Science.gov

Sample records for high neutron fluences

  1. Effects of high thermal neutron fluences on Type 6061 aluminum

    SciTech Connect

    Weeks, J.R.; Czajkowski, C.J. ); Farrell, K. )

    1992-01-01

    The control rod drive follower tubes of the High Flux Beam Reactor are contructed from precipitation-hardened 6061-T6 aluminum alloy and they operate in the high thermal neutron flux regions of the core. It is shown that large thermal neutron fluences up to {approximately}4 {times} 10{sup 23} n/cm{sup 2} at 333K cause large increases in tensile strength and relatively modest decreases in tensile elongation while significantly reducing the notch impact toughness at room temperature. These changes are attributed to the development of a fine distribution of precipitates of amorphous silicon of which about 8% is produced radiogenically. A proposed role of thermal-to-fast flux ratio is discussed.

  2. Effects of high thermal neutron fluences on Type 6061 aluminum

    SciTech Connect

    Weeks, J.R.; Czajkowski, C.J.; Farrell, K.

    1992-09-01

    The control rod drive follower tubes of the High Flux Beam Reactor are contructed from precipitation-hardened 6061-T6 aluminum alloy and they operate in the high thermal neutron flux regions of the core. It is shown that large thermal neutron fluences up to {approximately}4 {times} 10{sup 23} n/cm{sup 2} at 333K cause large increases in tensile strength and relatively modest decreases in tensile elongation while significantly reducing the notch impact toughness at room temperature. These changes are attributed to the development of a fine distribution of precipitates of amorphous silicon of which about 8% is produced radiogenically. A proposed role of thermal-to-fast flux ratio is discussed.

  3. Swelling of several commercial alloys following high fluence neutron irradiation

    SciTech Connect

    Powell, R.W.; Peterson, D.T.; Zimmerschied, M.K.; Bates, J.F.

    1981-01-01

    Swelling values have been determined for a set of commercial alloys irradiated to a peak fluence of 17.8 x 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV) over the temperature range of 400 to 650/sup 0/C. The alloys studied fall into three classes: the ferritic alloys AISI 430F, AISI 416, EM-12, H-11 and 2 1/4 Cr-1 Mo; the superalloys Inconel 718 and Inconel X-750; and the refractory alloys TZM and Nb-1 Zr. After irradiation to a peak fluence approaching goal exposures envisioned for advanced fusion reactor first walls, all of the alloys display swelling resistance far superior to cold worked AISI 316. Of the three alloy classes examined the swelling resistance of the ferritics is the least sensitive to composition.

  4. Neutron dose per fluence and weighting factors for use at high energy accelerators

    SciTech Connect

    Cossairt, J.Donald; Vaziri, Kamran; /Fermilab

    2008-07-01

    In June 2007, the United States Department of Energy incorporated revised values of neutron weighting factors into its occupational radiation protection Regulation 10 CFR Part 835 as part of updating its radiation dosimetry system. This has led to a reassessment of neutron radiation fields at high energy proton accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab). Values of dose per fluence factors appropriate for accelerator radiation fields calculated elsewhere are collated and radiation weighting factors compared. The results of this revision to the dosimetric system are applied to americium-beryllium neutron energy spectra commonly used for instrument calibrations. A set of typical accelerator neutron energy spectra previously measured at Fermilab are reassessed in light of the new dosimetry system. The implications of this revision are found to be of moderate significance.

  5. Fluence measurement of fast neutron fields with a highly efficient recoil proton telescope using active pixel sensors.

    PubMed

    Taforeau, J; Higueret, S; Husson, D; Kachel, M; Lebreton, L

    2014-10-01

    The spectrometer ATHENA (Accurate Telescope for High-Energy Neutron metrology Applications) is being developed at the LNE-IRSN and aims at characterising energy and fluence of fast neutron fields. The detector is a recoil proton telescope and measures neutron fields in the range of 5-20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50-µm-thick silicon sensors that use CMOS technology for proton tracking and a 3-mm-thick silicon diode to measure the residual proton energy. The use of CMOS sensors and silicon diode, owing to a large detection solid angle, increases the intrinsic efficiency of the detector by a factor of 10 compared with conventional designs. The ability of the spectrometer to determine the neutron energy was demonstrated and reported elsewhere. This paper focuses on the fluence measurement of monoenergetic neutron fields in the range of 5-20 MeV. Experimental investigations, performed at the AMANDE facility, indicate a good estimation of neutron fluence at various energies. In addition, a complete description of uncertainties budget is presented in this paper and a Monte Carlo propagation of uncertainty sources leads to a fluence measurement with a precision ∼3-5 % depending on the neutron energy.

  6. Mechanical Behaviour of Cyanate Ester/epoxy Blends after Reactor Irradiation to High Neutron Fluences

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2008-03-01

    The mechanical strength of conventional epoxy resins drops dramatically after irradiation to a fast neutron fluence of 1×1022 m-2 (E>0.1 MeV). Recent results demonstrated that cyanate ester/epoxy blends were not affected at this fluence level. The aim of this study is to investigate the performance potential of these blends at higher fluence levels without significant degradation of their mechanical properties. Short-beam shear as well as static tensile tests were carried out at 77 K prior to and after irradiation to fast neutron fluences of up to 4×1022 m-2 (E>0.1 MeV) in the TRIGA reactor at ambient temperature (340 K). In addition, load controlled tension-tension fatigue measurements were performed, in order to simulate the pulsed operation conditions of a tokamak. Initial results show that only a small reduction of the mechanical strength under static and dynamic load is observed at a fast neutron fluence of 2×1022 m-2 (E>0.1 MeV). After exposure to 4×1022 m-2 (E>0.1 MeV) the interlaminar shear strength of materials with a cyanate ester content of 40% or more is only reduced by 20% to 30%.

  7. MECHANICAL BEHAVIOUR OF CYANATE ESTER/EPOXY BLENDS AFTER REACTOR IRRADIATION TO HIGH NEUTRON FLUENCES

    SciTech Connect

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2008-03-03

    The mechanical strength of conventional epoxy resins drops dramatically after irradiation to a fast neutron fluence of 1x10{sup 22} m{sup -2} (E>0.1 MeV). Recent results demonstrated that cyanate ester/epoxy blends were not affected at this fluence level. The aim of this study is to investigate the performance potential of these blends at higher fluence levels without significant degradation of their mechanical properties. Short-beam shear as well as static tensile tests were carried out at 77 K prior to and after irradiation to fast neutron fluences of up to 4x10{sup 22} m{sup -2} (E>0.1 MeV) in the TRIGA reactor at ambient temperature (340 K). In addition, load controlled tension-tension fatigue measurements were performed, in order to simulate the pulsed operation conditions of a tokamak. Initial results show that only a small reduction of the mechanical strength under static and dynamic load is observed at a fast neutron fluence of 2x10{sup 22} m{sup -2} (E>0.1 MeV). After exposure to 4x10{sup 22} m{sup -2} (E>0.1 MeV) the interlaminar shear strength of materials with a cyanate ester content of 40% or more is only reduced by 20% to 30%.

  8. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-02-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5×1019 n/cm2, and a maximum gamma dose of 2×103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.

  9. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    SciTech Connect

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-02-04

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125{mu}m in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.

  10. Neutron-capture Cl-36, Ca-41, Ar-36, and Sm-150 in large chondrites: Evidence for high fluences of thermalized neutrons

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Nyquist, L. E.; Bansal, B. M.; Garrison, D. H.; Wiesmann, H.; Herzog, G. F.; Albrecht, A. A.; Vogt, S.; Klein, J.

    1995-01-01

    We have measured significant concentrations of Cl-36, Ca-41, Ar-36 from decay of Cl-36, and Sm-150 produced from the capture of thermalized neutrons in the large Chico L6 chondrite. Activities of Cl-36 and Ca-41, corrected for a high-energy spallogenic component and a terrestrial age of approximately 50 ka, give average neutron-capture production rates of 208 atoms/min/g-Cl and 1525 atoms/min/kg-Ca, which correspond to thermal neutron (n) fluxes of 6.2 n/sq cm/s and 4.3 n/sq cm/s, respectively. If sustained for the approximately 65 Ma single-stage, cosmic ray exposure age of Chico, these values correspond to thermal neutron fluences of approximately 1.3 x 10(exp 16) and 0.8 x 10(exp 16) n/sq cm for Cl-36 and Ca-41, respectively. Stepwise temperature extraction of Ar in Chico impact melt shows Ar-36/Ar-38 ratios as large as approximately 9. The correlation of high Ar-36/Ar-38 with high Cl/Ca phases in neutron-irradiated Chico indicates that the excess Ar-36 above that expected from spallation is due to decay of neutron-produced Cl-36. Excess Ar-36 in Chico requires a thermal neutron fluence of 0.9-1.7 x 10(exp 16) n/sq cm. Decreases in Sm-149/Sm-152 due to neutron-capture by Sm-149 correlate with increases in Sm-150/Sm-152 for three samples of Chico, and one of the Torino H-chondrite. The 0.08% decrease in Sm-149 shown by Chico corresponds to a neutron fluence of 1.23 x 10(exp 16) n/sq cm. This fluence derived from Sm considers capture of epithermal neutrons and effects of chemical composition on the neutron energy distribution. Excess Ar-36 identified in the Arapahoe, Bruderheim, and Torino chondrites and the Shallowater aubrite suggest exposure to neutron fluences of approximately 0.2-0.2 x 10(exp 16) n/sq cm. Depletion of Sm-149 in Torino and the LEW86010 angrite suggest neutron fluences of 0.8 x 10(exp 16) n/sq cm and 0.25 x 10(exp 16) n/sq cm, respectively. Neutron fluences of approximately 10(exp 16) n/sq cm in Chico are almost as large as those previously

  11. Practical considerations for TLD-400/700-based gamma ray dosimetry for BNCT applications in a high thermal neutron fluence.

    PubMed

    Martsolf, S W; Johnson, J E; Vostmyer, C E; Albertson, B D; Binney, S E

    1995-12-01

    Operating experience with thermoluminescent dosimeters used in a boron neutron capture therapy research project is reported. In particular, certain facets of the use of thermoluminescent dosimeters for gamma ray dose measurements in the presence of a high thermal neutron fluence are discussed, including a comparison of TLD-400 and TLD-700 for gamma ray dosimetry, annealing procedures, and the effects of neutrons (56Mn activation) on TLD-400. The TLD-400 were observed to have a thermal neutron sensitivity (due to 56Mn beta decay) of 1.5 x 10(-13) Gy per n cm-2. An algorithm was developed to correct for the 56Mn beta decay thermal neutron-induced effects on TLD-400 by using a two-stage thermoluminescent readout for the thermoluminescent dosimeter chips.

  12. Low-level measuring techniques for neutrons: High accuracy neutron source strength determination and fluence rate measurement at an underground laboratory

    SciTech Connect

    Zimbal, Andreas; Reginatto, Marcel; Schuhmacher, Helmut; Wiegel, Burkhard; Degering, Detlev; Zuber, Kai

    2013-08-08

    We report on measuring techniques for neutrons that have been developed at the Physikalisch-Technische Bundesanstalt (PTB), the German National Metrology Institute. PTB has characterized radioactive sources used in the BOREXINO and XENON100 experiments. For the BOREXINO experiment, a {sup 228}Th gamma radiation source was required which would not emit more than 10 neutrons per second. The determination of the neutron emission rate of this specially designed {sup 228}Th source was challenging due to the low neutron emission rate and because the ratio of neutron to gamma radiation was expected to be extremely low, of the order of 10{sup −6}. For the XENON100 detector, PTB carried out a high accuracy measurement of the neutron emission rate of an AmBe source. PTB has also done measurements in underground laboratories. A two month measurement campaign with a set of {sup 3}He-filled proportional counters was carried out in PTB's former UDO underground laboratory at the Asse salt mine. The aim of the campaign was to determine the intrinsic background of detectors, which is needed for the analysis of data taken in lowintensity neutron fields. At a later time, PTB did a preliminary measurement of the neutron fluence rate at the underground laboratory Felsenkeller operated by VKTA. By taking into account data from UDO, Felsenkeller, and detector calibrations made at the PTB facility, it was possible to estimate the neutron fluence rate at the Felsenkeller underground laboratory.

  13. Annealing studies of silicon microstrip detectors irradiated at high neutron fluences

    NASA Astrophysics Data System (ADS)

    Miñano, M.; Balbuena, J. P.; García, C.; González, S.; Lacasta, C.; Lacuesta, V.; Lozano, M.; Martí i Garcia, S.; Pellegrini, G.; Ullán, M.

    2008-06-01

    Silicon p-type detectors are being investigated for the development of radiation-tolerant detectors for the luminosity upgrade of the CERN large hadron collider (Super-LHC (sLHC)). Microstrip detectors have been fabricated by CNM-IMB with an n-side read-out on p-type high-resistivity float zone substrates. They have been irradiated with neutrons at the TRIGA Mark II nuclear reactor in Ljubljana. The irradiation fluxes match with the expected doses for the inner tracker at the sLHC (up to 10 16 equivalent 1 MeV neutrons cm -2). The macroscopic properties of the irradiated prototypes after irradiation were characterized at the IFIC-Valencia laboratory. The charge collection studies were carried out by means of a radioactive source setup as well as by an infrared laser illumination. The annealing behavior was studied in detail on a microstrip detector irradiated with a flux of 10 15 equivalent 1 MeV neutrons cm -2. Collected charge measurements were made after accelerated annealing times at 80 °C up to an equivalent annealing time of several years at room temperature. This note reports on the recorded results from the annealing of the irradiated p-type microstrip sensor.

  14. Application of low-cost Gallium Arsenide light-emitting-diodes as kerma dosemeter and fluence monitor for high-energy neutrons.

    PubMed

    Mukherjee, B; Simrock, S; Khachan, J; Rybka, D; Romaniuk, R

    2007-01-01

    Displacement damage (DD) caused by fast neutrons in unbiased Gallium Arsenide (GaAs) light emitting diodes (LED) resulted in a reduction of the light output. On the other hand, a similar type of LED irradiated with gamma rays from a (60)Co source up to a dose level in excess of 1.0 kGy (1.0 x 10(5) rad) was found to show no significant drop of the light emission. This phenomenon was used to develop a low cost passive fluence monitor and kinetic energy released per unit mass dosemeter for accelerator-produced neutrons. These LED-dosemeters were used to assess the integrated fluence of photoneutrons, which were contaminated with a strong bremsstrahlung gamma-background generated by the 730 MeV superconducting electron linac driving the free electron laser in Hamburg (FLASH) at Deutsches Elektronen-Synchrotron. The applications of GaAs LED as a routine neutron fluence monitor and DD precursor for the electronic components located in high-energy accelerator environment are highlighted.

  15. Neutron detector simultaneously measures fluence and dose equivalent

    NASA Technical Reports Server (NTRS)

    Dvorak, R. F.; Dyer, N. C.

    1967-01-01

    Neutron detector acts as both an area monitoring instrument and a criticality dosimeter by simultaneously measuring dose equivalent and fluence. The fluence is determined by activation of six foils one inch below the surface of the moderator. Dose equivalent is determined from activation of three interlocked foils at the center of the moderator.

  16. Spectral fluence of neutrons generated by radiotherapeutic linacs.

    PubMed

    Králík, Miloslav; Šolc, Jaroslav; Vondráček, Vladimir; Šmoldasová, Jana; Farkašová, Estera; Tichá, Ivana

    2015-02-01

    Spectral fluences of neutrons generated in the heads of the radiotherapeutic linacs Varian Clinac 2100 C/D and Siemens ARTISTE were measured by means of the Bonner spheres spectrometer whose active detector of thermal neutrons was replaced by an activation detector, i.e. a tablet made of pure manganese. Measurements with different collimator settings reveal an interesting dependence of neutron fluence on the area defined by the collimator jaws. The determined neutron spectral fluences were used to derive ambient dose equivalent rate along the treatment coach. To clarify at which components of the linac neutrons are mainly created, the measurements were complemented with MCNPX calculations based on a realistic model of the Varian Clinac.

  17. Nickel Foil as Transmutation Detector for Neutron Fluence Measurements

    NASA Astrophysics Data System (ADS)

    Klupák, Vít; Viererbl, Ladislav; Lahodová, Zdena; Šoltés, Jaroslav; Tomandl, Ivo; Kudějová, Petra

    2016-02-01

    Activation detectors are very often used for determination of the neutron fluence in reactor dosimetry. However, there are few disadvantages concerning these detectors; it is the demand of the knowledge of the irradiation history and a loss of information due to a radioactive decay in time. Transmutation detectors TMD could be a solution in this case. The transmutation detectors are materials in which stable or long-lived nuclides are produced by nuclear reactions with neutrons. From a measurement of concentration of these nuclides, neutron fluence can be evaluated regardless of the cooling time.

  18. The effect of high fluence neutron irradiation on the properties of a fine-grained isotropic nuclear graphite

    NASA Astrophysics Data System (ADS)

    Ishiyama, S.; Burchell, T. D.; Strizak, J. P.; Eto, M.

    1996-05-01

    A fine-grained isotropic nuclear graphite (IG-110), manufactured from a petroleum coke, was irradiated to a total neutron dose of 3.8 × 10 26 n/m 2 or 25 displacements per atom (dpa) at 600°C in the high flux isotope reactor (HFIR) at Oak Ridge: National Laboratory (ORNL). The effect of irradiation and the influence of post-irradiation thermal annealing on the properties of the graphite were evaluated. Volume change turnaround was clearly observed at 15—20 dpa and the return to original volume ( {ΔV}/{V 0} = 0 ) can be estimated to occur at ˜ 30 dpa. Strength and elastic moduli of the irradiated graphite increased by a factor of 2-3, and maximums in the {δ}/{δ 0}, and {E}/{E o} curves were at ˜20 dpa at 600°C. Recovery of volume, fracture strength and thermal conductivity by thermal annealing were found., and thermal conductivity returned to better than about 30% of the unirradiated value after 1200°C thermal annealing.

  19. Fluence and dose measurements for an accelerator neutron beam

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Byun, S. H.; McNeill, F. E.; Mothersill, C. E.; Seymour, C. B.; Prestwich, W. V.

    2007-10-01

    The 3 MV Van de Graaff accelerator at McMaster University accelerator laboratory is extended to a neutron irradiation facility for low-dose bystander effects research. A long counter and an Anderson-Braun type neutron monitor have been used as monitors for the determination of the total fluence. Activation foils were used to determine the thermal neutron fluence rate (around 106 neutrons s-1). Meanwhile, the interactions of neutrons with the monitors have been simulated using a Monte Carlo N Particle (MCNP) code. Bystander effects, i.e. damage occurring in cells that were not traversed by radiation but were in the same radiation environment, have been well observed following both alpha and gamma irradiation of many cell lines. Since neutron radiation involves mixed field (including gamma and neutron radiations), we need to differentiate the doses for the bystander effects from the two radiations. A tissue equivalent proportional counter (TEPC) filled with propane based tissue equivalent gas simulating a 2 μm diameter tissue sphere has been investigated to estimate the neutron and gamma absorbed doses. A photon dose contamination of the neutron beam is less than 3%. The axial dose distribution follows the inverse square law and lateral and vertical dose distributions are relatively uniform over the irradiation area required by the biological study.

  20. Neutron fluence-to-dose conversion coefficients for embryo and fetus.

    PubMed

    Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus. PMID:15353732

  1. Neutron fluence depth profiles in water phantom on epithermal beam of LVR-15 research reactor.

    PubMed

    Viererbl, L; Klupak, V; Lahodova, Z; Marek, M; Burian, J

    2010-01-01

    Horizontal channel with epithermal neutron beam at the LVR-15 research reactor is used mainly for boron neutron capture therapy. Neutron fluence depth profiles in a water phantom characterise beam properties. The neutron fluence (approximated by reaction rates) depth profiles were measured with six different types of activation detectors. The profiles were determined for thermal, epithermal and fast neutrons.

  2. Experimental results of neutron fluence outside an iron shield in the forward direction

    SciTech Connect

    Torres, M.M.C.; Elwyn, A.J.; Fein, D.; James, E.; Johns, K.; Davis, W.; Ciampa, D.P.; Mierkiewicz, E.

    1996-09-01

    Analyses of both lateral shielding measurements and Monte Carlo calculations for beam stop geometry for incident hadrons at energies between 10 GeV and 10 TeV suggests that the dose equivalent can be represented by the expression H = H{sub 0}(E)e{sup -r/{lambda}}/r{sup 2} where H, is the source term, r is the radial distance to the point of interest in the shield, and {lambda} is the effective interaction length, or absorption mean free path. However, unlike the lateral shielding case, there is no similarly simple analytical expression that can be used to describe the on-axis longitudinal cascade development. In this study the results from the measurement in the forward direction of neutron fluence spectra (and the derived quantity dose equivalent) for 25 to 150 GeV pions incident on an iron beam stop as a function of thickness of iron are presented. The observed dependence of both fluence and dose equivalent on shield thickness and hadron energy was then quantified in terms of an expression in which a build up factor as well as an attenuation term was included. On the basis of this analysis the conversion factor from fluence to dose equivalent was also determined for these forward going neutrons. This work represents the first systematic study at an high energy accelerator of the depth dependence of neutron fluence in longitudinal shielding.

  3. Neutron fluences and dose equivalents measured with passive detectors on LDEF

    NASA Technical Reports Server (NTRS)

    Frank, A. L.; Benton, E. V.; Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    Neutron fluences were measured on LDEF in the low energy (< 1 MeV) and high energy (> 1 MeV) ranges. The low energy detectors used the 6Li(n,alpha)T reaction with Gd foil absorbers to separate thermal (< 0.2 eV) and resonance (0.2 eV-1 MeV) neutron response. High energy detectors contained sets of fission foils (181Ta, 209Bi, 232Th, 238U) with different neutron energy thresholds. The measured neutron fluences together with predicted spectral shapes were used to estimate neutron dose equivalents. The detectors were located in the A0015 and P0006 experiments at the west and Earth sides of LDEF under shielding varying from 1 to 19 g/cm2. Dose equivalent rates varied from 0.8 to 3.3 microSv/d for the low energy neutrons and from 160 to 390 microSv/d for the high energy neutrons. This compares with TLD measured absorbed dose rates in the range of 1000-3000 microGy/d near these locations and demonstrates that high energy neutrons contribute a significant fraction of the total dose equivalent in LEO. Comparisons between measurements and calculations were made for high energy neutrons based on fission fragment tracks generated by fission foils at different shielding depths. A simple 1-D slab geometry was used in the calculations. Agreement between measurements and calculations depended on both shielding depth and threshold energy of the fission foils. Differences increased as both shielding and threshold energy increased. The modeled proton/neutron spectra appeared deficient at high energies. A 3-D model of the experiments is needed to help resolve the differences.

  4. Neutron fluence calculations for the SDC detector and the results of codes comparison

    SciTech Connect

    Job, P.K.; Handler, T.; Gabriel, T.A.; Slater, C.O.; Waters, L.S.; Palounek, A.P.T.; Zeitnitz, C.

    1994-04-01

    CALOR89, A Monte Carlo particle physics code package in conjunction with ISAJET, a high energy particle collision code, has been successfully used to evaluate the radiation environment of a high energy physics collider detector. We found that for a collider luminosity of 10{sup 33} cm{sup {minus}2sec{minus}1}, the neutron fluences can be significant at certain detector locations.

  5. Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Casey, D. T.; Volegov, P. L.; Merrill, F. E.; Munro, D. H.; Grim, G. P.; Landen, O. L.; Spears, B. K.; Fittinghoff, D. N.; Field, J. E.; Smalyuk, V. A.

    2016-11-01

    The Neutron Imaging System at the National Ignition Facility is used to observe the primary ˜14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

  6. Monte Carlo simulation of the neutron spectral fluence and dose equivalent for use in shielding a proton therapy vault

    PubMed Central

    Zheng, Yuanshui; Newhauser, Wayne; Klein, Eric; Low, Daniel

    2014-01-01

    Neutron production is of principal concern when designing proton therapy vault shielding. Conventionally, neutron calculations are based on analytical methods, which do not accurately consider beam shaping components and nozzle shielding. The goal of this study was to calculate, using Monte Carlo modeling, the neutron spectral fluence and neutron dose equivalent generated by a realistic proton therapy nozzle and evaluate how these data could be used in shielding calculations. We modeled a contemporary passive scattering proton therapy nozzle in detail with the MCNPX simulation code. The neutron spectral fluence and dose equivalent at various locations in the treatment room were calculated and compared to those obtained from a thick iron target bombarded by parallel proton beams, the simplified geometry on which analytical methods are based. The neutron spectral fluence distributions were similar for both methods, with deeply penetrating high-energy neutrons (E > 10 MeV) being most prevalent along the beam central axis, and low-energy neutrons predominating the neutron spectral fluence in the lateral region. However, unlike the inverse square falloff used in conventional analytical methods, this study shows that the neutron dose equivalent per therapeutic dose in the treatment room decreased with distance approximately following a power law, with an exponent of about −1.63 in the lateral region and −1.73 in the downstream region. Based on the simulated data according to the detailed nozzle modeling, we developed an empirical equation to estimate the neutron dose equivalent at any location and distance in the treatment vault, e.g. for cases in which detailed Monte Carlo modeling is not feasible. We applied the simulated neutron spectral fluence and dose equivalent to a shielding calculation as an example. PMID:19887713

  7. Monte Carlo simulation of the neutron spectral fluence and dose equivalent for use in shielding a proton therapy vault.

    PubMed

    Zheng, Yuanshui; Newhauser, Wayne; Klein, Eric; Low, Daniel

    2009-11-21

    Neutron production is of principal concern when designing proton therapy vault shielding. Conventionally, neutron calculations are based on analytical methods, which do not accurately consider beam shaping components and nozzle shielding. The goal of this study was to calculate, using Monte Carlo modeling, the neutron spectral fluence and neutron dose equivalent generated by a realistic proton therapy nozzle and evaluate how these data could be used in shielding calculations. We modeled a contemporary passive scattering proton therapy nozzle in detail with the MCNPX simulation code. The neutron spectral fluence and dose equivalent at various locations in the treatment room were calculated and compared to those obtained from a thick iron target bombarded by parallel proton beams, the simplified geometry on which analytical methods are based. The neutron spectral fluence distributions were similar for both methods, with deeply penetrating high-energy neutrons (E > 10 MeV) being most prevalent along the beam central axis, and low-energy neutrons predominating the neutron spectral fluence in the lateral region. However, unlike the inverse square falloff used in conventional analytical methods, this study shows that the neutron dose equivalent per therapeutic dose in the treatment room decreased with distance approximately following a power law, with an exponent of about -1.63 in the lateral region and -1.73 in the downstream region. Based on the simulated data according to the detailed nozzle modeling, we developed an empirical equation to estimate the neutron dose equivalent at any location and distance in the treatment vault, e.g. for cases in which detailed Monte Carlo modeling is not feasible. We applied the simulated neutron spectral fluence and dose equivalent to a shielding calculation as an example.

  8. A new active method for the measurement of slow-neutron fluence in modern radiotherapy treatment rooms

    NASA Astrophysics Data System (ADS)

    Gómez, F.; Iglesias, A.; Sánchez Doblado, F.

    2010-02-01

    This work focuses on neutron monitoring at clinical linac facilities during high-energy modality radiotherapy treatments. Active in-room measurement of neutron fluence is a complex problem due to the pulsed nature of the fluence and the presence of high photon background, and only passive methods have been considered reliable until now. In this paper we present a new active method to perform real-time measurement of neutron production around a medical linac. The device readout is being investigated as an estimate of patient neutron dose exposure on each radiotherapy session. The new instrument was developed based on neutron interaction effects in microelectronic memory devices, in particular using neutron-sensitive SRAM devices. This paper is devoted to the description of the instrument and measurement techniques, presenting the results obtained together with their comparison and discussion. Measurements were performed in several standard clinical linac facilities, showing high reliability, being insensitive to the photon fluence and EM pulse present inside the radiotherapy room, and having detector readout statistical relative uncertainties of about 2% on measurement of neutron fluence produced by 1000 monitor units irradiation runs.

  9. La-138/139 isotopic data and neutron fluences for Oklo RZ10 reactor

    NASA Astrophysics Data System (ADS)

    Gould, C. R.; Sharapov, E. I.

    2012-08-01

    Background: Recent years have seen a renewed interest in the Oklo phenomenon, particularly in relation to the study of time variation of the fine structure constant α. The neutron fluence is one of the crucial parameters for Oklo reactors. Several approaches to its determination were elaborated in the past.Purpose: We consider whether it is possible to use the present isotopic 138La-139La data for RZ10 as an additional indicator of neutron fluences in the active cores of the reactors.Results: We calculate the dependence of the Oklo 138La abundance on neutron fluence and elemental lanthanum concentration.Conclusion: The neutron fluence in RZ10 can be deduced from lanthanum isotopic data, but requires reliable data on the primordial elemental abundance. Conversely, if the fluence is known, the isotope ratio provides information on the primordial lanthanum abundance that is not otherwise easily determined.

  10. Effect of neutron energy and fluence on deuterium retention behaviour in neutron irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroe; Yuyama, Kenta; Li, Xiaochun; Hatano, Yuji; Toyama, Takeshi; Ohta, Masayuki; Ochiai, Kentaro; Yoshida, Naoaki; Chikada, Takumi; Oya, Yasuhisa

    2016-02-01

    Deuterium (D) retention behaviours for 14 MeV neutron irradiated tungsten (W) and fission neutron irradiated W were evaluated by thermal desorption spectroscopy (TDS) to elucidate the correlation between D retention and defect formation by different energy distributions of neutrons in W at the initial stage of fusion reactor operation. These results were compared with that for Fe2+ irradiated W with various damage concentrations. Although dense vacancies and voids within the shallow region near the surface were introduced by Fe2+ irradiation, single vacancies with low concentration were distributed throughout the sample for 14 MeV neutron irradiated W. Only the dislocation loops were introduced by fission neutron irradiation at low neutron fluence. The desorption peak of D for fission neutron irradiated W was concentrated at low temperature region less than 550 K, but that for 14 MeV neutron irradiated W was extended toward the higher temperature side due to D trapping by vacancies. It can be said that the neutron energy distribution could have a large impact on irradiation defect formation and the D retention behaviour.

  11. A Technique for Determining Neutron Beam Fluence to 0.01% Uncertainty

    SciTech Connect

    Yue, A. T.; Dewey, M. S.; Gilliam, D. M.; Nico, J. S.; Fomin, N.; Greene, G. L.; Snow, W. M.; Wietfeldt, F. E.

    2014-01-01

    The achievable uncertainty in neutron lifetime measurements using the beam technique has been limited by the uncertainty in the determination of the neutron density in the decay volume. In the Sussex-ILL-NIST series of beam lifetime experiments, the density was determined with a neutron fluence mon itor that detected the charged particle products from neutron absorption in a thin layer of 6Li or lOB. In each of the experiments, the absolute detection efficiency of the neutron monitor was determined from the measured density of the neutron absorber, the thermal neutron cross section for the absorbing ma terial, and the solid angle of the charged particle detectors. The efficiency of the neutron monitor used in the most recent beam lifetime experiment has since been measured directly by operating it on a monochromatic neutron beam in which the total neutron rate is determined with a totally absorbing neutron detector. The absolute nature of this technique does not rely on any knowl edge of neutron absorption cross sections or a measurement of the density of the neutron absorbing deposit. This technique has been used to measure the neutron monitor efficiency to 0.06% uncertainty. VVe show that a new monitor and absolute neutron detector employing the same technique would be capable of achieving determining neutron fluence to an uncertainty of 0.01%.

  12. Neutron Fluence Monitoring by Foil Activation at the NBSR

    SciTech Connect

    Richard M. Lindstrom

    2000-11-12

    In a reactor facility such as the National Institute of Standards and Technology Center for Neutron Research, it is occasionally necessary to measure the intensity and characteristics of neutron fields, inside and outside the reactor vessel. Design of thermal- and cold-neutron beam guides and filters, neutron activation analysis, and health physics calibrations are the most common needs. To meet these requirements, routine procedures have been developed for efficient and transparent measurements of slow neutrons.

  13. Reference Materials for Reactor Neutron Fluence Rate and Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Ingelbrecht, C.

    2003-06-01

    Certified reference materials are distributed by the European Commission through the BCR® programme (over 500 CRMs) including a series of activation and fission monitor materials originally proposed by the Euratom Working Group on Reactor Dosimetry. The current range (18 CRMs) includes materials to cover the complete energy spectrum, and suitable for different irradiation times. Fission monitors are 238UO2 or 237NpO2 in the form of microspheres. Activation monitors are high purity metals (Ni, Cu, Al, Fe, Nb, Rh, or Ti), certified for interfering trace impurities, or dilute aluminium-based alloys. Reference materials newly certified are IRMM-530R A1-0.1%Au, replacing the exhausted IRMM-530 material, used as comparator for k0- standardisation, and three new Al-Co alloys (0.01, 0.1 and 1.0%Co). Others in the process of certification are A1-0.1%Ag and A1-2%Sc for thermal and epithermal fluence rate measurements and two uranium-doped glass materials intended for dosimetry by the fission-track technique. Various alloy compositions have been prepared for use as melt-wire temperature monitors with melting points ranging from 198 to 327ºC.

  14. Heat-to-heat variability of irradiation creep and swelling of HT9 irradiated to high neutron fluence at 400-600{degrees}C

    SciTech Connect

    Toloczko, M.B.; Garner, F.A.

    1996-10-01

    Irradiation creep data on ferritic/martensitic steels are difficult and expensive to obtain, and are not available for fusion-relevant neutron spectra and displacement rates. Therefore, an extensive creep data rescue and analysis effort is in progress to characterize irradiation creep of ferritic/martensitic alloys in other reactors and to develop a methodology for applying it to fusion applications. In the current study, four tube sets constructed from three nominally similar heats of HT9 subjected to one of two heat treatments were constructed as helium-pressurized creep tubes and irradiated in FFTF-MOTA at four temperatures between 400 and 600{degrees}C. Each of the four heats exhibited a different stress-free swelling behavior at 400{degrees}C, with the creep rate following the swelling according to the familiar B{sub o} + DS creep law. No stress-free swelling was observed at the other three irradiation temperatures. Using a stress exponent of n = 1.0 as the defining criterion, {open_quotes}classic{close_quotes} irradiation creep was found at all temperatures, but, only over limited stress ranges that decreased with increasing temperature. The creep coefficient B{sub o} is a little lower ({approx}50%) than that observed for austenitic steel, but the swelling-creep coupling coefficient D is comparable to that of austenitic steels. Primary transient creep behavior was also observed at all temperatures except 400{degrees}C, and thermal creep behavior was found to dominate the deformation at high stress levels at 550 and 600{degrees}C.

  15. DS02 fluence spectra for neutrons and gamma rays at Hiroshima and Nagasaki with fluence-to-kerma coefficients and transmission factors for sample measurements.

    PubMed

    Egbert, Stephen D; Kerr, George D; Cullings, Harry M

    2007-11-01

    Fluence spectra at several ground distances in Hiroshima and Nagasaki are provided along with associated fluence-to-kerma coefficients from the Dosimetry System 2002 (DS02). Also included are transmission factors for calculating expected responses of in situ sample measurements of neutron activation products such as (32)P,(36)Cl,(39)Ar,(41)Ca, (60)Co,(63)Ni,(152)Eu, and (154)Eu. The free-in-air (FIA) fluences calculated in 2002 are available for 240 angles, 69 energy groups, 101 ground distances, 5 heights, 4 radiation source components, 2 cities. The DS02 code uses these fluences partitioned to a prompt and delayed portion, collapsed to 58 energy groups and restricted to 97 ground distances. This is because the fluence spectra were required to be in the same format that was used in the older Dosimetry System 1986 (DS86) computer code, of which the DS02 computer code is a modification. The 2002 calculation fluences and the collapsed DS02 code fluences are presented and briefly discussed. A report on DS02, which is available on the website at the Radiation Effects Research Foundation, provides tables and figures of the A-bomb neutron and gamma-ray output used as the sources in the 2002 radiation transport calculations. While figures illustrating the fluence spectra at several ground ranges are presented in the DS02 Report, it does not include any tables of the calculated fluence spectra in the DS02 report. This paper provides, at several standard distances from the hypocenter, the numerical information which is required to translate the FIA neutron fluences given in DS02 to a neutron activation measurement or neutron and gamma-ray soft-tissue dose. PMID:17643260

  16. Fission foil measurements of neutron and proton fluences in the A0015 experiment

    NASA Technical Reports Server (NTRS)

    Frank, A. L.; Benton, E. V.; Armstrong, T. W.; Colborn, B. L.

    1995-01-01

    Results are given from sets of fission foil detectors (FFD's) (Ta-181, Bi-209, Th-232, U-238) which were included in the A0015 experiment to measure combined proton/neutron fluences. Use has been made of recent FFD high energy proton calibrations for improved accuracy of response. Comparisons of track density measurements have been made with the predictions of environmental modeling based on simple 1-D (slab) geometry. At 1 g/cm(exp 2) (trailing edge) the calculations were approximately 25 percent lower than measurements; at 13 g/cm(exp 2) (Earthside) calculations were more than a factor of 2 lower. A future 3-D modeling of the experiment is needed for a more meaningful comparison. Approximate mission proton doses and neutron dose equivalents were found. At Earthside (13 g/cm(exp 2) the dose was 171 rad and dose equivalent was 82 rem. At the trailing edge (1 g/cm(exp 2) dose was 315 rad and dose equivalent was 33 rem. The proton doses are less than expected from TLD doses by 16 percent and 37 percent, respectively. These differences can be explained by uncertainties in the proton and neutron spectra and in the method used to separate proton and neutron contributions to the measurements.

  17. Alanine blends for ESR measurements of thermal neutron fluence in a mixed radiation field.

    PubMed

    Marrale, M; Brai, M; Gennaro, G; Triolo, A; Bartolotta, A; D'Oca, M C; Rosi, G

    2007-01-01

    In this paper, the results of a study on the electron spin resonance (ESR) dosimetry to measure thermal neutron fluence in a mixed radiation field (neutron and photons) are presented. The ESR responses of alanine dosemeters with different additives are compared. In particular, the (10)B-acid boric and the Gd-oxide were chosen to enhance the sensitivity of alanine dosemeters to thermal neutrons. Irradiations were carried out inside the thermal column of the TAPIRO reactor of the ENEA center, Casaccia Rome. The main results are a greater neutron sensitivity and a smaller lowest detectable fluence for the dosemeters with gadolinium than for dosemeters of alanine with (10)B, which is well known to be much more sensitive to thermal neutrons than simple alanine.

  18. A new monitor for routine thermal and epithermal neutron fluence rate monitoring in k0 INAA.

    PubMed

    Koster-Ammerlaan, M J J; Bacchi, M A; Bode, P; De Nadai Fernandes, E A

    2008-12-01

    The Zr-Au set for monitoring the thermal and epithermal neutron fluence rate and the epithermal spectrum parameter alpha is not always practicable for routine application of INAA in well-thermalized facilities. An alternative set consisting of Cr, Au and Mo provides values for the thermal neutron fluence rate, f and alpha that are not significantly different from those found via the Zr-Au method and the Cd-covered Zr-method. The IRMM standard SMELS-II was analyzed using the (Au-Cr-Mo) monitor and a good agreement was obtained.

  19. A Multigroup Method for the Calculation of Neutron Fluence with a Source Term

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Clowdsley, M. S.

    1998-01-01

    Current research on the Grant involves the development of a multigroup method for the calculation of low energy evaporation neutron fluences associated with the Boltzmann equation. This research will enable one to predict radiation exposure under a variety of circumstances. Knowledge of radiation exposure in a free-space environment is a necessity for space travel, high altitude space planes and satellite design. This is because certain radiation environments can cause damage to biological and electronic systems involving both short term and long term effects. By having apriori knowledge of the environment one can use prediction techniques to estimate radiation damage to such systems. Appropriate shielding can be designed to protect both humans and electronic systems that are exposed to a known radiation environment. This is the goal of the current research efforts involving the multi-group method and the Green's function approach.

  20. International key comparison of neutron fluence measurements in monoenergetic neutron fields: CCRI(III)-K11

    NASA Astrophysics Data System (ADS)

    Gressier, V.; Bonaldi, A. C.; Dewey, M. S.; Gilliam, D. M.; Harano, H.; Masuda, A.; Matsumoto, T.; Moiseev, N.; Nico, J. S.; Nolte, R.; Oberstedt, S.; Roberts, N. J.; Röttger, S.; Thomas, D. J.

    2014-01-01

    To ensure the validity of their national standards, National Metrology Institutes (NMIs) participate regularly in international comparisons. In the area of neutron metrology, Section III of the Consultative Committee for Ionizing Radiation is in charge of the organization of these comparisons. From September 2011 to October 2012, the eleventh key comparison, named CCRI(III)-K11, took place at the AMANDE facility of the LNE-IRSN, in France. Participants from nine NMIs came with their own primary reference instruments, or instruments traceable to primary standards, with the aim of determining the neutron fluence, at 1 m distance from the target in vacuum, per monitor count at four monoenergetic neutron fields: 27 keV, 565 keV, 2.5 MeV and 17 MeV. The key comparison reference values (KCRV) were evaluated as the weighted mean values of the results provided by seven participants. The uncertainties of each KCRV are between 0.9% and 1.7%. The degree of equivalence (DoE), defined as the deviation of the result reported by the laboratories for each energy from the corresponding KCRV, and the associated expanded uncertainty are also reported and discussed. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  1. A Method to Estimate the Fast-Neutron Fluence for the Hiroshima Atomic Bomb

    NASA Astrophysics Data System (ADS)

    Shibata, Tokushi; Imamura, Mineo; Shibata, Seiichi; Uwamino, Yoshitomo; Ohkubo, Tohru; Satoh, Shinngo; Nogawa, Norio; Hasai, Hiromi; Shizuma, Kiyoshi; Iwatani, Kazuo; Hoshi, Masaharu; Oka, Takamitsu

    1994-10-01

    A new method to estimate the fast-neutron fluence of the Hiroshima atomic bomb is proposed. 63Ni produced by the 63Cu(n, p)63Ni reaction provides a unique measure by which to estimate the fast-neutron fluence of the Hiroshima/Nagasaki atomic bombs, because the half-life of 63Ni is 100 years and 70% of the 63Ni produced in a copper piece presently exists after 50 years. Using the neutron spectrum given in DS86 and the estimated cross section, we found that a piece of copper of about 10 g which was exposed at a point around 100 m from the hypocenter gives a measurable amount of 63Ni using a low-background liquid scintillation counter. For the measurement of 63Ni, accelerator mass spectrometry also seems to be applicable.

  2. Monte-Carlo calculations of particle fluences and neutron effective dose rates in the atmosphere.

    PubMed

    Matthiä, Daniel; Sihver, Lembit; Meier, Matthias

    2008-01-01

    Monitoring of radiation exposure of aircrew is a legal requirement for many airlines in the EU and a challenging task in dosimetry. Monte-Carlo simulations of cosmic particles in the atmosphere can contribute to the understanding of the corresponding radiation field. Calculations of secondary neutron fluences in the atmosphere produced by galactic cosmic rays together with the resulting neutron-effective dose rates are shown in this paper and compared with results from the AIR project. The PLANETOCOSMICS package based on GEANT4 and two models for the local interstellar spectra of galactic cosmic rays have been used for the calculations. Furthermore, secondary muon fluences have been computed and are compared with CAPRICE measurements.

  3. Effects of low fluence neutron bombardment on material properties of aluminum 2024 t-3 and aluminum wire

    NASA Astrophysics Data System (ADS)

    Reeves, Jesse Lee

    The purpose of this work was to explore the impact of neutron irradiation (1018 n/m2 to 1021 n/m 2) on the aluminum alloy 2024 T-3, and several corrosion resistant treatments commonly used. The irradiation was conducted in the Utah Nuclear Engineering Programs Reactor facility using the Fast Neutron Irradiation Facility (FNIF) with a 1 MeV equivalent beam and the Center Irradiator (CI) with average neutron energy of 0.58 MeV. Historically, materials tests have focused on mechanical failures occurring at very high fluence. These same tests have generally been conducted for pure materials: the limited research existing for alloyed materials focuses on power plant materials such as zircaloy and steel. This body of information is mainly used to avoid catastrophic performance failures. Small research and test reactors operating at low power will subject core materials to fluence from 1014 n/m2 to 1024 n/m2. Aluminum alloys are very common in these systems. Materials used in research reactors, such as aluminum, have been deemed adequate due to high radiation tolerance and low mechanical failure rates. While aluminum and its alloys are a well-defined set of materials in nonradiation environments, there are very little published data for them for low fluence neutron radiation. This work measured Al 2024's (T-3) thermal conductivity, electrical resistivity, oxide layer thickness, oxide/metal interface and corrosion resistance (using passive current density) for Alodine, Anodize type II, Anodize type III and native oxide. These measurements were taken before and after irradiation and results were examined. Over the course of 30 to 50 years, property changes will likely impact thermal diffusion, corrosion properties and electrical properties. Defining these changes may give future engineers the tools needed to safely justify life extensions and build inspection methods to identify pre-failure conditions.

  4. Characterization of 235U Targets for the Development of a Secondary Neutron Fluence Standard

    NASA Astrophysics Data System (ADS)

    Heyse, J.; Anastasiou, M.; Eykens, R.; Moens, A.; Plompen, A. J. M.; Schillebeeckx, P.; Sibbens, G.; Vanleeuw, D.; Wynants, R.

    2014-05-01

    The MetroFission project, a Joint Research Project within the European Metrology Research Program (EMRP), aims at addressing a number of metrological problems involved in the design of proposed Generation IV nuclear reactors. As part of this project a secondary neutron fluence standard is being developed and tested at the neutron time-of-flight facility GELINA of the JRC Institute for Reference Materials and Measurements (IRMM). This secondary standard will help to reach the neutron cross section measurement uncertainties required for the design of new generation power plants and fuel cycles. Such a neutron fluence device contains targets for which the neutron induced cross section is considered to be a standard. A careful preparation and characterization of these samples is an essential part of its development. In this framework a set of 235U targets has been produced by vacuum deposition of UF4 on aluminum backings by the target preparation laboratory at IRMM. These targets have been characterized for both their total mass and mass distribution over the sample area.

  5. Effects of high thermal and high fast fluences on the mechanical properties of type 6061 aluminum in the HFBR

    SciTech Connect

    Weeks, J.R.; Czajkowski, C.J.; Tichler, P.R.

    1988-01-01

    The High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) is an epithermal, externally moderated (by D/sub 2/O) facility designed to produce neutron beams for research. Type 6061 T-6 aluminum was used for the beam tubes, pressure vessel, fuel cladding, and most other components in the high flux area. The HFBR has operated since 1965. The epithermal, external moderation of the HFBR means that materials irradiated in different areas of the facility receive widely different flux spectra. Thus, specimens from a control rod drive follower tube (CRDF) have received 1.5 /times/ 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV) and 3.2 /times/ 10/sup 23/ n/cm/sup 2/ thermal fluence, while those from a vertical thimble flow shroud received 1.9 /times/ 10/sup 23/ n/cm/sup 2/ (E > 0.1 MeV) and 1.0 /times/ 10/sup 23/ n/cm/sup 2/ thermal. These numbers correspond to fast to thermal fluence ratios ranging from 0.05 to 1.9. Irradiations are occurring at approximately 333/degree/K. The data indicate that the increase in tensile strength and decrease in ductility result primarily from the thermal fluence, i.e., the transmutation of aluminum to silicon. These effects appear to be saturating at fluences above approximately 1.8 /times/ 10/sup 23/ n/cm/sup 2/ thermal at values of 90,000 psi (6700 Kg/mm/sup 2/) and 9%, respectively. The specimens receiving the highest fluence ratios appear to have less increase in tensile strength and less decrease in ductility than specimens with a lower fast to thermal fluence ratio and the same thermal fluence, suggesting a possible beneficial effect of the high energy neutrons in preventing formation of silicon crystallites. 7 refs., 11 figs., 3 tabs.

  6. Lifetime Neutron Fluence Analysis of the Ringhals Unit 1 Boiling Water Reactor

    NASA Astrophysics Data System (ADS)

    Kulesza, Joel A.; Roudén, Jenny; Green, Eva-Lena

    2016-02-01

    This paper describes a neutron fluence assessment considering the entire commercial operating history (35 cycles or ˜ 25 effective full power years) of the Ringhals Unit 1 reactor pressure vessel beltline region. In this assessment, neutron (E >1.0 MeV) fluence and iron atom displacement distributions were calculated on the moderator tank and reactor pressure vessel structures. To validate those calculations, five in-vessel surveillance chain dosimetry sets were evaluated as well as material samples taken from the upper core grid and wide range neutron monitor tubes to act as a form of retrospective dosimetry. During the analysis, it was recognized that delays in characterizing the retrospective dosimetry samples reduced the amount of reactions available to be counted and complicated the material composition determination. However, the comparisons between the surveillance chain dosimetry measurements (M) and calculated (C) results show similar and consistent results with the linear average M/C ratio of 1.13 which is in good agreement with the resultant least squares best estimate (BE)/C ratios of 1.10 for both neutron (E >1.0 MeV) flux and iron atom displacement rate.

  7. Use of glazes on porcelain from near ground zero to measure Hiroshima neutron fluence.

    PubMed

    MacDonald, J; Fleischer, R L; Fujita, S; Hoshi, M

    2003-10-01

    Several porcelain samples from almost directly beneath the atomic explosion at Hiroshima on 6 August 1945, have been scanned for induced fission tracks, produced mostly by the thermal neutrons from the bomb due to interactions with trace uranium in their glass coatings. The ability to use porcelain opens a new and abundant material for retrospective dosimetry. Four different samples had thermal neutron fluences in 1945 of 1.0, 3.8, 4.1, and 8.9 x 10(12) cm(-2). The different values are not caused by track fading, but are likely to result from differing shielding at different nearby positions. Assuming that the three highest fluences, which have overlapping uncertainties, are at locations of minimum shielding, the statistically weighted thermal fluence in the air at ground level and ground zero was 4.8 x 10(12) cm(-2) with a statistical uncertainty of 15%. This value lies between the calculated value of 6.5 x 10(12) given in DS86 and the 3.7 x 10(12) inferred from induced radionuclides by Hoshi et al. (1998).

  8. The importance of the direction distribution of neutron fluence, and methods of determination

    NASA Astrophysics Data System (ADS)

    Bartlett, D. T.; Drake, P.; d'Errico, F.; Luszik-Bhadra, M.; Matzke, M.; Tanner, R. J.

    2002-01-01

    For the estimation of non-isotropic quantities such as personal dose equivalent and effective dose, and for the interpretation of the readings of personal dosemeters, it is necessary to determine both the energy and direction distributions of the neutron fluence. In fact, for workplace fields, the fluence and dose-equivalent responses of dosemeters and the relationships of operational and protection quantities, are frequently more dependent on the direction than on the energy distribution. In general, the direction distribution will not be independent of the energy distribution, and simultaneous determination of both may be required, which becomes a complex problem. The extent to which detailed information can be obtained depends on the spectrometric properties and on the angle dependence of the response of the detectors used. Methods for the determination of direction distributions of workplace fields are described.

  9. Hiroshima neutron fluence on a glass button from near ground zero.

    PubMed

    Fleischer, R L; Fujita, S; Hoshi, M

    2001-12-01

    A decorative glass button that was uncovered at a location that is 190 +/- 15 m from directly beneath the atomic explosion at Hiroshima on 6 August 1945 has been scanned for induced fission tracks produced mostly by the thermal neutrons from the bomb due to interactions with the trace uranium that is normally present in silicate glasses. In surveying 4.14 cm2 at 500x magnification, 28 tracks were seen. From a calibration irradiation in a nuclear reactor we infer that the neutron fluence in 1945 was 5.7(+/-1.1) x 10(11) cm(-2); and, allowing for shielding by the structure in which the button was probably located, the free-air (i.e., outside) value is estimated as 1.5(+/-0.5) x 10(12) cm(-2). A limit has been placed on possible fading of the radiation-damage tracks that could increase the fluence by at most a factor of 1.27. The values bracket the calculated value of 9 x 10(11) given in DS86 but are higher than the 3.6 x 10(11) inferred from induced radionuclides for the distance given. The difference is, however, within the observed variability of the two types of results.

  10. Thermal neutron fluence measurement in a research reactor using thermoluminescence dosimeter TLD-600.

    PubMed

    Torkzadeh, F; Manouchehri, F

    2006-03-01

    A thermal neutron fluence in the range between 10(11) and 10(13) n cm(-2) in the reactor core of the Tehran research reactor has been measured using TLD-600 thermoluminescence dosimeters. After a thermal treatment of 1 h at 400 degrees C followed by 20 h cooling down to room temperature of pre-exposed dosimeters in the reactor, the accumulated TL light was measured after periods of storage of 24, 48 and 72 h. The influence of the irradiation-induced damage effect on the response of TLDs and their subsequent readings has been minimized in this manner. The induced TL light due to self-activity in the TLD-600 dosimeters, which is dependent on the neutron fluence, caused a conveniently measurable TL glow curve. The induced TL in the dosimeter due to the Q-value for the beta-decay of tritium Ebeta-max = 18.6 keV has been reproduced separately by a beta source to check the proportions of radionuclides in the chip. A short theoretical treatment is also presented.

  11. Effects of neutron fluence on the operating characteristics of diode lasers used in atomic frequency standards

    NASA Astrophysics Data System (ADS)

    Frueholz, R. P.; Camparo, J. C.; Delcamp, S. B.; Barnes, C. E.

    1990-08-01

    One of the next major advances in rubidium and cesium atomic clock technology will center on the use of diode lasers for optical pumping. The atomic clocks used on board satellites have the potential to interact with various forms of radiation that are not present in the laboratory environment, and the effects of this radiation on the laser's operating characteristics relevant to clock applications are not well known. The effects were studied of neutron fluence on the operating characteristics of Mitsubishi Transverse Junction Stripe (TJS) AlGaAs diode lasers. Different models of the TJS diode laser produce optical radiation in both the 780 and 850 nm range, appropriate for optical pumping in rubidium and cesium atomic clocks, respectively. In this phase, a set of TJS diode lasers was exposed to a neutron fluence of 2 x 1012 n/sq cm, and four laser characteristics were examined after each exposure. The laser's light output versus injection current and single mode linewidth versus output power both influence the efficiency of optical pumping and hence the atomic clock's signal to noise ratio. The laser's single mode wavelength versus injection current (laser tuning) was also measured. Since the diode laser must remain tuned to the appropriate atomic transition, any degradation in the ability to tune the laser will impact atomic clock reliability. Finally, the diode laser's gain curve was studied at several injection currents below threshold.

  12. Final report on LDRD project 105967 : exploring the increase in GaAs photodiode responsivity with increased neutron fluence.

    SciTech Connect

    Blansett, Ethan L.; Geib, Kent Martin; Cich, Michael Joseph; Wrobel, Theodore Frank; Peake, Gregory Merwin; Fleming, Robert M.; Serkland, Darwin Keith; Wrobel, Diana L.

    2008-01-01

    A previous LDRD studying radiation hardened optoelectronic components for space-based applications led to the result that increased neutron irradiation from a fast-burst reactor caused increased responsivity in GaAs photodiodes up to a total fluence of 4.4 x 10{sup 13} neutrons/cm{sup 2} (1 MeV Eq., Si). The silicon photodiodes experienced significant degradation. Scientific literature shows that neutrons can both cause defects as well as potentially remove defects in an annealing-like process in GaAs. Though there has been some modeling that suggests how fabrication and radiation-induced defects can migrate to surfaces and interfaces in GaAs and lead to an ordering effect, it is important to consider how these processes affect the performance of devices, such as the basic GaAs p-i-n photodiode. In this LDRD, we manufactured GaAs photodiodes at the MESA facility, irradiated them with electrons and neutrons at the White Sands Missile Range Linac and Fast Burst Reactor, and performed measurements to show the effect of irradiation on dark current, responsivity and high-speed bandwidth.

  13. Advanced Models of LWR Pressure Vessel Embrittlement for Low Flux-HighFluence Conditions

    SciTech Connect

    Odette, G. Robert; Yamamoto, Takuya

    2013-06-17

    Neutron embrittlement of reactor pressure vessels (RPVs) is an unresolved issue for light water reactor life extension, especially since transition temperature shifts (TTS) must be predicted for high 80-year fluence levels up to approximately 1,020 n/cm{sup 2}, far beyond the current surveillance database. Unfortunately, TTS may accelerate at high fluence, and may be further amplified by the formation of late blooming phases that result in severe embrittlement even in low-copper (Cu) steels. Embrittlement by this mechanism is a potentially significant degradation phenomenon that is not predicted by current regulatory models. This project will focus on accurately predicting transition temperature shifts at high fluence using advanced physically based, empirically validated and calibrated models. A major challenge is to develop models that can adjust test reactor data to account for flux effects. Since transition temperature shifts depend on synergistic combinations of many variables, flux-effects cannot be treated in isolation. The best current models systematically and significantly under-predict transition temperature at high fluence, although predominantly for irradiations at much higher flux than actual RPV service. This project will integrate surveillance, test reactor and mechanism data with advanced models to address a number of outstanding RPV embrittlement issues. The effort will include developing new databases and preliminary models of flux effects for irradiation conditions ranging from very low (e.g., boiling water reactor) to high (e.g., accelerated test reactor). The team will also develop a database and physical models to help predict the conditions for the formation of Mn-Ni-Si late blooming phases and to guide future efforts to fully resolve this issue. Researchers will carry out other tasks on a best-effort basis, including prediction of transition temperature shift attenuation through the vessel wall, remediation of embrittlement by annealing

  14. Energy- and angle-differential neutron fluence measurements with superheated drop (bubble) detectors

    NASA Astrophysics Data System (ADS)

    d'Errico, Francesco; Matzke, Manfred; Siebert, Bernd R. L.

    2002-01-01

    One of the latest additions to the field of neutron spectrometry is based on the active control of the response functions of superheated emulsions. By varying the superheat of the detectors, either changing their operating temperature or applied pressure, it is possible to generate a matrix consisting of nested responses suitable for few-channel energy spectrometry. In the device presented here, a detector is embedded in a recess milled on the surface of a moderating sphere. This sphere has the purpose of introducing an angular dependence in the otherwise nearly isotropic response of the detector. The device relies on the acoustical detection of bubbles and on temperature stepping to vary the superheated emulsion thresholds. In correspondence to each temperature/threshold, measurements are sequentially performed at different angular orientations of the sphere. The response matrix of the system to monoenergetic neutrons was determined as a function of angular position by means of Monte Carlo neutron transport simulations. The directional spectrometer was tested by means of irradiations with a californium neutron source. Energy- and angle-differential unfolding of the detector readings was performed by means of a maximum-entropy technique which does not require a-priori information. The spectrometer operates well with large energy-angle groups, and produces accurate integral values of total fluence, which can be used to derive quantities such as ambient dose equivalent H*(10) or directional dose equivalent H'(10). However, the device presents limitations in unfolding spectra over a finer group structure, and will require the future developments outlined in the conclusions.

  15. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    SciTech Connect

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  16. High-energy neutron dosimetry

    NASA Astrophysics Data System (ADS)

    Sutton, Michele Rhea

    2001-12-01

    Fluence-to-dose conversion coefficients for the radiation protection quantity effective dose were calculated for neutrons, photons and protons with energies up to 2 GeV using the MCNPX code. The calculations were performed using the Pacific Northwest National Laboratory versions of the MIRD-V male and female anthropomorphic phantoms modified to include the skin and esophagus. The latest high-energy neutron evaluated cross-section libraries and the recommendations given in ICRP Publication 60 and ICRP Publication 74 were utilized to perform the calculations. Sets of fluence-to- effective dose conversion coefficients are given for anterior-posterior, posterior-anterior, left-lateral, right-lateral and rotational irradiation geometries. This is the first set of dose conversion coefficients over this energy range calculated for the L-LAT irradiation geometry. A unique set of high-energy neutron depth-dose benchmark experiments were performed at the Los Alamos Neutron Science Center/Weapons Neutron Research (LANSCE/WNR) complex. The experiments consisted of filtered neutron beams with energies up to 800 MeV impinging on a 30 x 30 x 30 cm3 tissue-equivalent phantom. The absorbed dose was measured in the phantom at various depths with tissue-equivalent ion chambers. The phantom and the experimental set-up were modeled using MCNPX. Comparisons of the experimental and computational depth- dose distributions indicate that the absorbed dose calculated by MCNPX is within 13% for neutrons with energies up to 750 MeV. This experiment will serve as a benchmark experiment for the testing of high-energy radiation transport codes for the international radiation protection community.

  17. Assessment of neutron fluence to organ dose conversion coefficients in the ORNL analytical adult phantom.

    PubMed

    Miri Hakimabad, H; Rafat Motavalli, L; Karimi Shahri, K

    2009-03-01

    Neutron fluence to absorbed dose conversion coefficients have been evaluated for the analytical ORNL modified adult phantom in 21 body organs using MCNP4C Monte Carlo code. The calculation used 20 monodirectional monoenergetic neutron beams in the energy range 10(-9)-20 MeV, under four irradiation conditions: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT) and right-lateral (RLAT). Then the conversion coefficients are compared with the data reported in ICRP publication 74 for mathematical MIRD type phantoms and by Bozkurt et al for the VIPMAN voxel model. Although the ORNL results show fewer differences with the ICRP results than the Bozkurt et al data, one can deduce neither complete agreement nor disparity between this study and other data sets. This comparison shows that in some cases any differences in applied Monte Carlo codes or simulated body models could significantly change the organ dose conversion factors. This sensitivity should be considered for radiological protection programmes. For certain organs, the results of two models with major differences can be in a satisfactory agreement because of the similarity in those organ models. PMID:19225185

  18. High fluence laser irradiation induces reactive oxygen species generation in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Xing, Da; Chen, Tong-Sheng

    2006-09-01

    Low-power laser irradiation (LPLI) has been used for therapies such as curing spinal cord injury, healing wound et al. Yet, the mechanism of LPLI remains unclear. Our previous study showed that low fluences laser irradiation induces human lung adenocarcinoma cells (ASTC-a-1) proliferation, but high fluences induced apoptosis and caspase-3 activation. In order to study the mechanism of apoptosis induced by high fluences LPLI further, we have measured the dynamics of generation of reactive oxygen species (ROS) using H IIDCFDA fluorescence probes during this process. ASTC-a-1 cells apoptosis was induced by He-Ne laser irradiation at high fluence of 120J/cm2. A confocal laser scanning microscope was used to perform fluorescence imaging. The results demonstrated that high fluence LPLI induced the increase of mitochondria ROS. Our studies contribute to clarify the biological mechanism of high fluence LPLI-induced cell apoptosis.

  19. Canadian high energy neutron spectrometry system (chenss)

    NASA Astrophysics Data System (ADS)

    Bennett, Les

    The Canadian high-energy neutron spectrometry system (CHENSS) has been constructed in order to accurately characterize the fluence and energy distribution of high-energy neutrons encountered on space missions in low-Earth orbit. The CHENSS is a proton-recoil spectrometer based on a cylindrical gelled scintillator, with pulse-shape discrimination properties comparable to those of a liquid scintillator, completely surrounded by thin plastic panels, which can be used to veto coincident events due to charged particles. The CHENSS has been irradiated by monoenergetic neutron reference beams with energies up to 19 MeV at the Physikalisch- TechnischeBundesanstalt and in quasi-monoenergetic neutron beams at 100 and 200 MeV at the iThemba Labs facilities. Comparison of the data with fluence determinations performed in parallel to the CHENSS measurements shows good consistency and demonstrates the efficacy of the spectrometer for measurements in space.

  20. Modeling of radiation damage effects in silicon detectors at high fluences HL-LHC with Sentaurus TCAD

    NASA Astrophysics Data System (ADS)

    Passeri, D.; Moscatelli, F.; Morozzi, A.; Bilei, G. M.

    2016-07-01

    In this work we propose the application of an enhanced radiation damage model based on the introduction of deep level traps/recombination centers suitable for device level numerical simulation of silicon detectors at very high fluences (e.g. 2.0 ×1016 1 MeV equivalent neutrons/cm2). We present the comparison between simulation results and experimental data for p-type substrate structures in different operating conditions (temperature and biasing voltages) for fluences up to 2.2 ×1016 neutrons/cm2. The good agreement between simulation findings and experimental measurements fosters the application of this modeling scheme to the optimization of the next silicon detectors to be used at HL-LHC.

  1. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    SciTech Connect

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V.

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV

  2. Aging and Embrittlement of High Fluence Stainless Steels

    SciTech Connect

    Was, gary; Jiao, Zhijie; der ven, Anton Van; Bruemmer, Stephen; Edwards, Dan

    2012-12-31

    Irradiation of austenitic stainless steels results in the formation of dislocation loops, stacking fault tetrahedral, Ni-Si clusters and radiation-induced segregation (RIS). Of these features, it is the formation of precipitates which is most likely to impact the mechanical integrity at high dose. Unlike dislocation loops and RIS, precipitates exhibit an incubation period that can extend from 10 to 46 dpa, above which the cluster composition changes and a separate phase, (G-phase) forms. Both neutron and heavy ion irradiation showed that these clusters develop slowly and continue to evolve beyond 100 dpa. Overall, this work shows that the irradiated microstructure features produced by heavy ion irradiation are remarkably comparable in nature to those produced by neutron irradiation at much lower dose rates. The use of a temperature shift to account for the higher damage rate in heavy ion irradiation results in a fairly good match in the dislocation loop microstructure and the precipitate microstructure in austenitic stainless steels. Both irradiations also show segregation of the same elements and in the same directions, but to achieve comparable magnitudes, heavy ion irradiation must be conducted at a much higher temperature than that which produces a match with loops and precipitates. First-principles modeling has confirmed that the formation of Ni-Si precipitates under irradiation is likely caused by supersaturation of solute to defect sinks caused by highly correlated diffusion of Ni and Si. Thus, the formation and evolution of Ni-Si precipitates at high dose in austenitic stainless steels containing Si is inevitable.

  3. Three-dimensional Monte Carlo calculations of the neutron and. gamma. -ray fluences in the TFTR diagnostic basement and comparisons with measurements

    SciTech Connect

    Liew, S.L.; Ku, L.P.; Kolibal, J.G.

    1985-10-01

    Realistic calculations of the neutron and ..gamma..-ray fluences in the TFTR diagnostic basement have been carried out with three-dimensional Monte Carlo models. Comparisons with measurements show that the results are well within the experimental uncertainties.

  4. Fluence-to-dose conversion coefficients from monoenergetic neutrons below 20 MeV based on the VIP-Man anatomical model

    NASA Astrophysics Data System (ADS)

    Bozkurt, A.; Chao, T. C.; Xu, X. G.; Bozkurt, A.; Chao, T. C.

    2000-10-01

    A new set of fluence-to-absorbed dose and fluence-to-effective dose conversion coefficients have been calculated for neutrons below 20 MeV using a whole-body anatomical model, VIP-Man, developed from the high-resolution transverse colour photographic images of the National Library of Medicine's Visible Human Project®. Organ dose calculations were performed using the Monte Carlo code MCNP for 20 monoenergetic neutron beams between 1×10-9 MeV and 20 MeV under six different irradiation geometries: anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic. The absorbed dose for 24 major organs and effective dose results based on the realistic VIP-Man are presented and compared with those based on the simplified MIRD-based phantoms reported in the literature. Effective doses from VIP-Man are not significantly different from earlier results for neutrons in the energy range studied. There are, however, remarkable deviations in organ doses due to the anatomical differences between the image-based and the earlier mathematical models.

  5. Approaches to Accounting and Prediction of Fast Neutron Fluence on VVER Pressure Vessels for Estimation of RPV Residual Lifetime in Compliance with Russian Utility's Procedure

    NASA Astrophysics Data System (ADS)

    Borodkin, Gennady; Borodkin, Pavel; Khrennikov, Nikolay; Ryabinin, Yuriy; Adeev, Valeriy

    2016-02-01

    The Paper describes a new Russian Utility's regulatory document (RD EO) which has been recently developed and implemented since the beginning of 2013. This RD EO includes the procedure of RPV FNF monitoring and provides recommendations on how to predict fluence over the design lifetime taking into account results of FNF monitoring. The basic method of RPV neutron fluence monitoring is neutron transport calculations of FR in the vicinity of the RPV. Reliability of the calculation results should be validated by ex-vessel neutron-activation measurements, which were performed during different fuel cycles with different core loadings including new types of fuel.

  6. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    SciTech Connect

    Rosenberg, M. J. Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Hohenberger, M.; Sangster, T. C.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Landen, O. L.; and others

    2014-04-15

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ∼0.5–8 MeV protons. When the fluence of incident particles becomes too high, overlap of particle tracks leads to under-counting at typical processing conditions (5 h etch in 6N NaOH at 80 °C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 × 10{sup 6} cm{sup −2}. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ∼50, increasing the operating yield upper limit by a comparable amount.

  7. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    SciTech Connect

    Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Hohenberger, M.; Sangster, T. C.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Landen, O. L.; Zacharias, R. A.; Kim, Y.; Herrmann, H. W.; Kilkenny, J. D.

    2014-04-14

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×106 cm-2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.

  8. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    DOE PAGES

    Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; et al

    2014-04-14

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detectionmore » of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×106 cm-2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.« less

  9. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications.

    PubMed

    Rosenberg, M J; Séguin, F H; Waugh, C J; Rinderknecht, H G; Orozco, D; Frenje, J A; Johnson, M Gatu; Sio, H; Zylstra, A B; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Stoeckl, C; Hohenberger, M; Sangster, T C; LePape, S; Mackinnon, A J; Bionta, R M; Landen, O L; Zacharias, R A; Kim, Y; Herrmann, H W; Kilkenny, J D

    2014-04-01

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ∼0.5-8 MeV protons. When the fluence of incident particles becomes too high, overlap of particle tracks leads to under-counting at typical processing conditions (5 h etch in 6N NaOH at 80 °C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7-4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 × 10(6) cm(-2). A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ∼50, increasing the operating yield upper limit by a comparable amount. PMID:24784597

  10. Cooled-CCD and amorphous silicon-based neutron imaging systems for low-fluence neutron sources

    NASA Astrophysics Data System (ADS)

    Lanza, Richard C.; McFarland, Eric W.; Shi, Shuanghe

    1997-02-01

    We have developed a neutron detection system for accelerator based neutron radiography and tomography based on a combination of scintillation screen and large aperture optics combined with a cooled CCD camera. The system is capable of detecting single neutron events and can therefore be considered as a possible detector for neutron scattering as well as conventional imaging. The system has a resolution of 0.1 mm or 1242 by 1152 pixels. The limit of image size is set by the light output of the scintillator, the light collection of the optical system, the size of the CCD and the desired signal to noise ratio. The lower limit on neutron flux is determined by the dark current of the chip. Equations for these limits have been derived and can be used to predict and optimize performance. The scintillation light output per incident neutron is large enough to permit the use of lens coupled systems with their increased flexibility and ease of implementation. The system can approach a quantum limited noise level, depending on the particular geometry used. For our current system, based on the use of NE 426 scintillator,3 a 1242 by 1152 pixel EEV CCD operating at -50C, and using a 100 mm focal length, F/0.9 lens, the maximum size for the imaging screen is 0.5 m, and the lower limit for flux is 1 n/pixel/s based on this size screen and a typical dark current of 10 e/pixel/s. We are now investigating a new type of imaging technology based on large amorphous silicon sensor arrays being developed by Xerox and others. A typical device is 200 by 250 mm with a pixel size of 127 micrometers and the entire array with all electronics is in a 400 mm by 37 mm package. Major advantages of this device are the high light coupling between scintillator screen and the sensor as well as the more compact nature of such an array, since no lens systems is required and, potentially, a much lower cost. Currently, the noise performance is worse than that of CCDs, largely due to the current electronic

  11. A method to detect low-level 63Ni activity for estimating fast neutron fluence from the Hiroshima atomic bomb.

    PubMed

    Ito, Y; Shibata, T; Imamura, M; Shibata, S; Nogawa, N; Uwamino, Y; Shizuma, K

    1999-06-01

    The Hiroshima and Nagasaki atomic bombs resulted in the worst reported exposure of radiation to the human body. The data of survivors have provided the basis for the risk estimation for ionizing radiation, and thus are widely used as the basis of radiation safety. In this report we have studied a new method to detect the low-level 63Ni activity in copper samples in order to estimate the fast neutron fluence from the Hiroshima atomic bomb. Only 0.8 x 10(-3) Bq g(-1) of 63Ni is expected to be produced by the atomic bomb in a copper sample with the 63Cu(n, p)63Ni reaction at a distance of 500 m from the hypocenter. Our method has the required level of sensitivity for determination of the fast neutron fluence out to distances of at least 500 m, and perhaps as far as 1,000 m. We have already investigated and collected some bomb-irradiated copper samples for further study.

  12. Response of reduced activation ferritic steels to high-fluence ion-irradiation

    NASA Astrophysics Data System (ADS)

    Tanigawa, H.; Ando, M.; Katoh, Y.; Hirose, T.; Sakasegawa, H.; Jitsukawa, S.; Kohyama, A.; Iwai, T.

    2001-09-01

    Effects of high-fluence irradiation in fusion-relevant helium production condition on defect cluster formation and swelling of reduced activation ferritic/martensitic steels (RAFs), JLF-1 (Fe-9Cr-2W-V-Ta) and F82H (Fe-8Cr-2W-V-Ta), have been investigated. Dual-ion (nickel plus helium ions) irradiation using electrostatic accelerators was adopted to simulate fusion neutron environment. The irradiation has been carried out up to a damage level of 100 displacement per atom (dpa) at around 723 K, at the HIT facility in the University of Tokyo. Thin foils for transmission electron microscopy (TEM) were prepared with a focused ion beam (FIB) microsampling system. The system enabled not only the broad cross-sectional TEM observation, but also the detailed study of irradiated microstructure, since unfavorable effects of ferromagnetism of a ferritic steel specimen were completely suppressed with this system by sampling a small volume in interests from the irradiated material.

  13. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20 to 250 MeV

    SciTech Connect

    Mclean, Thomas D; Justus, Alan L; Gadd, S Milan; Olsher, Richard H; Devine, Robert T

    2009-01-01

    Monte Carlo simulations were performed to extend existing neutron personal dose equivalent fluence-to-dose conversion coefficients to an energy of 250 MeV. Presently, conversion coefficients, H(p,slab)(10,alpha)/Phi, are given by ICRP-74 and ICRU-57 for a range of angles of radiation incidence (alpha = 0, 15, 30, 45, 60 and 75 degrees ) in the energy range from thermal to 20 MeV. Standard practice has been to base operational dose quantity calculations <20 MeV on the kerma approximation, which assumes that charged particle secondaries are locally deposited, or at least that charged particle equilibrium exists within the tally cell volume. However, with increasing neutron energy the kerma approximation may no longer be valid for some energetic secondaries such as protons. The Los Alamos Monte Carlo radiation transport code MCNPX was used for all absorbed dose calculations. Transport models and collision-based energy deposition tallies were used for neutron energies >20 MeV. Both light and heavy ions (HIs) (carbon, nitrogen and oxygen recoil nuclei) were transported down to a lower energy limit (1 keV for light ions and 5 MeV for HIs). Track energy below the limit was assumed to be locally deposited. For neutron tracks <20 MeV, kerma factors were used to obtain absorbed dose. Results are presented for a discrete set of angles of incidence on an ICRU tissue slab phantom.

  14. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20-250 MeV.

    PubMed

    Olsher, R H; McLean, T D; Justus, A L; Devine, R T; Gadd, M S

    2010-03-01

    Monte Carlo simulations were performed to extend existing neutron personal dose equivalent fluence-to-dose conversion coefficients to an energy of 250 MeV. Presently, conversion coefficients, H(p,slab)(10,alpha)/Phi, are given by ICRP-74 and ICRU-57 for a range of angles of radiation incidence (alpha = 0, 15, 30, 45, 60 and 75 degrees ) in the energy range from thermal to 20 MeV. Standard practice has been to base operational dose quantity calculations <20 MeV on the kerma approximation, which assumes that charged particle secondaries are locally deposited, or at least that charged particle equilibrium exists within the tally cell volume. However, with increasing neutron energy the kerma approximation may no longer be valid for some energetic secondaries such as protons. The Los Alamos Monte Carlo radiation transport code MCNPX was used for all absorbed dose calculations. Transport models and collision-based energy deposition tallies were used for neutron energies >20 MeV. Both light and heavy ions (HIs) (carbon, nitrogen and oxygen recoil nuclei) were transported down to a lower energy limit (1 keV for light ions and 5 MeV for HIs). Track energy below the limit was assumed to be locally deposited. For neutron tracks <20 MeV, kerma factors were used to obtain absorbed dose. Results are presented for a discrete set of angles of incidence on an ICRU tissue slab phantom. PMID:19887515

  15. Neutron fluences and energy spectra in the Cosmos-2044 biosatellite orbit

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Akopova, A. B.; Melkumyan, L. V.; Benton, E. V.; Frank, A. L.

    1992-01-01

    Joint Soviet-American measurements of the neutron component of space radiation (SR) were carried out during the flight of the Soviet biosatellite Cosmos-2044. Neutron flux densities and differential energy spectra were measured inside and on the external surface of the spacecraft. Three energy intervals were employed: thermal (En < or = 0.2 eV), resonance (0.2 eV < En < 1.0 MeV) and fast (En > or = 1.0 MeV) neutrons. The first two groups were measured with U.S. 6LiF detectors, while fast neutrons were recorded both by U.S. fission foils and Soviet nuclear emulsions. Estimations were made of the contributions to absorbed and equivalent doses from each neutron energy interval and a correlation was presented between fast neutron fluxes, measured outside the satellite, and the phase of solar activity (SA). Average dose equivalent rates of 0.018 and 0.14 mrem d-1 were measured for thermal and resonance neutrons, respectively, outside the spacecraft. The corresponding values for fast neutrons were 3.3 (U.S.) and 1.8 (U.S.S.R.) mrem d-1. Inside the spacecraft, a value of 3.5 mrem d-1 was found.

  16. Fast neutron fluence of yonggwang nuclear unit 1 reactor pressure vessel

    SciTech Connect

    Yoo, C.; Km, B.; Chang, K.; Leeand, S.; Park, J.

    2006-07-01

    The Code of Federal Regulations, Title 10, Part 50, Appendix H, requires that the neutron dosimetry be present to monitor the reactor vessel throughout plant life. The Ex-Vessel Neutron Dosimetry System has been installed for Yonggwang Nuclear Unit 1 after complete withdrawal of all six in-vessel surveillance capsules. This system has been installed in the reactor cavity annulus in order to measure the fast neutron spectrum coming out through the reactor pressure vessel. Cycle specific neutron transport calculations were performed to obtain the energy dependent neutron flux throughout the reactor geometry including dosimetry positions. Comparisons between calculations and measurements were performed for the reaction rates of each dosimetry sensors and results show good agreements. (authors)

  17. Comparison of Calculated and Measured Neutron Fluence in Fuel/Cladding Irradiation Experiments in HFIR

    SciTech Connect

    Ellis, Ronald James

    2011-01-01

    A recently-designed thermal neutron irradiation facility has been used for a first series of irradiations of PWR fuel pellets in the high flux isotope reactor (HFIR) at Oak Ridge National Laboratory. Since June 2010, irradiations of PWR fuel pellets made of UN or UO{sub 2}, clad in SiC, have been ongoing in the outer small VXF sites in the beryllium reflector region of the HFIR, as seen in Fig. 1. HFIR is a versatile, 85 MW isotope production and test reactor with the capability and facilities for performing a wide variety of irradiation experiments. HFIR is a beryllium-reflected, light-water-cooled and -moderated, flux-trap type reactor that uses highly enriched (in {sup 235}U) uranium (HEU) as the fuel. The reactor core consists of a series of concentric annular regions, each about 2 ft (0.61 m) high. A 5-in. (12.70-cm)-diam hole, referred to as the flux trap, forms the center of the core. The fuel region is composed of two concentric fuel elements made up of many involute-shaped fuel plates: an inner element that contains 171 fuel plates, and an outer element that contains 369 fuel plates. The fuel plates are curved in the shape of an involute, which provides constant coolant channel width between plates. The fuel (U{sub 3}O{sub 8}-Al cermet) is nonuniformly distributed along the arc of the involute to minimize the radial peak-to-average power density ratio. A burnable poison (B{sub 4}C) is included in the inner fuel element primarily to reduce the negative reactivity requirements of the reactor control plates. A typical HEU core loading in HFIR is 9.4 kg of {sup 235}U and 2.8 g of {sup 10}B. The thermal neutron flux in the flux trap region can exceed 2.5 x 10{sup 15} n/cm{sup 2} {center_dot} s while the fast flux in this region exceeds 1 x 10{sup 15} n/cm{sup 2} {center_dot} s. The inner and outer fuel elements are in turn surrounded by a concentric ring of beryllium reflector approximately 1 ft (0.30 m) thick. The beryllium reflector consists of three regions

  18. Thermal neutron fluence in a treatment room with a Varian linear accelerator at a medical university hospital

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Shan; Changlai, Sheng-Pin; Pan, Lung-Kwang; Tseng, Hsien-Chun; Chen, Chien-Yi

    2011-09-01

    The indium foil activation technique has been employed to measure thermal neutron fluences ( Φth) among various locations in the treatment room with a 20×20 cm 2 field size and a 15 and 10 MV X-ray beam. Spatial Φth are visualized using colored three-dimensional graphical representations; intensities are up to (1.97±0.13)×10 5 and (1.46±0.13)×10 4 n cm -2/Gy-X at isocenter, respectively. The Φth is found to increase with the X-ray energy of the LINAC and decreases as it moves away from the beam center. However, thermal neutron exposure is not assessed in routine dosimetry planning and radiation assessment of patients since neutron dose contributes <1% of the given therapy dose. However, unlike the accelerated beam limited within the gantry window, photoneutrons are widely spread in the treatment room. Distributions of Φth were measured in water phantom irradiated with 15 MV X-ray beams. The shielding effect of the maze was also evaluated. The experimentally estimated Φth along the maze distance was fitted explicate and the tenth-value layer (TVL) was calculated and discussed. Use of a 10 cm-thick polyethylene door placed at the maze was suitable for radiation shielding.

  19. Estimation of Covariances on Prompt Fission Neutron Spectra and Impact of the PFNS Model on the Vessel Fluence

    NASA Astrophysics Data System (ADS)

    Berge, Léonie; Litaize, Olivier; Serot, Olivier; Archier, Pascal; De Saint Jean, Cyrille; Pénéliau, Yannick; Regnier, David

    2016-02-01

    As the need for precise handling of nuclear data covariances grows ever stronger, no information about covariances of prompt fission neutron spectra (PFNS) are available in the evaluated library JEFF-3.2, although present in ENDF/B-VII.1 and JENDL-4.0 libraries for the main fissile isotopes. The aim of this work is to provide an estimation of covariance matrices related to PFNS, in the frame of some commonly used models for the evaluated files, such as the Maxwellian spectrum, the Watt spectrum, or the Madland-Nix spectrum. The evaluation of PFNS through these models involves an adjustment of model parameters to available experimental data, and the calculation of the spectrum variance-covariance matrix arising from experimental uncertainties. We present the results for thermal neutron induced fission of 235U. The systematic experimental uncertainties are propagated via the marginalization technique available in the CONRAD code. They are of great influence on the final covariance matrix, and therefore, on the spectrum uncertainty band width. In addition to this covariance estimation work, we have also investigated the importance on a reactor calculation of the fission spectrum model choice. A study of the vessel fluence depending on the PFNS model is presented. This is done through the propagation of neutrons emitted from a fission source in a simplified PWR using the TRIPOLI-4® code. This last study includes thermal fission spectra from the FIFRELIN Monte-Carlo code dedicated to the simulation of prompt particles emission during fission.

  20. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    NASA Astrophysics Data System (ADS)

    Koyanagi, T.; Shimoda, K.; Kondo, S.; Hinoki, T.; Ozawa, K.; Katoh, Y.

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. The apparent stress exponent of the irradiation creep slightly exceeded unity, and instantaneous creep coefficient at 380-790 °C was estimated to be ∼1 × 10-5 [MPa-1 dpa-1] at ∼0.1 dpa and 1 × 10-7 to 1 × 10-6 [MPa-1 dpa-1] at ∼1 dpa. The irradiation creep strain appeared greater than that for the high purity SiC. Microstructural observation and data analysis indicated that the grain-boundary sliding associated with the secondary phases contributes to the irradiation creep at 380-790 °C to 0.01-0.11 dpa.

  1. Solid-state track recorder dosimetry device to measure absolute reaction rates and neutron fluence as a function of time

    DOEpatents

    Gold, Raymond; Roberts, James H.

    1989-01-01

    A solid state track recording type dosimeter is disclosed to measure the time dependence of the absolute fission rates of nuclides or neutron fluence over a period of time. In a primary species an inner recording drum is rotatably contained within an exterior housing drum that defines a series of collimating slit apertures overlying windows defined in the stationary drum through which radiation can enter. Film type solid state track recorders are positioned circumferentially about the surface of the internal recording drum to record such radiation or its secondary products during relative rotation of the two elements. In another species both the recording element and the aperture element assume the configuration of adjacent disks. Based on slit size of apertures and relative rotational velocity of the inner drum, radiation parameters within a test area may be measured as a function of time and spectra deduced therefrom.

  2. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures.

    PubMed

    Barboza, L L; Campos, V M A; Magalhães, L A G; Paoli, F; Fonseca, A S

    2015-10-01

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm2) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols. PMID:26445339

  3. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures

    PubMed Central

    Barboza, L.L.; Campos, V.M.A.; Magalhães, L.A.G.; Paoli, F.; Fonseca, A.S.

    2015-01-01

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm2) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols. PMID:26445339

  4. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures.

    PubMed

    Barboza, L L; Campos, V M A; Magalhães, L A G; Paoli, F; Fonseca, A S

    2015-10-01

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm2) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols.

  5. Measurement of energy and direction distribution of neutron and photon fluences in workplace fields.

    PubMed

    Luszik-Bhadra, M; Reginatto, M; Lacoste, V

    2004-01-01

    Within the EU Project EVIDOS, a spectrometer with 24 silicon detectors mounted on the surface of a polyethylene sphere is used for the determination of the energy and direction distribution of neutrons and photons. It has been characterized with respect to neutron radiation with energies from thermal up to 15 MeV and to photon radiation with energies from 65 keV to 6 MeV. The first measurements described here were performed in the simulated workplace field, CANEL, at Cadarache, with the purpose of checking the instrument and the unfolding procedures.

  6. Nova laser system at ultra high fluence levels

    SciTech Connect

    Hunt, J.T.

    1985-01-01

    The Nova experimental facility consists of a ten arm laser system and five experimental stations and was completed in December 1984. Two of these stations are used for inertial confinement fusion (ICF) experiments and the other three are dedicated to doing large aperture (30 to 74 cm) laser experiments. The laser system is deployed in a master oscillator-power amplifier architecture and uses Nd: phosphate glass for the active medium. The fundamental wavelength of the system is 1.05 microns. Frequency converters constructed from potassium dihydrogen phosphate (KDP) crystals are located at the end of each of the ten arms and are used to produce high power frequency doubled (0.53 microns) and tripled (0.35 microns) beams for either ICF or laser experiments. Thus, the Nova laser system can produce high power beams with wavelengths ranging from the infrared to the ultraviolet.

  7. Noble Gases in the Monahans Chondrite and Halite: Ar-39 - Ar-40 Age, Space Exposure Age, Trapped Solar Gases, and Neutron Fluence

    NASA Technical Reports Server (NTRS)

    Garrison, Daniel H.; Bogard, Donald D.

    2000-01-01

    For the Monahans chondrite and halite, we determined Ar-39 - Ar-40 ages of silicate = 4.53 Ga, halite > 4.3 Ga; a space exposure age of approx. 5 Ma; a regolith pre-irradiation; solar gas concentrations in the dark phase; and a regolith thermal neutron fluence.

  8. Validation of 3D Code KATRIN For Fast Neutron Fluence Calculation of VVER-1000 Reactor Pressure Vessel by Ex-Vessel Measurements and Surveillance Specimens Results

    NASA Astrophysics Data System (ADS)

    Dzhalandinov, A.; Tsofin, V.; Kochkin, V.; Panferov, P.; Timofeev, A.; Reshetnikov, A.; Makhotin, D.; Erak, D.; Voloschenko, A.

    2016-02-01

    Usually the synthesis of two-dimensional and one-dimensional discrete ordinate calculations is used to evaluate neutron fluence on VVER-1000 reactor pressure vessel (RPV) for prognosis of radiation embrittlement. But there are some cases when this approach is not applicable. For example the latest projects of VVER-1000 have upgraded surveillance program. Containers with surveillance specimens are located on the inner surface of RPV with fast neutron flux maximum. Therefore, the synthesis approach is not suitable enough for calculation of local disturbance of neutron field in RPV inner surface behind the surveillance specimens because of their complicated and heterogeneous structure. In some cases the VVER-1000 core loading consists of fuel assemblies with different fuel height and the applicability of synthesis approach is also ambiguous for these fuel cycles. Also, the synthesis approach is not enough correct for the neutron fluence estimation at the RPV area above core top. Because of these reasons only the 3D neutron transport codes seem to be satisfactory for calculation of neutron fluence on the VVER-1000 RPV. The direct 3D calculations are also recommended by modern regulations.

  9. Fluence to Hp(3) conversion coefficients for neutrons from thermal to 15 MeV.

    PubMed

    Gualdrini, G; Ferrari, P; Tanner, R

    2013-12-01

    The recent statement on tissue reactions issued by the International Commission on Radiological Protection in April 2011 recommends a very significant reduction in the equivalent dose annual limit for the eye lens from 150 to 20 mSv y(-1); this has stimulated a lot of interest in eye lens dosimetry in the radiation protection community. Until now no conversion coefficients were available for the operational quantity Hp(3) for neutrons. The scope of the present work was to extend previous evaluations of H*(10) and Hp(10) performed at the PTB in 1995 to provide also Hp(3) data for neutrons. The present work is also intended to complete the studies carried out on photons during the last 4 y within the European Union-funded ORAMED (optimisation of radiation protection for medical staff) project.

  10. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    SciTech Connect

    Koyanagi, Takaaki; Shimoda, Kazuya; Kondo, Sosuke; Hinoki, Tatsuya; Ozawa, Kazumi; Katoh, Yutai

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. Microstructural observation and data analysis were performed.

  11. Irradiation Programs and Test Plans to Assess High-Fluence Irradiation Assisted Stress Corrosion Cracking Susceptibility.

    SciTech Connect

    Teysseyre, Sebastien

    2015-03-01

    . Irradiation assisted stress corrosion cracking (IASCC) is a known issue in current reactors. In a 60 year lifetime, reactor core internals may experience fluence levels up to 15 dpa for boiling water reactors (BWR) and 100+ dpa for pressurized water reactors (PWR). To support a safe operation of our fleet of reactors and maintain their economic viability it is important to be able to predict any evolution of material behaviors as reactors age and therefore fluence accumulated by reactor core component increases. For PWR reactors, the difficulty to predict high fluence behavior comes from the fact that there is not a consensus of the mechanism of IASCC and that little data is available. It is however possible to use the current state of knowledge on the evolution of irradiated microstructure and on the processes that influences IASCC to emit hypotheses. This report identifies several potential changes in microstructure and proposes to identify their potential impact of IASCC. The susceptibility of a component to high fluence IASCC is considered to not only depends on the intrinsic IASCC susceptibility of the component due to radiation effects on the material but to also be related to the evolution of the loading history of the material and interaction with the environment as total fluence increases. Single variation type experiments are proposed to be performed with materials that are representative of PWR condition and with materials irradiated in other conditions. To address the lack of IASCC propagation and initiation data generated with material irradiated in PWR condition, it is proposed to investigate the effect of spectrum and flux rate on the evolution of microstructure. A long term irradiation, aimed to generate a well-controlled irradiation history on a set on selected materials is also proposed for consideration. For BWR, the study of available data permitted to identify an area of concern for long term performance of component. The efficiency of

  12. Signal and noise of diamond pixel detectors at high radiation fluences

    NASA Astrophysics Data System (ADS)

    Tsung, J.-W.; Havranek, M.; Hügging, F.; Kagan, H.; Krüger, H.; Wermes, N.

    2012-09-01

    CVD diamond is an attractive material option for LHC vertex detectors mainly because of its strong radiation-hardness causal to its large band gap and strong lattice. In particular, pixel detectors operating close to the interaction point profit from tiny leakage currents and small pixel capacitances of diamond resulting in low noise figures when compared to silicon. On the other hand, the charge signal from traversing high energy particles is smaller in diamond than in silicon by a factor of about 2.2. Therefore, a quantitative determination of the signal-to-noise ratio (S/N) of diamond in comparison with silicon at fluences in excess of 1015 neq cm-2, which are expected for the LHC upgrade, is important. Based on measurements of irradiated diamond sensors and the FE-I4 pixel readout chip design and performance, we determine the signal and the noise of diamond pixel detectors irradiated with high particle fluences. To characterize the effect of the radiation damage on the materials and the signal decrease, the change of the mean free path λe/h of the charge carriers is determined as a function of irradiation fluence. We make use of the FE-I4 pixel chip developed for ATLAS upgrades to realistically estimate the expected noise figures: the expected leakage current at a given fluence is taken from calibrated calculations and the pixel capacitance is measured using a purposely developed chip (PixCap). We compare the resulting S/N figures with those for planar silicon pixel detectors using published charge loss measurements and the same extrapolation methods as for diamond. It is shown that the expected S/N of a diamond pixel detector with pixel pitches typical for LHC, exceeds that of planar silicon pixels at fluences beyond 1015 particles cm-2, the exact value only depending on the maximum operation voltage assumed for irradiated silicon pixel detectors.

  13. Fractal hydrodynamic model of high-fluence laser ablation plasma expansion

    SciTech Connect

    Agop, M.; Nica, P.; Gurlui, S.; Focsa, C.

    2010-10-08

    Optical/electrical characterization of transient plasmas generated by high-fluence (up to 1 kJ/cm{sup 2}) laser ablation of various targets revealed as a general feature the splitting of the plume in two structures. In order to account for this behavior, a new fractal hydrodynamic model has been developed in a non-differentiable space-time. The model successfully retrieves the kinetics of the two structures.

  14. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments.

    PubMed

    Lee, K W; Sheu, R J

    2015-04-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere).

  15. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy.

    PubMed

    Sengbusch, E; Pérez-Andújar, A; DeLuca, P M; Mackie, T R

    2009-02-01

    proton kinetic energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility.

  16. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    SciTech Connect

    Sengbusch, E.; Perez-Andujar, A.; DeLuca, P. M. Jr.; Mackie, T. R.

    2009-02-15

    proton kinetic energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility.

  17. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    PubMed Central

    Sengbusch, E.; Pérez-Andújar, A.; DeLuca, P. M.; Mackie, T. R.

    2009-01-01

    energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility. PMID:19291975

  18. THE FIRST LIMITS ON THE ULTRA-HIGH ENERGY NEUTRINO FLUENCE FROM GAMMA-RAY BURSTS

    SciTech Connect

    Vieregg, A. G.; Belov, K.; Palladino, K.; Allison, P.; Baughman, B. M.; Beatty, J. J.; Connolly, A.; Grashorn, E. W.; Besson, D. Z.; Detrixhe, M.; Bevan, S.; Binns, W. R.; Dowkontt, P. F.; Chen, C.; Chen, P.; Clem, J. M.; De Marco, D.; DuVernois, M.; Gorham, P. W.; Hill, B.

    2011-07-20

    We set the first limits on the ultra-high energy (UHE) neutrino fluence at energies greater than 10{sup 9} GeV from gamma-ray bursts (GRBs) based on data from the second flight of the Antarctic Impulsive Transient Antenna (ANITA). During the 31 day flight of ANITA-II, 26 GRBs were recorded by Swift or Fermi. Of these, we analyzed the 12 GRBs which occurred during quiet periods when the payload was away from anthropogenic activity. In a blind analysis, we observe 0 events on a total background of 0.0044 events in the combined prompt window for all 12 low-background bursts. We also observe 0 events from the remaining 14 bursts. We place a 90% confidence level limit on the E{sup -4} prompt neutrino fluence between 10{sup 8} GeV < E < 10{sup 12} GeV of E{sup 4}{Phi} = 2.5 x 10{sup 17} GeV{sup 3} cm{sup -2} from GRB090107A. This is the first reported limit on the UHE neutrino fluence from GRBs above 10{sup 9} GeV, and the strongest limit above 10{sup 8} GeV.

  19. Neutron production from flattening filter free high energy medical linac: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Najem, M. A.; Abolaban, F. A.; Podolyák, Z.; Spyrou, N. M.

    2015-11-01

    One of the problems arising from using a conventional linac at high energy (>8 MV) is the production of neutrons. One way to reduce neutron production is to remove the flattening filter (FF). The main purpose of this work was to study the effect of FF removal on neutron fluence and neutron dose equivalent inside the treatment room at different photon beam energies. Several simulations based on Monte Carlo techniques were carried out in order to calculate the neutron fluence at different locations in the treatment room from different linac energies with and without a FF. In addition, a step-and-shoot intensity modulated radiotherapy (SnS IMRT) for prostate cancer was modelled using the 15 MV photon beam with and without a FF on a water phantom to calculate the neutron dose received in a full treatment. The results obtained show a significant drop-off in neutrons fluence and dose equivalent when the FF was removed. For example, the neutron fluence was decreased by 54%, 76% and 75% for 10, 15 and 18 MV, respectively. This can decrease the neutron dose to the patient as well as reduce the shielding cost of the treatment room. The neutron dose equivalent of the SnS IMRT for prostate cancer was reduced significantly by 71.3% when the FF was removed. It can be concluded that the flattening filter removal from the head of the linac could reduce the risk of causing secondary cancers and the shielding cost of radiotherapy treatment rooms.

  20. Diamond single crystal-surface modification under high- fluence ion irradiation

    NASA Astrophysics Data System (ADS)

    Anikin, V. A.; Borisov, A. M.; Kazakov, V. A.; Mashkova, E. S.; Palyanov, Yu N.; Popov, V. P.; Shmytkova, E. A.; Sigalaev, S. K.

    2016-09-01

    The modification of (111) face of synthetic diamond has been studied experimentally for high-fluence 30 keV argon bombardment. It has been found that ion irradiation leads to the electrically conductive layer formation the sheet resistance of which decreases more than 100 times while changing the temperature of the irradiated diamond from 70 to 400 oC. This effect, as well as significant changes of optical transmittance after ion irradiation are associated with ion-induced structural changes of irradiated diamond obtained by the methods of Raman spectroscopy.

  1. Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Powers, K. A.; Nanstad, R. K.; Efsing, P.

    2013-06-01

    The Ringhals Units 3 and 4 reactors in Sweden are pressurized water reactors (PWRs) designed and supplied by Westinghouse Electric Company, with commercial operation in 1981 and 1983, respectively. The reactor pressure vessels (RPVs) for both reactors were fabricated with ring forgings of SA 508 class 2 steel. Surveillance blocks for both units were fabricated using the same weld wire heat, welding procedures, and base metals used for the RPVs. The primary interest in these weld metals is because they have very high nickel contents, with 1.58 and 1.66 wt.% for Unit 3 and Unit 4, respectively. The nickel content in Unit 4 is the highest reported nickel content for any Westinghouse PWR. Although both welds contain less than 0.10 wt.% copper, the weld metals have exhibited high irradiation-induced Charpy 41-J transition temperature shifts in surveillance testing. The Charpy impact 41-J shifts and corresponding fluences are 192 °C at 5.0 × 1023 n/m2 (>1 MeV) for Unit 3 and 162 °C at 6.0 × 1023 n/m2 (>1 MeV) for Unit 4. These relatively low-copper, high-nickel, radiation-sensitive welds relate to the issue of so-called late-blooming nickel-manganese-silicon phases. Atom probe tomography measurements have revealed ˜2 nm-diameter irradiation-induced precipitates containing manganese, nickel, and silicon, with phosphorus evident in some of the precipitates. However, only a relatively few number of copper atoms are contained within the precipitates. The larger increase in the transition temperature shift in the higher copper weld metal from the Ringhals R3 Unit is associated with copper-enriched regions within the manganese-nickel-silicon-enriched precipitates rather than changes in their size or number density.

  2. Propensity and risk assessment for solar particle events: Consideration of integral fluence at high proton energies

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee; Hayat, Matthew; Feiveson, Alan; Cucinotta, Francis A.

    For future space missions with longer duration, exposure to large solar particle events (SPEs) with high energy levels is the major concern during extra-vehicular activities (EVAs) on the lunar and Mars surface. The propensity for SPE occurrence with large proton fluence was estimated as a function of time within a solar cycle from a non-homogeneous Poisson model using the historical database for measurements of protons with energy >30 MeV, Φ30 . The database includes a continuous data set for the past 5 solar cycles. The resultant SPE risk analysis for a specific mission period was made for blood forming organ (BFO) dose ranging from its 5th to 95th percentile. In addition to the total particle intensity of SPEs, the detailed energy spectra of protons, especially at high energy levels, were recognized as extremely important for assessing the cancer risk associated with energetic particles for large events. Using all the recorded proton fluence of SPEs for energies >60 and >100 MeV, Φ60 and Φ100 , respectively, the expected numbers of SPEs abundant with high energy protons were estimated from the same non-homogeneous Poisson model and the representative cancer risk was analyzed. The dependencies of risk with different energy spectra, for e.g. between soft and hard SPEs, were evaluated. Finally, we describe approaches to improve radiation protection of astronauts and optimize mission planning for future space missions.

  3. Propensity and Risk Assessment for Solar Particle Events: Consideration of Integral Fluence at High Proton Energies

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Hayat, Matthew J.; Feiveson, alan H.; Cucinotta, Francis A.

    2008-01-01

    For future space missions with longer duration, exposure to large solar particle events (SPEs) with high energy levels is the major concern during extra-vehicular activities (EVAs) on the lunar and Mars surface. The expected SPE propensity for large proton fluence was estimated from a non-homogeneous Poisson model using the historical database for measurements of protons with energy > 30 MeV, Phi(sub 30). The database includes a continuous data set for the past 5 solar cycles. The resultant SPE risk analysis for a specific mission period was made including the 95% confidence level. In addition to total particle intensity of SPE, the detailed energy spectra of protons especially at high energy levels were recognized as extremely important parameter for the risk assessment, since there remains a significant cancer risks from those energetic particles for large events. Using all the recorded proton fluence of SPEs for energies >60 and >100 MeV, Phi(sub 60) and Phi(sub 100), respectively, the expected propensities of SPEs abundant with high energy protons were estimated from the same non-homogeneous Poisson model and the representative cancer risk was analyzed. The dependencies of risk with different energy spectra, for e.g. between soft and hard SPEs, were evaluated. Finally, we describe approaches to improve radiation protection of astronauts and optimize mission planning for future space missions.

  4. Fast Neutron Irradiation of the Highly Radioresistant Bacterium Deinococcus Radiodurans

    NASA Astrophysics Data System (ADS)

    Case, Diane Louise

    Fast neutron dose survival curves were generated for the bacterium Deinococcus radiodurans, which is renowned for its unusually high resistance to gamma, x-ray, and ultraviolet radiation, but for which fast neutron response was unknown. The fast neutrons were produced by the University of Massachusetts Lowell 5.5-MV, type CN Van de Graaff accelerator through the ^7Li(p,n)^7 Be reaction by bombarding a thick metallic lithium target with a 4-MeV proton beam. The bacteria were uniformly distributed on 150-mm agar plates and were exposed to the fast neutron beam under conditions of charged particle equilibrium. The plates were subdivided into concentric rings of increasing diameter from the center to the periphery of the plate, within which the average neutron dose was calculated as the product of the precisely known neutron fluence at the average radius of the ring and the neutron energy dependent kerma factor. The neutron fluence and dose ranged from approximately 3 times 1013 n cm^ {-2} to 1 times 1012 n cm^ {-2}, and 200 kilorad to 5 kilorad, respectively, from the center to the periphery of the plate. Percent survival for Deinococcus radiodurans as a function of fast neutron dose was derived from the ability of the irradiated cells to produce visible colonies within each ring compared to that of a nonirradiated control population. The bacterium Escherichia coli B/r (CSH) was irradiated under identical conditions for comparative purposes. The survival response of Deinococcus radiodurans as a result of cumulative fast neutron exposures was also investigated. The quantification of the ability of Deinococcus radiodurans to survive cellular insult from secondary charged particles, which are produced by fast neutron interactions in biological materials, will provide valuable information about damage and repair mechanisms under extreme cellular stress, and may provide new insight into the origin of this bacterium's unprecedented radiation resistance.

  5. A Programmable Beam Shaping System for Tailoring the Profile of High Fluence Laser Beams

    SciTech Connect

    Heebner, J; Borden, M; Miller, P; Stolz, C; Suratwala, T; Wegner, P; Hermann, M; Henesian, M; Haynam, C; Hunter, S; Christensen, K; Wong, N; Seppala, L; Brunton, G; Tse, E; Awwal, A; Franks, M; Marley, E; Williams, K; Scanlan, M; Budge, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J

    2010-11-10

    Customized spatial light modulators have been designed and fabricated for use as precision beam shaping devices in fusion class laser systems. By inserting this device in a low-fluence relay plane upstream of the amplifier chain, 'blocker' obscurations can be programmed into the beam profile to shadow small isolated flaws on downstream optical components that might otherwise limit the system operating energy. In this two stage system, 1920 x 1080 bitmap images are first imprinted on incoherent, 470 nm address beams via pixilated liquid crystal on silicon (LCoS) modulators. To realize defined masking functions with smooth apodized shapes and no pixelization artifacts, address beam images are projected onto custom fabricated optically-addressable light valves. Each valve consists of a large, single pixel liquid cell in series with a photoconductive Bismuth silicon Oxide (BSO) crystal. The BSO crystal enables bright and dark regions of the address image to locally control the voltage supplied to the liquid crystal layer which in turn modulates the amplitude of the coherent beams at 1053 nm. Valves as large as 24 mm x 36 mm have been fabricated with low wavefront distortion (<0.5 waves) and antireflection coatings for high transmission (>90%) and etalon suppression to avoid spectral and temporal ripple. This device in combination with a flaw inspection system and optic registration strategy represents a new approach for extending the operational lifetime of high fluence laser optics.

  6. High-fluence Si-implanted diamond: Optimum implantation temperature for SiC formation

    SciTech Connect

    Weishart, H.; Eichhorn, F.; Heera, V.; Pecz, B.; Barna, A.; Skorupa, W.

    2005-08-15

    In this paper the authors investigate the effect of implantation temperature on the structural properties of diamond implanted with high fluences of Si between 5.3x10{sup 17} Si cm{sup -2} and 1x10{sup 18} Si cm{sup -2}. In order to reduce radiation-induced damage and to enhance SiC formation the implantations were performed at elevated temperatures in the range from 900 to 1200 deg. C. Subsequently, all samples were annealed for 10 min at 1500 deg. C in a rf-heated furnace. X-ray diffraction revealed the formation of cubic SiC nanocrystallites in a buried layer inside the implanted diamond. The implantation-induced damage was assessed by analyzing graphitization of the surface-near layer using Raman spectroscopy. With increasing Si fluence the implantation-induced damage rises and the nearly perfect alignment of the formed SiC crystallites within the host diamond lattice deteriorates. However, raising the implantation temperature from 900 to 1000 deg. C reduces the damage in the diamond and increases the amount, size, and epitaxial alignment of the crystalline SiC precipitates. Further increase of the implantation temperature gives no improvement in the quality of the SiC-rich layer. Instead, the damaged diamond converts into graphite and the formation of SiC crystallites is obstructed.

  7. Formation of titanium carbide by high-fluence carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Wenzel, A.; Hammerl, C.; Königer, A.; Rauschenbach, B.

    1997-08-01

    Titanium carbide has been prepared by high fluence carbon ion implantation in titanium at temperatures between -70°C and 450°C. The carbon ion dose has been varied between 1.2 and 36 × 10 17 C +-ions/cm 2 and the ion energy between 30 and 180 keV. The carbon concentration distribution, the structure, the morphology and the microhardness have been examined with Rutherford backscattering, transmission electron microscopy, X-ray diffraction and nanoindentation, respectively. The concentration distribution of carbon is characterized by a symmetric Gaussian profile for doses up to 12×10 17C +-ions/cm 2 and a more and more asymmetrical profile for higher fluences. The evolution of the concentration distribution is discussed on basis of swelling and sputtering. Precipitates of the titanium carbide phase can be observed after implantation at -70°C with doses ⩾3×10 17C +-ions/cm 2. The average diameter of the TiC precipitates is a function of ion dose, temperature and duration of annealing. A significant increase of the hardness in the near surface region of implanted samples can be detected. The measured hardness values depend strongly on ion dose, annealing conditions and the hardness of the unimplanted titanium.

  8. The characterization of PEEK, PET and PI implanted with Co ions to high fluences

    NASA Astrophysics Data System (ADS)

    Mackova, A.; Malinsky, P.; Miksova, R.; Khaibullin, R. I.; Valeev, V. F.; Svorcik, V.; Slepicka, P.; Slouf, M.

    2013-06-01

    Polyimide (PI), polyetheretherketone (PEEK), and polyethylene terephthalate (PET) foils have been implanted with 40 keV Co+ ions at room temperature to the fluences ranging from 0.2 × 1016 cm-2 to 1.0 × 1017 cm-2. Co depth profiles determined by RBS have been compared to SRIM 2008 calculations. The measured projected ranges RP differ slightly from the SRIM simulation because of the compositional changes in polymers implanted to high fluences; especially the widths of the Co profiles are much larger than those simulated by SRIM. Oxygen and hydrogen depletion has been examined using the RBS and ERDA techniques. The surface morphology of the implanted polymers has been characterized using AFM. The PET polymer exhibits lower oxygen escape than the PI and PEEK, but the surface roughness at PET has been affected most significantly after the implantation. Implanted Co atoms tend to aggregate into nanoparticles, the size and distribution of which has been determined from TEM micrographs and using image analysis. The largest diameter of Co particles has been found in implanted PET.

  9. Cation disorder in high-dose, neutron-irradiated spinel

    SciTech Connect

    Sickafus, K.E.; Larson, A.C.; Yu, N.

    1995-04-01

    The objective of this effort is to determine whether MgAl{sub 2}O{sub 4} spinel is a suitable ceramic for fusion applications. The crystal structures of MgAl{sub 2}O{sub 4} spinel single crystals irradiated to high neutron fluences [>5{times}10{sup 26} n/m{sup 2} (E{sub n}>0.1 MeV)] were examined by neutron diffraction. Crystal structure refinement of the highese dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by {approx}20% while increasing by {approx}8% on octahedral sites.

  10. Improvement of the High Fluence Irradiation Facility at the University of Tokyo

    NASA Astrophysics Data System (ADS)

    Murakami, Kenta; Iwai, Takeo; Abe, Hiroaki; Sekimura, Naoto

    2016-08-01

    This paper reports the modification of the High Fluence Irradiation Facility at the University of Tokyo (HIT). The HIT facility was severely damaged during the 2011 earthquake, which occurred off the Pacific coast of Tohoku. A damaged 1.0 MV tandem Cockcroft-Walton accelerator was replaced with a 1.7 MV accelerator, which was formerly used in another campus of the university. A decision was made to maintain dual-beam irradiation capability by repairing the 3.75 MV single-ended Van de Graaff accelerator and reconstructing the related beamlines. A new beamline was connected with a 200 kV transmission electron microscope (TEM) to perform in-situ TEM observation under ion irradiation.

  11. Analysis of the Interaction of Short-Pulse High-Fluence Radiation with Targets

    SciTech Connect

    Lawrence, R.Jeffery

    1999-07-23

    We generally use large-scale hydrocodes to study the dynamic response of targets to influence pulsed radiation loads. However, for many applications where the desired solution does not require a detailed specification of pressure- or velocity-time histories, there are simple analytic approaches that can yield surprisingly accurate results. Examples include determining either the final velocity of a radiation-driven flying plate or the impulse delivered to a structural element. These methods are all based on relatively straightforward use of conservation of mass and momentum, but they typically need one scaling-law parameter. In this context, short pulse means short compared to the characteristic time of the desired response, which allows for the phenomena to be essentially uncoupled. High fluence means that the input energy is great enough to yield vaporization or blowoff of one or more portions of the configuration. We discuss some of these methods, give examples, and suggest limitations and criteria for their use.

  12. Retention of nanocrystalline WNx layers exposed to high-fluence deuterium plasmas

    NASA Astrophysics Data System (ADS)

    Vassallo, E.; Caniello, R.; Angella, G.; Dellasega, D.; Granucci, G.; Mellera, V.; Minelli, D.; Pedroni, M.; Ricci, D.; Rigato, V.; Passoni, M.

    2015-11-01

    For high-power plasma operation regimes in tokamak fusion devices the power load onto W divertor plates must be kept below acceptable limits for materials. N2 gas is likely to be used to reduce the power load. However, because of erosion phenomena, WNx compounds will be produced in the divertor and tritium retention is issue of concern. We report recent experiments using the GYM linear plasma device that examined D retention in WNx compounds exposed to D plasma at divertor relevant fluence (∼1024 m-2). It is shown that WNx compounds with different nitrogen concentration have very similar D retention, lower than the case of the tungsten without nitrogen and in any case lower than the acceptable limit for operation in ITER.

  13. High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor

    SciTech Connect

    Guillen, Donna; Greenwood, Lawrence R.; Parry, James

    2014-06-22

    A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated for up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.

  14. Optical tuning a dichroic multilayer for a high fluence laser application

    SciTech Connect

    R. Chow, Loomis, G.E.; Bibeau, C.; Molau, N.E.; Kanz, V.K.; Beach, R.J.

    1995-10-11

    We report on the design and successful fabrication of a dichroic multilayer stack using a procedure that allowed shifting from high reflectance to high transmittance within 89 rim and surviving high laser fluences. A design approach based on quarter-wave thick layers allowed the multilayer stack to be optically tuned in the last layers of the stack. In our case, this necessitated removing the samples from the coating chamber for a transmittance scan prior to depositing the last layers. This procedure is not commonly practiced due to thermal stress-induced failures in an oxide multilayer. However, D.J. Smith and co-workers reported that reactive e-beam evaporated hafnia from a Hf source produced laser-resistant coatings that had less coating stress compared to coatings evaporated from a HfO{sub 2} source. Tuned dichroic coatings were made that had high transmittance at 941 rim and high reflectance at 1030 nm. The coating was exposed for 5 minutes to a 100 kW/cm{sup 2} 1064 nm (180-ns pulsewidth, 10.7 kHz) laser beam and survived without microscopic damage. The same coating survived a 140 kW/cm{sup 2} of laser intensity without catastrophic damage before optical tuning were performed.

  15. High power neutron production targets

    SciTech Connect

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  16. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration

    PubMed Central

    Mamalis, Andrew; Koo, Eugene; Isseroff, R. Rivkah; Murphy, William; Jagdeo, Jared

    2015-01-01

    Background Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL) is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease. Objective The goal of our study was to investigate the how reactive oxygen species (ROS) free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed. Methods High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR). For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2) on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2. Results High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158

  17. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or

  18. Effects of very low fluences of high-energy protons or iron ions on irradiated and bystander cells.

    PubMed

    Yang, H; Magpayo, N; Rusek, A; Chiang, I-H; Sivertz, M; Held, K D

    2011-12-01

    In space, astronauts are exposed to radiation fields consisting of energetic protons and high atomic number, high-energy (HZE) particles at very low dose rates or fluences. Under these conditions, it is likely that, in addition to cells in an astronaut's body being traversed by ionizing radiation particles, unirradiated cells can also receive intercellular bystander signals from irradiated cells. Thus this study was designed to determine the dependence of DNA damage induction on dose at very low fluences of charged particles. Novel techniques to quantify particle fluence have been developed at the NASA Space Radiation Biology Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The approach uses a large ionization chamber to visualize the radiation beam coupled with a scintillation counter to measure fluence. This development has allowed us to irradiate cells with 1 GeV/nucleon protons and iron ions at particle fluences as low as 200 particles/cm(2) and quantify biological responses. Our results show an increased fraction of cells with DNA damage in both the irradiated population and bystander cells sharing medium with irradiated cells after low fluences. The fraction of cells with damage, manifest as micronucleus formation and 53BP1 focus induction, is about 2-fold higher than background at doses as low as ∼0.47 mGy iron ions (∼0.02 iron ions/cell) or ∼70 μGy protons (∼2 protons/cell). In the irradiated population, irrespective of radiation type, the fraction of damaged cells is constant from the lowest damaging fluence to about 1 cGy, above which the fraction of damaged cells increases with dose. In the bystander population, the level of damage is the same as in the irradiated population up to 1 cGy, but it does not increase above that plateau level with increasing dose. The data suggest that at fluences of high-energy protons or iron ions less than about 5 cGy, the response in irradiated cell populations may be dominated by the bystander response.

  19. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy

    SciTech Connect

    Kry, Stephen F.; Howell, Rebecca M.; Salehpour, Mohammad; Followill, David S.

    2009-04-15

    Neutrons are by-products of high-energy radiation therapy and a source of dose to normal tissues. Thus, the presence of neutrons increases a patient's risk of radiation-induced secondary cancer. Although neutrons have been thoroughly studied in air, little research has been focused on neutrons at depths in the patient where radiosensitive structures may exist, resulting in wide variations in neutron dose equivalents between studies. In this study, we characterized properties of neutrons produced during high-energy radiation therapy as a function of their depth in tissue and for different field sizes and different source-to-surface distances (SSD). We used a previously developed Monte Carlo model of an accelerator operated at 18 MV to calculate the neutron fluences, energy spectra, quality factors, and dose equivalents in air and in tissue at depths ranging from 0.1 to 25 cm. In conjunction with the sharply decreasing dose equivalent with increased depth in tissue, the authors found that the neutron energy spectrum changed drastically as a function of depth in tissue. The neutron fluence decreased gradually as the depth increased, while the average neutron energy decreased sharply with increasing depth until a depth of approximately 7.5 cm in tissue, after which it remained nearly constant. There was minimal variation in the quality factor as a function of depth. At a given depth in tissue, the neutron dose equivalent increased slightly with increasing field size and decreasing SSD; however, the percentage depth-dose equivalent curve remained constant outside the primary photon field. Because the neutron dose equivalent, fluence, and energy spectrum changed substantially with depth in tissue, we concluded that when the neutron dose equivalent is being determined at a depth within a patient, the spectrum and quality factor used should be appropriate for depth rather than for in-air conditions. Alternately, an appropriate percent depth-dose equivalent curve should be

  20. Using high-energy proton fluence to improve risk prediction for consequences of solar particle events

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Hayat, Matthew J.; Feiveson, Alan H.; Cucinotta, Francis A.

    2009-12-01

    The potential for exposure to large solar particle events (SPEs) with high energy levels is a major concern during interplanetary transfer and extra-vehicular activities (EVAs) on the lunar and Mars surface. Previously, we have used data from the last 5 solar cycles to estimate percentiles of dose to a typical blood-forming organ (BFO) for a hypothetical astronaut in a nominally shielded spacecraft during a 120-d lunar mission. As part of this process, we made use of complete energy spectra for 34 large historical SPEs to calculate what the BFO mGy-Eq dose would have been in the above lunar scenario for each SPE. From these calculated doses, we then developed a prediction model for BFO dose based solely on an assumed value of integrated fluence above 30 MeV ( Φ30) for an otherwise unspecified future SPE. In this study, we reasoned that since BFO dose is determined more by protons with higher energies than by those with lower energies, more accurate BFO dose prediction models could be developed using integrated fluence above 60 ( Φ60) and above 100 MeV ( Φ100) as predictors instead of Φ30. However to calculate the unconditional probability of a BFO dose exceeding a pre-specified limit ("BFO dose risk"), one must also take into account the distribution of the predictor ( Φ30,Φ60, or Φ100), as estimated from historical SPEs. But Φ60 and Φ100 have more variability, and less available historical information on which to estimate their distributions over many SPE occurrences, than does Φ30. Therefore, when estimating BFO dose risk there is a tradeoff between increased BFO dose prediction at a given energy threshold and decreased accuracy of models for describing the distribution of that threshold over future SPEs as the threshold increases. Even when taking the second of these two factors into account, we still arrived at the conclusion that overall prediction improves as the energy level threshold increases from 30 to 60 to 100 MeV. These results can be applied

  1. High-fluence Ga-implanted silicon—The effect of annealing and cover layers

    SciTech Connect

    Fiedler, J. Heera, V.; Hübner, R.; Voelskow, M.; Germer, S.; Schmidt, B.; Skorupa, W.

    2014-07-14

    The influence of SiO{sub 2} and SiN{sub x} cover layers on the dopant distribution as well as microstructure of high fluence Ga implanted Si after thermal processing is investigated. The annealing temperature determines the layer microstructure and the cover layers influence the obtained Ga profile. Rapid thermal annealing at temperatures up to 750 °C leads to a polycrystalline layer structure containing amorphous Ga-rich precipitates. Already after a short 20 ms flash lamp annealing, a Ga-rich interface layer is observed for implantation through the cover layers. This effect can partly be suppressed by annealing temperatures of at least 900 °C. However, in this case, Ga accumulates in larger, cone-like precipitates without disturbing the surrounding Si lattice parameters. Such a Ga-rich crystalline Si phase does not exist in the equilibrium phase diagram according to which the Ga solubility in Si is less than 0.1 at. %. The Ga-rich areas are capped with SiO{sub x} grown during annealing which only can be avoided by the usage of SiN{sub x} cover layers.

  2. Helium effects on mechanical properties and microstructure of high fluence ion-irradiated RAFM steel

    NASA Astrophysics Data System (ADS)

    Ogiwara, H.; Kohyama, A.; Tanigawa, H.; Sakasegawa, H.

    2007-08-01

    Reduced-activation ferritic/martensitic steels, RAFS, are leading candidates for the blanket and first wall of fusion reactors, and effects of displacement damage and helium production on mechanical properties and microstructures are important to these applications. Because it is the most effective way to obtain systematic and accurate information about microstructural response under fusion environment, single-(Fe 3+) and dual-(Fe 3+ + He +) irradiations were performed followed by TEM observation and nano-indentation hardness measurement. Dual-ion irradiation at 420 °C induced finer defect clusters compared to single-ion irradiation. These fine defect clusters caused large differences in the hardness increase between these irradiations. TEM analysis clarified that radiation induced precipitates were MX precipitates (M: Ta, W). Small defects invisible to TEM possibly caused the large increase in hardness, in addition to the hardness increment produced by radiation induced MX. In this work, radiation hardening and microstructural evolution accompanied by the synergistic effects to high fluences are discussed.

  3. Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event

    NASA Astrophysics Data System (ADS)

    Kadler, M.; Krauß, F.; Mannheim, K.; Ojha, R.; Müller, C.; Schulz, R.; Anton, G.; Baumgartner, W.; Beuchert, T.; Buson, S.; Carpenter, B.; Eberl, T.; Edwards, P. G.; Eisenacher Glawion, D.; Elsässer, D.; Gehrels, N.; Gräfe, C.; Gulyaev, S.; Hase, H.; Horiuchi, S.; James, C. W.; Kappes, A.; Kappes, A.; Katz, U.; Kreikenbohm, A.; Kreter, M.; Kreykenbohm, I.; Langejahn, M.; Leiter, K.; Litzinger, E.; Longo, F.; Lovell, J. E. J.; McEnery, J.; Natusch, T.; Phillips, C.; Plötz, C.; Quick, J.; Ros, E.; Stecker, F. W.; Steinbring, T.; Stevens, J.; Thompson, D. J.; Trüstedt, J.; Tzioumis, A. K.; Weston, S.; Wilms, J.; Zensus, J. A.

    2016-08-01

    The astrophysical sources of the extraterrestrial, very high-energy neutrinos detected by the IceCube collaboration remain to be identified. Gamma-ray (γ-ray) blazars have been predicted to yield a cumulative neutrino signal exceeding the atmospheric background above energies of 100 TeV, assuming that both the neutrinos and the γ-ray photons are produced by accelerated protons in relativistic jets. As the background spectrum falls steeply with increasing energy, the individual events with the clearest signature of being of extraterrestrial origin are those at petaelectronvolt energies. Inside the large positional-uncertainty fields of the first two petaelectronvolt neutrinos detected by IceCube, the integrated emission of the blazar population has a sufficiently high electromagnetic flux to explain the detected IceCube events, but fluences of individual objects are too low to make an unambiguous source association. Here, we report that a major outburst of the blazar PKS B1424-418 occurred in temporal and positional coincidence with a third petaelectronvolt-energy neutrino event (HESE-35) detected by IceCube. On the basis of an analysis of the full sample of γ-ray blazars in the HESE-35 field, we show that the long-term average γ-ray emission of blazars as a class is in agreement with both the measured all-sky flux of petaelectronvolt neutrinos and the spectral slope of the IceCube signal. The outburst of PKS B1424-418 provides an energy output high enough to explain the observed petaelectronvolt event, suggestive of a direct physical association.

  4. Effects of neutron irradiation on high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Hammerer, John J., Jr.

    1988-06-01

    Neutron irradiation of high temperature superconductors was performed in order to determine the effects of nuclear weapons on these novel materials. This radiation could also be encountered in space radiation belts, fusion reactors and particle accelerators. Fluences used were on the order of 10 to the 18th power fast and thermal neutrons/sq cm. The result of the irradiation was a complete loss of observed superconductivity in YBa2Cu3O7 and ErBa2Cu3O7. A combination of gamma heating of 5 W/g and fast neutron flux imposed serve thermal stress on sample pellets. In two cases, the pellets were reduced to powder. Samples were prepared at the Naval Research Laboratory and the National Research Laboratory and the National Bureau of Standards. They were checked for the Meissner effect using magnetic levitation. The dc four terminal method was used to determine the transition temperature.

  5. Noble Gases in the Monahans Chondrite and Halite: Ar-39 - Ar-40 Age, Space Exposure Age, Trapped Solar Gases, and Neutron Fluence

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.; Garrison, Daniel H.

    2000-01-01

    In the Monahans H5 chondrite, Zolensky et al. report the first occurrence of grains of halite (NaCl), which contain minor sylvite (KCl) and tiny inclusions of liquid water. Here we report Ar-39 - Ar-40 ages of Monahans light (4.53 Ga) and dark phases and of the halite (>4.33 Ga). We report the presence of trapped solar gases in the dark phase, demonstrating that it represents a prior regolith on the Monahans parent body, We also report the cosmic-ray exposure age of Monahans and the neutron fluence experienced by the regolith component. Because the halite grains are apparently located only in the regolith phase, they may have formed by early hydrous activity within the Monahans parent body regolith, or they may have been introduced from outside.

  6. High intensity, pulsed thermal neutron source

    DOEpatents

    Carpenter, J.M.

    1973-12-11

    This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)

  7. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  8. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    SciTech Connect

    Barrera, M. T. Barros, H.; Pino, F.; Sajo-Bohus, L.; Dávila, J.

    2015-07-23

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e’n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction {sup 10}B(n,α){sup 7}Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (∼1.6 10{sup 4} neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  9. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    NASA Astrophysics Data System (ADS)

    Barrera, M. T.; Barros, H.; Pino, F.; Dávila, J.; Sajo-Bohus, L.

    2015-07-01

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e'n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction 10B(n,α)7Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (˜1.6 104 neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  10. High-pressure neutron diffraction

    SciTech Connect

    Xu, Hongwu

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  11. A High Temperature-Tolerant and Radiation-Resistant In-Core Neutron Sensor for Advanced Reactors. Final report

    SciTech Connect

    Cao, Lei; Miller, Don

    2015-01-23

    The objectives of this project are to develop a small and reliable gallium nitride (GaN) neutron sensor that is capable of withstanding high neutron fluence and high temperature, isolating gamma background, and operating in a wide dynamic range. The first objective will be the understanding of the fundamental materials properties and electronic response of a GaN semiconductor materials and device in an environment of high temperature and intense neutron field. To achieve such goal, an in-situ study of electronic properties of GaN device such as I-V, leakage current, and charge collection efficiency (CCE) in high temperature using an external neutron beam will be designed and implemented. We will also perform in-core irradiation of GaN up to the highest yet fast neutron fluence and an off-line performance evaluation.

  12. Applicability of self-activation of an NaI scintillator for measurement of photo-neutrons around a high-energy X-ray radiotherapy machine.

    PubMed

    Wakabayashi, Genichiro; Nohtomi, Akihiro; Yahiro, Eriko; Fujibuchi, Toshioh; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Nakamura, Katsumasa; Hosono, Makoto; Itoh, Tetsuo

    2015-01-01

    The applicability of the activation of an NaI scintillator for neutron monitoring at a clinical linac was investigated experimentally. Thermal neutron fluence rates are derived by measurement of the I-128 activity generated in an NaI scintillator irradiated by neutrons; β-rays from I-128 are detected efficiently by the NaI scintillator. In order to verify the validity of this method for neutron measurement, we irradiated an NaI scintillator at a research reactor, and the neutron fluence rate was estimated. The method was then applied to neutron measurement at a 10-MV linac (Varian Clinac 21EX), and the neutron fluence rate was estimated at the isocenter and at 30 cm from the isocenter. When the scintillator was irradiated directly by high-energy X-rays, the production of I-126 was observed due to photo-nuclear reactions, in addition to the generation of I-128 and Na-24. From the results obtained by these measurements, it was found that the neutron measurement by activation of an NaI scintillator has a great advantage in estimates of a low neutron fluence rate by use of a quick measurement following a short-time irradiation. Also, the future application of this method to quasi real-time monitoring of neutrons during patient treatments at a radiotherapy facility is discussed, as well as the method of evaluation of the neutron dose.

  13. Methodology of Fuel Burn Up Fitting in VVER-1000 Reactor Core by Using New Ex-Vessel Neutron Dosimetry and In-Core Measurements and its Application for Routine Reactor Pressure Vessel Fluence Calculations

    NASA Astrophysics Data System (ADS)

    Borodkin, Pavel; Borodkin, Gennady; Khrennikov, Nikolay

    2016-02-01

    Paper describes the new approach of fitting axial fuel burn-up patterns in peripheral fuel assemblies of VVER-1000 type reactors, on the base of ex-core neutron leakage measurements, neutron-physical calculations and in-core SPND measured data. The developed approach uses results of new ex-vessel measurements on different power units through different reactor cycles and their uncertainties to clear the influence of a fitted fuel burn-up profile to the RPV neutron fluence calculations. The new methodology may be recommended to be included in the routine fluence calculations used in RPV lifetime management and may be taken into account during VVER-1000 core burn-up pattern correction.

  14. Variability in fluence and spectrum of high-energy photon bursts produced by lightning leaders

    NASA Astrophysics Data System (ADS)

    Celestin, Sebastien; Xu, Wei; Pasko, Victor P.

    2015-12-01

    In this paper, we model the production and acceleration of thermal runaway electrons during negative corona flash stages of stepping lightning leaders and the corresponding terrestrial gamma ray flashes (TGFs) or negative cloud-to-ground (-CG) lightning-produced X-ray bursts in a unified fashion. We show how the source photon spectrum and fluence depend on the potential drop formed in the lightning leader tip region during corona flash and how the X-ray burst spectrum progressively converges toward typical TGF spectrum as the potential drop increases. Additionally, we show that the number of streamers produced in a negative corona flash, the source electron energy distribution function, the corresponding number of photons, and the photon energy distribution and transport through the atmosphere up to low-orbit satellite altitudes exhibit a very strong dependence on this potential drop. This leads to a threshold effect causing X-rays produced by leaders with potentials lower than those producing typical TGFs extremely unlikely to be detected by low-orbit satellites. Moreover, from the number of photons in X-ray bursts produced by -CGs estimated from ground observations, we show that the proportionality between the number of thermal runaway electrons and the square of the potential drop in the leader tip region during negative corona flash proposed earlier leads to typical photon fluences on the order of 1 ph/cm2 at an altitude of 500 km and a radial distance of 200 km for intracloud lightning discharges producing 300 MV potential drops, which is consistent with observations of TGF fluences and spectra from satellites.

  15. Elastic stability of high dose neutron irradiated spinel

    SciTech Connect

    Li, Z.; Chan, S.K.; Garner, F.A.

    1995-04-01

    The objective of this effort is to identify ceramic materials that are suitable for fusion reactor applications. Elastic constants (C{sub 11}, C{sub 12}, and C{sub 44}) of spinel (MgAl{sub 2}O{sub 4}) single crystals irradiated to very high neutron fluences have geen measured by an ultrasonic technique. Although results of a neutron diffraction study show that cation occupation sites are significantly changed in the irradiated samples, no measurable differences occurred in their elastic properties. In order to understand such behavior, the elastic properties of a variety of materials with either normal or inverse spinel structures were studied. The cation valence and cation distribution appear to have little influence on the elastic properties of spinel materials.

  16. A thin-foil Faraday collector as a radiation-hard, high fluence charged particle spectrometer

    SciTech Connect

    Cecil, F.E.; Barbour, J.C.; Belle, P. van

    1997-08-01

    The authors have developed a radiation-hard, charged particle spectrometer, consisting of thin parallel conducting foils as current collectors. Prototype detectors have been tested in accelerator bombardments and at the fusion plasma facilities TFTR and JET. In the case of the accelerator bombardments, a detector consisting of 6 Al foils, each of thickness about 6 {micro}m, demonstrated an energy resolution of about 7% for 7 MeV alpha particles. The prototype tested immediately outside TFTR demonstrated the expected insensitivity to moderately high levels of fast neutrons and hard gamma rays. The prototype tested inside JET similarly indicated operational capability at elevated temperatures as a lost alpha particle detector for d-t tokamak fusion plasmas. The robustness and moderately good energy resolution of these detectors should permit the application to tasks such as the first wall measurement of lost alpha particles from tokamak fusion plasmas, the real time measurement of light ion fission fragments from fission reactor experiments and the in-beam measurement of accelerator beam energies as a control diagnostic.

  17. Correlating Fast Fluence to dpa in Atypical Locations

    NASA Astrophysics Data System (ADS)

    Drury, Thomas H.

    2016-02-01

    Damage to a nuclear reactor's materials by high-energy neutrons causes changes in the ductility and fracture toughness of the materials. The reactor vessel and its associated piping's ability to withstand stress without brittle fracture are paramount to safety. Theoretically, the material damage is directly related to the displacements per atom (dpa) via the residual defects from induced displacements. However in practice, the material damage is based on a correlation to the high-energy (E > 1.0 MeV) neutron fluence. While the correlated approach is applicable when the material in question has experienced the same neutron spectrum as test specimens which were the basis of the correlation, this approach is not generically acceptable. Using Monte Carlo and discrete ordinates transport codes, the energy dependent neutron flux is determined throughout the reactor structures and the reactor vessel. Results from the models provide the dpa response in addition to the high-energy neutron flux. Ratios of dpa to fast fluence are calculated throughout the models. The comparisons show a constant ratio in the areas of historical concern and thus the validity of the correlated approach to these areas. In regions above and below the fuel however, the flux spectrum has changed significantly. The correlated relationship of material damage to fluence is not valid in these regions without adjustment. An adjustment mechanism is proposed.

  18. Fluence-to-dose conversion coefficients for neutrons and protons calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Zankl, Maria; Petoussi-Henss, Nina; Niita, Koji

    2009-04-01

    The fluence to organ-dose and effective-dose conversion coefficients for neutrons and protons with energies up to 100 GeV was calculated using the PHITS code coupled to male and female adult reference computational phantoms, which are to be released as a common ICRP/ICRU publication. For the calculation, the radiation and tissue weighting factors, w(R) and w(T), respectively, as revised in ICRP Publication 103 were employed. The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of the absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. By comparing these data with the corresponding data for the effective dose, we found that the numerical compatibilities of the revised w(R) with the Q(L) and Q(y) relationships are fairly established. The calculated data of these dose conversion coefficients are indispensable for constructing the radiation protection systems based on the new recommendations given in ICRP103 for aircrews and astronauts, as well as for workers in accelerators and nuclear facilities.

  19. Photon and neutron fluence-to-kerma conversion factors for ICRP-1975 reference man using improved elemental compositions for bone and marrow of the skeleton

    SciTech Connect

    Kerr, G.D.

    1982-11-01

    A twelve-element approximation of the total-body, soft-tissue and skeletal components of ICRP-1975 Reference Man is used to investigate particle fluence-to-kerma conversion factors for photons with energies between 1 keV and 20 MeV and neutrons with energies between 0.0253 eV and 20 MeV. Several recent ICRP revisions to the elemental composition of Reference Man, which have not been included in other kerma-factor calculations, are taken into account. This work suggests some additional revisions to the major-element content (i.e., H, C, N, and O) and to the mineral and trace-element content (i.e., Na, Mg, P, S, Cl, K, Ca, and Fe) of various total-body, soft-tissue, and skeletal components of Reference Man. The revisions to the bone and red marrow of the skeleton offer significant new refinements in red-bone-marrow dosimetry.

  20. Characterization of magnetic degradation mechanism in a high-neutron-flux environment

    NASA Astrophysics Data System (ADS)

    Samin, Adib; Qiu, Jie; Hattrick-Simpers, Jason; Dai-Hattrick, Liyang; Zheng, Yuan F.; Cao, Lei

    2014-09-01

    Radiation-induced demagnetization of permanent magnets can result in the failure of magnet-based devices operating in high-radiation environments. To understand the mechanism underlying demagnetization, Nd-Fe-B magnets were irradiated with fast and fast plus thermal neutrons at fluences of 1012, 1013, 1014, and 1015 n/cm2, respectively. After irradiation, magnetic flux losses were shown to increase with the fluence. Compared with samples irradiated only with fast neutrons, the samples exposed to the fast plus thermal neutrons have higher magnetic flux losses, which is attributed to the thermal neutron capture reaction of boron. Hysteresis loops of the Nd-Fe-B magnets reveal a slightly increase in the coercivity after irradiation. Full remagnetization of the samples after irradiation was possible, which indicates that structural damage is unlikely an important factor in the demagnetization process at these levels of neutron flux and fluence. Finally, we performed a preliminary Molecular Dynamic (MD) simulation on a cube of ions to obtain a better understanding of the thermal spike mechanism.

  1. High precision thermal neutron detectors

    SciTech Connect

    Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B.

    1994-12-31

    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.

  2. Low versus High Fluence Parameters in the Treatment of Facial Laceration Scars with a 1,550 nm Fractional Erbium-Glass Laser.

    PubMed

    Shim, Hyung-Sup; Jun, Dai-Won; Kim, Sang-Wha; Jung, Sung-No; Kwon, Ho

    2015-01-01

    Purpose. Early postoperative fractional laser treatment has been used to reduce scarring in many institutions, but the most effective energy parameters have not yet been established. This study sought to determine effective parameters in the treatment of facial laceration scars. Methods. From September 2012 to September 2013, 57 patients were enrolled according to the study. To compare the low and high fluence parameters of 1,550 nm fractional erbium-glass laser treatment, we virtually divided the scar of each individual patient in half, and each half was treated with a high and low fluence setting, respectively. A total of four treatment sessions were performed at one-month intervals and clinical photographs were taken at every visit. Results. Results were assessed using the Vancouver Scar Scale (VSS) and global assessment of the two portions of each individual scar. Final evaluation revealed that the portions treated with high fluence parameter showed greater difference compared to pretreatment VSS scores and global assessment values, indicating favorable cosmetic results. Conclusion. We compared the effects of high fluence and low fluence 1,550 nm fractional erbium-glass laser treatment for facial scarring in the early postoperative period and revealed that the high fluence parameter was more effective for scar management.

  3. Multi-Billion Shot, High-Fluence Exposure of Cr(4+): YAG Passive Q-Switch

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Dallas, Joseph L.; Afzal, Robert S.

    1997-01-01

    NASA's Goddard Space Flight Center is developing the Geoscience Laser Altimeter System (GLAS) employing a diode pumped, Q-Switched, ND:YAG laser operating at 40 Hz repetition rate. To meet the five-year mission lifetime goal, a single transmitter would accumulate over 6.3 billion shots. Cr(4+):YAG is a promising candidate material for passively Q-switching the laser. Historically, the performance of saturable absorbers has degraded over long-duration usage. To measure the multi-billion shot performance of Cr(4+):YAG, a passively Q-switched GLAS-like oscillator was tested at an accelerated repetition rate of 500 Hz. The intracavity fluence was calculated to be approximately 2.5 J/cm(exp 2). The laser was monitored autonomously for 165 days. There was no evidence of change in the material optical properties during the 7.2 billion shot test.. All observed changes in laser operation could be attributed to pump laser diode aging. This is the first demonstration of multi-billion shot exposure testing of Cr(4+):YAG in this pulse energy regime

  4. Morphology And Microstructure in Fused Silica Induced By High Fluence Ultraviolet 3omega (355 Nm) Laser Pulses

    SciTech Connect

    Wong, J.; Ferriera, J.L.; Lindsey, E.F.; Haupt, D.L.; Hutcheon, I.D.; Kinney, J.H.

    2007-08-08

    The morphology and microstructure induced in high quality fused silica by UV (355 nm) laser pulses at high fluence (10-45 J/cm{sup 2}) have been investigated using a suite of microscopic and spectroscopic tools. The laser beam has a near-Gaussian profile with a 1/e{sup 2} diameter of 0.98 mm at the sample plane and a pulse length FWHM (full width at half maximum) of 7.5 ns. The damage craters consist of a molten core region (thermal explosion), surrounded by a near concentric region of fractured material. The latter arises from propagation of lateral cracks induced by the laser-generated shock waves, which also compact the crater wall, {approx} 10 {micro}m thick and {approx} 20% higher in density. The size of the damage crater varies with laser fluence, number of pulses, and laser irradiation history. In the compaction layer, there is no detectable change in the Si/O stoichiometry to within {+-} 1.6% and no crystalline nano-particles of Si were observed. Micro- (1-10 {micro}m) and nano- (20-200 nm) cracks are found, however. A lower valence Si{sup 3+} species on the top 2-3 nm of the compaction layer is evident from the Si 2p XPS. The results are used to construct a physical model of the damage crater and to gain critical insight into laser damage process.

  5. Ag transport in high temperature neutron irradiated 3C-SiC

    NASA Astrophysics Data System (ADS)

    O'Connell, J. H.; Neethling, J. H.

    2014-02-01

    The effect of high temperature neutron irradiation on the ability of a Pd-Ag mixture to penetrate 3C-SiC has been investigated. Previous work has revealed enhanced Ag transport in SiC in the presence of the fission product Pd. In this work it has been shown that high temperature neutron irradiation leads to enhanced transport of this Pd-Ag mixture as compared to unirradiated material and that both high irradiation temperature and high neutron fluence is required for significant transport enhancement. The results suggest that grain boundary type and misorientation is not significantly altered by high temperature neutron irradiation, suggesting that these characteristics play only a secondary role in Pd-Ag transport.

  6. Structural changes in InP/Si solar cells following irradiation with protons to very high fluences

    NASA Astrophysics Data System (ADS)

    Messenger, S. R.; Jackson, E. M.; Burke, E. A.; Walters, R. J.; Xapsos, M. A.; Summers, G. P.

    1999-08-01

    Precisely how the short circuit current (JSC) is produced in a proton irradiated n+p InP/Si solar cell at very high fluence levels has been determined from combined measurements of the cell structure using electrochemical capacitance-voltage profiling and detailed analysis of the spectral quantum efficiency. Type conversion in the base region of the cell is shown to occur before an anomalous peak in the degradation curve for JSC is reached at high damage levels. The short circuit current, and hence the cell efficiency, ultimately collapse because the high absorption coefficient of InP eventually prevents the generation of electron-hole pairs close enough to the effective cell junction from being collected.

  7. Mechanism study on mitochondrial fragmentation under oxidative stress caused by high-fluence low-power laser irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Shengnan; Zhou, Feifan; Xing, Da

    2012-03-01

    Mitochondria are dynamic organelles that undergo continual fusion and fission to maintain their morphology and functions, but the mechanism involved is still not clear. Here, we investigated the effect of mitochondrial oxidative stress triggered by high-fluence low-power laser irradiation (HF-LPLI) on mitochondrial dynamics in human lung adenocarcinoma cells (ASTC-a-1). Upon HF-LPLI-triggered oxidative stress, mitochondria displayed a fragmented structure, which was abolished by exposure to dehydroascorbic acid (DHA), a reactive oxygen species scavenger, indicating that oxidative stress can induce mitochondrial fragmentation. Mitochondrial translocation of the profission protein dynamin-related protein 1 (Drp1) was observed following HF-LPLI, demonstrating apoptosis-related activation of Drp1. Notably, DHA pre-treatment prevented HF-LPLI-induced Drp1 activation. We conclude that mitochondrial oxidative stress through activation of Drp1 causes mitochondrial fragmentation.

  8. Structural characterization of nanoscale intermetallic precipitates in highly neutron irradiated reactor pressure vessel steels

    DOE PAGES

    Sprouster, D. J.; Sinsheimer, J.; Dooryhee, E.; Ghose, S.; Wells, P.; Stan, T.; Almirall, N.; Odette, G. R.; Ecker, L. E.

    2015-10-21

    Here, massive, thick-walled pressure vessels are permanent nuclear reactor structures that are exposed to a damaging flux of neutrons from the adjacent core. The neutrons cause embrittlement of the vessel steel that increases with dose (fluence or service time), as manifested by an increasing temperature transition from ductile-to-brittle fracture. Moreover, extending reactor life requires demonstrating that large safety margins against brittle fracture are maintained at the higher neutron fluence associated with 60 to 80 years of service. Here synchrotron-based x-ray diffraction and small angle x-ray scattering measurements are used to characterize a new class of highly embrittling nm-scale Mn-Ni-Si precipitatesmore » that develop in the irradiated steels at high fluence. Furthermore, these precipitates can lead to severe embrittlement that is not accounted for in current regulatory models. Application of the complementarity techniques has, for the very first time, successfully characterized the crystal structures of the nanoprecipitates, while also yielding self-consistent compositions, volume fractions and size distributions.« less

  9. Structural characterization of nanoscale intermetallic precipitates in highly neutron irradiated reactor pressure vessel steels

    SciTech Connect

    Sprouster, D. J.; Sinsheimer, J.; Dooryhee, E.; Ghose, S.; Wells, P.; Stan, T.; Almirall, N.; Odette, G. R.; Ecker, L. E.

    2015-10-21

    Here, massive, thick-walled pressure vessels are permanent nuclear reactor structures that are exposed to a damaging flux of neutrons from the adjacent core. The neutrons cause embrittlement of the vessel steel that increases with dose (fluence or service time), as manifested by an increasing temperature transition from ductile-to-brittle fracture. Moreover, extending reactor life requires demonstrating that large safety margins against brittle fracture are maintained at the higher neutron fluence associated with 60 to 80 years of service. Here synchrotron-based x-ray diffraction and small angle x-ray scattering measurements are used to characterize a new class of highly embrittling nm-scale Mn-Ni-Si precipitates that develop in the irradiated steels at high fluence. Furthermore, these precipitates can lead to severe embrittlement that is not accounted for in current regulatory models. Application of the complementarity techniques has, for the very first time, successfully characterized the crystal structures of the nanoprecipitates, while also yielding self-consistent compositions, volume fractions and size distributions.

  10. Cation disorder in high dose neutron irradiated spinel

    SciTech Connect

    Sickafus, K.E.; Larson, A.C.; Yu, N.; Nastasi, M.; Hollenberg, G.W.; Garner, F.A.; Bradt, R.C.

    1994-06-01

    The crystal structures of MgAl{sub 2}O{sub 4} spinel single crystals irradiated to high neutron fluences (>5{center_dot}10{sup 26} n/m{sup 2} (E{sub n}>0.1 MeV)), were examined by neutron diffraction. Crystal structure refinement of the highest dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by {approximately}20% while increasing by {approximately}8% on octahedral sites. Since the neutron scattering length for Mg is considerably larger than for Al, this result is consistent with site exchange between Mg{sup 2+} ions on tetrahedral sites and Al{sup 3+} ions on octahedral sites. Least squares refinements also indicated that in all irradiated samples, at least 35% of Mg{sup 2+} and Al{sup 3+} ions in the crystal experienced disordering replacements. This retained dpa on the cation sublattices is the largest retained damage ever measured in an irradiated spinel material.

  11. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane.

    PubMed

    Goldhagen, P; Reginatto, M; Kniss, T; Wilson, J W; Singleterry, R C; Jones, I W; Van Steveninck, W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was eight times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56-201 g cm-2 atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  12. Computational Transport Modeling of High-Energy Neutrons Found in the Space Environment

    NASA Technical Reports Server (NTRS)

    Cox, Brad; Theriot, Corey A.; Rohde, Larry H.; Wu, Honglu

    2012-01-01

    The high charge and high energy (HZE) particle radiation environment in space interacts with spacecraft materials and the human body to create a population of neutrons encompassing a broad kinetic energy spectrum. As an HZE ion penetrates matter, there is an increasing chance of fragmentation as penetration depth increases. When an ion fragments, secondary neutrons are released with velocities up to that of the primary ion, giving some neutrons very long penetration ranges. These secondary neutrons have a high relative biological effectiveness, are difficult to effectively shield, and can cause more biological damage than the primary ions in some scenarios. Ground-based irradiation experiments that simulate the space radiation environment must account for this spectrum of neutrons. Using the Particle and Heavy Ion Transport Code System (PHITS), it is possible to simulate a neutron environment that is characteristic of that found in spaceflight. Considering neutron dosimetry, the focus lies on the broad spectrum of recoil protons that are produced in biological targets. In a biological target, dose at a certain penetration depth is primarily dependent upon recoil proton tracks. The PHITS code can be used to simulate a broad-energy neutron spectrum traversing biological targets, and it account for the recoil particle population. This project focuses on modeling a neutron beamline irradiation scenario for determining dose at increasing depth in water targets. Energy-deposition events and particle fluence can be simulated by establishing cross-sectional scoring routines at different depths in a target. This type of model is useful for correlating theoretical data with actual beamline radiobiology experiments. Other work exposed human fibroblast cells to a high-energy neutron source to study micronuclei induction in cells at increasing depth behind water shielding. Those findings provide supporting data describing dose vs. depth across a water-equivalent medium. This

  13. Relief evolution of HOPG under high-fluence 30 keV argon ion irradiation

    NASA Astrophysics Data System (ADS)

    Andrianova, N. N.; Borisov, A. M.; Mashkova, E. S.; Shemukhin, A. A.; Shulga, V. I.; Virgiliev, Yu. S.

    2015-07-01

    The results of the experimental study of sputtering and erosion of the basal plane of HOPG under irradiation with 30-keV Ar+ in the range from RT to 400 °C are presented. It has been found that developed at elevated (⩾250 °C) temperatures needle-like microscopic relief results in twofold sputtering yield increase (Y ≈ 2) in comparison with sputtering of a surface with an etch pits microscopic relief at the temperatures less than the ion-induced texture transition temperature Tt ≈ 150 °C. The effects of ion-induced graphite relief on high-dose sputtering have been studied using binary-collision computer simulation. The relief was modeled as a sine function surface along two mutually perpendicular surface axes. The simulation has shown that at some parameters of the relief the essential part of the bombarding ions undergoes inclined incidence on the walls of surface hillocks, which increases the density of ion-atom collisions near the surface and, correspondingly, the ejection of atoms. This effect leads to non-monotonic behavior of the sputtering yield on the relief aspect ratio (amplitude/period). The sputtering yield decreases upon reaching the maximum at aspect ratio of 4, and becomes lower than that for a flat surface. The simulation permits to estimate the relation of amplitude to period of relief at T < Tt.

  14. High Brightness Neutron Source for Radiography

    SciTech Connect

    Cremer, J. T.; Piestrup, Melvin, A.; Gary, Charles, K.; Harris, Jack, L. Williams, David, J.; Jones, Glenn, E.; Vainionpaa, J. , H.; Fuller, Michael, J.; Rothbart, George, H.; Kwan, J., W.; Ludewigt, B., A.; Gough, R.., A..; Reijonen, Jani; Leung, Ka-Ngo

    2008-12-08

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  15. Managing NIF safety equipment in a high neutron and gamma radiation environment.

    PubMed

    Datte, Philip; Eckart, Mark; Jackson, Mark; Khater, Hesham; Manuel, Stacie; Newton, Mark

    2013-06-01

    The National Ignition Facility (NIF) is a 192 laser beam facility that supports the Inertial Confinement Fusion program. During the ignition experimental campaign, the NIF is expected to perform shots with varying fusion yield producing 14 MeV neutrons up to 20 MJ or 7.1 × 10(18) neutrons per shot and a maximum annual yield of 1,200 MJ. Several infrastructure support systems will be exposed to varying high yield shots over the facility's 30-y life span. In response to this potential exposure, analysis and testing of several facility safety systems have been conducted. A detailed MCNP (Monte Carlo N-Particle Transport Code) model has been developed for the NIF facility, and it includes most of the major structures inside the Target Bay. The model has been used in the simulation of expected neutron and gamma fluences throughout the Target Bay. Radiation susceptible components were identified and tested to fluences greater than 10(13) (n cm(-2)) for 14 MeV neutrons and γ-ray equivalent. The testing includes component irradiation using a 60Co gamma source and accelerator-based irradiation using 4- and 14- MeV neutron sources. The subsystem implementation in the facility is based on the fluence estimates after shielding and survivability guidelines derived from the dose maps and component tests results. This paper reports on the evaluation and implementation of mitigations for several infrastructure safety support systems, including video, oxygen monitoring, pressure monitors, water sensing systems, and access control interfaces found at the NIF.

  16. The role of lithium thin-film coatings on W surface morphology evolution under high-fluence and high temperature He irradiation

    NASA Astrophysics Data System (ADS)

    Neff, A. L.; Allain, J. P.; Bystrov, K.; Morgan, T. W.

    2015-11-01

    Tungsten is the candidate plasma-facing component material for the ITER divertor due to its high sputter threshold, high melting temperature, and excellent thermal conductivity. However, when exposed to He ions with E = 0.01-1.0 keV and high fluences >1026 m-2, as those expected in a burning plasma fusion tokamak divertor, the damage to the surface can include the creation of bubbles, holes and tendril-like fuzz morphology. Recent studies show that adding low-Z impurities (C and Be) to a He plasma can inhibit the growth of fuzz. In other applications, lithium (Li) as a PFC coating in multiple tokamaks has improved plasma performance, yet its interaction with high-Z materials (i.e. W) and its role inhibiting fuzz formation is not well understood. We investigated the effect of a thin ~1000 nm Li coating on formation of W surface defect morphology under high fluence and temperature conditions. Samples were exposed with fluxes of ~1024 m-2s-1 and Tsurf ~ 1100 °C. After irradiation, the surfaces of the samples were characterized with SEM. These results are presented along with XPS and SIMS results elucidating the persistence of Li coatings under these conditions. Work supported by US DOE Contract Nos. DC-SC0010717 and DC-SC0010719.

  17. NEUTRONIC REACTOR HAVING LOCALIZED AREAS OF HIGH THERMAL NEUTRON DENSITIES

    DOEpatents

    Newson, H.W.

    1958-06-01

    A nuclear reactor for the irradiation of materials designed to provide a localized area of high thermal neutron flux density in which the materials to be irradiated are inserted is described. The active portion of the reactor is comprised of a cubicle graphite moderator of about 25 feet in length along each axis which has a plurality of cylindrical channels for accommodatirg elongated tubular-shaped fuel elements. The fuel elements have radial fins for spacing the fuel elements from the channel walls, thereby providing spaces through which a coolant may be passed, and also to serve as a heatconductirg means. Ducts for accommnodating the sample material to be irradiated extend through the moderator material perpendicular to and between parallel rows of fuel channels. The improvement is in the provision of additional fuel element channels spaced midway between 2 rows of the regular fuel channels in the localized area surrounding the duct where the high thermal neutron flux density is desired. The fuel elements normally disposed in the channels directly adjacent the duct are placed in the additional channels, and the channels directly adjacent the duct are plugged with moderator material. This design provides localized areas of high thermal neutron flux density without the necessity of providing additional fuel material.

  18. Neutron measurements around storage casks containing spent fuel and vitrified high-level radioactive waste at ZWILAG.

    PubMed

    Buchillier, T; Aroua, A; Bochud, F O

    2007-01-01

    Spectrometric and dosimetric measurements were made around a cask containing spent fuel and a cask containing high-level radioactive waste at the Swiss intermediate waste and spent fuel storage facility. A Bonner sphere spectrometer, an LB 6411 neutron monitor and an Automess Szintomat 6134A were used to characterise the n-gamma fields at several locations around the two casks. The results of these measurements show that the neutron fluence spectra around the cask containing radioactive waste are harder and higher in intensity than those measured in the vicinity of the spent fuel cask. The ambient dose equivalents measured with the LB 6411 neutron monitor are in good agreement with those obtained using the Bonner spheres, except for locations with soft neutron spectra where the monitor overestimates the neutron ambient dose equivalent by almost 50%. PMID:17494980

  19. Comparison of MCNP calculation and measurement of neutron fluence in a channel for short-time irradiation in the LVR-15 reactor

    SciTech Connect

    Lahodova, Z.; Flibor, S.; Klupak, V.; Kucera, J.; Marek, M.; Viererbl, L.

    2006-07-01

    The main purpose of this work was to evaluate the neutron energy distribution in a channel of the LVR-15 reactor used mostly for short-time neutron activation analysis. Twenty types of activation monitors were irradiated in this channel equipped with a pneumatic facility with a transport time of 3.5 s. The activities measured and the corresponding reaction rates were used to determinate the neutron spectrum. The reaction rates were compared with MCNP calculations to confirm the results. The second purpose of this work was to verify our nuclear data library used for the reaction rate calculations. The experiment results were also incorporated into our database system of neutron energy distribution at the reactor core. (authors)

  20. High resolution Bragg edge transmission spectroscopy at pulsed neutron sources: Proof of principle experiments with a neutron counting MCP detector

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; McPhate, J. B.; Kockelmann, W.; Vallerga, J. V.; Siegmund, O. H. W.; Feller, W. B.

    2011-05-01

    The high spatial and temporal resolution of a neutron counting detector using microchannel plates (MCPs) combined with Medipix2/Timepix readout can substantially improve the spatial resolution of neutron transmission spectroscopy, as shown in our proof-of-principle experiments. Provided that the neutron fluence and data acquisition time are sufficient, transmission spectra can be acquired in each 55×55 μm2 pixel of the detector, allowing high spatial resolution mapping of Bragg edge positions. Our first experiment demonstrates that energy resolution as high as ΔE/E<1% or ΔE<4 mÅ can be achieved. Variation of the residual strain in a well-characterized VAMAS round robin shrink-fitted Al ring-and-plug sample was measured with ˜200 microstrain resolution through an accurate mapping of the first (1 1 1) Bragg edge. The measured stress profile agrees well with the expected values for that particular sample. More developments on the detector processing electronics are required in order to reduce the data acquisition times by enabling simultaneous measurements of spectra in a wide energy range covering multiple Bragg edges.

  1. A comparison of the response of PADC neutron dosemeters in high-energy neutron fields.

    PubMed

    Trompier, F; Boschung, M; Buffler, A; Domingo, C; Cale, E; Chevallier, M-A; Esposito, A; Ferrarini, M; Geduld, D R; Hager, L; Hohmann, E; Mayer, S; Musso, A; Romero-Esposito, M; Röttger, S; Smit, F D; Sashala Naik, A; Tanner, R; Wissmann, F; Caresana, M

    2014-10-01

    Within the framework of the EURADOS Working Group 11, a comparison of passive neutron dosemeters in high-energy neutron fields was organised in 2011. The aim of the exercise was to evaluate the response of poly-allyl-glycol-carbonate neutron dosemeters from various European dosimetry laboratories to high-energy neutron fields. Irradiations were performed at the iThemba LABS facility in South Africa with neutrons having energies up to 66 and 100 MeV. PMID:24298170

  2. Measurements of the absolute neutron fluence spectrum emitted at 0/sup 0/ and 90/sup 0/ from the Little-Boy replica

    SciTech Connect

    Roberts, J.H.; Gold, R.; Preston, C.C.

    1985-01-01

    Nuclear research emulsions (NRE) have been used to characterize the neutron spectrum emitted by the Little-Boy replica. NRE were irradiated at the Little-Boy surface as well as approximately 2m from the center of the Little-Boy replica using polar angles of 0/sup 0/, 30/sup 0/, 60/sup 0/ and 90/sup 0/. For the NRE exposed at 2m, neutron background was determined using shadow shields of borated polyethylene. Emulsion scanning to date has concentrated exclusively on the 2m, 0/sup 0/ and 2m, 90/sup 0/ locations. Approximately 5000 proton-recoil tracks have been measured in NRE irradiated at each of these locations. At the 2m, 90/sup 0/ location the NRE neutron spectrum extends from 0.37 up to 8.2 MeV, whereas the NRE neutron spectrum at the 2m, 0/sup 0/ location is much softer and extends only up to 2.7 MeV. NRE neutron spectrometry results at these two locations are compared with both liquid scintillator neutron spectrometry and Monte Carlo calculations. 7 refs., 3 figs.

  3. Resistivity recovery in high purity iron after fission- and fusion- neutron irradiation*1

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Takehana, S.; Guinan, M. W.

    1988-07-01

    A resistometric study of high-purity iron has been performed after irradiation at 20 K by 14 MeV neutrons in RTNS-II or by fission neutrons in Kyoto University Reactor (KUR). The annealing behavior of iron after fusion neutrons is very different from that after electron irradiation. The fractional recovery in stage I is much smaller and the recovery of vacancy type defects starts to occur at a much lower temperature with a lower activation energy than after electron iradiation. The difference between fission and fusion neutron irradiation, however, is much smaller; the isochronal curves for these two types of irradiation are essentially the same below 170 K. It is concluded that the local defect configuration for these two types of irradiation is similar. The induced resistivity by fusion neutrons is about a factor of 2 larger than by fission neutrons (fluence for E > 1 MeV). This is in accord with a rough estimation of the ratio of damage energy cross sections.

  4. A high-throughput neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Stampfl, Anton; Noakes, Terry; Bartsch, Friedl; Bertinshaw, Joel; Veliscek-Carolan, Jessica; Nateghi, Ebrahim; Raeside, Tyler; Yethiraj, Mohana; Danilkin, Sergey; Kearley, Gordon

    2010-03-01

    A cross-disciplinary high-throughput neutron spectrometer is currently under construction at OPAL, ANSTO's open pool light-water research reactor. The spectrometer is based on the design of a Be-filter spectrometer (FANS) that is operating at the National Institute of Standards research reactor in the USA. The ANSTO filter-spectrometer will be switched in and out with another neutron spectrometer, the triple-axis spectrometer, Taipan. Thus two distinct types of neutron spectrometers will be accessible: one specialised to perform phonon dispersion analysis and the other, the filter-spectrometer, designed specifically to measure vibrational density of states. A summary of the design will be given along with a detailed ray-tracing analysis. Some preliminary results will be presented from the spectrometer.

  5. High energy radiation from neutron stars

    SciTech Connect

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs. (GHT)

  6. Thermal neutron calibration channel at LNMRI/IRD.

    PubMed

    Astuto, A; Salgado, A P; Leite, S P; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T

    2014-10-01

    The Brazilian Metrology Laboratory of Ionizing Radiations (LNMRI) standard thermal neutron flux facility was designed to provide uniform neutron fluence for calibration of small neutron detectors and individual dosemeters. This fluence is obtained by neutron moderation from four (241)Am-Be sources, each with 596 GBq, in a facility built with blocks of graphite/paraffin compound and high-purity carbon graphite. This study was carried out in two steps. In the first step, simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The quality of the resulting neutron fluence in terms of spectrum, cadmium ratio and gamma-neutron ratio was evaluated. In the second step, the system was assembled based on the results obtained on the simulations, and new measurements are being made. These measurements will validate the system, and other intercomparisons will ensure traceability to the International System of Units.

  7. Thermal neutron calibration channel at LNMRI/IRD.

    PubMed

    Astuto, A; Salgado, A P; Leite, S P; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T

    2014-10-01

    The Brazilian Metrology Laboratory of Ionizing Radiations (LNMRI) standard thermal neutron flux facility was designed to provide uniform neutron fluence for calibration of small neutron detectors and individual dosemeters. This fluence is obtained by neutron moderation from four (241)Am-Be sources, each with 596 GBq, in a facility built with blocks of graphite/paraffin compound and high-purity carbon graphite. This study was carried out in two steps. In the first step, simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The quality of the resulting neutron fluence in terms of spectrum, cadmium ratio and gamma-neutron ratio was evaluated. In the second step, the system was assembled based on the results obtained on the simulations, and new measurements are being made. These measurements will validate the system, and other intercomparisons will ensure traceability to the International System of Units. PMID:24625545

  8. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, Ionel Dragos

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  9. A high-sensitivity neutron counter and waste-drum counting with the high-sensitivity neutron instrument

    SciTech Connect

    Hankins, D.E.; Thorngate, J.H.

    1993-04-01

    At Lawrence Livermore National Laboratory (LLNL), a highly sensitive neutron counter was developed that can detect and accurately measure the neutrons from small quantities of plutonium or from other low-level neutron sources. This neutron counter was originally designed to survey waste containers leaving the Plutonium Facility. However, it has proven to be useful in other research applications requiring a high-sensitivity neutron instrument.

  10. Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current

    SciTech Connect

    J. Grames, R. Suleiman, P.A. Adderley, J. Clark, J. Hansknecht, D. Machie, M. Poelker, M.L. Stutzman

    2011-04-01

    GaAs-based dc high voltage photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed high average current facilities that must operate at tens of milliamperes or more. This paper describes techniques to maintain good vacuum while delivering beam, and techniques that minimize the ill effects of ion bombardment, the dominant mechanism that reduces photocathode yield of a GaAs-based dc high voltage photogun. Experimental results presented here demonstrate enhanced lifetime at high beam currents by: (a) operating with the drive laser beam positioned away from the electrostatic center of the photocathode, (b) limiting the photocathode active area to eliminate photoemission from regions of the photocathode that do not support efficient beam delivery, (c) using a large drive laser beam to distribute ion damage over a larger area, and (d) by applying a relatively low bias voltage to the anode to repel ions created within the downstream beam line. A combination of these techniques provided the best total charge extracted lifetimes in excess of 1000 C at dc beam currents up to 9.5 mA, using green light illumination of bulk GaAs inside a 100 kV photogun.

  11. Extended use of alanine irradiated in experimental reactor for combined gamma- and neutron-dose assessment by ESR spectroscopy and thermal neutron fluence assessment by measurement of (14)C by LSC.

    PubMed

    Bartoníček, B; Kučera, J; Světlík, I; Viererbl, L; Lahodová, Z; Tomášková, L; Cabalka, M

    2014-11-01

    Gamma- and neutron doses in an experimental reactor were measured using alanine/electron spin resonance (ESR) spectrometry. The absorbed dose in alanine was decomposed into contributions caused by gamma and neutron radiation using neutron kerma factors. To overcome a low sensitivity of the alanine/ESR response to thermal neutrons, a novel method has been proposed for the assessment of a thermal neutron flux using the (14)N(n,p) (14)C reaction on nitrogen present in alanine and subsequent measurement of (14)C by liquid scintillation counting (LSC).

  12. Portable, high intensity isotopic neutron source provides increased experimental accuracy

    NASA Technical Reports Server (NTRS)

    Mohr, W. C.; Stewart, D. C.; Wahlgren, M. A.

    1968-01-01

    Small portable, high intensity isotopic neutron source combines twelve curium-americium beryllium sources. This high intensity of neutrons, with a flux which slowly decreases at a known rate, provides for increased experimental accuracy.

  13. High resolution characterization of modifications in fused silica after exposure to low fluence 355 nm laser at different repetition frequencies.

    PubMed

    Li, C H; Ju, X; Jiang, X D; Huang, J; Zhou, X D; Zheng, Z; Wu, W D; Zheng, W G; Li, Z X; Wang, B Y; Yu, X H

    2011-03-28

    We report on the characterization of modifications in fused silica after exposure to low fluence (2 J/cm2) 355 nm laser at repetition frequencies of 1 Hz, 5 Hz and 10 Hz. Synchrotron based XRF spectroscopy is employed to study concentration variation of metal inclusions in the surface layer. Positron annihilation lifetime spectroscopy is used to probe atomic size defects variation in bulk silica. FT-IR is used to characterize changes of bond length and angle of Si-O-Si covalent bond of irradiated silica. Compared to the basic frequency, the big loss of cerium and iron concentration, the size enlargement of vacancy cluster and the decrease of Si-O-Si covalent bond length after 10 Hz laser irradiation are illustrated by our data. These tiny modifications provide important data to investigate laser damage mechanism. PMID:21451672

  14. High resolution characterization of modifications in fused silica after exposure to low fluence 355 nm laser at different repetition frequencies.

    PubMed

    Li, C H; Ju, X; Jiang, X D; Huang, J; Zhou, X D; Zheng, Z; Wu, W D; Zheng, W G; Li, Z X; Wang, B Y; Yu, X H

    2011-03-28

    We report on the characterization of modifications in fused silica after exposure to low fluence (2 J/cm2) 355 nm laser at repetition frequencies of 1 Hz, 5 Hz and 10 Hz. Synchrotron based XRF spectroscopy is employed to study concentration variation of metal inclusions in the surface layer. Positron annihilation lifetime spectroscopy is used to probe atomic size defects variation in bulk silica. FT-IR is used to characterize changes of bond length and angle of Si-O-Si covalent bond of irradiated silica. Compared to the basic frequency, the big loss of cerium and iron concentration, the size enlargement of vacancy cluster and the decrease of Si-O-Si covalent bond length after 10 Hz laser irradiation are illustrated by our data. These tiny modifications provide important data to investigate laser damage mechanism.

  15. A high yield neutron target

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.; Weisenbach, P.

    1974-01-01

    Target, in cylinder form, rotates rapidly in front of beam. Titanium tritide film is much thicker than range of accelerated deutron. Sputtering electrode permits full use of thick film. Stream of high-velocity coolant provides efficient transfer of heat from target.

  16. High conduction neutron absorber to simulate fast reactor environment in an existing test reactor

    SciTech Connect

    Donna Post Guillen; Larry R. Greenwood; James R. Parry

    2014-06-22

    A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluence monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.

  17. High Intensity, Pulsed, D-D Neutron Generator

    SciTech Connect

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, Bernhard A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2008-08-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  18. Characterisation of neutron fields around high-energy x-ray radiotherapy machines.

    PubMed

    Králík, M; Turek, K

    2004-01-01

    Photoneutron spectra around the treatment bed of a Varian Clinac 2100C machine were measured using a Bonner sphere spectrometer. To overcome problems with pulse pile-up and detection of non-neutron-induced events, the active detector of thermal neutrons normally used at the centre of the spheres was replaced by a sandwich of four CR-39 track detectors interleaved with 10B radiators. Track densities measured for the CR-39 detectors in Bonner spheres were used for the unfolding of neutron spectra. Neutron fluence and ambient dose equivalent for the whole energy range and partial energy intervals were derived from the neutron spectra.

  19. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    SciTech Connect

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F.; Lopez, A. Legrand

    2011-03-15

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10{sup 20} n/cm{sup 2}. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  20. High resolution neutron imaging of water in PEM fuel cells

    SciTech Connect

    Mukundan, Rangachary; Borup, Rodney L; Davey, John R; Spendelow, Jacob S

    2008-01-01

    Optimal water management in Polymer Electrolyte Membrane (PEM) fuel cells is critical to improving the performance and durability of fuel cell systems especially during transient, start-up and shut-down operations. For example, while a high water content is desirable for improved membrane and catalyst ionomer conductivity, high water content can also block gas access to the triple-phase boundary resulting in lowered performance due to catalyst and gas diffusion layer (GDL) flooding. Visualizing liquid water by neutron imaging has been used over the past decade to study the water distribution inside operating fuel cells. In this paper, the results from our imaging at NIST using their recently installed higher resolution ({approx} 25 mm) Microchannel Plate (MCP) detector with a pixel pitch of 14.7 mm are presented. This detector is capable of quantitatively imaging the water inside the MEA (Membrane Electrode Assembly)/GDL (Gas Diffusion Layer) of working fuel cells and can provide the water profiles within these various components in addition to the channel water. Specially designed fuel cells (active area = 2.25 cm{sup 2}) have been used in order to take advantage of the full detector resolution. The cell design is illustrated in a figure where one of the current collector/end plates is shown. The serpentine pattern was machined into a block of aluminum and plated with nickel and then gold to form the flow field. The measurements were performed using beam no. 1 and aperture no. 2 with a fluence rate of 1.9 x 10{sup 6} neutrons cm{sup -2} sec{sup -1}. The cells were assembled with Gore{sup TM} Primea{sup R} MEAs and SGL Sigracet {sup R} 24 series GDLs (PRIMEA, GORE-SELECT and GORE are trademarks of W. L. Gore & Associates, Inc). All the cells were tested at 80 {sup o}C with 1.2 stoichiometry H{sub 2} and 2.0 stoichiometry air flows.

  1. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions

    SciTech Connect

    Higginson, D. P.; McNaney, J. M.; Swift, D. C.; Mackinnon, A. J.; Patel, P. K.; Petrov, G. M.; Davis, J.; Frenje, J. A.; Jarrott, L. C.; Tynan, G.; Beg, F. N.; Kodama, R.; Nakamura, H.; Lancaster, K. L.

    2011-10-15

    The generation of high-energy neutrons using laser-accelerated ions is demonstrated experimentally using the Titan laser with 360 J of laser energy in a 9 ps pulse. In this technique, a short-pulse, high-energy laser accelerates deuterons from a CD{sub 2} foil. These are incident on a LiF foil and subsequently create high energy neutrons through the {sup 7}Li(d,xn) nuclear reaction (Q = 15 MeV). Radiochromic film and a Thomson parabola ion-spectrometer were used to diagnose the laser accelerated deuterons and protons. Conversion efficiency into protons was 0.5%, an order of magnitude greater than into deuterons. Maximum neutron energy was shown to be angularly dependent with up to 18 MeV neutrons observed in the forward direction using neutron time-of-flight spectrometry. Absolutely calibrated CR-39 detected spectrally integrated neutron fluence of up to 8 x 10{sup 8} n sr{sup -1} in the forward direction.

  2. Neutron and gamma ray production in the 1991 June X-class flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Hua, X. M.; Kozlovsky, B.; Lingenfelter, R. E.; Mandzhavidze, N.

    1992-01-01

    We present new calculations of pion radiation and neutron emission from solar flares. We fit the recently reported high energy GAMMA-1 observations with pion radiation produced in a solar flare magnetic loop. We calculate the expected neutron emission in such a loop model and make predictions of the neutron fluences expected from the 1991 June X-class flares.

  3. Measuring dynamics of Caspase-9 activity in living cells using FRET technique during apoptosis induced by high fluence low-power laser irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Shengnan; Huang, Lei; Sun, Xuegang; Chu, Jiru

    2008-12-01

    We investigated the activity of caspase-9 for its role in the regulation of apoptosis induced by high fluence Low-power laser irradiation (HF-LPLI). Using a fluorescence resonance energy transfer (FRET) reporter STAT9, caspase-9 activity was monitored in a noninvasive technique in living human lung adenocarcinoma cells (ASTC-a-1). Under physiological conditions, proteolytic activity of caspase-9 kept invalid in order to prevent the cell undergoing apoptosis. However, HF-LPLI caused a significant decrease of Venus/ECFP ratio, indicating caspase-9 was activated which sustained from 70 minutes to 200 minutes post irradiation. This behavior was familiar with that under staurosporine (STS) treatment, which was used here as a positive control to show a characteristical activation of caspase-9. These results demonstrate that the control of caspase-9 activity is an important mechanism for the regulation of apoptosis triggered by HF-LPLI.

  4. High efficiency proportional neutron detector with solid liner internal structures

    DOEpatents

    Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.

    2014-08-05

    A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.

  5. Nontargeted stressful effects in normal human fibroblast cultures exposed to low fluences of high charge, high energy (HZE) particles: kinetics of biologic responses and significance of secondary radiations.

    PubMed

    Gonon, Géraldine; Groetz, Jean-Emmanuel; de Toledo, Sonia M; Howell, Roger W; Fromm, Michel; Azzam, Edouard I

    2013-04-01

    The induction of nontargeted stressful effects in cell populations exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation. We investigated the up-regulation of stress markers in confluent normal human fibroblast cultures exposed to 1,000 MeV/u iron ions [linear energy transfer (LET) ∼151 keV/μm] or 600 MeV/u silicon ions (LET ∼50 keV/μm) at mean absorbed doses as low as 0.2 cGy, wherein 1-3% of the cells were targeted through the nucleus by a primary particle. Within 24 h postirradiation, significant increases in the levels of phospho-TP53 (serine 15), p21(Waf1) (CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation were detected, which suggested participation in the stress response of cells not targeted by primary particles. This was supported by in situ studies that indicated greater increases in 53BP1 foci formation, a marker of DNA damage. than expected from the number of primary particle traversals. The effect was expressed as early as 15 min after exposure, peaked at 1 h and decreased by 24 h. A similar tendency occurred after exposure of the cell cultures to 0.2 cGy of 3.7 MeV α particles (LET ∼109 keV/μm) that targets ∼1.6% of nuclei, but not after 0.2 cGy from 290 MeV/u carbon ions (LET ∼13 keV/μm) by which, on average, ∼13% of the nuclei were hit, which highlights the importance of radiation quality in the induced effect. Simulations with the FLUKA multi-particle transport code revealed that fragmentation products, other than electrons, in cell cultures exposed to HZE particles comprise <1% of the absorbed dose. Further, the radial spread of dose due to secondary heavy ion fragments is confined to approximately 10-20 μm. Thus, the latter are unlikely to significantly contribute to stressful effects in cells not targeted by primary HZE particles.

  6. Nontargeted stressful effects in normal human fibroblast cultures exposed to low fluences of high charge, high energy (HZE) particles: kinetics of biologic responses and significance of secondary radiations.

    PubMed

    Gonon, Géraldine; Groetz, Jean-Emmanuel; de Toledo, Sonia M; Howell, Roger W; Fromm, Michel; Azzam, Edouard I

    2013-04-01

    The induction of nontargeted stressful effects in cell populations exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation. We investigated the up-regulation of stress markers in confluent normal human fibroblast cultures exposed to 1,000 MeV/u iron ions [linear energy transfer (LET) ∼151 keV/μm] or 600 MeV/u silicon ions (LET ∼50 keV/μm) at mean absorbed doses as low as 0.2 cGy, wherein 1-3% of the cells were targeted through the nucleus by a primary particle. Within 24 h postirradiation, significant increases in the levels of phospho-TP53 (serine 15), p21(Waf1) (CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation were detected, which suggested participation in the stress response of cells not targeted by primary particles. This was supported by in situ studies that indicated greater increases in 53BP1 foci formation, a marker of DNA damage. than expected from the number of primary particle traversals. The effect was expressed as early as 15 min after exposure, peaked at 1 h and decreased by 24 h. A similar tendency occurred after exposure of the cell cultures to 0.2 cGy of 3.7 MeV α particles (LET ∼109 keV/μm) that targets ∼1.6% of nuclei, but not after 0.2 cGy from 290 MeV/u carbon ions (LET ∼13 keV/μm) by which, on average, ∼13% of the nuclei were hit, which highlights the importance of radiation quality in the induced effect. Simulations with the FLUKA multi-particle transport code revealed that fragmentation products, other than electrons, in cell cultures exposed to HZE particles comprise <1% of the absorbed dose. Further, the radial spread of dose due to secondary heavy ion fragments is confined to approximately 10-20 μm. Thus, the latter are unlikely to significantly contribute to stressful effects in cells not targeted by primary HZE particles. PMID:23465079

  7. Nontargeted Stressful Effects in Normal Human Fibroblast Cultures Exposed to Low Fluences of High Charge, High Energy (HZE) Particles: Kinetics of Biologic Responses and Significance of Secondary Radiations

    PubMed Central

    Gonon, Géraldine; Groetz, Jean-Emmanuel; de Toledo, Sonia M.; Howell, Roger W.; Fromm, Michel; Azzam, Edouard I.

    2014-01-01

    The induction of nontargeted stressful effects in cell populations exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation. We investigated the up-regulation of stress markers in confluent normal human fibroblast cultures exposed to 1,000 MeV/u iron ions [linear energy transfer (LET) ~151 keV/μm] or 600 MeV/u silicon ions (LET ~50 keV/μm) at mean absorbed doses as low as 0.2 cGy, wherein 1–3% of the cells were targeted through the nucleus by a primary particle. Within 24 h postirradiation, significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation were detected, which suggested participation in the stress response of cells not targeted by primary particles. This was supported by in situ studies that indicated greater increases in 53BP1 foci formation, a marker of DNA damage. than expected from the number of primary particle traversals. The effect was expressed as early as 15 min after exposure, peaked at 1 h and decreased by 24 h. A similar tendency occurred after exposure of the cell cultures to 0.2 cGy of 3.7 MeV α particles (LET ~109 keV/μm) that targets ~1.6% of nuclei, but not after 0.2 cGy from 290 MeV/u carbon ions (LET ~13 keV/μm) by which, on average, ~13% of the nuclei were hit, which highlights the importance of radiation quality in the induced effect. Simulations with the FLUKA multi-particle transport code revealed that fragmentation products, other than electrons, in cell cultures exposed to HZE particles comprise <1% of the absorbed dose. Further, the radial spread of dose due to secondary heavy ion fragments is confined to approximately 10–20 μm. Thus, the latter are unlikely to significantly contribute to stressful effects in cells not targeted by primary HZE particles. PMID:23465079

  8. High-energy neutron spectroscopy with thick silicon detectors

    NASA Technical Reports Server (NTRS)

    Kinnison, James D.; Maurer, Richard H.; Roth, David R.; Haight, Robert C.

    2003-01-01

    The high-energy neutron component of the space radiation environment in thick structures such as the International Space Station contributes to the total radiation dose received by an astronaut. Detector design constraints such as size and mass have limited the energy range of neutron spectrum measurements in orbit to about 12 MeV in Space Shuttle studies. We present a new method for high-energy neutron spectroscopy using small silicon detectors that can extend these measurements to more than 500 MeV. The methodology is based on measurement of the detector response function for high-energy neutrons and inversion of this response function with measured deposition data to deduce neutron energy spectra. We also present the results of an initial shielding study performed with the thick silicon detector system for high-energy neutrons incident on polyethylene.

  9. Algorithms for optimizing CT fluence control

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-03-01

    The ability to customize the incident x-ray fluence in CT via beam-shaping filters or mA modulation is known to improve image quality and/or reduce radiation dose. Previous work has shown that complete control of x-ray fluence (ray-by-ray fluence modulation) would further improve dose efficiency. While complete control of fluence is not currently possible, emerging concepts such as dynamic attenuators and inverse-geometry CT allow nearly complete control to be realized. Optimally using ray-by-ray fluence modulation requires solving a very high-dimensional optimization problem. Most optimization techniques fail or only provide approximate solutions. We present efficient algorithms for minimizing mean or peak variance given a fixed dose limit. The reductions in variance can easily be translated to reduction in dose, if the original variance met image quality requirements. For mean variance, a closed form solution is derived. The peak variance problem is recast as iterated, weighted mean variance minimization, and at each iteration it is possible to bound the distance to the optimal solution. We apply our algorithms in simulations of scans of the thorax and abdomen. Peak variance reductions of 45% and 65% are demonstrated in the abdomen and thorax, respectively, compared to a bowtie filter alone. Mean variance shows smaller gains (about 15%).

  10. Neutron dosimetry and damage calculations for the HFIR-JP-23 irradiations

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1997-04-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint U.S. Japanese experiment JP-23, which was conducted in target position G6 of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The maximum neutron fluence at midplanes was 4.4E+22 n/cm{sup 2} resulting in about 9.0 dpa in type 316 stainless steel.

  11. Neutron dosimetry and damage calculations for the HFIR-JP-23 irradiations

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1996-10-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiment JP-23, which was conducted in target position G6 of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The maximum neutron fluence at midplane was 4.4E+22 n/cm{sup 2} resulting in about 9.0 dpa in type 316 stainless steel.

  12. High-Energy Neutron Spectra and Flux Measurements Below Ground

    NASA Astrophysics Data System (ADS)

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; Vetter, Kai

    2016-03-01

    High-energy neutrons are a ubiquitous and often poorly measured background. Below ground, these neutrons could potentially interfere with antineutrino based reactor monitoring experiments as well as other rare-event neutral particle detectors. We have designed and constructed a transportable fast neutron detection system for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The spectrometer uses a multiplicity technique in order to have a higher effective area than traditional transportable high-energy neutron spectrometers. Transportability ensures a common detector-related systematic bias for future measurements. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. A high-energy neutron may interact in the lead producing many secondary neutrons. The detector records the correlated secondary neutron multiplicity. Over many events, the response can be used to infer the incident neutron energy spectrum and flux. As a validation of the detector response, surface measurements have been performed; results confirm agreement with previous experiments. Below ground measurements have been performed at 3 depths (380, 600, and 1450 m.w.e.); results from these measurements will be presented.

  13. Design of a transportable high efficiency fast neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Roecker, C.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Dazeley, S.; Gerling, M.; Marleau, P.; Sweany, M. D.; Vetter, K.

    2016-08-01

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. The multiplicity mode was found to be sensitive to the incident neutron angular distribution.

  14. Superheavy Elements Production in High Intensive Neutron Fluxes

    NASA Astrophysics Data System (ADS)

    Lutostansky, Yu. S.; Lyashuk, V. I.; Panov, I. V.

    2013-06-01

    The possibility of superheavy elements production in high intensive neutron fluxes is being studied. A model of the transuranium isotopes production under conditions of pulse nucleosynthesis in a neutron flux with densities of up to ~1025 neutron/cm2 is considered. The pulse process allows us to divide it in time into two stages: the process of multiple neutron captures (with t < 10-6 s) and the subsequent β-decay of neutron-rich nuclei. The modeling of the transuranium yields takes into account the adiabatic character of the process, the probability of delayed fission, and the emission of delayed neutrons. A target with a binary composition of 238U and 239Pu, 248Cm, and 251Cf isotopes is used to predict the yields of heavy and superheavy isotopes.

  15. Photon and neutron active interrogation of highly enriched uranium.

    SciTech Connect

    Myers, W. L.; Goulding, C. A.; Hollas, C. L.; Moss, C. E.

    2004-01-01

    The physics of photon and neutron active interrogation of highly enriched uranium (HEU) using the delayed neutron reinterrogation method is described in this paper. Two sets of active interrogation experiments were performed using a set of subcritical configurations of cocentric HEU metal hemishells. One set of measurements utilized a pulsed 14-MeV neutron generator as the active source. The second set of measurements utilized a linear accelerator-based bremsstrahlung photon source as an active interrogation source. The neutron responses were measured for both sets of experiments. The operational details and results for both measurement sets are described.

  16. Polarized neutron reflectometry in high magnetic fields

    SciTech Connect

    Fritzsche, H.

    2005-11-15

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe{sub 2}/DyFe{sub 2} multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada.

  17. Neutron radiation induced degradation of diode characteristics

    NASA Astrophysics Data System (ADS)

    Khanna, S. M.; Pepper, G. T.; Stone, R. E.

    1992-12-01

    Neutron radiation effects on diode current-voltage characteristics have been studied for a variety of diode over 1(10)(exp 13) - 3(10)(exp 15) n/sq cm 1 MeV equivalent neutron fluence range. A classification scheme consisting of three types of neutron effects on diode forward characteristics is proposed here for the first time. For constant forward current I(sub F) higher than that in the generation-recombination regime, the diode voltage V(sub F) either increases with fluence phi (Type 1 diode), on V(sub F) first decreases with phi at lower fluence levels and then increases with phi at higher fluence levels (Type 2 diode), or V(sub F) decreases with phi at all fluence levels used in this work (Type 3 diode). Most of the previous results on p-n junction diodes correspond to Type 1 diode results. Type 2 diode results are rather rare in the literature. Several examples of Type 2 diode results are presented here. Type 3 diode results are reported here for other types of diodes not reported earlier. These results are explained qualitatively in terms of the theories for a p-n junction and for radiation effects on semiconductors. It is shown here that a type 3 diode could be developed as a high neutron fluence monitor with three orders of magnitude higher upper limit than the Harshaw p-i-n diode neutron fluence monitor under evaluation at the US Army Aberdeen Proving Grounds, Aberdeen, Md. The results also suggest a methodology for radiation hard diode development.

  18. Position sensitive detection of neutrons in high radiation background field

    SciTech Connect

    Vavrik, D.; Jakubek, J.; Pospisil, S.; Vacik, J.

    2014-01-15

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e{sup −} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup −4}.

  19. Neutron-induced single event burnout in high voltage electronics

    SciTech Connect

    Normand, E.; Wert, J.L.; Oberg, D.L.; Majewski, P.P.; Voss, P.; Wender, S.A.

    1997-12-01

    Energetic neutrons with an atmospheric neutron spectrum, which were demonstrated to induce single event burnout in power MOSFETs, have been shown to induce burnout in high voltage (>3,000V) electronics when operated at voltages as low as 50% of rated voltage. The laboratory failure rates correlate well with field failure rates measured in Europe.

  20. High Intensity Neutron Beams for Small Samples

    NASA Astrophysics Data System (ADS)

    Böni, Peter

    2014-04-01

    As novel materials of excellent homogeneity can often only be grown in small quantities it is important to optimize the transport of neutrons from the moderator to the sample while keeping the background low. Using elliptically or parabolically tapered guides the losses can be strongly reduced such that 50% - 90% of the useful neutrons arrive at the sample. If not properly designed, however, the divergence at the sample becomes inhomogeneous. In contrast, pairs of nested Kirkpatrick-Baez mirrors in Montel geometry yield well focused beams with a compact phase space. The mirrors extract only the useful neutrons from the moderator and effectively interrupt the line of sight leading to a very low background. As the focal distances are typically several meters, the extraction of the neutrons and the installation of bulky sample environment is facilitated.

  1. Glycogen synthase kinase-3β facilitates cell apoptosis induced by high fluence low-power laser irradiation through acceleration of Bax translocation

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Wu, Shengnan; Xing, Da

    2011-03-01

    Glycogen synthase kinase-3β (GSK-3β) is a critical activator of cell apoptosis induced by a diverse array of insults. However, the effects of GSK-3β on the human lung adenocarcinoma cell (ASTC-a-1) apoptosis induced by high fluence low-power laser irradiation (HF-LPLI) are not clear. Here, we showed that GSK-3β was constantly translocated from cytoplasm to nucleus and activated during HF-LPLI-induced cell apoptosis. In addition, we found that co-overexpression of YFP-GSK-3β and CFP-Bax in ASTC-a-1 cells accelerated both Bax translocations to mitochondria and cell apoptosis, compared to the cells expressed CFP-Bax only under HF-LPLI treatment, indicating that GSK-3β facilitated ASTC-a-1 cells apoptosis through acceleration mitochondrial translocation of Bax. Our results demonstrate that GSK-3β exerts some of its pro-apoptotic effects in ASTC-a-1 cells by regulating the mitochondrial localization of Bax, a key component of the intrinsic apoptotic cascade.

  2. High-pressure neutron diffraction studies at LANSCE

    NASA Astrophysics Data System (ADS)

    Zhao, Yusheng; Zhang, Jianzhong; Xu, Hongwu; Lokshin, Konstantin A.; He, Duanwei; Qian, Jiang; Pantea, Cristian; Daemen, Luke L.; Vogel, Sven C.; Ding, Yang; Xu, Jian

    2010-06-01

    The development of neutron diffraction under extreme pressure ( P) and temperature ( T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials science, and earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at the Los Alamos Neutron Science Center (LANSCE) to conduct in situ high- P- T neutron diffraction experiments. We have developed a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high P. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometery. More recently, we have developed high- P low- T gas/liquid cells in conjunction with neutron diffraction. These techniques enable in situ and real-time examination of gas uptake/release processes and allow accurate, time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equations of state, structural phase transitions, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation/decomposition kinetics of methane, CO2 and hydrogen hydrate clathrates, and hydrogen/CO2 adsorption of inclusion compounds such as metal-organic frameworks (MOFs). The aim of our research is to accurately map out phase relations and determine structural parameters (lattice constants, atomic positions, atomic thermal parameters, bond lengths, bond angles, etc.) in the P- T- X space. We are developing further high- P- T technology with a new 2000-ton press, TAPLUS-2000, and a ZIA (Deformation-DIA type) cubic anvil package to routinely achieve pressures up to 20 GPa and temperatures up to 2000 K. The design of a dedicated high- P neutron beamline, LAPTRON, is also underway for simultaneous high- P- T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based

  3. Fluence-to-dose equivalent conversion factors for polyethylene-moderated {sup 252}Cf

    SciTech Connect

    Tanner, J.E.; Soldat, K.L.; Stewart, R.D.; Casson, W.H.

    1994-04-01

    Neutron measurements and calculations were conducted to characterize the polyethylene-moderated {sup 252}Cf source at Oak Ridge National Laboratory`s Radiation Calibration Laboratory (RADCAL). The 12-inch-diameter polyethylene sphere produces a highly scattered neutron spectrum which is more representative of most radiation fields found in the workplace than the D{sub 2}O-moderated {sup 252}Cf neutron spectrum typically used for dosimeter calibration. However, the energy-dependent fluence and dose equivalent must be well known before using such a source for radiation protection purposes. The measurements and calculations were performed as independent checks of the desired quantities which were the flux, the absorbed dose rate, the dose equivalent rate, and the average energy. These quantities were determined for the polyethylene sphere with and without an outer cadmium shell and compared with a D{sub 2}O-moderated {sup 252}Cf source.

  4. Characterization of neutron yield and x-ray spectra of a High Flux Neutron Generator (HFNG)

    NASA Astrophysics Data System (ADS)

    Nnamani, Nnaemeka; HFNG Collaboration

    2015-04-01

    The High Flux Neutron Generator (HFNG) is a DD plasma-based source, with a self-loading target intended for fundamental science and engineering applications, including 40 Ar/39 Ar geochronology, neutron cross section measurements, and radiation hardness testing of electronics. Our first estimate of the neutron yield, based on the population of the 4.486 hour 115 In isomer gave a neutron yield of the order 108 n/sec; optimization is ongoing to achieve the design target of 1011 n/sec. Preliminary x-ray spectra showed prominent energy peaks which are likely due to atomic line-emission from back-streaming electrons accelerated up to 100 keV impinging on various components of the HFNG chamber. Our x-ray and neutron diagnostics will aid us as we continue to evolve the design to suppress back-streaming electrons, necessary to achieve higher plasma beam currents, and thus higher neutron flux. This talk will focus on the characterization of the neutron yield and x-ray spectra during our tests. A collimation system is being installed near one of the chamber ports for improved observation of the x-ray spectra. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and the UC Office of the President Award 12-LR-238745.

  5. A phoswich detector for high-energy neutrons.

    PubMed

    Takada, M; Nakamura, T

    2007-01-01

    A phoswich detector was developed to measure neutron energy spectra from a few MeV to a few hundreds MeV in aircrafts and space crafts. Radiation fields, which both crafts are exposured, consist of neutrons, gamma rays, protons, etc. The phoswich detector can measure neutrons separately from gamma rays and protons. The capability of particle discrimination was tested at HIMAC and was found to be excellent. Detector response functions to neutrons were simulated with the MCNPX code using the measured light outputs of charged particles and were measured with quasi-mono-energetic neutrons produced by the p-Li reaction at the NIRS cyclotron. Test flight measurements at high altitudes, 6.5 and 8.5 km, were performed above the middle part of Japan (cut-off rigidity, 12 GV).

  6. Comparison of Epidermal/Dermal Damage Between the Long-Pulsed 1064 nm Nd:YAG and 755 nm Alexandrite Lasers Under Relatively High Fluence Conditions: Quantitative and Histological Assessments

    PubMed Central

    Lee, Ju Hwan; Park, So Ra; Jo, Jeong Ho; Park, Sung Yun; Seo, Young Kwon

    2014-01-01

    Abstract Objective: The purpose of this study was to compare degrees of epidermal/dermal tissue damage quantitatively and histologically after laser irradiation, to find ideal treatment conditions with relatively high fluence for skin rejuvenation. Background data: A number of recent studies have evaluated the clinical efficacy and safety of therapeutic lasers under relatively low fluence conditions. Methods: We transmitted the long-pulsed 1064 nm Nd:YAG and 755 nm Alexandrite lasers into pig skin according to different fluences and spot diameters, and estimated epidermal/dermal temperatures. Pig skin specimens were stained with hematoxylin and eosin for histological assessments. The fluence conditions comprised 26, 30, and 36 J/cm2, and the spot diameter conditions were 5, 8, and 10 mm. Pulse duration was 30 ms for all experiments. Results: Both lasers produced reliable thermal damage on the dermis without any serious epidermal injuries, under relatively high fluence conditions. The 1064 nm laser provided more active fibrous formations than the 755 nm laser, while higher risks for tissue damages simultaneously occurred. Conclusions: The ideal treatment conditions for skin rejuvenation were 8 mm diameter with 30 J/cm2 and 10 mm diameter with 26 J/cm2 for the 1064 nm laser, and 8 mm diameter with 36 J/cm2 and 10 mm diameter with 26 J/cm2 for the 755 nm laser. PMID:24992273

  7. A U.S. high-flux neutron facility for fusion materials development

    SciTech Connect

    Rei, Donald J

    2010-01-01

    Materials for a fusion reactor first wall and blanket structure must be able to reliably function in an extreme environment that includes 10-15 MW-year/m{sup 2} neutron and heat fluences. The various materials and structural challenges are as difficult and important as achieving a burning plasma. Overcoming radiation damage degradation is the rate-controlling step in fusion materials development. Recent advances with oxide dispersion strengthened ferritic steels show promise in meeting reactor requirements, while multi-timescale atomistic simulations of defect-grain boundary interactions in model copper systems reveal surprising self-annealing phenomenon. While these results are promising, simultaneous evaluation of radiation effects displacement damage ({le} 200 dpa) and in-situ He generation ({le} 2000 appm) at prototypical reactor temperatures and chemical environments is still required. There is currently no experimental facility in the U.S. that can meet these requirements for macroscopic samples. The E.U. and U.S. fusion communities have recently concluded that a fusion-relevant, high-flux neutron source for accelerated characterization of the effects of radiation damage to materials is a top priority for the next decade. Data from this source will be needed to validate designs for the multi-$B next-generation fusion facilities such as the CTF, ETF, and DEMO, that are envisioned to follow ITER and NIF.

  8. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  9. High Speed Motion Neutron Radiography Of Dynamic Events

    NASA Astrophysics Data System (ADS)

    Robinson, A. H.; Bossi, R. H.; Barton, J. P.

    1983-03-01

    This paper describes the development of a technique that enables the neutron radiographic analysis of dynamic processes over a period lasting from one to ten milliseconds. The key to the technique is the use of a neutron pulse that is broad enough to span the duration of the brief event of interest and intense enough to permit recording of the results on a high-speed movie film at frame rates up to 10,000 frames/second. A system has been developed which utilizes the pulsing capability of the OSU TRIGA reactor. The system consists of the Oregon State University TRIGA reactor (pulsing to 3000 MW peak power), a neutron beam collimator, a scintillator neutron conversion screen coupled to an image intensifier, and a 16 mm high speed movie camera. The peak neutron flux incident at the object position is approximately 4 x 1011 n/cm2s with a pulse, full width at half maximum, of 9 ms. The system has been operated in the range of 2000 to 10,000 frames/second and has provided high-speed-motion neutron radiographs for evaluation of the firing cycle of 7.62 mm munition rounds within a steel rifle barrel. The system has also been used to demonstrate the ability to produce neutron radiographic movies of two-phase flow.

  10. First observations of power MOSFET burnout with high energy neutrons

    SciTech Connect

    Oberg, D.L.; Wert, J.L.; Normand, E.; Majewski, P.P.; Wender, S.A.

    1996-12-01

    Single event burnout was seen in power MOSFETs exposed to high energy neutrons. Devices with rated voltage {ge}400 volts exhibited burnout at substantially less than the rated voltage. Tests with high energy protons gave similar results. Burnout was also seen in limited tests with lower energy protons and neutrons. Correlations with heavy-ion data are discussed. Accelerator proton data gave favorable comparisons with burnout rates measured on the APEX spacecraft. Implications for burnout at lower altitudes are also discussed.

  11. Application of imaging plate neutron detector to neutron radiography

    NASA Astrophysics Data System (ADS)

    Fujine, Shigenori; Yoneda, Kenji; Kamata, Masahiro; Etoh, Masahiro

    1999-11-01

    As an imaging plate neutron detector (IP-ND) has been available for thermal neutron radiography (TNR) which has high resolution, high sensitivity and wide range, some basic characteristics of the IP-ND system were measured at the E-2 facility of the KUR. After basic performances of the IP were studied, images with high quality were obtained at a neutron fluence of 2 to 7×10 8 n cm -2. It was found that the IP-ND system with Gd 2O 3 as a neutron converter material has a higher sensitivity to γ-ray than that of a conventional film method. As a successful example, clear radiographs of the flat view for the fuel side plates with boron burnable poison were obtained. An application of the IP-ND system to neutron radiography (NR) is presented in this paper.

  12. Neutron dosimetry with TL albedo dosemeters at high energy accelerators.

    PubMed

    Haninger, T; Fehrenbacher, G

    2007-01-01

    The GSF-Personal Monitoring Service uses the TLD albedo dosemeter as standard neutron personal dosemeter. Due to its low sensitivity for fast neutrons however, it is generally not recommended for workplaces at high-energy accelerators. Test measurements with the albedo dosemeter were performed at the accelerator laboratories of GSI in Darmstadt and DESY in Hamburg to reconsider this hypothesis. It revealed that the albedo dosemeter can also be used as personal dosemeter at these workplaces, because at all measurement locations a significant part of neutrons with lower energies could be found, which were produced by scattering at walls or the ground. PMID:17766258

  13. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Bedogni, R.; Caresana, M.; Charitonidis, N.; Chiti, M.; Esposito, A.; Ferrarini, M.; Severino, C.; Silari, M.

    2012-12-01

    The accurate determination of the ambient dose equivalent in the mixed neutron-photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an "in-field" calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H*(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well

  14. High-Yield D-T Neutron Generator

    SciTech Connect

    Ludewigt, B.A.; Wells, R.P.; Reijonen, J.

    2006-11-15

    A high-yield D-T neutron generator has been developed for neutron interrogation in homeland security applications such as cargo screening. The generator has been designed as a sealed tube with a performance goal of producing 5 {center_dot} 10{sup 11} n/s over a long lifetime. The key generator components developed are a radio-frequency (RF) driven ion source and a beam-loaded neutron production target that can handle a beam power of 10 kW. The ion source can provide a 100 mA D{sup +}/T{sup +} beam current with a high fraction of atomic species and can be pulsed up to frequencies of several kHz for pulsed neutron generator operation. Testing in D-D operation has been started.

  15. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    SciTech Connect

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a {open_quotes}best estimate{close_quotes} of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards.

  16. High sensitivity, solid state neutron detector

    DOEpatents

    Stradins, Pauls; Branz, Howard M; Wang, Qi; McHugh, Harold R

    2015-05-12

    An apparatus (200) for detecting slow or thermal neutrons (160). The apparatus (200) includes an alpha particle-detecting layer (240) that is a hydrogenated amorphous silicon p-i-n diode structure. The apparatus includes a bottom metal contact (220) and a top metal contact (250) with the diode structure (240) positioned between the two contacts (220, 250) to facilitate detection of alpha particles (170). The apparatus (200) includes a neutron conversion layer (230) formed of a material containing boron-10 isotopes. The top contact (250) is pixilated with each contact pixel extending to or proximate to an edge of the apparatus to facilitate electrical contacting. The contact pixels have elongated bodies to allow them to extend across the apparatus surface (242) with each pixel having a small surface area to match capacitance based upon a current spike detecting circuit or amplifier connected to each pixel. The neutron conversion layer (860) may be deposited on the contact pixels (830) such as with use of inkjet printing of nanoparticle ink.

  17. High sensitivity, solid state neutron detector

    DOEpatents

    Stradins, Pauls; Branz, Howard M.; Wang, Qi; McHugh, Harold R.

    2013-10-29

    An apparatus (200) for detecting slow or thermal neutrons (160) including an alpha particle-detecting layer (240) that is a hydrogenated amorphous silicon p-i-n diode structure. The apparatus includes a bottom metal contact (220) and a top metal contact (250) with the diode structure (240) positioned between the two contacts (220, 250) to facilitate detection of alpha particles (170). The apparatus (200) includes a neutron conversion layer (230) formed of a material containing boron-10 isotopes. The top contact (250) is pixilated with each contact pixel extending to or proximate to an edge of the apparatus to facilitate electrical contacting. The contact pixels have elongated bodies to allow them to extend across the apparatus surface (242) with each pixel having a small surface area to match capacitance based upon a current spike detecting circuit or amplifier connected to each pixel. The neutron conversion layer (860) may be deposited on the contact pixels (830) such as with use of inkjet printing of nanoparticle ink.

  18. A neutron diagnostic for high current deuterium beams

    SciTech Connect

    Rebai, M.; Perelli Cippo, E.; Cavenago, M.; Dalla Palma, M.; Pasqualotto, R.; Tollin, M.; Croci, G.; Gervasini, G.; Ghezzi, F.; Grosso, G.; Tardocchi, M.; Murtas, F.; Gorini, G.

    2012-02-15

    A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.

  19. Neutronics Modeling of the High Flux Isotope Reactor using COMSOL

    SciTech Connect

    Chandler, David; Primm, Trent; Freels, James D; Maldonado, G Ivan

    2011-01-01

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory is a versatile 85 MWth research reactor with cold and thermal neutron scattering, materials irradiation, isotope production, and neutron activation analysis capabilities. HFIR staff members are currently in the process of updating the thermal hydraulic and reactor transient modeling methodologies. COMSOL Multiphysics has been adopted for the thermal hydraulic analyses and has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. Modeling reactor transients is a challenging task because of the coupling of neutronics, heat transfer, and hydrodynamics. This paper presents a preliminary COMSOL-based neutronics study performed by creating a two-dimensional, two-group, diffusion neutronics model of HFIR to study the spatially-dependent, beginning-of-cycle fast and thermal neutron fluxes. The 238-group ENDF/B-VII neutron cross section library and NEWT, a two-dimensional, discrete-ordinates neutron transport code within the SCALE 6 code package, were used to calculate the two-group neutron cross sections required to solve the diffusion equations. The two-group diffusion equations were implemented in the COMSOL coefficient form PDE application mode and were solved via eigenvalue analysis using a direct (PARDISO) linear system solver. A COMSOL-provided adaptive mesh refinement algorithm was used to increase the number of elements in areas of largest numerical error to increase the accuracy of the solution. The flux distributions calculated by means of COMSOL/SCALE compare well with those calculated with benchmarked three-dimensional MCNP and KENO models, a necessary first step along the path to implementing two- and three-dimensional models of HFIR in COMSOL for the purpose of studying the spatial dependence of transient-induced behavior in the reactor core.

  20. Heat generation and neutron beam characteristics in a high power pulsed spallation neutron source

    SciTech Connect

    Jerng, D.W.; Carpenter, J.M.

    1996-11-01

    In the course of conceptual design of a high power pulsed spallation source, a Monte Carlo model was developed for heat generation and neutronics studies. In this paper, we present two sets of results. The first set of calculations was performed with a simple target model to investigate general characteristics of power distribution and neutron production with various proton energies ranging from 0.8 to 12 GeV. The second set was performed with a realistic target model including major components of the target system to provide basic parameters for engineering design of a high power pulsed spallation source. Calculated results generally confirm that higher proton energy provides and advantage in target cooling system requirements and yet somewhat lower neutron beam intensity as a counter effect. The heat generation in the systems surrounding the target was investigated in detail and found to have important variation with position and according to proton beam energy. Calculations of the neutron currents from the moderators showed that the neutron beam intensity from moderators in the front region of the target decreased fro higher proton energy while that from moderators in the back region of the target remained almost unchanged.

  1. Calculates Neutron Production in Canisters of High-level Waste

    1993-01-15

    ALPHN calculates the (alpha,n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the (alpha,n) neutron production of each actinide in neutrons per second and the total for the canister. The (alpha,n) neutron production rates are source terms only; that is, they are production rates within the glass andmore » do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister.« less

  2. ANDI-03: a genetic algorithm tool for the analysis of activation detector data to unfold high-energy neutron spectra.

    PubMed

    Mukherjee, Bhaskar

    2004-01-01

    The thresholds of (n,xn) reactions in various activation detectors are commonly used to unfold the neutron spectra covering a broad energy span, i.e. from thermal to several hundreds of MeV. The saturation activities of the daughter nuclides (i.e. reaction products) serve as the input data of specific spectra unfolding codes, such as SAND-II and LOUHI-83. However, most spectra unfolding codes, including the above, require an a priori (guess) spectrum to starting up the unfolding procedure of an unknown spectrum. The accuracy and exactness of the resulting spectrum primarily depends on the subjectively chosen guess spectrum. On the other hand, the Genetic Algorithm (GA)-based spectra unfolding technique ANDI-03 (Activation-detector Neutron DIfferentiation) presented in this report does not require a specific starting parameter. The GA is a robust problem-solving tool, which emulates the Darwinian Theory of Evolution prevailing in the realm of biological world and is ideally suited to optimise complex objective functions globally in a large multidimensional solution space. The activation data of the 27Al(n,alpha)24Na, 116In(n,gamma)116mIn, 12C(n,2n)11C and 209Bi(n,xn)(210-x)Bi reactions recorded at the high-energy neutron field of the ISIS Spallation source (Rutherford Appleton Laboratory, UK) was obtained from literature and by applying the ANDI-03 GA tool, these data were used to unfold the neutron spectra. The total neutron fluence derived from the neutron spectrum unfolded using GA technique (ANDI-03) agreed within +/-6.9% (at shield top level) and +/-27.2% (behind a 60 cm thick concrete shield) with the same unfolded with the SAND-II code.

  3. ANDI-03: a genetic algorithm tool for the analysis of activation detector data to unfold high-energy neutron spectra.

    PubMed

    Mukherjee, Bhaskar

    2004-01-01

    The thresholds of (n,xn) reactions in various activation detectors are commonly used to unfold the neutron spectra covering a broad energy span, i.e. from thermal to several hundreds of MeV. The saturation activities of the daughter nuclides (i.e. reaction products) serve as the input data of specific spectra unfolding codes, such as SAND-II and LOUHI-83. However, most spectra unfolding codes, including the above, require an a priori (guess) spectrum to starting up the unfolding procedure of an unknown spectrum. The accuracy and exactness of the resulting spectrum primarily depends on the subjectively chosen guess spectrum. On the other hand, the Genetic Algorithm (GA)-based spectra unfolding technique ANDI-03 (Activation-detector Neutron DIfferentiation) presented in this report does not require a specific starting parameter. The GA is a robust problem-solving tool, which emulates the Darwinian Theory of Evolution prevailing in the realm of biological world and is ideally suited to optimise complex objective functions globally in a large multidimensional solution space. The activation data of the 27Al(n,alpha)24Na, 116In(n,gamma)116mIn, 12C(n,2n)11C and 209Bi(n,xn)(210-x)Bi reactions recorded at the high-energy neutron field of the ISIS Spallation source (Rutherford Appleton Laboratory, UK) was obtained from literature and by applying the ANDI-03 GA tool, these data were used to unfold the neutron spectra. The total neutron fluence derived from the neutron spectrum unfolded using GA technique (ANDI-03) agreed within +/-6.9% (at shield top level) and +/-27.2% (behind a 60 cm thick concrete shield) with the same unfolded with the SAND-II code. PMID:15353654

  4. A wide-range direction neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Luszik-Bhadra, M.; d'Errico, F.; Hecker, O.; Matzke, M.

    2002-01-01

    A new device is presented which has been developed for measuring the energy and direction of distribution of neutron fluence in fields of broad energy spectra (thermal to 100 MeV) and with a high background of photon, electron and muon radiation. The device was tested in reference fields with different energy and direction distributions of neutron fluence. The direction-integrated fluence spectra agree fairly well with reference spectra. In all cases, the ambient and personal dose equivalent values calculated from measured direction-differential spectra are within 35% of the reference values. Independent measurements of the directional dose equivalent were performed with a directional dose equivalent monitor based on superheated drop detectors.

  5. High Energy Neutron Induced Gamma Production

    SciTech Connect

    Brown, D A; Johnson, M; Navratil, P

    2007-09-28

    N Division has an interest in improving the physics and accuracy of the gamma data it provides to its customers. It was asked to look into major gamma producing reactions for 14 MeV incident neutrons for several low-Z materials and determine whether LLNL's processed data files faithfully represent the current state of experimental and theoretical knowledge for these reactions. To address this, we surveyed the evaluations of the requested materials, made recommendations for the next ENDL release and noted isotopes that will require further experimental study. This process uncovered several major problems in our translation and processing of the ENDF formatted evaluations, most of which have been resolved.

  6. Characterization and quantification of an in-core neutron irradiation facility at a TRIGA II research reactor

    NASA Astrophysics Data System (ADS)

    Aghara, Sukesh; Charlton, William

    2006-07-01

    Experiments have been performed to characterize the neutron environment at an in-core TRIGA type nuclear research reactor. Steady-state thermal and epithermal neutron environment testing is important for many applications including, materials, electronics and biological cells. A well characterized neutron environment at a research reactor, including energy spectrum and spatial distribution, can be useful to many research communities and for educational research. This paper describes the characterization process and an application of exposing electronics to high neutron fluence.

  7. Proton Fluence Prediction Models

    NASA Technical Reports Server (NTRS)

    Feynman, Joan

    1996-01-01

    Many spacecraft anomalies are caused by positively charged high energy particles impinging on the vehicle and its component parts. Here we review the current knowledge of the interplanetary particle environment in the energy ranges that are most important for these effects, 10 to 100 MeV/amu. The emphasis is on the particle environment at 1 AU. State-of-the-art engineering models are briefly described along with comments on the future work required in this field.

  8. New interplanetary proton fluence model

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Armstrong, T. P.; Dao-Gibner, L.; Silverman, S.

    1990-01-01

    A new predictive engineering model for the interplanetary fluence of protons with above 10 MeV and above 30 MeV is described. The data set used is a combination of observations made from the earth's surface and from above the atmosphere between 1956 and 1963 and observations made from spacecraft in the vicinity of earth between 1963 and 1985. The data cover a time period three times as long as the period used in earlier models. With the use of this data set the distinction between 'ordinary proton events' and 'anomalously large events' made in earlier work disappears. This permitted the use of statistical analysis methods developed for 'ordinary events' on the entire data set. The greater than 10 MeV fluences at 1 AU calculated with the new model are about twice those expected on the basis of models now in use. At energies above 30 MeV, the old and new models agree. In contrast to earlier models, the results do not depend critically on the fluence from any one event and are independent of sunspot number. Mission probability curves derived from the fluence distribution are presented.

  9. High Intensity Accelerator and Neutron Source in China

    NASA Astrophysics Data System (ADS)

    Guan, Xialing; Wei, J.; Loong, Chun

    2011-06-01

    High intensity Accelerator is being studied all over world for numerous applications, which includes the waste transmutation, spallation neutron source and material irradiation facilities. The R/D activities of the technology of High intensity accelerator are also developed in China for some year, and have some good facilities around China. This paper will reports the status of some high intensity accelerators and neutron source in China, which including ADS/RFQ; CARR; CSNS; PKUNIFTY & CPHS. This paper will emphatically report the Compact Pulsed Hadron Source (CPHS) led by the Department of Engineering Physics of Tsinghua University in Beijing, China.

  10. High Energy Telescope With Neutron Detection Capabilities (HETn)

    NASA Astrophysics Data System (ADS)

    Posner, A.; Wimmer-Schweingruber, R. F.; Böhm, E.; Böttcher, s.; Connell, J. J.; Dröge, W.; Hassler, D. M.; Heber, B.; Lopate, C.; McKibben, R. B.; Steigies, C. T.

    2007-01-01

    The High-Energy Telescope with neutron detection capabilities (HETn) for the Solar Orbiter will measure and resolve energetic charged particles, in particular electrons, proton, and heavy ions up to Fe including selected isotopes up to energies equivalen to the penetration depth of 100 MeV protons. The full active anti-coincidence encloses detectors sensitive to 1-30 MeV neutrons and 0.5-5 MeV X-/gamma-rays. The sensor consists of the angle-detecting inclined sensors (ADIS) solid-state detector detector telescope utilizing a shared calorimeter for total energy and X-/gamma-ray measurement. A separate plastic detector provides sensitivity to neutrons via the recoil process. HETn will open a new window on solar eruptive events with its neutron detection capability and allows determination of high-energy close to the Sun. Timing and spectral information on neutral particles (neutrons and X-/gamma rays ), on relativistic electrons and high-energy heavy ions will provide new insights into the processes which accelerate particles to high energies at the sun and into transport processes between the source and the spacecraft in the near-Sun environment.

  11. Thermal and structural properties of low-fluence irradiated graphite

    NASA Astrophysics Data System (ADS)

    Lexa, Dusan; Dauke, Michael

    2009-02-01

    The release of Wigner energy from graphite irradiated by fast neutrons at a TRIGA Mark II research reactor has been studied by differential scanning calorimetry and simultaneous differential scanning calorimetry / synchrotron powder X-ray diffraction between 25 and 725 °C at a heating rate of 10 °C min -1. The graphite, having been subject to a fast-neutron fluence from 5.67 × 10 20 to 1.13 × 10 22 n m -2 at a fast-neutron flux ( E > 0.1 MeV) of 7.88 × 10 16 n m -2 s -1 and at temperatures not exceeding 100 °C, exhibits Wigner energies ranging from 1.2 to 21.8 J g -1 and a Wigner energy accumulation rate of 1.9 × 10 -21 J g -1 n -1 m 2. The differential-scanning-calorimeter curves exhibit, in addition to the well known peak at ˜200 °C, a pronounced fine structure consisting of additional peaks at ˜150, ˜230, and ˜280 °C. These peaks correspond to activation energies of 1.31, 1.47, 1.57, and 1.72 eV, respectively. Crystal structure of the samples is intact. The dependence of the c lattice parameter on temperature between 25 and 725 °C as determined by Rietveld refinement leads to the expected microscopic thermal expansion coefficient along the c axis of ˜26 × 10 -6 °C -1. At 200 °C, coinciding with the maximum in the differential-scanning-calorimeter curves, no measurable changes in the rate of thermal expansion have been detected - unlike its decrease previously seen in more highly irradiated graphite.

  12. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    industry, from the initial fuel enrichment and fabrication processes right through to storage or reprocessing, and neutron metrology is clearly important in this area. Neutron fields do, however, occur in other areas, for example where neutron sources are used in oil well logging and moisture measurements. They also occur around high energy accelerators, including photon linear accelerators used for cancer therapy, and are expected to be a more serious problem around the new hadron radiation therapy facilities. Roughly 50% of the cosmic ray doses experienced by fliers at the flight altitudes of commercial aircraft are due to neutrons. Current research on fusion presents neutron metrology with a whole new range of challenges because of the very high fluences expected. One of the most significant features of neutron fields is the very wide range of possible neutron energies. In the nuclear industry, for example, neutrons occur with energies from those of thermal neutrons at a few meV to the upper end of the fission spectrum at perhaps 10 MeV. For cosmic ray dosimetry the energy range extends into the GeV region. This enormous range sets a challenge for designing measuring devices and a parallel challenge of developing measurement standards for characterizing these devices. One of the major considerations when deciding on topics for this special issue was agreeing on what not to include. Modelling, i.e. the use of radiation transport codes, is now a very important aspect of neutron measurements. These calculations are vital for shielding and for instrument design; nevertheless, the topic has only been included here where it has a direct bearing on metrology and the development of standards. Neutron spectrometry is an increasingly important technique for unravelling some of the problems of dose equivalent measurements and for plasma diagnostics in fusion research. However, this topic is at least one step removed from primary metrology and so it was felt that it should not be

  13. High-Energy Neutron Imaging Development at LLNL

    SciTech Connect

    Hall, J M; Rusnak, B; Shen, S

    2005-02-16

    We are proceeding with the development of a high-energy (10 MeV) neutron imaging system for use as an inspection tool in nuclear stockpile stewardship applications. Our goal is to develop and deploy an imaging system capable of detecting cubic-mm-scale voids, cracks or other significant structural defects in heavily-shielded low-Z materials within nuclear device components. The final production-line system will be relatively compact (suitable for use in existing facilities within the DOE complex) and capable of acquiring both radiographic and tomographic (CT) images. In this report, we will review our recent programmatic accomplishments, focusing primarily on progress made in FY04. The design status of the high-intensity, accelerator-driven neutron source and large-format imaging detector associated with the system will be discussed and results from a recent high-energy neutron imaging experiment conducted at the Ohio University Accelerator Laboratory (OUAL) will also be presented.

  14. Correlated Observations of Epithermal Neutrons and Polar Illumination for Orbital Neutron Detectors

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Malakhov, A.; Livengood, T.; Milikh, G. M.; Namkung, M.; Nandikotkur, G.; Neumann, G.; Smith, D.; Sagdeev, R.; Sanin, A. G.; Starr, R. D.; Trombka, J. I.

    2012-01-01

    We correlate Lunar Reconnaisance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) and the Lunar Prospector Neutron Spectrometer's (LPNS) orbital epithermal neutron maps of the Lunar high-latitudes with co-registered illumination maps derived from the Lunar Orbiter Laser Altimeter (LOLA) topography. Epithermal neutron count rate maps were derived from the LEND: 1) Collimated Sensor for Epithermal Neutrons, CSETNI-4 2) Uncollimated Sensor for Epithermal Neutrons, SETN and the Uncollimated Lunar Prospector: 3) Low-altitude and 4) High-altitude mapping phases. In this abstract we illustrate 1) and 3) and include 2) and 4) in our presentation. The correlative study provides unique perspectives on the regional epithermal neutron fluences from the Lunar polar regions under different detector and altitude configurations.

  15. Demonstration of an SiC neutron detector for high-radiation environments

    SciTech Connect

    Seshadri, S.; Dulloo, A.R.; Ruddy, F.H.; Seidel, J.G.; Rowland, L.B.

    1999-03-01

    Neutron response studies have been performed on Schottky diodes fabricated using 4H-SiC material. These studies indicate that neutron detection using SiC diodes is possible without significant degradation in the energy resolution, noise characteristics or, most importantly, the neutron counting rate even after exposure to neutron fluences of 3.4 {times} 10{sup 17} n{sub th}/cm{sup 2} (1 {times} 10{sup 17} n{sub fast}/cm{sup 2}; E{sub n,fast} > 1 MeV), the highest yet examined. The results represent orders of magnitude increased device lifetime in neutron fields compared to commercial silicon based detectors. Additionally, detector response was found to be linear up to thermal neutron fluxes of 2000 n{sub th}/cm{sup 2}/s. However, degradation in the charge collection efficiency due to neutron damage-induced defects prevented self-biased operation after exposures above {approximately}5.7 {times} 10{sup 16} n{sub th}/cm{sup 2}. A carrier removal rate of 9.7 {+-} 0.7 cm{sup {minus}1} was calculated from C-V doping profile measurements on neutron irradiated samples. These results demonstrate the viability of SiC-based detectors for a variety of radiation monitoring applications.

  16. High-energy neutron detection and spectrometry with superheated emulsions

    NASA Astrophysics Data System (ADS)

    d'Errico, Francesco; Prokofiev, Alexander; Sannikov, Alexander; Schuhmacher, Helmut

    2003-06-01

    The response of some superheated emulsions was investigated using quasi-monoenergetic neutron beams in the 46-134 MeV energy range at the Université Catholique de Louvain, Louvain la Neuve, Belgium and at The Svedberg Laboratory, Uppsala, Sweden. In order to determine the detector response to the high-energy beams, the spectra of incident neutrons were folded over functions modeled after the cross-sections for the neutron-induced production of heavy ions from the detector elements. The cross-sections for fluorine and chlorine were produced in this work by means of the Monte Carlo high-energy transport code HADRON based on the cascade-exciton model of nuclear interactions.

  17. Fusion materials high energy-neutron studies. A status report

    SciTech Connect

    Doran, D.G.; Guinan, M.W.

    1980-01-01

    The objectives of this paper are (1) to provide background information on the US Magnetic Fusion Reactor Materials Program, (2) to provide a framework for evaluating nuclear data needs associated with high energy neutron irradiations, and (3) to show the current status of relevant high energy neutron studies. Since the last symposium, the greatest strides in cross section development have been taken in those areas providing FMIT design data, e.g., source description, shielding, and activation. In addition, many dosimetry cross sections have been tentatively extrapolated to 40 MeV and integral testing begun. Extensive total helium measurements have been made in a variety of neutron spectra. Additional calculations are needed to assist in determining energy dependent cross sections.

  18. Reactor vessel fluence evaluation and dosimetry

    SciTech Connect

    Lois, L. )

    1992-01-01

    The methodology currently in use for the estimation of the fast neutron fluence to the pressure vessel (inside surface and reactor cavity) is based on discrete ordinates two-dimensional codes such as DOT or its updated version DORT. This methodology assumes a P[sub 3] scattering, an S[sub 8] quadrature approximation, and cross sections based on the ENDF/B-IV file. Associated one-dimensional codes are often used for the cross-section collapsing portion of the calculation. The neutron spectrum at the pressure vessel location of interest is estimated assuming a [sup 235]U, [sup 239]Pu, or [sup 241]Pu source spectrum or an appropriate combination thereof. The two-dimensional codes and associated methodologies were benchmarked in the early eighties using the results of the PCA and PSF Oak Ridge National Laboratory reactor experiments. The benchmarking experiments were estimated to provide an uncertainty of [approx]10%. The results of the calculations applied to a reactor were estimated to have an uncertainty of [approx]20%. This level of uncertainty was assumed in the estimation of the margin term defined in 10CFR50.61

  19. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    SciTech Connect

    Lacy, Jeffrey L

    2009-05-22

    Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically

  20. Neutron Damage in Mechanically-Cooled High-Purity Germanium Detectors for Field-Portable Prompt Gamma Neutron Activation Analysis (PGNAA) Systems

    SciTech Connect

    E.H. Seabury; C.J. Wharton; A.J. Caffrey; J.B. McCabe; C. DeW. Van Siclen

    2013-10-01

    Prompt Gamma Neutron Activation (PGNAA) systems require the use of a gamma-ray spectrometer to record the gamma-ray spectrum of an object under test and allow the determination of the object’s composition. Field-portable systems, such as Idaho National Laboratory’s PINS system, have used standard liquid-nitrogen-cooled high-purity germanium (HPGe) detectors to perform this function. These detectors have performed very well in the past, but the requirement of liquid-nitrogen cooling limits their use to areas where liquid nitrogen is readily available or produced on-site. Also, having a relatively large volume of liquid nitrogen close to the detector can impact some assessments, possibly leading to a false detection of explosives or other nitrogen-containing chemical. Use of a mechanically-cooled HPGe detector is therefore very attractive for PGNAA applications where nitrogen detection is critical or where liquid-nitrogen logistics are problematic. Mechanically-cooled HPGe detectors constructed from p-type germanium, such as Ortec’s trans-SPEC, have been commercially available for several years. In order to assess whether these detectors would be suitable for use in a fielded PGNAA system, Idaho National Laboratory (INL) has been performing a number of tests of the resistance of mechanically-cooled HPGe detectors to neutron damage. These detectors have been standard commercially-available p-type HPGe detectors as well as prototype n-type HPGe detectors. These tests compare the performance of these different detector types as a function of crystal temperature and incident neutron fluence on the crystal.

  1. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    industry, from the initial fuel enrichment and fabrication processes right through to storage or reprocessing, and neutron metrology is clearly important in this area. Neutron fields do, however, occur in other areas, for example where neutron sources are used in oil well logging and moisture measurements. They also occur around high energy accelerators, including photon linear accelerators used for cancer therapy, and are expected to be a more serious problem around the new hadron radiation therapy facilities. Roughly 50% of the cosmic ray doses experienced by fliers at the flight altitudes of commercial aircraft are due to neutrons. Current research on fusion presents neutron metrology with a whole new range of challenges because of the very high fluences expected. One of the most significant features of neutron fields is the very wide range of possible neutron energies. In the nuclear industry, for example, neutrons occur with energies from those of thermal neutrons at a few meV to the upper end of the fission spectrum at perhaps 10 MeV. For cosmic ray dosimetry the energy range extends into the GeV region. This enormous range sets a challenge for designing measuring devices and a parallel challenge of developing measurement standards for characterizing these devices. One of the major considerations when deciding on topics for this special issue was agreeing on what not to include. Modelling, i.e. the use of radiation transport codes, is now a very important aspect of neutron measurements. These calculations are vital for shielding and for instrument design; nevertheless, the topic has only been included here where it has a direct bearing on metrology and the development of standards. Neutron spectrometry is an increasingly important technique for unravelling some of the problems of dose equivalent measurements and for plasma diagnostics in fusion research. However, this topic is at least one step removed from primary metrology and so it was felt that it should not be

  2. Multi-purpose neutron radiography system

    SciTech Connect

    Barton, J.P.; Bryant, L.E.; Berry, P.

    1996-07-01

    A conceptual design is given for a low cost, multipurpose radiography system suited for the needs of the Los Alamos National Laboratory (LANL). The proposed neutron source is californium-252. One purpose is to provide an in-house capability for occasional, reactor quality, neutron radiography thus replacing the recently closed Omega-West Reactor. A second purpose is to provide a highly reliable standby transportable neutron radiography system. A third purpose is to provide for transportable neutron probe gamma spectroscopy techniques. The cost is minimized by shared use of an existing x-ray facility, and by use of an existing transport cask. The achievable neutron radiography and radioscopy performance characteristics have been verified. The demonstrated image qualities range from high resolution gadolinium - SR film, with L:D = 100:1, to radioscopy using a LIXI image with L:D = 30:1 and neutron fluence 3.4 x 10{sup 5} n/cm{sup 2}.

  3. Realization of highly efficient hexagonal boron nitride neutron detectors

    NASA Astrophysics Data System (ADS)

    Maity, A.; Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2016-08-01

    We report the achievement of highly efficient 10B enriched hexagonal boron nitride (h-10BN) direct conversion neutron detectors. These detectors were realized from freestanding 4-in. diameter h-10BN wafers 43 μm in thickness obtained from epitaxy growth and subsequent mechanical separation from sapphire substrates. Both sides of the film were subjected to ohmic contact deposition to form a simple vertical "photoconductor-type" detector. Transport measurements revealed excellent vertical transport properties including high electrical resistivity (>1013 Ω cm) and mobility-lifetime (μτ) products. A much larger μτ product for holes compared to that of electrons along the c-axis of h-BN was observed, implying that holes (electrons) behave like majority (minority) carriers in undoped h-BN. Exposure to thermal neutrons from a californium-252 (252Cf) source moderated by a high density polyethylene moderator reveals that 43 μm h-10BN detectors possess 51.4% detection efficiency at a bias voltage of 400 V, which is the highest reported efficiency for any semiconductor-based neutron detector. The results point to the possibility of obtaining highly efficient, compact solid-state neutron detectors with high gamma rejection and low manufacturing and maintenance costs.

  4. High voltage supply for neutron tubes in well logging applications

    DOEpatents

    Humphreys, D. Russell

    1989-01-01

    A high voltage supply is provided for a neutron tube used in well logging. The "biased pulse" supply of the invention combines DC and "full pulse" techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  5. High-pressure /sup 3/He gas scintillation neutron spectrometer

    SciTech Connect

    Derzon, M.S.; Slaughter, D.R.; Prussin, S.G.

    1985-10-01

    A high-pressure, /sup 3/He-Xe gas scintillation spectrometer has been developed for neutron spectroscopy on D-D fusion plasmas. The spectrometer exhibits an energy resolution of (121 +- 20 keV) keV (FWHM) at 2.5 MeV and an efficiency of (1.9 +- 0.4) x 10/sup -3/ (n/cm/sup 2/)/sup -1/. The contribution to the resolution (FWHM) from counting statistics is only (22 +- 3 keV) and the remainder is due predominantly to the variation of light collection efficiency with location of neutron events within the active volume of the detector.

  6. High-Energy Neutron Imaging Development at LLNL

    SciTech Connect

    Hall, J; Rusnak, B; Fitsos, P

    2006-12-06

    We are proceeding with the development of a high-energy (10 MeV) neutron imaging system for use as an inspection tool in nuclear stockpile stewardship applications. Our goal is to develop and deploy an imaging system capable of detecting cubic-mm-scale voids, cracks or other significant structural defects in heavily-shielded low-Z materials within nuclear device components. The final production-line system will be relatively compact (suitable for use in existing or proposed facilities within the DOE complex) and capable of acquiring both radiographic and tomographic (CT) images. In this report, we will review our programmatic accomplishments to date, highlighting recent (FY06) progress on engineering and technology development issues related to the proposed imaging system. We will also discuss our preliminary project plan for FY07, including engineering initiatives, proposed radiation damage experiments (neutrons and x rays) and potential options for conducting classified neutron imaging experiments at LLNL.

  7. Particle Test Fluence: What's the Right Number?

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2016-01-01

    While we have been utilizing standard fluence levels such as those listed in the JESD57 document, we have begun revisiting what an appropriate test fluence is when it comes to qualifying a device for single events. Instead of a fixed fluence level or until a specific number of events occurs, a different thought process is required.

  8. Neutron flux spectra and radiation damage parameters for the Russian Bor-60 and SM-2 reactors

    SciTech Connect

    Karasiov, A.V.; Greenwood, L.R.

    1995-04-01

    The objective is to compare neutron irradiation conditions in Russian reactors and similar US facilities. Neutron fluence and spectral information and calculated radiation damage parameters are presented for the BOR-60 (Fast Experimental Reactor - 60 MW) and SM-2 reactors in Russia. Their neutron exposure characteristics are comparable with those of the Experimental Breeder Reactor (ERB-II), the Fast Flux Test Facility (FFTF), and the High Flux Isotope Reactor (HFIR) in the United States.

  9. Using anisotropies in prompt fission neutron coincidences to assess the neutron multiplication of highly multiplying subcritical plutonium assemblies

    NASA Astrophysics Data System (ADS)

    Mueller, J. M.; Mattingly, J.

    2016-07-01

    There is a significant and well-known anisotropy between the prompt neutrons emitted from a single fission event; these neutrons are most likely to be observed at angles near 0° or 180° relative to each other. However, the propagation of this anisotropy through different generations of a fission chain reaction has not been previously studied. We have measured this anisotropy in neutron-neutron coincidences from a subcritical highly-multiplying assembly of plutonium metal. The assembly was a 4.5 kg α-phase plutonium metal sphere composed of 94% 239Pu and 6% 240Pu by mass. Data were collected using two EJ-309 liquid scintillators and two EJ-299 plastic scintillators. The angular distribution of neutron-neutron coincidences was measured at 90° and 180° and found to be largely isotropic. Simulations were performed using MCNPX-PoliMi of similar plutonium metal spheres of varying sizes and a correlation between the neutron multiplication of the assembly and the anisotropy of neutron-neutron coincidences was observed. In principle, this correlation could be used to assess the neutron multiplication of an unknown assembly.

  10. Low-temperature neutron irradiation tests of superconducting magnet materials using reactor neutrons at KUR

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Nakamoto, T.; Ogitsu, T.; Xu, Q.; Itahashi, T.; Kuno, Y.; Kuriyama, Y.; Mori, Y.; Qin, B.; Sato, A.; Sato, K.; Yoshiie, T.

    2012-06-01

    Radiation resistant superconducting magnets are required for high intensity particle accelerators and associated secondary particle beamlines, such as the LHC upgrade and the COMET experiment at J-PARC. Expected neutron fluence on the superconducting coils reaches 1021 n/m2 or higher, therefore the magnet should be designed taking into account the irradiation effects. Irradiation tests for superconducting magnet materials have been carried out using reactor neutrons at Kyoto Univ. Research Reactor Institute. As a first step of the experiment, aluminum alloy stabilizer for superconducting cable was exposed to the reactor neutrons at low temperature and the resistance has been measured in situ during neutron exposure. After the irradiation at 12 K-15 K, the sample resistance increase was proportional to the integrated neutron fluence, and reached almost double for a fast-neutron fluence of 2.3×1020 n/m2 (>0.1 MeV). It is also confirmed that the induced resistance is fully recovered by thermal cycling to room temperature. Details of the irradiation test and the prospects are described.

  11. Preliminary Analysis of the Multisphere Neutron Spectrometer

    NASA Technical Reports Server (NTRS)

    Goldhagen, P.; Kniss, T.; Wilson, J. W.; Singleterry, R. C.; Jones, I. W.; VanSteveninck, W.

    2003-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the Atmospheric Ionizing Radiation (AIR) Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to greater than 10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was 8 times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56 - 201 grams per square centimeter atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  12. Electron Scattering From High-Momentum Neutrons in Deuterium

    SciTech Connect

    A.V. Klimenko; S.E. Kuhn

    2005-10-12

    We report results from an experiment measuring the semi-inclusive reaction D(e,e'p{sub s}) where the proton p{sub s} is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass W*, backward proton momentum {rvec p}{sub s} and momentum transfer Q{sup 2}. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ''bound neutron structure function'' F{sub 2n}{sup eff} was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where effects of FSI appear to be smaller. For p{sub s} > 400 MeV/c, where the neutron is far off-shell, the model overestimates the value of F{sub 2n}{sup eff} in the region of x* between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.

  13. High-x structure function of the virtually free neutron

    NASA Astrophysics Data System (ADS)

    Cosyn, Wim; Sargsian, Misak M.

    2016-05-01

    The pole extrapolation method is applied to the semi-inclusive inelastic electron scattering off the deuteron with tagged spectator protons to extract the high-x structure function of the neutron. This approach is based on the extrapolation of the measured cross sections at different momenta of the spectator proton to the nonphysical pole of the bound neutron in the deuteron. The advantage of the method is in the possibility of suppression of the nuclear effects in a maximally model-independent way. The neutron structure functions obtained in this way demonstrate a surprising x dependence at x ≥0.6 and 1.6 ≤Q2≤3.38 GeV2 , indicating a possible rise of the neutron-to-proton structure functions ratio. If the observed rise is valid in the true deep inelastic region then it may indicate new dynamics in the generation of high-x quarks in the nucleon. One such mechanism we discuss is the possible dominance of short-range isosinglet quark-quark correlations that can enhance the d -quark distribution in the proton.

  14. Neutron Fluence, Dosimetry and Damage Response Determination in In-Core/Ex-Core Components of the VENUS CEN/SCK LWR Using 3-D Monte Carlo Simulations: NEA's VENUS-3 Benchmark

    SciTech Connect

    Perlado, J. Manuel; Marian, Jaime; Sanz, Jesus Garcia

    2000-03-15

    Validating state-of-the-art methods used to predict fluence exposure to reactor pressure vessels (RPVs) has become an important issue in identifying the sources of uncertainty in the estimated RPV fluence for pressurized water reactors. This is a very important aspect in evaluating irradiation damage leading to the hardening and embrittlement of such structural components. One of the major benchmark experiments carried out to test three-dimensional methodologies is the VENUS-3 Benchmark Experiment in which three-dimensional Monte Carlo and S{sub n} codes have proved more efficient than synthesis methods. At the Instituto de Fusion Nuclear (DENIM) at the Universidad Politecnica de Madrid, a detailed full three-dimensional model of the Venus Critical Facility has been developed making use of the Monte Carlo transport code MCNP4B. The problem geometry and source modeling are described, and results, including calculated versus experimental (C/E) ratios as well as additional studies, are presented. Evidence was found that the great majority of C/E values fell within the 10% tolerance and most within 5%. Tolerance limits are discussed on the basis of evaluated data library and fission spectra sensitivity, where a value ranging between 10 to 15% should be accepted. Also, a calculation of the atomic displacement rate has been carried out in various locations throughout the reactor, finding that values of 0.0001 displacements per atom in external components such as the core barrel are representative of this type of reactor during a 30-yr time span.

  15. Practical neutron dosimetry at high energies

    SciTech Connect

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently.

  16. Thermal conductivity changes upon neutron transmutation of {sup 10}B doped diamond

    SciTech Connect

    Jagannadham, K.; Verghese, K.; Butler, J. E.

    2014-08-28

    {sup 10}B doped p-type diamond samples were subjected to neutron transmutation reaction using thermal neutron flux of 0.9 × 10{sup 13} cm{sup −2} s{sup −1} and fast neutron flux of 0.09 × 10{sup 13} cm{sup −2} s{sup −1}. Another sample of epilayer grown on type IIa (110) single crystal diamond substrate was subjected to equal thermal and fast neutron flux of 10{sup 14} cm{sup −2} s{sup −1}. The defects in the diamond samples were previously characterized by different methods. In the present work, thermal conductivity of these diamond samples was determined at room temperature by transient thermoreflectance method. The thermal conductivity change in the samples as a function of neutron fluence is explained by the phonon scattering from the point defects and disordered regions. The thermal conductivity of the diamond samples decreased more rapidly initially and less rapidly for larger neutron fluence. In addition, the thermal conductivity in type IIb diamond decreased less rapidly with thermal neutron fluence compared to the decrease in type IIa diamond subjected to fast neutron fluence. It is concluded that the rate of production of defects during transmutation reaction is slower when thermal neutrons are used. The thermal conductivity of epilayer of diamond subjected to high thermal and fast neutron fluence is associated with the covalent carbon network in the composite structure consisting of disordered carbon and sp{sup 2} bonded nanocrystalline regions.

  17. Levitation apparatus for neutron diffraction investigations on high temperature liquids

    SciTech Connect

    Hennet, Louis; Pozdnyakova, Irina; Bytchkov, Aleksei; Cristiglio, Viviana; Palleau, Pierre; Fischer, Henry E.; Cuello, Gabriel J.; Johnson, Mark; Melin, Philippe; Zanghi, Didier; Brassamin, Severine; Brun, Jean-Francois; Price, David L.; Saboungi, Marie-Louise

    2006-05-15

    We describe a new high temperature environment based on aerodynamic levitation and laser heating designed for neutron scattering experiments up to 3000 deg. C. The sample is heated to the desired temperature with three CO{sub 2} lasers from different directions in order to obtain a homogeneous temperature distribution. The apparent temperature of the sample is measured with an optical pyrometer, and two video cameras are employed to monitor the sample behavior during heating. The levitation setup is enclosed in a vacuum-tight chamber, enabling a high degree of gas purity and a reproducible sample environment for structural investigations on both oxide and metallic melts. High-quality neutron diffraction data have been obtained on liquid Y{sub 3}Al{sub 5}O{sub 12} and ZrNi alloy for relatively short counting times (1.5 h)

  18. HIGH STRENGTH CONTROL RODS FOR NEUTRONIC REACTORS

    DOEpatents

    Lustman, B.; Losco, E.F.; Cohen, I.

    1961-07-11

    Nuclear reactor control rods comprised of highly compressed and sintered finely divided metal alloy panticles and fine metal oxide panticles substantially uniformly distributed theretbrough are described. The metal alloy consists essentially of silver, indium, cadmium, tin, and aluminum, the amount of each being present in centain percentages by weight. The oxide particles are metal oxides of the metal alloy composition, the amount of oxygen being present in certain percentages by weight and all the oxygen present being substantially in the form of metal oxide. This control rod is characterized by its high strength and resistance to creep at elevated temperatures.

  19. Charge-injection-device performance in the high-energy-neutron environment of laser-fusion experiments

    SciTech Connect

    Marshall, F. J.; DeHaas, T.; Glebov, V. Yu.

    2010-10-15

    Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester's OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated ({approx}10{sup 14} DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick-Baez microscopes. The neutron fluences ranged from {approx}10{sup 7} to {approx}10{sup 9} neutrons/cm{sup 2} and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to {approx}10{sup 15}, depending on distance and shielding.

  20. Charge-Injection-Device Performance in the High-Energy-Neutron Environment of Laser-Fusion Experiments

    SciTech Connect

    Marshall, F.J.; DeHaas, T.; Glebov, V.Yu.

    2010-10-22

    Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester’s OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated (~10^14 DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick–Baez microscopes. The neutron fluences ranged from ~10^7 to ~10^9 neutrons/cm^2 and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to ~10^15, depending on distance and shielding.

  1. Charge-injection-device performance in the high-energy-neutron environment of laser-fusion experiments.

    PubMed

    Marshall, F J; DeHaas, T; Glebov, V Yu

    2010-10-01

    Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester's OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated (∼10(14) DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick-Baez microscopes. The neutron fluences ranged from ∼10(7) to ∼10(9) neutrons/cm(2) and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to ∼10(15), depending on distance and shielding.

  2. First calibration of the Canadian high-energy neutron spectrometry system with HAWK TEPC and Liulin at PTB

    NASA Astrophysics Data System (ADS)

    Bennett, L. G. I.; Boudreau, M.; Lewis, B. J.; Smith, M. B.; Zhang, M.; Ing, H.

    The Canadian high-energy neutron spectrometry system CHENSS was constructed for the Canadian Space Agency CSA to measure accurately the neutron spectrum in low-Earth orbit A large specially formulated viscoelastic scintillator uses proton recoil and good pulse-shape discrimination to measure from a few MeV to about 100 MeV With delays in the NASA flight schedule for the shuttle opportunities exist to calibrate the CHENSS at up to three reference calibration fields Measurements were taken at Physikalisch-Technische Bundesanstalt PTB in late 2005 and similar calibrations are planned at Institut de Physique Nucl e aire of the Universit e catholique de Louvain UCL and the iThemba Laboratory for Accelerator-Based Sciences In separate exposures two spectrometers a HAWK tissue equivalent proportional counter TEPC and a Liulin and an Eberline FH41B-10 gamma-ray and neutron-sensitive meter used for airborne cosmic radiation measurements were calibrated for comparison The CHENSS HAWK and Liulin were subjected to 2 5 5 0 14 8 and 19 0 MeV neutrons with fluence measurements taken by PTB staff In addition since the HAWK and Liulin are capable of measuring the total dose equivalent they were also calibrated with PTB s Cs-137 and Cf-252 sources The results of these calibrations and comparison with all of the equipment will be reported in the paper The knowledge gained from this first calibration effort will be beneficial for the CHENSS when flown in a GAS can on a future shuttle flight as well as for the HAWK Liulin and FH41B-10 used

  3. High-energy neutron dosimetry with superheated drop detectors.

    PubMed

    d'Errico, F; Agosteo, S; Sannikov, A V; Silari, M

    2002-01-01

    A systematic analysis of the response of dichlorodifluoromethane superheated drop detectors was performed in the 46-133 MeV energy range. Experiments with quasi-monoenergetic neutron beams were performed at the Université Catholique de Leuvain-la-Neuve, Belgium and the Svedberg Laboratory, Sweden, while tests in a broad field were performed at CERN. To determine the response of the detectors to the high-energy beams, the spectra of incident neutrons were folded over functions modelled after the cross sections for the production of heavy ions from the detector elements. The cross sections for fluorine and chlorine were produced in this work by means of the Monte Carlo high-energy transport code HADRON based on the cascade exciton model of nuclear interactions. The new response data permit the interpretation of measurements at high-energy accelerators and on high-altitude commercial flights, where a 30-50% under-response had been consistently recorded with respect to neutron dose equivalent. The introduction of a 1 cm lead shell around the detectors effectively compensates most of the response defect. PMID:12382936

  4. Neutron emission and fragment yield in high-energy fission

    SciTech Connect

    Grudzevich, O. T. Klinov, D. A.

    2013-07-15

    The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of {sup 235}U nuclei.

  5. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  6. Implications of high-energy neutron observations from solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Murphy, R. J.; Kozlovsky, B.; Lingenfelter, R. E.

    1983-01-01

    The time-dependent flux of high-energy neutrons discovered from the solar flare of 1980 June 21 provides a new technique for determining the total number and energy spectrum of accelerated protons and nuclei at the sun. The implications of these observations on gamma-ray emission, relativistic electron spectrum and number, proton and electron energy contents, and the location of the interaction region are also examined.

  7. Measurements of high energy neutrons penetrated through iron shields using the Self-TOF detector and an NE213 organic liquid scintillator

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Nakao, N.; Nunomiya, T.; Nakamura, T.; Fukumura, A.; Takada, M.

    2002-11-01

    Neutron energy spectra penetrated through iron shields were measured using the Self-TOF detector and an NE213 organic liquid scintillator which have been newly developed by our group at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) of National Institute of Radiological Sciences (NIRS), Japan. Neutrons were generated by bombarding 400 MeV/nucleon C ion on a thick (stopping-length) copper target. The neutron spectra in the energy range from 20 to 800 MeV were obtained through the FORIST unfolding code with their response functions and compared with the MCNPX calculations combined with the LA150 cross section library. The neutron fluence measured by the NE213 detector was simulated by the track length estimator in the MCNPX, and evaluated the contribution of the room-scattered neutrons. The calculations are in fairly good agreement with the measurements. Neutron fluence attenuation lengths were obtained from the experimental results and the calculation.

  8. High efficiency neutron sensitive amorphous silicon pixel detectors

    SciTech Connect

    Mireshghi, A.; Cho, G.; Drewery, J.S.; Hong, W.S.; Jing, T.; Lee, H.; Kaplan, S.N.; Perez-Mendez, V.

    1993-11-01

    A multi-layer a-Si:H based thermal neutron detector was designed, fabricated and simulated by Monte Carlo method. The detector consists of two PECVD deposited a-Si:H pin detectors interfaced with coated layers of Gd, as a thermal neutron converter. Simulation results indicate that a detector consisting of 2 Gd films with thicknesses of 2 and 4 {mu}m, sandwiched properly with two layers of sufficiently thick ({approximately}30{mu}m) amorphous silicon diodes, has the optimum parameters. The detectors have an intrinsic efficiency of about 42% at a threshold setting of 7000 electrons, with an expected average signal size of {approximately}12000 electrons which is well above the noise. This efficiency will be further increased to nearly 63%, if we use Gd with 50% enrichment in {sup 157}Gd. We can fabricate position sensitive detectors with spatial resolution of 300 {mu}m with gamma sensitivity of {approximately}1 {times} 10{sup {minus}5}. These detectors are highly radiation resistant and are good candidates for use in various application, where high efficiency, high resolution, gamma insensitive position sensitive neutron detectors are needed.

  9. Fluence-to-absorbed-dose conversion coefficients for neutron beams from 0.001 eV to 100 GeV calculated for a set of pregnant female and fetus models

    NASA Astrophysics Data System (ADS)

    Taranenko, Valery; Xu, X. George

    2008-03-01

    Protection of fetuses against external neutron exposure is an important task. This paper reports a set of absorbed dose conversion coefficients for fetal and maternal organs for external neutron beams using the RPI-P pregnant female models and the MCNPX code. The newly developed pregnant female models represent an adult female with a fetus including its brain and skeleton at the end of each trimester. The organ masses were adjusted to match the reference values within 1%. For the 3 mm cubic voxel size, the models consist of 10-15 million voxels for 35 organs. External monoenergetic neutron beams of six standard configurations (AP, PA, LLAT, RLAT, ROT and ISO) and source energies 0.001 eV-100 GeV were considered. The results are compared with previous data that are based on simplified anatomical models. The differences in dose depend on source geometry, energy and gestation periods: from 20% up to 140% for the whole fetus, and up to 100% for the fetal brain. Anatomical differences are primarily responsible for the discrepancies in the organ doses. For the first time, the dependence of mother organ doses upon anatomical changes during pregnancy was studied. A maximum of 220% increase in dose was observed for the placenta in the nine months model compared to three months, whereas dose to the pancreas, small and large intestines decreases by 60% for the AP source for the same models. Tabulated dose conversion coefficients for the fetus and 27 maternal organs are provided.

  10. Development of a high-count-rate neutron detector with position sensitivity and high efficiency

    SciTech Connect

    Nelson, R.; Sandoval, J.

    1996-10-01

    While the neutron scattering community is bombarded with hints of new technologies that may deliver detectors with high-count-rate capability, high efficiency, gamma-ray insensitivity, and high resolution across large areas, only the time-tested, gas-filled {sup 3}He and scintillation detectors are in widespread use. Future spallation sources with higher fluxes simply must exploit some of the advanced detector schemes that are as yet unproved as production systems. Technologies indicating promise as neutron detectors include pixel arrays of amorphous silicon, silicon microstrips, microstrips with gas, and new scintillation materials. This project sought to study the competing neutron detector technologies and determine which or what combination will lead to a production detector system well suited for use at a high-intensity neutron scattering source.

  11. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    SciTech Connect

    Skalyga, V.; Sidorov, A.; Izotov, I.; Golubev, S.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  12. Neutron Flux Characterization of Irradiation Holes for Irradiation Test at HANARO

    NASA Astrophysics Data System (ADS)

    Yang, Seong Woo; Cho, Man Soon; Choo, Kee Nam; Park, Sang Jun

    2016-02-01

    The High flux Advanced Neutron Application ReactOr (HANARO) is a unique research reactor in the Republic of Korea, and has been used for irradiation testing since 1998. To conduct irradiation tests for nuclear materials, the irradiation holes of CT and OR5 have been used due to a high fast-neutron flux. Because the neutron flux must be accurately calculated to evaluate the neutron fluence of irradiated material, it was conducted using MCNP. The neutron flux was measured using fluence monitor wires to verify the calculated result. Some evaluations have been conducted, however, more than 20% errors have frequently occurred at the OR irradiation hole, while a good agreement between the calculated and measured data was shown at the CT irradiation hole.

  13. Neutron energy determination with a high-purity germanium detector

    NASA Technical Reports Server (NTRS)

    Beck, Gene A.

    1992-01-01

    Two areas that are related to planetary gamma-ray spectrometry are investigated. The first task was the investigation of gamma rays produced by high-energy charged particles and their secondaries in planetary surfaces by means of thick target bombardments. The second task was the investigation of the effects of high-energy neutrons on gamma-ray spectral features obtained with high-purity Ge-detectors. For both tasks, as a function of the funding level, the experimental work was predominantly tied to that of other researchers, whenever there was an opportunity to participate in bombardment experiments at large or small accelerators for charged particles.

  14. Isotopic Dependence of GCR Fluence behind Shielding

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.

    2006-01-01

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross-sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (+/-100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (approx.170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.

  15. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    SciTech Connect

    Croci, G.; Tardocchi, M.; Rebai, M.; Cippo, E. Perelli; Gorini, G.; Cazzaniga, C.; Palma, M. Dalla; Pasqualotto, R.; Tollin, M.; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Cavenago, M.

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  16. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    NASA Astrophysics Data System (ADS)

    Croci, G.; Rebai, M.; Cazzaniga, C.; Palma, M. Dalla; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Pasqualotto, R.; Cippo, E. Perelli; Tardocchi, M.; Tollin, M.; Cavenago, M.; Gorini, G.

    2014-08-01

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  17. Concurrent Monte Carlo transport and fluence optimization with fluence adjusting scalable transport Monte Carlo

    PubMed Central

    Svatos, M.; Zankowski, C.; Bednarz, B.

    2016-01-01

    Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship within a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the

  18. Neutron radiation dosimetry in high altitude flight personnel.

    PubMed

    Baily, P E

    1982-08-01

    In an attempt to determine cosmic radiation exposure in high altitude NASA flight personnel, eight WB-57F flight crewmen were monitored for a period of six months using a combination radiation dosimeter. Each dosimeter consisted of two thermoluminescent chips capable of measuring gamma dose and one Albedo and two Track Etch neutron dosimeters. A total of 78 flights were monitored consisting of 251 flight hours at altitudes above 14 km (45,000 ft). The maximum yearly dose equivalent measured was 104 mrem, a value well below the Maximum Permissible Dose (MPD) of 5.0 rem/y for occupational exposures and 0.5 rem/y for members of the general public. A discussion of the theory and use of several types of neutron dosimeters is included. PMID:7181814

  19. X-ray Polarisation in highly-magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Turolla, Roberto

    2016-07-01

    Radiation emitted in the vicinity of an isolated neutron star is expected to be intrinsically polarized because the high magnetic field (B˜10^{12}-10^{15} G) strongly affects the plasma opacity. The polarization fraction and polarization angle measured by an instrument, however, do not necessary coincide with the intrinsic ones, due to the effects of both quantum electrodynamics in the highly magnetized vacuum around the star (the vacuum polarization) and rotation of the Stokes parameters in the plane perpendicular to the line of sight induced by the non-uniform magnetic field. I'll review theoretical estimates for the polarization observables in the case of thermal surface emission from neutron stars and of the (soft) X-ray emission from magnetars, where magnetospheric reprocessing of radiation by resonant cyclotron scattering is important. The potentials of X-ray polarimetry to probe the physical conditions in neutron star sources and to test, for the first time, vacuum polarization are discussed in connection with the recently proposed polarimetric missions, like XIPE.

  20. NIST Calibration of a Neutron Spectrometer ROSPEC.

    PubMed

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated (252)Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements.

  1. NIST Calibration of a Neutron Spectrometer ROSPEC

    PubMed Central

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated 252Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements. PMID:27274944

  2. High resolution neutron imaging capabilities at BOA beamline at Paul Scherrer Institut

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Morgano, M.; Panzner, T.; Lehmann, E.; Filgers, U.; Vallerga, J. V.; McPhate, J. B.; Siegmund, O. H. W.; Feller, W. B.

    2015-06-01

    The cold neutron spectrum of the Beamline for neutron Optics and other Applications (BOA) at Paul Scherrer Institut enables high contrast neutron imaging because neutron cross sections for many materials increase with neutron wavelength. However, for many neutron imaging applications, spatial resolution can be as important as contrast. In this paper the neutron transmission imaging capabilities of an MCP/Timepix detector installed at the BOA beamline are presented, demonstrating the possibilities for studying sub-20 μm features in various samples. In addition to conventional neutron radiography and microtomography, the high degree of neutron polarization at the BOA beamline can be very attractive for imaging of magnetic fields, as demonstrated by our measurements. We also show that a collimated cold neutron beamline combined with a high resolution detector can produce image artifacts, (e.g. edge enhancements) due to neutron refraction and scattering. The results of our experiments indicate that the BOA beamline is a valuable addition to neutron imaging facilities, providing improved and sometimes unique capabilities for non-destructive studies with cold neutrons.

  3. High Rate Measurements of the Neutron Camera and Broadband Neutron Spectrometer at JET

    NASA Astrophysics Data System (ADS)

    Giacomelli, L.; Conroy, S.; Belli, F.; Gorini, G.; Joffrin, E.; Kiptily, V.; Lerche, E.; Murari, A.; Plyusnin, V. V.; Popovichev, S.; Reux, C.; Riva, M.; Syme, D. B.

    The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). At JET, the neutron emission profile of Deuterium (D) or Deuterium-Tritium (DT) plasmas is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system (DAQ) based on Field Programmable Gated Array (FPGA). According to specifications, the DAQ is capable of high rate measurements up to 0.5 MCps. A new compact broadband spectrometer (KM12) based on BC501A organic liquid scintillating material was also installed in the same year and implements a similar DAQ as for KN3. This article illustrates the observations on the DAQ high count rate performance of both KN3 and KM12 in the latest JET D plasma experiments related to hybrid scenario and runaway electrons. For the latter, >1 MCps event rate was achieved with consequences on the behavior of the FPGA and on the reliability of the measurements.

  4. Neutron transport in doubly heterogeneous media of high temperature reactors

    NASA Astrophysics Data System (ADS)

    Gert, Godfree

    The AGENT code methodology was extended to include the ability to simulate the neutronics of the Very High Temperature Reactor (VHTR). This involved changes to both the geometry and flux solver modules. Changes to the geometry module included the extension of the AGENT lattice mode to model hexagonal assemblies. This involved the modification of existing primitive bodies and the addition of new ones to the AGENT library of primitive bodies. Changes to the flux solver enables AGENT to treat the Double Heterogeneity problem that results from the random distribution of the fuel grains in the graphite matrix of the VHTR fuel region. The implemented Double Heterogeneity treatment uses renewal theory with a Poisson and an isotropic distributions assumed for the chord lengths in the graphite matrix and the fuel grain regions respectively. Assuming collisionless transport, the resulting set of closed renewal equations are used to derive the analytical expressions for the flux along the neutron paths in the matrix and fuel grain regions. First flight collision and escape probabilities are used to solve for the flux in the fuel grain regions and combined with the Method of Characteristics the neutron flux in the entire double heterogeneous region is solved. The resulting modifications to the AGENT code have been verified against relevant benchmarks.

  5. Third intercomparison of DOE High-Energy Neutron Personnel Dosimeters

    SciTech Connect

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1995-12-31

    An intercomparison of the dose equivalent response of personal dosimeters in use at U.S. Department of Energy (DOE) accelerator facilities was performed at the European Laboratory for Particle Physics (CERN). This is the third such intercomparison sponsored by the DOE. The two previous intercomparisons were performed in a U.S. laboratory using a source of high-energy neutrons. This intercomparison was performed at two positions relative to the main beam line at CERN. The neutron-energy spectra present at these two locations were measured by CERN personnel using Bonner sphere spectrometer systems. In addition, the dose equivalents at these two positions were also measured by CERN personnel using a tissue equivalent proportional counter system. The DOE dosimeters were mailed to CERN and returned after irradiation for readout. The results of this intercomparison are relatively consistent with the two previous intercomparisons performed in the U.S. The relative dose equivalent responses of neutron dosimeter types, such as albedo, nuclear emulsion and track-etch plastics, were found to have variations relative to the mean value responses of up to a factor of three.

  6. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE PAGES

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; et al

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  7. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    SciTech Connect

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  8. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    SciTech Connect

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-15

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  9. Neutron reflectometry on highly absorbing films and its application to 10B4C-based neutron detectors

    PubMed Central

    Piscitelli, F.; Khaplanov, A.; Devishvili, A.; Schmidt, S.; Höglund, C.; Birch, J.; Dennison, A. J. C.; Gutfreund, P.; Hall-Wilton, R.; Van Esch, P.

    2016-01-01

    Neutron reflectometry is a powerful tool used for studies of surfaces and interfaces. The absorption in the typical studied materials is neglected and this technique is limited only to the reflectivity measurement. For strongly absorbing nuclei, the absorption can be directly measured by using the neutron-induced fluorescence technique which exploits the prompt particle emission of absorbing isotopes. This technique is emerging from soft matter and biology where highly absorbing nuclei, in very small quantities, are used as a label for buried layers. Nowadays, the importance of absorbing layers is rapidly increasing, partially because of their application in neutron detection; a field that has become more active also due to the 3He-shortage. We extend the neutron-induced fluorescence technique to the study of layers of highly absorbing materials, in particular 10B4C. The theory of neutron reflectometry is a commonly studied topic; however, when a strong absorption is present the subtle relationship between the reflection and the absorption of neutrons is not widely known. The theory for a general stack of absorbing layers has been developed and compared to measurements. We also report on the requirements that a 10B4C layer must fulfil in order to be employed as a converter in neutron detection. PMID:26997902

  10. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.

    2015-12-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.

  11. Neutron dosimetry and damage calculations for the HFIR-JP-9, -12, and -15 irradiations

    SciTech Connect

    Greenwood, L.R.; Baldwin, C.A.

    1998-03-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiments JP-9, -12, and -15. These experiments were conducted in target positions of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) for a period of nearly four years. The maximum neutron fluence at midplane was 2.6 {times} 10{sup 23} n/cm{sup 2} (7.1 {times} 10{sup 22} n/cm{sup 2} above 0.1 MeV), resulting in about 60 dpa and 3900 appm helium in type 316 stainless steel.

  12. Neutron dosimetry and damage calculations for the HFIR-JP-20 irradiation

    SciTech Connect

    Greenwood, L.R.; Baldwin, C.A.

    1998-03-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiment JP-20, which was conducted in a target position of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The maximum total neutron fluence at midplane was 4.2 {times} 10{sup 22} n/cm{sup 2} (1.0 {times} 10{sup 22} n/cm{sup 2} above 0.1 MeV), resulting in about 8.4 dpa and 388 appm helium in type 316 stainless steel.

  13. Neutron dosimetry and damage calculations for the HFIR-MFE-200J-1 irradiation

    SciTech Connect

    Greenwood, L.R.; Baldwin, C.A.

    1998-03-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiment MFE-200-J-, which was conducted in the removable beryllium (RB) position of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The maximum neutron fluence at midplane was 4.1 {times} 10{sup 22} n/cm{sup 2} (1.9 {times} 10{sup 22} n/cm{sup 2} above 0.1 MeV), resulting in about 12 dpa and 28 appm helium in type 316 stainless steel.

  14. Neutron dosimetry and damage calculation for the JP-10, 11, 13, and 16 experiments in HFIR

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1996-04-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint U.S./Japanese experiments JP-10, 11, 13, and 16 in the target of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL). These experiments were irradiated at 85 MW for 238.5 EFPD. The maximum fast neutron fluence >0.1 MeV was about 2.1E + 22 n/cm{sup 2} for all of the experiments resulting in about 17.3 dpa in 316 stainless steel.

  15. Neutron dosimetry and damage calculations for the JP-17, 18 and 19 experiments in HFIR

    SciTech Connect

    Greenwood, L.R.; Baldwin, C.A.

    1996-04-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiments JP-17, 18, and 19 in the target of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). These experiments were irradiated at 85 MW for two cycles resulting in 43.55 EFPD for JP-17 and 42.06 EFPD for JP-18 and 19. The maximum fast neutron fluence > 0.1 MeV was about 3.7E + 21 n/cm{sup 2} for all three irradiations, resulting in about 3 dpa in 316 stainless steel.

  16. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios.

  17. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. PMID:27337649

  18. High-energy in-beam neutron measurements of metal-based shielding for accelerator-driven spallation neutron sources

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Björgvinsdóttir, H.; Kokai, Z.; Bentley, P. M.

    2016-05-01

    Metal-based shielding plays an important role in the attenuation of harmful and unwanted radiation at an accelerator-driven spallation neutron source. At the European Spallation Source, currently under construction in Lund, Sweden, metal-based materials are planned to be used extensively as neutron guide substrates in addition to other shielding structures around neutron guides. The usage of metal-based materials in the vicinity of neutron guides however requires careful consideration in order to minimize potential background effects in a neutron instrument at the facility. Therefore, we have carried out a combined study involving high-energy neutron measurements and Monte Carlo simulations of metal-based shielding, both to validate the simulation methodology and also to investigate the benefits and drawbacks of different metal-based solutions. The measurements were carried out at The Svedberg Laboratory in Uppsala, Sweden, using a 174.1 MeV neutron beam and various thicknesses of aluminum-, iron-, and copper-based shielding blocks. The results were compared to geant4 simulations and revealed excellent agreement. Our combined study highlights the particular situations where one type of metal-based solution may be preferred over another.

  19. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  20. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  1. High-level neutron coincidence counter maintenance manual

    SciTech Connect

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included.

  2. Investigation of Acrylic Acid at High Pressure Using Neutron Diffraction

    PubMed Central

    2014-01-01

    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalized using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a new phase at ∼0.8 GPa and remains molecular to 7.2 GPa before polymerizing on decompression to ambient pressure. The resulting product is analyzed via Raman and FT-IR spectroscopy and differential scanning calorimetry and found to possess a different molecular structure compared with polymers produced via traditional routes. PMID:24650085

  3. A Highly Efficient Neutron Veto Using Boron-Loaded Liquid Scintillator

    SciTech Connect

    Wright, A.; Mosteiro, P.; Loer, B.; Calaprice, F.

    2011-04-27

    By surrounding a dark matter detector with a layer of boron-loaded liquid scintillator, a highly efficient neutron veto can be produced. In Monte Carlo studies, a one meter thick layer of scintillator has a veto efficiency greater than 99.5% for nuclear recoil events induced by radiogenic neutrons, and a veto efficiency of more than 95% for nuclear recoil events produced by cosmogenic neutrons. The use of boron-loaded scintillator both reduces the veto-induced dead time by decreasing the neutron capture time and allows high neutron detection efficiency to be achieved in a relatively compact geometry.

  4. New PTB thermal neutron calibration facility: first results.

    PubMed

    Luszik-Bhadra, M; Reginatto, M; Wershofen, H; Wiegel, B; Zimbal, A

    2014-10-01

    A new thermal neutron calibration facility based on a moderator assembly has been set up at PTB. It consists of 16 (241)Am-Be radionuclide sources mounted in a graphite block, 1.5 m wide, 1.5 m high and 1.8 m deep. The sources are distributed to eight different positions, at a mean distance of ∼1.25 m from the front face of the moderator. The neutron field at the reference position, 30 cm in front of the moderator device and 75 cm above the floor, has been characterised using calculations, Bonner sphere measurements and gold foil activation. First results are shown. The field is highly thermalised: 99 % in terms of fluence. It is quite homogenous within a 20 cm×20 cm area, but the absolute value of the thermal neutron fluence rate is small and yields an ambient dose equivalent rate of 3 µSv h(-1).

  5. THERMAL NEUTRON INTENSITIES IN SOILS IRRADIATED BY FAST NEUTRONS FROM POINT SOURCES. (R825549C054)

    EPA Science Inventory

    Thermal-neutron fluences in soil are reported for selected fast-neutron sources, selected soil types, and selected irradiation geometries. Sources include 14 MeV neutrons from accelerators, neutrons from spontaneously fissioning 252Cf, and neutrons produced from alp...

  6. Method for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>1.0E4)

    SciTech Connect

    Nikolic, Rebecca J.; Conway, Adam M.; Heineck, Daniel; Voss, Lars F.; Wang, Tzu Fang; Shao, Qinghui

    2013-10-15

    Methods for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>10.sup.4) are provided. A structure is provided that includes a p+ region on a first side of an intrinsic region and an n+ region on a second side of the intrinsic region. The thickness of the intrinsic region is minimized to achieve a desired gamma discrimination factor of at least 1.0E+04. Material is removed from one of the p+ region or the n+ region and into the intrinsic layer to produce pillars with open space between each pillar. The open space is filed with a neutron sensitive material. An electrode is placed in contact with the pillars and another electrode is placed in contact with the side that is opposite of the intrinsic layer with respect to the first electrode.

  7. Scintillating Fiber Technology for a High Neutron Spectrometer

    NASA Technical Reports Server (NTRS)

    Kuznetsov, Evgeny; Adams, James, Jr.; Christl, Mark; Norwood, Joseph; Watts, John

    2014-01-01

    Develop a compact low-power neutron spectrometer that uniquely identifies neutrons in the mixed radiation field expected on crewed deep-space missions. Secondary neutrons are generated by cosmic rays striking heavy crewed spacecraft as well as lunar and planetary surfaces1,2. It has been shown that secondary neutrons can account for up to 50% if the total dose-equivalent received by the crew.

  8. Fluence field optimization for noise and dose objectives in CT

    SciTech Connect

    Bartolac, Steven; Graham, Sean; Siewerdsen, Jeff; Jaffray, David

    2011-05-15

    Purpose: Selecting the appropriate imaging technique in computed tomography (CT) inherently involves balancing the tradeoff between image quality and imaging dose. Modulation of the x-ray fluence field, laterally across the beam, and independently for each projection, may potentially meet user-prescribed, regional image quality objectives, while reducing radiation to the patient. The proposed approach, called fluence field modulated CT (FFMCT), parallels the approach commonly used in intensity-modulated radiation therapy (IMRT), except ''image quality plans'' replace the ''dose plans'' of IMRT. This work studies the potential noise and dose benefits of FFMCT via objective driven optimization of fluence fields. Methods: Experiments were carried out in simulation. Image quality plans were defined by specifying signal-to-noise ratio (SNR) criteria for regions of interest (ROIs) in simulated cylindrical and oblong water phantoms, and an anthropomorphic phantom with bone, air, and water equivalent regions. X-ray fluence field patterns were generated using a simulated annealing optimization method that attempts to achieve the spatially-dependent prescribed SNR criteria in the phantoms while limiting dose (to the volume or subvolumes). The resulting SNR and dose distributions were analyzed and compared to results using a bowtie filtered fluence field. Results: Compared to using a fixed bowtie filtered fluence, FFMCT achieved superior agreement with the target image quality objectives, and resulted in integral dose reductions ranging from 39 to 52%. Prioritizing dose constraints for specific regions of interest resulted in a preferential reduction of dose to those regions with some tradeoff in SNR, particularly where the target low dose regions overlapped with regions where high SNR was prescribed. The method appeared fairly robust under increased complexity and heterogeneity of the object structure. Conclusions: These results support that FFMCT has the potential to meet

  9. Roadmap for High Efficiency Solid-State Neutron Detectors

    SciTech Connect

    Nikolic, R; Cheung, C; Reinhardt, C; Wang, T

    2005-07-12

    Solid-state thermal neutron detectors are generally fabricated in a planar configuration by coating a layer of neutron-to-alpha converter material onto a semiconductor. The as-created alpha particles in the material are expected to impinge the semiconductor and create electron-hole pairs which provide the electrical signal. These devices are limited in efficiency to a range near (2-5%)/cm{sup 2} due to the conflicting thickness requirements of the converter layer. In this case, the layer is required to be thick enough to capture the incoming neutron flux while at the same time adequately thin to allow the alpha particles to reach the semiconductor. A three dimensional matrix structure has great potential to satisfy these two requirements in one device. Such structures can be realized by using PIN diode pillar elements to extend in the third dimension with the converter material filling the rest of the matrix. Our strategy to fabricate this structure is based on both ''top-down'' and ''bottom-up'' approaches. The ''top down'' approach employs high-density plasma etching techniques, while the ''bottom up'' approach draws on the growth of nanowires by chemical vapor deposition. From our simulations for structures with pillar diameters from 2 {micro}m down to 100 nm, the detector efficiency is expected to increase with a decrease in pillar size. Moreover, in the optimized configuration, the detector efficiency could be higher than 75%/cm{sup 2}. Finally, the road map for the relationship between detector diameter and efficiency will be outlined.

  10. Liquid lithium target as a high intensity, high energy neutron source

    DOEpatents

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  11. A high repetition rate plasma focus for neutron interrogation applications

    NASA Astrophysics Data System (ADS)

    Bures, Brian; Krishnan, Mahadevan; James, Colt; Madden, Robert; Hennig, Wolfgang; Breus, Dimitry; Asztalos, Stephen; Sabourov, Konstantin; Lane, Stephen

    2011-10-01

    A fast pulsed neutron source enables identification and ranging of contraband nuclear material using time-of-flight separation of the probe neutron pulse from the fission induced emission quanta. Alameda Applied Sciences Corporation has demonstrated a 1 Hz plasma focus neutron source that uses an impedance matching transformer to better couple the power from the driver to the dynamic pinch load. For a 24 kV primary charge, the system produces a 61 kA peak current with a neutron yield up to 5 ×105 neutrons/pulse at 1 Hz. Experiments are described in which induced 845 keV gamma emission from iron targets (by 2.45 MeV DD neutrons) was separated (by time of flight) from the 20-30 ns probe neutron pulses. Monte Carlo simulations are used to optimize the concept for a fieldable system. Work supported by US Department of Homeland Security (DNDO) and by the US Air Force (KAFB).

  12. Positron Annihilation Lifetime Spectroscopy Study of Neutron Irradiated High Temperature Superconductors YBa2Cu3O7-δ for Application in Fusion Facilities

    NASA Astrophysics Data System (ADS)

    Veterníková, J.; Chudý, M.; Slugeň, V.; Eisterer, M.; Weber, H. W.; Sojak, S.; Petriska, M.; Hinca, R.; Degmová, J.; Sabelová, V.

    2012-02-01

    This study focuses on the crystallographic defects introduced by neutron irradiation and the resulting changes of the superconducting properties in the high temperature superconductor YBa2Cu3O7-δ. This material is considered to be most promising for magnet systems in future fusion reactors. Two different bulk samples, pure non-doped YBa2Cu3O7-δ (YBCO) and multi-seed YBa2Cu3O7-δ doped by platinum (MS2F) were studied prior to and after irradiation in the TRIGA MARK II reactor in Vienna. Neutron irradiation is responsible for a significant enhancement of the critical current densities as well as for a reduction in critical temperature. The accumulation of small open volume defects (<0.5 nm) partially causes those changes. These defects were studied by positron annihilation lifetime spectroscopy at room temperature. A high concentration of Cu-O di-vacancies was found in both samples, which increased with neutron fluence. The defect concentration was significantly reduced after a heat treatment.

  13. Unexpected Windy Weather Around a Highly Magnetized Neutron Star

    NASA Astrophysics Data System (ADS)

    Younes, George A.; Kouveliotou, Chryssa; Kargaltsev, Oleg; Gill, Ramandeep; Granot, Jonathan; Watts, Anna; Gelfand, Joseph; Baring, Matthew G.; Kust Harding, Alice; Pavlov, George G.; van der Horst, Alexander; Huppenkothen, Daniela; Gögüs, Ersin; Lin, Lin; Roberts, Oliver

    2016-04-01

    Magnetars and rotation-powered pulsars (RPPs) historically represented two distinct subclasses of neutron stars. Magnetars are slowly-rotating (~2-12 s), isolated neutron stars (NSs) with super-strong magnetic fields, B~10^13-10^15 G. RPPs, on the other hand, are rapidly-rotating (~0.01-0.3~s), isolated NSs with surface dipole magnetic field in the range ~10^11-10^13 G. Most pulsars possess a large rotational energy loss rate that powers a relativistic magnetized particle wind, often seen as a pulsar wind nebula (PWN; the Crab PWN being the most famous). There has not yet been convincing evidence for a wind nebula around magnetars, most likely due to their low rotational energy loss rate. Here, we report the study of new deep X-ray observations of the peculiar extended emission around the magnetar Swift J1834.9-0846. Our new results strongly support a wind nebula as the nature of the extended emission, thus, establishing Swift J1834.9-0846 as the first magnetar to possess a surrounding nebula. This implies that wind nebulae are no longer exclusive to RPPs and, along with recent discoveries in the field, further narrow the gaps between these two sub-populations of isolated NSs. The physical properties of this wind nebula, however, show peculiarities, especially its high radiative efficiency of about 10%, only shared with two other known very young RPPs, the Crab and its twin.

  14. SPALLATION NEUTRON SOURCE HIGH-POWER PROTECTION MODULE TEST STAND

    SciTech Connect

    Lee, Sung-Woo; Ball, Jeffrey Allen; Crofford, Mark T; Davidson Jr, Taylor L; Jones, Stacey L; Hardek, Thomas W

    2010-01-01

    The Spallation Neutron Source (SNS) High-Power Protection Module (HPM) provides interlocks and fast shutdown for the radio frequency (RF) system to protect the accelerating structures and high power RF (HPRF) Distribution System. The HPM has required some functional upgrades since the start of beam operations and an upgrade to the HPM test stand was required to support these added features. The HPM test stand currently verifies functionality, RF channel calibration, and measurement of the speed of shutdown to ensure the specifications are met. The upgraded test stand was implemented in a Field Programmable Gate Array (FPGA) to allow for future growth and flexibility. Work is currently progressing on automation of the test stand to better perform the required module calibration schedule.

  15. High Field Pulsed Magnets for Neutron Scattering at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Granroth, G. E.; Lee, J.; Fogh, E.; Christensen, N. B.; Toft-Petersen, R.; Nojiri, H.

    2015-03-01

    A High Field Pulsed Magnet (HFPM) setup, is in use at the Spallation Nuetron Source(SNS), Oak Ridge National Laboratory. With this device, we recently measured the high field magnetic spin structure of LiNiPO4. The results of this study will be highlighted as an example of possible measurements that can be performed with this device. To further extend the HFPM capabilities at SNS, we have learned to design and wind these coils in house. This contribution will summarize the magnet coil design optimization procedure. Specifically by varying the geometry of the multi-layer coil, we arrive at a design that balances the maximum field strength, neutron scattering angle, and the field homogeneity for a specific set of parameters. We will show that a 6.3kJ capacitor bank, can provide a magnetic field as high as 30T for a maximum scattering angle around 40° with homogeneity of +/- 4 % in a 2mm diameter spherical volume. We will also compare the calculations to measurements from a recently wound test coil. This work was supported in part by the Lab Directors' Research and Development Fund of ORNL.

  16. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source.

    PubMed

    Mauro, N A; Vogt, A J; Derendorf, K S; Johnson, M L; Rustan, G E; Quirinale, D G; Kreyssig, A; Lokshin, K A; Neuefeind, J C; An, Ke; Wang, Xun-Li; Goldman, A I; Egami, T; Kelton, K F

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg).

  17. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    SciTech Connect

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; Wang, Xun-Li; Goldman, A. I.; Egami, T.; Kelton, K. F.

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).

  18. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source.

    PubMed

    Mauro, N A; Vogt, A J; Derendorf, K S; Johnson, M L; Rustan, G E; Quirinale, D G; Kreyssig, A; Lokshin, K A; Neuefeind, J C; An, Ke; Wang, Xun-Li; Goldman, A I; Egami, T; Kelton, K F

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg). PMID:26827330

  19. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; Wang, Xun-Li; Goldman, A. I.; Egami, T.; Kelton, K. F.

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (˜100 mg).

  20. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    DOE PAGES

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; et al

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).« less

  1. Neutron techniques. [for study of high-energy particles produced in large solar flares

    NASA Technical Reports Server (NTRS)

    Frye, Glenn M., Jr.; Dunphy, Philip P.; Chupp, Edward L.; Evenson, Paul

    1988-01-01

    Three experimental methods are described which hold the most promise for improved energy resolution, time resolution and sensitivity in the detection of solar neutrons on satellites and/or long duration balloon flights: the neutron calorimeter, the solar neutron track chamber, and the solar neutron decay proton detector. The characteristics of the three methods as to energy range, energy resolution, time resolution, detection efficiency, and physical properties are delineated. Earlier techniques to measure the intensity of high-energy cosmic-ray neutrons at the top of the atmosphere and to search for solar neutrons are described. The past three decades of detector development has now reached the point where it is possible to make comprehensive and detailed measurements of solar neutrons on future space missions.

  2. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    SciTech Connect

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and

  3. Determination of TFTR far-field neutron detector efficiencies by local neutron flux spectrum measurement

    NASA Astrophysics Data System (ADS)

    Jassby, D. L.; Ascione, G.; Kugel, H. W.; Roquemore, A. L.; Barcelo, T. W.; Kumar, A.

    1997-01-01

    Neutron detectors have often been located on the tokamak fusion test reactor (TFTR) test cell floor 3 m or more from the vacuum vessel for ease of detector access, to reduce radiation damage, minimize count saturation problems, and to avoid high magnetic fields. These detectors include Si surface-barrier diodes, fission chambers, natural diamond detectors, and T2 production in a moderated 3He cell. To evaluate the performance of these detectors during deuterium-tritium (D-T) operation, we determined the neutron flux spectrum incident on the principal detector enclosure using nuclide sample sets containing Al, Ti, Fe, Co, Cu, Zn, Ni, Zr, Nb, In, and Au activation foils. Foils were installed and then removed after ample exposure to TFTR D-T neutrons. High efficiency, high purity Ge detectors were used for gamma spectroscopy of the irradiated foils. The incident neutron fluence and spectral distribution were unfolded from the measured results, and used to derive absolute detector efficiencies.

  4. Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.

    2016-07-01

    The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm‑2s‑1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.

  5. Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.

    2016-07-01

    The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm-2s-1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.

  6. High electric field deuterium ion sources for neutron generators

    NASA Astrophysics Data System (ADS)

    Reichenbach, Birk

    Active interrogation systems for highly enriched uranium require improved fieldable neutron sources. The target technology for deuterium-tritium neutron generators is well understood and the most significant improvement can be achieved by improving the deuterium ion source through increased output and, in some cases, lifetime of the ion source. We are developing a new approach to a deuterium ion sources based upon the field desorption/evaporation of deuterium from the surfaces of metal tips. Electrostatic field desorption (EFD) desorbs previously adsorbed deuterium as ions under the influence of high electric fields (several V/A), without removing tip material. Single etched wire tip experiments have been performed and have shown that this is difficult but can be achieved with molybdenum and tungsten tips. Electrostatic field evaporation (EFE) evaporates ultra thin deuterated titanium films as ions. It has been shown that several 10s of atomic layers can be removed within a few nanoseconds from etched tungsten tips. In the course of these studies titanium deposition and deuteration methods were studied and new detection methods developed. Space charge effects resulting from the large ion currents were identified to be the most likely cause of some unusual ion emission characteristics. In addition, on W < 110 > oriented substrates a surprising body-centered cubic crystal structure of the titanium film was found and studied. The ion currents required for neutron generator applications can be achieved by microfabrication of metal tip arrays. Field desorption studies of microfabricated field emitter tip arrays have been conducted for the first time. Maximum fields of 3 V/A have been applied to the array tip surfaces to date, although fields of ˜ 2 V/A to ˜ 2.5 V/A are more typical. Desorption of atomic deuterium ions has been observed at fields of roughly 2 V/A at room temperature. The desorption of common surface adsorbates, such as hydrogen, carbon, water, and

  7. Investigation of Methacrylic Acid at High Pressure Using Neutron Diffraction.

    PubMed

    Marshall, William G; Urquhart, Andrew J; Oswald, Iain D H

    2015-09-10

    This article shows that pressure can be a low-intensity route to the synthesis of polymethacrylic acid. The exploration of perdeuterated methacrylic acid at high pressure using neutron diffraction reveals that methacrylic acid exhibits two polymorphic phase transformations at relatively low pressures. The first is observed at 0.39 GPa, where both phases were observed simultaneously and confirm our previous observations. This transition is followed by a second transition at 1.2 GPa to a new polymorph that is characterized for the first time. On increasing pressure, the diffraction pattern of phase III deteriorates significantly. On decompression phase III persists to 0.54 GPa before transformation to the ambient pressure phase. There is significant loss of signal after decompression, signifying that there has been a loss of material through polymerization. The orientation of the molecules in phase III provides insight into the possible polymerization reaction. PMID:26289930

  8. High-resolution neutron spectroscopy on protein solution samples

    NASA Astrophysics Data System (ADS)

    Grimaldo, Marco; Roosen-Runge, Felix; Jalarvo, Niina; Zamponi, Michaela; Zanini, Fabio; Hennig, Marcus; Zhang, Fajun; Schreiber, Frank; Seydel, Tilo

    2015-01-01

    Proteins in solution move subject to a complex superposition of global translational and rotational diffusion as well as internal relaxations covering a wide range of time scales. With the advent of new high-flux neutron spectrometers in combination with enhanced analysis frameworks it has become possible to separate these different contributions. We discuss new approaches to the analysis by presenting example spectra and fits from data recorded on the backscattering spectrometers IN16, IN16B, and BASIS on the same protein solution sample. We illustrate the separation of the rotational and translational diffusion contribution, the accurate treatment of the solvent contribution, and the extraction of information on internal fluctuations. We also exemplify the progress made in passing from second- to third-generation backscattering spectrometers.

  9. How to polarise all neutrons in one beam: a high performance polariser and neutron transport system

    NASA Astrophysics Data System (ADS)

    Rodriguez, D. Martin; Bentley, P. M.; Pappas, C.

    2016-09-01

    Polarised neutron beams are used in disciplines as diverse as magnetism,soft matter or biology. However, most of these applications often suffer from low flux also because the existing neutron polarising methods imply the filtering of one of the spin states, with a transmission of 50% at maximum. With the purpose of using all neutrons that are usually discarded, we propose a system that splits them according to their polarisation, flips them to match the spin direction, and then focuses them at the sample. Monte Carlo (MC) simulations show that this is achievable over a wide wavelength range and with an outstanding performance at the price of a more divergent neutron beam at the sample position.

  10. Inelastic neutron scattering from single crystal Zn under high pressure

    NASA Astrophysics Data System (ADS)

    Morgan, J. G.; von Dreele, R. B.; Wochner, P.; Shapiro, S. M.

    1996-07-01

    Inelastic neutron-scattering experiments have been performed for single crystals of Zn under pressures up to 8.8 GPa at 300 K. The phonon modes q/qmax=ξ=0.075 and ξ=0.10 were measured in the transverse acoustic branch Σ3, where q=0 corresponds with the elastic constant C44. The phonon energy showed a substantial hardening with increasing pressure. The experimental data below 6.8 GPa for ξ=0.075 yield a constant Grüneisen mode γi=-lnωi/lnV of 2.25 in good agreement with a previous calculation [H. Ledbetter, Phys. Status Solidi B 181, 81 (1994)]. Above 6.8 GPa, there is a very rapid increase of γi which is indicative of the presence of a giant Kohn anomaly. This rapid divergence at high pressure indicates that a phonon softening may occur at pressures higher than 8.8 GPa caused by the collapse of the giant Kohn anomaly via an electronic topological transition (ETT). In an earlier Mössbauer Zn study at 4 K [W. Potzel et al., Phys. Rev. Lett. 74, 1139 (1994)], a drastic drop of the Lamb-Mössbauer factor was observed at 6.6 GPa, which was interpreted as being due to phonon softening, indicating this ETT had occurred. This paper also compares the compressibility data for single crystal Zn and Zn powder using neutron scattering. The results were found to be similar to an earlier x-ray Zn powder experiment [O. Schulte et al., High Pressure Res. 6, 169 (1991)].

  11. High-Power Linac for the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Rej, D. J.

    2002-04-01

    The Spallation Neutron Source (SNS) will be the world’s most intense source of neutrons for fundamental science and industrial applications. Design and construction of this facility, located at Oak Ridge, is a joint venture between six DOE laboratories. Construction began in 1999 and is currently ahead of the scheduled 2006 completion date. Injecting a high-power, pulsed proton beam into a mercury target produces neutrons. In this talk, we review the physics requirements, design, and status of the construction of the 1-GeV, 1.4-MW average power RF linac for SNS. The accelerator consists of a drift tube linac (DTL), a coupled-cavity linac (CCL), and a superconducting rf (SRF) linac. The phase and quadrupole settings are set to avoid structure and parametric resonances, with coherent resonances posing minimal risk for emittance growth. The DTL is 37 m long and accelerates the ions to 87 MeV. The CCL is 55 m long and accelerates the ions to 186 MeV. The rf structure design and stability for both the DTL and CCL have been validated with scale models. The SRF linac has a modular design to accelerate ions to 1000 MeV, with a straightforward upgrade to 1.3 GeV at a later date. 3D particle-in-cell simulations of beam dynamics are performed to validate performance. The accelerator utilizes 93 MW of pulsed power operating continuously at 60-Hz with an 8factor. Approximately one hundred 402.5 or 805-MHz klystrons, with outputs between 0.55 and 5 MW, are used. The klystrons are powered by a novel converter-modulator that takes advantage of recent advances in IGBT switch plate assemblies and low-loss material cores for boost transformer. Beam diagnostics include position, phase, profile, and current monitors. They are designed to enable accurate beam steering and matching, and to minimize beam loss that would lead to activation and prevent hands-on maintenance.

  12. High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications

    SciTech Connect

    Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.

    1999-06-06

    Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.

  13. High energy neutron and gamma-radiation generated during the solar flares

    NASA Technical Reports Server (NTRS)

    Kocharov, G. E.; Mandzhavidze, N. Z.

    1985-01-01

    The problem of high energy neutrons and gamma rays generation in the solar conditions is considered. It is shown that due to a peculiarity of generation and propagation of neutrons corresponding solar flares should be localized at high helio-longitudes.

  14. Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey.

    PubMed

    Mitrofanov, I; Anfimov, D; Kozyrev, A; Litvak, M; Sanin, A; Tret'yakov, V; Krylov, A; Shvetsov, V; Boynton, W; Shinohara, C; Hamara, D; Saunders, R S

    2002-07-01

    After 55 days of mapping by the High Energy Neutron Detector onboard Mars Odyssey, we found deficits of high-energy neutrons in the southern highlands and northern lowlands of Mars. These deficits indicate that hydrogen is concentrated in the subsurface. Modeling suggests that water ice-rich layers that are tens of centimeters in thickness provide one possible fit to the data.

  15. Dependence of the phototropic response of Arabidopsis thaliana on fluence rate and wavelength

    PubMed Central

    Konjević, Radomir; Steinitz, Benjamin; Poff, Kenneth L.

    1989-01-01

    In the phototropic response of Arabidopsis thaliana seedlings, the shape of the fluence-response relation depends on fluence rate and wavelength. At low fluence rates, the response to 450-nm light is characterized by a single maximum at about 0.3 μmol·m-2. At higher fluence rates, the response shows two distinct maxima, I and II, at 0.3 and 3.5 μmol·m-2, respectively. The response to 500-nm light shows a single maximum at 2 μmol·m-2, and the response to 510-nm light shows a single maximum at 4.5 μmol·m-2, independent of fluence rate. The response to 490-nm light shows a maximal at 4.5 μmol·m-2 and a shoulder at about 0.6 μmol·m-2. Preirradiation with high-fluence 510-nm light from above, immediately followed by unilateral 450-nm light, eliminates maximum II but not maximum I. Preirradiation with high-fluence 450-nm light from above eliminates the response to subsequent unilateral irradiation with either 450-nm or 510-nm light. The recovery of the response following high-fluence 450-nm light is considerably slower than the recovery following high-fluence 510-nm light. Unilateral irradiation with low-fluence 510-nm light followed by 450-nm light results in curvature that is approximately the sum of those produced by either irradiation alone. Based on these results, it is proposed that phototropism in A. thaliana seedlings is mediated by at least two blue-light photoreceptor pigments. PMID:16594094

  16. Organic metal neutron detector

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1987-01-01

    A device for detecting neutrons comprises a layer of conductive polymer sandwiched between electrodes, which may be covered on each face with a neutron transmissive insulating material layer. Conventional electrodes are used for a non-imaging integrating total neutron fluence-measuring embodiment, while wire grids are used in an imaging version of the device. The change in conductivity of the polymer after exposure to a neutron flux is determined in either case to provide the desired data. Alternatively, the exposed conductive polymer layer may be treated with a chemical reagent which selectively binds to the sites altered by neutrons to produce an image of the flux detected.

  17. Achieving high-resolution soft-tissue imaging with cone-beam CT: a two-pronged approach for modulation of x-ray fluence and detector gain

    NASA Astrophysics Data System (ADS)

    Graham, S. A.; Siewerdsen, J. H.; Moseley, D. J.; Keller, H.; Shkumat, N. A.; Jaffray, D. A.

    2005-04-01

    Cone-beam computed tomography (CBCT) presents a highly promising and challenging advanced application of flat-panel detectors (FPDs). The great advantage of this adaptable technology is in the potential for sub-mm 3D spatial resolution in combination with soft-tissue detectability. While the former is achieved naturally by CBCT systems incorporating modern FPD designs (e.g., 200 - 400 um pixel pitch), the latter presents a significant challenge due to limitations in FPD dynamic range, large field of view, and elevated levels of x-ray scatter in typical CBCT configurations. We are investigating a two-pronged strategy to maximizing soft-tissue detectability in CBCT: 1) front-end solutions, including novel beam modulation designs (viz., spatially varying compensators) that alleviate detector dynamic range requirements, reduce x-ray scatter, and better distribute imaging dose in a manner suited to soft-tissue visualization throughout the field of view; and 2) back-end solutions, including implementation of an advanced FPD design (Varian PaxScan 4030CB) that features dual-gain and dynamic gain switching that effectively extends detector dynamic range to 18 bits. These strategies are explored quantitatively on CBCT imaging platforms developed in our laboratory, including a dedicated CBCT bench and a mobile isocentric C-arm (Siemens PowerMobil). Pre-clinical evaluation of improved soft-tissue visibility was carried out in phantom and patient imaging with the C-arm device. Incorporation of these strategies begin to reveal the full potential of CBCT for soft-tissue visualization, an essential step in realizing broad utility of this adaptable technology for diagnostic and image-guided procedures.

  18. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: Measurement with an extended-range Bonner sphere system

    SciTech Connect

    Howell, Rebecca M.; Burgett, E. A.

    2014-09-15

    Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire

  19. First PGAA and NAA experimental results from a compact high intensity D-D neutron generator

    SciTech Connect

    Reijonen, J.; Leung, K.-N.; Firestone, R.B.; English, J.A.; Perry, D.L.; Smith, A.; Gicquel, F.; Sun, M.; Bandong, B.; Garabedian, G.; Revay, Zs.; Szentmiklosi, L.; Molnar, G.

    2003-05-13

    Various types of neutron generator systems have been designed and tested at the Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory. These generators are based on a D-D fusion reaction. These high power D-D neutron generators can provide neutron fluxes in excess of the current state of the art D-T neutron generators, without the use of pre-loaded targets or radioactive tritium gas. Safe and reliable long-life operations are the typical features of these D-D generators. All of the neutron generators developed in the Plasma and Ion Source Technology Group are utilizing powerful RF-induction discharge to generate the deuterium plasma. One of the advantages of using the RF-induction discharge is it's ability to generate high fraction of atomic ions from molecular gases, and the ability to generate high plasma densities for high extractable ion current from relatively small discharge volume.

  20. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    SciTech Connect

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  1. Generation of high-energy neutron beam by fragmentation of relativistic heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yurevich, Vladimir

    2016-09-01

    The phenomenon of multiple production of neutrons in reactions with heavy nuclei induced by high-energy protons and light nuclei is analyzed using a Moving Source Model. The Lorentz transformation of the obtained neutron distributions is used to study the neutron characteristics in the inverse kinematics where relativistic heavy nuclei bombard a light-mass target. The neutron beam generated at 0∘has a Gaussian shape with a maximum at the energy of the projectile nucleons and an energy resolution σE/E < 4% above 6 GeV.

  2. A GEM-based thermal neutron detector for high counting rate applications

    NASA Astrophysics Data System (ADS)

    Perelli Cippo, E.; Croci, G.; Muraro, A.; Menelle, A.; Albani, G.; Cavenago, M.; Cazzaniga, C.; Claps, G.; Grosso, G.; Murtas, F.; Rebai, M.; Tardocchi, M.; Gorini, G.

    2015-10-01

    Among other neutron detector systems proposed as a possible substitute for 3He tubes, GEM-based ones have shown appealing characteristics, when coupled with suitable neutron-converter cathodes. In this paper, we present the results of a GEM-based neutron detector in a high-flux environment (the ORPHÉE reactor in Saclay), especially in terms of maximum rate capability and linearity. Recorded data show that the detector can manage neutron counting rates in the order of 50 × 106 counts/sec cm2 while maintaining a reasonable linearity and with no sign of instability.

  3. Simulated workplace neutron fields

    NASA Astrophysics Data System (ADS)

    Lacoste, V.; Taylor, G.; Röttger, S.

    2011-12-01

    The use of simulated workplace neutron fields, which aim at replicating radiation fields at practical workplaces, is an alternative solution for the calibration of neutron dosemeters. They offer more appropriate calibration coefficients when the mean fluence-to-dose equivalent conversion coefficients of the simulated and practical fields are comparable. Intensive Monte Carlo modelling work has become quite indispensable for the design and/or the characterization of the produced mixed neutron/photon fields, and the use of Bonner sphere systems and proton recoil spectrometers is also mandatory for a reliable experimental determination of the neutron fluence energy distribution over the whole energy range. The establishment of a calibration capability with a simulated workplace neutron field is not an easy task; to date only few facilities are available as standard calibration fields.

  4. Torsional oscillations of neutron stars with highly tangled magnetic fields

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime

    2015-11-01

    To determine the frequencies of magnetic oscillations in neutron stars with highly tangled magnetic fields, we derive the perturbation equations. We assume that the field strength of the global magnetic structure is so small that such fields are negligible compared with tangled fields, which may still be far from a realistic configuration. Then, we systematically examine the spectra of the magnetic oscillations, as varying the magnetic field strength and stellar mass. The frequencies without crust elasticity are completely proportional to the strength of the magnetic field, whose proportionality constant depends strongly on the stellar mass. On the other hand, the oscillation spectra with crust elasticity become more complicated, where the frequencies even for weak magnetic fields are different from the crustal torsional oscillations without magnetic fields. For discussing spectra, the critical field strength can play an important role, and it is determined in such a way that the shear velocity is equivalent to the Alfvén velocity at the crust basis. Additionally, we find that the effect of the crust elasticity can be seen strongly in the fundamental oscillations with a lower harmonic index, ℓ. Unlike the stellar models with a pure dipole magnetic field, we also find that the spectra with highly tangled magnetic fields become discrete, where one can expect many of the eigenfrequencies. Maybe these frequencies could be detected after the violent phenomena breaking the global magnetic field structure.

  5. Neutron irradiation induced amorphization of silicon carbide

    SciTech Connect

    Snead, L.L.; Hay, J.C.

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  6. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    SciTech Connect

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-11-29

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL).

  7. Workshop: Research and development plans for high power spallation neutron testing at BNL

    SciTech Connect

    1996-08-05

    This report consists of vugraphs from presentations at the meeting. The papers covered the following topics: (1) APS as a proton source; (2) target status for NSNS (National Spallation Neutron Source); (3) spallation neutron source in Japan; (4) liquid LiBi flow loop; and (5) research and development plans for high power tests at the AGS.

  8. High-efficiency neutron detectors and methods of making same

    DOEpatents

    McGregor, Douglas S.; Klann, Raymond

    2007-01-16

    Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.

  9. In-phantom neutron dose distribution for bladder cancer cases treated with high-energy photons

    NASA Astrophysics Data System (ADS)

    Khaled, N. E.; Attalla, E. M.; Ammar, H.; Khalil, W.

    2011-06-01

    This work presents an estimation of the neutron dose distribution for common bladder cancer cases treated with high-energy photons of 15 MV therapy accelerators. Neutron doses were measured in an Alderson phantom, using TLD 700 and 600 thermoluminescence dosimeters, resembling bladder cancer cases treated with high-energy photons from 15 MV LINAC and having a treatment plan using the four-field pelvic box technique. Thermal neutron dose distribution in the target area and the surrounding tissue was estimated. The sensitivity of all detectors for both gamma and neutrons was estimated and used for correction of the TL reading. TLD detectors were irradiated with a Co60 gamma standard source and thermal neutrons at the irradiation facility of the National Institute for Standards (NIS). The TL to dose conversion factor was estimated in terms of both Co60 neutron equivalent dose and thermal neutron dose. The dose distribution of photo-neutrons throughout each target was estimated and presented in three-dimensional charts and isodose curves. The distribution was found to be non-isotropic through the target. It varied from a minimum of 0.23 mSv/h to a maximum of 2.07 mSv/h at 6 cm off-axis. The mean neutron dose equivalent was found to be 0.63 mSv/h, which agrees with other published literature. The estimated average neutron equivalent to the bladder per administered therapeutic dose was found to be 0.39 mSv Gy-1, which is also in good agreement with published literature. As a consequence of a complete therapeutic treatment of 50 Gy high-energy photons at 15 MV, the total thermal neutron equivalent dose to the abdomen was found to be about 0.012 Sv.

  10. Fricke-gel dosimetry in epithermal or thermal neutron beams of a research reactor

    NASA Astrophysics Data System (ADS)

    Gambarini, G.; Artuso, E.; Giove, D.; Volpe, L.; Agosteo, S.; Barcaglioni, L.; Campi, F.; Garlati, L.; Pola, A.; Durisi, E.; Borroni, M.; Carrara, M.; Klupak, V.; Marek, M.; Viererbl, L.; Vins, M.; d'Errico, F.

    2015-11-01

    Fricke-xylenol-orange gel has shown noticeable potentiality for in-phantom dosimetry in epithermal or thermal neutron fields with very high fluence rate, as those characteristic of nuclear research reactors. Fricke gels in form of layers give the possibility of achieving spatial distribution of gamma dose, fast neutron dose and dose due to charged particles generated by thermal neutron reactions. The thermal neutron fluence has been deduced from the dose coming from the charge particles emitted by neutron reactions with the isotope 10B. Some measurements have been performed for improving the information on the relative sensitivity of Fricke gel dosimeters to the particles produced by 10B reactions, because at present the precision of dose evaluations is limited by the scanty knowledge about the dependence of the dosimeter sensitivity on the radiation LET. For in-air measurements, the dosimeter material can produce an enhancement of thermal neutron fluence. Measurements and Monte Carlo calculations have been developed to investigate the importance of this effect.

  11. A High Intensity Linac for the National Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Jason, A.; Bhatia, T.; Billen, J.; Schrage, D.; Kurennoy, S.; Krawczyk, F.; Lynch, M.; Nath, S.; Shafer, R.; Takeda, H.; Tallerico, P.; Wangler, T.; Wood, R.; Young, L.; Grand, P.; McKenzie-Wilson, R.

    1997-05-01

    The National Spallation Neutron Source to be constructed at Oak Ridge National Laboratory, requires a linac capable of delivering up to 5 MW of beam power to an accumulator ring with a nominal 6.2% duty factor and an energy of 1 GeV. Los Alamos, responsible for the linac design, has developed an appropriate room-temperature linac that consists of a drift-tube section from 2.5 to 20 MeV, a coupled-cavity drift-tube section to 100 MeV, and a coupled-cavity section to 1 GeV. The initial scenario requires an average 1.1-mA beam current with a corresponding 28 mA peak current and a 1.2-Mhz chopped time structure corresponding to the ring period. Upgrade to a 4.4 mA average current requires funneling with a peak current of 112 mA in the high-energy sections. Further parameters are presented along with beam dynamics and structure choices and mechanical and rf engineering considerations.

  12. Cryogen free high magnetic field sample environment for neutron scattering

    NASA Astrophysics Data System (ADS)

    Down, R. B. E.; Kouzmenko, G.; Kirichek, O.; Wotherspoon, R.; Brown, J.; Bowden, Z. A.

    2010-11-01

    Cryogenic equipment can be found in the majority of neutron scattering experiments. Recent increases in liquid helium cost caused by global helium supply problems lead to significant concern about affordability of conventional cryogenic equipment. However the latest progress in cryo-cooler technology offers a new generation of cryogenic systems in which the cryogen consumption can be significantly reduced and in some cases completely eliminated. These systems also offer the advantage of operational simplicity, require less space than conventional cryogen-cooled systems and can significantly improve user safety. At the ISIS facility it is possible to substitute conventional cryostats with cryogen free systems. Such systems are based on the pulse tube refrigerator (PTR) which possesses no cold moving parts. Oxford Instruments in collaboration with ISIS have developed new high magnetic field sample environment equipment based on re-condensing technology. This project includes 9T wide angle chopper magnet for spectrometry and 14T magnet for diffraction. The main advantage of these systems is that all magnet operating procedures, for example cooling, running up to the field and quenching remain the same as for a standard magnet in a bath cryostat. This approach also provides a homogeneous temperature distribution, which is crucial for optimum magnet performance.

  13. Earthquake effects in thermal neutron variations at the high-altitude station of Northern

    NASA Astrophysics Data System (ADS)

    Antonova, Valentina; Chubenko, Alexandr; Kryukov, Sergey; Lutsenko, Vadim

    2016-04-01

    Results of study of thermal neutron variations under various space and geophysical conditions on the basis of measurements on stationary installations with high statistical accuracy are presented. Installations are located close to the fault of the earth's crust at the high-altitude station of cosmic rays (3340 m above sea level, 43.02 N, 76.56 E, 20 km from Almaty) in the mountains of Northern Tien-Shan. Responses of the most effective gelio- and geophysical events (variations of atmospheric pressure, coronal mass ejections, earthquakes) has consistently considered in the variations of the thermal neutron flux and compared with variations of high-energy neutrons (standard monitor 18NM64) of galactic origin during these periods. Coefficients of correlation were calculated between data of thermal neutron detectors and data of the neutron monitor, recording the intensity of high-energy particles. High correlation coefficients and similarity of responses to changes of space and geophysical conditions are obtained, that confirms the conclusion of the genetic connection of thermal neutrons with high-energy neutrons of galactic origin and suggests same sources of disturbances in the absence of seismic activity. Observations and analysis of experimental data during the activation of seismic activity in the vicinity of Almaty showed the frequent breakdown of the correlation between the intensity of thermal and high-energy neutrons and the absence of similarity between variations during these periods. We suppose that the additional thermal neutron flux of the lithospheric origin appears under these conditions. Method of separating of thermal neutron flux variations of the lithospheric origin from neutrons variations generated in the atmosphere by subtracting the normalized data is proposed, taking into account the conclusion that variations caused with the atmospheric and interplanetary origins in thermal neutron detectors are similar to variations of high-energy neutrons

  14. High-dose neutron irradiation performance of dielectric mirrors

    DOE PAGES

    Nimishakavi Anantha Phani Kiran Kumar; Leonard, Keith J.; Jellison, Jr., Gerald Earle; Snead, Lance Lewis

    2015-05-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopymore » (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. Lastly, the ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.« less

  15. High-dose neutron irradiation performance of dielectric mirrors

    SciTech Connect

    Nimishakavi Anantha Phani Kiran Kumar; Leonard, Keith J.; Jellison, Jr., Gerald Earle; Snead, Lance Lewis

    2015-05-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopy (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. Lastly, the ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.

  16. Multidiagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range

    SciTech Connect

    Anoop, K. K.; Polek, M. P.; Bruzzese, R.; Amoruso, S.; Harilal, Sivanandan S.

    2015-02-28

    The ions dynamics in ultrafast laser ablation of metals is studied over a fluence range spanning from the ablation threshold up to ~75 J/cm2 by means of three established diagnostic techniques. Langmuir probe, Faraday cup and spectrally resolved ICCD imaging simultaneously monitor the laser-produced plasma ions produced during ultrafast laser ablation of a copper target. The fluence dependence of ion yield is analyzed observing the occurrence of three different regimes. Moreover, the specific ion yield shows a maximum at about 4-5 J/cm2, followed by a gradual reduction and a transition to a high-fluence regime above ~50 J/cm2. The fluence variation of the copper ions angular distribution is also analyzed, observing a gradual increase of forward peaking of Cu ions for fluences up to ~10 J/cm2. Then, a broader ion component is observed at larger angles for fluences larger than ~10 J/cm2. Finally, an experimental characterization of the ions angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of ~66 J/cm2. Interestingly, the ion emission from the volatile metals show a narrow forward peaked distribution and a high peak ion yield compared to the refractory metals. Moreover, the width of ion angular distributions presents a striking correlation with the peak ion yield.

  17. The evaluation of neutron and gamma ray dose equivalent distributions in patients and the effectiveness of shield materials for high energy photons radiotherapy facilities.

    PubMed

    Ghassoun, J; Senhou, N

    2012-04-01

    In this study, the MCNP5 code was used to model radiotherapy room of a medical linear accelerator operating at 18 MV and to evaluate the neutron and the secondary gamma ray fluences, the energy spectra and the dose equivalent distributions inside a liquid tissue-equivalent (TE) phantom. The obtained results were compared with measured data published in the literature. Moreover, the shielding effects of various neutron material shields on the radiotherapy room wall were also investigated. Our simulation results showed that paraffin wax containing boron carbide presents enough effectiveness to reduce both neutron and secondary gamma ray doses.

  18. High neutronic efficiency, low current targets for accelerator-based BNCT applications

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1998-08-01

    The neutronic efficiency of target/filters for accelerator-based BNCT applications is measured by the proton current required to achieve a desirable neutron current at the treatment port (10{sup 9} n/cm{sup 2}/s). In this paper the authors describe two possible targeyt/filter concepts wihch minimize the required current. Both concepts are based on the Li-7 (p,n)Be-7 reaction. Targets that operate near the threshold energy generate neutrons that are close tothe desired energy for BNCT treatment. Thus, the filter can be extremely thin ({approximately} 5 cm iron). However, this approach has an extremely low neutron yield (n/p {approximately} 1.0({minus}6)), thus requiring a high proton current. The proposed solutino is to design a target consisting of multiple extremely thin targets (proton energy loss per target {approximately} 10 keV), and re-accelerate the protons between each target. Targets operating at ihgher proton energies ({approximately} 2.5 MeV) have a much higher yield (n/p {approximately} 1.0({minus}4)). However, at these energies the maximum neutron energy is approximately 800 keV, and thus a neutron filter is required to degrade the average neutron energy to the range of interest for BNCT (10--20 keV). A neutron filter consisting of fluorine compounds and iron has been investigated for this case. Typically a proton current of approximately 5 mA is required to generate the desired neutron current at the treatment port. The efficiency of these filter designs can be further increased by incorporating neutron reflectors that are co-axial with the neutron source. These reflectors are made of materials which have high scattering cross sections in the range 0.1--1.0 MeV.

  19. Compensator models for fluence field modulated computed tomography

    SciTech Connect

    Bartolac, Steven; Jaffray, David

    2013-12-15

    Purpose: Fluence field modulated computed tomography (FFMCT) presents a novel approach for acquiring CT images, whereby a patient model guides dynamically changing fluence patterns in an attempt to achieve task-based, user-prescribed, regional variations in image quality, while also controlling dose to the patient. This work aims to compare the relative effectiveness of FFMCT applied to different thoracic imaging tasks (routine diagnostic CT, lung cancer screening, and cardiac CT) when the modulator is subject to limiting constraints, such as might be present in realistic implementations.Methods: An image quality plan was defined for a simulated anthropomorphic chest slice, including regions of high and low image quality, for each of the thoracic imaging tasks. Modulated fluence patterns were generated using a simulated annealing optimization script, which attempts to achieve the image quality plan under a global dosimetric constraint. Optimization was repeated under different types of modulation constraints (e.g., fixed or gantry angle dependent patterns, continuous or comprised of discrete apertures) with the most limiting case being a fixed conventional bowtie filter. For each thoracic imaging task, an image quality map (IQM{sub sd}) representing the regionally varying standard deviation is predicted for each modulation method and compared to the prescribed image quality plan as well as against results from uniform fluence fields. Relative integral dose measures were also compared.Results: Each IQM{sub sd} resulting from FFMCT showed improved agreement with planned objectives compared to those from uniform fluence fields for all cases. Dynamically changing modulation patterns yielded better uniformity, improved image quality, and lower dose compared to fixed filter patterns with optimized tube current. For the latter fixed filter cases, the optimal choice of tube current modulation was found to depend heavily on the task. Average integral dose reduction compared

  20. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  1. DETECTORS AND EXPERIMENTAL METHODS: Study on spatial resolution of micromegas as a neutron detector under condition of high neutron flux and γ ray background

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xin; Zhang, Yi; Wang, Ji-Jin; Hu, Bi-Tao

    2009-02-01

    In this paper Micromegas has been designed to detect neutrons. The simulation of the spatial resolution of Micromegas as neutron detector is carried out by GEANT4 toolkit. The neutron track reconstruction method based on the time coincidence technology is employed in the present work. The influence of the flux of incident 14 MeV neutron and high gamma background on the spatial resolution is carefully studied. Our results show that the spatial resolution of the detector is sensitive to the neutron flux, but insensitive to the intensity of γ background if the neutron track reconstruction method proposed by our group is used. The γ insensitivity makes it possible for us to use the Micromegas detector under condition which has high γ-rays background.

  2. Characterisation of the TRIUMF neutron facility using a Monte Carlo simulation code.

    PubMed

    Monk, S D; Abram, T; Joyce, M J

    2015-04-01

    Here, the characterisation of the high-energy neutron field at TRIUMF (The Tri Universities Meson Facility, Vancouver, British Columbia) with Monte Carlo simulation software is described. The package used is MCNPX version 2.6.0, with the neutron fluence rate determined at three locations within the TRIUMF Thermal Neutron Facility (TNF), including the exit of the neutron channel where users of the facility can test devices that may be susceptible to the effects of this form of radiation. The facility is often used to roughly emulate the field likely to be encountered at high altitudes due to radiation of galactic origin and thus the simulated information is compared with the energy spectrum calculated to be due to neutron radiation of cosmic origin at typical aircraft altitudes. The calculated values were also compared with neutron flux measurements that were estimated using the activation of various foils by the staff of the facility, showing agreement within an order of magnitude. PMID:25342608

  3. Advantages of passive detectors for the determination of the cosmic ray induced neutron environment.

    PubMed

    Hajek, M; Berger, T; Schöner, W; Vana, N

    2002-01-01

    Due to the pronounced energy dependence of the neutron quality factor, accurate assessment of the biologically relevant dose requires knowledge of the spectral neutron fluence rate. Bonner sphere spectrometers (BSSs) are the only instruments which provide a sufficient response over practically the whole energy range of the cosmic ray induced neutron component. Measurements in a 62 MeV proton beam at Paul Scherrer Institute, Switzerland, and in the CERN-EU high-energy reference field led to the assumption that conventional active devices for the detection of thermal neutrons inside the BSS, e.g. 6Lil(Eu) scintillators, also respond to charged particles when used in high-energy mixed radiation fields. The effects of these particles cannot be suppressed by amplitude discrimination and are subsequently misinterpreted as neutron radiation. In contrast, paired TLD-600 and TLD-700 thermoluminescence dosemeters allow the determination of a net thermal neutron signal.

  4. Characterisation of the TRIUMF neutron facility using a Monte Carlo simulation code.

    PubMed

    Monk, S D; Abram, T; Joyce, M J

    2015-04-01

    Here, the characterisation of the high-energy neutron field at TRIUMF (The Tri Universities Meson Facility, Vancouver, British Columbia) with Monte Carlo simulation software is described. The package used is MCNPX version 2.6.0, with the neutron fluence rate determined at three locations within the TRIUMF Thermal Neutron Facility (TNF), including the exit of the neutron channel where users of the facility can test devices that may be susceptible to the effects of this form of radiation. The facility is often used to roughly emulate the field likely to be encountered at high altitudes due to radiation of galactic origin and thus the simulated information is compared with the energy spectrum calculated to be due to neutron radiation of cosmic origin at typical aircraft altitudes. The calculated values were also compared with neutron flux measurements that were estimated using the activation of various foils by the staff of the facility, showing agreement within an order of magnitude.

  5. Interplanetary proton fluence model - JPL 1991

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Spitale, G.; Wang, J.; Gabriel, S.

    1993-01-01

    We describe an updated predictive engineering model for the interplanetary fluence of protons with energies respectively greater than 1, 4, 10, 30, and 60 MeV. This has been the first opportunity to derive a model from a data set that has been collected in space over a long enough period of time to produce a valid sample of solar proton events. The model provides a quantitative basis for estimating the exposures to solar protons of spacecraft during missions of varying length and of surfaces and atmospheres of solar system objects. The data sets contain several major proton events comparable to the 1972 event. For the cases of the over 10 and over 30 MeV particles, the fluences are somewhat lower than in our earlier model No over 1, over 4, and over 60 MeV proton fluence models have been published in the literature previously. We present our results in a convenient graphical form which may be used to calculate the 1 AU fluence expected at a given confidence level as a function of the length of the exposure. A method of extending this estimate to other heliocentric distances is described.

  6. Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector

    NASA Astrophysics Data System (ADS)

    Sánchez-Doblado, F.; Domingo, C.; Gómez, F.; Sánchez-Nieto, B.; Muñiz, J. L.; García-Fusté, M. J.; Expósito, M. R.; Barquero, R.; Hartmann, G.; Terrón, J. A.; Pena, J.; Méndez, R.; Gutiérrez, F.; Guerre, F. X.; Roselló, J.; Núñez, L.; Brualla-González, L.; Manchado, F.; Lorente, A.; Gallego, E.; Capote, R.; Planes, D.; Lagares, J. I.; González-Soto, X.; Sansaloni, F.; Colmenares, R.; Amgarou, K.; Morales, E.; Bedogni, R.; Cano, J. P.; Fernández, F.

    2012-10-01

    Neutron peripheral contamination in patients undergoing high-energy photon radiotherapy is considered as a risk factor for secondary cancer induction. Organ-specific neutron-equivalent dose estimation is therefore essential for a reasonable assessment of these associated risks. This work aimed to develop a method to estimate neutron-equivalent doses in multiple organs of radiotherapy patients. The method involved the convolution, at 16 reference points in an anthropomorphic phantom, of the normalized Monte Carlo neutron fluence energy spectra with the kerma and energy-dependent radiation weighting factor. This was then scaled with the total neutron fluence measured with passive detectors, at the same reference points, in order to obtain the equivalent doses in organs. The latter were correlated with the readings of a neutron digital detector located inside the treatment room during phantom irradiation. This digital detector, designed and developed by our group, integrates the thermal neutron fluence. The correlation model, applied to the digital detector readings during patient irradiation, enables the online estimation of neutron-equivalent doses in organs. The model takes into account the specific irradiation site, the field parameters (energy, field size, angle incidence, etc) and the installation (linac and bunker geometry). This method, which is suitable for routine clinical use, will help to systematically generate the dosimetric data essential for the improvement of current risk-estimation models.

  7. High-speed neutron radiography for monitoring the water absorption by capillarity in porous materials

    NASA Astrophysics Data System (ADS)

    Cnudde, Veerle; Dierick, Manuel; Vlassenbroeck, Jelle; Masschaele, Bert; Lehmann, Eberhard; Jacobs, Patric; Van Hoorebeke, Luc

    2008-01-01

    Fluid flow through porous natural building stones is of great importance when studying their weathering processes. Many traditional experiments based on mass changes are available for studying liquid transport in porous stones, such as the determination of the water absorption coefficient by capillarity. Because thermal neutrons experience a strong attenuation by hydrogen, neutron radiography is a suitable technique for the study of water absorption by capillarity in porous stones. However, image contrast can be impaired because hydrogen mainly scatters neutrons rather than absorbing them, resulting in a blurred image. Capillarity results obtained by neutron radiography and by the European Standard 1925 for the determination of the water absorption coefficient by capillarity for natural building stones with a variable porosity were compared. It is illustrated that high-speed neutron radiography can be a useful research tool for the visualization of internal fluid flow inside inorganic building materials such as limestones and sandstones.

  8. High-accuracy determination of the neutron flux at n_TOF

    NASA Astrophysics Data System (ADS)

    Barbagallo, M.; Guerrero, C.; Tsinganis, A.; Tarrío, D.; Altstadt, S.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Göbel, K.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Gunsing, F.; Gurusamy, P.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martınez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Papaevangelou, T.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sabate-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Steinegger, P.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.

    2013-12-01

    The neutron flux of the n_TOF facility at CERN was measured, after installation of the new spallation target, with four different systems based on three neutron-converting reactions, which represent accepted cross sections standards in different energy regions. A careful comparison and combination of the different measurements allowed us to reach an unprecedented accuracy on the energy dependence of the neutron flux in the very wide range (thermal to 1 GeV) that characterizes the n_TOF neutron beam. This is a pre-requisite for the high accuracy of cross section measurements at n_TOF. An unexpected anomaly in the neutron-induced fission cross section of 235U is observed in the energy region between 10 and 30keV, hinting at a possible overestimation of this important cross section, well above currently assigned uncertainties.

  9. Development of high-energy neutron imaging for use in NDE applications

    SciTech Connect

    Dietrich, F; Hall, J; Logan, C; Schmid, G

    1999-06-01

    We are currently developing a high-energy (10 - 15 MeV) neutron imaging system for use in NDE applications. Our goal is to develop an imaging system capable of detecting cubic-mm-scale voids or other structural defects in heavily-shielded low-Z materials within thick sealed objects. The system will be relatively compact (suitable for use in a small laboratory) and capable of acquiring tomographic image data sets. The design of a prototype imaging detector and multi-axis staging system will be discussed and selected results from recent imaging experiments will be presented. The development of an intense, accelerator-driven neutron source suitable for use with the imaging system will also be discussed. Keywords: neutron imaging, neutron radiography, computed tomography, non-destructive inspection, neutron sources

  10. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    SciTech Connect

    Maglieri, Robert Evans, Michael; Seuntjens, Jan; Kildea, John; Licea, Angel

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  11. A Canadian high-energy neutron spectrometry system for measurements in space.

    PubMed

    Jonkmans, G; Andrews, H R; Clifford, E T H; Frketich, G; Ing, H; Koslowsky, V T; Noulty, R A; Miller, R C; Zhou, Y; Mortimer, A; Peterson, D; Wilkinson, R

    2005-01-01

    Bubble Technology Industries Inc. (BTI), with the support of the Canadian Space Agency, has finished the construction of the Canadian High-Energy Neutron Spectrometry System (CHENSS). This spectrometer is intended to measure the high energy neutron spectrum (approximately 1-100 MeV) encountered in spacecraft in low earth orbit. CHENSS is designed to fly aboard a US space shuttle and its scientific results should facilitate the prediction of neutron dose to astronauts in space from readings of different types of radiation dosimeters that are being used in various missions.

  12. A Canadian high-energy neutron spectrometry system for measurements in space.

    PubMed

    Jonkmans, G; Andrews, H R; Clifford, E T H; Frketich, G; Ing, H; Koslowsky, V T; Noulty, R A; Miller, R C; Zhou, Y; Mortimer, A; Peterson, D; Wilkinson, R

    2005-01-01

    Bubble Technology Industries Inc. (BTI), with the support of the Canadian Space Agency, has finished the construction of the Canadian High-Energy Neutron Spectrometry System (CHENSS). This spectrometer is intended to measure the high energy neutron spectrum (approximately 1-100 MeV) encountered in spacecraft in low earth orbit. CHENSS is designed to fly aboard a US space shuttle and its scientific results should facilitate the prediction of neutron dose to astronauts in space from readings of different types of radiation dosimeters that are being used in various missions. PMID:15835056

  13. Optical absorption of neutron-irradiated silica fibers

    SciTech Connect

    Cooke, D.W.; Farnum, E.H.; Bennett, B.L.

    1996-10-01

    Induced-loss spectra of silica-based optical fibers exposed to high (10{sup 23} n-m{sup {minus}2}) and low (10{sup 21} n-m{sup {minus}2}) fluences of neutrons at the Los Alamos Spallation Radiation Effects Facility (LASREF) have been measured. Two types of fibers consisting of a pure fused silica core with fluorine-doped ({approximately}4 mole %) cladding were obtained from Fiberguide Industries and used in the as-received condition. Anhydroguide{trademark} and superguide{trademark} fibers contained less than 1 ppm, and 600 to 800 ppm of OH, respectively. The data suggest that presently available silica fibers can be used in plasma diagnostics, but the choice and suitability depends upon the spectral region of interest. Low-OH content fibers can be used for diagnostic purposes in the interval {approximately}800 to 1400 mn if the exposure is to high-fluence neutrons. For low-fluence neutron exposures, the low-OH content fibers are best suited for use in the interval {approximately}800 to 2000 nm, and the high-OH content fibers are the choice for the interval {approximately}400 to 800 nm.

  14. Micronuclei induction in human fibroblasts exposed in vitro to Los Alamos high-energy neutrons

    NASA Astrophysics Data System (ADS)

    Gersey, Brad; Sodolak, John; Hada, Megumi; Saganti, Prem; Wilkins, Richard; Cucinotta, Francis; Wu, Honglu

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's ICE House 30L beamline is known to generate neutrons that simulate the secondary neutron spectra of earth's atmosphere. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and International Space Station (ISS). To evaluate the biological damage, we exposed human fibroblasts in vitro to the LANSCE neutron beams without degrader at an entrance dose rate of 25 mGy/h and analyzed the micronuclei (MN) induction. The cells were also placed behind a 9.9 cm water column to study the effect of shielding in the protection of neutron induced damages. It was found that the dose response in the MN frequency was linear for the samples with and without shielding and the slope of the MN yield behind the shielding was reduced by a factor of 3.5. Compared to the MN induction in human fibroblasts exposed to a γ source at a similar low dose rate, the RBE was found to be 16.7 and 10.0 for the neutrons without and with the 9.9 cm water shielding, respectively.

  15. Simulation experiments for gamma-ray mapping of planetary surfaces: Scattering of high-energy neutrons

    NASA Technical Reports Server (NTRS)

    Brueckner, J.; Englert, P.; Reedy, R. C.; Waenke, H.

    1986-01-01

    The concentration and distribution of certain elements in surface layers of planetary objects specify constraints on models of their origin and evolution. This information can be obtained by means of remote sensing gamma-ray spectroscopy, as planned for a number of future space missions, i.e., Mars, Moon, asteroids, and comets. To investigate the gamma-rays made by interactions of neutrons with matter, thin targets of different composition were placed between a neutron-source and a high-resolution germanium spectrometer. Gamma-rays in the range of 0.1 to 8 MeV were accumulated. In one set of experiments a 14-MeV neutron generator using the T(d,n) reaction as neutron-source was placed in a small room. Scattering in surrounding walls produced a spectrum of neutron energies from 14 MeV down to thermal. This complex neutron-source induced mainly neutron-capture lines and only a few scattering lines. As a result of the set-up, there was a considerable background of discrete lines from surrounding materials. A similar situation exists under planetary exploration conditions: gamma-rays are induced in the planetary surface as well as in the spacecraft. To investigate the contribution of neutrons with higher energies, an experiment for the measurement of prompt gamma radiation was set up at the end of a beam-line of an isochronous cyclotron.

  16. Micronuclei Induction in Human Fibroblasts Exposed In Vitro to Los Alamos High-Energy Neutrons

    NASA Technical Reports Server (NTRS)

    Gersey, Brad; Sodolak, John; Hada, Megumi; Saganti, Prem; Wilkins, Richard; Cucinotta, Francis; Wu, Honglu

    2006-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility#s ICE House 30L beamline is known to generate neutrons that simulate the secondary neutron spectra of earth#s atmosphere. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and International Space Station (ISS). To evaluate the biological damage, we exposed human fibroblasts in vitro to the LANSCE neutron beams without degrader at an entrance dose rate of 25 mGy/hr and analyzed the micronuclei (MN) induction. The cells were also placed behind a 9.9 cm water column to study effect of shielding in the protection of neutron induced damages. It was found that the dose response in the MN frequency was linear for the samples with and without shielding and the slope of the MN yield behind the shielding was reduced by a factor of 3.5. Compared to the MN induction in human fibroblasts exposed to a gamma source at a low dose rate, the RBE was found to be 16.7 and 10.0 for the neutrons without and with 9.9 cm water shielding, respectively.

  17. The effect of local fluence on the micropatterning of poly(ethylene terephthalate) foils through proton beam writing

    NASA Astrophysics Data System (ADS)

    de Souza, C. T.; Stori, E. M.; Boufleur, L. A.; Papaléo, R. M.; Dias, J. F.

    2016-07-01

    In this work, we investigate the influence of ion fluence on the development of microstructures produced by 2.2 MeV H+ impinging on 12-μm-thick poly(ethylene terephthalate) (PET, Mylar®) foils. Several lines of 1 × 100 pixels corresponding to approximately 2.5 × 101.5 µm2 were patterned on PET foils using different ion fluences (from 1012 to 1017 H+/cm2) and etching times (from 1 to 60 min). We observe the presence of three different behaviors according to the ion fluence. Long etching times are necessary to open the structure in the low fluence regime, while moderate fluences require shorter etching times. In the high fluence regime, a more complex scenario emerges where short etching times lead to structures either fully or partially developed.

  18. Trace element analysis of K, U and Th in high purity materials by neutron activation analysis

    SciTech Connect

    Pillalamarri, Ila

    2005-09-08

    The concept and usage of 'high purity' are explained. Trace element analysis of K, U and Th by neutron activation analysis is described, the radio-isotopes and their corresponding gamma-rays used to identify the elements are listed. The interfering elements are described. The advantages and disadvantages of using neutron activation analysis are discussed. Some examples of trace impurity determinations in high purity materials are provided.

  19. Measurement of high energy neutrons via Lu(n,xn) reactions

    SciTech Connect

    Henry, E.A.; Becker, J.A.; Archer, D.E.; Younes, W.; Stoyer, M.A.; Slaughter, D.

    1997-07-01

    High energy neutrons can be assayed by the use of the nuclear diagnostic material lutetium. We are measuring the (n,xn) cross sections for natural lutetium in order to develop it as a detector material. We are applying lutetium to diagnose the high energy neutrons produced in test target/blanket systems appropriate for the Accelerator Production of Tritium Project. 3 refs., 5 figs., 1 tab.

  20. Biological effects of high-energy neutrons measured in vivo using a vertebrate model.

    PubMed

    Kuhne, Wendy W; Gersey, Brad B; Wilkins, Richard; Wu, Honglu; Wender, Stephen A; George, Varghese; Dynan, William S

    2009-10-01

    Interaction of solar protons and galactic cosmic radiation with the atmosphere and other materials produces high-energy secondary neutrons from below 1 to 1000 MeV and higher. Although secondary neutrons may provide an appreciable component of the radiation dose equivalent received by space and high-altitude air travelers, the biological effects remain poorly defined, particularly in vivo in intact organisms. Here we describe the acute response of Japanese medaka (Oryzias latipes) embryos to a beam of high-energy spallation neutrons that mimics the energy spectrum of secondary neutrons encountered aboard spacecraft and high-altitude aircraft. To determine RBE, embryos were exposed to 0-0.5 Gy of high-energy neutron radiation or 0-15 Gy of reference gamma radiation. The radiation response was measured by imaging apoptotic cells in situ in defined volumes of the embryo, an assay that provides a quantifiable, linear dose response. The slope of the dose response in the developing head, relative to reference gamma radiation, indicates an RBE of 24.9 (95% CI 13.6-40.7). A higher RBE of 48.1 (95% CI 30.0-66.4) was obtained based on overall survival. A separate analysis of apoptosis in muscle showed an overall nonlinear response, with the greatest effects at doses of less than 0.3 Gy. Results of this experiment indicate that medaka are a useful model for investigating biological damage associated with high-energy neutron exposure.

  1. Boronated antibodies and promazine derivatives for potential neutron capture therapy

    SciTech Connect

    Alam, F.; Soloway, A.H.; Barth, R.F.; Adams, D.M.; Mafune, N.

    1986-01-01

    The theoretical basis for boron neutron capture therapy (BNCT) derives from the irradiation of /sup 10/B with thermal neutrons, resulting in a fission reaction yielding /sup 7/Li and alpha particles. The fission products have short path lengths and high linear energy transfer (LET). Each component of this binary system, thermal neutrons and /sup 10/B, independently are nontumoricidal, but together they can be highly lethal. Success depends on localizing enough of the /sup 10/B (approx.20 ..mu..g/g of tumor) and delivering a requisite fluence of thermal neutrons (approx.10/sup 13/ n/cm/sup 9/) at the site of the tumor. This report describes the boronation of antibodies and the development of boron-containing promazine derivatives to selectively deliver /sup 10/B to tumor cells for BNCT.

  2. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high-power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  3. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  4. Defect-induced magnetism in graphite through neutron irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Yutian; Pochet, Pascal; Jenkins, Catherine A.; Arenholz, Elke; Bukalis, Gregor; Gemming, Sibylle; Helm, Manfred; Zhou, Shengqiang

    2014-12-01

    We have investigated the variation in the magnetization of highly ordered pyrolytic graphite (HOPG) after neutron irradiation, which introduces defects in the bulk sample and consequently gives rise to a large magnetic signal. We observe strong paramagnetism in HOPG, increasing with the neutron fluence. The induced paramagnetism can be well correlated with structural defects by comparison with density-functional theory calculations. In addition to the in-plane vacancies, the transplanar defects also contribute to the magnetization. The lack of any magnetic order between the local moments is possibly due to the absence of hydrogen/nitrogen chemisorption, or the magnetic order cannot be established at all in the bulk form.

  5. A high repetition rate laser-heavy water based neutron source

    NASA Astrophysics Data System (ADS)

    Hah, Jungmoo; He, Zhaohan; Nees, John; Krushelnick, Karl; Thomas, Alexander; CenterUltrafast Optical Science Team

    2015-11-01

    Neutrons have numerous applications in diverse areas, such as medicine, security, and material science. For example, sources of MeV neutrons may be used for active interrogation for nuclear security applications. Recently, alternative ways to generate neutron flux have been studied. Among them, ultrashort laser pulse interactions with dense plasma have attracted significant attention as compact, pulse sources of neutrons. To generate neutrons using a laser through fusion reactions, thin solid density targets have been used in a pitcher-catcher arrangement, using deuterated plastic for example. However, the use of solid targets is limited for high-repetition rate operation due to the need to refresh the target for every laser shot. Here, we use a free flowing heavy water target with a high repetition rate (500 Hz) laser without a catcher. From the interaction between a 10 micron scale diameter heavy water stream with the Lambda-cubed laser system at the Univ. of Michigan (12mJ, 800nm, 35fs), deuterons collide with each other resulting in D-D fusion reactions generating 2.45 MeV neutrons. Under best conditions a time average of ~ 105 n/s of neutrons are generated.

  6. A diamond 14 MeV neutron energy spectrometer with high energy resolution.

    PubMed

    Shimaoka, Takehiro; Kaneko, Junichi H; Ochiai, Kentaro; Tsubota, Masakatsu; Shimmyo, Hiroaki; Chayahara, Akiyoshi; Umezawa, Hitoshi; Watanabe, Hideyuki; Shikata, Shin-ichi; Isobe, Mitsutaka; Osakabe, Masaki

    2016-02-01

    A self-standing single-crystal chemical vapor deposited diamond was obtained using lift-off method. It was fabricated into a radiation detector and response function measurements for 14 MeV neutrons were taken at the fusion neutronics source. 1.5% of high energy resolution was obtained by using the (12)C(n, α)(9)Be reaction at an angle of 100° with the deuteron beam line. The intrinsic energy resolution, excluding energy spreading caused by neutron scattering, slowing in the target and circuit noises was 0.79%, which was also the best resolution of the diamond detector ever reported.

  7. On the solar cycle variation in the barometer coefficients of high latitude neutron monitors

    NASA Technical Reports Server (NTRS)

    Kusunose, M.; Ogita, N.

    1985-01-01

    Evaluation of barometer coefficients of neutron monitors located at high latitudes has been performed by using the results of the spherical harmonic analysis based on the records from around twenty stations for twelve years from January 1966 to December 1977. The average of data at eight stations, where continuous records are available for twelve years, show that the absolute value of barometer coefficient is in positive correlation with the cosmic ray neutron intensity. The variation rate of the barometer coefficient to the cosmic ray neutron intensity is influenced by the changes in the cutoff rigidity and in the primary spectrum.

  8. Small-Angle Neutron Scattering and Neutron Spin Echo Characterization of Monoclonal Antibody Self-Associations at High Concentrations

    NASA Astrophysics Data System (ADS)

    Yearley, Eric; Zarraga, Isidro (Dan); Godfrin, Paul (Doug); Perevozchikova, Tatiana; Wagner, Norman; Liu, Yun

    2013-03-01

    Concentrated therapeutic protein formulations offer numerous delivery and stability challenges. In particular, it has been found that several therapeutic proteins exhibit a large increase in viscosity as a function of concentration that may be dependent on the protein-protein interactions. Small-Angle Neutron Scattering (SANS) and Neutron Spin Echo (NSE) investigations have been performed to probe the protein-protein interactions and diffusive properties of highly concentrated MAbs. The SANS data demonstrate that the inter-particle interactions for a highly viscous MAb at high concentrations (MAb1) are highly attractive, anisotropic and change significantly with concentration while the viscosity and interactions do not differ considerably for MAb2. The NSE results furthermore indicate that MAb1 and MAb2 have strong concentration dependencies of dynamics at high Q that are correlated to the translational motion of the proteins. Finally, it has also been revealed that the individual MAb1 proteins form small clusters at high concentrations in contrast to the MAb2 proteins, which are well-dispersed. It is proposed that the formation of these clusters is the primary cause of the dramatic increase in viscosity of MAb1 in crowded or concentrated environments.

  9. Development of A Self Biased High Efficiency Solid-State Neutron Detector for MPACT Applications

    SciTech Connect

    Danon, Yaron; Bhat, Ishwara; Jian-Qiang Lu, James

    2013-09-03

    Neutron detection is an important aspect of materials protection, accounting, and control for transmutation (MPACT). Currently He-3 filled thermal neutron detectors are utilized in many applications; these detectors require high-voltage bias for operation, which complicates the system when multiple detectors are used. In addition, due to recent increase in homeland security activity and the nuclear renaissance, there is a shortage of He-3, and these detectors become more expensive. Instead, cheap solid-state detectors that can be mass produced like any other computer chips will be developed. The new detector does not require a bias for operation, has low gamma sensitivity, and a fast response. The detection system is based on a honeycomb-like silicon device, which is filled with B-10 as the neutron converter; while a silicon p-n diode (i.e., solar cell type device) formed on the thin silicon wall of the honeycomb structure detects the energetic charged particles emitted from the B-10 conversion layer. Such a detector has ~40% calculated thermal neutron detection efficiency with an overall detector thickness of about 200 ?m. Stacking of these devices allows over 90% thermal neutron detection efficiency. The goal of the proposed research is to develop a high-efficiency, low-noise, self-powered solid-state neutron detector system based on the promising results of the existing research program. A prototype of this solid-state neutron detector system with sufficient detector size (up to 8-inch diam., but still portable and inexpensive) and integrated with interface electronics (e.g., preamplifier) will be designed, fabricated, and tested as a coincidence counter for MPACT applications. All fabrications proposed are based on silicon-compatible processing; thus, an extremely cheap detector system could be massively produced like any other silicon chips. Such detectors will revolutionize current neutron detection systems by providing a solid-state alternative to

  10. Development of a High-performance Optical System and Fluorescent Converters for High-resolution Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.

    Two novel devices for use in neutron imaging technique are introduced. The first one is a high-performance optical lens for video camera systems. The lens system has a magnification of 1:1 and an F value of 3. The optical resolution is less than 5 μm. The second device is a high-resolution fluorescent plate that converts neutrons into visible light. The fluorescent converter material consists of a mixture of 6LiF and ZnS(Ag) fine powder, and the thickness of the converter is material is as little as 15 μm. The surface of the plate is coated with a 1 μm-thick gadolinium oxide layer. This layer is optically transparent and acts as an electron emitter for neutron detection. Our preliminary results show that the developed optical lens and fluorescent converter plates are very promising for high-resolution neutron imaging.

  11. A high yield neutron target for cancer therapy

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    A rotating target was developed that has the potential for providing an initial yield of 10 to the 13th power neutrons per second by the T(d,n)He-4 reaction, and a useable lifetime in excess of 600 hours. This yield and lifetime are indicated for a 300 Kv and 30 mA deuteron accelerator and a 30 microns thick titanium tritide film formed of the stoichiometric compound TiT2. The potential for extended lifetime is made possible by incorporating a sputtering electrode that permits use of titanium tritide thicknesses much greater than the deuteron range. The electrode is used to remove in situ depleted titanium layers to expose fresh tritide beneath. The utilization of the rotating target as a source of fast neutrons for cancer therapy is discussed.

  12. Neutron diagnostics for pulsed high-density thermonuclear plasmas.

    PubMed

    Ekdahl, C A

    1979-08-01

    Time-resolved measurements of the neutron flux from the Scylla IV-P linear theta-pinch experiment have been made with scintillator-photomultiplier combinations. Calibration of the detectors is accomplished by a comparison of their time-integrated output with the total neutron yield measured using a foil-activation technique for which an accurate calibration has been established. The temperature of the Maxwellian ion velocity distribution that would produce the observed flux is obtained from the Maxwellian reactivity < sigmav >(DD) for D (d,n)He3 and measurements of the temporal evolution of the plasma column density and dimensions. This determination of the time history of the ion temperature is in good agreement with the plasma energy measured using other techniques.

  13. A high power accelerator driver system for spallation neutron sources

    SciTech Connect

    Jason, A.; Blind, B.; Channell, P.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). For several years, the Los Alamos Meson Physics Facility (LAMPF) and the Proton Storage Ring (PSR) have provided a successful driver for the nearly 100-kW Los Alamos Neutron Scattering Center (LANSCE) source. The authors have studied an upgrade to this system. The goal of this effort was to establish a credible design for the accelerator driver of a next-generation source providing 1-MW of beam power. They have explored a limited subset of the possible approaches to a driver and have considered only the low 1-MW beam power. The next-generation source must utilize the optimum technology and may require larger neutron intensities than they now envision.

  14. The possible use of high altitude lakes as solar neutron detectors

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Muraki, Y.; Sako, T.; Takami, T.

    2001-08-01

    The possibility is investigated of installing a huge solar neutron detector in lakes located high mountains. Instead of using conventional neutron monitors, ¡ He proportional counters are supposed to be placed in the lake water. High energy (¢ 100 MeV) neutrons entering into the water are thermalized and detected by the counters aligned as far apart as possible. The optimal alignment of counters was determined using the Geant3 Monte Carlo simulator. We have found, however, the large cross section for thermal neutrons in water does not allow the installation of the counters at wide separation. With the optimal separation of 15 cm, an extremely large detector cannot be realized. A test experiment has been performed with a ¡ He proportional counter, which is set in a water tank at Mt. Norikura in Japan.

  15. Neutron irradiation effects on high Nicalon silicon carbide fibers

    SciTech Connect

    Osborne, M.C.; Steiner, D.; Snead, L.L.

    1996-10-01

    The effects of neutron irradiation on the mechanical properties and microstructure of SiC and SiC-based fibers is a current focal point for the development of radiation damage resistant SiC/SiC composites. This report discusses the radiation effects on the Nippon Carbon Hi-Nicalon{trademark} fiber system and also discusses an erratum on earlier results published by the authors on this material. The radiation matrix currently under study is also summarized.

  16. SU-F-BRE-11: Neutron Measurements Around the Varian TrueBeam Linac

    SciTech Connect

    Maglieri, R; Seuntjens, J; Kildea, J; Liang, L; DeBlois, F; Evans, M; Licea, A; Dubeau, J; Witharana, S

    2014-06-15

    Purpose: With the emergence of flattening filter free (FFF) photon beams, several authors have noted many advantages to their use. One such advantage is the decrease in neutron production by photonuclear reactions in the linac head. In the present work we investigate the reduction in neutrons from a Varian TrueBeam linac using the Nested Neutron Spectrometer (NNS, Detec). The neutron spectrum, total fluence and source strength were measured and compared for 10 MV with and without flattening filter and the effect of moderation by the room and maze was studied for the 15 MV beam. Methods: The NNS, similar to traditional Bonner sphere detectors but operated in current mode, was used to measure the neutron fluence and spectrum. The NNS was validated for use in high dose rate environments using Monte Carlo simulations and calibrated at NIST and NRC Canada. Measurements were performed at several positions within the treatment room and maze with the linac jaws closed to maximize neutron production. Results: The measurements showed a total fluence reduction between 35-40% in the room and maze when the flattening filter was removed. The neutron source strength Qn was calculated from in-room fluence measurements and was found to be 0.042 × 10{sup 2} n/Gy, 0.026 × 10{sup 2} n/Gy and 0.59 × 101{sup 2} n/Gy for the 10 MV, the 10 MV FFF and 15 MV beams, respectively. We measured ambient equivalent doses of 11 mSv/hr, 7 mSv/hr and 218 mSv/hr for the 10 MV, 10 MV FFF and 15 MV by the head. Conclusion: Our measurements revealed a decrease in total fluence, neutron source strength and equivalent dose of approximately 35-40% across the treatment room for the FFF compared to FF modes. This demonstrates, as expected, that the flattening filter is a major component of the neutron production for the TrueBeam. The authors greatly acknowledge support form the Canadian Nuclear Commission and the Natural Sciences and Engineering Research Council of Canada through the CREATE program. Co

  17. Low-cost fabrication of high efficiency solid-state neutron detectors

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Woei; Huang, Kuan-Chih; Weltz, Adam; English, Erik; Hella, Mona M.; Dahal, Rajendra; Lu, James J.-Q.; Danon, Yaron; Bhat, Ishwara B.

    2016-05-01

    The development of high-efficiency solid state thermal neutron detectors at low cost is critical for a wide range of civilian and defense applications. The use of present neutron detector system for personal radiation detection is limited by the cost, size, weight and power requirements. Chip scale solid state neutron detectors based on silicon technology would provide significant benefits in terms of cost, volume, and allow for wafer level integration with charge preamplifiers and readout electronics. In this paper, anisotropic wet etching of (110) silicon wafers was used to replace deep reactive ion etching (DRIE) to produce microstructured neutron detectors with lower cost and compatibility with mass production. Deep trenches were etched by 30 wt% KOH at 85°C with a highest etch ratio of (110) to (111). A trench-microstructure thermal neutron detector described by the aforementioned processes was fabricated and characterized. The detector—which has a continuous p+-n junction diode—was filled with enriched boron (99% of 10B) as a neutron converter material. The device showed a leakage current of ~ 6.7 × 10-6 A/cm2 at -1V and thermal neutron detection efficiency of ~16.3%. The detector uses custom built charge pre-amplifier, a shaping amplifier, and an analogto- digital converter (ADC) for data acquisition.

  18. High energy neutron treatment for pelvic cancers: study stopped because of increased mortality.

    PubMed Central

    Errington, R D; Ashby, D; Gore, S M; Abrams, K R; Myint, S; Bonnett, D E; Blake, S W; Saxton, T E

    1991-01-01

    OBJECTIVE--To compare high energy fast neutron treatment with conventional megavoltage x ray treatment in the management of locally advanced pelvic carcinomas (of the cervix, bladder, prostate, and rectum). DESIGN--Randomised study from February 1986; randomisation to neutron treatment or photon treatment was unstratified and in the ratio of 3 to 1 until January 1988, when randomisation was in the ratio 1 to 1 and stratified by site of tumour. SETTING--Mersey regional radiotherapy centre at Clatterbridge Hospital, Wirral. PATIENTS--151 patients with locally advanced, non-metastatic pelvic cancer (27 cervical, 69 of the bladder, seven prostatic, and 48 of the rectum). INTERVENTION--Randomisation to neutron treatment was stopped in February 1990. MAIN OUTCOME MEASURES--Patient survival and causes of death in relation to the development of metastatic disease and treatment related morbidity. RESULTS--In the first phase of the trial 42 patients were randomised to neutron treatment and 14 to photon treatment, and in the second phase 48 to neutron treatment and 47 to photon treatment. The relative risk of mortality for photons compared with neutrons was 0.66 (95% confidence interval 0.40 to 1.10) after adjustment for site of tumour and other important prognostic factors. Short term and long term complications were similar in both groups. CONCLUSIONS--The trial was stopped because of the increased mortality in patients with cancer of the cervix, bladder, or rectum treated with neutrons. PMID:1903663

  19. Neutron shielding panels for reactor pressure vessels

    DOEpatents

    Singleton, Norman R.

    2011-11-22

    In a nuclear reactor neutron panels varying in thickness in the circumferential direction are disposed at spaced circumferential locations around the reactor core so that the greatest radial thickness is at the point of highest fluence with lesser thicknesses at adjacent locations where the fluence level is lower. The neutron panels are disposed between the core barrel and the interior of the reactor vessel to maintain radiation exposure to the vessel within acceptable limits.

  20. High Time Resolution Studies of X-Ray Bursts: Neutron Star Structure

    NASA Astrophysics Data System (ADS)

    Zhang, William

    1998-04-01

    Galactic low mass X-ray binaries distinguish themselves from the X-Ray pulsars by two characteristics: (1) they emit X-ray bursts due to unstable nuclear burning of accreted matter on the neutron star surface, and (2) they do not appear to emit coherent pulsations, even though they are believed to harbor fast-spinning neutron stars. One of the ``holy grails'' of X-ray astronomy in the 1980's was to measure the spin rates of these neutron stars so as to establish these neutron stars as progenitors of milli-second radio pulsars. Since the launch of the Rossi X-Ray Timing Explorer in 1995, highly coherent flux oscillations, with a Q-value of several hundred, have been observed during the X-ray bursts of several low mass X-ray binaries. All aspects of these oscillations, i.e., coherence, frequency stability from one burst to another for a given binary, their absence and presence at different phases of the bursts, strongly indicate that these oscillations are due to rotation of the neutron star. A very promising interpretation is that they are due to a combination of the neutron star rotation and surface temperature variations during the unstable nuclear burning. Therefore it is quite appropriate to call these neutron stars nuclear powered pulsars. These oscillations offer a unique opportunity to probe the neutron star structure. In this talk I will review the observational status of these oscillations and show how we could use them to study the intrinsic properties of the neutron star (mass, radius, and magnetic field).

  1. Monte Carlo simulations for high-rate fast neutron flux measurements made at the RAON neutron science facility by using MICROMEGAS

    NASA Astrophysics Data System (ADS)

    Hwang, Dae Hee; Hong, Ser Gi; Kim, Jae Cheon; Kim, Gi Dong; Kim, Yong Kyun

    2015-10-01

    RAON is a Korean heavy-ion accelerator complex that is planned to be built by 2021. Deuterons (53 MeV) and protons (88 MeV) accelerated by using a low-energy driver linac (SCL1) are delivered to the neutron production target in the Neutron Science Facility (NSF) to produce high-energy neutrons in the interval from 1 to 88 MeV with high fluxes of the order of 1012 n/cm2-sec. The repetition rate of the neutron beam ranges from 1 kHz to 1 MHz, and the maximum beam current is ~12 μA at 1 MHz. The beam width is 1 ~ 2 ns. The high-energy and high-rate fast neutrons are used to estimate accurate neutron-induced cross sections for various nuclides at the NSF. A MICROMEGAS (MICRO Mesh Gaseous Structure), which is a gaseous detector initially developed for tracking in high-rate, high-energy physics experiments, is tentatively being considered as a neutron beam monitor. It can be used to measure both the energy distribution and the flux of the neutron beam. In this study, a MICROMEGAS detector for installation at the NSF was designed and investigated. 6Li, 10B, 235U and 238U targets are being considered as neutron/charged particle converters. For the low-energy region, 6Li(n,α)t and 10B(n,α)7Li are used in the energy range from thermal to 1 MeV. 235U(n,f) and 238U(n,f) reactions are used for high-energy region up to 90 MeV. All calculations are performed by using the GEANT4 toolkit.

  2. Proton Particle Test Fluence: What's the Right Number?

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Ladbury, Raymond

    2015-01-01

    While we have been utilizing standard fluence levels such as those listed in the JESD57 document, we have begun revisiting what an appropriate test fluence is when it comes to qualifying a device for single events. Instead of a fixed fluence level or until a specific number of events occurs, a different thought process is required.

  3. Extended conversion coefficients for use in radiation protection of the embryo and fetus against external neutrons from 10 MeV to 100 GeV.

    PubMed

    Chen, Jing

    2006-03-01

    External neutron exposure is of concern in the environment and in some workplaces. Dose assessments for neutrons frequently rely on fluence-to-absorbed dose conversion coefficients. A problem of concern in radiation protection is exposure of pregnant women to ionizing radiation because of the high radiosensitivity of the embryo and fetus. While neutron fluence-to-dose conversion coefficients for adults are recommended in ICRP publications and ICRU reports, conversion coefficients for embryos and fetuses are not given in the publications. This study uses the Monte Carlo code MCNPX to determine mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A previous study has dealt with neutrons from 1 eV to 10 MeV. In this study, monoenergetic neutrons ranging from 10 MeV to 100 GeV are considered. The irradiation geometries include antero-posterior, postero-anterior, lateral, rotational, and isotropic. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated for the embryo of 8 wk and the fetus of 3, 6, or 9 mo. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four prenatal ages. The results showed that the fetus at about 3 mo of prenatal age should receive more radiation protection to prevent long-term brain damage. During prenatal life, the fetus generally receives the highest absorbed dose per unit neutron fluence for antero-posterior irradiation. In cases where the irradiation geometry is not specified or not adequately known, conversion coefficients of AP-irradiation can therefore be used in a conservative dose assessment of fetus exposure to external neutrons.

  4. First measurements with new high-resolution gadolinium-GEM neutron detectors

    NASA Astrophysics Data System (ADS)

    Pfeiffer, D.; Resnati, F.; Birch, J.; Etxegarai, M.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Llamas-Jansa, I.; Oliveri, E.; Oksanen, E.; Robinson, L.; Ropelewski, L.; Schmidt, S.; Streli, C.; Thuiner, P.

    2016-05-01

    European Spallation Source instruments like the macromolecular diffractometer (NMX) require an excellent neutron detection efficiency, high-rate capabilities, time resolution, and an unprecedented spatial resolution in the order of a few hundred micrometers over a wide angular range of the incoming neutrons. For these instruments solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are a promising option. A GEM detector with gadolinium converter was tested on a cold neutron beam at the IFE research reactor in Norway. The μTPC analysis, proven to improve the spatial resolution in the case of 10B converters, is extended to gadolinium based detectors. For the first time, a Gd-GEM was successfully operated to detect neutrons with a measured efficiency of 11.8% at a wavelength of 2 Åand a position resolution better than 250 μm.

  5. Observation of neutron bursts produced by laboratory high-voltage atmospheric discharge.

    PubMed

    Agafonov, A V; Bagulya, A V; Dalkarov, O D; Negodaev, M A; Oginov, A V; Rusetskiy, A S; Ryabov, V A; Shpakov, K V

    2013-09-13

    For the first time the emission of neutron bursts in the process of high-voltage discharge in air was observed. Experiments were carried out at an average electric field strength of ∼1  MV·m(-1) and discharge current of ∼10  kA. Two independent methods (CR-39 track detectors and plastic scintillation detectors) registered neutrons within the range from thermal energies up to energies above 10 MeV and with an average flux density of ≳10(6)  cm(-2) per shot inside the discharge zone. Neutron generation occurs at the initial phase of the discharge and correlates with x-ray generation. The data obtained allow us to assume that during the discharge fast neutrons are mainly produced. PMID:24074098

  6. Induction of Micronuclei in Human Fibroblasts from the Los Alamos High Energy Neutron Beam

    NASA Technical Reports Server (NTRS)

    Cox, Bradley

    2009-01-01

    The space radiation field includes a broad spectrum of high energy neutrons. Interactions between these neutrons and a spacecraft, or other material, significantly contribute to the dose equivalent for astronauts. The 15 degree beam line in the Weapons Neutron Research beam at Los Alamos Nuclear Science Center generates a neutron spectrum relatively similar to that seen in space. Human foreskin fibroblast (AG1522) samples were irradiated behind 0 to 20 cm of water equivalent shielding. The cells were exposed to either a 0.05 or 0.2 Gy entrance dose. Following irradiation, micronuclei were counted to see how the water shield affects the beam and its damage to cell nuclei. Micronuclei induction was then compared with dose equivalent data provided from a tissue equivalent proportional counter.

  7. Performance of a polarised neutron cryo-flipper using a high TcYBCO film

    NASA Astrophysics Data System (ADS)

    Parnell, S. R.; Washington, A. L.; Kaiser, H.; Li, F.; Wang, T.; Hamilton, W. A.; Baxter, D. V.; Pynn, R.

    2013-09-01

    It is well-known that the Meissner effect in superconducting materials can be used to provide a well-defined, non-adiabatic, magnetic-field transition. This can be utilised to produce a highly efficient neutron spin flipper that is suitable for use with neutrons of multiple wavelengths. Devices of this type using superconducting niobium have been deployed on neutron diffractometers for several decades but have required liquid helium to maintain the correct temperature. The use of high Tc materials, which removes the need for cryogens and simplifies the device, was first explored by Fitzsimmons et al. in [1]. In this communication, we describe a π flipper which uses commercially available films consisting of a 350-nm-thick YBCO film capped with 100 nm of gold on a 78×100×0.5 mm sapphire substrate. We discuss the design and performance of this device. The apparatus is compact (≈200 mm in length along the neutron beam), consisting of an oxygen-free high-conductivity copper frame, which holds the YBCO film and is mounted to the cold finger of a closed-cycle He refrigerator. The part of the vacuum chamber, where the YBCO film is located, is 5 cm wide, which allows us to minimise the distance from the film to the magnetic guide fields. Negligible small angle neutron scattering is observed from the flipper and its transmission is measured to be greater than 98.5% over a wide band of neutron wavelengths. In this design, the maximum neutron beam size that can be used is 42×42 mm2 and we can easily switch from a vertical to a horizontal guide field (both perpendicular to the neutron beam) on either side of the YBCO film. Data are reported for neutron wavelengths between 4 and 8.5 Å and flipping efficiencies under a variety of conditions are discussed. Under optimum conditions an efficiency of 99.5±0.3% was achieved for 4-8 Å neutrons on a pulsed source and 99.4±0.5% was achieved at a monochromatic source using a neutron wavelength of 4.2 Å.

  8. Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.

    SciTech Connect

    Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

    2007-12-01

    An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

  9. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    SciTech Connect

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-11-02

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.

  10. Monte Carlo Simulations on Neutron Transport and Absorbed Dose in Tissue-Equivalent Phantoms Exposed to High-Flux Epithermal Neutron Beams

    NASA Astrophysics Data System (ADS)

    Bartesaghi, G.; Gambarini, G.; Negri, A.; Carrara, M.; Burian, J.; Viererbl, L.

    2010-04-01

    Presently there are no standard protocols for dosimetry in neutron beams for boron neutron capture therapy (BNCT) treatments. Because of the high radiation intensity and of the presence at the same time of radiation components having different linear energy transfer and therefore different biological weighting factors, treatment planning in epithermal neutron fields for BNCT is usually performed by means of Monte Carlo calculations; experimental measurements are required in order to characterize the neutron source and to validate the treatment planning. In this work Monte Carlo simulations in two kinds of tissue-equivalent phantoms are described. The neutron transport has been studied, together with the distribution of the boron dose; simulation results are compared with data taken with Fricke gel dosimeters in form of layers, showing a good agreement.

  11. Decay studies of the highly neutron-deficient indium isotopes

    SciTech Connect

    Wouters, J.M.

    1982-02-01

    An extension of the experimentally known nuclidic mass surface to nuclei far from the region of beta-stability is of fundamental interest in providing a better determination of the input parameters for the various nuclear mass formulae, allowing a more accurate prediction of the ultimate limits of nuclear stability. In addition, a study of the shape of the mass surface in the vicinity of the doubly-closed nuclide /sup 100/Sn provides initial information on the behavior of the shell closure to be expected when Z = N = 50. Experiments measuring the decay energies of /sup 103/ /sup 105/In by ..beta..-endpoint measurements are described with special attention focused on the development of a plastic scintillator ..beta..-telescope coupled to the on-line mass separator RAMA (Recoil Atom Mass Analyzer). An attempt to measure the ..beta..-endpoint energy of /sup 102/In is also briefly described. The experimentally determined decay energies and derived masses for /sup 103/ /sup 105/In are compared with the predictions of different mass models to identify which models are more successful in this region. Furthermore, the inclusion in these comparisons of the available data on the neutron-rich indium nuclei permits a systematic study of their ground state mass behavior as a function of the neutron number between the shell closures at N = 50 and N = 82. These analyses indicate that the binding energy of /sup 103/In is 1 MeV larger than predicted by the majority of the mass models. An examination of the Q/sub EC/ surface and the single- and two-neutron separation energies in the vicinity of /sup 103/ /sup 105/In is also performed to investigate further the deviation and other possible systematic variations in the mass surface in a model-independent way.

  12. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. PMID:26302662

  13. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source.

  14. High-Pressure Neutron Diffraction Studies for Materials Sciences and Energy Sciences

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Los Alamos High Pressure Materials Research Team

    2013-05-01

    The development of neutron diffraction under extreme pressure (P) and temperature (T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials sciences, as well as earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at LANSCE to conduct in situ high P-T neutron diffraction experiments. We have worked out a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high-P and low-T. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometery. Recently, we have developed high-P low-T gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments. These techniques enable in-situ and real-time examination of gas uptake/release processes and allow high-resolution time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equation of state, structural phase transition, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation of methane and hydrogen clathrates, and hydrogen adsorption of the inclusion compounds such as the recently discovered metal-organic frameworks (MOFs). The aim of our research is to accurately map phase diagram, lattice parameters, thermal parameters, bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. We are currently developing further high P-T technology with a new "true" triaxial loading press, TAP_6x, to compress cubic sample package to achieve pressures up to 20 GPa and temperatures up to 2000 K in routine experiments. The implementation of TAP_6x300 with high-pressure neutron beamlines is underway for simultaneous high P-T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based on high

  15. High-pressure cell for neutron reflectometry of supercritical and subcritical fluids at solid interfaces

    NASA Astrophysics Data System (ADS)

    Carmichael, Justin R.; Rother, Gernot; Browning, James F.; Ankner, John F.; Banuelos, Jose L.; Anovitz, Lawrence M.; Wesolowski, David J.; Cole, David R.

    2012-04-01

    A new high-pressure cell design for use in neutron reflectometry (NR) for pressures up to 50 MPa and a temperature range of 300-473 K is described. The cell design guides the neutron beam through the working crystal without passing through additional windows or the bulk fluid, which provides for a high neutron transmission, low scattering background, and low beam distortion. The o-ring seal is suitable for a wide range of subcritical and supercritical fluids and ensures high chemical and pressure stability. Wafers with a diameter of 5.08 cm (2 in.) and 5 mm or 10 mm thickness can be used with the cells, depending on the required pressure and momentum transfer range. The fluid volume in the sample cell is very small at about 0.1 ml, which minimizes scattering background and stored energy. The cell design and pressure setup for measurements with supercritical fluids are described. NR data are shown for silicon/silicon oxide and quartz wafers measured against air and subsequently within the high-pressure cell to demonstrate the neutron characteristics of the high-pressure cell. Neutron reflectivity data for supercritical CO2 in contact with quartz and Si/SiO2 wafers are also shown.

  16. High energy particle background at neutron spallation sources and possible solutions

    NASA Astrophysics Data System (ADS)

    Cherkashyna, N.; Kanaki, K.; Kittelmann, T.; Filges, U.; Deen, P.; Herwig, K.; Ehlers, G.; Greene, G.; Carpenter, J.; Connatser, R.; Hall-Wilton, R.; Bentley, P. M.

    2014-07-01

    Modern spallation neutron sources are driven by proton beams ~ GeV energies. Whereas low energy particle background shielding is well understood for reactors sources of neutrons (~20 MeV), for high energies (100s MeV to multiple GeV) there is potential to improve shielding solutions and reduce instrument backgrounds significantly. We present initial measured data on high energy particle backgrounds, which illustrate the results of particle showers caused by high energy particles from spallation neutron sources. We use detailed physics models of different materials to identify new shielding solutions for such neutron sources, including laminated layers of multiple materials. In addition to the steel and concrete, which are used traditionally, we introduce some other options that are new to the neutron scattering community, among which there are copper alloys as used in hadronic calorimeters in high energy physics laboratories. These concepts have very attractive energy absorption characteristics, and simulations predict that the background suppression could be improved by one or two orders of magnitude. These solutions are expected to be great benefit to the European Spallation Source, where the majority of instruments are potentially affected by high energy backgrounds, as well as to existing spallation sources.

  17. Light fluence correction for quantitative determination of tissue absorption coefficient using multi-spectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal; Bohndiek, Sarah E.

    2015-07-01

    MultiSpectral Optoacoustic Tomography (MSOT) is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound with the excellent contrast from optical imaging of tissue. Absorption and scattering of the near infrared excitation light modulates the spectral profile of light as it propagates deep into biological tissue, meaning the images obtained provide only qualitative insight into the distribution of tissue chromophores. The goal of this work is to accurately recover the spectral profile of excitation light by modelling light fluence in the data reconstruction, to enable quantitative imaging. We worked with a commercial small animal MSOT scanner and developed our light fluence correction for its' cylindrical geometry. Optoacoustic image reconstruction pinpoints the sources of acoustic waves detected by the transducers and returns the initial pressure amplitude at these points. This pressure is the product of the dimensionless Grüneisen parameter, the absorption coefficient and the light fluence. Under the condition of constant Grüneisen parameter and well modelled light fluence, there is a linear relationship between the initial pressure amplitude measured in the optoacoustic image and the absorption coefficient. We were able to reproduce this linear relationship in different physical regions of an agarose gel phantom containing targets of known optical absorption coefficient, demonstrating that our light fluence model was working. We also demonstrate promising results of light fluence correction effects on in vivo data.

  18. Muon catalyzed fusion in plasma state and high intensity DT fusion neutron source

    SciTech Connect

    Takahashi, Hiroshi

    1989-01-01

    dt/mu/ molecular formation rates in a plasma state of DT mixture by d and t ions are, respectively, 63 and 77 times higher than the ones by electrons. High plasma oscillation frequency in a high electron density plasma enhances the formation rate in the high temperature dt mixture. The DT muon catalyzed fusion has the ability to produce much higher intensity 14 MeV neutron source (in order of 5 /times/ 10/sup 16/n/cm/sup 2//sec) than other means of stripping and spallation approaches. Such neutrons can be used for testing of first wall material candidates for magnetic fusion reactors, for incinerating fission products (e.g., Cs/sup 137/) and for creating high thermal flux neutron sources, on the order of 10/sup 17/n/cm/sup 2//sec. 12 refs., 2 figs.

  19. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    SciTech Connect

    Marrs, R

    2002-11-13

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many more satellites in orbit, and it is important to understand their vulnerability to radiation belt pumping from nuclear explosions at high altitude or in space. This report presents the results of a calculation of the contribution of neutron beta decay to artificial belt pumping. For most high altitude nuclear explosions, neutrons are expected to make a smaller contribution than fission products to the total trapped electron inventory, and their contribution is usually neglected. However, the neutron contribution may dominate in cases where the fission product contribution is suppressed due to the altitude or geomagnetic latitude of the nuclear explosion, and for regions of the radiation belts with field lines far from the detonation point. In any case, an accurate model of belt pumping from high altitude nuclear explosions, and a self-consistent explanation of the 1962 data, require inclusion of the neutron contribution. One recent analysis of satellite measurements of electron flux from the 1962 tests found that a better fit to the data is obtained if the neutron contribution to the trapped electron inventory was larger than that of the fission products [l]. Belt pumping from high altitude nuclear explosions is a complicated process. Fission fragments are dispersed as part of the ionized bomb debris, which is constrained and guided by the earth's magnetic field. Those fission products that beta decay before being lost to the earth's atmosphere can contribute trapped energetic electrons to the earth's radiation belts. There has been a large effort to develop computer models for the contribution of

  20. Apollo 16 neutron stratigraphy.

    NASA Technical Reports Server (NTRS)

    Russ, G. P., III

    1973-01-01

    The Apollo 16 soils have the largest low-energy neutron fluences yet observed in lunar samples. Variations in the isotopic ratios Gd-158/Gd-157 and Sm-150/Sm-149 (up to 1.9 and 2.0%, respectively) indicate that the low-energy neutron fluence in the Apollo 16 drill stem increases with depth throughout the section sampled. Such a variation implies that accretion has been the dominant regolith 'gardening' process at this location. The data may be fit by a model of continuous accretion of pre-irradiated material or by models involving as few as two slabs of material in which the first slab could have been deposited as long as 1 b.y. ago. The ratio of the number of neutrons captured per atom by Sm to the number captured per atom by Gd is lower than in previously measured lunar samples, which implies a lower energy neutron spectrum at this site. The variation of this ratio with chemical composition is qualitatively similar to that predicted by Lingenfelter et al. (1972). Variations are observed in the ratio Gd-152/Gd-160 which are fluence-correlated and probably result from neutron capture by Eu-151.

  1. Comparison between TORT and MCNP applications for PWR vessel fluence calculations

    SciTech Connect

    Lopez-Sobrino, G.; Ortego, P.; Casado, C.

    1997-12-01

    A comparison is presented on the nodal contribution to fast neutron fluence on the vessel of a Westinghouse three-loop pressurized water reactor. The main calculations were performed with the Oak Ridge National Laboratory three-dimensional discrete ordinates transport code TORT, and a wide comparison was performed with the Los Alamos National Laboratory (LANL) continuous-energy Monte Carlo code MCNP4A. Nine light water reactors are currently in operation in Spain., five of them with the same Westinghouse three-loop design. ENUSA is the fuel supplier to these units, performing the loading pattern search and reload safety analysis. ENUSA developed this process to determine the individual contribution of each fuel assembly power to the fast neutron flux in the vessel so that the contribution to the vessel fluence in the choice of the loading pattern could be determined. The idea was to enrich the amount of information required by the utility for such a choice by means of a quick calculation of the estimated fluence contribution during the development of the preliminary loading pattern through the use of polynomial expressions of fast flux at each angle per unit relative power in the four quarters of every fuel assembly.

  2. Monitor units are not predictive of neutron dose for high-energy IMRT

    PubMed Central

    2012-01-01

    Background Due to the substantial increase in beam-on time of high energy intensity-modulated radiotherapy (>10 MV) techniques to deliver the same target dose compared to conventional treatment techniques, an increased dose of scatter radiation, including neutrons, is delivered to the patient. As a consequence, an increase in second malignancies may be expected in the future with the application of intensity-modulated radiotherapy. It is commonly assumed that the neutron dose equivalent scales with the number of monitor units. Methods Measurements of neutron dose equivalent were performed for an open and an intensity-modulated field at four positions: inside and outside of the treatment field at 0.2 cm and 15 cm depth, respectively. Results It was shown that the neutron dose equivalent, which a patient receives during an intensity-modulated radiotherapy treatment, does not scale with the ratio of applied monitor units relative to an open field irradiation. Outside the treatment volume at larger depth 35% less neutron dose equivalent is delivered than expected. Conclusions The predicted increase of second cancer induction rates from intensity-modulated treatment techniques can be overestimated when the neutron dose is simply scaled with monitor units. PMID:22883384

  3. Monte Carlo simulation of a very high resolution thermal neutron detector composed of glass scintillator microfibers.

    PubMed

    Song, Yushou; Conner, Joseph; Zhang, Xiaodong; Hayward, Jason P

    2016-02-01

    In order to develop a high spatial resolution (micron level) thermal neutron detector, a detector assembly composed of cerium doped lithium glass microfibers, each with a diameter of 1 μm, is proposed, where the neutron absorption location is reconstructed from the observed charged particle products that result from neutron absorption. To suppress the cross talk of the scintillation light, each scintillating fiber is surrounded by air-filled glass capillaries with the same diameter as the fiber. This pattern is repeated to form a bulk microfiber detector. On one end, the surface of the detector is painted with a thin optical reflector to increase the light collection efficiency at the other end. Then the scintillation light emitted by any neutron interaction is transmitted to one end, magnified, and recorded by an intensified CCD camera. A simulation based on the Geant4 toolkit was developed to model this detector. All the relevant physics processes including neutron interaction, scintillation, and optical boundary behaviors are simulated. This simulation was first validated through measurements of neutron response from lithium glass cylinders. With good expected light collection, an algorithm based upon the features inherent to alpha and triton particle tracks is proposed to reconstruct the neutron reaction position in the glass fiber array. Given a 1 μm fiber diameter and 0.1mm detector thickness, the neutron spatial resolution is expected to reach σ∼1 μm with a Gaussian fit in each lateral dimension. The detection efficiency was estimated to be 3.7% for a glass fiber assembly with thickness of 0.1mm. When the detector thickness increases from 0.1mm to 1mm, the position resolution is not expected to vary much, while the detection efficiency is expected to increase by about a factor of ten.

  4. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    PubMed

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  5. Neutron Environment Characterization of the Central Cavity in the Annular Core Research Reactor

    NASA Astrophysics Data System (ADS)

    Parma, Edward J.; Naranjo, Gerald E.; Lippert, Lance L.; Vehar, David W.

    2016-02-01

    Characterization of the neutron environment in the central cavity of the Sandia National Laboratories' Annular Core Research Reactor (ACRR) is important in order to provide experimenters with the most accurate spectral information and maintain a high degree of fidelity in performing reactor experiments. Characterization includes both modeling and experimental efforts. Building accurate neutronic models of the ACRR and the central cavity "bucket" environments that can be used by experimenters is important in planning and designing experiments, as well as assessing the experimental results and quantifying uncertainties. Neutron fluence characterizations of two bucket environments, LB44 and PLG, are presented. These two environments are used frequently and represent two extremes in the neutron spectrum. The LB44 bucket is designed to remove the thermal component of the neutron spectrum and significantly attenuate the gamma-ray fluence. The PLG bucket is designed to enhance the thermal component of the neutron spectrum and attenuate the gamma-ray fluence. The neutron characterization for each bucket was performed by irradiating 20 different activation foil types, some of which were cadmium covered, resulting in 37 different reactions at the peak axial flux location in each bucket. The dosimetry results were used in the LSL-M2 spectrum adjustment code with a 640-energy group MCNP-generated trial spectrum, self-shielding correction factors, the SNLRML or IRDFF dosimetry cross-section library, trial spectrum uncertainty, and trial covariance matrix, to generate a least-squares adjusted neutron spectrum, spectrum uncertainty, and covariance matrix. Both environment character-izations are well documented and the environments are available for use by experimenters. Work supported by the United States Department of Energy at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned

  6. Experimental determination of gamma-ray discrimination in pillar-structured thermal neutron detectors under high gamma-ray flux

    SciTech Connect

    Shao, Qinghui; Conway, Adam M.; Voss, Lars F.; Radev, Radoslav P.; Nikolić, Rebecca J.; Dar, Mushtaq A.; Cheung, Chin L.

    2015-08-04

    Silicon pillar structures filled with a neutron converter material (10B) are designed to have high thermal neutron detection efficiency with specific dimensions of 50 μm pillar height, 2 μm pillar diameter and 2 μm spacing between adjacent pillars. In this paper, we have demonstrated such a detector has a high neutron-to-gamma discrimination of 106 with a high thermal neutron detection efficiency of 39% when exposed to a high gamma-ray field of 109 photons/cm2s.

  7. High-Energy Solar Flare Studies with HAWC and Neutron Monitors

    NASA Astrophysics Data System (ADS)

    Ryan, J. M.; de Nolfo, G. A.; HAWC Collaboration

    2013-05-01

    Solar flares can produce ions in excess of 1 GeV/nuc, both impulsively and for extended periods of time. We know this by way of the γ radiation those ions produce. We have witnessed this in several Fermi flares above 100 MeV as well as in the data from SMM and Compton. Our ability to deduce the nature of parent ion population responsible for the γ rays is limited by the confounding multiple processes that separate the ion population from the consequent photons. However, when neutrons (>500 MeV) are produced, which should be almost every time pions are produced, we have complementary information about the ion spectrum if those neutrons are measured. The γ rays are most closely tied to the ion spectrum near the pion production threshold, while the ground level neutrons sample the ion spectrum >1 GeV. Together these two measurements provide information on the ion spectral shape and its turnover at high energy. The turnover embodies critical information about the parameters of the acceleration process and environment. Above 500 MeV, neutrons can be detected at the ground near the subsolar point. HAWC, the High Altitude Water Čerenkov γ-ray telescope is designed to measure cosmic TeV γ-ray sources. HAWC resides on Sierra Negra in Mexico at a latitude of 19 degrees and an altitude of 623 mbar. Neutron signals detected by HAWC will be from higher energy ions at the Sun, compared to the bulk of photons detected by Fermi. If a γ signal is also present in HAWC, this will be additional information with which to examine the solar ion spectrum. The neutron and γ data from HAWC and neutron monitors when combined with data from Fermi LAT/GBM will constitute the the most comprehensive measure of the high-energy solar ion spectrum.

  8. High-Energy Solar Flare Studies with HAWC and Neutron Monitors

    NASA Astrophysics Data System (ADS)

    Ryan, J. M.

    2013-12-01

    Solar flares can produce ions in excess of 1 GeV/nuc, both impulsively and for extended periods of time. We know this by way of the γ radiation those ions produce. We have witnessed this in several Fermi flares above 100 MeV as well as in the data from SMM and Compton. Our ability to deduce the nature of parent ion population responsible for the γ rays is limited by the confounding multiple processes that separate the ion population from the consequent photons. However, when neutrons (>500 MeV) are produced, which should be almost every time pions are produced, we have complementary information about the ion spectrum if those neutrons are measured. The γ rays are most closely tied to the ion spectrum near the pion production threshold, while the ground level neutrons sample the ion spectrum >1 GeV. Together these two measurements provide information on the ion spectral shape and its turnover at high energy. The turnover embodies critical information about the parameters of the acceleration process and environment. Above 500 MeV, neutrons can be detected at the ground near the subsolar point. HAWC, the High Altitude Water Čerenkov γ-ray telescope is designed to measure cosmic TeV γ-ray sources. HAWC resides on Sierra Negra in Mexico at a latitude of 19 degrees and an altitude of ~14,000 ft., 623 mbar. Neutron signals detected by HAWC will be from higher energy ions at the Sun, compared to the bulk of photons detected by Fermi. If a γ signal is also present in HAWC, this will be additional information with which to examine the solar ion spectrum. The neutron and γ data from HAWC and neutron monitors when combined with data from Fermi LAT/GBM will constitute the the most comprehensive measure of the high-energy solar ion spectrum.

  9. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    DOE PAGES

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; Garrison, Lauren M.; Snead, Lance L.; Katoh, Yutai; Hasegawa, Akira

    2016-07-02

    We performed a neutron irradiation to single crystal pure tungsten in the mixed spectrum High Flux Isotope Reactor (HFIR). In order to investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ~90–~800 °C and fast neutron fluences were 0.02–9.00 × 1025 n/m2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. Moreover, the hardness and microstructure changes exhibitedmore » a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 1025 n/m2 (E > 0.1 MeV). Finally, irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 1025 n/m2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.« less

  10. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    NASA Astrophysics Data System (ADS)

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; Garrison, Lauren M.; Snead, Lance L.; Katoh, Yutai; Hasegawa, Akira

    2016-10-01

    Neutron irradiation to single crystal pure tungsten was performed in the mixed spectrum High Flux Isotope Reactor (HFIR). To investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ∼90-∼800 °C and fast neutron fluences were 0.02-9.00 × 1025 n/m2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. The hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 1025 n/m2 (E > 0.1 MeV). Irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 1025 n/m2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.

  11. The effect of neutron irradiation and annealing temperature on the electrical properties and lattice constant of epitaxial gallium nitride layers

    SciTech Connect

    Boyko, V. M.; Verevkin, S. S.; Kolin, N. G. Korulin, A. V.; Merkurisov, D. I.; Polyakov, A. Y.; Chevychelov, V. A.

    2011-01-15

    Effect of irradiation with high reactor-neutron fluences ({Phi} = 1.5 Multiplication-Sign 10{sup 17}-8 Multiplication-Sign 10{sup 19} cm{sup -2}) and subsequent heat treatments in the temperature range 100-1000 Degree-Sign C on the electrical properties and lattice constant of epitaxial GaN layers grown on an Al{sub 2}O{sub 3} substrate is considered. It is shown that, with the neutron fluence increasing to (1-2) Multiplication-Sign 10{sup 18} cm{sup -2}, the resistivity of the material grows to values of about 10{sup 10} {Omega} cm because of the formation of radiation defects, and, with the fluence raised further, the resistivity passes through a maximum and then decreases to 2 Multiplication-Sign 10{sup 6} {Omega} cm at 300 K, which is accounted for by the appearance of a hopping conductivity via deep defects in the overlapping outer parts of disordered regions. With the neutron fluence raised to 8 Multiplication-Sign 10{sup 19} cm{sup -2}, the lattice constant c increases by 0.38% at a nearly unchanged parameter a. Heat treatment of irradiated samples at temperatures as high as 1000 Degree-Sign C does not fully restore the lattice constant and the electrical parameters of the material.

  12. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    NASA Astrophysics Data System (ADS)

    Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.

    2015-12-01

    The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.

  13. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  14. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  15. Multiphase Flow Characterization Using Simultaneous High Resolution Neutron and X-Ray Imaging

    NASA Astrophysics Data System (ADS)

    LaManna, J.; Anovitz, L. M.; Hussey, D. S.; Jacobson, D. L.

    2015-12-01

    Multiphase flow in geologic materials is an important area of research for hydrology and oil recovery. A valuable tool for determining how liquid water and/or hydrocarbons transport through soils and rocks is neutron tomography due to its high sensitivity to hydrogen. This technique allows for the 3D reconstruction of the liquid phase in the sample. In order to resolve the solid phase structure of the sample it is necessary to perform x-ray tomography which often must be conducted at a separate facility from the neutron imaging. When imaging deformable samples or stochastic flow this delay in imaging modes ruins the analysis as the sample is no longer in an identical state. To address this issue and bring a unique capability to NIST, an instrument has been commissioned for the simultaneous imaging with neutrons and x-rays. The new system orients a micro-focus 90 kV x-ray beam 90° to the neutron beam which facilitates rapid dual-mode tomography of samples. Current highest spatial resolutions are 20 μm and 10 μm for the neutron and x-ray detectors, respectively, with upcoming improvements. This presentation will focus on introducing the new system and demonstrating its ability with several cases. Examples of high resolution water uptake and high speed imaging of uptake dynamics will be given.

  16. Multidiagnostic analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range

    SciTech Connect

    Anoop, K. K. Bruzzese, R.; Amoruso, S.; Polek, M. P.; Harilal, S. S.

    2015-02-28

    The dynamics of ions in ultrafast laser ablation of metals is studied over fluences ranging from the ablation threshold up to ≈75 J/cm{sup 2} by means of three well-established diagnostic techniques. Langmuir probe, Faraday cup, and spectrally resolved intensified charge coupled device imaging simultaneously monitored the ions produced during ultrafast laser ablation of a pure copper target with 800 nm, ≈50 fs, Ti: Sapphire laser pulses. The fluence dependence of ion yield is analyzed, resulting in the observance of three different regimes. The specific ion yield shows a maximum at about 4–5 J/cm{sup 2}, followed by a gradual reduction and a transition to a high-fluence regime above ≈50 J/cm{sup 2}. The fluence dependence of the copper ions angular distribution is also analyzed, observing a gradual increase in forward-peaking of Cu ions for fluences up to ≈10 J/cm{sup 2}. A broader ion component is observed at larger angles for fluences larger than ≈10 J/cm{sup 2}. Finally, an experimental characterization of the ionic angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of ≈66 J/cm{sup 2}. Interestingly, the ion emission from the volatile metals shows a narrow, forward-peaked distribution, and a high peak ion yield compared to the refractory metals. Moreover, the width of ionic angular distributions presents a striking correlation with the peak ion yield.

  17. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Materiel and High Explosives

    SciTech Connect

    E.H. Seabury; D.L. Chichester; C.J. Wharton; A.J. Caffrey

    2008-08-01

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory’s PINS Chemical Assay System has traditionally used a Cf-252 isotopic neutron source, but recently a Deuterium-Tritium (DT) Electronic Neutron Generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  18. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Material and High Explosives

    SciTech Connect

    Seabury, E. H.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2009-03-10

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a {sup 252}Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  19. Effects of neutron irradiation of ultra-thin HfO{sub 2} films

    SciTech Connect

    Hsu, K.-W.; Bian, S.; Shohet, J. L.; Ren, H.; Agasie, R. J.; Nishi, Y.

    2014-01-20

    Neutron irradiation at low fluence decreases the Pb-type and E′ defect levels in ultra-thin hafnium dioxide films because electrons can fill existing states. These electrons come from electron-hole pairs generated by neutron interactions with silicon and oxygen. Thus, a low fluence of neutrons “anneals” the sample. However, when neutron fluence increases, more neutrons collide with oxygen atoms and cause them to leave the lattice or to transmute into different atoms. This causes the E′ states to increase. As defect-state concentrations increase, leakage currents increase, but since the E′ is much lower than the Pb concentration, this is not a dominant factor.

  20. Phase transitions and hydrogen bonding in deuterated calcium hydroxide: High-pressure and high-temperature neutron diffraction measurements

    SciTech Connect

    Iizuka, Riko; Komatsu, Kazuki; Kagi, Hiroyuki; Nagai, Takaya; Sano-Furukawa, Asami; Hattori, Takanori; Gotou, Hirotada; Yagi, Takehiko

    2014-10-15

    In situ neutron diffraction measurements combined with the pulsed neutron source at the Japan Proton Accelerator Research Complex (J-PARC) were conducted on high-pressure polymorphs of deuterated portlandite (Ca(OD){sub 2}) using a Paris–Edinburgh cell and a multi-anvil press. The atomic positions including hydrogen for the unquenchable high-pressure phase at room temperature (phase II′) were first clarified. The bent hydrogen bonds under high pressure were consistent with results from Raman spectroscopy. The structure of the high-pressure and high-temperature phase (Phase II) was concordant with that observed previously by another group for a recovered sample. The observations elucidate the phase transition mechanism among the polymorphs, which involves the sliding of CaO polyhedral layers, position modulations of Ca atoms, and recombination of Ca–O bonds accompanied by the reorientation of hydrogen to form more stable hydrogen bonds. - Graphical abstract: Crystal structures of high-pressure polymorphs of Ca(OD){sub 2}, (a) at room temperature (phase II′) and (b) at high temperature (phase II), were obtained from in situ neutron diffraction measurements. - Highlights: • We measured in situ neutron diffraction of high-pressure polymorphs of Ca(OD){sub 2}. • Hydrogen positions of the high-pressure phase are first determined. • The obtained hydrogen bonds reasonably explain Raman peaks of OH stretching modes. • A phase transition mechanism among the polymorphs is proposed.

  1. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)

    SciTech Connect

    Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Casey, D. T.; Gatu-Johnson, M.; Gardner, S.

    2012-10-15

    The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

  2. Measurements and Monte Carlo simulations of the spectral variations of the cosmic-ray-induced neutrons at the Pic du Midi over a 2-y period.

    PubMed

    Cheminet, A; Hubert, G; Lacoste, V; Boscher, D

    2014-10-01

    In this paper, a Bonner Sphere Spectrometer extended to high energies (HERMEIS) was employed to measure continuously the cosmic-ray-induced neutron spectra over a long-term period (2 y) at mountain altitude and medium geomagnetic latitude (Pic du Midi de Bigorre in the French Pyrenees, +2885 m, 5.6 GV). The results showed 1-y sinusoidal oscillations in the integrated fluence rates. The amplitude of these oscillations depends on the neutron energetic domain. The fluence rate of thermal neutrons was 53 % higher in August than that in February. Those of epithermal neutrons with energies between 0.4 eV and 0.1 MeV and evaporation neutrons (from 0.1 to 20 MeV) were ∼25 % higher in the summer than those in the winter. Finally, the cascade neutron fluence rate (>20 MeV) remained quite the same (<10 % variation). To understand the effects of local and seasonal changes in the measurement environment, GEANT4 simulations were performed. The nature of rock and thickness of the snow cover during the winter period (given by meteorological data) were investigated. A reasonable agreement between experiments and calculations was found.

  3. Measurements and Monte Carlo simulations of the spectral variations of the cosmic-ray-induced neutrons at the Pic du Midi over a 2-y period.

    PubMed

    Cheminet, A; Hubert, G; Lacoste, V; Boscher, D

    2014-10-01

    In this paper, a Bonner Sphere Spectrometer extended to high energies (HERMEIS) was employed to measure continuously the cosmic-ray-induced neutron spectra over a long-term period (2 y) at mountain altitude and medium geomagnetic latitude (Pic du Midi de Bigorre in the French Pyrenees, +2885 m, 5.6 GV). The results showed 1-y sinusoidal oscillations in the integrated fluence rates. The amplitude of these oscillations depends on the neutron energetic domain. The fluence rate of thermal neutrons was 53 % higher in August than that in February. Those of epithermal neutrons with energies between 0.4 eV and 0.1 MeV and evaporation neutrons (from 0.1 to 20 MeV) were ∼25 % higher in the summer than those in the winter. Finally, the cascade neutron fluence rate (>20 MeV) remained quite the same (<10 % variation). To understand the effects of local and seasonal changes in the measurement environment, GEANT4 simulations were performed. The nature of rock and thickness of the snow cover during the winter period (given by meteorological data) were investigated. A reasonable agreement between experiments and calculations was found. PMID:24345464

  4. Neutron conversion and cascaded cooling in paramagnetic systems for a high-flux source of very cold neutrons

    NASA Astrophysics Data System (ADS)

    Zimmer, Oliver

    2016-03-01

    A new neutron-cooling mechanism is proposed with potential benefits for novel intense sources of very cold neutrons with wavelengths >2 nm, and for enhancing the production of ultracold neutrons. It employs inelastic magnetic scattering in weakly absorbing, cold paramagnetic systems. Kinetic energy is removed from the neutron stepwise in constant decrements determined by the Zeeman energy of paramagnetic atoms or ions in an external magnetic field, or by zero-field level splittings in magnetic molecules. The stationary neutron transport equation is analyzed for an infinite, homogeneous medium with Maxwellian neutron sources, using inelastic scattering cross sections derived in an appendix. Nonmagnetic inelastic scattering processes are neglected. The solution therefore still underestimates very cold neutron densities that should be achievable in a real medium. Molecular oxygen with its triplet ground state appears particularly promising, notably as a host in fully deuterated O2-clathrate hydrate. Other possibilities are dry O2-4He van der Waals clusters and O2 intercalated in fcc-C60. For conversion of cold to ultracold neutrons, where an incident neutron imparts only a single energy quantum to the medium, the paramagnetic scattering in the clathrate system is found to be stronger, by more than an order of magnitude, than the single-phonon emission in superfluid helium, when evaluated for an incident neutron spectrum with the optimum temperature for the respective medium. Moreover, the multistep paramagnetic cooling cascade leads to further strong enhancements of very cold neutron densities, e.g., by a factor 14 (57) for an initial neutron temperature of 30 K (100 K ), for the moderator held at about 1.3 K . Due to a favorable Bragg cutoff of the O2 clathrate, the cascade-cooling can take effect in a moderator with linear extensions smaller than a meter.

  5. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOEpatents

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  6. Epithermal Neutron Evidence for a Diurnal Surface Hydration Process in the Moon's High Latitudes

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Parsons, A.; Starr, R. D.; Evans, L. G.; Sanin, A.; Litvak, M.; Livengood, T.

    2015-01-01

    We report evidence from epithermal neutron flux observations that show that the Moon's high latitude surfaces are being actively hydrated, dehydrated and rehydrated in a diurnal cycle. The near-surface hydration is indicated by an enhanced suppression of the lunar epithermal neutron leakage flux on the dayside of the dawn terminator on poleward-facing slopes (PFS). At 0600 to 0800 local-time, hydrogen concentrations within the upper 1 meter of PFS are observed to be maximized relative to equivalent equator-facing slopes (EFS). During the lunar day surface hydrogen concentrations diminish towards dusk and then rebuild overnight. Surface hydration is determined by differential comparison of the averaged EFS to PFS epithermal neutron count rates above +/- 75 deg latitude. At dawn the contrast bias towards PFS is consistent with at least 15 to 25 parts-per-million (ppm) hydrogen that dissipates by dusk. We review several lines of evidence derived from temperature and epithermal neutron data by a correlated analysis of observations from the Lunar Reconnaissance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) that were mapped as a function of lunar local-time, Lunar Observing Laser Altimeter (LOLA) topography and Diviner (DLRE) surface temperature.

  7. Effects of the quark-hadron phase transition on highly magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Franzon, B.; Gomes, R. O.; Schramm, S.

    2016-08-01

    The presence of quark-hadron phase transitions in neutron stars can be related to several interesting phenomena. In particular, previous calculations have shown that fast rotating neutron stars, when subjected to a quark-hadron phase transition in their interiors, could give rise to the backbending phenomenon characterized by a spin-up era. In this work, we use an equation of state composed of two phases, containing nucleons (and leptons) and quarks. The hadronic phase is described in a relativistic mean field formalism that takes many-body forces into account, and the quark phase is described by the MIT bag model with a vector interaction. Stationary and axi-symmetric stellar models are obtained in a self-consistent way by solving numerically the Einstein-Maxwell equations by means of a pseudo-spectral method. As a result, we obtain the interesting backbending phenomenon for fast spinning neutron stars. More importantly, we show that a magnetic field, which is assumed to be axi-symmetric and poloidal, can also be enhanced due to the phase transition from normal hadronic matter to quark matter on highly magnetized neutron stars. Therefore, in parallel to the spin-up era, classes of neutron stars endowed with strong magnetic fields may go through a "magnetic-up era" in their lives.

  8. Compact spherical neutron polarimeter using high-T(c) YBCO films.

    PubMed

    Wang, T; Parnell, S R; Hamilton, W A; Li, F; Washington, A L; Baxter, D V; Pynn, R

    2016-03-01

    We describe a simple, compact device for spherical neutron polarimetry measurements at small neutron scattering angles. The device consists of a sample chamber with very low (<0.01 G) magnetic field flanked by regions within which the neutron polarization can be manipulated in a controlled manner. This allows any selected initial and final polarization direction of the neutrons to be obtained. We have constructed a prototype device using high-T(c) superconducting films and mu-metal to isolate regions with different magnetic fields and tested device performance in transmission geometry. Finite-element methods were used to simulate the device's field profile and these have been verified by experiment using a small solenoid as a test sample. Measurements are reported using both monochromatic and polychromatic neutron sources. The results show that the device is capable of extracting sample information and distinguishing small angular variations of the sample magnetic field. As a more realistic test, we present results on the characterization of a 10 μm thick Permalloy film in zero magnetic field, as well as its response to an external magnetic field. PMID:27036785

  9. Effects of the quark-hadron phase transition on highly magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Franzon, B.; Gomes, R. O.; Schramm, S.

    2016-11-01

    The presence of quark-hadron phase transitions in neutron stars can be related to several interesting phenomena. In particular, previous calculations have shown that fast rotating neutron stars, when subjected to a quark-hadron phase transition in their interiors, could give rise to the backbending phenomenon characterized by a spin-up era. In this work, we use an equation of state composed of two phases, containing nucleons (and leptons) and quarks. The hadronic phase is described in a relativistic mean field formalism that takes many-body forces into account, and the quark phase is described by the MIT bag model with a vector interaction. Stationary and axisymmetric stellar models are obtained in a self-consistent way by solving numerically the Einstein-Maxwell equations by means of a pseudo-spectral method. As a result, we obtain the interesting backbending phenomenon for fast spinning neutron stars. More importantly, we show that a magnetic field, which is assumed to be axisymmetric and poloidal, can also be enhanced due to the phase transition from normal hadronic matter to quark matter on highly magnetized neutron stars. Therefore, in parallel to the spin-up era, classes of neutron stars endowed with strong magnetic fields may go through a `magnetic-up era' in their lives.

  10. Simulation of neutron displacement damage in bipolar junction transistors using high-energy heavy ion beams.

    SciTech Connect

    Doyle, Barney Lee; Buller, Daniel L.; Hjalmarson, Harold Paul; Fleming, Robert M; Bielejec, Edward Salvador; Vizkelethy, Gyorgy

    2006-12-01

    Electronic components such as bipolar junction transistors (BJTs) are damaged when they are exposed to radiation and, as a result, their performance can significantly degrade. In certain environments the radiation consists of short, high flux pulses of neutrons. Electronics components have traditionally been tested against short neutron pulses in pulsed nuclear reactors. These reactors are becoming less and less available; many of them were shut down permanently in the past few years. Therefore, new methods using radiation sources other than pulsed nuclear reactors needed to be developed. Neutrons affect semiconductors such as Si by causing atomic displacements of Si atoms. The recoiled Si atom creates a collision cascade which leads to displacements in Si. Since heavy ions create similar cascades in Si we can use them to create similar damage to what neutrons create. This LDRD successfully developed a new technique using easily available particle accelerators to provide an alternative to pulsed nuclear reactors to study the displacement damage and subsequent transient annealing that occurs in various transistor devices and potentially qualify them against radiation effects caused by pulsed neutrons.

  11. The HB-2D Polarized Neutron Development Beamline at the High Flux Isotope Reactor

    NASA Astrophysics Data System (ADS)

    Crow, Lowell; Hamilton, WA; Zhao, JK; Robertson, JL

    2016-09-01

    The Polarized Neutron Development beamline, recently commissioned at the HB-2D position on the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, provides a tool for development and testing of polarizers, polarized neutron devices, and prototyping of polarized neutron techniques. With available monochromators including pyrolytic graphite and polarizing enriched Fe-57 (Si), the instrument has operated at 4.25 and 2.6 Å wavelengths, using crystal, supermirror, or He-3 polarizers and analyzers in various configurations. The Neutron Optics and Development Team has used the beamline for testing of He-3 polarizers for use at other HFIR and Spallation Neutron Source (SNS) instruments, as well as a variety of flipper devices. Recently, we have acquired new supermirror polarizers which have improved the instrument performance. The team and collaborators also have continuing demonstration experiments of spin-echo focusing techniques, and plans to conduct polarized diffraction measurements. The beamline is also used to support a growing use of polarization techniques at present and future instruments at SNS and HFIR.

  12. COMPTEL measurements of the omnidirectional high-energy neutron flux in near-earth orbit.

    PubMed

    Morris, D J; Aarts, H; Bennett, K; Lockwood, J A; McConnell, M L; Ryan, J M; Schonfelder, V; Steinle, H; Weidenspointner, G

    1998-01-01

    On four occasions, twice in 1991 (near solar maximum) and twice in 1994 (near solar minimum), one COMPTEL D1 detector module was used as an omnidirectional detector to measure the high-energy (> 12.8 MeV) neutron flux near an altitude of 450 km. The D1 modules are cylindrical, with radius 13.8 cm and depth 8 cm, and are filled with liquid scintillator (NE213A). The combined flux measurements can be fit reasonably well by a product of the Mt. Washington neutron monitor rate, a linear function in the spacecraft geocenter zenith angle, and an exponential function of the vertical geomagnetic cutoff rigidity in which the coefficient of the rigidity is a linear function of the neutron monitor rate. When pointed at the nadir, the flux is consistent with that expected from the atmospheric neutron albedo alone. When pointed at the zenith the flux is reduced by a factor of about 0.54. Thus the production of secondary neutrons in the massive (16000 kg) Compton Gamma-Ray Observatory spacecraft is negligible. Rather, the mass of the spacecraft provides shielding from the earth albedo. PMID:11542901

  13. HEIMDAL: A thermal neutron powder diffractometer with high and flexible resolution combined with SANS and neutron imaging - Designed for materials science studies at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Holm, Sonja L.; Lefmann, Kim; Henry, Paul F.; Bertelsen, Mads; Schefer, Jürg; Christensen, Mogens

    2016-08-01

    HEIMDAL will be a multi length scale neutron scattering instrument for the study of structures covering almost nine orders of magnitude from 0.01 nm to 50 mm. The instrument is accepted for construction at the European Spallation Source (ESS) and features a variable resolution thermal neutron powder diffractometer (TNPD), combined with small angle neutron scattering (SANS) and neutron imaging (NI). The instrument uses a novel combination of a cold and a thermal guide to fulfill the diverse requirements for diffraction and SANS. With an instrument length of 170 m, HEIMDAL will take advantage of the high neutron flux of the long pulse at ESS, whilst maintaining a high q-resolution due to the long flight path. The q-range coverage is up to 20 Å-1 allowing low-resolution PDF analysis. With the addition of SANS, HEIMDAL will be able to cover a uniquely broad length scale within a single instrumental set-up. HEIMDAL will be able to accommodate modern materials research in a broad variety of fields, and the task of the instrument will be to study advanced functional materials in action, as in situ and in operandi at multiple length scales (0.01-100 nm) quasi simultaneously. The instrument combines state-of-the-art neutron scattering techniques (TNPD, SANS, and NI) with the goal of studying real materials, in real time, under real conditions. This article describes the instrument design ideas, calculations and results of simulations and virtual experiments.

  14. High-voltage supply for neutron tubes in well-logging applications

    DOEpatents

    Humphreys, D.R.

    1982-09-15

    A high voltage supply is provided for a neutron tube used in well logging. The biased pulse supply of the invention combines DC and full pulse techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  15. Calculated Neutron and Gamma-ray Spectra across the Prismatic Very High Temperature Reactor Core

    SciTech Connect

    James W. Sterbentz

    2008-05-01

    Neutron and gamma-ray flux spectra are calculated using the MCNP5 computer code and a one-sixth core model of a prismatic Very High Temperature Reactor based on the General Atomics Gas Turbine-Modular Helium Reactor. Spectra are calculated in the five inner reflector graphite block rings, three annular active core fuel rings, three outer graphite reflector block rings, and the core barrel. The neutron spectra are block and fuel pin averages and are calculated as a function of temperature and burnup. Also provided are the total, fast, and thermal radial profile fluxes and core barrel dpa rates.

  16. Uncertainties in the Fluence Determination in the Surveillance Samples of VVER-440

    NASA Astrophysics Data System (ADS)

    Konheiser, Joerg; Grahn, Alexander; Borodkin, Pavel; Borodkin, Gennady

    2016-02-01

    The reactor pressure vessel (RPV) represents one of the most important safety components in a nuclear power plant. Therefore, surveillance specimen (SS) programs for the RPV material exist to deliver a reliable assessment of RPV residual lifetime. This report will present neutron fluence calculations for SS. These calculations were carried out by the codes TRAMO [1] and DORT [2]. This study was accompanied by ex-vessel neutron dosimetry experiments at Kola NPP. The main neutron activation monitoring reactions were 54Fe(n,p)54Mn and 58Ni(n,p)58Co. Good agreement was found between the deterministic and stochastic calculation results and between the calculations and the ex-vessel measurements. The different influences on the monitors were studied. In order to exclude the possible healing effects of the samples due to excessive temperatures, the heat release in the surveillance specimens was determined based on the calculated gamma fluences. Under comparatively realistic conditions, the heat increased by 6 K.

  17. Performance improvements of wavelength-shifting-fiber neutron detectors using high-resolution positioning algorithms

    DOE PAGES

    Wang, C. L.

    2016-05-17

    On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methodswere proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA. Moreover,more » these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less

  18. Development of a moderator system for the High Brilliance Neutron Source project

    NASA Astrophysics Data System (ADS)

    Dabruck, J. P.; Cronert, T.; Rücker, U.; Bessler, Y.; Klaus, M.; Lange, C.; Butzek, M.; Hansen, W.; Nabbi, R.; Brückel, T.

    2016-11-01

    The project for an accelerator based high brilliance neutron source HBS driven by Forschungszentrum Jülich forsees the use of the nuclear Be(p,n) or Be(d,n) reaction with accelerated particles in the lower MeV energy range. The lower neutron production compared to spallation has to be compensated by improving the neutron extraction process and optimizing the brilliance. Design and optimiziation of the moderator system are conducted with MCNP and will be validated with measurements at the AKR-2 training reactor by means of a prototype assembly where, e.g., the effect of different liquid H2 ortho/para ratios will be investigated and controlled in realtime via online heat capacity measurements.

  19. Glass-fiber-based neutron detectors for high- and low-flux environments

    NASA Astrophysics Data System (ADS)

    Bliss, Mary; Brodzinski, Ronald L.; Craig, Richard A.; Geelhood, Bruce D.; Knopf, Michael A.; Miley, Harry S.; Perkins, Richard W.; Reeder, Paul L.; Sunberg, Debra S.; Warner, Ray A.; Wogman, Ned A.

    1995-09-01

    Pacific Northwest Laboratory (PNL) has fabricated cerium-activated lithium silicate scintillating fibers via a hot-downdraw process. These fibers typically have a operational transmission length (e(superscript -1) length) of greater than 2 meters. This permits the fabrication of devices which were not possible to consider. Scintillating fibers permit conformable devices, large-area devices, and extremely small devices; in addition, as the thermal-neutron sensitive elements in a fast neutron detection system, scintillating fibers can be dispersed within moderator, improving neutron economy, over that possible with commercially available (superscript 3)He or BF(subscript 3) proportional counters. These fibers can be used for national-security applications, in medical applications, in the nuclear-power industry, and for personnel protection at experimental facilities. Data are presented for devices based on single fibers and devices made up of ribbons containing many fibers under high-and low-flux conditions.

  20. Highly efficient solid-state neutron scintillators based on hybrid sol-gel nanocomposite materials

    SciTech Connect

    Kesanli, Banu; Hong, Kunlun; Meyer, Kent; Im, Hee-Jung; Dai, Sheng

    2006-11-20

    This research highlights opportunities in the formulation of neutron scintillators that not only have high scintillation efficiencies but also can be readily cast into two-dimensional detectors. Series of transparent, crack-free monoliths were prepared from hybrid polystyrene-silica nanocomposites in the presence of arene-containing alkoxide precursor through room temperature sol-gel processing. The monoliths also contain lithium-6 salicylate as a target material for neutron-capture reactions and amphiphilic scintillator solution as a fluorescent sensitizer. Polystyrene was functionalized by trimethoxysilyl group in order to enable the covalent incorporation of aromatic functional groups into the inorganic sol-gel matrices for minimizing macroscopic phase segregation and facilitating lithium-6 doping in the sol-gel samples. Neutron and alpha responses of these hybrid polystyrene-silica monoliths were explored.

  1. A highly efficient neutron time-of-flight detector for inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Yamaguchi, K.; Yamagajo, T.; Nakano, T.; Kasai, T.; Urano, T.; Azechi, H.; Nakai, S.; Iida, T.

    1999-01-01

    We have developed the highly efficient neutron detector system MANDALA for the inertial-confinement-fusion experiment. The MANDALA system consists of 842 elements plastic scintillation detectors and data acquisition electronics. The detection level is the yield of 1.2×105 for 2.5 MeV and 1×105 for 14.1 MeV neutrons (with 100 detected hits). We have calibrated the intrinsic detection efficiencies of the detector elements using a neutron generator facility. Timing calibration and integrity test of the system were also carried out with a 60Co γ ray source. MANDALA system was applied to the implosion experiments at the GEKKO XII laser facility. The integrity test was carried out by implosion experiments.

  2. Elucidation of Advanced Function by Combined High-Resolution Neutron and X-ray Analysis

    NASA Astrophysics Data System (ADS)

    Tamada, Taro; Kuroki, Ryota; Kinoshita, Takayoshi; Tada, Toshiji

    To help resolve long-standing questions regarding the catalytic activity of the serine proteases the structure of porcine pancreatic elastase has been analyzed by high-resolution neutron (1.65 Å resolution) and X-ray (0.94 Å resolution) crystallography. In order to mimic the tetrahedral transition intermediate, a peptidic inhibitor was used. The neutron and X-ray data show that the hydrogen bond between His57 and Asp102 is not consistent with a low-barrier hydrogen which is predicted to have the hydrogen midway between the donor and acceptor atom. The neutron analysis also shows that the oxygen of the oxopropyl group of the inhibitor is present as an oxygen anion rather than a hydroxyl group, supporting the role of the “oxyanion hole” in stabilizing the tetrahedral intermediate in catalysis.

  3. High-energy and thermal-neutron imaging and modeling with an amorphous silicon flat-panel detector.

    PubMed

    Claytor, Thomas N; Taddeucci, Terry N; Hills, Charles R; Summa, Deborah A; Davis, Anthony W; McDonald, Thomas E; Schwab, Mark J

    2004-10-01

    The Los Alamos Neutron Science Center (LANSCE) operates two spallation neutron sources dedicated to research in materials science, condensed-matter physics, and fundamental and applied nuclear physics. Prior to 1995, all thermal neutron radiography at Los Alamos was done on a beam port attached to the Omega West reactor, a small 8MW research reactor used primarily for radioisotope production and prompt and delayed neutron activation analysis. After the closure of this facility, two largely independent radiography development efforts were begun at LANSCE using moderated cold and thermal neutrons from the Target-1 source and high-energy neutrons from the Target-4 source. Investigations with cold and thermal neutrons employed a neutron converter and film, a scintillation screen and CCD camera system, and a new high-resolution amorphous silicon (a-Si) flat-panel detector system. Recent work with high-energy neutrons (En > 1 MeV) has involved storage-phosphor image plates. Some comparison high-energy images were obtained with both image plates and the a-Si panel and showed equivalent image quality for approximately equal exposure times. PMID:15246402

  4. Monte Carlo calibration of the SMM gamma ray spectrometer for high energy gamma rays and neutrons

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Reppin, C.; Forrest, D. J.; Chupp, E. L.; Share, G. H.; Kinzer, R. L.

    1985-01-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission spacecraft was primarily designed and calibrated for nuclear gamma ray line measurements, but also has a high energy mode which allows the detection of gamma rays at energies above 10 MeV and solar neutrons above 20 MeV. The GRS response has been extrapolated until now for high energy gamma rays from an early design study employing Monte Carlo calculations. The response to 50 to 600 MeV solar neutrons was estimated from a simple model which did not consider secondary charged particles escaping into the veto shields. In view of numerous detections by the GRS of solar flares emitting high energy gamma rays, including at least two emitting directly detectable neutrons, the calibration of the high energy mode in the flight model has been recalculated by the use of more sophisticated Monte Carlo computer codes. New results presented show that the GRS response to gamma rays above 20 MeV and to neutrons above 100 MeV is significantly lower than the earlier estimates.

  5. Response investigations of a TEPC in high energy proton and neutron beams using the variance method.

    PubMed

    Kyllönen, J E; Grindborg, J E; Lindborg, L

    2002-01-01

    Results from measurements in proton and neutron beams between 68 and 174 MeV at the T. Svedberg Laboratory in Uppsala are presented. The result indicate that a TEPC might underestimate the high-energy contribution to H*(10) in cosmic radiation applications such as measurements onboard aircraft.

  6. Development of active environmental and personal neutron dosemeters.

    PubMed

    Nakamura, T; Nunomiya, T; Sasaki, M

    2004-01-01

    For neutron dosimetry in the radiation environment surrounding nuclear facilities, two types of environmental neutron dosemeters, the high-sensitivity rem counter and the high-sensitivity multi-moderator, the so-called Bonner ball, have been developed and the former is commercially available from Fuji Electric Co. By using these detectors, the cosmic ray neutrons at sea level have been sequentially measured for about 3 y to investigate the time variation of neutron spectrum and ambient dose equivalent influenced by cosmic and terrestrial effects. Our Bonner ball has also been selected as the neutron detector in the International Space Station and has already been used to measure neutrons in the US experimental module. The real time wide-range personal neutron dosemeter which uses two silicon semiconductor detectors has been developed for personal dosimetry and is commercially available from Fuji Electric Co. This dosemeter has good characteristics, fitted to the fluence-to-dose conversion factor in the energy range from thermal energies to several tens of mega-electron-volts and is now widely used in various nuclear facilities.

  7. Coupled Neutron Transport for HZETRN

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.

    2009-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircrafts exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETC-HEDS, FLUKA, and MCNPX, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light particle transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  8. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    SciTech Connect

    Bryant, Rebecca; Kszos, Lynn A

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews

  9. High-Flux Neutron Generator Facility for Geochronology and Nuclear Physics Research

    NASA Astrophysics Data System (ADS)

    Waltz, Cory; HFNG Collaboration

    2015-04-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being commissioned at UC Berkeley. The generator is designed to produce monoenergetic 2.45 MeV neutrons at outputs exceeding 1011 n/s. The HFNG is designed around two RF-driven multi-cusp ion sources that straddle a titanium-coated copper target. D + ions, accelerated up to 150 keV from the ion sources, self-load the target and drive neutron generation through the d(d,n)3 He fusion reaction. A well-integrated cooling system is capable of handling beam power reaching 120 kW impinging on the target. The unique design of the HFNG target permits experimental samples to be placed inside the target volume, allowing the samples to receive the highest neutron flux (1011 cm-2 s-1) possible from the generator. In addition, external beams of neutrons will be available simultaneously, ranging from thermal to 2.45 MeV. Achieving the highest neutron yields required carefully designed schemes to mitigate back-streaming of high energy electrons liberated from the cathode target by deuteron bombardment. The proposed science program is focused on pioneering advances in the 40 Ar/39 Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science, and education. An end goal is to become a user facility for researchers. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and UC Office of the President Award 12-LR-238745.

  10. Hardware accelerated high performance neutron transport computation based on AGENT methodology

    NASA Astrophysics Data System (ADS)

    Xiao, Shanjie

    The spatial heterogeneity of the next generation Gen-IV nuclear reactor core designs brings challenges to the neutron transport analysis. The Arbitrary Geometry Neutron Transport (AGENT) AGENT code is a three-dimensional neutron transport analysis code being developed at the Laboratory for Neutronics and Geometry Computation (NEGE) at Purdue University. It can accurately describe the spatial heterogeneity in a hierarchical structure through the R-function solid modeler. The previous version of AGENT coupled the 2D transport MOC solver and the 1D diffusion NEM solver to solve the three dimensional Boltzmann transport equation. In this research, the 2D/1D coupling methodology was expanded to couple two transport solvers, the radial 2D MOC solver and the axial 1D MOC solver, for better accuracy. The expansion was benchmarked with the widely applied C5G7 benchmark models and two fast breeder reactor models, and showed good agreement with the reference Monte Carlo results. In practice, the accurate neutron transport analysis for a full reactor core is still time-consuming and thus limits its application. Therefore, another content of my research is focused on designing a specific hardware based on the reconfigurable computing technique in order to accelerate AGENT computations. It is the first time that the application of this type is used to the reactor physics and neutron transport for reactor design. The most time consuming part of the AGENT algorithm was identified. Moreover, the architecture of the AGENT acceleration system was designed based on the analysis. Through the parallel computation on the specially designed, highly efficient architecture, the acceleration design on FPGA acquires high performance at the much lower working frequency than CPUs. The whole design simulations show that the acceleration design would be able to speedup large scale AGENT computations about 20 times. The high performance AGENT acceleration system will drastically shortening the

  11. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  12. Characterisation of neutron fields at Cernavoda NPP.

    PubMed

    Cauwels, Vanessa; Vanhavere, Filip; Dumitrescu, Dorin; Chirosca, Alecsandru; Hager, Luke; Million, Marc; Bartz, James

    2013-04-01

    Near a nuclear reactor or a fuel container, mixed neutron/gamma fields are very common, necessitating routine neutron dosimetry. Accurate neutron dosimetry is complicated by the fact that the neutron effective dose is strongly dependent on the neutron energy and the direction distribution of the neutron fluence. Neutron field characterisation is indispensable if one wants to obtain a reliable estimate for the neutron dose. A measurement campaign at CANDU nuclear power plant located in Cernavoda, Romania, was set up to characterise the neutron fields in four different locations and to investigate the behaviour of different neutron personal dosemeters. This investigation intends to assist in choosing a suitable neutron dosimetry system at this nuclear power plant.

  13. Four-Quasiparticle High-K States in Neutron-Deficient Lead and Polonium Nuclei

    NASA Astrophysics Data System (ADS)

    Shi, Yue; Xu, Furong

    2012-06-01

    Configuration-constrained potential energy surface calculations have been performed to investigate four-quasiparticle high-K configurations in neutron-deficient lead and polonium isotopes. A good agreement between the calculations and the experimental data has been found for the excitation energy of the observed Kπ = 19- state in 188Pb. Several lowly excited high-K states are predicted, and the large oblate deformation and low energy indicate high-K isomerism in these nuclei.

  14. Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary

    SciTech Connect

    Brubaker, Erik

    2015-10-01

    The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.

  15. Neutron collimator for neutron radiography applications at tangential port of the TRIGA RC-1 reactor

    NASA Astrophysics Data System (ADS)

    Rosa, R.; Andreoli, F.; Mattoni, M.; Palomba, M.

    2009-06-01

    At the ENEA TRIGA research reactor (Casaccia Research Center, Rome) a new neutron collimator has been designed and installed at the neutron tangential channel. This collimator, that is part of a neutron/X-ray facility for NDT analysis, was experimentally characterized and optimized in terms of thermal neutron fluence rate, spatial/energetic distribution, photon air KERMA and effective beam diameter. This paper shows the methodologies and the results of the experimental analysis that were carried out.

  16. Production of charm mesons by high-energy neutrons

    SciTech Connect

    Shipbaugh, C.L.

    1988-01-01

    The charmed mesons ED{sup *{plus minus}}, D{sup 0}, and D{sub s}{sup {plus minus}} have been observed in neutron-nucleus collisions at the FNAL Tevatron. A sample of 134 {plus minus} 19 events was investigated in the decay mode D{sup *{plus minus}} {yields} D{sup 0} {pi}{sup {plus minus}} with the subsequent decay mode D{sup 0} {yields} K{sup +}K{sup {minus}}. The cross section per nucleon for D{sup *}{plus minus}, at most probable energy {radical}s = 35 GeV, was measured to be: d{sigma}(xf)/dxf {center dot} BR = 2.11 {plus minus} .43({plus minus}63){mu}b/nucleon for 0.0 < x{sub f} < 0.14 (x{sub f} = .07). The branching ratio (BR) is defined as: BR {identical to} BR(D{sup *} {yields} D{sub {pi}}) {times} BR(D {yields} K{sup +}K{sup {minus}}). The dependence of the cross section per nucleus on number of nucleons in the target was fit to a form A{sup {alpha}} and it was found that {alpha} = .96 {plus minus} .17. A sample of 64 {plus minus} 16 D{sub s}{sup {plus minus}} events was investigated for the decay D{sub s}{sup {plus minus}} {yields} {phi}{pi}{sup {plus minus}}. The differential cross section for D{sub s}{sup {plus minus}} production averaged over the particle and antiparticle states is: BR {center dot} {1/2} d{sigma}D{sub s}{sup +}/dxf + d{sigma}(D{sub s}{sup {minus}}/dxf) = 2.8 {plus minus} 0.80 {plus minus} .86 {mu}b/nucleon at x{sub f} = 0.175 where the first error is statistical and the second error is systematic. The branching fraction is defined as BR {identical to} BR(D{sub s} {yields} {phi}{pi}), and a linear A dependence was assumed.

  17. Production of charm mesons by high energy neutrons

    SciTech Connect

    Shipbaugh, C.L.

    1988-01-01

    The charmed mesons D/sup /plus minus//, D/sup 0/, and D/sub s//sup /plus minus//, have been observed in neutron-nucleus collisions at the FNAL Tevatron. A sample of 134 /plus minus/ 19 events as investigated in the decay D/sup /plus minus// /yields/ D/sup 0//pi//sup /plus minus// with the subsequent decay mode D/sup 0/ /yields/ K/sup +/K/sup /minus//. The cross section per nucleon for D/sup /plus minus//, at most probable energy /radical/s = 35 GeV, was measured to be 2.11 /plus minus/ .43 (plusreverse arrowminus/.63)/mu/b/nucleon for 0.0 < x/sub f/ < 0.14 (/bar x//sub f/ = .07). The branching ratio (BR) is defined as: BR /identicalreverse arrowto/ Br(D /yields/ D/pi/) /times/ BR(D /yields/ K/sup +/K/sup /minus//). The dependence of the cross section per nucleus on number of nucleons in target was fit to a form A /sup /alpha// and it was found that /alpha/ = .96 /plusreverse arrowminus/ .17. A sample of 64 /plusreverse arrowminus/ 16 D/sub s//sup /plus minus// events was investigates for the decay D/sub s//sup /plus minus// /yields/ /phi//pi//sup /plus minus//. The differential cross section for D/sub s//sup /plus minus// production averaged over the particle and antiparticle states is: BR.(1/2)(d/sigma/(D/sub s//sup +/)/dx/sub f/ + d/sigma/(D/sub s//sup /minus//) = 2.85 /plusreverse arrowminus/ 0.80 /plusreverse arrowminus/ .86 /mu/b/nucleon at x/sub f/ = 0.175 where the first errors is statistical and the second error is systematic. The branching fraction is defined as BR /equivalentreverse arrowto/ BR(D/sub s/ /yields/ /phi//pi/), and a linear A dependence was assumed. An estimate of relative cross section is: 0.19 /plusreverse arrowminus/ 0.09 at x/sub f/ = 0. 36 refs., 43 figs., 5 tabs.

  18. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Stoeckl, C.; Boni, R.; Ehrne, F.; Forrest, C. J.; Glebov, V. Yu.; Katz, J.; Lonobile, D. J.; Magoon, J.; Regan, S. P.; Shoup, M. J.; Sorce, A.; Sorce, C.; Sangster, T. C.; Weiner, D.

    2016-05-01

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium-tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ˜16 m to a streak camera in a well-shielded location. An ˜200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ˜40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.

  19. High resolution neutron crystallographic studies of the hydration of coenzyme cob(II)alamin

    SciTech Connect

    Jogl, Gerwald; Wang, Xiaoping; Mason, Sax; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zoe; Hoffmann, Christina; Kratky, Christoph; Langan, Paul

    2011-01-01

    The hydration of coenzyme cob(II)alamin has been studied using high resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of surrounded by flexible side chains with terminal functional groups may be significant for 0.92 on the original diffractometer D19 with a prototype 4o x 64o detector at the high-flux reactor neutron source run by the Institute Laue Langevin. The resulting structure provides H bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force-fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultra high resolution was investigated by collecting time-of-flight neutron crystallographic data on diffractometer TOPAZ with a prototype array of 14 modular 21o x 21o detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  20. High-resolution neutron crystallographic studies of the hydration of the coenzyme cob(II)alamin

    SciTech Connect

    Jogl, Gerwald; Wang, Xiaoping; Mason, Sax A.; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zöe; Hoffman, Christina; Kratky, Christoph; Langan, Paul

    2011-06-01

    High-resolution crystallographic studies of the hydration of the coenzyme cob(II)alamin have provided hydrogen-bond parameters of unprecedented accuracy for a biomacromolecule. The hydration of the coenzyme cob(II)alamin has been studied using high-resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of 0.92 Å on the original D19 diffractometer with a prototype 4° × 64° detector at the high-flux reactor neutron source run by the Institute Laue–Langevin. The resulting structure provides hydrogen-bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif surrounded by flexible side chains with terminal functional groups may be significant for the efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultrahigh resolution was investigated by collecting time-of-flight neutron crystallographic data during commissioning of the TOPAZ diffractometer with a prototype array of 14 modular 2° × 21° detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  1. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    DOE PAGES

    Stoeckl, C.; Boni, R.; Ehrne, F.; Forrest, C. J.; Glebov, V. Yu.; Katz, J.; Lonobile, D. J.; Magoon, J.; Regan, S. P.; Shoup, III, M. J.; et al

    2016-05-10

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic DT implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ~16 m to a streak camera in amore » well-shielded location. An ~200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ~40±10 ps was measured in a dedicated experiment using hard x rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. Furthermore, the measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less

  2. Fluence-to-dose confusion regarding external stochastic dose determination within the DOE complex.

    SciTech Connect

    Shores, E. F.; Brown, T. H.

    2002-01-01

    The Department of Energy's (DOE) occupational radiation protection dose limits are specified in 10 CFR 835 (hereafter referred to as 'regulation'). Ambiguity in the regulation regarding designation of dose and fluence-to-dose conversion factors leads to confusion and disagreement regarding the appropriate choice of conversion factors. Three primary dose quantities of relevance are absorbed dose, D, quality factor, Q, and the product of those, called dose equivalent, H. The modifier Q is intended to express the long-term fatal cancer causing potential of different radiation types and generally increases with energy for neutrons. For photons, Q is close to unity regardless of energy. In principle, H could be estimated by incorporating a phantom and relevant Q values in a radiation-transport model. In practice, this would entail too much model complexity and computer time. The evaluator of H instead relies on pre-calculated energy-dependent fluence-to-dose conversion factors. Three primary sets of fluence-to-dose conversion factors are commonly used to determine stochastic dose for neutrons and photons: (1) ANSI/ANS-6.1.1-1977 that incorporates the NCRP-38 data for neutrons and sets based on Claiborne and Wells for photons, (2) ANSI/ANS -6.1.1-1991 that are based on and nearly identical to the neutron and photon sets in ICRP -51, and (3) neutron and photon sets in ICRP-74. The first set is maximum H values in a 30-cm diameter cylinder phantom for neutrons and in a 30-cm thick slab phantom for photons. The second set is effective dose equivalent, HE, derived from an anthropomorphic phantom by summing the products of tissue dose equivalents, HT, and tissue weighting factors, w{sub T}. The third set is effective dose, E, also derived from an anthropomorphic phantom by summing the products of H{sub T} and w{sub T}. E is functionally identical to H{sub E} except H{sub T} is the product of D and the radiation weighting factor, w{sub R}, which is similar in meaning to Q.

  3. Temperature, illumination and fluence dependence of current and voltage in electron irradiated solar cells

    NASA Technical Reports Server (NTRS)

    Obenschain, A. F.; Faith, T. J.

    1973-01-01

    Emperical equations have been derived from measurements of solar cell photovoltaic characteristics relating light generated current, IL, and open circuit voltage, VO, to cell temperature, T, intensity of illumination, W, and 1 Mev electron fluence, phi both 2 ohm-cm and 10 ohm-cm cells were tested. The temperature dependency of IL is similar for both resistivities at 140mw/sq cm; at high temperature the coefficient varies with fluence as phi 0.18, while at low temperatures the coefficient is relatively independent of fluence. Fluence dependent degration causes a decrease in IL at a rate proportional to phi 0.153 for both resistivities. At all intensities other than 560 mw/sq cm, a linear dependence of IL on illumination was found. The temperature coefficient of voltage was, to a good approximation, independent of both temperature and illumination for both resistivities. Illumination dependence of VOC was logarithmic, while the decrease with fluence of VOC varied as phi 0.25 for both resistivities.

  4. High-energy particle production in the 1997 November 6 flare as viewed from gamma rays and neutrons

    NASA Astrophysics Data System (ADS)

    Yoshimori, M.; Suga, K.; Nakayama, S.; Ogawa, H.; Share, G. H.; Murphy, R. J.

    2001-08-01

    Yohkoh observed hard Xand gamma-rays from a X9.4 flare on November 6, 1997. Strong gamma-rays were emitted in 11:52-11:56 UT (peak phase). After that, weak and extended gamma-ray production lasted for 600s (extended phase). The OSSE aboard CGRO detected neutrons associated with this flare between 12:08 and 12:28 UT. The neutron count-rate time profile exhibit a gradually decrease with time. We derive the proton spectra and the timing of particle acceleration to explain the observed neutron time profile. The proton spectra of E-3.5 in the peak phase and of E-3.0 in the extended phase give a good fit to the observed neutron time profile. We present detailed calculations of the neutron arrival time profiles and discuss high-energy particle production processes from the gamma-ray neutron observations.

  5. Ion heating and thermonuclear neutron production from high-intensity subpicosecond laser pulses interacting with underdense plasmas.

    PubMed

    Fritzler, S; Najmudin, Z; Malka, V; Krushelnick, K; Marle, C; Walton, B; Wei, M S; Clarke, R J; Dangor, A E

    2002-10-14

    Thermonuclear fusion neutrons produced by D(d,n)3He reactions have been measured from the interaction of a high-intensity laser with underdense deuterium plasmas. For an input laser energy of 62 J, more than (1.0+/-0.2)x10(6) neutrons with a mean kinetic energy of (2.5+/-0.2) MeV were detected. These neutrons were observed to have an isotropic angular emission profile. By comparing these measurements with those using a secondary solid CD2 target it was determined that neutrons are produced from direct ion heating during this interaction.

  6. The Application of Long Esr Sensor Rods for Neutron and Gamma Dosimetry of the "weak" In-Reactor Irradiation of the Htgr Fuel

    NASA Astrophysics Data System (ADS)

    Usatyi, A. F.; Momot, G. V.; Kaynov, V. B.; Kuznetsov, A. I.

    2003-06-01

    In order to measure the general spatial distribution of the thermal neutron fluence during the so called "weak" irradiation (less than 1017 n/m2) of HTGR nuclear fuel for subsequent high temperature tests including fission products release, we apply local (0.3 cm rings) and distributed (long rods up to 65 cm) accumulative detectors of neutrons and gamma with results' reading by the electron spin resonance method (ESR-sensors). Sensors materials are: silicate ceramic (glass) containing B2O3 (neutron sensor) and quartz with Al2O3 addition (gamma sensor). The new possibilities of nontraditional ESR-sensors, a new type of nuclear radiation detectors are discussed.

  7. High-resolution neutron crystallographic studies of the hydration of the coenzyme cob(II)alamin.

    PubMed

    Jogl, Gerwald; Wang, Xiaoping; Mason, Sax A; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zöe; Hoffman, Christina; Kratky, Christoph; Langan, Paul

    2011-06-01

    The hydration of the coenzyme cob(II)alamin has been studied using high-resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of 0.92 Å on the original D19 diffractometer with a prototype 4° × 64° detector at the high-flux reactor neutron source run by the Institute Laue-Langevin. The resulting structure provides hydrogen-bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif surrounded by flexible side chains with terminal functional groups may be significant for the efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultrahigh resolution was investigated by collecting time-of-flight neutron crystallographic data during commissioning of the TOPAZ diffractometer with a prototype array of 14 modular 2° × 21° detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  8. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-02-07

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  9. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  10. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  11. The Reversed-Field-Pinch (RFP) fusion neutron source: A conceptual design

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Krakowski, R. A.; Miller, R. L.; Werley, K. A.

    The conceptual design of an ohmically heated, reversed-field pinch (RFP) operating at approximately 5-MW/m(2) steady-state DT fusion neutron wall loading and approximately 124-MW total fusion power is presented. These results are useful in projecting the development of a cost effective, low input power, approximately 206 MW, source of DT neutrons for large-volume approximately 10 m(3), high-fluence, 3.4 MW yr/m(2), fusion nuclear materials and technology testing.

  12. High-resolution and high-intensity neutron diffractometer with linear position-sensitive detector

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hee; Moon, Myung-Kook; Em, V. T.; Choi, Young-Nam; Oh, Hwa-Suk; Nam, Uk-Won

    2003-08-01

    The characteristics of a neutron diffractometer using a 3He one-dimensional position-sensitive detector (PSD) with delay line readout, a 200 (length) × 100 (height) mm 2 active window and 2.5 mm spatial resolution have been studied and compared with those of the High-Resolution Powder Diffractometer (HRPD) of KAERI with 32 3He conventional tube (∅50 mm) detectors and Soller collimators (10') before detectors. For the sample to PSD distance R=1200 mm, the PSD subtends 8° angle of 2 θ and provides the resolution and the peak-to-background ratio close to that for HRPD. Time for scanning (with the same statistics) of a 0-160° interval is about 1.6 times longer and the multi-PSD system providing efficiency about 10 times higher than HRPD is proposed. Because of the small angle subtended by the PSD, the parasitic peaks from the sample environment are eliminated and operation without an oscillating radial collimator is possible. Additionally, the proposed diffractometer has an advantage for small samples.

  13. Improved ion implant fluence uniformity in hydrogen enhanced glow discharge plasma immersion ion implantation into silicon

    SciTech Connect

    Luo, J.; Li, L. H. E-mail: paul.chu@cityu.edu.hk; Liu, H. T.; Xu, Y.; Zuo, X. J.; Zhu, P. Z.; Ma, Y. F.; Yu, K. M.; Fu, Ricky K. Y.; Chu, Paul K. E-mail: paul.chu@cityu.edu.hk

    2014-06-15

    Enhanced glow discharge plasma immersion ion implantation does not require an external plasma source but ion focusing affects the lateral ion fluence uniformity, thereby hampering its use in high-fluence hydrogen ion implantation for thin film transfer and fabrication of silicon-on-insulator. Insertion of a metal ring between the sample stage and glass chamber improves the ion uniformity and reduces the ion fluence non-uniformity as the cathode voltage is raised. Two-dimensional multiple-grid particle-in-cell simulation confirms that the variation of electric field inside the chamber leads to mitigation of the ion focusing phenomenon and the results are corroborated experimentally by hydrogen forward scattering.

  14. Neutronic calculations for a final focus system

    NASA Astrophysics Data System (ADS)

    Mainardi, E.; Premuda, F.; Lee, E.

    2001-05-01

    For heavy-ion fusion and for "liquid-protected" reactor designs such as HYLIFE-II (Moir et al., Fusion Technol. 25 (1994); HYLIFE-II-Progress Report, UCID-21816, 4-82-100), a mixture of molten salts made of F 10, Li 6, Li 7, Be 9 called flibe allows highly compact target chambers. Smaller chambers will have lower costs and will allow the final-focus magnets to be closer to the target with decreased size of the focus spot and of the driver, as well as drastically reduced costs of IFE electricity. Consequently the superconducting coils of the magnets closer to the chamber will suffer higher radiation damage though they can stand only a certain amount of energy deposited before quenching. The scope of our calculations is essentially the total energy deposited on the magnetic lens system by fusion neutrons and induced γ-rays. Such a study is important for the design of the final focus system itself from the neutronic point of view and indicates some guidelines for a design with six magnets in the beam line. The entire chamber consists of 192 beam lines to provide access of heavy ions that will implode the pellet. A 3-D transport calculation of the radiation penetrating through ducts that takes into account the complexity of the system, requires Monte Carlo methods. The development of efficient and precise models for geometric representation and nuclear analysis is necessary. The parameters are optimized thanks to an accurate analysis of six geometrical models that are developed starting from the simplest. Different configurations are examined employing TART 98 (D.E. Cullen, Lawrence Livermore National Laboratory, UCRL-ID-126455, Rev. 1, November, 1997) and MCNP 4B (Briesmeister (Ed.), Version 4B, La-12625-m, March 1997, Los Alamos National Laboratory): two Monte Carlo codes for neutrons and photons. The quantities analyzed include: energy deposited by neutrons and gamma photons, values of the total fluence integrated on the whole energy range, neutron fluence spectrum

  15. Neutron irradiation tests on B4C/epoxy composite for neutron shielding application and the parameters assay

    NASA Astrophysics Data System (ADS)

    Adeli, Ruhollah; Shirmardi, Seyed Pezhman; Ahmadi, Seyed Javad

    2016-10-01

    In this investigation, epoxy resin with a low viscosity amine-based curing agent was chosen as matrix and additives were added to epoxy resin using low speed stirring with ultrasonic waves approach. The chemical stability of resin during fabrication of composites was studied with Fourier transform infrared spectroscopy (FTIR). The effect of B4C particle size (20 and 150 μm) on neutron shielding was investigated. Besides, in order to develop the high performance composites, the effect of ATH (flame retardant) and WO3 powders (for shielding from against gamma rays) on neutron shielding property is considered. The neutron experiments were based on foil activation analysis in thermal column of Tehran Research Reactor (TRR). According to experimental data, required shield thickness (B4C, 150 μm, 3 wt%) for 80% absorption of neutron fluence was calculated about 9.8 mm. Consequently, data show thermal neutron absorption is dependent also on the size of the boron compound filler and show a significant enhancement in shielding performance when using smaller particle size of B4C filler. Furthermore, data obviously show that the neutron attenuation coefficient of reinforced composites increases to 0.345 cm-1 for B4C (20 μm, 5 wt%)/ Epoxy composite shield. As clearly data indicate, adding WO3 and ATH additive had a significant influence on the thermal neutron attenuation property and hybrid shield shows an enhancement of more than 60% in shielding performance.

  16. Neutron scattering at high temperature and levitation techniques

    NASA Astrophysics Data System (ADS)

    Cuello, G. J.; Cristiglio, V.; Hennet, L.; Puente-Orench, I.

    2014-11-01

    Studies of the liquid state present an obvious fundamental interest and are also important for technological applications since the molten state is an essential stage in various industrial processes (e.g. glass making, single crystal growing, iron and steel making). Most of the physical properties of a high-temperature liquid are related to its atomic structure. Thus it is important to develop devices to probe the local environment of the atoms in the sample. At very high temperature, it is difficult to use conventional furnaces, which present several problems. In particular, physical contact with the container can contaminate the sample and/or modify its structural properties. Such problems encouraged the development of containerless techniques, which are powerful tools to study high-temperature melts. By eliminating completely any contact between sample and container, it is possible to study the sample with a very high degree of control and to access very high temperatures. An additional advantage of levitation methods is that it is possible to supercool hot liquids down to several hundred of degrees below their equilibrium freezing point, since heterogeneous nucleation processes are suppressed.

  17. High thermal neutron flux effects on structural and macroscopic properties of alkali-borosilicate glasses used as neutron guide substrate

    NASA Astrophysics Data System (ADS)

    Boffy, R.; Peuget, S.; Schweins, R.; Beaucour, J.; Bermejo, F. J.

    2016-05-01

    The behaviour of four alkali-borosilicate glasses under homogeneous thermal neutron irradiation has been studied. These materials are used for the manufacturing of neutron guides which are installed in most facilities as devices to transport neutrons from intense sources such as nuclear reactors or spallation sources up to scientific instruments. Several experimental techniques such as Raman, NMR, SANS and STEM have been employed in order to understand the rather different macroscopic behaviour under irradiation of materials that belong to a same glass family. The results have shown that the remarkable glass shrinking observed for neutron doses below 0.5 ·1018 n/cm2 critically depends upon the presence of domains where silicate and borate network do not mix.

  18. High-energy astrophysics: A theoretical analysis of thermal radiation from neutron stars

    NASA Technical Reports Server (NTRS)

    Applegate, James H.

    1994-01-01

    The unambiguous detection of thermal radiation from the surface of a cooling neutron star was one of the most anxiously awaited results in neutron star physics. This particular Holy Grail was found by Halpern and Holt, who used ROSAT to detect pulsed X-rays from the gamma-ray source Geminga and demonstrate that it was a neutron star, probably a radio pulsar beamed away from us. At an age of approximately 3.4 x 10(exp 5) years, Geminga is in the photon cooling era. Its surface temperature of 5.2 x 10(exp 5) K can be explained within the contexts of both the slow and fast cooling scenarios. In the slow cooling scenario, the surface temperature is too high unless the specific heat of the interior is reduced by extensive baryon pairing. In the fast cooling scenario, the surface temperature will be much too low unless the fast neutrino cooling is shut off by baryon pairing. Two other pulsars, PSR 0656+14 and PSR 1055-52, have also been detected in thermal X-rays by ROSAT. They are also in the photon cooling era. All of this research's neutron star cooling models to date have used the unmagnetized effective temperature-interior temperature relation for the outer boundary condition. Models are being improved by using published magnetic envelope calculations and assumed geometried for the surface magnetic field to determine local interior temperature-emitted flux relations for the surface of the star.

  19. Phonon characteristics of high {Tc} superconductors from neutron Doppler broadening measurements

    SciTech Connect

    Trela, W.J.; Kwei, G.H.; Lynn, J.E.; Meggers, K.

    1994-12-01

    Statistical information on the phonon frequency spectrum of materials can be measured by neutron transmission techniques if they contain nuclei with low energy resonances, narrow enough to be Doppler-broadened, in their neutron cross sections. The authors have carried out some measurements using this technique for materials of the lanthanum barium cuprate class, La{sub 2{minus}x}Ba{sub x}CuO{sub 4}. Two samples with slightly different concentrations of oxygen, one being superconductive, the other not, were examined. Pure lanthanum cuprate was also measured. Lanthanum, barium and copper all have relatively low energy narrow resonances. Thus it should be possible to detect differences in the phonons carried by different kinds of atom in the lattice. Neutron cross section measurements have been made with high energy resolution and statistical precision on the 59m flight path of LANSCE, the pulsed spallation neutron source at Los Alamos National Laboratory. Measurements on all three materials were made over a range of temperatures from 15K to 300K, with small steps through the critical temperature region near 27K. No significant changes in the mean phonon energy of the lanthanum atoms were observed near the critical temperature of the super-conducting material. It appears however that the mean phonon energy of lanthanum in the superconductor is considerably higher than that in the non-superconductors. The samples used in this series of experiments were too thin in barium and copper to determine anything significant about their phonon spectra.

  20. A highly miniaturized and sensitive thermal neutron detector for space applications

    NASA Astrophysics Data System (ADS)

    Vykydal, Zdenek; Holik, Michael; Kraus, Vaclav; Pospisil, Stanislav; Solc, Jaroslav; Turecek, Daniel

    2012-02-01

    Devices from the Medipix family prove to be an excellent tool for the measurement and characterization of complex radiation fields including neutrons. The use of a neutron detector in planetary remote sensing is an essential tool in the search for hydrogenous materials and specifically the presence of water which is the essential ingredient in the search for extraterrestrial life. In addition, high sensitivity neutron measurements used in combination with X-ray and gamma-ray measurements, improves the analysis of the atomic composition of regolith, which in turn, is used to interpret surface geology and ultimately planetary evolution. The high spatial resolution (a matrix of 256 × 256 pixels of 55 μm x 55 μm pitch) and sensitivity of the Medipix detector allows the direct visualization of the energy loss and charge collection processes in the sensor material (300 μm thick silicon in this case). The charge patterns of different radiation types have different characteristic shapes and it is possible to use this information for very effective background suppression. Since silicon itself is insensitive to thermal neutrons a thin 6Li layer in the form of 6LiF powder was used to convert thermal neutrons into alpha particles via the 6Li+n→α+3H reaction. The detection efficiency for thermal neutrons is 1.4%. In order to meet ESA communication standards for space equipment we have developed a compact, low power and lightweight FPGA based readout system, communicating via a SpaceWire interface. The dimension of the whole device including Medipix chipboard is 160 × 75 × 15 mm3 and its total weight is 70 g. The power consumption of the device is 1.4 W during measurement and 0.75 W when the detector is switched off. The readout speed is 7 fps with a single Medipix device which is sufficient for the target application. The whole detection system is very mass and power efficient in comparison with the gas proportional detectors which are commonly used in space