

    Chandler, David; Primm, Trent; Freels, James D; Maldonado, G Ivan

    2011-01-01

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory is a versatile 85 MWth research reactor with cold and thermal neutron scattering, materials irradiation, isotope production, and neutron activation analysis capabilities. HFIR staff members are currently in the process of updating the thermal hydraulic and reactor transient modeling methodologies. COMSOL Multiphysics has been adopted for the thermal hydraulic analyses and has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. Modeling reactor transients is a challenging task because of the coupling of neutronics, heat transfer, and hydrodynamics. This paper presents a preliminary COMSOL-based neutronics study performed by creating a two-dimensional, two-group, diffusion neutronics model of HFIR to study the spatially-dependent, beginning-of-cycle fast and thermal neutron fluxes. The 238-group ENDF/B-VII neutron cross section library and NEWT, a two-dimensional, discrete-ordinates neutron transport code within the SCALE 6 code package, were used to calculate the two-group neutron cross sections required to solve the diffusion equations. The two-group diffusion equations were implemented in the COMSOL coefficient form PDE application mode and were solved via eigenvalue analysis using a direct (PARDISO) linear system solver. A COMSOL-provided adaptive mesh refinement algorithm was used to increase the number of elements in areas of largest numerical error to increase the accuracy of the solution. The flux distributions calculated by means of COMSOL/SCALE compare well with those calculated with benchmarked three-dimensional MCNP and KENO models, a necessary first step along the path to implementing two- and three-dimensional models of HFIR in COMSOL for the purpose of studying the spatial dependence of transient-induced behavior in the reactor core.

  15. Superheated emulsions as high-energy neutron dosemeters.

    PubMed

    Das, Mala; Sawamura, Teruko; Abe, Masashi; Kaneko, Junichi H; Homma, Akira; Fujita, Fumiyuki; Tsuda, Shuichi; Nishitani, Takeo

    2004-01-01

    Superheated emulsions being inexpensive, easy to fabricate, and having tissue equivalent composition make them as one of the popular neutron dosemeters. One more advantage is that they can be made insensitive to gamma rays by the choice of the sensitive liquid. It is observed that the response of commercially available bubble detector to neutron decreases above 20 MeV while its response is roughly flat in the 0.1-15 MeV region. This restricts its application as a dosemeter to high-energy neutrons. The response of bubble detector from Bubble Technology Industries, has been observed by using Pb-breeder for high-energy neutrons from different facilities in Japan. It is observed that 2-3 cm Pb-breeder is effective in increasing the response of the detector to the nominal value. Theoretical calculation using MCNPX code indicates an increase in neutrons in the energy range of 0.1-10 MeV with Pb-breeder. The present work indicates the possibility of using the bubble detector as a dosemeter to high-energy neutron using a Pb-breeder of proper thickness.

  16. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    industry, from the initial fuel enrichment and fabrication processes right through to storage or reprocessing, and neutron metrology is clearly important in this area. Neutron fields do, however, occur in other areas, for example where neutron sources are used in oil well logging and moisture measurements. They also occur around high energy accelerators, including photon linear accelerators used for cancer therapy, and are expected to be a more serious problem around the new hadron radiation therapy facilities. Roughly 50% of the cosmic ray doses experienced by fliers at the flight altitudes of commercial aircraft are due to neutrons. Current research on fusion presents neutron metrology with a whole new range of challenges because of the very high fluences expected. One of the most significant features of neutron fields is the very wide range of possible neutron energies. In the nuclear industry, for example, neutrons occur with energies from those of thermal neutrons at a few meV to the upper end of the fission spectrum at perhaps 10 MeV. For cosmic ray dosimetry the energy range extends into the GeV region. This enormous range sets a challenge for designing measuring devices and a parallel challenge of developing measurement standards for characterizing these devices. One of the major considerations when deciding on topics for this special issue was agreeing on what not to include. Modelling, i.e. the use of radiation transport codes, is now a very important aspect of neutron measurements. These calculations are vital for shielding and for instrument design; nevertheless, the topic has only been included here where it has a direct bearing on metrology and the development of standards. Neutron spectrometry is an increasingly important technique for unravelling some of the problems of dose equivalent measurements and for plasma diagnostics in fusion research. However, this topic is at least one step removed from primary metrology and so it was felt that it should not be

  17. High fluence swift heavy ion structure modification of the SiO2/Si interface and gate insulator in 65 nm MOSFETs

    NASA Astrophysics Data System (ADS)

    Ma, Yao; Gao, Bo; Gong, Min; Willis, Maureen; Yang, Zhimei; Guan, Mingyue; Li, Yun

    2017-04-01

    In this work, a study of the structure modification, induced by high fluence swift heavy ion radiation, of the SiO2/Si structures and gate oxide interface in commercial 65 nm MOSFETs is performed. A key and novel point in this study is the specific use of the transmission electron microscopy (TEM) technique instead of the conventional atomic force microscope (AFM) or scanning electron microscope (SEM) techniques which are typically performed following the chemical etching of the sample to observe the changes in the structure. Using this method we show that after radiation, the appearance of a clearly visible thin layer between the SiO2 and Si is observed presenting as a variation in the TEM intensity at the interface of the two materials. Through measuring the EDX line scans we reveal that the Si:O ratio changed and that this change can be attributed to the migration of the Si towards interface after the Si-O bond is destroyed by the swift heavy ions. For the 65 nm MOSFET sample, the silicon substrate, the SiON insulator and the poly-silicon gate interfaces become blurred under the same irradiation conditions.

  18. Neutron/muon correlation functions to improve neutron detection capabilities outside nuclear facilities

    NASA Astrophysics Data System (ADS)

    Ordinario, Donald Thomas

    The natural neutron background rate is largely due to cosmic ray interactions in the atmosphere and the subsequent neutron emission from the interaction products. The neutron background is part of a larger cosmic radiation shower that also includes electrons, gamma rays, and muons. Since neutrons interact much differently than muons in building materials, the muon and neutron fluence rates in the natural background can be compared to the measured muon and neutron fluence rate when shielded by common building materials. The simultaneous measurement of muon and neutron fluence rates might allow for an earlier identification of man-made neutron sources, such as hidden nuclear materials. This study compares natural background neutron rates to computer simulated neutron rates shielded by common structural and building materials. The characteristic differences between neutrons and muons resulted in different attenuation properties under the same shielded conditions. Correlation functions between cosmic ray generated neutrons and muons are then used to predict neutron fluence rates in different urban environments.

  19. High Energy Neutron Induced Gamma Production

    SciTech Connect

    Brown, D A; Johnson, M; Navratil, P

    2007-09-28

    N Division has an interest in improving the physics and accuracy of the gamma data it provides to its customers. It was asked to look into major gamma producing reactions for 14 MeV incident neutrons for several low-Z materials and determine whether LLNL's processed data files faithfully represent the current state of experimental and theoretical knowledge for these reactions. To address this, we surveyed the evaluations of the requested materials, made recommendations for the next ENDL release and noted isotopes that will require further experimental study. This process uncovered several major problems in our translation and processing of the ENDF formatted evaluations, most of which have been resolved.

  20. Correlated Observations of Epithermal Neutrons and Polar Illumination for Orbital Neutron Detectors

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Malakhov, A.; Livengood, T.; Milikh, G. M.; Namkung, M.; Nandikotkur, G.; Neumann, G.; Smith, D.; Sagdeev, R.; Sanin, A. G.; Starr, R. D.; Trombka, J. I.

    2012-01-01

    We correlate Lunar Reconnaisance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) and the Lunar Prospector Neutron Spectrometer's (LPNS) orbital epithermal neutron maps of the Lunar high-latitudes with co-registered illumination maps derived from the Lunar Orbiter Laser Altimeter (LOLA) topography. Epithermal neutron count rate maps were derived from the LEND: 1) Collimated Sensor for Epithermal Neutrons, CSETNI-4 2) Uncollimated Sensor for Epithermal Neutrons, SETN and the Uncollimated Lunar Prospector: 3) Low-altitude and 4) High-altitude mapping phases. In this abstract we illustrate 1) and 3) and include 2) and 4) in our presentation. The correlative study provides unique perspectives on the regional epithermal neutron fluences from the Lunar polar regions under different detector and altitude configurations.

  1. High-Energy Neutron Imaging Development at LLNL

    SciTech Connect

    Hall, J M; Rusnak, B; Shen, S

    2005-02-16

    We are proceeding with the development of a high-energy (10 MeV) neutron imaging system for use as an inspection tool in nuclear stockpile stewardship applications. Our goal is to develop and deploy an imaging system capable of detecting cubic-mm-scale voids, cracks or other significant structural defects in heavily-shielded low-Z materials within nuclear device components. The final production-line system will be relatively compact (suitable for use in existing facilities within the DOE complex) and capable of acquiring both radiographic and tomographic (CT) images. In this report, we will review our recent programmatic accomplishments, focusing primarily on progress made in FY04. The design status of the high-intensity, accelerator-driven neutron source and large-format imaging detector associated with the system will be discussed and results from a recent high-energy neutron imaging experiment conducted at the Ohio University Accelerator Laboratory (OUAL) will also be presented.

  2. Comparison of Epidermal/Dermal Damage Between the Long-Pulsed 1064 nm Nd:YAG and 755 nm Alexandrite Lasers Under Relatively High Fluence Conditions: Quantitative and Histological Assessments

    PubMed Central

    Lee, Ju Hwan; Park, So Ra; Jo, Jeong Ho; Park, Sung Yun; Seo, Young Kwon

    2014-01-01

    Abstract Objective: The purpose of this study was to compare degrees of epidermal/dermal tissue damage quantitatively and histologically after laser irradiation, to find ideal treatment conditions with relatively high fluence for skin rejuvenation. Background data: A number of recent studies have evaluated the clinical efficacy and safety of therapeutic lasers under relatively low fluence conditions. Methods: We transmitted the long-pulsed 1064 nm Nd:YAG and 755 nm Alexandrite lasers into pig skin according to different fluences and spot diameters, and estimated epidermal/dermal temperatures. Pig skin specimens were stained with hematoxylin and eosin for histological assessments. The fluence conditions comprised 26, 30, and 36 J/cm2, and the spot diameter conditions were 5, 8, and 10 mm. Pulse duration was 30 ms for all experiments. Results: Both lasers produced reliable thermal damage on the dermis without any serious epidermal injuries, under relatively high fluence conditions. The 1064 nm laser provided more active fibrous formations than the 755 nm laser, while higher risks for tissue damages simultaneously occurred. Conclusions: The ideal treatment conditions for skin rejuvenation were 8 mm diameter with 30 J/cm2 and 10 mm diameter with 26 J/cm2 for the 1064 nm laser, and 8 mm diameter with 36 J/cm2 and 10 mm diameter with 26 J/cm2 for the 755 nm laser. PMID:24992273

  3. Leaf development and phytochrome modulate the activation ofpsbD-psbC transcription by high-fluence blue light in barley chloroplasts.

    PubMed

    Christopher, D A

    1996-03-01

    Activation ofpsbD transcription by light assists in maintaining the synthesis of the PS II reaction center protein, D2, which is photodamaged in plants exposed to high light. In this study, the photosensory pathways and mechanisms that regulate the expression of thepsbD-psbC light-responsive promoter, LRP, were investigated during barley (Hordeum vulgare L.) seedling development. Accumulation ofpsbD-psbC mRNAs in response to light was observed in apical sections of primary leaves with little or no increase in mRNAs in basal sections. In both 4.5- and 7.5-day-old etiolated seedlings, blue light was most effective for activating mRNA accumulation from thepsbD-psbC LRP. However, the response of the LRP to red light increased 7-fold in 7.5-day relative to 4.5-day-old seedlings. Blue light preferentially activatedpsbD-psbC transcription, while red light was most effective for activating total plastid transcription and the expression of genes encoding the small (RbcS) and large (rbcL) subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase and Chl-a/b-binding protein (Lhcb). The stimulatory effects of red light onpsbD-psbC expression were partially reversed, and of blue light were not reversed, by subsequent pulses of far-red light. In contrast, continuous far-red light given together with blue light enhancedpsbD-psbC transcription in a synergistic manner. These observations indicate that phytochrome modulates the effects of high-fluence blue light onpsbD-psbC transcription by affecting total plastid transcription.

  4. Embrittlement of CrMo steels after low fluence irradiation in HFIR

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Alexander, D. J.

    1995-02-01

    Subsize Charpy impact specimens of 9Cr1MoVNb (modified 9Cr1Mo) and 12Cr1MoVW (Sandvik HT9) steels and 12Cr1MoVW with 2% Ni (12Cr1MoVW2Ni) were irradiated in the High Flux Isotope Reactor (HFIR) at 300 and 400°C to damage levels up to 2.5 dpa. The objective was to study the effect of the simultaneous formation of displacement damage and transmutation helium on impact toughness. Displacement damage was produced by fast neutrons, and helium was formed by the reaction of 58Ni with thermal neutrons in the mixed-neutron spectrum of HFIR. Despite the low fluence relative to previous irradiations of these steels, significant increases in the ductile-brittle transition temperature (DBTT) occurred. The 12Cr1MoVW2Ni steel irradiated at 400°C had the largest increase in DBTT and displayed indications of intergranular fracture. A mechanism is proposed to explain how helium can affect the fracture behavior of this latter steel in the present tests, and how it affected all three steels in previous experiments, where the steels were irradiated to higher fluences.

  5. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    SciTech Connect

    Lacy, Jeffrey L

    2009-05-22

    Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically

  6. Construction of monoenergetic neutron calibration fields using 45Sc(p, n)45Ti reaction at JAEA.

    PubMed

    Tanimura, Y; Saegusa, J; Shikaze, Y; Tsutsumi, M; Shimizu, S; Yoshizawa, M

    2007-01-01

    The 8 and 27 keV monoenergetic neutron calibration fields have been developed by using (45)Sc(p, n)(45)Ti reaction. Protons from a 4-MV Pelletron accelerator are used to bombard a thin scandium target evaporated onto a platinum disc. The proton energies are finely adjusted to the resonance to generate the 8 and 27 keV neutrons by applying a high voltage to the target assemblies. The neutron energies were measured using the time-of-flight method with a lithium glass scintillation detector. The neutron fluences at a calibration point located at 50 cm from the target were evaluated using Bonner spheres. A long counter was placed at 2.2 m from the target and at 60 degrees to the direction of the proton beam in order to monitor the fluence at the calibration point. Fluence and dose equivalent rates at the calibration point are sufficient to calibrate many types of the neutron survey metres.

  7. Multi-purpose neutron radiography system

    SciTech Connect

    Barton, J.P.; Bryant, L.E.; Berry, P.

    1996-07-01

    A conceptual design is given for a low cost, multipurpose radiography system suited for the needs of the Los Alamos National Laboratory (LANL). The proposed neutron source is californium-252. One purpose is to provide an in-house capability for occasional, reactor quality, neutron radiography thus replacing the recently closed Omega-West Reactor. A second purpose is to provide a highly reliable standby transportable neutron radiography system. A third purpose is to provide for transportable neutron probe gamma spectroscopy techniques. The cost is minimized by shared use of an existing x-ray facility, and by use of an existing transport cask. The achievable neutron radiography and radioscopy performance characteristics have been verified. The demonstrated image qualities range from high resolution gadolinium - SR film, with L:D = 100:1, to radioscopy using a LIXI image with L:D = 30:1 and neutron fluence 3.4 x 10{sup 5} n/cm{sup 2}.

  8. Material issues relating to high power spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Futakawa, M.

    2015-02-01

    Innovative researches using neutrons are being performed at the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), in which a mercury target system is installed for MW-class pulse spallation neutron sources. In order to produce neutrons by the spallation reaction, proton beams are injected into the mercury target. At the moment, when the intense proton beam hits the target, pressure waves are generated in mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel, leading to negative pressure that may cause cavitation along the vessel wall, i.e. on the interface between liquid and solid metals. On the other hand, the structural materials are subjected to irradiation damage due to protons and neutrons, very high cycle fatigue damages and so-called "liquid metal embrittlement". That is, the structural materials must be said to be exposed to the extremely severe environments. In the paper, research and development relating to the material issues in the high power spallation neutron sources that has been performed so far at J-PARC is summarized.

  9. Extending neutron activation analysis to materials with high concentrations of neutron absorbing elements

    NASA Astrophysics Data System (ADS)

    Chilian, Cornelia

    The purpose of this study was to investigate epithermal neutron self-shielding for all nuclides used in Neutron Activation Analysis, NAA. The study started with testing the theory and measuring the nuclear factors characterizing thermal and epithermal self-shielding for 1 mL cylindrical samples containing the halogens Cl, Br and I irradiated in a mixed thermal and epithermal neutron spectrum. For mono-element samples, both thermal and epithermal experimental self-shielding factors were well fitted by sigmoid functions. As a result, to correct thermal neutron self-shielding, the sigmoid uses a single parameter, mth, which can be directly calculated for any element from the sample size, the weighted sum of the thermal absorption cross-sections, sigmaabs, of the elements in the sample and a constant kth characteristic of the irradiation site. However, to correct epithermal self-shielding, the parameter mep, a function of sample geometry and composition, irradiation conditions and nuclear characteristics, needs to be measured for each activated nuclide. Since the preliminary tests were positive and showed that self-shielding, as high as 30%, could be corrected with an accuracy of about 1%, except in cases with significant epithermal shielding of one element by another, we pursued the study with the verification of two additional aspects. First, the dependency of the self-shielding parameters mth, and mep, on the properties of the irradiation site was evaluated using three different irradiation sites of a SLOWPOKE reactor, and it was concluded that the amount of both thermal and epithermal self-shielding varied by less than 10% from one site to another. Second, the variation of the self-shielding parameters, mth, and mep, with the size of the cylinder, as r( r+h), was tested for h/r ratios from 0.02 to 6.0, and this geometry dependence was confirmed even in slightly non-isotropic neutron fields. These results allowed separating from the mep parameter the amount of

  10. Neutron Damage in Mechanically-Cooled High-Purity Germanium Detectors for Field-Portable Prompt Gamma Neutron Activation Analysis (PGNAA) Systems

    SciTech Connect

    E.H. Seabury; C.J. Wharton; A.J. Caffrey; J.B. McCabe; C. DeW. Van Siclen

    2013-10-01

    Prompt Gamma Neutron Activation (PGNAA) systems require the use of a gamma-ray spectrometer to record the gamma-ray spectrum of an object under test and allow the determination of the object’s composition. Field-portable systems, such as Idaho National Laboratory’s PINS system, have used standard liquid-nitrogen-cooled high-purity germanium (HPGe) detectors to perform this function. These detectors have performed very well in the past, but the requirement of liquid-nitrogen cooling limits their use to areas where liquid nitrogen is readily available or produced on-site. Also, having a relatively large volume of liquid nitrogen close to the detector can impact some assessments, possibly leading to a false detection of explosives or other nitrogen-containing chemical. Use of a mechanically-cooled HPGe detector is therefore very attractive for PGNAA applications where nitrogen detection is critical or where liquid-nitrogen logistics are problematic. Mechanically-cooled HPGe detectors constructed from p-type germanium, such as Ortec’s trans-SPEC, have been commercially available for several years. In order to assess whether these detectors would be suitable for use in a fielded PGNAA system, Idaho National Laboratory (INL) has been performing a number of tests of the resistance of mechanically-cooled HPGe detectors to neutron damage. These detectors have been standard commercially-available p-type HPGe detectors as well as prototype n-type HPGe detectors. These tests compare the performance of these different detector types as a function of crystal temperature and incident neutron fluence on the crystal.

  11. Thin film CdTe based neutron detectors with high thermal neutron efficiency and gamma rejection for security applications

    NASA Astrophysics Data System (ADS)

    Smith, L.; Murphy, J. W.; Kim, J.; Rozhdestvenskyy, S.; Mejia, I.; Park, H.; Allee, D. R.; Quevedo-Lopez, M.; Gnade, B.

    2016-12-01

    Solid-state neutron detectors offer an alternative to 3He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10-6 gamma-ray efficiency.

  12. Realization of highly efficient hexagonal boron nitride neutron detectors

    SciTech Connect

    Maity, A.; Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2016-08-16

    Here, we report the achievement of highly efficient 10B enriched hexagonal boron nitride (h- 10BN) direct conversion neutron detectors. These detectors were realized from freestanding 4-in. diameter h- 10BN wafers 43 μm in thickness obtained from epitaxy growth and subsequent mechanical separation from sapphire substrates. Both sides of the film were subjected to ohmic contact deposition to form a simple vertical “photoconductor-type” detector. Transport measurements revealed excellent vertical transport properties including high electrical resistivity (>1013 Ω cm) and mobility-lifetime (μτ) products. A much larger μτ product for holes compared to that of electrons along the c-axis of h- BN was observed, implying that holes (electrons) behave like majority (minority) carriers in undoped h- BN. Exposure to thermal neutrons from a californium-252 (252Cf) source moderated by a high density polyethylene moderator reveals that 43 μm h- 10BN detectors possess 51.4% detection efficiency at a bias voltage of 400 V, which is the highest reported efficiency for any semiconductor-based neutron detector. The results point to the possibility of obtaining highly efficient, compact solid-state neutron detectors with high gamma rejection and low manufacturing and maintenance costs.

  13. Realization of highly efficient hexagonal boron nitride neutron detectors

    DOE PAGES

    Maity, A.; Doan, T. C.; Li, J.; ...

    2016-08-16

    Here, we report the achievement of highly efficient 10B enriched hexagonal boron nitride (h- 10BN) direct conversion neutron detectors. These detectors were realized from freestanding 4-in. diameter h- 10BN wafers 43 μm in thickness obtained from epitaxy growth and subsequent mechanical separation from sapphire substrates. Both sides of the film were subjected to ohmic contact deposition to form a simple vertical “photoconductor-type” detector. Transport measurements revealed excellent vertical transport properties including high electrical resistivity (>1013 Ω cm) and mobility-lifetime (μτ) products. A much larger μτ product for holes compared to that of electrons along the c-axis of h- BN wasmore » observed, implying that holes (electrons) behave like majority (minority) carriers in undoped h- BN. Exposure to thermal neutrons from a californium-252 (252Cf) source moderated by a high density polyethylene moderator reveals that 43 μm h- 10BN detectors possess 51.4% detection efficiency at a bias voltage of 400 V, which is the highest reported efficiency for any semiconductor-based neutron detector. The results point to the possibility of obtaining highly efficient, compact solid-state neutron detectors with high gamma rejection and low manufacturing and maintenance costs.« less

  14. Realization of highly efficient hexagonal boron nitride neutron detectors

    NASA Astrophysics Data System (ADS)

    Maity, A.; Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2016-08-01

    We report the achievement of highly efficient 10B enriched hexagonal boron nitride (h-10BN) direct conversion neutron detectors. These detectors were realized from freestanding 4-in. diameter h-10BN wafers 43 μm in thickness obtained from epitaxy growth and subsequent mechanical separation from sapphire substrates. Both sides of the film were subjected to ohmic contact deposition to form a simple vertical "photoconductor-type" detector. Transport measurements revealed excellent vertical transport properties including high electrical resistivity (>1013 Ω cm) and mobility-lifetime (μτ) products. A much larger μτ product for holes compared to that of electrons along the c-axis of h-BN was observed, implying that holes (electrons) behave like majority (minority) carriers in undoped h-BN. Exposure to thermal neutrons from a californium-252 (252Cf) source moderated by a high density polyethylene moderator reveals that 43 μm h-10BN detectors possess 51.4% detection efficiency at a bias voltage of 400 V, which is the highest reported efficiency for any semiconductor-based neutron detector. The results point to the possibility of obtaining highly efficient, compact solid-state neutron detectors with high gamma rejection and low manufacturing and maintenance costs.

  15. High-pressure /sup 3/He gas scintillation neutron spectrometer

    SciTech Connect

    Derzon, M.S.; Slaughter, D.R.; Prussin, S.G.

    1985-10-01

    A high-pressure, /sup 3/He-Xe gas scintillation spectrometer has been developed for neutron spectroscopy on D-D fusion plasmas. The spectrometer exhibits an energy resolution of (121 +- 20 keV) keV (FWHM) at 2.5 MeV and an efficiency of (1.9 +- 0.4) x 10/sup -3/ (n/cm/sup 2/)/sup -1/. The contribution to the resolution (FWHM) from counting statistics is only (22 +- 3 keV) and the remainder is due predominantly to the variation of light collection efficiency with location of neutron events within the active volume of the detector.

  16. High voltage supply for neutron tubes in well logging applications

    DOEpatents

    Humphreys, D. Russell

    1989-01-01

    A high voltage supply is provided for a neutron tube used in well logging. The "biased pulse" supply of the invention combines DC and "full pulse" techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  17. Head phantom experiment and calculation for boron neutron capture therapy.

    PubMed

    Matsumoto, T; Aizawa, O

    1988-06-01

    Head phantom experiments with various neutron beams and calculations were carried out in order to provide useful information for boron neutron capture therapy (BNCT). Thermal neutron beams for thermal neutron capture therapy were used for phantom experiments with various neutron collimator aperture sizes. The filtered beam neutrons of 24 and 144 keV generated with iron and silicon filters were also used to investigate the possible application of BNCT in the treatment of deep-seated cancers. Thermal neutron fluence and induced capture gamma dose distributions within the phantom were calculated with a transport code DOT 3.5 and compared with the experimental results. The results showed that the calculation used was consistent with the experimental results and provided useful information on BNCT. The filtered beam neutron may be very useful for the treatment of deep or widespread cancer, if there were a high power research reactor constructed for this purpose.

  18. Preliminary Analysis of the Multisphere Neutron Spectrometer

    NASA Technical Reports Server (NTRS)

    Goldhagen, P.; Kniss, T.; Wilson, J. W.; Singleterry, R. C.; Jones, I. W.; VanSteveninck, W.

    2003-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the Atmospheric Ionizing Radiation (AIR) Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to greater than 10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was 8 times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56 - 201 grams per square centimeter atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  19. Neutron flux spectra and radiation damage parameters for the Russian Bor-60 and SM-2 reactors

    SciTech Connect

    Karasiov, A.V.; Greenwood, L.R.

    1995-04-01

    The objective is to compare neutron irradiation conditions in Russian reactors and similar US facilities. Neutron fluence and spectral information and calculated radiation damage parameters are presented for the BOR-60 (Fast Experimental Reactor - 60 MW) and SM-2 reactors in Russia. Their neutron exposure characteristics are comparable with those of the Experimental Breeder Reactor (ERB-II), the Fast Flux Test Facility (FFTF), and the High Flux Isotope Reactor (HFIR) in the United States.

  20. Quantitative comparison of terahertz emission from (100) InAs surfaces and a GaAs large-aperture photoconductive switch at high fluences.

    PubMed

    Reid, Matthew; Fedosejevs, Robert

    2005-01-01

    InAs has previously been reported to be an efficient emitter of terahertz radiation at low excitation fluences by use of femtosecond laser pulses. The scaling and saturation of terahertz emission from a (100) InAs surface as a function of excitation fluence is measured and quantitatively compared with the emission from a GaAs large-aperture photoconductive switch. We find that, although the instantaneous peak radiated terahertz field from (100) InAs exceeds the peak radiated signals from a GaAs large-aperture photoconductive switch biased at 1.6 kV/cm, the pulse duration is shorter. For the InAs source the total energy radiated is less than can be obtained from a GaAs large-aperture photoconductive switch.

  1. Electron Scattering From High-Momentum Neutrons in Deuterium

    SciTech Connect

    A.V. Klimenko; S.E. Kuhn

    2005-10-12

    We report results from an experiment measuring the semi-inclusive reaction D(e,e'p{sub s}) where the proton p{sub s} is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass W*, backward proton momentum {rvec p}{sub s} and momentum transfer Q{sup 2}. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ''bound neutron structure function'' F{sub 2n}{sup eff} was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where effects of FSI appear to be smaller. For p{sub s} > 400 MeV/c, where the neutron is far off-shell, the model overestimates the value of F{sub 2n}{sup eff} in the region of x* between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.

  2. Electron Scattering From a High-Momentum Neutron in Deuterium

    SciTech Connect

    Klimenko, Alexei

    2004-05-01

    The deuterium nucleus is a system of two nucleons (proton and neutron) bound together. The configuration of the system is described by a quantum-mechanical wave function and the state of the nucleons at a given time is not know a priori. However, by detecting a backward going proton of moderate momentum in coincidence with a reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred if we assume that the proton was a spectator to the reaction. This method, known as spectator tagging, was used to study the electron scattering from high-momentum neutrons in deuterium. The data were taken with a 5.765 GeV polarized electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. The accumulated data cover a wide kinematic range, reaching values of the invariant mass of the unobserved final state W* up to 3 GeV. A data sample of approximately 5 - 105 events, with protons detected at large scattering angles (as high as 136 degrees) in coincidence with the forward electrons, was selected. The product of the neutron structure function with the initial nucleon momentum distribution F2n. S was extracted for different values of W*, backward proton momenta ps and momentum transfer Q2. The data were compared to a calculation based on the spectator approximation and using the free nucleon form factors and structure functions. A strong enhancement in the data, not reproduced by the model, was observed at cos(thetapq) > -0.3 (where theta{sub pq} is the proton scattering angle relative to the direction of the momentum transfer) and can be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. The bound nucleon structure function F2n was studied in the region cos(thetapq) < -0.3 as a function of W* and scaling variable x*. At high spectator proton momenta the struck neutron is far

  3. Proton Fluence Prediction Models

    NASA Technical Reports Server (NTRS)

    Feynman, Joan

    1996-01-01

    Many spacecraft anomalies are caused by positively charged high energy particles impinging on the vehicle and its component parts. Here we review the current knowledge of the interplanetary particle environment in the energy ranges that are most important for these effects, 10 to 100 MeV/amu. The emphasis is on the particle environment at 1 AU. State-of-the-art engineering models are briefly described along with comments on the future work required in this field.

  4. New interplanetary proton fluence model

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Armstrong, T. P.; Dao-Gibner, L.; Silverman, S.

    1990-01-01

    A new predictive engineering model for the interplanetary fluence of protons with above 10 MeV and above 30 MeV is described. The data set used is a combination of observations made from the earth's surface and from above the atmosphere between 1956 and 1963 and observations made from spacecraft in the vicinity of earth between 1963 and 1985. The data cover a time period three times as long as the period used in earlier models. With the use of this data set the distinction between 'ordinary proton events' and 'anomalously large events' made in earlier work disappears. This permitted the use of statistical analysis methods developed for 'ordinary events' on the entire data set. The greater than 10 MeV fluences at 1 AU calculated with the new model are about twice those expected on the basis of models now in use. At energies above 30 MeV, the old and new models agree. In contrast to earlier models, the results do not depend critically on the fluence from any one event and are independent of sunspot number. Mission probability curves derived from the fluence distribution are presented.

  5. Thermal conductivity changes upon neutron transmutation of {sup 10}B doped diamond

    SciTech Connect

    Jagannadham, K.; Verghese, K.; Butler, J. E.

    2014-08-28

    {sup 10}B doped p-type diamond samples were subjected to neutron transmutation reaction using thermal neutron flux of 0.9 × 10{sup 13} cm{sup −2} s{sup −1} and fast neutron flux of 0.09 × 10{sup 13} cm{sup −2} s{sup −1}. Another sample of epilayer grown on type IIa (110) single crystal diamond substrate was subjected to equal thermal and fast neutron flux of 10{sup 14} cm{sup −2} s{sup −1}. The defects in the diamond samples were previously characterized by different methods. In the present work, thermal conductivity of these diamond samples was determined at room temperature by transient thermoreflectance method. The thermal conductivity change in the samples as a function of neutron fluence is explained by the phonon scattering from the point defects and disordered regions. The thermal conductivity of the diamond samples decreased more rapidly initially and less rapidly for larger neutron fluence. In addition, the thermal conductivity in type IIb diamond decreased less rapidly with thermal neutron fluence compared to the decrease in type IIa diamond subjected to fast neutron fluence. It is concluded that the rate of production of defects during transmutation reaction is slower when thermal neutrons are used. The thermal conductivity of epilayer of diamond subjected to high thermal and fast neutron fluence is associated with the covalent carbon network in the composite structure consisting of disordered carbon and sp{sup 2} bonded nanocrystalline regions.

  6. Practical neutron dosimetry at high energies

    SciTech Connect

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently.

  7. Levitation apparatus for neutron diffraction investigations on high temperature liquids

    SciTech Connect

    Hennet, Louis; Pozdnyakova, Irina; Bytchkov, Aleksei; Cristiglio, Viviana; Palleau, Pierre; Fischer, Henry E.; Cuello, Gabriel J.; Johnson, Mark; Melin, Philippe; Zanghi, Didier; Brassamin, Severine; Brun, Jean-Francois; Price, David L.; Saboungi, Marie-Louise

    2006-05-15

    We describe a new high temperature environment based on aerodynamic levitation and laser heating designed for neutron scattering experiments up to 3000 deg. C. The sample is heated to the desired temperature with three CO{sub 2} lasers from different directions in order to obtain a homogeneous temperature distribution. The apparent temperature of the sample is measured with an optical pyrometer, and two video cameras are employed to monitor the sample behavior during heating. The levitation setup is enclosed in a vacuum-tight chamber, enabling a high degree of gas purity and a reproducible sample environment for structural investigations on both oxide and metallic melts. High-quality neutron diffraction data have been obtained on liquid Y{sub 3}Al{sub 5}O{sub 12} and ZrNi alloy for relatively short counting times (1.5 h)

  8. HIGH STRENGTH CONTROL RODS FOR NEUTRONIC REACTORS

    DOEpatents

    Lustman, B.; Losco, E.F.; Cohen, I.

    1961-07-11

    Nuclear reactor control rods comprised of highly compressed and sintered finely divided metal alloy panticles and fine metal oxide panticles substantially uniformly distributed theretbrough are described. The metal alloy consists essentially of silver, indium, cadmium, tin, and aluminum, the amount of each being present in centain percentages by weight. The oxide particles are metal oxides of the metal alloy composition, the amount of oxygen being present in certain percentages by weight and all the oxygen present being substantially in the form of metal oxide. This control rod is characterized by its high strength and resistance to creep at elevated temperatures.

  9. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  10. Neutron irradiation control in the neutron transmutation doping process in HANARO using SPND

    SciTech Connect

    Kang, Gi-Doo; Kim, Myong-Seop

    2015-07-01

    The neutron irradiation control method by using self-powered neutron detector (SPND) is developed for the neutron transmutation doping (NTD) application in HANARO. An SPND is installed at a fixed position of the upper part of the sleeve in HANARO NTD hole for real-time monitoring of the neutron irradiation. It is confirmed that the SPND is significantly affected by the in-core condition and surroundings of the facility. Furthermore, the SPND signal changes about 15% throughout a whole cycle according to the change of the control rod position. But, it is also confirmed that the variation of the neutron flux on the silicon ingots inside the irradiation can is not so big while moving of the control rod. Accordingly, the relationship between the ratio of the neutron flux to the SPND signal output and the control rod position is established. In this procedure, the neutron flux measurement by using zirconium foil is utilized. The real NTD irradiation experiments are performed using the established relationship. The irradiated neutron fluence can be controlled within ±1.3% of the target one. The mean value of the irradiation/target ratio of the fluence is 0.9992, and the standard deviation is 0.0071. Thus, it is confirmed that the extremely accurate irradiation would be accomplished. This procedure can be useful for the SPND application installed at the fixed position to the field requiring the extremely high accuracy. (authors)

  11. Neutron emission and fragment yield in high-energy fission

    SciTech Connect

    Grudzevich, O. T. Klinov, D. A.

    2013-07-15

    The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of {sup 235}U nuclei.

  12. Spallation neutron source and other high intensity froton sources

    SciTech Connect

    Weiren Chou

    2003-02-06

    This lecture is an introduction to the design of a spallation neutron source and other high intensity proton sources. It discusses two different approaches: linac-based and synchrotron-based. The requirements and design concepts of each approach are presented. The advantages and disadvantages are compared. A brief review of existing machines and those under construction and proposed is also given. An R&D program is included in an appendix.

  13. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    SciTech Connect

    Croci, G.; Tardocchi, M.; Rebai, M.; Cippo, E. Perelli; Gorini, G.; Cazzaniga, C.; Palma, M. Dalla; Pasqualotto, R.; Tollin, M.; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Cavenago, M.

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  14. Measurements of high energy neutrons penetrated through iron shields using the Self-TOF detector and an NE213 organic liquid scintillator

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Nakao, N.; Nunomiya, T.; Nakamura, T.; Fukumura, A.; Takada, M.

    2002-11-01

    Neutron energy spectra penetrated through iron shields were measured using the Self-TOF detector and an NE213 organic liquid scintillator which have been newly developed by our group at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) of National Institute of Radiological Sciences (NIRS), Japan. Neutrons were generated by bombarding 400 MeV/nucleon C ion on a thick (stopping-length) copper target. The neutron spectra in the energy range from 20 to 800 MeV were obtained through the FORIST unfolding code with their response functions and compared with the MCNPX calculations combined with the LA150 cross section library. The neutron fluence measured by the NE213 detector was simulated by the track length estimator in the MCNPX, and evaluated the contribution of the room-scattered neutrons. The calculations are in fairly good agreement with the measurements. Neutron fluence attenuation lengths were obtained from the experimental results and the calculation.

  15. NIST Calibration of a Neutron Spectrometer ROSPEC.

    PubMed

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated (252)Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements.

  16. NIST Calibration of a Neutron Spectrometer ROSPEC

    PubMed Central

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated 252Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements. PMID:27274944

  17. Pressure-vessel-damage fluence reduction by low-leakage fuel management. [PWR

    SciTech Connect

    Cokinos, D.; Aronson, A.L.; Carew, J.F.; Kohut, P.; Todosow, M.; Lois, L.

    1983-01-01

    As a result of neutron-induced radiation damage to the pressure vessel and of an increased concern that in a PWR transient the pressure vessel may be subjected to pressurized thermal shock (PTS), detailed analyses have been undertaken to determine the levels of neutron fluence accumulation at the pressure vessels of selected PWR's. In addition, various methods intended to limit vessel damage by reducing the vessel fluence have been investigated. This paper presents results of the fluence analysis and the evaluation of the low-leakage fuel management fluence reduction method. The calculations were performed with DOT-3.5 in an octant of the core/shield/vessel configuration using a 120 x 43 (r, theta) mesh structure.

  18. Neutron Fluence, Dosimetry and Damage Response Determination in In-Core/Ex-Core Components of the VENUS CEN/SCK LWR Using 3-D Monte Carlo Simulations: NEA's VENUS-3 Benchmark

    SciTech Connect

    Perlado, J. Manuel; Marian, Jaime; Sanz, Jesus Garcia

    2000-03-15

    Validating state-of-the-art methods used to predict fluence exposure to reactor pressure vessels (RPVs) has become an important issue in identifying the sources of uncertainty in the estimated RPV fluence for pressurized water reactors. This is a very important aspect in evaluating irradiation damage leading to the hardening and embrittlement of such structural components. One of the major benchmark experiments carried out to test three-dimensional methodologies is the VENUS-3 Benchmark Experiment in which three-dimensional Monte Carlo and S{sub n} codes have proved more efficient than synthesis methods. At the Instituto de Fusion Nuclear (DENIM) at the Universidad Politecnica de Madrid, a detailed full three-dimensional model of the Venus Critical Facility has been developed making use of the Monte Carlo transport code MCNP4B. The problem geometry and source modeling are described, and results, including calculated versus experimental (C/E) ratios as well as additional studies, are presented. Evidence was found that the great majority of C/E values fell within the 10% tolerance and most within 5%. Tolerance limits are discussed on the basis of evaluated data library and fission spectra sensitivity, where a value ranging between 10 to 15% should be accepted. Also, a calculation of the atomic displacement rate has been carried out in various locations throughout the reactor, finding that values of 0.0001 displacements per atom in external components such as the core barrel are representative of this type of reactor during a 30-yr time span.

  19. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    SciTech Connect

    Skalyga, V.; Sidorov, A.; Izotov, I.; Golubev, S.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  20. Neutron energy determination with a high-purity germanium detector

    NASA Technical Reports Server (NTRS)

    Beck, Gene A.

    1992-01-01

    Two areas that are related to planetary gamma-ray spectrometry are investigated. The first task was the investigation of gamma rays produced by high-energy charged particles and their secondaries in planetary surfaces by means of thick target bombardments. The second task was the investigation of the effects of high-energy neutrons on gamma-ray spectral features obtained with high-purity Ge-detectors. For both tasks, as a function of the funding level, the experimental work was predominantly tied to that of other researchers, whenever there was an opportunity to participate in bombardment experiments at large or small accelerators for charged particles.

  1. High resolution neutron imaging capabilities at BOA beamline at Paul Scherrer Institut

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Morgano, M.; Panzner, T.; Lehmann, E.; Filgers, U.; Vallerga, J. V.; McPhate, J. B.; Siegmund, O. H. W.; Feller, W. B.

    2015-06-01

    The cold neutron spectrum of the Beamline for neutron Optics and other Applications (BOA) at Paul Scherrer Institut enables high contrast neutron imaging because neutron cross sections for many materials increase with neutron wavelength. However, for many neutron imaging applications, spatial resolution can be as important as contrast. In this paper the neutron transmission imaging capabilities of an MCP/Timepix detector installed at the BOA beamline are presented, demonstrating the possibilities for studying sub-20 μm features in various samples. In addition to conventional neutron radiography and microtomography, the high degree of neutron polarization at the BOA beamline can be very attractive for imaging of magnetic fields, as demonstrated by our measurements. We also show that a collimated cold neutron beamline combined with a high resolution detector can produce image artifacts, (e.g. edge enhancements) due to neutron refraction and scattering. The results of our experiments indicate that the BOA beamline is a valuable addition to neutron imaging facilities, providing improved and sometimes unique capabilities for non-destructive studies with cold neutrons.

  2. Optimization of particle fluence in micromachining of CR-39

    NASA Astrophysics Data System (ADS)

    Rajta, I.; Baradács, E.; Bettiol, A. A.; Csige, I.; Tőkési, K.; Budai, L.; Kiss, Á. Z.

    2005-04-01

    Polyallyl diglycol carbonate (CR-39 etched track detector) material was irradiated with various doses of 2 MeV protons and alpha-particles in order to optimize the fluence for P-beam writing of CR-39. Irradiation were performed at the Institute of Nuclear Research, Debrecen, Hungary and at the National University of Singapore. Post irradiation work has been carried out in Debrecen. The fluence in the irradiated area was sufficiently high that the latent tracks overlapped and the region could be removed collectively by short etching times of the order of less than 1 min. Theoretical calculations based on analytical and Monte Carlo simulations were done in order to calculate the probability of multiple latent track overlap. Optimal particle fluence was found by minimising the fluence and etching time at which collective removal of latent tracks could be observed. Short etching time is required to obtain high resolution microstructures, while low particle fluence is desirable for economical reasons, and also because high fluences increase the risk of unwanted damage (e.g. melting).

  3. Neutron reflectometry on highly absorbing films and its application to 10B4C-based neutron detectors

    PubMed Central

    Piscitelli, F.; Khaplanov, A.; Devishvili, A.; Schmidt, S.; Höglund, C.; Birch, J.; Dennison, A. J. C.; Gutfreund, P.; Hall-Wilton, R.; Van Esch, P.

    2016-01-01

    Neutron reflectometry is a powerful tool used for studies of surfaces and interfaces. The absorption in the typical studied materials is neglected and this technique is limited only to the reflectivity measurement. For strongly absorbing nuclei, the absorption can be directly measured by using the neutron-induced fluorescence technique which exploits the prompt particle emission of absorbing isotopes. This technique is emerging from soft matter and biology where highly absorbing nuclei, in very small quantities, are used as a label for buried layers. Nowadays, the importance of absorbing layers is rapidly increasing, partially because of their application in neutron detection; a field that has become more active also due to the 3He-shortage. We extend the neutron-induced fluorescence technique to the study of layers of highly absorbing materials, in particular 10B4C. The theory of neutron reflectometry is a commonly studied topic; however, when a strong absorption is present the subtle relationship between the reflection and the absorption of neutrons is not widely known. The theory for a general stack of absorbing layers has been developed and compared to measurements. We also report on the requirements that a 10B4C layer must fulfil in order to be employed as a converter in neutron detection. PMID:26997902

  4. Trapping induced N{sub eff} and electrical field transformation at different temperatures in neutron irradiated high resistivity silicon detectors

    SciTech Connect

    Eremin, V.; Li, Z.; Iljashenko, I.

    1994-02-01

    The trapping of both non-equilibrium electrons and holes by neutron induced deep levels in high resistivity silicon planar detectors have been observed. In the experiments Transient Current and Charge Techniques, with short laser light pulse excitation have been applied at temperature ranges of 77--300 k. Light pulse illumination of the front (p{sup +}) and back (n{sup +}) contacts of the detectors showed effective trapping and detrapping, especially for electrons. At temperatures lower than 150 k, the detrapping becomes non-efficient, and the additional negative charge of trapped electrons in the space charge region (SCR) of the detectors leads to dramatic transformations of the electric field due to the distortion of the effective space charge concentration N{sub eff}. The current and charge pulses transformation data can be explained in terms of extraction of electric field to the central part of the detector from the regions near both contacts. The initial field distribution may be recovered immediately by dropping reverse bias, which injects both electrons and holes into the space charge region. In the paper, the degree of the N{sub eff} distortions among various detectors irradiated by different neutron fluences are compared.

  5. Particle Test Fluence: What's the Right Number?

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2014-01-01

    While we have been utilizing standard fluence levels such as those listed in the JESD57 document, we have begun revisiting what an appropriate test fluence is when it comes to qualifying a device for single events. Instead of a fixed fluence level or until a specific number of events occurs, a different thought process is required.

  6. High contrast neutron radiography with optical devices in Kyoto University reactor

    NASA Astrophysics Data System (ADS)

    Kawabata, Y.; Nakano, T.; Hino, M.; Sunohara, H.; Matsushima, U.; Takenaka, N.

    2004-08-01

    The high-contrast neutron radiography has been performed at a VCN guide (VCN) and a supermirror cold neutron guide (CN-3) in Kyoto University Reactor. The large absorption cross-section of very low-energy neutrons can show a slight change of sample which thermal neutrons can not show. The effectiveness is shown in the fields of botany, agriculture and industrial researches. A new spectrum change option using high Qc supermirror ( m=4) is attached. It can change the upper limit of the energy of exposure neutrons by reflections, and gives a high flexibility of the experimental condition.

  7. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios.

  8. Microstructure evolution in D-T neutron irradiated silver

    NASA Astrophysics Data System (ADS)

    Sugio, K.; Ohkubo, H.; Mukouda, I.; Shimomura, Y.; Kutsukake, C.; Takeuchi, H.

    2002-12-01

    Irradiation of high purity silver with 14 MeV D-T neutrons was carried out at the fusion neutron source facility in Japan Atomic Energy Research Institute. The range of neutron fluence was 6.1×10 17 to 1.1×10 21 n/m 2, which is lower than in earliest D-T neutron irradiations. Thin foil and bulk specimens were irradiated at 288, 423 and 573 K, and observed using transmission electron microscopy. For irradiation at 288 K, the fraction of interstitial clusters in bulk is higher than that in thin foil. In irradiation experiments at 288 and 432 K, the number density of defect clusters is proportional to the neutron fluence to the power of 1.3. In irradiation experiments at 573 K, the defects are mostly stacking fault tetrahedrons (SFTs) and their number density is proportional to the neutron fluence. During isochronal annealing of specimens irradiated at 288 K, disappearance and coalescence of defect clusters were observed, and SFTs were mobile.

  9. Fluence-to-absorbed-dose conversion coefficients for neutron beams from 0.001 eV to 100 GeV calculated for a set of pregnant female and fetus models

    NASA Astrophysics Data System (ADS)

    Taranenko, Valery; Xu, X. George

    2008-03-01

    Protection of fetuses against external neutron exposure is an important task. This paper reports a set of absorbed dose conversion coefficients for fetal and maternal organs for external neutron beams using the RPI-P pregnant female models and the MCNPX code. The newly developed pregnant female models represent an adult female with a fetus including its brain and skeleton at the end of each trimester. The organ masses were adjusted to match the reference values within 1%. For the 3 mm cubic voxel size, the models consist of 10-15 million voxels for 35 organs. External monoenergetic neutron beams of six standard configurations (AP, PA, LLAT, RLAT, ROT and ISO) and source energies 0.001 eV-100 GeV were considered. The results are compared with previous data that are based on simplified anatomical models. The differences in dose depend on source geometry, energy and gestation periods: from 20% up to 140% for the whole fetus, and up to 100% for the fetal brain. Anatomical differences are primarily responsible for the discrepancies in the organ doses. For the first time, the dependence of mother organ doses upon anatomical changes during pregnancy was studied. A maximum of 220% increase in dose was observed for the placenta in the nine months model compared to three months, whereas dose to the pancreas, small and large intestines decreases by 60% for the AP source for the same models. Tabulated dose conversion coefficients for the fetus and 27 maternal organs are provided.

  10. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    SciTech Connect

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-15

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  11. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  12. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  13. THERMAL NEUTRON INTENSITIES IN SOILS IRRADIATED BY FAST NEUTRONS FROM POINT SOURCES. (R825549C054)

    EPA Science Inventory

    Thermal-neutron fluences in soil are reported for selected fast-neutron sources, selected soil types, and selected irradiation geometries. Sources include 14 MeV neutrons from accelerators, neutrons from spontaneously fissioning 252Cf, and neutrons produced from alp...

  14. Neutron dosimetry and damage calculations for the HFIR-JP-20 irradiation

    SciTech Connect

    Greenwood, L.R.; Baldwin, C.A.

    1998-03-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiment JP-20, which was conducted in a target position of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The maximum total neutron fluence at midplane was 4.2 {times} 10{sup 22} n/cm{sup 2} (1.0 {times} 10{sup 22} n/cm{sup 2} above 0.1 MeV), resulting in about 8.4 dpa and 388 appm helium in type 316 stainless steel.

  15. Neutron dosimetry and damage calculations for the HFIR-JP-9, -12, and -15 irradiations

    SciTech Connect

    Greenwood, L.R.; Baldwin, C.A.

    1998-03-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiments JP-9, -12, and -15. These experiments were conducted in target positions of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) for a period of nearly four years. The maximum neutron fluence at midplane was 2.6 {times} 10{sup 23} n/cm{sup 2} (7.1 {times} 10{sup 22} n/cm{sup 2} above 0.1 MeV), resulting in about 60 dpa and 3900 appm helium in type 316 stainless steel.

  16. Neutron dosimetry and damage calculations for the JP-17, 18 and 19 experiments in HFIR

    SciTech Connect

    Greenwood, L.R.; Baldwin, C.A.

    1996-04-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiments JP-17, 18, and 19 in the target of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). These experiments were irradiated at 85 MW for two cycles resulting in 43.55 EFPD for JP-17 and 42.06 EFPD for JP-18 and 19. The maximum fast neutron fluence > 0.1 MeV was about 3.7E + 21 n/cm{sup 2} for all three irradiations, resulting in about 3 dpa in 316 stainless steel.

  17. Neutron dosimetry and damage calculation for the JP-10, 11, 13, and 16 experiments in HFIR

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1996-04-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint U.S./Japanese experiments JP-10, 11, 13, and 16 in the target of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL). These experiments were irradiated at 85 MW for 238.5 EFPD. The maximum fast neutron fluence >0.1 MeV was about 2.1E + 22 n/cm{sup 2} for all of the experiments resulting in about 17.3 dpa in 316 stainless steel.

  18. Neutron dosimetry and damage calculations for the HFIR-MFE-200J-1 irradiation

    SciTech Connect

    Greenwood, L.R.; Baldwin, C.A.

    1998-03-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiment MFE-200-J-, which was conducted in the removable beryllium (RB) position of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The maximum neutron fluence at midplane was 4.1 {times} 10{sup 22} n/cm{sup 2} (1.9 {times} 10{sup 22} n/cm{sup 2} above 0.1 MeV), resulting in about 12 dpa and 28 appm helium in type 316 stainless steel.

  19. Method for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>1.0E4)

    DOEpatents

    Nikolic, Rebecca J.; Conway, Adam M.; Heineck, Daniel; Voss, Lars F.; Wang, Tzu Fang; Shao, Qinghui

    2013-10-15

    Methods for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>10.sup.4) are provided. A structure is provided that includes a p+ region on a first side of an intrinsic region and an n+ region on a second side of the intrinsic region. The thickness of the intrinsic region is minimized to achieve a desired gamma discrimination factor of at least 1.0E+04. Material is removed from one of the p+ region or the n+ region and into the intrinsic layer to produce pillars with open space between each pillar. The open space is filed with a neutron sensitive material. An electrode is placed in contact with the pillars and another electrode is placed in contact with the side that is opposite of the intrinsic layer with respect to the first electrode.

  20. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.

    2015-12-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.

  1. High-level neutron coincidence counter maintenance manual

    SciTech Connect

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included.

  2. Investigation of Acrylic Acid at High Pressure Using Neutron Diffraction

    PubMed Central

    2014-01-01

    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalized using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a new phase at ∼0.8 GPa and remains molecular to 7.2 GPa before polymerizing on decompression to ambient pressure. The resulting product is analyzed via Raman and FT-IR spectroscopy and differential scanning calorimetry and found to possess a different molecular structure compared with polymers produced via traditional routes. PMID:24650085

  3. New PTB thermal neutron calibration facility: first results.

    PubMed

    Luszik-Bhadra, M; Reginatto, M; Wershofen, H; Wiegel, B; Zimbal, A

    2014-10-01

    A new thermal neutron calibration facility based on a moderator assembly has been set up at PTB. It consists of 16 (241)Am-Be radionuclide sources mounted in a graphite block, 1.5 m wide, 1.5 m high and 1.8 m deep. The sources are distributed to eight different positions, at a mean distance of ∼1.25 m from the front face of the moderator. The neutron field at the reference position, 30 cm in front of the moderator device and 75 cm above the floor, has been characterised using calculations, Bonner sphere measurements and gold foil activation. First results are shown. The field is highly thermalised: 99 % in terms of fluence. It is quite homogenous within a 20 cm×20 cm area, but the absolute value of the thermal neutron fluence rate is small and yields an ambient dose equivalent rate of 3 µSv h(-1).

  4. Scintillating Fiber Technology for a High Neutron Spectrometer

    NASA Technical Reports Server (NTRS)

    Kuznetsov, Evgeny; Adams, James, Jr.; Christl, Mark; Norwood, Joseph; Watts, John

    2014-01-01

    Develop a compact low-power neutron spectrometer that uniquely identifies neutrons in the mixed radiation field expected on crewed deep-space missions. Secondary neutrons are generated by cosmic rays striking heavy crewed spacecraft as well as lunar and planetary surfaces1,2. It has been shown that secondary neutrons can account for up to 50% if the total dose-equivalent received by the crew.

  5. ICF ignition capsule neutron, gamma ray, and high energy x-ray images

    NASA Astrophysics Data System (ADS)

    Bradley, P. A.; Wilson, D. C.; Swenson, F. J.; Morgan, G. L.

    2003-03-01

    Post-processed total neutron, RIF neutron, gamma-ray, and x-ray images from 2D LASNEX calculations of burning ignition capsules are presented. The capsules have yields ranging from tens of kilojoules (failures) to over 16 MJ (ignition), and their implosion symmetry ranges from prolate (flattest at the hohlraum equator) to oblate (flattest towards the laser entrance hole). The simulated total neutron images emphasize regions of high DT density and temperature; the reaction-in-flight neutrons emphasize regions of high DT density; the gamma rays emphasize regions of high shell density; and the high energy x rays (>10 keV) emphasize regions of high temperature.

  6. Effects of neutron irradiation on microstructure and mechanical properties of carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Hamada, K.; Sato, S.; Kohyama, A.

    1994-09-01

    As an important part of the national R&D program to high performance and low cost {C}/{C} composite materials, a new manufacturing method of {C}/{C} composite with densified matrix without conventional densification process has been successfully developed. In this study, neutron irradiation effects on mechanical properties of the innovative {C}/{C} composites were examined. Materials used were one- and two-directionally reinforced composites with mesophase-pitch based carbon fibers as reinforcement and the mixture of green coke and phenolic resin as matrix precursor. Neutron irradiation was performed to 1.3 × 10 21 and 1.5 × 10 22 n/m 2 ( E > 1 MeV) at about 350 K. Mechanical properties were measured by bend tests. Flexural and shear strength were increased with increasing neutron fluence. On the contrary, fracture strain showed quite a little dependence on neutron fluence. Flexural modulus at near 0 strain was increased with increasing fluence. Stress stiffening at near 0 strain was suppressed with irradiation, while modulus drop was observed at high strain region and decreased with increasing neutron fluence. These results were interpreted in terms of microstructural change.

  7. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    SciTech Connect

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Kelton, K. F.; Rustan, G. E.; Quirinale, D. G.; Goldman, A. I.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; Wang, Xun-Li; Egami, T.

    2016-01-15

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr{sub 64}Ni{sub 36} measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg)

  8. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source.

    PubMed

    Mauro, N A; Vogt, A J; Derendorf, K S; Johnson, M L; Rustan, G E; Quirinale, D G; Kreyssig, A; Lokshin, K A; Neuefeind, J C; An, Ke; Wang, Xun-Li; Goldman, A I; Egami, T; Kelton, K F

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg).

  9. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    DOE PAGES

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; ...

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).« less

  10. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    SciTech Connect

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; Wang, Xun-Li; Goldman, A. I.; Egami, T.; Kelton, K. F.

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).

  11. Development of compact high efficiency microstructured semiconductor neutron detectors

    NASA Astrophysics Data System (ADS)

    McGregor, D. S.; Bellinger, S. L.; Fronk, R. G.; Henson, L.; Huddleston, D.; Ochs, T.; Shultis, J. K.; Sobering, T. J.; Taylor, R. D.

    2015-11-01

    Semiconductor diode detectors coated with neutron reactive materials are generally fashioned as planar diodes coated with 10B, 6LiF, or Gd. Planar detectors coated with 10B or 6LiF are limited to less than 5% intrinsic thermal neutron detection efficiency. Detectors coated with Gd can achieve higher efficiencies, but the low-energy signatures are problematic in the presence of background radiations. Microstructured semiconductor neutron detectors (MSNDs) can now achieve a tenfold increase in neutron detection efficiency over the planar diode designs. These semiconductor neutron detectors are fashioned with a matrix of microstructured patterns etched deeply into the semiconductor substrate and, subsequently, backfilled with neutron reactive materials. Intrinsic thermal-neutron detection efficiencies exceeding 35% have been achieved with devices no thicker than 1 mm while operating on less than 5 V, now allowing for instrumentation to be realized with similar performance as 3He gas-filled detectors.

  12. Isotopic Dependence of GCR Fluence behind Shielding

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.

    2006-01-01

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross-sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (+/-100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (approx.170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.

  13. Concurrent Monte Carlo transport and fluence optimization with fluence adjusting scalable transport Monte Carlo

    PubMed Central

    Svatos, M.; Zankowski, C.; Bednarz, B.

    2016-01-01

    Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship within a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the

  14. High Field Pulsed Magnets for Neutron Scattering at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Granroth, G. E.; Lee, J.; Fogh, E.; Christensen, N. B.; Toft-Petersen, R.; Nojiri, H.

    2015-03-01

    A High Field Pulsed Magnet (HFPM) setup, is in use at the Spallation Nuetron Source(SNS), Oak Ridge National Laboratory. With this device, we recently measured the high field magnetic spin structure of LiNiPO4. The results of this study will be highlighted as an example of possible measurements that can be performed with this device. To further extend the HFPM capabilities at SNS, we have learned to design and wind these coils in house. This contribution will summarize the magnet coil design optimization procedure. Specifically by varying the geometry of the multi-layer coil, we arrive at a design that balances the maximum field strength, neutron scattering angle, and the field homogeneity for a specific set of parameters. We will show that a 6.3kJ capacitor bank, can provide a magnetic field as high as 30T for a maximum scattering angle around 40° with homogeneity of +/- 4 % in a 2mm diameter spherical volume. We will also compare the calculations to measurements from a recently wound test coil. This work was supported in part by the Lab Directors' Research and Development Fund of ORNL.

  15. Liquid lithium target as a high intensity, high energy neutron source

    DOEpatents

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  16. Development of a compact neutron source by a high voltage ring electrode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; Shuhei Nezu Team; Akihiro Takeuchi Team

    2016-10-01

    Neutron is one of the particles in atomic nucleus. Neutron beam has many physical characteristics as follows; (a) the transmittance in a matter is high and (b) the interaction with atomic nuclei is dominant. For these reasons, the development of the neutron beam source is expected in many engineering and medical applications. However, it is still under development, because there is no compact neutron beam source. The purpose of this research is to develop the compact neutron beam source. The neutron is generated by using the inertial electrostatic confinement fusion. In this experiment, a ring-shaped electrode (cathode) is used for the convergence of the deuterium nucleus. To product the neutron by a D-D nuclear reaction, it is necessary to apply a high voltage into the glow discharge plasma. The neutron production rate is approximately 105 n/s under the condition that the cathode voltage is -15kV and discharge current is 10 mA. The neutron production rate increases with increasing the ring cathode voltage or discharge current. It will be possible to increase the number of neutrons by the stabilizing of the high voltage and high current discharge.

  17. A multi-DSP system for the neutron high resolution Fourier diffractometer

    SciTech Connect

    Drozdov, V.A.; Butenko, V.A.; Prikhodko, V.I.

    1998-08-01

    The multi-DSP data acquisition system for neutron time-of-flight spectrum measurements requiring fast real-time data processing is designed and is operated at the neutron High Resolution Fourier Diffractometer (HRFD). The use of high performance DSPs and front-end electronics based on flexible PLDs allows increasing of the efficiency of neutron diffractometers with a Fourier chopper and a multi-element detector system by the method of electronic time-focusing.

  18. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    SciTech Connect

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and

  19. How to polarise all neutrons in one beam: a high performance polariser and neutron transport system

    NASA Astrophysics Data System (ADS)

    Rodriguez, D. Martin; Bentley, P. M.; Pappas, C.

    2016-09-01

    Polarised neutron beams are used in disciplines as diverse as magnetism,soft matter or biology. However, most of these applications often suffer from low flux also because the existing neutron polarising methods imply the filtering of one of the spin states, with a transmission of 50% at maximum. With the purpose of using all neutrons that are usually discarded, we propose a system that splits them according to their polarisation, flips them to match the spin direction, and then focuses them at the sample. Monte Carlo (MC) simulations show that this is achievable over a wide wavelength range and with an outstanding performance at the price of a more divergent neutron beam at the sample position.

  20. The Multi-Blade Boron-10-based neutron detector for high intensity neutron reflectometry at ESS

    NASA Astrophysics Data System (ADS)

    Piscitelli, F.; Messi, F.; Anastasopoulos, M.; Bryś, T.; Chicken, F.; Dian, E.; Fuzi, J.; Höglund, C.; Kiss, G.; Orban, J.; Pazmandi, P.; Robinson, L.; Rosta, L.; Schmidt, S.; Varga, D.; Zsiros, T.; Hall-Wilton, R.

    2017-03-01

    The Multi-Blade is a Boron-10-based gaseous detector introduced to face the challenge arising in neutron reflectometry at pulsed neutron sources. Neutron reflectometers are the most challenging instruments in terms of instantaneous counting rate and spatial resolution. This detector has been designed to cope with the requirements set for the reflectometers at the upcoming European Spallation Source (ESS) in Sweden. Based on previous results obtained at the Institut Laue-Langevin (ILL) in France, an improved demonstrator has been built at ESS and tested at the Budapest Neutron Centre (BNC) in Hungary and at the Source Testing Facility (STF) at the Lund University in Sweden. A detailed description of the detector and the results of the tests are discussed in this manuscript.

  1. Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.

    2016-07-01

    The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm-2s-1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.

  2. High-precision neutron spectrometry, using diffraction focusing. Test experiment

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I. A.; Berdnikov, Ya. A.; Berdnikov, A. Ya.; Borisov, Yu. V.; Braginetz, Yu. P.; Fedorov, V. V.; Lasitsa, M. V.; Semenikhin, S. Yu.; Khorina, M. L.; Voronin, V. V.

    2016-09-01

    The effect of double-crystal neutron focusing, using Laue diffraction in large perfect crystals was studied. The observed effect allows reach the angular resolution better than 0.03", that is ~ 10-2 of the Bragg reflection width. This fact makes it possible to create a new ultraprecise method for neutron spectrometry combining the spin-echo small angle neutron scattering with Laue diffraction.

  3. Dosimetry and fast neutron energies characterization of photoneutrons produced in some medical linear accelerators

    NASA Astrophysics Data System (ADS)

    Khaled, N. E.; Attalla, E. M.; Ammar, H.; Khalil, W.

    2011-12-01

    This work focusses on the estimation of induced photoneutrons energy, fluence, and strength using nuclear track detector (NTD) (CR-39). Photoneutron energy was estimated for three different linear accelerators, LINACs as an example for the commonly used accelerators. For high-energy linear accelerators, neutrons are produced as a consequence of photonuclear reactions in the target nuclei, accelerator head, field-flattening filters and beam collimators, and other irradiated objects. NTD (CR-39) is used to evaluate energy and fluence of the fast neutron. Track length is used to estimate fast photoneutrons energy for linear accelerators (Elekta 10 MV, Elekta 15 MV, and Varian 15 MV). Results show that the estimated neutron energies for the three chosen examples of LINACs reveals neutron energies in the range of 1-2 MeV for 10 and 15 MV X-ray beams. The fluence of neutrons at the isocenter (Φtotal) is found to be (4×106 n cm2 Gy-1) for Elekta machine 10 MV. The neutron source strengths Q are calculated. It was found to be 0.2×1012 n Gy-1 X-ray at the isocenter. This work represents simple, low cost, and accurate methods of measuring fast neutrons dose and energies.

  4. Organic metal neutron detector

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1987-01-01

    A device for detecting neutrons comprises a layer of conductive polymer sandwiched between electrodes, which may be covered on each face with a neutron transmissive insulating material layer. Conventional electrodes are used for a non-imaging integrating total neutron fluence-measuring embodiment, while wire grids are used in an imaging version of the device. The change in conductivity of the polymer after exposure to a neutron flux is determined in either case to provide the desired data. Alternatively, the exposed conductive polymer layer may be treated with a chemical reagent which selectively binds to the sites altered by neutrons to produce an image of the flux detected.

  5. Multimessenger Observations of Neutron Star Mergers: Probing the Physics of High-Density Matter

    NASA Astrophysics Data System (ADS)

    Radice, David

    2016-09-01

    Neutron star mergers are Nature's ultimate hadron colliders. They are extremely violent events resulting in gravitational-waves and electromagnetic emissions that could be detected at distances of several hundred mega-parsecs. Imprinted in these signals are important clues on the properties of high-density matter, waiting to be harnessed by us. In this talk, I will review our current knowledge of neutron star mergers from the theoretical side. I will discuss the prospects of measuring neutron star radii and masses using gravitational-wave observations of the late-inspiral of merging neutron stars. Then, I will show how multimessenger observations of the merger and post-merger evolution of merging neutron stars could be used to place further constrains on the nuclear equation of state at very high densities. Finally, I will discuss the possible role of neutron star mergers in the creation of the r-process nuclei in the Universe.

  6. High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications

    SciTech Connect

    Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.

    1999-06-06

    Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.

  7. High-Power Linac for the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Rej, D. J.

    2002-04-01

    The Spallation Neutron Source (SNS) will be the world’s most intense source of neutrons for fundamental science and industrial applications. Design and construction of this facility, located at Oak Ridge, is a joint venture between six DOE laboratories. Construction began in 1999 and is currently ahead of the scheduled 2006 completion date. Injecting a high-power, pulsed proton beam into a mercury target produces neutrons. In this talk, we review the physics requirements, design, and status of the construction of the 1-GeV, 1.4-MW average power RF linac for SNS. The accelerator consists of a drift tube linac (DTL), a coupled-cavity linac (CCL), and a superconducting rf (SRF) linac. The phase and quadrupole settings are set to avoid structure and parametric resonances, with coherent resonances posing minimal risk for emittance growth. The DTL is 37 m long and accelerates the ions to 87 MeV. The CCL is 55 m long and accelerates the ions to 186 MeV. The rf structure design and stability for both the DTL and CCL have been validated with scale models. The SRF linac has a modular design to accelerate ions to 1000 MeV, with a straightforward upgrade to 1.3 GeV at a later date. 3D particle-in-cell simulations of beam dynamics are performed to validate performance. The accelerator utilizes 93 MW of pulsed power operating continuously at 60-Hz with an 8factor. Approximately one hundred 402.5 or 805-MHz klystrons, with outputs between 0.55 and 5 MW, are used. The klystrons are powered by a novel converter-modulator that takes advantage of recent advances in IGBT switch plate assemblies and low-loss material cores for boost transformer. Beam diagnostics include position, phase, profile, and current monitors. They are designed to enable accurate beam steering and matching, and to minimize beam loss that would lead to activation and prevent hands-on maintenance.

  8. High energy neutron and gamma-radiation generated during the solar flares

    NASA Technical Reports Server (NTRS)

    Kocharov, G. E.; Mandzhavidze, N. Z.

    1985-01-01

    The problem of high energy neutrons and gamma rays generation in the solar conditions is considered. It is shown that due to a peculiarity of generation and propagation of neutrons corresponding solar flares should be localized at high helio-longitudes.

  9. Effect of neutron irradiation on the mechanical properties of weld overlay cladding for reactor pressure vessel

    NASA Astrophysics Data System (ADS)

    Tobita, Tohru; Udagawa, Makoto; Chimi, Yasuhiro; Nishiyama, Yutaka; Onizawa, Kunio

    2014-09-01

    This study investigates the effects of high fluence neutron irradiation on the mechanical properties of two types of cladding materials fabricated using the submerged-arc welding and electroslag welding methods. The tensile tests, Charpy impact tests, and fracture toughness tests were conducted before and after the neutron irradiation with a fluence of 1 × 1024 n/m2 at 290 °C. With neutron irradiation, we could observe an increase in the yield strength and ultimate strength, and a decrease in the total elongation. All cladding materials exhibited ductile-to-brittle transition behavior during the Charpy impact tests. A reduction in the Charpy upper-shelf energy and an increase in the ductile-to-brittle transition temperature was observed with neutron irradiation. There was no obvious decrease in the elastic-plastic fracture toughness (JIc) of the cladding materials upon irradiation with high neutron fluence. The tearing modulus was found to decrease with neutron irradiation; the submerged-arc-welded cladding materials exhibited low JIc values at high temperatures.

  10. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: Measurement with an extended-range Bonner sphere system

    PubMed Central

    Howell, Rebecca M.; Burgett, E. A.

    2014-01-01

    Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire

  11. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    PubMed

    Pang, Bo; Becker, Frank

    2016-06-24

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding.

  12. Modeling max-of-N fluence distribution using measured shot-to-shot beam contrast

    SciTech Connect

    Liao, Zhi M.; Huebel, John; Trenholme, John; Manes, Ken; Carr, C. Wren

    2011-07-10

    We have found the local temporal shot-to-shot variation of the NIF high-energy laser system to be relatively constant ({approx}3.4% to 4.2% of the mean fluence). We have developed a statistical model that predicts the maximum fluence distribution any particular location will be exposed to after N independent shots (the so-called max-of-N fluence distribution) using the measured shot-to-shot variance; this method allows for an estimate of maximum optics fluence exposure.

  13. LiF crystals as high spatial resolution neutron imaging detectors

    NASA Astrophysics Data System (ADS)

    Matsubayashi, M.; Faenov, A.; Pikuz, T.; Fukuda, Y.; Kato, Y.; Yasuda, R.; Iikura, H.; Nojima, T.; Sakai, T.

    2011-09-01

    Neutron imaging by color center formation in LiF crystals was applied to a sensitivity indicator (SI) as a standard samples for neutron radiography. The SI was exposed to a 5 mm pinhole-collimated thermal neutron beam with an LiF crystal and a neutron imaging plate (NIP) for 120 min in the JRR-3M thermal neutron radiography facility. The image in the LiF crystal was read out using a laser confocal microscope. All gaps were clearly observed in images for both the LiF crystal and the NIP. The experimental results showed that LiF crystals have excellent characteristics as neutron imaging detectors in areas such as high spatial resolution.

  14. Generation of high-energy neutron beam by fragmentation of relativistic heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yurevich, Vladimir

    2016-09-01

    The phenomenon of multiple production of neutrons in reactions with heavy nuclei induced by high-energy protons and light nuclei is analyzed using a Moving Source Model. The Lorentz transformation of the obtained neutron distributions is used to study the neutron characteristics in the inverse kinematics where relativistic heavy nuclei bombard a light-mass target. The neutron beam generated at 0∘has a Gaussian shape with a maximum at the energy of the projectile nucleons and an energy resolution σE/E < 4% above 6 GeV.

  15. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    SciTech Connect

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  16. First PGAA and NAA experimental results from a compact high intensity D-D neutron generator

    SciTech Connect

    Reijonen, J.; Leung, K.-N.; Firestone, R.B.; English, J.A.; Perry, D.L.; Smith, A.; Gicquel, F.; Sun, M.; Bandong, B.; Garabedian, G.; Revay, Zs.; Szentmiklosi, L.; Molnar, G.

    2003-05-13

    Various types of neutron generator systems have been designed and tested at the Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory. These generators are based on a D-D fusion reaction. These high power D-D neutron generators can provide neutron fluxes in excess of the current state of the art D-T neutron generators, without the use of pre-loaded targets or radioactive tritium gas. Safe and reliable long-life operations are the typical features of these D-D generators. All of the neutron generators developed in the Plasma and Ion Source Technology Group are utilizing powerful RF-induction discharge to generate the deuterium plasma. One of the advantages of using the RF-induction discharge is it's ability to generate high fraction of atomic ions from molecular gases, and the ability to generate high plasma densities for high extractable ion current from relatively small discharge volume.

  17. Neutron irradiation induced amorphization of silicon carbide

    SciTech Connect

    Snead, L.L.; Hay, J.C.

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  18. Digital neutron radiography using plane converters with multiwire proportional chambers

    SciTech Connect

    Kaplan, S.N.; Director, B.A.; Perez-Mendez, V.; Valentine, K.H.

    1981-12-01

    The work described here was completed more than three years ago, and represents, in large part the PhD and MS thesis research of two of the present authors. Much of it has been reported previously elsewhere. It constitutes an effort to develop and study a moderately low cost, moderate resolution, high sensitivity, on-line method for digital neutron radiography, intended for use where neutron fluence was limited by source strength, or received dose. The basic imaging system consisted of a position-sensitive gas proportional chamber together with its associated imaging electronics, and a plane neutron converter. Enriched-boron, gadolinium, and polyethylene (for fast neutrons) converters were analyzed and tested. Some work was done on digital data enhancement, and efforts to improve spatial resolution included pressurizing the proportional-chamber gas to reduce the track lengths of the neutron-interaction products.

  19. Axial Neutron Flux Evaluation in a Tokamak System: a Possible Transmutation Blanket Position for a Fusion-Fission Transmutation System

    NASA Astrophysics Data System (ADS)

    Velasquez, Carlos E.; de P. Barros, Graiciany; Pereira, Claubia; Fortini Veloso, Maria A.; Costa, Antonella L.

    2012-08-01

    A sub-critical advanced reactor based on Tokamak technology with a D-T fusion neutron source is an innovative type of nuclear system. Due to the large number of neutrons produced by fusion reactions, such a system could be useful in the transmutation process of transuranic elements (Pu and minor actinides (MAs)). However, to enhance the MA transmutation efficiency, it is necessary to have a large neutron wall loading (high neutron fluence) with a broad energy spectrum in the fast neutron energy region. Therefore, it is necessary to know and define the neutron fluence along the radial axis and its characteristics. In this work, the neutron flux and the interaction frequency along the radial axis are evaluated for various materials used to build the first wall. W alloy, beryllium, and the combination of both were studied, and the regions more suitable to transmutation were determined. The results demonstrated that the best zone in which to place a transmutation blanket is limited by the heat sink and the shield block. Material arrangements of W alloy/W alloy and W alloy/beryllium would be able to meet the requirements of the high fluence and hard spectrum that are needed for transuranic transmutation. The system was simulated using the MCNP code, data from the ITER Final Design Report, 2001, and the Fusion Evaluated Nuclear Data Library/MC-2.1 nuclear data library.

  20. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    SciTech Connect

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-11-29

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL).

  1. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  2. High-resolution neutron radiography with microchannel plates: Proof-of-principle experiments at PSI

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; McPhate, J. B.; Vallerga, J. V.; Siegmund, O. H. W.; Hull, J. S.; Feller, W. B.; Lehmann, E.

    2009-06-01

    With the appearance of highly collimated and intense neutron beamlines, the resolution of radiographic experiments is often limited by the parameters of the neutron imaging detector. Neutron-sensitive microchannel plates (MCPs) proved to be very efficient for conversion of a thermal or cold neutron into an electron pulse of up to 10 6 electrons preserving location of the neutron absorption within ˜15 μm. In this paper, we present the results of preliminary measurements performed with neutron-sensitive MCPs coupled with a Medipix2/Timepix active pixel sensor. A set of test objects was imaged at both thermal and cold neutron imaging beamlines of Paul Scherrer Institute. The spatial resolution of the detector operating at high counting rate mode was confirmed to be limited by the 55 μm pixel size of the Medipix2 readout. At the same time, event centroiding applied to the charge values measured with Timepix readout allowed individual neutron counting with spatial resolution on the scale of MCP pore spacing (11 μm in the present measurements). The ongoing improvement of the speed of the readout electronics should eliminate the low counting rate limitation of the latter high-resolution imaging.

  3. FIELD CALIBRATION OF A TLD ALBEDO DOSEMETER IN THE HIGH-ENERGY NEUTRON FIELD OF CERF.

    PubMed

    Haninger, T; Kleinau, P; Haninger, S

    2016-07-15

    The new albedo dosemeter-type AWST-TL-GD 04 has been calibrated in the CERF neutron field (Cern-EU high-energy Reference Field). This type of albedo dosemeter is based on thermoluminescent detectors (TLDs) and used by the individual monitoring service of the Helmholtz Zentrum München (AWST) since 2015 for monitoring persons, who are exposed occupationally against photon and neutron radiation. The motivation for this experiment was to gain a field specific neutron correction factor Nn for workplaces at high-energy particle accelerators. Nn is a dimensionless factor relative to a basic detector calibration with (137)Cs and is used to calculate the personal neutron dose in terms of Hp(10) from the neutron albedo signal. The results show that the sensitivity of the albedo dosemeter for this specific neutron field is not significantly lower as for fast neutrons of a radionuclide source like (252)Cf. The neutron correction factor varies between 0.73 and 1.16 with a midrange value of 0.94. The albedo dosemeter is therefore appropriate to monitor persons, which are exposed at high-energy particle accelerators.

  4. Earthquake effects in thermal neutron variations at the high-altitude station of Northern

    NASA Astrophysics Data System (ADS)

    Antonova, Valentina; Chubenko, Alexandr; Kryukov, Sergey; Lutsenko, Vadim

    2016-04-01

    Results of study of thermal neutron variations under various space and geophysical conditions on the basis of measurements on stationary installations with high statistical accuracy are presented. Installations are located close to the fault of the earth's crust at the high-altitude station of cosmic rays (3340 m above sea level, 43.02 N, 76.56 E, 20 km from Almaty) in the mountains of Northern Tien-Shan. Responses of the most effective gelio- and geophysical events (variations of atmospheric pressure, coronal mass ejections, earthquakes) has consistently considered in the variations of the thermal neutron flux and compared with variations of high-energy neutrons (standard monitor 18NM64) of galactic origin during these periods. Coefficients of correlation were calculated between data of thermal neutron detectors and data of the neutron monitor, recording the intensity of high-energy particles. High correlation coefficients and similarity of responses to changes of space and geophysical conditions are obtained, that confirms the conclusion of the genetic connection of thermal neutrons with high-energy neutrons of galactic origin and suggests same sources of disturbances in the absence of seismic activity. Observations and analysis of experimental data during the activation of seismic activity in the vicinity of Almaty showed the frequent breakdown of the correlation between the intensity of thermal and high-energy neutrons and the absence of similarity between variations during these periods. We suppose that the additional thermal neutron flux of the lithospheric origin appears under these conditions. Method of separating of thermal neutron flux variations of the lithospheric origin from neutrons variations generated in the atmosphere by subtracting the normalized data is proposed, taking into account the conclusion that variations caused with the atmospheric and interplanetary origins in thermal neutron detectors are similar to variations of high-energy neutrons

  5. DETECTORS AND EXPERIMENTAL METHODS: Study on spatial resolution of micromegas as a neutron detector under condition of high neutron flux and γ ray background

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xin; Zhang, Yi; Wang, Ji-Jin; Hu, Bi-Tao

    2009-02-01

    In this paper Micromegas has been designed to detect neutrons. The simulation of the spatial resolution of Micromegas as neutron detector is carried out by GEANT4 toolkit. The neutron track reconstruction method based on the time coincidence technology is employed in the present work. The influence of the flux of incident 14 MeV neutron and high gamma background on the spatial resolution is carefully studied. Our results show that the spatial resolution of the detector is sensitive to the neutron flux, but insensitive to the intensity of γ background if the neutron track reconstruction method proposed by our group is used. The γ insensitivity makes it possible for us to use the Micromegas detector under condition which has high γ-rays background.

  6. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    SciTech Connect

    Maglieri, Robert Evans, Michael; Seuntjens, Jan; Kildea, John; Licea, Angel

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  7. Advantages of passive detectors for the determination of the cosmic ray induced neutron environment.

    PubMed

    Hajek, M; Berger, T; Schöner, W; Vana, N

    2002-01-01

    Due to the pronounced energy dependence of the neutron quality factor, accurate assessment of the biologically relevant dose requires knowledge of the spectral neutron fluence rate. Bonner sphere spectrometers (BSSs) are the only instruments which provide a sufficient response over practically the whole energy range of the cosmic ray induced neutron component. Measurements in a 62 MeV proton beam at Paul Scherrer Institute, Switzerland, and in the CERN-EU high-energy reference field led to the assumption that conventional active devices for the detection of thermal neutrons inside the BSS, e.g. 6Lil(Eu) scintillators, also respond to charged particles when used in high-energy mixed radiation fields. The effects of these particles cannot be suppressed by amplitude discrimination and are subsequently misinterpreted as neutron radiation. In contrast, paired TLD-600 and TLD-700 thermoluminescence dosemeters allow the determination of a net thermal neutron signal.

  8. High-dose neutron irradiation performance of dielectric mirrors

    DOE PAGES

    Nimishakavi Anantha Phani Kiran Kumar; Leonard, Keith J.; Jellison, Jr., Gerald Earle; ...

    2015-05-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopymore » (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. Lastly, the ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.« less

  9. High-dose neutron irradiation performance of dielectric mirrors

    SciTech Connect

    Nimishakavi Anantha Phani Kiran Kumar; Leonard, Keith J.; Jellison, Jr., Gerald Earle; Snead, Lance Lewis

    2015-05-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopy (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. Lastly, the ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.

  10. The evaluation of neutron and gamma ray dose equivalent distributions in patients and the effectiveness of shield materials for high energy photons radiotherapy facilities.

    PubMed

    Ghassoun, J; Senhou, N

    2012-04-01

    In this study, the MCNP5 code was used to model radiotherapy room of a medical linear accelerator operating at 18 MV and to evaluate the neutron and the secondary gamma ray fluences, the energy spectra and the dose equivalent distributions inside a liquid tissue-equivalent (TE) phantom. The obtained results were compared with measured data published in the literature. Moreover, the shielding effects of various neutron material shields on the radiotherapy room wall were also investigated. Our simulation results showed that paraffin wax containing boron carbide presents enough effectiveness to reduce both neutron and secondary gamma ray doses.

  11. A direct measurement of the 6Li(n,t)4He cross section at sub-thermal neutron energy

    NASA Astrophysics Data System (ADS)

    Yue, A.; Dewey, M.; Gilliam, D.; Nico, J.; Greene, G.; Laptev, A.

    2014-09-01

    The thermal neutron capture cross section for the 6Li(n,t)4He reaction is an important neutron cross section standard. Yet few measurements of it have been performed and the ENDF/B-VII recommended value of (938 . 5 +/- 1 . 3) b is based heavily on measurements performed at higher energies. The first absolute, direct measurement of the 6Li(n,t)4He cross section at sub-thermal neutron energy has been performed at the NIST Center for Neutron Research. An alpha-gamma counter was used to measure the absolute neutron fluence of a monoenergetic neutron beam to sub-0.1% precision. The alpha-gamma counter used a thick, totally absorbing target of 10B-enriched boron carbide. The rate of absorbed neutrons was determined by counting the 478 keV 10B(n, γ)7Li gamma rays with calibrated high-purity germanium detectors. Simultaneously, the absolute rate of neutron-induced charged particles was measured for three thin 6Li targets of known density with a defined solid-angle counter. Using the known density of the 6Li targets and measurements of the rate of charged particles from the 6Li targets, the fluence of the neutron beam, and the energy of the neutron beam, we determine the 6Li(n,t)4He cross section at En = 3 . 3 meV to 0.3% uncertainty.

  12. DT High Energy Measurements and Comparison of Multiple Spectra in a He-4 Gas Neutron Detector

    NASA Astrophysics Data System (ADS)

    Gardiner, Hannah E.; Zhu, Ting; Gokhale, Sasmit; Parker, Cody; Richard, Andrea; Massey, Thomas; Baciak, James E.; Enqvisst, Andreas; Jordan, Kelly A.

    2016-09-01

    Neutron spectroscopy is important for a variety of applications to nuclear energy, national security, and basic science research. Currently, organic scintillator neutron detectors are used as a diagnostic tool for neutron spectroscopy in DT fusion research. However, these neutron measurements generate contaminants in common organics from deuteron or carbon break-up that affects the light output spectrum. A potential solution to this problem is to use a He-4 fast neutron gas scintillator detector system. He-4 has excellent gamma rejection due to a low charge density, pulse shape discrimination, and lower light yield and deposited energy from gamma interactions. The detector will also not degrade due to high intensity background gamma radiation. The detector was irradiated with 14.1 MeV neutrons at the Edwards Accelerator Lab at Ohio University. We report on the effectiveness of the He-4 detector system to measure the resulting high energy neutrons and compare this spectrum to other neutron spectra taken with this detector.

  13. Measuring the Fluence of Clinical Electron Beams

    NASA Astrophysics Data System (ADS)

    Zaini, Mehran

    1995-01-01

    The incident electron fluence on the patient is greatly affected by the various collimator components on the path of the beam. It is therefore important to measure and characterize these fluence perturbations, which alter the dose distributions. In addition, the incident fluence information is needed as input for the treatment planning algorithms, which are presently inferred from the dose measurements. The magnitude of electron fluence for patient treatments is very low and it is difficult to assess directly. Therefore, a specially designed fluence-meter is required. Of all the detection methods, an ion-implanted semiconductor detector with an ultra-thin depletion layer is the most suitable. We have shown that the energy deposited in an ultra-thin detector, with no window, is directly proportional to the incident fluence of clinical electron beams, including the small contribution of delta-rays. The main reasons for this concept are that (L/rho ) of silicon is essentially constant over the spectrum of any clinical beam and these beams are almost mono-energetic. Our detector is calibrated against a flat Faraday cup and can provide a measure of true electron fluence, with almost no energy and directional dependence. Calibrations are done in a vacuum chamber, where the chamber and the measuring electronics are connected to the accelerator ground. In the calibration setup, a pipe collimation system is used to create a mono-directional beam, so that Phi = Phi_{planar }. Geometrical calculations and films are used for making quantitative analysis of the beam impinging on the detector and the cup. The precision of the calibrations is below 1%. Since the calibration factors of the detector are the same on two different linacs, once a detector is calibrated, it can measure electron fluence on any clinical machine. Fluence output and profiles, and dphi /dtheta of a variety of cones and blocks are measured. The measured surface fluence values conform to the expected shape of

  14. Secondary neutron spectra from modern Varian, Siemens, and Elekta linacs with multileaf collimators.

    PubMed

    Howell, Rebecca M; Kry, Stephen F; Burgett, Eric; Hertel, Nolan E; Followill, David S

    2009-09-01

    Neutrons are a by-product of high-energy x-ray radiation therapy (threshold for [gamma,n] reactions in high-Z material -7 MeV). Neutron production varies depending on photon beam energy as well as on the manufacturer of the accelerator. Neutron production from modern linear accelerators (linacs) has not been extensively compared, particularly in terms of the differences in the strategies that various manufacturers have used to implement multileaf collimators (MLCs) into their linac designs. However, such information is necessary to determine neutron dose equivalents for different linacs and to calculate vault shielding requirements. The purpose of the current study, therefore, was to measure the neutron spectra from the most up-to-date linacs from three manufacturers: Varian 21EX operating at 15, 18, and 20 MV, Siemens ONCOR operating at 15 and 18 MV, and Elekta Precise operating at 15 and 18 MV. Neutron production was measured by means of gold foil activation in Bonner spheres. Based on the measurements, the authors determined neutron spectra and calculated the average energy, total neutron fluence, ambient dose equivalent, and neutron source strength. The shapes of the neutron spectra did not change significantly between accelerators or even as a function of treatment energy. However, the neutron fluence, and therefore the ambient dose equivalent, did vary, increasing with increasing treatment energy. For a given nominal treatment energy, these values were always highest for the Varian linac. The current study thus offers medical physicists extensive information about the neutron production of MLC-equipped linacs currently in operation and provides them information vital for accurate comparison and prediction of neutron dose equivalents and calculation of vault shielding requirements.

  15. Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector

    NASA Astrophysics Data System (ADS)

    Sánchez-Doblado, F.; Domingo, C.; Gómez, F.; Sánchez-Nieto, B.; Muñiz, J. L.; García-Fusté, M. J.; Expósito, M. R.; Barquero, R.; Hartmann, G.; Terrón, J. A.; Pena, J.; Méndez, R.; Gutiérrez, F.; Guerre, F. X.; Roselló, J.; Núñez, L.; Brualla-González, L.; Manchado, F.; Lorente, A.; Gallego, E.; Capote, R.; Planes, D.; Lagares, J. I.; González-Soto, X.; Sansaloni, F.; Colmenares, R.; Amgarou, K.; Morales, E.; Bedogni, R.; Cano, J. P.; Fernández, F.

    2012-10-01

    Neutron peripheral contamination in patients undergoing high-energy photon radiotherapy is considered as a risk factor for secondary cancer induction. Organ-specific neutron-equivalent dose estimation is therefore essential for a reasonable assessment of these associated risks. This work aimed to develop a method to estimate neutron-equivalent doses in multiple organs of radiotherapy patients. The method involved the convolution, at 16 reference points in an anthropomorphic phantom, of the normalized Monte Carlo neutron fluence energy spectra with the kerma and energy-dependent radiation weighting factor. This was then scaled with the total neutron fluence measured with passive detectors, at the same reference points, in order to obtain the equivalent doses in organs. The latter were correlated with the readings of a neutron digital detector located inside the treatment room during phantom irradiation. This digital detector, designed and developed by our group, integrates the thermal neutron fluence. The correlation model, applied to the digital detector readings during patient irradiation, enables the online estimation of neutron-equivalent doses in organs. The model takes into account the specific irradiation site, the field parameters (energy, field size, angle incidence, etc) and the installation (linac and bunker geometry). This method, which is suitable for routine clinical use, will help to systematically generate the dosimetric data essential for the improvement of current risk-estimation models.

  16. Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector.

    PubMed

    Sánchez-Doblado, F; Domingo, C; Gómez, F; Sánchez-Nieto, B; Muñiz, J L; García-Fusté, M J; Expósito, M R; Barquero, R; Hartmann, G; Terrón, J A; Pena, J; Méndez, R; Gutiérrez, F; Guerre, F X; Roselló, J; Núñez, L; Brualla-González, L; Manchado, F; Lorente, A; Gallego, E; Capote, R; Planes, D; Lagares, J I; González-Soto, X; Sansaloni, F; Colmenares, R; Amgarou, K; Morales, E; Bedogni, R; Cano, J P; Fernández, F

    2012-10-07

    Neutron peripheral contamination in patients undergoing high-energy photon radiotherapy is considered as a risk factor for secondary cancer induction. Organ-specific neutron-equivalent dose estimation is therefore essential for a reasonable assessment of these associated risks. This work aimed to develop a method to estimate neutron-equivalent doses in multiple organs of radiotherapy patients. The method involved the convolution, at 16 reference points in an anthropomorphic phantom, of the normalized Monte Carlo neutron fluence energy spectra with the kerma and energy-dependent radiation weighting factor. This was then scaled with the total neutron fluence measured with passive detectors, at the same reference points, in order to obtain the equivalent doses in organs. The latter were correlated with the readings of a neutron digital detector located inside the treatment room during phantom irradiation. This digital detector, designed and developed by our group, integrates the thermal neutron fluence. The correlation model, applied to the digital detector readings during patient irradiation, enables the online estimation of neutron-equivalent doses in organs. The model takes into account the specific irradiation site, the field parameters (energy, field size, angle incidence, etc) and the installation (linac and bunker geometry). This method, which is suitable for routine clinical use, will help to systematically generate the dosimetric data essential for the improvement of current risk-estimation models.

  17. Design and Characterisation of Metallic Glassy Alloys of High Neutron Shielding Capability

    PubMed Central

    Khong, J. C.; Daisenberger, D.; Burca, G.; Kockelmann, W.; Tremsin, A. S.; Mi, J.

    2016-01-01

    This paper reports the design, making and characterisation of a series of Fe-based bulk metallic glass alloys with the aim of achieving the combined properties of high neutron absorption capability and sufficient glass forming ability. Synchrotron X-ray diffraction and pair distribution function methods were used to characterise the crystalline or amorphous states of the samples. Neutron transmission and macroscopic attenuation coefficients of the designed alloys were measured using energy resolved neutron imaging method and the very recently developed microchannel plate detector. The study found that the newly designed alloy (Fe48Cr15Mo14C15B6Gd2 with a glass forming ability of Ø5.8 mm) has the highest neutron absorption capability among all Fe-based bulk metallic glasses so far reported. It is a promising material for neutron shielding applications. PMID:27848991

  18. Development of high-energy neutron imaging for use in NDE applications

    SciTech Connect

    Dietrich, F; Hall, J; Logan, C; Schmid, G

    1999-06-01

    We are currently developing a high-energy (10 - 15 MeV) neutron imaging system for use in NDE applications. Our goal is to develop an imaging system capable of detecting cubic-mm-scale voids or other structural defects in heavily-shielded low-Z materials within thick sealed objects. The system will be relatively compact (suitable for use in a small laboratory) and capable of acquiring tomographic image data sets. The design of a prototype imaging detector and multi-axis staging system will be discussed and selected results from recent imaging experiments will be presented. The development of an intense, accelerator-driven neutron source suitable for use with the imaging system will also be discussed. Keywords: neutron imaging, neutron radiography, computed tomography, non-destructive inspection, neutron sources

  19. Design and Characterisation of Metallic Glassy Alloys of High Neutron Shielding Capability

    NASA Astrophysics Data System (ADS)

    Khong, J. C.; Daisenberger, D.; Burca, G.; Kockelmann, W.; Tremsin, A. S.; Mi, J.

    2016-11-01

    This paper reports the design, making and characterisation of a series of Fe-based bulk metallic glass alloys with the aim of achieving the combined properties of high neutron absorption capability and sufficient glass forming ability. Synchrotron X-ray diffraction and pair distribution function methods were used to characterise the crystalline or amorphous states of the samples. Neutron transmission and macroscopic attenuation coefficients of the designed alloys were measured using energy resolved neutron imaging method and the very recently developed microchannel plate detector. The study found that the newly designed alloy (Fe48Cr15Mo14C15B6Gd2 with a glass forming ability of Ø5.8 mm) has the highest neutron absorption capability among all Fe-based bulk metallic glasses so far reported. It is a promising material for neutron shielding applications.

  20. A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment.

    PubMed

    Holley, A T; Broussard, L J; Davis, J L; Hickerson, K; Ito, T M; Liu, C-Y; Lyles, J T M; Makela, M; Mammei, R R; Mendenhall, M P; Morris, C L; Mortensen, R; Pattie, R W; Rios, R; Saunders, A; Young, A R

    2012-07-01

    The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be ̅ε=0.9985(4).

  1. A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment

    NASA Astrophysics Data System (ADS)

    Holley, A. T.; Broussard, L. J.; Davis, J. L.; Hickerson, K.; Ito, T. M.; Liu, C.-Y.; Lyles, J. T. M.; Makela, M.; Mammei, R. R.; Mendenhall, M. P.; Morris, C. L.; Mortensen, R.; Pattie, R. W.; Rios, R.; Saunders, A.; Young, A. R.

    2012-07-01

    The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be overline{ɛ }=0.9985(4).

  2. A small high sensitivity neutron detector using a wavelength shifting fiber.

    PubMed

    Yagi, T; Misawa, T; Pyeon, C H; Shiroya, S

    2011-01-01

    A small neutron detector using an optical fiber was previously developed for reaction rate measurements at research reactors and accelerator facilities. This detector can be inserted into narrow spaces and its spatial resolution is less than 1mm; however, its neutron sensitivity is low because of the small size of its detector. The purpose of this study is to develop a new optical fiber detector with high neutron sensitivity by using a wavelength shifting fiber. Through the measurement of the reaction rate distribution in a reactor core, we found that it is possible to increase the effective length of the detector, resulting in increased neutron sensitivity compared with a conventional optical fiber detector. Additionally, using a longer wavelength shifting fiber, the sensitivity can be increased until it is as large as that of a typical small BF(3) proportional counter, which means that this detector can be used for even low neutron flux fields.

  3. Measurement of high-energy neutron flux above ground utilizing a spallation based multiplicity technique

    DOE PAGES

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; ...

    2016-11-14

    Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Montemore » Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. Lastly, these results demonstrate the feasibility of future below ground measurements with MARS.« less

  4. Measurement of high-energy neutron flux above ground utilizing a spallation based multiplicity technique

    SciTech Connect

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; Vetter, Kai

    2016-11-14

    Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Monte Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. Lastly, these results demonstrate the feasibility of future below ground measurements with MARS.

  5. Simulation experiments for gamma-ray mapping of planetary surfaces: Scattering of high-energy neutrons

    NASA Technical Reports Server (NTRS)

    Brueckner, J.; Englert, P.; Reedy, R. C.; Waenke, H.

    1986-01-01

    The concentration and distribution of certain elements in surface layers of planetary objects specify constraints on models of their origin and evolution. This information can be obtained by means of remote sensing gamma-ray spectroscopy, as planned for a number of future space missions, i.e., Mars, Moon, asteroids, and comets. To investigate the gamma-rays made by interactions of neutrons with matter, thin targets of different composition were placed between a neutron-source and a high-resolution germanium spectrometer. Gamma-rays in the range of 0.1 to 8 MeV were accumulated. In one set of experiments a 14-MeV neutron generator using the T(d,n) reaction as neutron-source was placed in a small room. Scattering in surrounding walls produced a spectrum of neutron energies from 14 MeV down to thermal. This complex neutron-source induced mainly neutron-capture lines and only a few scattering lines. As a result of the set-up, there was a considerable background of discrete lines from surrounding materials. A similar situation exists under planetary exploration conditions: gamma-rays are induced in the planetary surface as well as in the spacecraft. To investigate the contribution of neutrons with higher energies, an experiment for the measurement of prompt gamma radiation was set up at the end of a beam-line of an isochronous cyclotron.

  6. Micronuclei Induction in Human Fibroblasts Exposed In Vitro to Los Alamos High-Energy Neutrons

    NASA Technical Reports Server (NTRS)

    Gersey, Brad; Sodolak, John; Hada, Megumi; Saganti, Prem; Wilkins, Richard; Cucinotta, Francis; Wu, Honglu

    2006-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility#s ICE House 30L beamline is known to generate neutrons that simulate the secondary neutron spectra of earth#s atmosphere. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and International Space Station (ISS). To evaluate the biological damage, we exposed human fibroblasts in vitro to the LANSCE neutron beams without degrader at an entrance dose rate of 25 mGy/hr and analyzed the micronuclei (MN) induction. The cells were also placed behind a 9.9 cm water column to study effect of shielding in the protection of neutron induced damages. It was found that the dose response in the MN frequency was linear for the samples with and without shielding and the slope of the MN yield behind the shielding was reduced by a factor of 3.5. Compared to the MN induction in human fibroblasts exposed to a gamma source at a low dose rate, the RBE was found to be 16.7 and 10.0 for the neutrons without and with 9.9 cm water shielding, respectively.

  7. A Canadian high-energy neutron spectrometry system for measurements in space

    NASA Astrophysics Data System (ADS)

    Jonkmans, G.; Andrews, H. R.; Clifford, E. T. H.; Frketich, G.; Ing, H.; Koslowsky, V. T.; Noulty, R. A.; Miller, R. C.; Zhou, Y.; Mortimer, A.; Peterson, D.; Wilkinson, R.

    2005-05-01

    Bubble Technology Industries Inc. (BTI), with the support of the Canadian Space Agency, has finished the construction of the Canadian High-Energy Neutron Spectrometry System (CHENSS). This spectrometer is intended to measure the high-energy neutron spectrum ( ˜1-100MeV) encountered in spacecraft in low earth orbit. CHENSS is designed to fly aboard a US space shuttle and its scientific results should facilitate the prediction of neutron dose to astronauts in space from readings of different types of radiation dosimeters that are being used in various missions.

  8. Monte Carlo calculations of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements.

    PubMed

    Enger, Shirin A; Munck af Rosenschöld, Per; Rezaei, Arash; Lundqvist, Hans

    2006-02-01

    GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.

  9. Observation of thermal effects due to an optical incident signal and high fluence on InGaAs/InP multiple-quantum-well saturable absorber nonlinear mirrors: evolution of characteristics and time constants.

    PubMed

    Le Cren, Elodie; Lobo, Sébastien; Fève, Sylvain; Simon, Jean-Claude

    2006-09-10

    We observe the effects of a temperature increase on the characteristics of an InGaAs/InP multiple-quantum-well (MQW) saturable absorber (SA) in a microcavity provided by an optical input signal under normal incidence. The temperature increase on the nonlinear mirror (NLM) due to an optical signal depends on the energy time filling factor (FF) of this input signal (analogous to the signal's duty cycle, which is the ratio between the repetition period and the pulse duration) and hence depends on the repetition rate of the signal for a given pulse time width. This increase in temperature is mostly responsible for a shift in the reflectivity spectrum of the device toward higher wavelengths. In this experimental study, we show the shift of the resonance cavity versus the optical input power at high FF, and we evaluate the thermal time constant of an Fe-doped InGaAs/InP MQW NLM. Finally, we report the consequences of such thermal effects and high fluence on the reflectivity and contrast of two different InGaAs/InP NLMs when the input signal FF rises up to 25%, which gets close to telecommunication transmission conditions.

  10. Optical absorption of neutron-irradiated silica fibers

    SciTech Connect

    Cooke, D.W.; Farnum, E.H.; Bennett, B.L.

    1996-10-01

    Induced-loss spectra of silica-based optical fibers exposed to high (10{sup 23} n-m{sup {minus}2}) and low (10{sup 21} n-m{sup {minus}2}) fluences of neutrons at the Los Alamos Spallation Radiation Effects Facility (LASREF) have been measured. Two types of fibers consisting of a pure fused silica core with fluorine-doped ({approximately}4 mole %) cladding were obtained from Fiberguide Industries and used in the as-received condition. Anhydroguide{trademark} and superguide{trademark} fibers contained less than 1 ppm, and 600 to 800 ppm of OH, respectively. The data suggest that presently available silica fibers can be used in plasma diagnostics, but the choice and suitability depends upon the spectral region of interest. Low-OH content fibers can be used for diagnostic purposes in the interval {approximately}800 to 1400 mn if the exposure is to high-fluence neutrons. For low-fluence neutron exposures, the low-OH content fibers are best suited for use in the interval {approximately}800 to 2000 nm, and the high-OH content fibers are the choice for the interval {approximately}400 to 800 nm.

  11. Dosimetry in mixed neutron-gamma fields

    SciTech Connect

    Remec, I.

    1998-04-01

    The gamma field accompanying neutrons may, in certain circumstances, play an important role in the analysis of neutron dosimetry and even in the interpretation of radiation induced steel embrittlement. At the High Flux Isotope Reactor pressure vessel the gamma induced reactions dominate the responses of {sup 237}Np and {sup 238}U dosimeters, and {sup 9}Be helium accumulation fluence monitors. The gamma induced atom displacement rate in steel is higher than corresponding neutron rate, and is the cause of ``accelerated embrittlement`` of HFIR materials. In a large body of water, adjacent to a fission plate, photofissions contribute significantly to the responses of fission monitors and need to be taken into account if the measurements are used for the qualification of the transport codes and cross-section libraries.

  12. The very-low-fluence and high-irradiance responses of the phytochromes have antagonistic effects on germination, mannan-degrading activities, and DfGA3ox transcript levels in Datura ferox seeds.

    PubMed

    Arana, María Verónica; Burgin, María José; de Miguel, Lucila C; Sánchez, Rodolfo A

    2007-01-01

    Seed germination can be promoted by the modes of action of two of the phytochromes: the low-fluence response (LFR), which is the classical red (R)-far-red (FR) reversible response and the very-low-fluence response (VLFR) that can be saturated by extremely low levels of Pfr, which can be elicited by a saturating FR pulse. The Datura ferox seed population used in this work had acquired the capacity to germinate through a VLFR after pretreatment in a water-saturated atmosphere (WSA) at constant 25 degrees C. After 12 d in WSA germination after a FR pulse was 82%, while it was less than 10% in darkness. It was found that the VLFR of germination is associated with increments in the embryo growth potential (EGP) and in the activity of two enzymes related to the weakening of the micropylar region of the endosperm (ME); endo-beta-mannanase and beta-mannosidase. The FR pulse also significantly stimulated the expression of DfGA3ox, a GA 3beta-hydroxylase, suggesting that the promotion of germination by the VLFR is associated with an increase in the synthesis of active gibberellins. The promotive action of the VLFR on germination is reduced when the FR pulse is immediately followed by a continuous FR treatment for 24 h (FRc). The effect of FRc cannot be reproduced by hourly FR pulses during the same period, showing that the antagonistic effect of FRc is a high-irradiance response (HIR). The action of the HIR in germination is associated with a decrease of both the mannan-degrading enzyme activity and the expression of DfMan in the ME, whereas no changes in the EGP were observed. The HIR also inhibits the accumulation of DfGA3ox in embryos, indicating that its action on germination is mediated, at least in part, through the modulation of active GA contents in seeds. This is the first report of a gene that participates in the VLFR-HIR antagonism in seeds.

  13. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high-power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  14. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  15. Biological effects of high-energy neutrons measured in vivo using a vertebrate model.

    PubMed

    Kuhne, Wendy W; Gersey, Brad B; Wilkins, Richard; Wu, Honglu; Wender, Stephen A; George, Varghese; Dynan, William S

    2009-10-01

    Interaction of solar protons and galactic cosmic radiation with the atmosphere and other materials produces high-energy secondary neutrons from below 1 to 1000 MeV and higher. Although secondary neutrons may provide an appreciable component of the radiation dose equivalent received by space and high-altitude air travelers, the biological effects remain poorly defined, particularly in vivo in intact organisms. Here we describe the acute response of Japanese medaka (Oryzias latipes) embryos to a beam of high-energy spallation neutrons that mimics the energy spectrum of secondary neutrons encountered aboard spacecraft and high-altitude aircraft. To determine RBE, embryos were exposed to 0-0.5 Gy of high-energy neutron radiation or 0-15 Gy of reference gamma radiation. The radiation response was measured by imaging apoptotic cells in situ in defined volumes of the embryo, an assay that provides a quantifiable, linear dose response. The slope of the dose response in the developing head, relative to reference gamma radiation, indicates an RBE of 24.9 (95% CI 13.6-40.7). A higher RBE of 48.1 (95% CI 30.0-66.4) was obtained based on overall survival. A separate analysis of apoptosis in muscle showed an overall nonlinear response, with the greatest effects at doses of less than 0.3 Gy. Results of this experiment indicate that medaka are a useful model for investigating biological damage associated with high-energy neutron exposure.

  16. Achieving high-resolution soft-tissue imaging with cone-beam CT: a two-pronged approach for modulation of x-ray fluence and detector gain

    NASA Astrophysics Data System (ADS)

    Graham, S. A.; Siewerdsen, J. H.; Moseley, D. J.; Keller, H.; Shkumat, N. A.; Jaffray, D. A.

    2005-04-01

    Cone-beam computed tomography (CBCT) presents a highly promising and challenging advanced application of flat-panel detectors (FPDs). The great advantage of this adaptable technology is in the potential for sub-mm 3D spatial resolution in combination with soft-tissue detectability. While the former is achieved naturally by CBCT systems incorporating modern FPD designs (e.g., 200 - 400 um pixel pitch), the latter presents a significant challenge due to limitations in FPD dynamic range, large field of view, and elevated levels of x-ray scatter in typical CBCT configurations. We are investigating a two-pronged strategy to maximizing soft-tissue detectability in CBCT: 1) front-end solutions, including novel beam modulation designs (viz., spatially varying compensators) that alleviate detector dynamic range requirements, reduce x-ray scatter, and better distribute imaging dose in a manner suited to soft-tissue visualization throughout the field of view; and 2) back-end solutions, including implementation of an advanced FPD design (Varian PaxScan 4030CB) that features dual-gain and dynamic gain switching that effectively extends detector dynamic range to 18 bits. These strategies are explored quantitatively on CBCT imaging platforms developed in our laboratory, including a dedicated CBCT bench and a mobile isocentric C-arm (Siemens PowerMobil). Pre-clinical evaluation of improved soft-tissue visibility was carried out in phantom and patient imaging with the C-arm device. Incorporation of these strategies begin to reveal the full potential of CBCT for soft-tissue visualization, an essential step in realizing broad utility of this adaptable technology for diagnostic and image-guided procedures.

  17. A high repetition rate laser-heavy water based neutron source

    NASA Astrophysics Data System (ADS)

    Hah, Jungmoo; He, Zhaohan; Nees, John; Krushelnick, Karl; Thomas, Alexander; CenterUltrafast Optical Science Team

    2015-11-01

    Neutrons have numerous applications in diverse areas, such as medicine, security, and material science. For example, sources of MeV neutrons may be used for active interrogation for nuclear security applications. Recently, alternative ways to generate neutron flux have been studied. Among them, ultrashort laser pulse interactions with dense plasma have attracted significant attention as compact, pulse sources of neutrons. To generate neutrons using a laser through fusion reactions, thin solid density targets have been used in a pitcher-catcher arrangement, using deuterated plastic for example. However, the use of solid targets is limited for high-repetition rate operation due to the need to refresh the target for every laser shot. Here, we use a free flowing heavy water target with a high repetition rate (500 Hz) laser without a catcher. From the interaction between a 10 micron scale diameter heavy water stream with the Lambda-cubed laser system at the Univ. of Michigan (12mJ, 800nm, 35fs), deuterons collide with each other resulting in D-D fusion reactions generating 2.45 MeV neutrons. Under best conditions a time average of ~ 105 n/s of neutrons are generated.

  18. Defect-induced magnetism in graphite through neutron irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Yutian; Pochet, Pascal; Jenkins, Catherine A.; Arenholz, Elke; Bukalis, Gregor; Gemming, Sibylle; Helm, Manfred; Zhou, Shengqiang

    2014-12-01

    We have investigated the variation in the magnetization of highly ordered pyrolytic graphite (HOPG) after neutron irradiation, which introduces defects in the bulk sample and consequently gives rise to a large magnetic signal. We observe strong paramagnetism in HOPG, increasing with the neutron fluence. The induced paramagnetism can be well correlated with structural defects by comparison with density-functional theory calculations. In addition to the in-plane vacancies, the transplanar defects also contribute to the magnetization. The lack of any magnetic order between the local moments is possibly due to the absence of hydrogen/nitrogen chemisorption, or the magnetic order cannot be established at all in the bulk form.

  19. Synergistic effect of high-intensity focused ultrasound and low-fluence Q-switched Nd:YAG laser in the treatment of the aging neck and décolletage.

    PubMed

    Nam, Jae-Hui; Choi, Young-Jun; Lim, Jae Yun; Min, Joon Hong; Kim, Won-Serk

    2017-01-01

    High-intensity focused ultrasound (HIFU) is regarded as an effective skin-lifting device; however, literature regarding treatment of the aging neck and décolletage with HIFU is scarce. Our study aimed to evaluate the efficacy of combination with HIFU and low-fluence Q-switched Nd:YAG (LQSNY) laser on the aging neck and décolletage. Nineteen women were assessed. HIFU at two visits and LQSNY laser at six visits were used to irradiate the neck and chest. At week 16, improvements were rated using the Dedo classification, Fabi/Bolton Chest Wrinkle Scale (FBCWS), and Global Aesthetic Improvement Scales (GAIS). Erythema and melanin indices (EMIs) and cervicomental angle were measured. Subject GAIS and satisfaction were evaluated at follow-up visits. At week 16, neck sagging and chest rhytides were improved on Dedo classification and FBCWS, respectively. Pigmentation and rhytides of the neck and chest were rated as improved in 30 % or more of the subjects by physician GAIS and in approximately 80 % of the subjects by subject GAIS. The above differences seemed to be attributable to the initial expectation level and mild severity pertaining to dress custom in Korea. Eighty-four percent of subjects were satisfied with treatment outcomes. EMIs were decreased on the chest. The combination of HIFU and LQSNY is an effective treatment option to mitigate rhytides and pigmentation of the neck and décolletage.

  20. Energy and angular dependence of active-type personal dosemeter for high-energy neutron.

    PubMed

    Rito, Hirotaka; Yamauchi, Tomoya; Oda, Keiji

    2011-07-01

    In order to develop an active-type personal dosemeter having suitable sensitivity to high-energy neutrons, the characteristic response of silicon surface barrier detector has been investigated experimentally and theoretically. An agreement of the shape of pulse-height distribution, its change with radiator thickness and the relative sensitivity was confirmed between the calculated and experimental results for 14.8-MeV neutrons. The angular dependence was estimated for other neutron energies, and found that the angular dependence decreased with the incident energy. The reason was also discussed with regard to the radiator thickness relative to maximum range of recoil protons.

  1. A diamond 14 MeV neutron energy spectrometer with high energy resolution

    SciTech Connect

    Shimaoka, Takehiro Kaneko, Junichi H.; Tsubota, Masakatsu; Shimmyo, Hiroaki; Ochiai, Kentaro; Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shin-ichi; Watanabe, Hideyuki; Isobe, Mitsutaka; Osakabe, Masaki

    2016-02-15

    A self-standing single-crystal chemical vapor deposited diamond was obtained using lift-off method. It was fabricated into a radiation detector and response function measurements for 14 MeV neutrons were taken at the fusion neutronics source. 1.5% of high energy resolution was obtained by using the {sup 12}C(n, α){sup 9}Be reaction at an angle of 100° with the deuteron beam line. The intrinsic energy resolution, excluding energy spreading caused by neutron scattering, slowing in the target and circuit noises was 0.79%, which was also the best resolution of the diamond detector ever reported.

  2. On the solar cycle variation in the barometer coefficients of high latitude neutron monitors

    NASA Technical Reports Server (NTRS)

    Kusunose, M.; Ogita, N.

    1985-01-01

    Evaluation of barometer coefficients of neutron monitors located at high latitudes has been performed by using the results of the spherical harmonic analysis based on the records from around twenty stations for twelve years from January 1966 to December 1977. The average of data at eight stations, where continuous records are available for twelve years, show that the absolute value of barometer coefficient is in positive correlation with the cosmic ray neutron intensity. The variation rate of the barometer coefficient to the cosmic ray neutron intensity is influenced by the changes in the cutoff rigidity and in the primary spectrum.

  3. Development of A Self Biased High Efficiency Solid-State Neutron Detector for MPACT Applications

    SciTech Connect

    Danon, Yaron; Bhat, Ishwara; Jian-Qiang Lu, James

    2013-09-03

    Neutron detection is an important aspect of materials protection, accounting, and control for transmutation (MPACT). Currently He-3 filled thermal neutron detectors are utilized in many applications; these detectors require high-voltage bias for operation, which complicates the system when multiple detectors are used. In addition, due to recent increase in homeland security activity and the nuclear renaissance, there is a shortage of He-3, and these detectors become more expensive. Instead, cheap solid-state detectors that can be mass produced like any other computer chips will be developed. The new detector does not require a bias for operation, has low gamma sensitivity, and a fast response. The detection system is based on a honeycomb-like silicon device, which is filled with B-10 as the neutron converter; while a silicon p-n diode (i.e., solar cell type device) formed on the thin silicon wall of the honeycomb structure detects the energetic charged particles emitted from the B-10 conversion layer. Such a detector has ~40% calculated thermal neutron detection efficiency with an overall detector thickness of about 200 ?m. Stacking of these devices allows over 90% thermal neutron detection efficiency. The goal of the proposed research is to develop a high-efficiency, low-noise, self-powered solid-state neutron detector system based on the promising results of the existing research program. A prototype of this solid-state neutron detector system with sufficient detector size (up to 8-inch diam., but still portable and inexpensive) and integrated with interface electronics (e.g., preamplifier) will be designed, fabricated, and tested as a coincidence counter for MPACT applications. All fabrications proposed are based on silicon-compatible processing; thus, an extremely cheap detector system could be massively produced like any other silicon chips. Such detectors will revolutionize current neutron detection systems by providing a solid-state alternative to

  4. Low-cost fabrication of high efficiency solid-state neutron detectors

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Woei; Huang, Kuan-Chih; Weltz, Adam; English, Erik; Hella, Mona M.; Dahal, Rajendra; Lu, James J.-Q.; Danon, Yaron; Bhat, Ishwara B.

    2016-05-01

    The development of high-efficiency solid state thermal neutron detectors at low cost is critical for a wide range of civilian and defense applications. The use of present neutron detector system for personal radiation detection is limited by the cost, size, weight and power requirements. Chip scale solid state neutron detectors based on silicon technology would provide significant benefits in terms of cost, volume, and allow for wafer level integration with charge preamplifiers and readout electronics. In this paper, anisotropic wet etching of (110) silicon wafers was used to replace deep reactive ion etching (DRIE) to produce microstructured neutron detectors with lower cost and compatibility with mass production. Deep trenches were etched by 30 wt% KOH at 85°C with a highest etch ratio of (110) to (111). A trench-microstructure thermal neutron detector described by the aforementioned processes was fabricated and characterized. The detector—which has a continuous p+-n junction diode—was filled with enriched boron (99% of 10B) as a neutron converter material. The device showed a leakage current of ~ 6.7 × 10-6 A/cm2 at -1V and thermal neutron detection efficiency of ~16.3%. The detector uses custom built charge pre-amplifier, a shaping amplifier, and an analogto- digital converter (ADC) for data acquisition.

  5. Modeling of Fission Neutrons as a Signature for Detection of Highly Enriched Uranium

    SciTech Connect

    Wolford, J K; Frank, M I; Descalle, M

    2004-03-09

    We present the results of modeling intended to evaluate the feasibility of using neutrons from induced fission in highly enriched uranium (HEU) as a means of detecting clandestine HEU, even when it is embedded in absorbing surroundings, such as commercial cargo. We characterized radiation from induced fission in HEU, which consisted of delayed neutrons at all energies and prompt neutrons at energies above a threshold. We found that for the candidate detector and for the conditions we considered, a distinctive HEU signature should be detectable, given sufficient detector size, and should be robust over a range of cargo content. In the modeled scenario, an intense neutron source was used to induce fissions in a spherical shell of HEU. To absorb, scatter, and moderate the neutrons, we place one layer of simulated cargo between the source and target and an identical layer between the target and detector. The resulting neutrons and gamma rays are resolved in both time and energy to reveal the portion arising from fission. We predicted the dominant reaction rates within calcium fluoride and liquid organic scintillators. Finally, we assessed the relative effectiveness of two common neutron source energies.

  6. High energy neutron treatment for pelvic cancers: study stopped because of increased mortality.

    PubMed Central

    Errington, R D; Ashby, D; Gore, S M; Abrams, K R; Myint, S; Bonnett, D E; Blake, S W; Saxton, T E

    1991-01-01

    OBJECTIVE--To compare high energy fast neutron treatment with conventional megavoltage x ray treatment in the management of locally advanced pelvic carcinomas (of the cervix, bladder, prostate, and rectum). DESIGN--Randomised study from February 1986; randomisation to neutron treatment or photon treatment was unstratified and in the ratio of 3 to 1 until January 1988, when randomisation was in the ratio 1 to 1 and stratified by site of tumour. SETTING--Mersey regional radiotherapy centre at Clatterbridge Hospital, Wirral. PATIENTS--151 patients with locally advanced, non-metastatic pelvic cancer (27 cervical, 69 of the bladder, seven prostatic, and 48 of the rectum). INTERVENTION--Randomisation to neutron treatment was stopped in February 1990. MAIN OUTCOME MEASURES--Patient survival and causes of death in relation to the development of metastatic disease and treatment related morbidity. RESULTS--In the first phase of the trial 42 patients were randomised to neutron treatment and 14 to photon treatment, and in the second phase 48 to neutron treatment and 47 to photon treatment. The relative risk of mortality for photons compared with neutrons was 0.66 (95% confidence interval 0.40 to 1.10) after adjustment for site of tumour and other important prognostic factors. Short term and long term complications were similar in both groups. CONCLUSIONS--The trial was stopped because of the increased mortality in patients with cancer of the cervix, bladder, or rectum treated with neutrons. PMID:1903663

  7. A high yield neutron target for cancer therapy

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    A rotating target was developed that has the potential for providing an initial yield of 10 to the 13th power neutrons per second by the T(d,n)He-4 reaction, and a useable lifetime in excess of 600 hours. This yield and lifetime are indicated for a 300 Kv and 30 mA deuteron accelerator and a 30 microns thick titanium tritide film formed of the stoichiometric compound TiT2. The potential for extended lifetime is made possible by incorporating a sputtering electrode that permits use of titanium tritide thicknesses much greater than the deuteron range. The electrode is used to remove in situ depleted titanium layers to expose fresh tritide beneath. The utilization of the rotating target as a source of fast neutrons for cancer therapy is discussed.

  8. Performance of n-in-p Pixel Detectors Irradiated at Fluences up to 5x1015 neq/cm2 for the Future ATLAS Upgrades

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Gallrapp, C.; La Rosa, A.; Nisius, R.; Pernegger, H.; Richter, R. H.; Weigell, P.

    We present the results of the characterization of novel n-in-p planar pixel detectors, designed for the future upgrades of the ATLAS pixel system. N-in-p silicon devices are a promising candidate to replace the n-in-n sensors thanks to their radiation hardness and cost effectiveness, that allow for enlarging the area instrumented with pixel detectors. The n-in-p modules presented here are composed of pixel sensors produced by CiS connected by bump-bonding to the ATLAS readout chip FE-I3. The characterization of these devices has been performed with the ATLAS pixel read-out systems, TurboDAQ and USBPIX, before and after irradiation with 25 MeV protons and neutrons up to a fluence of 5x1015 neq/cm2. The charge collection measurements carried out with radioactive sources have proven the feasibility of employing this kind of detectors up to these particle fluences. The collected charge has been measured to be for any fluence in excess of twice the value of the FE-I3 threshold, tuned to 3200 e. The first results from beam test data with 120 GeV pions at the CERN-SPS are also presented, demonstrating a high tracking efficiency before irradiation and a high collected charge for a device irradiated at 1015 neq/cm2. This work has been performed within the framework of the RD50 Collaboration.

  9. Monte Carlo simulations for high-rate fast neutron flux measurements made at the RAON neutron science facility by using MICROMEGAS

    NASA Astrophysics Data System (ADS)

    Hwang, Dae Hee; Hong, Ser Gi; Kim, Jae Cheon; Kim, Gi Dong; Kim, Yong Kyun

    2015-10-01

    RAON is a Korean heavy-ion accelerator complex that is planned to be built by 2021. Deuterons (53 MeV) and protons (88 MeV) accelerated by using a low-energy driver linac (SCL1) are delivered to the neutron production target in the Neutron Science Facility (NSF) to produce high-energy neutrons in the interval from 1 to 88 MeV with high fluxes of the order of 1012 n/cm2-sec. The repetition rate of the neutron beam ranges from 1 kHz to 1 MHz, and the maximum beam current is ~12 μA at 1 MHz. The beam width is 1 ~ 2 ns. The high-energy and high-rate fast neutrons are used to estimate accurate neutron-induced cross sections for various nuclides at the NSF. A MICROMEGAS (MICRO Mesh Gaseous Structure), which is a gaseous detector initially developed for tracking in high-rate, high-energy physics experiments, is tentatively being considered as a neutron beam monitor. It can be used to measure both the energy distribution and the flux of the neutron beam. In this study, a MICROMEGAS detector for installation at the NSF was designed and investigated. 6Li, 10B, 235U and 238U targets are being considered as neutron/charged particle converters. For the low-energy region, 6Li(n,α)t and 10B(n,α)7Li are used in the energy range from thermal to 1 MeV. 235U(n,f) and 238U(n,f) reactions are used for high-energy region up to 90 MeV. All calculations are performed by using the GEANT4 toolkit.

  10. Neutron irradiation effects on high Nicalon silicon carbide fibers

    SciTech Connect

    Osborne, M.C.; Steiner, D.; Snead, L.L.

    1996-10-01

    The effects of neutron irradiation on the mechanical properties and microstructure of SiC and SiC-based fibers is a current focal point for the development of radiation damage resistant SiC/SiC composites. This report discusses the radiation effects on the Nippon Carbon Hi-Nicalon{trademark} fiber system and also discusses an erratum on earlier results published by the authors on this material. The radiation matrix currently under study is also summarized.

  11. Neutron shielding panels for reactor pressure vessels

    SciTech Connect

    Singleton, Norman R

    2011-11-22

    In a nuclear reactor neutron panels varying in thickness in the circumferential direction are disposed at spaced circumferential locations around the reactor core so that the greatest radial thickness is at the point of highest fluence with lesser thicknesses at adjacent locations where the fluence level is lower. The neutron panels are disposed between the core barrel and the interior of the reactor vessel to maintain radiation exposure to the vessel within acceptable limits.

  12. Multidiagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range

    SciTech Connect

    Anoop, K. K.; Polek, M. P.; Bruzzese, R.; Amoruso, S.; Harilal, Sivanandan S.

    2015-02-28

    The ions dynamics in ultrafast laser ablation of metals is studied over a fluence range spanning from the ablation threshold up to ~75 J/cm2 by means of three established diagnostic techniques. Langmuir probe, Faraday cup and spectrally resolved ICCD imaging simultaneously monitor the laser-produced plasma ions produced during ultrafast laser ablation of a copper target. The fluence dependence of ion yield is analyzed observing the occurrence of three different regimes. Moreover, the specific ion yield shows a maximum at about 4-5 J/cm2, followed by a gradual reduction and a transition to a high-fluence regime above ~50 J/cm2. The fluence variation of the copper ions angular distribution is also analyzed, observing a gradual increase of forward peaking of Cu ions for fluences up to ~10 J/cm2. Then, a broader ion component is observed at larger angles for fluences larger than ~10 J/cm2. Finally, an experimental characterization of the ions angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of ~66 J/cm2. Interestingly, the ion emission from the volatile metals show a narrow forward peaked distribution and a high peak ion yield compared to the refractory metals. Moreover, the width of ion angular distributions presents a striking correlation with the peak ion yield.

  13. Extended conversion coefficients for use in radiation protection of the embryo and fetus against external neutrons from 10 MeV to 100 GeV.

    PubMed

    Chen, Jing

    2006-03-01

    External neutron exposure is of concern in the environment and in some workplaces. Dose assessments for neutrons frequently rely on fluence-to-absorbed dose conversion coefficients. A problem of concern in radiation protection is exposure of pregnant women to ionizing radiation because of the high radiosensitivity of the embryo and fetus. While neutron fluence-to-dose conversion coefficients for adults are recommended in ICRP publications and ICRU reports, conversion coefficients for embryos and fetuses are not given in the publications. This study uses the Monte Carlo code MCNPX to determine mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A previous study has dealt with neutrons from 1 eV to 10 MeV. In this study, monoenergetic neutrons ranging from 10 MeV to 100 GeV are considered. The irradiation geometries include antero-posterior, postero-anterior, lateral, rotational, and isotropic. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated for the embryo of 8 wk and the fetus of 3, 6, or 9 mo. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four prenatal ages. The results showed that the fetus at about 3 mo of prenatal age should receive more radiation protection to prevent long-term brain damage. During prenatal life, the fetus generally receives the highest absorbed dose per unit neutron fluence for antero-posterior irradiation. In cases where the irradiation geometry is not specified or not adequately known, conversion coefficients of AP-irradiation can therefore be used in a conservative dose assessment of fetus exposure to external neutrons.

  14. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  15. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  16. Observation of Neutron Bursts Produced by Laboratory High-Voltage Atmospheric Discharge

    NASA Astrophysics Data System (ADS)

    Agafonov, A. V.; Bagulya, A. V.; Dalkarov, O. D.; Negodaev, M. A.; Oginov, A. V.; Rusetskiy, A. S.; Ryabov, V. A.; Shpakov, K. V.

    2013-09-01

    For the first time the emission of neutron bursts in the process of high-voltage discharge in air was observed. Experiments were carried out at an average electric field strength of ˜1MV·m-1 and discharge current of ˜10kA. Two independent methods (CR-39 track detectors and plastic scintillation detectors) registered neutrons within the range from thermal energies up to energies above 10 MeV and with an average flux density of ≳106cm-2 per shot inside the discharge zone. Neutron generation occurs at the initial phase of the discharge and correlates with x-ray generation. The data obtained allow us to assume that during the discharge fast neutrons are mainly produced.

  17. First measurements with new high-resolution gadolinium-GEM neutron detectors

    NASA Astrophysics Data System (ADS)

    Pfeiffer, D.; Resnati, F.; Birch, J.; Etxegarai, M.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Llamas-Jansa, I.; Oliveri, E.; Oksanen, E.; Robinson, L.; Ropelewski, L.; Schmidt, S.; Streli, C.; Thuiner, P.

    2016-05-01

    European Spallation Source instruments like the macromolecular diffractometer (NMX) require an excellent neutron detection efficiency, high-rate capabilities, time resolution, and an unprecedented spatial resolution in the order of a few hundred micrometers over a wide angular range of the incoming neutrons. For these instruments solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are a promising option. A GEM detector with gadolinium converter was tested on a cold neutron beam at the IFE research reactor in Norway. The μTPC analysis, proven to improve the spatial resolution in the case of 10B converters, is extended to gadolinium based detectors. For the first time, a Gd-GEM was successfully operated to detect neutrons with a measured efficiency of 11.8% at a wavelength of 2 Åand a position resolution better than 250 μm.

  18. Demonstrating a directional detector based on neon for characterizing high energy neutrons

    NASA Astrophysics Data System (ADS)

    Hexley, Allie

    2016-03-01

    MITPC is a gas-based time projection chamber used for detecting fast, MeV-scale neutrons. The standard version of the detector relies on a mixture of 600 torr gas composed of 87.5% helium-4 and 12.5% tetrafluoromethane for precisely measuring the energy and direction of neutron-induced nuclear recoils. I describe studies performed with a prototype detector investigating the use of neon, as a replacement for helium-4, in the gas mixture. My discussion focuses on the advantages of neon as the fast neutron target for high energy neutron events (100 MeV) and a demonstration that the mixture will be effective for this event class. I show that the achievable gain and transverse diffusion of drifting electrons in the neon mixture are acceptable and that the detector uptime lost due to voltage breakdowns in the amplification plane is negligible, compared to 20% with the helium-4 mixture.

  19. Induction of Micronuclei in Human Fibroblasts from the Los Alamos High Energy Neutron Beam

    NASA Technical Reports Server (NTRS)

    Cox, Bradley

    2009-01-01

    The space radiation field includes a broad spectrum of high energy neutrons. Interactions between these neutrons and a spacecraft, or other material, significantly contribute to the dose equivalent for astronauts. The 15 degree beam line in the Weapons Neutron Research beam at Los Alamos Nuclear Science Center generates a neutron spectrum relatively similar to that seen in space. Human foreskin fibroblast (AG1522) samples were irradiated behind 0 to 20 cm of water equivalent shielding. The cells were exposed to either a 0.05 or 0.2 Gy entrance dose. Following irradiation, micronuclei were counted to see how the water shield affects the beam and its damage to cell nuclei. Micronuclei induction was then compared with dose equivalent data provided from a tissue equivalent proportional counter.

  20. High resolution numerical relativity simulations for the merger of binary magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Kiuchi, Kenta; Kyutoku, Koutarou; Sekiguchi, Yuichiro; Shibata, Masaru; Wada, Tomohide

    2014-08-01

    We perform high-resolution magnetohydrodynamics simulations of binary neutron star mergers in numerical relativity on the Japanese supercomputer K. The neutron stars and merger remnants are covered by a grid spacing of 70 m, which yields the highest-resolution results among those derived so far. By an in-depth resolution study, we clarify several amplification mechanisms of magnetic fields during the binary neutron star merger for the first time. First, the Kelvin-Helmholtz instability developed in the shear layer at the onset of the merger significantly amplifies the magnetic fields. A hypermassive neutron star (HMNS) formed after the merger is then subject to the nonaxisymmetric magnetorotational instability, which amplifies the magnetic field in the HMNS. These two amplification mechanisms cannot be found with insufficient-resolution runs. We also show that the HMNS eventually collapses to a black hole surrounded by an accretion torus which is strongly magnetized at birth.

  1. Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility

    NASA Astrophysics Data System (ADS)

    Masuda, Akihiko; Matsumoto, Tetsuro; Iwamoto, Yosuke; Hagiwara, Masayuki; Satoh, Daiki; Sato, Tatsuhiko; Iwase, Hiroshi; Yashima, Hiroshi; Nakane, Yoshihiro; Nishiyama, Jun; Shima, Tatsushi; Tamii, Atsushi; Hatanaka, Kichiji; Harano, Hideki; Nakamura, Takashi

    2017-03-01

    Quasi-monoenergetic high-energy neutron fields induced by 7Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Experiments were performed under 96-387 MeV quasi-monoenergetic high-energy neutron fields at the Research Center for Nuclear Physics (RCNP), Osaka University. The measurement results for large high-density polyethylene (HDPE) sphere detectors agreed well with Monte Carlo calculations, which verified the adequacy of the two-angle differential method. By contrast, discrepancies were observed in the results for small HDPE sphere detectors and metal-induced sphere detectors. The former indicated that detectors that are particularly sensitive to low-energy neutrons may be affected by penetrating neutrons owing to the geometrical features of the RCNP facility. The latter discrepancy could be consistently explained by a problem in the evaluated cross-section data for the metals used in the calculation. Through those discussions, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.

  2. Performance of a polarised neutron cryo-flipper using a high TcYBCO film

    NASA Astrophysics Data System (ADS)

    Parnell, S. R.; Washington, A. L.; Kaiser, H.; Li, F.; Wang, T.; Hamilton, W. A.; Baxter, D. V.; Pynn, R.

    2013-09-01

    It is well-known that the Meissner effect in superconducting materials can be used to provide a well-defined, non-adiabatic, magnetic-field transition. This can be utilised to produce a highly efficient neutron spin flipper that is suitable for use with neutrons of multiple wavelengths. Devices of this type using superconducting niobium have been deployed on neutron diffractometers for several decades but have required liquid helium to maintain the correct temperature. The use of high Tc materials, which removes the need for cryogens and simplifies the device, was first explored by Fitzsimmons et al. in [1]. In this communication, we describe a π flipper which uses commercially available films consisting of a 350-nm-thick YBCO film capped with 100 nm of gold on a 78×100×0.5 mm sapphire substrate. We discuss the design and performance of this device. The apparatus is compact (≈200 mm in length along the neutron beam), consisting of an oxygen-free high-conductivity copper frame, which holds the YBCO film and is mounted to the cold finger of a closed-cycle He refrigerator. The part of the vacuum chamber, where the YBCO film is located, is 5 cm wide, which allows us to minimise the distance from the film to the magnetic guide fields. Negligible small angle neutron scattering is observed from the flipper and its transmission is measured to be greater than 98.5% over a wide band of neutron wavelengths. In this design, the maximum neutron beam size that can be used is 42×42 mm2 and we can easily switch from a vertical to a horizontal guide field (both perpendicular to the neutron beam) on either side of the YBCO film. Data are reported for neutron wavelengths between 4 and 8.5 Å and flipping efficiencies under a variety of conditions are discussed. Under optimum conditions an efficiency of 99.5±0.3% was achieved for 4-8 Å neutrons on a pulsed source and 99.4±0.5% was achieved at a monochromatic source using a neutron wavelength of 4.2 Å.

  3. Solar heavy ion Heinrich fluence spectrum at low earth orbit.

    PubMed

    Croley, D R; Spitale, G C

    1998-01-01

    Solar heavy ions from the JPL Solar Heavy Ion Model have been transported into low earth orbit using the Schulz cutoff criterion for L-shell access by ions of a specific charge to mass ratio. The NASA Brouwer orbit generator was used to get L values along the orbit at 60 second time intervals. Heavy ion fluences of ions 2 < or = Z < or = 92 have been determined for the LET range 1 to 130 MeV-cm2/mg by 60, 120 or 250 mils of aluminum over a period of 24 hours in a 425 km circular orbit inclined 51 degrees. The ion fluence is time dependent in the sense that the position of the spacecraft in the orbit at the flare onset time fixes the relationship between particle flux and spacecraft passage through high L-values where particles have access to the spacecraft.

  4. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source.

  5. Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.

    SciTech Connect

    Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

    2007-12-01

    An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

  6. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    SciTech Connect

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-11-02

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.

  7. Apollo 16 neutron stratigraphy.

    NASA Technical Reports Server (NTRS)

    Russ, G. P., III

    1973-01-01

    The Apollo 16 soils have the largest low-energy neutron fluences yet observed in lunar samples. Variations in the isotopic ratios Gd-158/Gd-157 and Sm-150/Sm-149 (up to 1.9 and 2.0%, respectively) indicate that the low-energy neutron fluence in the Apollo 16 drill stem increases with depth throughout the section sampled. Such a variation implies that accretion has been the dominant regolith 'gardening' process at this location. The data may be fit by a model of continuous accretion of pre-irradiated material or by models involving as few as two slabs of material in which the first slab could have been deposited as long as 1 b.y. ago. The ratio of the number of neutrons captured per atom by Sm to the number captured per atom by Gd is lower than in previously measured lunar samples, which implies a lower energy neutron spectrum at this site. The variation of this ratio with chemical composition is qualitatively similar to that predicted by Lingenfelter et al. (1972). Variations are observed in the ratio Gd-152/Gd-160 which are fluence-correlated and probably result from neutron capture by Eu-151.

  8. Decay studies of the highly neutron-deficient indium isotopes

    SciTech Connect

    Wouters, J.M.

    1982-02-01

    An extension of the experimentally known nuclidic mass surface to nuclei far from the region of beta-stability is of fundamental interest in providing a better determination of the input parameters for the various nuclear mass formulae, allowing a more accurate prediction of the ultimate limits of nuclear stability. In addition, a study of the shape of the mass surface in the vicinity of the doubly-closed nuclide /sup 100/Sn provides initial information on the behavior of the shell closure to be expected when Z = N = 50. Experiments measuring the decay energies of /sup 103/ /sup 105/In by ..beta..-endpoint measurements are described with special attention focused on the development of a plastic scintillator ..beta..-telescope coupled to the on-line mass separator RAMA (Recoil Atom Mass Analyzer). An attempt to measure the ..beta..-endpoint energy of /sup 102/In is also briefly described. The experimentally determined decay energies and derived masses for /sup 103/ /sup 105/In are compared with the predictions of different mass models to identify which models are more successful in this region. Furthermore, the inclusion in these comparisons of the available data on the neutron-rich indium nuclei permits a systematic study of their ground state mass behavior as a function of the neutron number between the shell closures at N = 50 and N = 82. These analyses indicate that the binding energy of /sup 103/In is 1 MeV larger than predicted by the majority of the mass models. An examination of the Q/sub EC/ surface and the single- and two-neutron separation energies in the vicinity of /sup 103/ /sup 105/In is also performed to investigate further the deviation and other possible systematic variations in the mass surface in a model-independent way.

  9. Phytochrome-like responses in Euglena: A low fluence response that reorganizes the spectral dependence of the high irradiance response in long-day photoperiodic induction of cell division.

    PubMed

    Bolige, Aoen; Goto, Ken

    2007-02-01

    Irradiance spectra change spatiotemporally, and angiosperms adapt accordingly, mainly through phytochromes. This study challenges the long-held belief that the flagellated alga Euglena gracilis lacks phytochromes and is therefore unaffected by spectral changes. We photoautotrophically cultured the alga under continuous light (LL), then transferred it to darkness. After about 26h in darkness, different irradiations for 3h enabled cell division in dark-arrested G2 cells evoking a high-irradiance response (HIR). The spectral characteristics of the irradiation during the LL period (pre-irradiation) defined the spectral sensitivity in the subsequent dark period. LL with light rich in the red spectrum led to a HIR to the red spectrum (R-HIR), whereas light rich in the far-red spectrum (FR) led to a FR-HIR. Finishing the period of pre-irradiation consisting of continuous cool-white fluorescent light (rich in R) by a FR pulse enhanced the characteristics of the FR-HIR 26h later. By contrast, a R pulse given at the end of the pre-irradiation rich in FR potentiated the R-HIR. The effects were completely photoreversible between R and FR with critical fluences of about 2mmolm(-2), satisfying the classic diagnostic feature of phytochromes. The action spectrum of the FR effect at the end of pre-irradiation consisting of continuous cool-white fluorescent light (rich in R) had a main peak at 740nm and a minor peak at 380nm, whereas antagonization of the FR effect had a main peak at 640nm and a minor peak at 480nm. Wavelengths of 610 and 670nm appeared in both spectra. We also demonstrated the photoreversibility of 380/640, 480/740, and (610 and 670)/(640 and 740) nm. We conclude that Euglena displays phytochrome-like responses similar to the 'shade avoidance' and 'end-of-day FR' effects reported in angiosperms.

  10. Measurement of trapped proton fluences in main stack of P0006 experiment

    NASA Technical Reports Server (NTRS)

    Nefedov, N.; Csige, I.; Benton, E. V.; Henke, R. P.; Benton, E. R.; Frigo, L. A.

    1995-01-01

    We have measured directional distribution and Eastward directed mission fluence of trapped protons at two different energies with plastic nuclear track detectors (CR-39 with DOP) in the main stack of the P0006 experiment on LDEF. Results show arriving directions of trapped protons have very high anisotropy with most protons arriving from the West direction. Selecting these particles we have determined the mission fluence of Eastward directed trapped protons. We found experimental fluences are slightly higher than results of the model calculations of Armstrong and Colborn.

  11. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    SciTech Connect

    Marrs, R

    2002-11-13

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many more satellites in orbit, and it is important to understand their vulnerability to radiation belt pumping from nuclear explosions at high altitude or in space. This report presents the results of a calculation of the contribution of neutron beta decay to artificial belt pumping. For most high altitude nuclear explosions, neutrons are expected to make a smaller contribution than fission products to the total trapped electron inventory, and their contribution is usually neglected. However, the neutron contribution may dominate in cases where the fission product contribution is suppressed due to the altitude or geomagnetic latitude of the nuclear explosion, and for regions of the radiation belts with field lines far from the detonation point. In any case, an accurate model of belt pumping from high altitude nuclear explosions, and a self-consistent explanation of the 1962 data, require inclusion of the neutron contribution. One recent analysis of satellite measurements of electron flux from the 1962 tests found that a better fit to the data is obtained if the neutron contribution to the trapped electron inventory was larger than that of the fission products [l]. Belt pumping from high altitude nuclear explosions is a complicated process. Fission fragments are dispersed as part of the ionized bomb debris, which is constrained and guided by the earth's magnetic field. Those fission products that beta decay before being lost to the earth's atmosphere can contribute trapped energetic electrons to the earth's radiation belts. There has been a large effort to develop computer models for the contribution of

  12. Muon catalyzed fusion in plasma state and high intensity DT fusion neutron source

    SciTech Connect

    Takahashi, Hiroshi

    1989-01-01

    dt/mu/ molecular formation rates in a plasma state of DT mixture by d and t ions are, respectively, 63 and 77 times higher than the ones by electrons. High plasma oscillation frequency in a high electron density plasma enhances the formation rate in the high temperature dt mixture. The DT muon catalyzed fusion has the ability to produce much higher intensity 14 MeV neutron source (in order of 5 /times/ 10/sup 16/n/cm/sup 2//sec) than other means of stripping and spallation approaches. Such neutrons can be used for testing of first wall material candidates for magnetic fusion reactors, for incinerating fission products (e.g., Cs/sup 137/) and for creating high thermal flux neutron sources, on the order of 10/sup 17/n/cm/sup 2//sec. 12 refs., 2 figs.

  13. Neutron measurements around an 18 MV linac.

    PubMed

    Sánchez, F; Madurga, G; Arráns, R

    1989-07-01

    An estimate of the neutron production of medical electron accelerators is of interest in order to quantify the radiological risk for the staff operating such machines. First, we used a theoretical procedure, based on the Montecarlo method, in order to get some information about the neutron spectrum. Second, by using the neutron activation of indium foils, we have empirically obtained the neutron fluence at different locations in the accelerator room. Finally, some post-irradiation environmental levels of radiation are given.

  14. Monte Carlo simulation of a very high resolution thermal neutron detector composed of glass scintillator microfibers.

    PubMed

    Song, Yushou; Conner, Joseph; Zhang, Xiaodong; Hayward, Jason P

    2016-02-01

    In order to develop a high spatial resolution (micron level) thermal neutron detector, a detector assembly composed of cerium doped lithium glass microfibers, each with a diameter of 1 μm, is proposed, where the neutron absorption location is reconstructed from the observed charged particle products that result from neutron absorption. To suppress the cross talk of the scintillation light, each scintillating fiber is surrounded by air-filled glass capillaries with the same diameter as the fiber. This pattern is repeated to form a bulk microfiber detector. On one end, the surface of the detector is painted with a thin optical reflector to increase the light collection efficiency at the other end. Then the scintillation light emitted by any neutron interaction is transmitted to one end, magnified, and recorded by an intensified CCD camera. A simulation based on the Geant4 toolkit was developed to model this detector. All the relevant physics processes including neutron interaction, scintillation, and optical boundary behaviors are simulated. This simulation was first validated through measurements of neutron response from lithium glass cylinders. With good expected light collection, an algorithm based upon the features inherent to alpha and triton particle tracks is proposed to reconstruct the neutron reaction position in the glass fiber array. Given a 1 μm fiber diameter and 0.1mm detector thickness, the neutron spatial resolution is expected to reach σ∼1 μm with a Gaussian fit in each lateral dimension. The detection efficiency was estimated to be 3.7% for a glass fiber assembly with thickness of 0.1mm. When the detector thickness increases from 0.1mm to 1mm, the position resolution is not expected to vary much, while the detection efficiency is expected to increase by about a factor of ten.

  15. High-flux neutron source based on a liquid-lithium target

    SciTech Connect

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-19

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  16. Neutron Environment Characterization of the Central Cavity in the Annular Core Research Reactor

    NASA Astrophysics Data System (ADS)

    Parma, Edward J.; Naranjo, Gerald E.; Lippert, Lance L.; Vehar, David W.

    2016-02-01

    Characterization of the neutron environment in the central cavity of the Sandia National Laboratories' Annular Core Research Reactor (ACRR) is important in order to provide experimenters with the most accurate spectral information and maintain a high degree of fidelity in performing reactor experiments. Characterization includes both modeling and experimental efforts. Building accurate neutronic models of the ACRR and the central cavity "bucket" environments that can be used by experimenters is important in planning and designing experiments, as well as assessing the experimental results and quantifying uncertainties. Neutron fluence characterizations of two bucket environments, LB44 and PLG, are presented. These two environments are used frequently and represent two extremes in the neutron spectrum. The LB44 bucket is designed to remove the thermal component of the neutron spectrum and significantly attenuate the gamma-ray fluence. The PLG bucket is designed to enhance the thermal component of the neutron spectrum and attenuate the gamma-ray fluence. The neutron characterization for each bucket was performed by irradiating 20 different activation foil types, some of which were cadmium covered, resulting in 37 different reactions at the peak axial flux location in each bucket. The dosimetry results were used in the LSL-M2 spectrum adjustment code with a 640-energy group MCNP-generated trial spectrum, self-shielding correction factors, the SNLRML or IRDFF dosimetry cross-section library, trial spectrum uncertainty, and trial covariance matrix, to generate a least-squares adjusted neutron spectrum, spectrum uncertainty, and covariance matrix. Both environment character-izations are well documented and the environments are available for use by experimenters. Work supported by the United States Department of Energy at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned

  17. Experimental determination of gamma-ray discrimination in pillar-structured thermal neutron detectors under high gamma-ray flux

    SciTech Connect

    Shao, Qinghui; Conway, Adam M.; Voss, Lars F.; Radev, Radoslav P.; Nikolić, Rebecca J.; Dar, Mushtaq A.; Cheung, Chin L.

    2015-08-04

    Silicon pillar structures filled with a neutron converter material (10B) are designed to have high thermal neutron detection efficiency with specific dimensions of 50 μm pillar height, 2 μm pillar diameter and 2 μm spacing between adjacent pillars. In this paper, we have demonstrated such a detector has a high neutron-to-gamma discrimination of 106 with a high thermal neutron detection efficiency of 39% when exposed to a high gamma-ray field of 109 photons/cm2s.

  18. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    SciTech Connect

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; Garrison, Lauren M.; Snead, Lance L.; Katoh, Yutai; Hasegawa, Akira

    2016-07-02

    We performed a neutron irradiation to single crystal pure tungsten in the mixed spectrum High Flux Isotope Reactor (HFIR). In order to investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ~90–~800 °C and fast neutron fluences were 0.02–9.00 × 1025 n/m2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. Moreover, the hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 1025 n/m2 (E > 0.1 MeV). Finally, irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 1025 n/m2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.

  19. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    DOE PAGES

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; ...

    2016-07-02

    We performed a neutron irradiation to single crystal pure tungsten in the mixed spectrum High Flux Isotope Reactor (HFIR). In order to investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ~90–~800 °C and fast neutron fluences were 0.02–9.00 × 1025 n/m2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. Moreover, the hardness and microstructure changes exhibitedmore » a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 1025 n/m2 (E > 0.1 MeV). Finally, irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 1025 n/m2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.« less

  20. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    NASA Astrophysics Data System (ADS)

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; Garrison, Lauren M.; Snead, Lance L.; Katoh, Yutai; Hasegawa, Akira

    2016-10-01

    Neutron irradiation to single crystal pure tungsten was performed in the mixed spectrum High Flux Isotope Reactor (HFIR). To investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ∼90-∼800 °C and fast neutron fluences were 0.02-9.00 × 1025 n/m2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. The hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 1025 n/m2 (E > 0.1 MeV). Irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 1025 n/m2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.

  1. Dynamics in Hydrous Silicates Studied by High Temperature High Pressure Quasielastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Yang, F.; Meyer, A.; Unruh, T.

    2008-12-01

    Dissolved water in silicate melts plays an important role in many geological processes, especially in active volcanism. The knowledge of microscopic dynamics of the water species represents a key for the understanding of these processes and to predict macroscopic melt properties like viscosity. We study water dynamics in hydrous silicate melts employing quasielastic neutron scattering technique. Neutron scattering provides simultaneously information on the microscopic structure and dynamics of the sample. At the new time-of-flight spectrometer TOFTOF of FRM II a high energy resolution of about several tens μeVs can be obtained together with a large neutron flux as well as an excellent signal-to-noise ratio, which is ideal for such kind of investigation. In order to investigate the water dynamics in hydrous silicate melts at the temperatures relevant for volcanic processes, a pressure of about 150-200 MPa is needed at the mean time to prevent the degassing and foaming of the sample. A high temperature high pressure cell was constructed as sample environment with a relative large opening angle optimized for the tof-spectrometer. The cell provides a temperature range from RT up to 1500 K with a pressure up to 200 MPa at the sample position with an available sample volume of about 1 cm3, achieved by an internally heated NbZr autoclave. Applying the cell, we successfully performed quasielastic neutron scattering experiments on sodium trisilicate (Na2O·3SiO2), sodium aluminosilicate (Al2O3·Na2O·6SiO2, Albite: haplogranitic rock composition) and pure silica (SiO2) samples with 10 mol% water content in the temperature range from 850 K to 1250 K. Taking advantage of the large difference in neutron scattering cross-sections of H and D, a contrast variation via H2O/D2O substitution gives access to the pure incoherent proton dynamics. An unusual behaviour of the density correlation functions in hydrous sodium trisilicate melt has been observed. The proton dynamics is not

  2. New method of a "point-like" neutron source creation based on sharp focusing of high-current deuteron beam onto deuterium-saturated target for neutron tomography

    NASA Astrophysics Data System (ADS)

    Golubev, S.; Skalyga, V.; Izotov, I.; Sidorov, A.

    2017-02-01

    A possibility of a compact powerful point-like neutron source creation is discussed. Neutron yield of the source based on deuterium-deuterium (D-D) reaction is estimated at the level of 1011 s‑1 (1013 s‑1 for deuterium-tritium reaction). The fusion takes place due to bombardment of deuterium- (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ion beam is formed by means of high-current quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance (ECR) discharge in an open magnetic trap sustained by powerful microwave radiation. The prospects of proposed generator for neutron tomography are discussed. Suggested method is compared to the point-like neutron sources based on a spark produced by powerful femtosecond laser pulses.

  3. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Materiel and High Explosives

    SciTech Connect

    E.H. Seabury; D.L. Chichester; C.J. Wharton; A.J. Caffrey

    2008-08-01

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory’s PINS Chemical Assay System has traditionally used a Cf-252 isotopic neutron source, but recently a Deuterium-Tritium (DT) Electronic Neutron Generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  4. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Material and High Explosives

    SciTech Connect

    Seabury, E. H.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2009-03-10

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a {sup 252}Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  5. BNCT of skin tumors using the high-energy D-T neutrons.

    PubMed

    Masoudi, S Farhad; Rasouli, Fatemeh S; Ghasemi, Marjan

    2017-04-01

    Owing to the continuing need for providing improved and universally accepted facilities to be used in radiation therapies, a number of recently published BNCT-related studies have focused on investigating appropriate neutron sources as alternatives for nuclear reactors. Of special interest are D-T neutron generators, which theoretically have shown the potential to be utilized as neutron sources for BNCT of deep-seated tumors. This work is devoted to investigate the feasibility of using the high-energy neutrons emitted from these generators for treatment of surface tumors, especially skin. Using a set of MCNPX simulations, the D-T neutrons are passed through an optimized arrangement of materials to slow-down toward the desired energy range, and to remove the neutron and gamma contamination considering the IAEA recommended criteria, especially determined for pre-clinical survey for treatment of surface tumors. By assessment with these parameters, it is shown that the designed beam, corresponding to a configuration composed of natural uranium as neutron multiplier, D2O as moderator, Pb as reflector, Bi as gamma filter, and polyethylene and BeO as collimators provides high-intensity of desired neutrons, and low-background doses as well. It was found that an appropriate material for collimator, if accompanied with an optimized geometry, is an important parameter for keeping the undesired components to the recommended level. A typical simulated phantom, subjected to the irradiation of the designed spectrum, is used to study the performance of the resultant beam in shallow tissue. For an arbitrary chosen (10)B concentration, the evaluated depth-dose curves show that the proposed configuration establishes acceptable agreement between the appropriate neutron intensity and penetration to desired depth in tissue in a reasonable treatment time of about 25-38min. Considering the simulations carried out, the total dose delivered to the tumor is expected to be of about 4.2 times

  6. Neutron dose measurements with the GSI ball at high-energy accelerators.

    PubMed

    Fehrenbacher, G; Gutermuth, F; Kozlova, E; Radon, T; Schuetz, R

    2007-01-01

    A moderator-type neutron monitor containing pairs of TLD 600/700 elements (Harshaw) modified with the addition of a lead layer (GSI ball) for the measurement of the ambient dose equivalent from neutrons at medium- and high-energy accelerators, is introduced in this work. Measurements were performed with the Gesellschaft für Schwerionenforschung (GSI) ball as well as with conventional polyethylene (PE) spheres at the high-energy accelerator SPS at European Organization for Nuclear Research [CERN (CERF)] and in Cave A of the heavy-ion synchrotron SIS at GSI. The measured dose values are compared with dose values derived from calculated neutron spectra folded with dose conversion coefficients. The estimated reading of the spheres calculated by means of the response functions and the neutron spectra is also included in the comparison. The analysis of the measurements shows that the PE/Pb sphere gives an improved estimate on the ambient dose equivalent of the neutron radiation transmitted through shielding of medium- and high-energy accelerators.

  7. Determination of boron in materials by cold neutron prompt gamma-ray activation analysis.

    PubMed

    Paul, Rick L

    2005-01-01

    An instrument for cold neutron prompt gamma-ray activation analysis (PGAA), located at the NIST Center for Neutron Research (NCNR), has proven useful for the measurement of boron in a variety of materials. Neutrons, moderated by passage through liquid hydrogen at 20 K, pass through a (58)Ni coated guide to the PGAA station in the cold neutron guide hall of the NCNR. The thermal equivalent neutron fluence rate at the sample position is 9 x 10(8) cm(-2) s(-1). Prompt gamma rays are measured by a cadmium- and lead-shielded high-purity germanium detector. The instrument has been used to measure boron mass fractions in minerals, in NIST SRM 2175 (Refractory Alloy MP-35-N) for certification of boron, and most recently in semiconductor-grade silicon. The limit of detection for boron in many materials is <10 ng g(-1).

  8. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  9. Neutron skin and centrality classification in high-energy heavy-ion collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Paukkunen, Hannu

    2015-05-01

    The concept of centrality in high-energy nuclear collisions has recently become a subject of an active debate. In particular, the experimental methods to determine the centrality that have given reasonable results for many observables in high-energy lead-lead collisions at the LHC have led to surprising behavior in the case of proton-lead collisions. In this letter, we discuss the possibility to calibrate the experimental determination of centrality by asymmetries caused by mutually different spatial distributions of protons and neutrons inside the nuclei - a well-known phenomenon in nuclear physics known as the neutron-skin effect.

  10. High-energy neutron dosimetry at the Clinton P. Anderson Meson Physics Facility

    SciTech Connect

    Mallett, M.W.; Vasilik, D.G.; Littlejohn, G.J.; Cortez, J.R.

    1990-01-01

    Neutron energy spectrum measurements performed at the Clinton P. Anderson Meson Physics Facility indicated potential areas for high energy neutron exposure to personnel. The low sensitivity of the Los Alamos thermoluminescent dosimeter (TLD) to high energy neutrons warranted issuing a NTA dosimeter in addition to the TLD badge to employees entering these areas. The dosimeter consists of a plastic holder surrounding NTA film that has been desiccated and sealed in a dry nitrogen environment. A study of the fading of latent images in NTA film demonstrated the success of this packaging method to control the phenomenon. The Los Alamos NTA dosimeter is characterized and the fading study discussed. 10 refs., 4 figs., 2 tabs.

  11. Magnetized neutron stars as gamma-ray bursters - Detection rates at high energies

    NASA Technical Reports Server (NTRS)

    Meszaros, P.; Bagoly, Z.; Riffert, H.

    1989-01-01

    Detailed calculations of the escape of high-energy gamma-rays from the dipolar magnetosphere of general relativistic neutron star models are used to model the detection rate of bursters at high photon energies between 0.3 and 10 MeV. This analysis shows the SMM detection rates to be compatible with a magnetized neutron star origin, with a distribution of magnetic field strengths extending at least up to about 4 x 10 to the 12th G, as expected if the (20-60) keV features reported from Konus and Ginga measurements are interpreted as cyclotron lines. Additional implications are discussed for the emission geometry and the neutron star radius.

  12. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)

    SciTech Connect

    Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Casey, D. T.; Gatu-Johnson, M.; Gardner, S.

    2012-10-15

    The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

  13. Measurements and Monte Carlo simulations of the spectral variations of the cosmic-ray-induced neutrons at the Pic du Midi over a 2-y period.

    PubMed

    Cheminet, A; Hubert, G; Lacoste, V; Boscher, D

    2014-10-01

    In this paper, a Bonner Sphere Spectrometer extended to high energies (HERMEIS) was employed to measure continuously the cosmic-ray-induced neutron spectra over a long-term period (2 y) at mountain altitude and medium geomagnetic latitude (Pic du Midi de Bigorre in the French Pyrenees, +2885 m, 5.6 GV). The results showed 1-y sinusoidal oscillations in the integrated fluence rates. The amplitude of these oscillations depends on the neutron energetic domain. The fluence rate of thermal neutrons was 53 % higher in August than that in February. Those of epithermal neutrons with energies between 0.4 eV and 0.1 MeV and evaporation neutrons (from 0.1 to 20 MeV) were ∼25 % higher in the summer than those in the winter. Finally, the cascade neutron fluence rate (>20 MeV) remained quite the same (<10 % variation). To understand the effects of local and seasonal changes in the measurement environment, GEANT4 simulations were performed. The nature of rock and thickness of the snow cover during the winter period (given by meteorological data) were investigated. A reasonable agreement between experiments and calculations was found.

  14. HEIMDAL: A thermal neutron powder diffractometer with high and flexible resolution combined with SANS and neutron imaging - Designed for materials science studies at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Holm, Sonja L.; Lefmann, Kim; Henry, Paul F.; Bertelsen, Mads; Schefer, Jürg; Christensen, Mogens

    2016-08-01

    HEIMDAL will be a multi length scale neutron scattering instrument for the study of structures covering almost nine orders of magnitude from 0.01 nm to 50 mm. The instrument is accepted for construction at the European Spallation Source (ESS) and features a variable resolution thermal neutron powder diffractometer (TNPD), combined with small angle neutron scattering (SANS) and neutron imaging (NI). The instrument uses a novel combination of a cold and a thermal guide to fulfill the diverse requirements for diffraction and SANS. With an instrument length of 170 m, HEIMDAL will take advantage of the high neutron flux of the long pulse at ESS, whilst maintaining a high q-resolution due to the long flight path. The q-range coverage is up to 20 Å-1 allowing low-resolution PDF analysis. With the addition of SANS, HEIMDAL will be able to cover a uniquely broad length scale within a single instrumental set-up. HEIMDAL will be able to accommodate modern materials research in a broad variety of fields, and the task of the instrument will be to study advanced functional materials in action, as in situ and in operandi at multiple length scales (0.01-100 nm) quasi simultaneously. The instrument combines state-of-the-art neutron scattering techniques (TNPD, SANS, and NI) with the goal of studying real materials, in real time, under real conditions. This article describes the instrument design ideas, calculations and results of simulations and virtual experiments.

  15. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOEpatents

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  16. Compact spherical neutron polarimeter using high-T(c) YBCO films.

    PubMed

    Wang, T; Parnell, S R; Hamilton, W A; Li, F; Washington, A L; Baxter, D V; Pynn, R

    2016-03-01

    We describe a simple, compact device for spherical neutron polarimetry measurements at small neutron scattering angles. The device consists of a sample chamber with very low (<0.01 G) magnetic field flanked by regions within which the neutron polarization can be manipulated in a controlled manner. This allows any selected initial and final polarization direction of the neutrons to be obtained. We have constructed a prototype device using high-T(c) superconducting films and mu-metal to isolate regions with different magnetic fields and tested device performance in transmission geometry. Finite-element methods were used to simulate the device's field profile and these have been verified by experiment using a small solenoid as a test sample. Measurements are reported using both monochromatic and polychromatic neutron sources. The results show that the device is capable of extracting sample information and distinguishing small angular variations of the sample magnetic field. As a more realistic test, we present results on the characterization of a 10 μm thick Permalloy film in zero magnetic field, as well as its response to an external magnetic field.

  17. Epithermal Neutron Evidence for a Diurnal Surface Hydration Process in the Moon's High Latitudes

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Parsons, A.; Starr, R. D.; Evans, L. G.; Sanin, A.; Litvak, M.; Livengood, T.

    2015-01-01

    We report evidence from epithermal neutron flux observations that show that the Moon's high latitude surfaces are being actively hydrated, dehydrated and rehydrated in a diurnal cycle. The near-surface hydration is indicated by an enhanced suppression of the lunar epithermal neutron leakage flux on the dayside of the dawn terminator on poleward-facing slopes (PFS). At 0600 to 0800 local-time, hydrogen concentrations within the upper 1 meter of PFS are observed to be maximized relative to equivalent equator-facing slopes (EFS). During the lunar day surface hydrogen concentrations diminish towards dusk and then rebuild overnight. Surface hydration is determined by differential comparison of the averaged EFS to PFS epithermal neutron count rates above +/- 75 deg latitude. At dawn the contrast bias towards PFS is consistent with at least 15 to 25 parts-per-million (ppm) hydrogen that dissipates by dusk. We review several lines of evidence derived from temperature and epithermal neutron data by a correlated analysis of observations from the Lunar Reconnaissance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) that were mapped as a function of lunar local-time, Lunar Observing Laser Altimeter (LOLA) topography and Diviner (DLRE) surface temperature.

  18. Simulation of neutron displacement damage in bipolar junction transistors using high-energy heavy ion beams.

    SciTech Connect

    Doyle, Barney Lee; Buller, Daniel L.; Hjalmarson, Harold Paul; Fleming, Robert M; Bielejec, Edward Salvador; Vizkelethy, Gyorgy

    2006-12-01

    Electronic components such as bipolar junction transistors (BJTs) are damaged when they are exposed to radiation and, as a result, their performance can significantly degrade. In certain environments the radiation consists of short, high flux pulses of neutrons. Electronics components have traditionally been tested against short neutron pulses in pulsed nuclear reactors. These reactors are becoming less and less available; many of them were shut down permanently in the past few years. Therefore, new methods using radiation sources other than pulsed nuclear reactors needed to be developed. Neutrons affect semiconductors such as Si by causing atomic displacements of Si atoms. The recoiled Si atom creates a collision cascade which leads to displacements in Si. Since heavy ions create similar cascades in Si we can use them to create similar damage to what neutrons create. This LDRD successfully developed a new technique using easily available particle accelerators to provide an alternative to pulsed nuclear reactors to study the displacement damage and subsequent transient annealing that occurs in various transistor devices and potentially qualify them against radiation effects caused by pulsed neutrons.

  19. The HB-2D Polarized Neutron Development Beamline at the High Flux Isotope Reactor

    NASA Astrophysics Data System (ADS)

    Crow, Lowell; Hamilton, WA; Zhao, JK; Robertson, JL

    2016-09-01

    The Polarized Neutron Development beamline, recently commissioned at the HB-2D position on the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, provides a tool for development and testing of polarizers, polarized neutron devices, and prototyping of polarized neutron techniques. With available monochromators including pyrolytic graphite and polarizing enriched Fe-57 (Si), the instrument has operated at 4.25 and 2.6 Å wavelengths, using crystal, supermirror, or He-3 polarizers and analyzers in various configurations. The Neutron Optics and Development Team has used the beamline for testing of He-3 polarizers for use at other HFIR and Spallation Neutron Source (SNS) instruments, as well as a variety of flipper devices. Recently, we have acquired new supermirror polarizers which have improved the instrument performance. The team and collaborators also have continuing demonstration experiments of spin-echo focusing techniques, and plans to conduct polarized diffraction measurements. The beamline is also used to support a growing use of polarization techniques at present and future instruments at SNS and HFIR.

  20. Coupled Neutron Transport for HZETRN

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.

    2009-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircrafts exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETC-HEDS, FLUKA, and MCNPX, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light particle transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  1. Proton Particle Test Fluence: What's the Right Number?

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Ladbury, Raymond

    2015-01-01

    While we have been utilizing standard fluence levels such as those listed in the JESD57 document, we have begun revisiting what an appropriate test fluence is when it comes to qualifying a device for single events. Instead of a fixed fluence level or until a specific number of events occurs, a different thought process is required.

  2. High-voltage supply for neutron tubes in well-logging applications

    DOEpatents

    Humphreys, D.R.

    1982-09-15

    A high voltage supply is provided for a neutron tube used in well logging. The biased pulse supply of the invention combines DC and full pulse techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  3. Glass-fiber-based neutron detectors for high- and low-flux environments

    NASA Astrophysics Data System (ADS)

    Bliss, Mary; Brodzinski, Ronald L.; Craig, Richard A.; Geelhood, Bruce D.; Knopf, Michael A.; Miley, Harry S.; Perkins, Richard W.; Reeder, Paul L.; Sunberg, Debra S.; Warner, Ray A.; Wogman, Ned A.

    1995-09-01

    Pacific Northwest Laboratory (PNL) has fabricated cerium-activated lithium silicate scintillating fibers via a hot-downdraw process. These fibers typically have a operational transmission length (e(superscript -1) length) of greater than 2 meters. This permits the fabrication of devices which were not possible to consider. Scintillating fibers permit conformable devices, large-area devices, and extremely small devices; in addition, as the thermal-neutron sensitive elements in a fast neutron detection system, scintillating fibers can be dispersed within moderator, improving neutron economy, over that possible with commercially available (superscript 3)He or BF(subscript 3) proportional counters. These fibers can be used for national-security applications, in medical applications, in the nuclear-power industry, and for personnel protection at experimental facilities. Data are presented for devices based on single fibers and devices made up of ribbons containing many fibers under high-and low-flux conditions.

  4. Performance improvements of wavelength-shifting-fiber neutron detectors using high-resolution positioning algorithms

    SciTech Connect

    Wang, C. L.

    2016-05-17

    On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA. Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.

  5. Performance improvements of wavelength-shifting-fiber neutron detectors using high-resolution positioning algorithms

    DOE PAGES

    Wang, C. L.

    2016-05-17

    On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less

  6. Monte-Carlo simulations of a high-resolution neutron TOF instrument

    NASA Astrophysics Data System (ADS)

    Bernhardt, Ph; Demmel, F.; Magerl, A.

    2000-03-01

    It is proposed to build a flexible, high-resolution time-of-flight diffractometer and spectrometer at the new reactor FRM II of the Technische Universität München. To optimize the layout of individual components and to estimate the performance of the entire instrument, we have made analytical calculations and Monte-Carlo simulations mainly with “McStas”, programmed by RISØ, Denmark. MC simulation routines for neutron devices like curved guides, disc- and Fermi choppers have been added. The influence of curved guides in neutron phase space has been developed and will be presented. Line shapes of neutron pulses and transmission have been studied for a Fermi chopper with straight slits and will be compared with the results of simulation.

  7. Probing Spin Frustration in High-symmetry Magnetic Nanomolecules by Inelastic Neutron Scattering

    SciTech Connect

    Garlea, Vasile O; Nagler, Stephen E; Zarestky, Jerel L; Stassis, C.; Vaknin, D.; Kogerler, P.; McMorrow, D. F.; Niedermayer, C.; Tennant, D. A.; Lake, B.; Qiu, Y.; Exler, M.; Schnack, J.; Luban, M.

    2006-01-01

    Low temperature inelastic neutron scattering studies have been performed to characterize the low energy magnetic excitation spectrum of the magnetic nanomolecule {l_brace}Mo{sub 72}Fe{sub 30}{r_brace}. This unique highly symmetric cluster features spin frustration and is one of the largest discrete magnetic molecules studied to date by inelastic neutron scattering. The 30 s=5/2 Fe{sup III} ions, embedded in a spherical polyoxomolybdate molecule, occupy the vertices of an icosidodecahedron and are coupled via nearest-neighbor antiferromagnetic interactions. The overall energy scale of the excitation and the gross features of the temperature dependence of the observed neutron scattering are explained by a quantum model of the frustrated spin cluster. However, no satisfactory theoretical explanation is yet available for the observed magnetic field dependence.

  8. Development of a moderator system for the High Brilliance Neutron Source project

    NASA Astrophysics Data System (ADS)

    Dabruck, J. P.; Cronert, T.; Rücker, U.; Bessler, Y.; Klaus, M.; Lange, C.; Butzek, M.; Hansen, W.; Nabbi, R.; Brückel, T.

    2016-11-01

    The project for an accelerator based high brilliance neutron source HBS driven by Forschungszentrum Jülich forsees the use of the nuclear Be(p,n) or Be(d,n) reaction with accelerated particles in the lower MeV energy range. The lower neutron production compared to spallation has to be compensated by improving the neutron extraction process and optimizing the brilliance. Design and optimiziation of the moderator system are conducted with MCNP and will be validated with measurements at the AKR-2 training reactor by means of a prototype assembly where, e.g., the effect of different liquid H2 ortho/para ratios will be investigated and controlled in realtime via online heat capacity measurements.

  9. A Segmented Neutron Detector with a High Position Resolution for the (p,pn) Reactions

    NASA Astrophysics Data System (ADS)

    Kubota, Yuki; Sasano, Masaki; Uesaka, Tomohiro; Dozono, Masanori; Itoh, Masatoshi; Kawase, Shoichiro; Kobayashi, Motoki; Lee, CheongSoo; Matsubara, Hiroaki; Miki, Kenjiro; Miya, Hiroyuki; Ota, Shinsuke; Sekiguchi, Kimiko; Shima, Tatsushi; Taguchi, Takahiro; Tamii, Atsushi; Tang, Tsz Leung; Tokieda, Hiroshi; Wakasa, Tomotsugu; Wakui, Takashi; Yasuda, Jumpei; Zenihiro, Juzo

    We are developing a neutron detector with a high position resolution to study the single particle properties of nuclei by the knockout (p,pn) reaction at intermediate energies. We constructed a prototype detector consisting of plastic scintillating fibers and multi-anode photomultiplier tubes (PMTs). Test experiments using 200- and 70-MeV proton and 199-, 188-, 68-, and 50-MeV neutron were performed for characterizing its performance. Preliminary results show that a position resolution of about 3 mm at full-width at half-maximum (FWHM) is realized as designed. The resulting separation-energy resolution to be obtained for (p,pn) measurement would be 1 MeV in FWHM, when the detector is used at a distance of 2 m from the target for measuring the neutron momentum.

  10. Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary

    SciTech Connect

    Brubaker, Erik

    2015-10-01

    The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.

  11. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    SciTech Connect

    Bryant, Rebecca; Kszos, Lynn A

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews

  12. Monte Carlo calibration of the SMM gamma ray spectrometer for high energy gamma rays and neutrons

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Reppin, C.; Forrest, D. J.; Chupp, E. L.; Share, G. H.; Kinzer, R. L.

    1985-01-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission spacecraft was primarily designed and calibrated for nuclear gamma ray line measurements, but also has a high energy mode which allows the detection of gamma rays at energies above 10 MeV and solar neutrons above 20 MeV. The GRS response has been extrapolated until now for high energy gamma rays from an early design study employing Monte Carlo calculations. The response to 50 to 600 MeV solar neutrons was estimated from a simple model which did not consider secondary charged particles escaping into the veto shields. In view of numerous detections by the GRS of solar flares emitting high energy gamma rays, including at least two emitting directly detectable neutrons, the calibration of the high energy mode in the flight model has been recalculated by the use of more sophisticated Monte Carlo computer codes. New results presented show that the GRS response to gamma rays above 20 MeV and to neutrons above 100 MeV is significantly lower than the earlier estimates.

  13. High-Flux Neutron Generator Facility for Geochronology and Nuclear Physics Research

    NASA Astrophysics Data System (ADS)

    Waltz, Cory; HFNG Collaboration

    2015-04-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being commissioned at UC Berkeley. The generator is designed to produce monoenergetic 2.45 MeV neutrons at outputs exceeding 1011 n/s. The HFNG is designed around two RF-driven multi-cusp ion sources that straddle a titanium-coated copper target. D + ions, accelerated up to 150 keV from the ion sources, self-load the target and drive neutron generation through the d(d,n)3 He fusion reaction. A well-integrated cooling system is capable of handling beam power reaching 120 kW impinging on the target. The unique design of the HFNG target permits experimental samples to be placed inside the target volume, allowing the samples to receive the highest neutron flux (1011 cm-2 s-1) possible from the generator. In addition, external beams of neutrons will be available simultaneously, ranging from thermal to 2.45 MeV. Achieving the highest neutron yields required carefully designed schemes to mitigate back-streaming of high energy electrons liberated from the cathode target by deuteron bombardment. The proposed science program is focused on pioneering advances in the 40 Ar/39 Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science, and education. An end goal is to become a user facility for researchers. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and UC Office of the President Award 12-LR-238745.

  14. Hard error generation by thermal neutrons

    SciTech Connect

    Browning, J.S.; Gover, J.E.; Wrobel, T.F.; Hass, K.J.; Nasby, R.D.; Simpson, R.L.; Posey, L.D.; Block, R.C.

    1987-01-01

    The generation of hard errors in MNOS dielectric structures has been observed at thermal neutron fluence levels of 3.6 x 10/sup 13/ n/cm/sup 2/. Fission fragments from neutron induced fission of /sup 235/U contamination in ceramic lids have been shown to be responsible.

  15. Advanced neutron source materials surveillance program

    SciTech Connect

    Heavilin, S.M.

    1995-01-01

    The Advanced Neutron Source (ANS) will be composed of several different materials, one of which is 6061-T6 aluminum. Among other components, the reflector vessel and the core pressure boundary tube (CPBT), are to be made of 6061-T6 aluminum. These components will be subjected to high thermal neutron fluences and will require a surveillance program to monitor the strength and fracture toughness of the 6061-T6 aluminum over their lifetimes. The purpose of this paper is to explain the steps that were taken in the summer of 1994 toward developing the surveillance program. The first goal was to decide upon standard specimens to use in the fracture toughness and tensile testing. Second, facilities had to be chosen for specimens representing the CPBT and the reflector vessel base, weld, and heat-affected-zone (HAZ) metals. Third, a timetable had to be defined to determine when to remove the specimens for testing.

  16. Four-Quasiparticle High-K States in Neutron-Deficient Lead and Polonium Nuclei

    NASA Astrophysics Data System (ADS)

    Shi, Yue; Xu, Furong

    2012-06-01

    Configuration-constrained potential energy surface calculations have been performed to investigate four-quasiparticle high-K configurations in neutron-deficient lead and polonium isotopes. A good agreement between the calculations and the experimental data has been found for the excitation energy of the observed Kπ = 19- state in 188Pb. Several lowly excited high-K states are predicted, and the large oblate deformation and low energy indicate high-K isomerism in these nuclei.

  17. Quasi-monoenergetic neutron reference fields in the energy range from thermal to 200 MeV.

    PubMed

    Nolte, R; Allie, M S; Böttger, R; Brooks, F D; Buffler, A; Dangendorf, V; Friedrich, H; Guldbakke, S; Klein, H; Meulders, J P; Schlegel, D; Schuhmacher, H; Smit, F D

    2004-01-01

    Well-characterised neutron fields are a prerequisite for the investigation of neutron detectors. Partly in collaboration with external partners, the PTB neutron metrology group makes available for other users neutron reference fields covering the full energy range from thermal to 200 MeV. The specification of the neutron fluence in these beams is traceable to primary standard cross sections.

  18. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Stoeckl, C.; Boni, R.; Ehrne, F.; Forrest, C. J.; Glebov, V. Yu.; Katz, J.; Lonobile, D. J.; Magoon, J.; Regan, S. P.; Shoup, M. J.; Sorce, A.; Sorce, C.; Sangster, T. C.; Weiner, D.

    2016-05-01

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium-tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ˜16 m to a streak camera in a well-shielded location. An ˜200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ˜40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.

  19. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    SciTech Connect

    Stoeckl, C.; Boni, R.; Ehrne, F.; Forrest, C. J.; Glebov, V. Yu.; Katz, J.; Lonobile, D. J.; Magoon, J.; Regan, S. P.; Shoup, III, M. J.; Sorce, A.; Sorce, C.; Sangster, T. C.; Weiner, D.

    2016-05-10

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic DT implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ~16 m to a streak camera in a well-shielded location. An ~200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ~40±10 ps was measured in a dedicated experiment using hard x rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. Furthermore, the measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.

  20. Hexagonal boron nitride thin film thermal neutron detectors with high energy resolution of the reaction products

    NASA Astrophysics Data System (ADS)

    Doan, T. C.; Majety, S.; Grenadier, S.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2015-05-01

    Hexagonal boron nitride (h-BN) is highly promising for solid-state thermal neutron detector applications due to its many outstanding physical properties, especially its very large thermal neutron capture cross-section (~3840 barns for 10B), which is several orders of magnitude larger than those of most other isotopes. The focus of the present work is to carry out studies on h-BN thin film and detector properties to lay the foundation for the development of a direct-conversion solid-state thermal neutron detector with high sensitivity. The measured carrier mobility-lifetime (μτ) product of h-BN thin films grown on sapphire substrates is 2.83×10-7 cm2/V for electrons and holes, which is comparable to the value of about 10-7 cm2/V for GaN thin films grown on sapphire. Detectors based on h-BN thin films were fabricated and the nuclear reaction product pulse height spectra were measured. Under a bias of 20 V, very narrow individual peaks corresponding to the reaction product energies of α and Li particles as well as the sum peaks have been clearly resolved in the pulse height spectrum for the first time by a B-based direct-conversion semiconductor neutron detector. Our results indicate that h-BN thin film detectors possess unique advantages including small size, low weight, portability, low voltage operation and high energy resolution of specific reaction products.

  1. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA.

    PubMed

    Stoeckl, C; Boni, R; Ehrne, F; Forrest, C J; Glebov, V Yu; Katz, J; Lonobile, D J; Magoon, J; Regan, S P; Shoup, M J; Sorce, A; Sorce, C; Sangster, T C; Weiner, D

    2016-05-01

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium-tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments-a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ∼16 m to a streak camera in a well-shielded location. An ∼200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ∼40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.

  2. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    DOE PAGES

    Stoeckl, C.; Boni, R.; Ehrne, F.; ...

    2016-05-10

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic DT implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ~16 m to a streak camera in amore » well-shielded location. An ~200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ~40±10 ps was measured in a dedicated experiment using hard x rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. Furthermore, the measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less

  3. High-resolution neutron crystallographic studies of the hydration of the coenzyme cob(II)alamin

    SciTech Connect

    Jogl, Gerwald; Wang, Xiaoping; Mason, Sax A.; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zöe; Hoffman, Christina; Kratky, Christoph; Langan, Paul

    2011-06-01

    High-resolution crystallographic studies of the hydration of the coenzyme cob(II)alamin have provided hydrogen-bond parameters of unprecedented accuracy for a biomacromolecule. The hydration of the coenzyme cob(II)alamin has been studied using high-resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of 0.92 Å on the original D19 diffractometer with a prototype 4° × 64° detector at the high-flux reactor neutron source run by the Institute Laue–Langevin. The resulting structure provides hydrogen-bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif surrounded by flexible side chains with terminal functional groups may be significant for the efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultrahigh resolution was investigated by collecting time-of-flight neutron crystallographic data during commissioning of the TOPAZ diffractometer with a prototype array of 14 modular 2° × 21° detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  4. High resolution neutron crystallographic studies of the hydration of coenzyme cob(II)alamin

    SciTech Connect

    Jogl, Gerwald; Wang, Xiaoping; Mason, Sax; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zoe; Hoffmann, Christina; Kratky, Christoph; Langan, Paul

    2011-01-01

    The hydration of coenzyme cob(II)alamin has been studied using high resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of surrounded by flexible side chains with terminal functional groups may be significant for 0.92 on the original diffractometer D19 with a prototype 4o x 64o detector at the high-flux reactor neutron source run by the Institute Laue Langevin. The resulting structure provides H bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force-fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultra high resolution was investigated by collecting time-of-flight neutron crystallographic data on diffractometer TOPAZ with a prototype array of 14 modular 21o x 21o detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  5. Light fluence correction for quantitative determination of tissue absorption coefficient using multi-spectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal; Bohndiek, Sarah E.

    2015-07-01

    MultiSpectral Optoacoustic Tomography (MSOT) is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound with the excellent contrast from optical imaging of tissue. Absorption and scattering of the near infrared excitation light modulates the spectral profile of light as it propagates deep into biological tissue, meaning the images obtained provide only qualitative insight into the distribution of tissue chromophores. The goal of this work is to accurately recover the spectral profile of excitation light by modelling light fluence in the data reconstruction, to enable quantitative imaging. We worked with a commercial small animal MSOT scanner and developed our light fluence correction for its' cylindrical geometry. Optoacoustic image reconstruction pinpoints the sources of acoustic waves detected by the transducers and returns the initial pressure amplitude at these points. This pressure is the product of the dimensionless Grüneisen parameter, the absorption coefficient and the light fluence. Under the condition of constant Grüneisen parameter and well modelled light fluence, there is a linear relationship between the initial pressure amplitude measured in the optoacoustic image and the absorption coefficient. We were able to reproduce this linear relationship in different physical regions of an agarose gel phantom containing targets of known optical absorption coefficient, demonstrating that our light fluence model was working. We also demonstrate promising results of light fluence correction effects on in vivo data.

  6. Alpha-particle fluence in radiobiological experiments.

    PubMed

    Nikezic, Dragoslav; Yu, Kwan Ngok

    2016-11-03

    Two methods were proposed for determining alpha-particle fluence for radiobiological experiments. The first involved calculating the probabilities of hitting the target for alpha particles emitted from a source through Monte Carlo simulations, which when multiplied by the activity of the source gave the fluence at the target. The second relied on the number of chemically etched alpha-particle tracks developed on a solid-state nuclear track detector (SSNTD) that was irradiated by an alpha-particle source. The etching efficiencies (defined as percentages of latent tracks created by alpha particles from the source that could develop to become visible tracks upon chemical etching) were computed through Monte Carlo simulations, which when multiplied by the experimentally counted number of visible tracks would also give the fluence at the target. We studied alpha particles with an energy of 5.486 MeV emitted from an (241)Am source, and considered the alpha-particle tracks developed on polyallyldiglycol carbonate film, which is a common SSNTD. Our results showed that the etching efficiencies were equal to one for source-film distances of from 0.6 to 3.5 cm for a circular film of radius of 1 cm, and for source-film distances of from 1 to 3 cm for circular film of radius of 2 cm. For circular film with a radius of 3 cm, the etching efficiencies never reached 1. On the other hand, the hit probability decreased monotonically with increase in the source-target distance, and fell to zero when the source-target distance was larger than the particle range in air.

  7. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  8. Neutron measurements

    SciTech Connect

    McCall, R.C.

    1981-01-01

    Methods of neutron detection and measurement are discussed. Topics include sources of neutrons, neutrons in medicine, interactions of neutrons with matter, neutron shielding, neutron measurement units, measurement methods, and neutron spectroscopy. (ACR)

  9. High-resolution neutron crystallographic studies of the hydration of the coenzyme cob(II)alamin.

    PubMed

    Jogl, Gerwald; Wang, Xiaoping; Mason, Sax A; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zöe; Hoffman, Christina; Kratky, Christoph; Langan, Paul

    2011-06-01

    The hydration of the coenzyme cob(II)alamin has been studied using high-resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of 0.92 Å on the original D19 diffractometer with a prototype 4° × 64° detector at the high-flux reactor neutron source run by the Institute Laue-Langevin. The resulting structure provides hydrogen-bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif surrounded by flexible side chains with terminal functional groups may be significant for the efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultrahigh resolution was investigated by collecting time-of-flight neutron crystallographic data during commissioning of the TOPAZ diffractometer with a prototype array of 14 modular 2° × 21° detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  10. Probing the dynamics of high-viscosity entangled polymers under shear using Neutron Spin Echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawecki, M.; Gutfreund, P.; Adlmann, F. A.; Lindholm, E.; Longeville, S.; Lapp, A.; Wolff, M.

    2016-09-01

    Neutron Spin Echo spectroscopy provides unique insight into molecular and submolecular dynamics as well as intra- and inter-molecular interactions in soft matter. These dynamics may change drastically under shear flow. In particular in polymer physics a stress plateau is observed, which might be explained by an entanglement-disentanglement transition. However, such a transition is difficult to identify directly by experiments. Neutron Spin Echo has been proven to provide information about entanglement length and degree by probing the local dynamics of the polymer chains. Combining shear experiments and neutron spin echo is challenging since, first the beam polarisation has to be preserved during scattering and second, Doppler scattered neutrons may cause inelastic scattering. In this paper we present a new shear device adapted for these needs. We demonstrate that a high beam polarisation can be preserved and present first data on an entangled polymer solution under shear. To complement the experiments on the dynamics we present novel SANS data revealing shear- induced conformational changes in highly entangled polymers.

  11. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  12. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  13. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-02-07

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  14. Characteristics of high-energy neutrons estimated using the radioactive spallation products of Au at the 500-MeV neutron irradiation facility of KENS.

    PubMed

    Matsumura, Hiroshi; Masumoto, Kazuyoshi; Nakao, Noriaki; Wang, Qingbin; Toyoda, Akihiro; Kawai, Masayoshi; Aze, Takahiro; Fujimura, Masatsugu

    2005-01-01

    We carried out a shielding experiment of high-energy neutrons, generated from a tungsten target bombarded with primary 500-MeV protons at KENS, which penetrated through a concrete shield in the zero-degree direction. We propose a new method to evaluate the spectra of high-energy neutrons ranging from 8 to 500 MeV. Au foils were set in a concrete shield, and the reaction rates for 13 radionuclides produced by the spallation reactions on the Au targets were measured by radiochemical techniques. The experimental results were compared with those obtained by the MARS14 Monte-Carlo code. A good agreement (between them) was found for energies beyond 100 MeV. The profile of the neutron spectrum, ranging from 8 to 500 MeV, does not depend on the thickness of the concrete shield.

  15. Monte Carlo Simulation of Atmospheric Neutron Transport at High Altitudes Using MCNP

    DTIC Science & Technology

    1990-08-01

    interaction data, (2) discrete reaction neutron interaction data, (3) multigroup neutron interaction data, (4) continuous photon interaction data and (5... multigroup photon interaction data. In neutron - only and coupled neutron /photon problems, one continuous-energy, multigroup or discrete reaction...as histograms rather than as continuous curves. The multigroup tables have been derived from the same sources as the other neutron interaction tables

  16. High thermal neutron flux effects on structural and macroscopic properties of alkali-borosilicate glasses used as neutron guide substrate

    NASA Astrophysics Data System (ADS)

    Boffy, R.; Peuget, S.; Schweins, R.; Beaucour, J.; Bermejo, F. J.

    2016-05-01

    The behaviour of four alkali-borosilicate glasses under homogeneous thermal neutron irradiation has been studied. These materials are used for the manufacturing of neutron guides which are installed in most facilities as devices to transport neutrons from intense sources such as nuclear reactors or spallation sources up to scientific instruments. Several experimental techniques such as Raman, NMR, SANS and STEM have been employed in order to understand the rather different macroscopic behaviour under irradiation of materials that belong to a same glass family. The results have shown that the remarkable glass shrinking observed for neutron doses below 0.5 ·1018 n/cm2 critically depends upon the presence of domains where silicate and borate network do not mix.

  17. High-fidelity MCNP modeling of a D-T neutron generator for active interrogation of special nuclear material

    NASA Astrophysics Data System (ADS)

    Katalenich, Jeff; Flaska, Marek; Pozzi, Sara A.; Hartman, Michael R.

    2011-10-01

    Fast and robust methods for interrogation of special nuclear material (SNM) are of interest to many agencies and institutions in the United States. It is well known that passive interrogation methods are typically sufficient for plutonium identification because of a relatively high neutron production rate from 240Pu [1]. On the other hand, identification of shielded uranium requires active methods using neutron or photon sources [2]. Deuterium-deuterium (2.45 MeV) and deuterium-tritium (14.1 MeV) neutron-generator sources have been previously tested and proven to be relatively reliable instruments for active interrogation of nuclear materials [3,4]. In addition, the newest generators of this type are small enough for applications requiring portable interrogation systems. Active interrogation techniques using high-energy neutrons are being investigated as a method to detect hidden SNM in shielded containers [4,5]. Due to the thickness of some containers, penetrating radiation such as high-energy neutrons can provide a potential means of probing shielded SNM. In an effort to develop the capability to assess the signal seen from various forms of shielded nuclear materials, the University of Michigan Neutron Science Laboratory's D-T neutron generator and its shielding were accurately modeled in MCNP. The generator, while operating at nominal power, produces approximately 1×10 10 neutrons/s, a source intensity which requires a large amount of shielding to minimize the dose rates around the generator. For this reason, the existing shielding completely encompasses the generator and does not include beam ports. Therefore, several MCNP simulations were performed to estimate the yield of uncollided 14.1-MeV neutrons from the generator for active interrogation experiments. Beam port diameters of 5, 10, 15, 20, and 25 cm were modeled to assess the resulting neutron fluxes. The neutron flux outside the beam ports was estimated to be approximately 2×10 4 n/cm 2 s.

  18. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  19. High-efficiency microstructured semiconductor neutron detectors for direct 3He replacement

    NASA Astrophysics Data System (ADS)

    Fronk, R. G.; Bellinger, S. L.; Henson, L. C.; Huddleston, D. E.; Ochs, T. R.; Sobering, T. J.; McGregor, D. S.

    2015-04-01

    High-efficiency Microstructured Semiconductor Neutron Detectors (MSNDs) have been tiled and arranged in a cylindrical form factor in order to serve as a direct replacement to aging and increasingly expensive 3He gas-filled proportional neutron detectors. Two 6-in long by 2-in diameter cylinders were constructed and populated with MSNDs which were then directly compared to a 4 atm Reuter Stokes 3He detector of the same dimensions. The Generation 1 MSND-based 3Helium-Replacement (HeRep Mk I) device contained sixty-four 1-cm2 active-area MSNDs, each with an intrinsic neutron detection efficiency of approximately 7%. A Generation 2 device (the HeRep Mk II) was populated with thirty 4-cm2 active-area MSNDs, with an intrinsic thermal neutron detection efficiency of approximately 30%. The MSNDs of each HeRep were integrated to count as a single device. The 3He proportional counter and the HeRep devices were tested while encased in a cylinder of high-density polyethylene measuring a total of 6-in by 9-in. The 3He counter and the HeRep Mk II were each placed 1 m from a 54-ng 252Cf source and tested for efficiency. The 3He proportional counter had a net count rate of 17.13±0.10 cps at 1 m. The HeRep Mk II device had a net count rate of 17.60±0.10 cps, amounting to 102.71±2.65% of the 3He gas counter while inside of the moderator. Outside of moderator, the 3He tube had a count rate of 3.35±0.05 cps and the HeRep Mk II device reported 3.19±05, amounting to 95.15±9.04% of the 3He neutron detector.

  20. Phonon characteristics of high {Tc} superconductors from neutron Doppler broadening measurements

    SciTech Connect

    Trela, W.J.; Kwei, G.H.; Lynn, J.E.; Meggers, K.

    1994-12-01

    Statistical information on the phonon frequency spectrum of materials can be measured by neutron transmission techniques if they contain nuclei with low energy resonances, narrow enough to be Doppler-broadened, in their neutron cross sections. The authors have carried out some measurements using this technique for materials of the lanthanum barium cuprate class, La{sub 2{minus}x}Ba{sub x}CuO{sub 4}. Two samples with slightly different concentrations of oxygen, one being superconductive, the other not, were examined. Pure lanthanum cuprate was also measured. Lanthanum, barium and copper all have relatively low energy narrow resonances. Thus it should be possible to detect differences in the phonons carried by different kinds of atom in the lattice. Neutron cross section measurements have been made with high energy resolution and statistical precision on the 59m flight path of LANSCE, the pulsed spallation neutron source at Los Alamos National Laboratory. Measurements on all three materials were made over a range of temperatures from 15K to 300K, with small steps through the critical temperature region near 27K. No significant changes in the mean phonon energy of the lanthanum atoms were observed near the critical temperature of the super-conducting material. It appears however that the mean phonon energy of lanthanum in the superconductor is considerably higher than that in the non-superconductors. The samples used in this series of experiments were too thin in barium and copper to determine anything significant about their phonon spectra.

  1. High-energy astrophysics: A theoretical analysis of thermal radiation from neutron stars

    NASA Technical Reports Server (NTRS)

    Applegate, James H.

    1994-01-01

    The unambiguous detection of thermal radiation from the surface of a cooling neutron star was one of the most anxiously awaited results in neutron star physics. This particular Holy Grail was found by Halpern and Holt, who used ROSAT to detect pulsed X-rays from the gamma-ray source Geminga and demonstrate that it was a neutron star, probably a radio pulsar beamed away from us. At an age of approximately 3.4 x 10(exp 5) years, Geminga is in the photon cooling era. Its surface temperature of 5.2 x 10(exp 5) K can be explained within the contexts of both the slow and fast cooling scenarios. In the slow cooling scenario, the surface temperature is too high unless the specific heat of the interior is reduced by extensive baryon pairing. In the fast cooling scenario, the surface temperature will be much too low unless the fast neutrino cooling is shut off by baryon pairing. Two other pulsars, PSR 0656+14 and PSR 1055-52, have also been detected in thermal X-rays by ROSAT. They are also in the photon cooling era. All of this research's neutron star cooling models to date have used the unmagnetized effective temperature-interior temperature relation for the outer boundary condition. Models are being improved by using published magnetic envelope calculations and assumed geometried for the surface magnetic field to determine local interior temperature-emitted flux relations for the surface of the star.

  2. Initial Experimental Verification of the Neutron Beam Modeling for the LBNL BNCT Facility

    SciTech Connect

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; McDonald, R.J.; Smith, A.R.; Stone, N.A.; Vuji, J.

    1999-01-19

    In preparation for future clinical BNCT trials, neutron production via the 7Li(p,n) reaction as well as subsequent moderation to produce epithermal neutrons have been studied. Proper design of a moderator and filter assembly is crucial in producing an optimal epithermal neutron spectrum for brain tumor treatments. Based on in-phantom figures-of-merit,desirable assemblies have been identified. Experiments were performed at the Lawrence Berkeley National Laboratory's 88-inch cyclotron to characterize epithermal neutron beams created using several microampere of 2.5 MeV protons on a lithium target. The neutron moderating assembly consisted of Al/AlF3 and Teflon, with a lead reflector to produce an epithermal spectrum strongly peaked at 10-20 keV. The thermal neutron fluence was measured as a function of depth in a cubic lucite head phantom by neutron activation in gold foils. Portions of the neutron spectrum were measured by in-air activation of six cadmium-covered materials (Au, Mn, In, Cu, Co, W) with high epithermal neutron absorption resonances. The results are reasonably reproduced in Monte Carlo computational models, confirming their validity.

  3. Arrangement of high-energy neutron irradiation field and shielding experiment using 4 m concrete at KENS.

    PubMed

    Nakao, N; Yashima, H; Kawai, M; Oishi, K; Nakashima, H; Masumoto, K; Matsumura, H; Sasaki, S; Numajiri, M; Sanami, T; Wang, Q; Toyoda, A; Takahashi, K; Iijima, K; Eda, K; Ban, S; Hirayama, H; Muto, S; Nunomiya, T; Yonai, S; Rasolonjatovo, D R H; Terunuma, K; Yamauchi, K; Sarkar, P K; Kim, E; Nakamura, T; Maruhashi, A

    2005-01-01

    An irradiation field of high-energy neutrons produced in the forward direction from a thick tungsten target bombarded by 500 MeV protons was arranged at the KENS spallation neutron source facility. In this facility, shielding experiment was performed with an ordinary concrete shield of 4 m thickness assembled in the irradiation room, 2.5 m downstream from the target centre. Activation detectors of bismuth, aluminium, indium and gold were inserted into eight slots inside the shield and attenuations of neutron reaction rates were obtained by measurements of gamma-rays from the activation detectors. A MARS14 Monte Carlo simulation was also performed down to thermal energy, and comparisons between the calculations and measurements show agreements within a factor of 3. This neutron field is useful for studies of shielding, activation and radiation damage of materials for high-energy neutrons, and experimental data are useful to check the accuracies of the transmission and activation calculation codes.

  4. Uncertainties in the Fluence Determination in the Surveillance Samples of VVER-440

    NASA Astrophysics Data System (ADS)

    Konheiser, Joerg; Grahn, Alexander; Borodkin, Pavel; Borodkin, Gennady

    2016-02-01

    The reactor pressure vessel (RPV) represents one of the most important safety components in a nuclear power plant. Therefore, surveillance specimen (SS) programs for the RPV material exist to deliver a reliable assessment of RPV residual lifetime. This report will present neutron fluence calculations for SS. These calculations were carried out by the codes TRAMO [1] and DORT [2]. This study was accompanied by ex-vessel neutron dosimetry experiments at Kola NPP. The main neutron activation monitoring reactions were 54Fe(n,p)54Mn and 58Ni(n,p)58Co. Good agreement was found between the deterministic and stochastic calculation results and between the calculations and the ex-vessel measurements. The different influences on the monitors were studied. In order to exclude the possible healing effects of the samples due to excessive temperatures, the heat release in the surveillance specimens was determined based on the calculated gamma fluences. Under comparatively realistic conditions, the heat increased by 6 K.

  5. Overview of Ignitor Neutronics and Activation

    NASA Astrophysics Data System (ADS)

    Rollet, S.; Batistoni, P.; Forrest, R.

    1999-11-01

    The Ignitor experiment is designed to produce D-T plasmas where ignition can take place and the physics of α-particles can be studied. After a first period of operation without significant neutron production, a second phase in deuterium with 2.5 MeV neutron production rate up to 10^17 n/s is planned. This will be followed by operations at increasing percentages of tritium, leading to short, but intense 14 MeV neutron production, up to ≈ 3 × 10^19 n/s. To calculate the neutron fluxes in all the machine components, including the streaming through the ports, a detailed description of the actual Ignitor machine is implemented in the MCNP-4B Monte Carlo code. These fluxes are then used as input for the FISPACT-97 code for the analysis of the activation at the end of life (EOL) and at intermediate times for safety assessment purposes. The estimated neutron emission pulse results in rather modest neutron fluences (≈ 10^18 n/cm^2 on the first wall at EOL). Therefore, radiation damage in the device components is not a concern, with the possible exception of the toroidal magnet insulator. On the other hand, the neutron flux on the first wall can be as high as that of a demonstration reactor (≈ 10^14 n/s/cm^2), inducing, in the absence of a blanket, considerable activation. The shielding strategy and possible solutions to prevent/reduce the activation of the cryostat are presented.

  6. High-Dose Neutron Detector Development Using 10B Coated Cells

    SciTech Connect

    Menlove, Howard Olsen; Henzlova, Daniela

    2016-11-08

    During FY16 the boron-lined parallel-plate technology was optimized to fully benefit from its fast timing characteristics in order to enhance its high count rate capability. To facilitate high count rate capability, a novel fast amplifier with timing and operating properties matched to the detector characteristics was developed and implemented in the 8” boron plate detector that was purchased from PDT. Each of the 6 sealed-cells was connected to a fast amplifier with corresponding List mode readout from each amplifier. The FY16 work focused on improvements in the boron-10 coating materials and procedures at PDT to significantly improve the neutron detection efficiency. An improvement in the efficiency of a factor of 1.5 was achieved without increasing the metal backing area for the boron coating. This improvement has allowed us to operate the detector in gamma-ray backgrounds that are four orders of magnitude higher than was previously possible while maintaining a relatively high counting efficiency for neutrons. This improvement in the gamma-ray rejection is a key factor in the development of the high dose neutron detector.

  7. High pressure cell for neutron reflectivity measurements up to 2500 bar

    NASA Astrophysics Data System (ADS)

    Jeworrek, Christoph; Steitz, Roland; Czeslik, Claus; Winter, Roland

    2011-02-01

    The design of a high pressure (HP) cell for neutron reflectivity experiments is described. The cell can be used to study solid-liquid interfaces under pressures up to 2500 bar (250 MPa). The sample interface is based on a thick silicon block with an area of about 14 cm2. This area is in contact with the sample solution which has a volume of only 6 cm3. The sample solution is separated from the pressure transmitting medium, water, by a thin flexible polymer membrane. In addition, the HP cell can be temperature-controlled by a water bath in the range 5-75°C. By using an aluminum alloy as window material, the assembled HP cell provides a neutron transmission as high as 41%. The maximum angle of incidence that can be used in reflectivity experiments is 7.5°. The large accessible pressure range and the low required volume of the sample solution make this HP cell highly suitable for studying pressure-induced structural changes of interfacial proteins, supported lipid membranes, and, in general, biomolecular systems that are available in small quantities, only. To illustrate the performance of the HP cell, we present neutron reflectivity data of a protein adsorbate under high pressure and a lipid film which undergoes several phase transitions upon pressurization.

  8. Effects On Beam Alignment Due To Neutron-Irradiated CCD Images At The National Ignition Facility

    SciTech Connect

    Awwal, A; Manuel, A; Datte, P; Burkhart, S

    2011-02-28

    The 192 laser beams in the National Ignition Facility (NIF) are automatically aligned to the target-chamber center using images obtained through charged coupled device (CCD) cameras. Several of these cameras are in and around the target chamber during an experiment. Current experiments for the National Ignition Campaign are attempting to achieve nuclear fusion. Neutron yields from these high energy fusion shots expose the alignment cameras to neutron radiation. The present work explores modeling and predicting laser alignment performance degradation due to neutron radiation effects, and demonstrates techniques to mitigate performance degradation. Camera performance models have been created based on the measured camera noise from the cumulative single-shot fluence at the camera location. We have found that the effect of the neutron-generated noise for all shots to date have been well within the alignment tolerance of half a pixel, and image processing techniques can be utilized to reduce the effect even further on the beam alignment.

  9. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  10. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOEpatents

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  11. Perspectives for neutron and gamma spectroscopy in high power laser driven experiments at ELI-NP

    NASA Astrophysics Data System (ADS)

    Negoita, F.; Gugiu, M.; Petrascu, H.; Petrone, C.; Pietreanu, D.; Fuchs, J.; Chen, S.; Higginson, D.; Vassura, L.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Antici, P.; Balabanski, D.; Balascuta, S.; Cernaianu, M.; Dancus, I.; Gales, S.; Neagu, L.; Petcu, C.; Risca, M.; Toma, M.; Turcu, E.; Ursescu, D.

    2015-02-01

    The measurement of energy spectra of neutrons and gamma rays emitted by nuclei, together with charge particles spectroscopy, are the main tools for understanding nuclear phenomena occurring also in high power laser driven experiments. However, the large number of particles emitted in a very short time, in particular the strong X-rays flash produced in laser-target interaction, impose adaptation of technique currently used in nuclear physics experiment at accelerator based facilities. These aspects are discussed (Section 1) in the context of proposed studies at high power laser system of ELI-NP. Preliminary results from two experiments performed at Titan (LLNL) and ELFIE (LULI) facilities using plastic scintillators for neutron detection (Section 2) and LaBr3(Ce) scintillators for gamma detection (Section 3) are presented demonstrating the capabilities and the limitations of the employed methods. Possible improvements of these spectroscopic methods and their proposed implementation at ELI-NP will be discussed as well in the last section.

  12. Effects of laser fluence non-uniformity on ambient-temperature soot measurements using the auto-compensating laser-induced incandescence technique

    NASA Astrophysics Data System (ADS)

    Liu, Fengshan; Rogak, Steven; Snelling, David R.; Saffaripour, Meghdad; Thomson, Kevin A.; Smallwood, Gregory J.

    2016-11-01

    Multimode pulsed Nd:YAG lasers are commonly used in auto-compensating laser-induced incandescence (AC-LII) measurements of soot in flames and engine exhaust as well as black carbon in the atmosphere. Such lasers possess a certain degree of fluence non-uniformity across the laser beam even with the use of beam shaping optics. Recent research showed that the measured volume fraction of ambient-temperature soot using AC-LII increases significantly, by about a factor of 5-8, with increasing the laser fluence in the low-fluence regime from a very low fluence to a relatively high fluence of near sublimation. The causes of this so-called soot volume fraction anomaly are currently not understood. The effects of laser fluence non-uniformity on the measured soot volume fraction using AC-LII were investigated. Three sets of LII experiments were conducted in the exhaust of a MiniCAST soot generator under conditions of high elemental carbon using Nd:YAG lasers operated at 1064 nm. The laser beams were shaped and relay imaged to achieve a relatively uniform fluence distribution in the measurement volume. To further homogenize the laser fluence, one set of LII experiments was conducted by using a diffractive optical element. The measured soot volume fractions in all three sets of LII experiments increase strongly with increasing the laser fluence before a peak value is reached and then start to decrease at higher fluences. Numerical calculations were conducted using the experimental laser fluence histograms. Laser fluence non-uniformity is found partially responsible for the soot volume fraction anomaly, but is insufficient to explain the degree of soot volume fraction anomaly observed experimentally. Representing the laser fluence variations by a histogram derived from high-resolution images of the laser beam energy profile gives a more accurate definition of inhomogeneity than a simple averaged linear profile across the laser beam.

  13. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane

    SciTech Connect

    Mukherjee, Partha P; Makundan, Rangachary; Spendelow, Jacob S; Borup, Rodney L; Hussey, D S; Jacobson, D L; Arif, M

    2009-01-01

    Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

  14. Exploring properties of high-density matter through remnants of neutron-star mergers

    NASA Astrophysics Data System (ADS)

    Bauswein, Andreas; Stergioulas, Nikolaos; Janka, Hans-Thomas

    2016-03-01

    Remnants of neutron-star mergers are essentially massive, hot, differentially rotating neutron stars, which are initially strongly oscillating. As such they represent a unique probe for high-density matter because the oscillations are detectable via gravitational-wave measurements and are strongly dependent on the equation of state. The impact of the equation of state for instance is apparent in the frequency of the dominant oscillation mode of the remnant. For a fixed total binary mass a tight relation between the dominant postmerger oscillation frequency and the radii of nonrotating neutron stars exists. Inferring observationally the dominant postmerger frequency thus determines neutron star radii with high accuracy of the order of a few hundred meters. By considering symmetric and asymmetric binaries of the same chirp mass, we show that the knowledge of the binary mass ratio is not critical for this kind of radius measurements. We perform simulations which show that initial intrinsic neutron star rotation is unlikely to affect this method of constraining the high-density equation of state. We also summarize different possibilities about how the postmerger gravitational-wave emission can be employed to deduce the maximum mass of nonrotating neutron stars. We clarify the nature of the three most prominent features of the postmerger gravitational-wave spectrum and argue that the merger remnant can be considered to be a single, isolated, self-gravitating object that can be described by concepts of asteroseismology. We sketch how the consideration of the strength of secondary gravitational-wave peaks leads to a classification scheme of the gravitational-wave emission and postmerger dynamics. The understanding of the different mechanisms shaping the gravitational-wave signal yields a physically motivated analytic model of the gravitational-wave emission, which may form the basis for template-based gravitational-wave data analysis. We explore the observational

  15. Characterisation of the IRSN graphite moderated Americium-Beryllium neutron field.

    PubMed

    Lacoste, V; Gressier, V; Muller, H; Lebreton, L

    2004-01-01

    The SIGMA facility was set up at IRSN to provide thermal neutrons for metrology and dosimetry purposes. SIGMA consists of six Am-Be radioactive sources located in a 1.5 x 1.5 x 1.5 m3 graphite moderator block. The neutron field at the calibration position, situated at 50 cm from the west surface of the assembly was characterised experimentally and by Monte Carlo calculations. The thermal neutron fluence was determined by the activation of gold foils; the neutron fluence energy distribution above 240 keV was measured with proton recoil spectrometers and the neutron fluence energy distribution from thermal energies to 20 MeV was measured with a Bonner spheres spectrometer. A Monte Carlo simulation of the SIGMA assembly was undertaken using the MCNP4C code, and the calculated neutron fluence energy distribution was compared with the measurements. As a whole, the experimental data and the MCNP calculation are in a good agreement.

  16. Epitaxial silicon detectors for particle tracking—Radiation tolerance at extreme hadron fluences

    NASA Astrophysics Data System (ADS)

    Lindström, Gunnar; Dolenc, Irena; Fretwurst, Eckhart; Hönniger, Frank; Kramberger, Gregor; Moll, Michael; Nossarzewska, Elsbieta; Pintilie, Ioana; Röder, Ralf

    2006-11-01

    Diodes processed on n-type epitaxial silicon with a thickness of 25, 50 and 75 μm had been irradiated with reactor neutrons and high-energy protons (24 GeV/ c) up to integrated fluences of Φeq=10 16 cm -2. Systematic experiments on radiation-induced damage effects revealed the following results: in contrast to standard and oxygen-enriched float zone (FZ) silicon devices no space charge sign inversion was observed after irradiation. It is shown that the radiation-generated concentration of deep acceptors, dominating the behavior of n-type FZ diodes, is compensated by creation of shallow donors. Thus a positive space charge is maintained throughout the irradiation up to the highest fluence and even during prolonged elevated-temperature annealing cycles. Defect analysis studies using thermally stimulated current measurements attribute the effect to a damage-induced shallow donor at EC-0.23 eV. It is argued that, as in the case of thermal donors, oxygen dimers, out diffusing from the Cz substrate during the diode processing, are responsible precursers. Results from extensive annealing experiments at elevated temperatures are verified by comparison with prolonged room-temperature annealing. These results showed that in contrast to FZ detectors, which always have to be cooled, room-temperature storage during beam off periods of future elementary particle physics experiments would even be beneficial for n-type epi-silicon detectors. A dedicated experiment at CERN-PS had successfully proven this expectation. It was verified, that in such a scenario the depletion voltage for the epi-detector could always be kept at a moderate level throughout the full S-LHC operation (foreseen upgrade of the large hadron collider). Practically no difference with respect to FZ-silicon devices was found in the damage-induced bulk generation current. The charge trapping measured with 90Sr electrons (mip's) is also almost identical to what was expected. A charge collection efficiency of 60

  17. Advances in Neutron Spectroscopy and High Magnetic Field Instrumentation for studies of Correlated Electron Systems

    SciTech Connect

    Granroth, Garrett E

    2011-01-01

    Neutron Spectroscopy has provided critical information on the magnetism in correlated electron systems. Specifically quantum magnets, superconductors, and multi-ferroics are areas of productive research. A discussion of recent measurements on the SEQUOIA spectrometer will provide examples of how novel instrumentation concepts are used on the latest generation of spectrometers to extend our knowledge in such systems. The now ubiquitous function of sample rotation allows for full mapping of volumes of $Q$ and $\\omega$ space. An instrument focused on low angles could extend these maps to cover more of the first Brillioun zone. Innovative chopper cascades allow two unique modes of operation. Multiplexed measurements allow the simultaneous measurement of high and low energy features in an excitation spectrum. Alternatively by limiting the neutron bandwidth incident on the Fermi Chopper, background from subsequent time frames is removed, enabling the observation of weak, large energy transfer features. Finally the implementation of event-based detection for neutron experiments is time correlated experiments. Diffraction studies of the high field spin states in MnWO$_4$ using magnetic fields up to 30 T, provided by a pulsed magnet, illustrate this method. Expanding the high field studies to spectroscopy will require a novel instrument, focused around a world class DC magnet, like Zeemans proposed for the SNS.

  18. High-power liquid-lithium jet target for neutron production

    SciTech Connect

    Halfon, S.; Feinberg, G.; Arenshtam, A.; Kijel, D.; Berkovits, D.; Eliyahu, I.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Silverman, I.; Paul, M.; Friedman, M.; Tessler, M.

    2013-12-15

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the {sup 7}Li(p,n){sup 7}Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm{sup 3}) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the {sup 7}Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ∼200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm{sup 2} and volume power density of ∼2 MW/cm{sup 3} at a lithium flow of ∼4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91–2.5 MeV, 1–2 mA) at SARAF.

  19. High resolution measurement of neutron inelastic scattering cross-sections for 23Na

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Archier, P.; Borcea, C.; De Saint Jean, C.; Drohé, J. C.; Kopecky, S.; Moens, A.; Nankov, N.; Negret, A.; Noguère, G.; Plompen, A. J. M.; Stanoiu, M.

    2012-04-01

    The neutron inelastic scattering cross-section of 23Na has been measured in response to the relevant request of the OECD-NEA High Priority Request List, which requires a target uncertainty of 4% in the energy range up to 1.35 MeV for the development of sodium-cooled fast reactors. The measurement was performed at the GELINA facility with the Gamma Array for Inelastic Neutron Scattering (GAINS), featuring eight high purity germanium detectors. The setup is installed at a 200 m flight path from the neutron source and provides high resolution measurements using the (n,n'γ)-technique. The sample was an 80 mm diameter metallic sodium disk prepared at IRMM. Transitions up to the seventh excited state were observed and the differential gamma cross-sections at 110° and 150° were measured, showing mostly isotropic gamma emission. From these the gamma production, level and inelastic cross-sections were determined for neutron energies up to 3838.9 keV. The results agree well with the existing data and the evaluated nuclear data libraries in the low energies, and provide new experimental points in the little studied region above 2 MeV. Following a detailed review of the methodology used for the gamma efficiency calibrations and flux normalization of GAINS data, an estimated total uncertainty of 2.2% was achieved for the inelastic cross-section integrals over the energy ranges 0.498-1.35 MeV and 1.35-2.23 MeV, meeting the required targets.

  20. Apparatus, Method and Program Storage Device for Determining High-Energy Neutron/Ion Transport to a Target of Interest

    NASA Technical Reports Server (NTRS)

    Wilson, John W. (Inventor); Tripathi, Ram K. (Inventor); Badavi, Francis F. (Inventor); Cucinotta, Francis A. (Inventor)

    2012-01-01

    An apparatus, method and program storage device for determining high-energy neutron/ion transport to a target of interest. Boundaries are defined for calculation of a high-energy neutron/ion transport to a target of interest; the high-energy neutron/ion transport to the target of interest is calculated using numerical procedures selected to reduce local truncation error by including higher order terms and to allow absolute control of propagated error by ensuring truncation error is third order in step size, and using scaling procedures for flux coupling terms modified to improve computed results by adding a scaling factor to terms describing production of j-particles from collisions of k-particles; and the calculated high-energy neutron/ion transport is provided to modeling modules to control an effective radiation dose at the target of interest.