Science.gov

Sample records for high ni-cr alloys

  1. Study of the effects of implantation on the high Fe-Ni-Cr and Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Ribarsky, M. W.

    1985-01-01

    A theoretical study of the effects of implantation on the corrosion resistance of Fe-Ni-Cr and Ni-Cr-Al alloys was undertaken. The purpose was to elucidate the process by which corrosion scales form on alloy surfaces. The experiments dealt with Ni implanted with Al, exposed to S at high temperatures, and then analyzed using scanning electron microscopy, scanning Auger spectroscopy and X-ray fluorescence spectroscopy. Pair bonding and tight-binding models were developed to study the compositions of the alloys and as a result, a new surface ordering effect was found which may exist in certain real alloys. With these models, the behavior of alloy constituents in the presence of surface concentrations of O or S was also studied. Improvements of the models to take into account the important effects of long- and short-range ordering were considered. The diffusion kinetics of implant profiles at various temperatures were investigated, and it was found that significant non-equilibrium changes in the profiles can take place which may affect the implants' performance in the presence of surface contaminants.

  2. Corrosion resistance of stainless steels and high Ni-Cr alloys to acid fluoride wastes

    SciTech Connect

    Smith, H.D.; Mackey, D.B.; Pool, K.H. ); Schwenk, E.B. )

    1992-04-01

    TRUEX processing of Hanford Site waste will utilize potentially corrosive acid fluoride processing solutions. Appropriate construction materials for such a processing facility need to be identified. Toward this objective, candidate stainless steels and high Ni-Cr alloys have been corrosion tested in simulated acid fluoride process solutions at 333K. The high Ni-Cr alloys exhibited corrosion rates as low as 0.14 mm/y in a solution with an HF activity of about 1.2 M, much lower than the 19 to 94 mm/y observed for austenitic stainless steels. At a lower HF activity (about 0.008 M), stainless steels display delayed passivation while high Ni-Cr alloys display essentially no reaction.

  3. Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.

    2016-06-01

    In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.

  4. Corrosion Behavior of NiCrFe Alloy 600 in High Temperature, Hydrogenated Water

    SciTech Connect

    SE Ziemniak; ME Hanson

    2004-11-02

    The corrosion behavior of Alloy 600 (UNS N06600) is investigated in hydrogenated water at 260 C. The corrosion kinetics are observed to be parabolic, the parabolic rate constant being determined by chemical descaling to be 0.055 mg dm{sup -2} hr{sup -1/2}. A combination of scanning and transmission electron microscopy, supplemented by energy dispersive X-ray spectroscopy and grazing incidence X-ray diffraction, are used to identify the oxide phases present (i.e., spinel) and to characterize their morphology and thickness. Two oxide layers are identified: an outer, ferrite-rich layer and an inner, chromite-rich layer. X-ray photoelectron spectroscopy with argon ion milling and target factor analysis is applied to determine spinel stoichiometry; the inner layer is (Ni{sub 0.7}Fe{sub 0.3})(Fe{sub 0.3}Cr{sub 0.7}){sub 2}O{sub 4}, while the outer layer is (Ni{sub 0.9}Fe{sub 0.1})(Fe{sub 0.85}Cr{sub 0.15}){sub 2}O{sub 4}. The distribution of trivalent iron and chromium cations in the inner and outer oxide layers is essentially the same as that found previously in stainless steel corrosion oxides, thus confirming their invariant nature as solvi in the immiscible spinel binary Fe{sub 3}O{sub 4}-FeCr{sub 2}O{sub 4} (or NiFe{sub 2}O{sub 4}-NiCr{sub 2}O{sub 4}). Although oxidation occurred non-selectively, excess quantities of nickel(II) oxide were not found. Instead, the excess nickel was accounted for as recrystallized nickel metal in the inner layer, as additional nickel ferrite in the outer layer, formed by pickup of iron ions from the aqueous phase, and by selective release to the aqueous phase.

  5. Environmentally Assisted Cracking of Commercial Ni-Cr-Mo Alloys - A Review

    SciTech Connect

    Rebak, R B

    2004-11-09

    Nickel-Chromium-Molybdenum alloys (Ni-Cr-Mo) are highly resistant to general corrosion, localized corrosion and environmentally assisted cracking (EAC). Cr acts as a beneficial element under oxidizing acidic conditions and Mo under reducing conditions. All three elements (Ni, Cr and Mo) act synergistically to provide resistance to EAC in environments such as hot concentrated chloride solutions. Ni-Cr-Mo alloys may suffer EAC in environments such as hot caustic solutions, hot wet hydrofluoric acid (HF) solutions and in super critical water oxidation (SCWO) applications. Not all the Ni-Cr-Mo alloys have the same susceptibility to cracking in the mentioned environments. Most of the available data regarding EAC is for the oldest Ni-Cr-Mo alloys such as N10276 and N06625.

  6. Heat treatment of NiCrFe alloy to optimize resistance to intergrannular stress corrosion

    DOEpatents

    Steeves, Arthur F.; Bibb, Albert E.

    1984-01-01

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprising heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cool the alloy body, and heat the cooled body to a temperature between 1100.degree. to 1500.degree. F. for about 1 to 30 hours.

  7. Heat treatment of NiCrFe alloy 600 to optimize resistance to intergranular stress corrosion

    DOEpatents

    Steeves, A.F.; Bibb, A.E.

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprises heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cooling the alloy body, and heating the cooled body to a temperature between 1100 to 1500/sup 0/F for about 1 to 30 hours.

  8. A new theoretical model for high power laser clad TiC/NiCrBSiC composite coatings on Ti6Al4V alloys

    NASA Astrophysics Data System (ADS)

    Lei, Yiwen; Sun, Ronglu; Lei, Jianbo; Tang, Ying; Niu, Wei

    2010-09-01

    A new three-dimensional model was proposed to simulate the high power laser clad TiC/NiCrBSiC composite coatings on Ti6Al4V alloys using commercial finite element analysis software. Powders of TiC, NiCrBSiC alloy and cuboid of Ti6Al4V alloys were taken as sample materials. The dilution rate, the melt pool, and the heat affected zone (HAZ) of the substrate under different incident laser power were obtained from the calculation and compared with the microstructure of the coatings. The simulated results show that a good quality laser clad TiC/NiCrBSiC composite coating with low dilution rate and excellent metallurgical bond can be prepared under the processing parameters as follows: scanning velocity 5 mm/s, laser beam diameter 4.5 mm and incident laser power 2500 W. There exhibits an excellent agreement between the simulated results and experimental data. It indicates that the new model is helpful to optimize the processing parameters to form a good quality coating.

  9. Preselection of Ni-Cr(-Mo) alloys as potential canister materials for vitrified high active nuclear waste by electrochemical testing

    NASA Astrophysics Data System (ADS)

    Bort, H.; Wolf, I.; Leistikow, S.

    1987-07-01

    Several Ni-Cr(-Mo) alloys (Hastelloy C4, Inconel 625, Sanicro 28, Incoloy 825, Inconel 690) were tested by electrochemical methods to characterize their corrosion behavior in chloride containing solutions at various temperatures and pH-values in respect to their application as canister materials for final radioactive waste storage. Especially, Hastelloy C4 was tested by potentiodynamic, potentiostatic and galvanostic measurements. As electrolytes H 2SO 4 solutions were used, as parameters temperature, chloride content and pH-value were varied. All tested alloys showed a clearly limited resistance against pitting corrosion phenomena; under severe conditions even crevice corrosion phenomena were observed. The best corrosion behavior, however, is shown by Hastelloy C4, which has the lowest passivation current density of all tested alloys and the largest potential region with protection against local corrosion phenomena.

  10. Role of oxygen diffusion at Ni/Cr2O3 interface in intergranular oxidation of Ni-Cr alloy

    NASA Astrophysics Data System (ADS)

    Medasani, Bharat; Sushko, Maria; Schreiber, Daniel; Rosso, Kevin; Bruemmer, Stephen

    Certain Ni-Cr alloys used in nuclear systems experience intergranular oxidation and stress corrosion cracking when exposed to high-temperature water leading to their degradation and unexpected failure. To develop a mechanistic understanding of grain boundary oxidation processes, we proposed a mesoscale metal alloy oxidation model that combines quantum Density Functional Theory (DFT) with mesoscopic Poisson-Nernst-Planck/classical DFT. This framework encompasses the chemical specificity of elementary diffusion processes and mesoscale reactive dynamics, and allows modeling oxidation processes on experimentally relevant length scales from first principles. As a proof of concept, a preliminary model was previously employed that limited oxygen diffusion pathways to those through the oxide phase and did not allow oxygen diffusion in the alloy or across oxide/alloy interfaces. In this work, we expand the model to include oxygen diffusion pathways along Ni/Cr2O3 interfaces and demonstrate the increasing importance of such pathways for intergranular oxidation of Ni-Cr alloys with high Cr content. This work is supported by the U.S. Dept. of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Simulations are performed using PNNL Institutional Computing facility.

  11. Transient oxidation of multiphase Ni-Cr base alloys

    SciTech Connect

    Baran, G.; Meraner, M.; Farrell, P.

    1988-06-01

    Four commercially available Ni-Cr-based alloys used with porcelain enamels were studied. Major alloying elements were Al, Be, Si, B, Nb, and Mo. All alloys were multiphase. During heat treatments simulating enameling conditions, phase changes occurred in most alloys and were detected using hardness testing, differential thermal analysis (DTA), and microscopy. Oxidation of these alloys at 1000/degrees/C for 10 min produced an oxide layer consisting principally of chromium oxide, but the oxide morphology varied with each alloy depending on the alloy microstructure. Controlling alloy microstructure while keeping the overall composition unchanged may be a means of preventing wrinkled poorly adherent scales from forming.

  12. Electrochemical Testing of Ni-Cr-Mo-Gd Alloys

    SciTech Connect

    T. E. Lister; R. E. Mizia; H. Tian

    2005-10-01

    The waste package site recommendation design specified a boron-containing stainless steel, Neutronit 976/978, for fabrication of the internal baskets that will be used as a corrosion-resistant neutron-absorbing material. Recent corrosion test results gave higher-than-expected corrosion rates for this material. The material callout for these components has been changed to a Ni-Cr-Mo-Gd alloy (ASTM-B 932-04, UNS N06464) that is being developed at the Idaho National Laboratory. This report discusses the results of initial corrosion testing of this material in simulated in-package environments that could contact the fuel baskets after breach of the waste package outer barrier. The corrosion test matrix was executed using the potentiodynamic and potentiostatic electrochemical test techniques. The alloy performance shows low rates of general corrosion after initial removal of a gadolinium-rich second phase that intersects the surface. The high halide-containing test solutions exhibited greater tendencies toward initiation of crevice corrosion.

  13. Characterization of Ni-Cr alloys using different casting techniques and molds.

    PubMed

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-02-01

    This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. PMID:24411373

  14. Effect of Corrosion Film Composition and Structure on the Corrosion Kinetics of Ni-Cr-Fe Alloys in High Temperature Water

    SciTech Connect

    P.M. Rosecrans; N. Lewis; D.J. Duquette

    2002-02-27

    Nickel alloys such as Alloy 600 undergo Stress Corrosion Cracking (SCC) in pure water at temperatures between about 260 C and the critical point. Increasing the level of Cr in Ni-Fe-Cr alloys increases SCC resistance in aerated and deaerated water. The mechanism is not understood. The effect of Cr composition on oxide microstructure and corrosion kinetics of Ni-Fe-Cr alloys was determined experimentally, to evaluate whether the anodic dissolution model for SCC can account for the effect of Cr on SCC. The alloy corrosion rate and corrosion product oxide microstructure is strongly influenced by the Cr composition. Corrosion kinetics are parabolic and influenced by chromium concentration, with the parabolic constant first increasing then decreasing as Cr increases from 5 to 39%. Surface analyses using Analytical Electron microscopy (AEM) and Auger Electron Spectroscopy (AES) show that the corrosion product film that forms initially on all alloys exposed to high purity high temperature water is a nickel rich oxide. With time, the amount of chromium in the oxide film increases and corrosion proceeds toward the formation of the more thermodynamically stable spinel or hexagonal Cr-rich oxides, similar to high temperature gaseous oxidation. Due to the slower diffusion kinetics at the temperatures of water corrosion compared to those in high temperature gaseous oxidation, however, the films remain as a mixture of NiO, mixed Ni, Fe and Cr spinels, NiCrO{sub 3} and FeCrO{sub 3}. As the amount of Cr in the film increases and the nature of the film changes from NiO to spinel or hexagonal oxides, cation diffusion through the films slows, slowing the corrosion rate. These observations are qualitatively consistent with an anodic dissolution SCC mechanism. However, parametric modeling of the SCC growth process, applying available creep, oxide rupture strain and corrosion kinetics data, indicates that the anodic dissolution mechanism accounts for only a fraction of the effect of Cr

  15. Weak-beam imaging of dissociated dislocations in HVEM-irradiated Fe-Ni-Cr alloys

    SciTech Connect

    King, S.L.; Jenkins, M.L.; Kirk, M.A.; English, C.A.

    1992-06-01

    We report here on studies by weak-beam electron microscopy of the evolution of microstructures at and near preexisting line dislocations in a number of Fe-Ni-Cr alloys under electronirradiation in a high-voltage electron microscope (HVEM). The detailed observations are discussed in terms of dislocation climb mechanisms in these materials and a model based on interstitial pipe diffusion.

  16. Localized Corrosion of a Neutron Absorbing Ni-Cr-Mo-Gd Alloy

    SciTech Connect

    R.E. Mizia; T. E. Lister; P. J. Pinhero; T. L. Trowbridge

    2005-04-01

    The National Spent Nuclear Fuel Program, located at the Idaho National Laboratory (INL), has developed a new nickel-chromium-molybdenum-gadolinium structural alloy for storage and long-term disposal of spent nuclear fuel (SNF). The new alloy will be used for SNF storage container inserts for nuclear criticality control. Gadolinium has been chosen as the neutron absorption alloying element due to its high thermal neutron absorption cross section. This alloy must be resistant to localized corrosion when exposed to postulated Yucca Mountain in-package chemistries. The corrosion resistance properties of three experimental heats of this alloy are presented. The alloys performance are be compared to Alloy 22 and borated stainless steel. The results show that initially the new Ni-Cr-Mo-Gd alloy is less resistant to corrosion as compared to another Ni-Cr-Mo-Gd alloy (Alloy 22); but when the secondary phase that contains gadolinium (gadolinide) is dissolved, the alloy surface becomes passive. The focus of this work is to qualify these gadolinium containing materials for ASME code qualification and acceptance in the Yucca Mountain Repository.

  17. The interaction of point defects with line dislocations in HVEM (high voltage electron microscope) irradiated Fe-Ni-Cr alloys

    SciTech Connect

    King, S.L.; Jenkins, M.L. . Dept. of Materials); Kirk, M.A. ); English, C.A. . Materials Development Div.)

    1990-05-01

    This paper presents results of a study of the interaction of point defects produced by high voltage electron microscope (HVEM) irradiation with pre-existing dislocations in austenitic Fe-15% 25%Ni-17%Cr alloys, aimed at the determination of the mechanisms of climb of dissociated dislocations. Dislocations were initially characterized at sub-threshold voltages (here 200kV) using the weak-beam technique. These dislocations were then irradiated with 1MeV electrons in the Argonne HVEM before being returned to a lower voltage microscope for post-irradiation characterization. Interstitial climb was seen only at particularly favorable sites, such as pre-existing jogs, whilst vacancies clustered near dislocations, forming stacking fault tetrahedra (SFT). Partial separations were also observed to have decreased after irradiation. The post-irradiation configuration was found to depend strongly on both dislocation character and pre-irradiation dislocation configuration. These results, and their relevance to the void swelling problem, are discussed. 52 refs., 8 figs.

  18. Corrosion of high Ni-Cr alloys and Type 304L stainless steel in HNO/sub 3/-HF

    SciTech Connect

    Ondrejcin, R.S.; McLaughlin, B.D.

    1980-04-01

    Nineteen alloys were evaluated as possible materials of construction for steam heating coils, the dissolver vessel, and the off-gas system of proposed facilities to process thorium and uranium fuels. Commercially available alloys were found that are satisfactory for all applications. With thorium fuel, which requires HNO/sub 3/-HF for dissolution, the best alloy for service at 130/sup 0/C when complexing agents for fluoride are used is Inconel 690; with no complexing agents at 130/sup 0/C, Inconel 671 is best. At 95/sup 0/C, six other alloys tested would be adequate: Haynes 25, Ferralium, Inconel 625, Type 304L stainless steel, Incoloy 825, and Haynes 20 (in order of decreasing preference); based on composition, six untested alloys would also be adequate. The ions most effective in reducing fluoride corrosion were the complexing agents Zr/sup 4 +/ and Th/sup 4 +/; Al/sup 3 +/ was less effective. With uranium fuel, modestly priced Type 304L stainless steel is adequate. Corrosion will be most severe in HNO/sub 3/-HF used occasionally for flushing and in solutions of HNO/sub 3/ and corrosion products (ferric and dichromate ions). HF corrosion can be minimized by complexing the fluoride ion and by passivation of the steel with strong nitric acid. Corrosion caused by corrosion products can be minimized by operating at lower temperatures.

  19. Diffusional transport during the cyclic oxidation of gamma + beta, Ni-Cr-Al(Y, Zr) alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1988-01-01

    The cyclic oxidation behavior of several cast gamma + beta, Ni-Cr-Al(Y, Zr) alloys and one low-pressure plasma spraying gamma + beta, Ni-Co-Cr-Al(Y) alloy was studied. Cyclic oxidation was found to result in a decreasing Al concentration at the oxide-metal interface due to a high rate of Al consumption coupled with oxide scale cracking and spalling. Diffusion paths plotted on the ternary phase diagram showed higher Ni concentrations with increasing cyclic oxidation exposures. The alloy with the highest rate of Al consumption and the highest Al content underwent breakaway oxidation following 500 1-hr cycles at 1200 C.

  20. Microstructure of laser clad Ni- Cr- Al- Hf alloy on a γ' strengthened ni- base superalloy

    NASA Astrophysics Data System (ADS)

    Singh, Jogender; Mazumder, J.

    1988-08-01

    Alloys and coatings for alloys for improved high temperature service life under aggressive atmo-spheres are of great contemporary interest. There is a general consensus that the addition of rare earths such as Hf will provide many beneficial effects for such alloys. The laser cladding technique was used to produce Ni-Cr-AI-Hf alloys with extended solid solution of Hf. A 10 kW CO2 laser with mixed powder feed was used for laser cladding. Optical, scanning electron (SEM) and scanning transmission electron (STEM) microscopy were employed to characterize the microstructure of alloys produced during laser cladding processes. Microstructural studies revealed grain refinement, considerable in-crease in solubility of Hf in the matrix, Hf-rich precipitates, and new metastable phases. The size and morphology of γ' (Ni3Al) phase were discussed in relation to its microchemistry and the laser processing conditions. This paper will report the microstructural development in this laser clad Ni-Cr-AI-Hf alloy.

  1. Evaluation of Ni-Cr-base alloys for SOFC interconnect applications

    NASA Astrophysics Data System (ADS)

    Yang, Zhenguo; Xia, Guan-Guang; Stevenson, Jeffry W.

    To further understand the suitability of Ni-Cr-base alloys for solid oxide fuel cell (SOFC) interconnect applications, three commercial Ni-Cr-base alloys, Haynes 230, Hastelloy S and Haynes 242 were selected and evaluated for oxidation behavior under different exposure conditions, scale conductivity and thermal expansion. Haynes 230 and Hastelloy S, which have a relatively high Cr content, formed a thin scale mainly comprised of Cr 2O 3 and (Mn,Cr,Ni) 3O 4 spinels under SOFC operating conditions, demonstrating excellent oxidation resistance and a high scale electrical conductivity. In contrast, a thick double-layer scale with a NiO outer layer above a chromia-rich substrate was grown on Haynes 242 in moist air or at the air side of dual exposure samples, indicating limited oxidation resistance for the interconnect application. With a face-centered-cubic (FCC) substrate, all three alloys possess a coefficient of thermal expansion (CTE) that is higher than that of candidate ferritic stainless steels, e.g. Crofer22 APU. Among the three alloys, Haynes 242, which is heavily alloyed with W and Mo and contains a low Cr content, demonstrated the lowest average CTE at 13.1 × 10 -6 K -1 from room temperature to 800 °C, but it was also observed that the CTE behavior of Haynes 242 was very non-linear.

  2. Evaluation of Ni-Cr-Base Alloys for SOFC Interconnect Applications

    SciTech Connect

    Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.

    2006-10-06

    To further understand the suitability of Ni-Cr-base alloys for solid oxide fuel cell (SOFC) interconnect applications, three commercial Ni-Cr-base alloys, Haynes 230, Hastelloy S and Haynes 242 were selected and evaluated for oxidation behavior under different exposure conditions, scale conductivity and thermal expansion. Haynes 230 and Hastelloy S, which have a relatively high Cr content, formed a thin scale mainly comprised of Cr2O3 and (Mn,Cr,Ni)3O4 spinels under SOFC operating conditions, demonstrating excellent oxidation resistance and a high scale electrical conductivity. In contrast, a thick double-layer scale with a NiO outer layer above a chromia-rich substrate was grown on Haynes 242 in moist air or at the air side of dual exposure samples, indicating limited oxidation resistance for the interconnect application. With a face-centered-cubic (FCC) substrate, all three alloys possess a coefficient of thermal expansion (CTE) that is higher than that of candidate ferritic stainless steels, e.g. Crofer22 APU. Among the three alloys, Haynes 242, which is heavily alloyed with W and Mo and contains a low Cr content, demonstrated the lowest average CTE at 13.1x10-6 K-1 from room temperature to 800oC, but it was also observed that the CTE behavior of Haynes 242 was very nonlinear.

  3. A feasibility study of a diffusion barrier between Ni-Cr-Al coatings and nickel-based eutectic alloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems have been proposed for potential use on eutectic alloy components in high-temperature gas turbine engines. In a study to prevent the deterioration of such systems by diffusion, a tungsten sheet 25 microns thick was placed between eutectic alloys and an Ni-Cr-Al layer. Layered test specimens were aged at 1100 C for as long as 500 h. Without the tungsten barrier the delta phase of the eutectic deteriorated by diffusion of niobium into the Ni-Cr-Al. Insertion of the tungsten barrier stopped the diffusion of niobium from the delta phase. Chromium diffusion from the Ni-Cr-Al into the gamma/gamma-prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time, and tungsten diffused into both the Ni-Cr-Al and the eutectic. When the delta platelets were aligned parallel rather than perpendicular to the Ni-Cr-Al layer, diffusion into the eutectic was reduced.

  4. MODELING OF NI-CR-MO BASED ALLOYS: PART II - KINETICS

    SciTech Connect

    Turchi, P A; Kaufman, L; Liu, Z

    2006-07-07

    The CALPHAD approach is applied to kinetic studies of phase transformations and aging of prototypes of Ni-Cr-Mo-based alloys selected for waste disposal canisters in the Yucca Mountain Project (YMP). Based on a previous study on alloy stability for several candidate alloys, the thermodynamic driving forces together with a newly developed mobility database have been used to analyze diffusion-controlled transformations in these Ni-based alloys. Results on precipitation of the Ni{sub 2}Cr-ordered phase in Ni-Cr and Ni-Cr-Mo alloys, and of the complex P- and {delta}-phases in a surrogate of Alloy 22 are presented, and the output from the modeling are compared with experimental data on aging.

  5. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe-Ni-Cr alloy (alloy 800H)

    NASA Astrophysics Data System (ADS)

    Cao, Yu; Di, Hongshuang; Zhang, Jiecen; Yang, Yaohua

    2015-01-01

    The objective of the study is to fundamentally understand the dynamic behavior of alloy 800H at moderate to high strain rate using hot compression tests and propose nucleation mechanism associated with dynamic crystallization (DRX). We firstly investigated the dynamic behavior of alloy 800H with industrial scale strain rates using hot compression tests and adiabatic correction was performed to correct as-measured flow curves. Secondly, a Johnson-Cook model was established by using the corrected data and could give a precise prediction of elevated temperature flow stress for the studied alloy. Finally, the nucleation mechanism of DRX grains at high strain rates was studied. The results showed that the predominant nucleation mechanism for DRX is the formation of "bulge" at parent grain boundary. Additionally, the fragmentation of original grain at low deformation temperatures and the twinning near the bulged regions at high deformation temperatures also accelerate the DRX process.

  6. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Douglass, D. L.; Nasrallah, M.

    1974-01-01

    The investigation reported included a determination of the optimum composition of a Ni-Cr-Al ternary alloy with respect to oxidation resistance and minimum film-spalling tendencies. Yttrium and thorium in small amounts were added to the ternary alloy and an investigation of the oxidation mechanism and the oxide scale adherence was conducted. It was found that the oxidation mechanism of Ni-Cr-Al ternary alloys depends upon the composition of the alloy as well as the time, oxygen pressure, and temperature of oxidation.

  7. A structural investigation of a plasma sprayed Ni--Cr based alloy coating

    SciTech Connect

    Sampath, S.; Neiser, R.A.; Herman, H. ); Kirkland, J.P.; Elam, W.T. )

    1993-01-01

    A Ni--Cr based hardfacing alloy has been plasma sprayed in ambient and low pressure atmospheres onto mild steel substrates. These coatings exhibit excellent wear and corrosion resistance; however, the significance of microstructure on properties has not been reported. This study relates the structure of the sprayed coatings to the processing conditions. X-ray diffraction results indicate phase separation in air plasma sprayed deposits, while low pressure plasma sprayed deposits exhibit a single supersaturated solid solution. Annealing of the air plasma sprayed coating shows dissolution of the bcc chromium phase, confirming its metastable nature. These results were confirmed using Extended X-ray Absorption Fine Structure (EXAFS) analysis, which further suggests a highly disordered structure, with partial oxidation of selected alloying elements, such as chromium. Transmission electron microscopy indicates a wide variety of microstructures in the air plasma sprayed deposit. In the case of low pressure sprayed deposit, the microstructures are homogeneous and uniform.

  8. Oxidation behavior of TD-NiCr in a dynamic high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Young, C. T.; Herring, H. W.

    1974-01-01

    The oxidation behavior of TD-NiCr has been studied in static and high-speed flowing air environments at 1100 and 1200 C. It has been found that the stable oxide morphologies formed on the specimens exposed to the static and dynamic environments were markedly different. The faceted crystal morphology characteristic of static oxidation was found to be unstable under high-temperature, high-speed flow conditions and was quickly replaced by a porous NiO 'mushroom' type structure. Also, it was found that the rate of formation of CrO3 from Cr2O3 was greatly enhanced by high gas velocity conditions. The stability of Cr2-O3 was found to be greatly improved by the presence of an outer NiO layer, even though the NiO layer was very porous. An oxidation model is proposed to explain the observed microstructures and overall oxidation behavior of TD-NiCr alloys.

  9. Atomic Mobilities and Interdiffusivities for fcc Ni-Cr-Nb Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Gaochi; Liu, Yajun; Kang, Zhitao

    2016-10-01

    The atomic mobilities and diffusion characteristics for fcc Ni-Cr-Nb alloys are explored by diffusion couples annealed at 1273 K (1000 °C) for 200 hours. The interdiffusion coefficients are extracted from intersection points of two diffusion paths, after which the atomic mobilities of Ni, Cr, and Nb in fcc Ni-Cr-Nb alloys are inversely obtained within the CALPHAD framework with the aid of related thermodynamic descriptions. In order to verify the quality of obtained kinetic parameters so that an accurate Ni-based atomic mobility database can be established, the composition profiles in diffusion couples and the diffusion paths superimposed upon Gibbs triangle are explored, where the experimentally measured and calculated values show good agreement.

  10. KINETICS OF CATHODIC REDUCTION OF OXYGEN ON NI-CR-MO-W ALLOY

    SciTech Connect

    NA

    2006-04-06

    Ni-Cr-Mo-W alloys (C-group alloys) are well known as materials with very high Corrosion resistance in very aggressive environments, an asset that has motivated the selection of Alloy 22 as a waste package material in the Yucca Mountain Project for the long-term geologic disposal of spent nuclear fuel and other high-level radioactive wastes. The aim of this project is to elucidate the corrosion performance of Alloy 22 under aggressive conditions and to provide a conceptual understanding and parameter data base that could act as a basis for modeling the corrosion performance of waste packages under Yucca Mountain conditions. A key issue in any corrosion process is whether or not the kinetics of the cathodic reactions involved can support a damaging rate of anodic metal (alloy) dissolution. Under Yucca Mountain conditions the primary oxidant available to drive corrosion (most likely in the form of crevice, or under-deposit, corrosion) will be oxygen. Here, we present results on the kinetics of oxygen reduction at the Alloy 22/solution interface.

  11. [Ultra-structural study of Ni-Cr alloys used in joint prosthesis].

    PubMed

    Bennani, A; Amine, M; Ezzahi, A; Chafii, A; Eladioui, S

    2014-12-01

    Ni-Cr alloys used in denture set, which have excellent mechanical properties, have a chemical and electrochemical inertia that depends on their composition and their microstructure. The objective of our work was to study the ultrastructure of the Ni-Cr alloy exposed to a free corrosion and a chemical analysis of surface depending on its composition. For this, five electrodes Ni-Cr alloy were prepared at the prosthesis laboratory by varying their composition. An analysis of the ultrastructure of the samples made by Scanning Electron Microscopy (SEM) samples was performed as well as a chemical analysis of their spectra. Prior to any manipulation, analysis by SEM of electrode number 5 (100% new metal) shows an altered surface. The electrode 3 (75% new metal) also presents an uneven surface. After a week in a free corrosion in Meyer solution at pH = 6.5, the electrode 5 shows a widespread intergranular and pitting corrosion. The same electrode 3 (75% new metal) after one week immersion in Ringer's solution at pH 7.9, shows a widespread intergranular and pitting corrosion. After electrochemical testing in Ringer's solution at pH 5, the SEM for electrode 1 (100% recovered metal) shows a very rugged structure with an important crevice corrosion. The composition and terms of shaping the Ni-Cr alloy influence its microstructure and at the same time its electrochemical behavior. PMID:25980097

  12. Solute transport during the cyclic oxidation of Ni-Cr-Al alloys. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.

    1982-01-01

    Important requirements for protective coatings of Ni-Cr-Al alloys for gas turbine superalloys are resistance to oxidation accompanied by thermal cycling, resistance to thermal fatigue cracking. The resistance to oxidation accompanied by thermal cycling is discussed. The resistance to thermal fatigue cracking is also considered.

  13. Stress variations in recast Ni-Cr alloy--a finite element analysis.

    PubMed

    Isaac, L; Joseph, M; Bhat, S; Shetty, P

    2000-01-01

    A finite element analysis was carried out to analyse the stress variations in a mandibular posterior fixed partial denture (FPD), made of recast nickel-chromium alloy. A two dimensional finite element model was developed and then analysed with STAAD III/ISDS program with an occlusal load of 1 kg applied to the casting surface. The analysis revealed that the connectors experienced maximum stresses and the generated stress values decreased within the fixed partial denture made of recast Ni-Cr alloy. It seemed unlikely that FPD inspite of being made of recast alloy might fail before the other tissue components show signs of degeneration thus establishing the potential for recycling the Ni-Cr alloy in actual dental practice. PMID:11307249

  14. Internal nitridation of nickel-base alloys. Part 1: Behavior of binary and ternary alloys of the Ni-Cr-Al-Ti system

    SciTech Connect

    Krupp, U.; Christ, H.J.

    1999-10-01

    The internal-nitriding behavior of several model alloys of the Ni-Cr-Al-Ti system in an oxygen-free nitrogen atmosphere at 800--1100 C was studied. Thermogravimetry as well as various metallographic techniques (SEM and TEM) were used. It was shown that both the nitrogen solubility and the nitrogen diffusion coefficient are strongly affected by the Cr content of the Ni alloy. Hence, in Ni-Cr-Ti alloys a higher chromium content leads to an increased depth of the internal precipitation of TiN. Nitridation of the alloying element Cr takes place only at high concentrations of Cr. In general, the nitridation rate was found to obey Wagner`s parabolic rate law of internal oxidation. Changes in the parabolic rate constant with alloy composition can be understood by means of thermodynamic calculations in combination with microstructural observations.

  15. Corrosion of Fe, Ni, Cr and their alloys in simulated municipal waste incineration conditions

    SciTech Connect

    Soutrel, F.; Rapin, C.; Steinmetz, P.; Pierotti, G.

    1998-12-31

    One limitation in MSW incineration process is with the degradation of metallic parts (tubes), which can be very severe in the plants, because of the high level of corrosive gases (HCl and SO{sub 2}). Rather than using very resistant but very expensive alloys to make waterwall and superheater tubes, it can be interesting to apply coatings to carbon steels. The problem is however to find the better combination of elements compatible with the substrate and the long term resistance to corrosion. Individual components of coating alloys (Iron, Nickel, Chromium) and also binary alloys (Fe-Cr, Ni-Cr) which can be used to coat metallic parts, have been tested in simulated waste environment (ash, air+HCl+SO{sub 2}, 500 C). Corrosion kinetics and mechanisms could be identified with use of thermogravimetry and with characterization of the corrosion products (XRD, SEM, Electron Microprobe and DSC), Alkaline components present in the ash have a determining influence on the corrosion processes. This result could be correlated to the difference between the thermodynamic properties of complex oxides formed with sodium or potassium (A G, melting temperature, etc...).

  16. [Casting of dental alloys with special reference to the bonding capacity of Ni-Cr alloys].

    PubMed

    Weber, H

    1979-07-01

    A short review on castability of dental alloys -- for which a definition is proposed -- reflects the different factors influencing the results of a casting. In this case solid sieves and plates are cast by use of one gold-base alloy (Type III) and two base metal alloys used for porcelain veneering. All three alloys filled the sieve pattern to a 100%, whereas they performed differently when cast as thin, solid squares. The most continuous results were achieved with a Ni-Cr-alloy whose melting temperature can be recognized since the ingots flow together when this point is reached. Since the plate pattern is most difficult to cast due to surface to bulk ratio it is assumed that a complete casting can only be achieved when the performance of the alloy is good and all required conditions match. Thus, this type of test seems to be suitable to determine the castability of a dental alloy. The sieve test should be used to investigate and to improve the influence of the different factors as for example burnout time and temperature of the mold and sprue size.

  17. The Influence of Composition upon Surface Degradation and Stress Corrosion Cracking of the Ni-Cr-Mo Alloys in Wet Hydrofluoric Acid

    SciTech Connect

    Crook, P; Meck, N S; Rebak, R B

    2006-12-04

    At concentrations below 60%, wet hydrofluoric acid (HF) is extremely corrosive to steels, stainless steels and reactive metals, such as titanium, zirconium, and tantalum. In fact, only a few metallic materials will withstand wet HF at temperatures above ambient. Among these are the nickel-copper (Ni-Cu) and nickel-chromium-molybdenum (Ni-Cr-Mo) alloys. Previous work has shown that, even with these materials, there are complicating factors. For example, under certain conditions, internal attack and stress corrosion cracking (SCC) are possible with the Ni-Cr-Mo alloys, and the Ni-Cu materials can suffer intergranular attack when exposed to wet HF vapors. The purpose of this work was to study further the response of the Ni-Cr-Mo alloys to HF, in particular their external corrosion rates, susceptibility to internal attack and susceptibility to HF-induced SCC, as a function of alloy composition. As a side experiment, one of the alloys was tested in two microstructural conditions, i.e. solution annealed (the usual condition for materials of this type) and long-range ordered (this being a means of strengthening the alloy in question). The study of external corrosion rates over wide ranges of concentration and temperature revealed a strong beneficial influence of molybdenum content. However, tungsten, which is used as a partial replacement for molybdenum in some Ni-Cr-Mo alloys, appears to render the alloys more prone to internal attack. With regard to HF-induced SCC of the Ni-Cr-Mo alloys, this study suggests that only certain alloys (i.e., those containing tungsten) exhibit classical SCC. It was also discovered that high external corrosion rates inhibit HF-induced SCC, presumably due to rapid progression of the external attack front. With regard to the effects of long-range ordering, these were only evident at the highest test temperatures, where the ordered structure exhibited much higher external corrosion rates than the annealed structure.

  18. Internal nitridation of nickel-base alloys. Part 2: Behavior of quaternary Ni-Cr-Al-Ti alloys and computer-based description

    SciTech Connect

    Krupp, U.; Christ, H.J.

    1999-10-01

    Whereas in Part 1 of this study the process of internal nitridation was described for binary and ternary alloys within the Ni-Cr-Al-Ti system, this part focuses on quaternary Ni-Cr-Al-Ti alloys, which are similar to commercial Ni-base alloys used in high-temperature applications regarding their chemical compositions. These alloys can simultaneously form two different nitride-precipitation zones consisting of TiN and AlN. In order to quantify the nitridation process, thermogravimetric measurements in an oxygen-free nitrogen atmosphere in the temperature range 800--1100 C were carried out and supplemented by extensive microstructural studies. While single-nitride internal nitridation can easily be described by Wagner`s theory of internal oxidation, modeling of the more complex internal-precipitation reactions that involves more than one nitride requires a numerical treatment of both the diffusion and the thermochemical processes in the alloy. For this purpose, a computer simulation was developed in which the commercial thermodynamic software ChemApp is combined with a finite-difference diffusion calculation. It was shown that this calculation technique can be applied successfully to quantitatively describe the internal-nitridation process of the Ni-Cr-Al-Ti model alloys used in this study.

  19. Corrosion behavior of Fe-Ni-Cr alloys in the molten salt of LiCl-Li 2O at high temperature

    NASA Astrophysics Data System (ADS)

    Cho, S. H.; Zhang, J. S.; Shin, Y. J.; Park, S. W.; Park, H. S.

    2004-02-01

    At Korea Atomic Energy Research Institute (KAERI), we investigated the corrosion behavior of a series of Fe-Cr-Ni alloys with different chromium contents in molten LiCl and molten LiCl-25wt%Li 2O mixture at temperatures ranging from 923 to 1123 K. In molten LiCl, dense protective scale of LiCrO 2 grows outwardly while corrosion is accelerated by addition of Li 2O to LiCl. The basic fluxing of Cr 2O 3 by Li 2O would be the cause of accelerated corrosion. Because of low oxygen solubility and very high Li 2O activity in the molten LiCl-Li 2O mixture, Cr is preferentially corroded while Ni remains stable and thus, corrosion rate of the alloys in molten LiCl-Li 2O mixture increases with an increase in Cr content.

  20. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids were observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. The voids resulted from an excess number of oxygen vacancies near the oxidemetal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidation of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al, Cr)2O3 and Ni(Al, Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationship between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  1. Effect of casting atmosphere on the shear bond strength of a ceramic to Ni-Cr and Ni-Cr-Be alloys.

    PubMed

    Pagnano, Valéria Oliveira; Esquivel, Marina de Campos; Leal, Mônica Barbosa; Felipucci, Daniela Nair Borges; Bezzon, Osvaldo Luiz

    2009-01-01

    The success of metal-ceramic restorations depends on an optimal bond between metal and ceramic. This study evaluated the effect of 3 casting atmospheres on the metal-ceramic bond strength (MCBS) of 2 Ni-Cr alloys, with beryllium (Fit Cast V) and without beryllium (Fit Cast SB). Sixty acrylic resin patterns (8 mm long and 5 mm diameter) were obtained using a fluorocarbon resin matrix. Wax was used to refine the surface of acrylic resin patterns that were invested and cast in an induction casting machine under normal, vacuum, and argon atmospheres at a temperature of 1340 degrees C. The castings were divested manually and airborne-particle abraded with 100-microm aluminum-oxide. Ten castings were obtained for each group. The IPS Classic V ceramic was applied (2 mm high and 5 mm diameter). The shear bond strength was tested in a mechanical testing machine with a crosshead speed of 2.0 mm/min. The MCBS data (MPa) were subjected to 2-way analysis of variance (alpha=0.05). There was no statistically significant difference (p>0.05) between the alloys or among the casting atmospheres. Within the limitations of this study, it may be concluded that the presence of beryllium and the casting atmosphere did not interfere in the MCBS of the evaluated metal-ceramic combinations. PMID:19738947

  2. Experimental procedure for crevice corrosion studies of Ni-Cr-Mo alloys in natural seawater

    NASA Astrophysics Data System (ADS)

    Martin, F. J.; Lucas, K. E.; Hogan, E. A.

    2002-03-01

    An experimental procedure intended for crevice corrosion studies on Ni-Cr-Mo alloys is demonstrated. In this procedure a potentiostatic control of crevice corrosion specimens is applied to an immersible crevice cell design that uses a fluoroelastomer gasket crevice former. The procedure is demonstrated for a crevice susceptibility study on Alloy 625 in elevated temperature natural seawater, where crevice corrosion initiation and propagation are shown to be influenced by the electrochemical potential. Potentiostatic current monitoring establishes the crevice initiation time and rate of propagation, while post-mortem inspections confirm the extent of crevice damage.

  3. Comparative Study on the Corrosion Resistance of Fe-Based Amorphous Metal, Borated Stainless Steel and Ni-Cr-Mo-Gd Alloy

    SciTech Connect

    Lian, Tiangan; Day, Daniel; Hailey, Phillip; Choi, Jor-Shan; Farmer, Joseph

    2007-07-01

    Iron-based amorphous alloy Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} was compared to borated stainless steel and Ni-Cr-Mo-Gd alloy on their corrosion resistance in various high-concentration chloride solutions. The melt-spun ribbon of this iron-based amorphous alloy have demonstrated a better corrosion resistance than the bulk borated stainless steel and the bulk Ni-Cr-Mo-Gd alloy, in high-concentration chloride brines at temperatures 90 deg. C or higher. (authors)

  4. Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe-Ni-Cr alloys

    NASA Astrophysics Data System (ADS)

    Lavrentiev, M. Yu.; Wróbel, J. S.; Nguyen-Manh, D.; Dudarev, S. L.; Ganchenkova, M. G.

    2016-07-01

    A Magnetic Cluster Expansion model for ternary face-centered cubic Fe-Ni-Cr alloys has been developed, using DFT data spanning binary and ternary alloy configurations. Using this Magnetic Cluster Expansion model Hamiltonian, we perform Monte Carlo simulations and explore magnetic structures of alloys over the entire range of compositions, considering both random and ordered alloy structures. In random alloys, the removal of magnetic collinearity constraint reduces the total magnetic moment but does not affect the predicted range of compositions where the alloys adopt low-temperature ferromagnetic configurations. During alloying of ordered fcc Fe-Ni compounds with Cr, chromium atoms tend to replace nickel rather than iron atoms. Replacement of Ni by Cr in ordered alloys with high iron content increases the Curie temperature of the alloys. This can be explained by strong antiferromagnetic Fe-Cr coupling, similar to that found in bcc Fe-Cr solutions, where the Curie temperature increase, predicted by simulations as a function of Cr concentration, is confirmed by experimental observations. In random alloys, both magnetization and the Curie temperature decrease abruptly with increasing chromium content, in agreement with experiment.

  5. Microstructural characterization of Al-rich Ni-Cr-Al cast alloys

    SciTech Connect

    Gonzalez-Carrasco, J.L.; Adeva, P.; Cristina, M.C.; Aballe, M. )

    1994-09-01

    Several Ni-Cr-Al alloys, with up to 30 at.% Al, were prepared in an induction furnace and cast under inert atmosphere. All alloys were homogenized for 8 h at 1,473 K under an argon atmosphere, followed by treatments at temperatures between 1,023 and 1,273 K for times up to 180 h. These alloys contain phases that are to a great extent, structurally similar. This is frequently complicated further by their particle size and their degree of order. Their characterization is not always simple and usually must be based on more than one technique. In this work the microstructural evolution was studied by means of light microscopy, scanning electron microscopy and microanalysis, and X-ray diffraction techniques. For completeness, hardness and microhardness tests were performed to evaluate the precipitation phenomenon.

  6. Comparison of Crevice Corrosion of Fe-Based Amorphous Metal and Crystalline Ni-Cr-Mo Alloy

    SciTech Connect

    Shan, X; Ha, H; Payer, J H

    2008-07-24

    The crevice corrosion behaviors of an Fe-based bulk metallic glass alloy (SAM1651) and a Ni-Cr-Mo crystalline alloy (C-22) were studied in 4M NaCl at 100 C with cyclic potentiodynamic polarization and constant potential tests. The corrosion damage morphologies, corrosion products and the compositions of corroded surfaces of these two alloys were studied with optical 3D reconstruction, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Auger Electron Spectroscopy (AES). It was found that the Fe-based bulk metallic glass (amorphous alloy) SAM1651 had a more positive breakdown potential and repassivation potential than crystalline alloy C-22 in cyclic potentiodynamic polarization tests and required a more positive oxidizing potential to initiate crevice corrosion in constant potential test. Once crevice corrosion initiated, the corrosion propagation of C-22 was more localized near the crevice border compared to SAM1651, and SAM1651 repassivated more readily than C-22. The EDS results indicated that the corrosion products of both alloys contained high amount of O and were enriched in Mo and Cr. The AES results indicated that a Cr-rich oxide passive film was formed on the surfaces of both alloys, and both alloys were corroded congruently.

  7. Evaluation on the corrosion of the three ni-cr alloys with different composition.

    PubMed

    Rao, Srinivasa B; Chowdhary, Ramesh

    2011-01-01

    Dental casting alloys are widely used in contact with oral tissue for many years now. With the development of new dental alloys over the past 15 years, many questions remain unanswered about their biologic safety. Concepts and current issues concerning the response to the biologic effects of dental casting alloys are presented. In this paper, samples of three commercially available nickel-chrome (Ni-cr) casting alloys (Dentaurum, Bego, Sankin) were taken to assess their corrosion behavior, using potentiodynamic polarization method (electrochemical method) with fusayama artificial saliva as an electrolyte medium to check for their biocompatibility. The parameters for corrosion rate and corrosion resistance were obtained from computer-controlled corrosion schematic instrument, namely, potentiostat through corrosion software (power CV). The results obtained were analyzed by classic Tafel analysis. Statistical analysis was done by Student's t-test and ANOVA test. It was concluded that Dentarum and Bego showed satisfactory corrosive behavior, with exception of Sankin which depicted higher corrosion rate and least resistance to corrosion. Thus, the selection of an alloy should be made on the basis of corrosion resistance and biologic data from dental manufactures.

  8. Dynamic oxidation behavior of TD-NiCr alloy with different surface pretreatments

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Tenney, D. R.; Herring, H. W.

    1975-01-01

    Oxidation tests of TD-NiCr alloy with different surface pretreatments were conducted in a Mach-5 arc-jet at 1200 C and 0.002 lb/sec flowing air environment. The mechanisms responsible for the observed oxidation behavior are examined. The presence of atomic oxygen in the air stream plays a significant role in determining the oxidation characteristic of the alloy. The rate of Cr2O3 vaporization by formation of volatile CrO3 is greatly enhanced by the flowing conditions. The typical microstructure of oxides formed in the dynamic tests consists of an external layer of NiO with a porous mushroom-type morphology, an intermediate layer of NiO and Cr2O3 oxide mixture, and a continuous inner layer of Cr2O3 in contact with the Cr-depleted alloy substrate. Three basic processes underlying the formation of mushroom-type NiO are identified and discussed. The oxidation rate is determined by the rate of vaporization of NiO. Surface pretreatment has a significant effect on the oxidation behavior of the alloy in the early stage of oxidation, but becomes less important as exposure time increases. Mechanical polishing induces surface recrystallization, but promotes the concurrence of external growth of NiO and internal oxidation of the alloy in the dynamic atmosphere.

  9. Stress-corrosion cracking and surface-pitting tests of NiCrFe alloy bolts (LWBR development program)

    SciTech Connect

    Keller, K.L.

    1983-02-01

    Accelerated corrosion tests confirmed the adequate resistance to stress corrosion cracking (SCC) of the specific heats of NiCrFe X-750 and NiCrFe 600 used as bolts in the LWBR. SCC acceleration was achieved by running autoclave corrosion tests at 680/sup 0/F (well above the LWBR core operating temperatures of approximately 525/sup 0/F to 560/sup 0/F). Component stress levels were representative of maximum service stresses. No specimens from heats of either alloy suffered SCC.

  10. Preparation and Oxidation Performance of Y and Ce-Modified Cr Coating on open-cell Ni-Cr-Fe Alloy Foam by the Pack Cementation

    NASA Astrophysics Data System (ADS)

    Pang, Q.; Hu, Z. L.; Wu, G. H.

    2016-10-01

    Metallic foams with a high fraction of porosity, low density and high-energy absorption capacity are a rapidly emerging class of novel ultralight weight materials for various engineering applications. In this study, Y-Cr and Ce-Cr-coated Ni-Cr-Fe alloy foams were prepared via the pack cementation method, and the effects of Y and Ce addition on the coating microstructure and oxidation performance were analyzed in order to improve the oxidation resistance of open-cell nickel-based alloy foams. The results show that the Ce-Cr coating is relatively more uniform and has a denser distribution on the surface of the nickel-based alloy foam. The surface grains of the Ce-Cr-coated alloy foam are finer compared to those of the Y-Cr-coated alloy foam. An obvious Ce peak appears on the interface between the coating and the alloy foam strut, which gives rise to a "site-blocking" effect for the short-circuit transport of the cation in the substrate. X-ray diffraction analysis shows that the Y-Cr-coated alloy foam mainly consists of Cr, (Fe, Ni) and (Ni, Cr) phases in the surface layer. The Ce-Cr-coated alloy foam is mainly composed of Cr and (Ni, Cr) phases. Furthermore, the addition of Y and Ce clearly lead to an improvement in the oxidation resistance of the coated alloy foams in the temperature range of 900-1000 °C. The addition of Ce is especially effective in enhancing the diffusion of chromium to the oxidation front, thus, accelerating the formation of a Cr2O3 layer.

  11. Designing components for water treatment units for radioactive waste liquids in a modern NiCrMo-alloy

    SciTech Connect

    Kirchheiner, R.; Solomon, R.; Jahudka, M.; Ettere, J.

    1998-12-31

    Since the late 60`s, a uranium mine in eastern Europe (DIAMO) has used the In-Situ Leaching (ISL) method along with traditional underground mining. Over the years the acid solutions and leaching products have spread into a large volume of underground water and it is necessary to clean up this contaminated water. The make-up-process for the water purification requires highly alloyed materials for the equipment. In 1994 the operator awarded a US company a contract to clean up the acidic solutions and to produce a pure salt product using a system of evaporators, crystallizers and recrystallizers. In an attempt to simulate real plant conditions, test procedures were set up with the original mother liquor and its concentrate solution to qualify the optimum alloy for the given components. A NiCrMo-alloy (Alloy 31) was specified as part of the evaporator body on the Basis of corrosion and cost aspects. It has been reported that there is no visible appearance of corrosion on any part of equipment which has been fabricated from Alloy 31.

  12. The effects of sulfate reducing bacteria on stainless steel and Ni-Cr-Mo alloy weldments

    SciTech Connect

    Petersen, T.A.; Taylor, S.R.

    1995-10-01

    Previous research in this laboratory demonstrated a direct correlation between alloy composition and corrosion susceptibility of stainless steel and Ni-Cr-Mo alloy weldments exposed to lake water augmented with sulfate reducing bacteria (SRB). It was shown that lake water containing an active SRB population reduced the polarization resistance (R{sub p}) on all alloys studied including those with 9% Mo. In addition, preliminary evidence indicated that edge preparation and weld heat input were also important parameters in determining corrosion performance. This prior research, however, looked at ``doctored`` weldments in which the thermal oxide in the heat affected zone was removed. The objectives of the research presented here are to further confirm these observations using as-received welds. The materials examined (listed in increasing alloy content) are 1/4 inch thick plates of 316L, 317L, AL6XN (6% Mo), alloy 625 clad steel, alloy 625, and alloy 686. Materials were welded using the tungsten inert gas (TIG) process in an argon purged environment. In addition, 317L was welded in air to test oxide effects. All samples were prepared for welding by grinding to a V-edge, except the 625 clad steel samples which were prepared using a J-edge. Electrochemical performance of welded samples was monitored in four glass cells which could each allow exposure of 8 samples to the same environment. Two cells contained lake water inoculated with SRS, and two cells contained sterilized lake water. The open circuit potential (E{sub oc}) and R{sub p} was used to correlate corrosion susceptibility and bacterial activity with alloy composition and welding parameters.

  13. Atomic scale study of grain boundary segregation before carbide nucleation in Ni-Cr-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Li, Hui; Xia, Shuang; Liu, Wenqing; Liu, Tingguang; Zhou, Bangxin

    2013-08-01

    Three dimensional chemical information concerning grain boundary segregation before carbide nucleation was characterized by atom probe tomography in two Ni-Cr-Fe alloys which were aged at 500 °C for 0.5 h after homogenizing treatment. B, C and Si atoms segregation at grain boundary in Alloy 690 was observed. B, C, N and P atoms segregation at grain boundary in 304 austenitic stainless steel was observed. C atoms co-segregation with Cr atoms at the grain boundaries both in Alloy 690 and 304 austenitic stainless steel was found, and its effect on the carbide nucleation was discussed. The amount of each segregated element at grain boundaries in the two Ni-Cr-Fe alloys were analyzed quantitatively. Comparison of the grain boundary segregation features of the two Ni-Cr-Fe alloys were carried out based on the experimental results. The impurity and solute atoms segregate inhomogeneously in the same grain boundary both in 304 SS and Alloy 690. The grain boundary segregation tendencies (Sav) are B (11.8 ± 1.4) > P (5.4 ± 1.4) > N (4.7 ± 0.3) > C (3.7 ± 0.4) in 304 SS, and B (6.9 ± 0.9) > C (6.7 ± 0.4) > Si (1.5 ± 0.2) in Alloy 690. Cr atoms may co-segregate with C atoms at grain boundaries before carbide nucleation at the grain boundaries both in 304 SS and Alloy 690. Ni atoms generally deplete at grain boundary both in 304 SS and Alloy 690. The literature shows that the Ni atoms may co-segregate with P atoms at grain boundaries [28], but the P atoms segregation do not leads to Ni segregation in the current study. In the current study, Fe atoms may segregate or deplete at grain boundary in Alloy 690. But Fe atoms generally deplete at grain boundary in 304 SS. B atoms have the strongest grain boundary segregation tendency both in 304 SS and Alloy 690. The grain boundary segregation tendency and Gibbs free energy of B in 304 SS is higher than in Alloy 690. C atoms are easy to segregate at grain boundaries both in 304 SS and Alloy 690. The grain boundary segregation

  14. Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys

    NASA Astrophysics Data System (ADS)

    Briggs, Samuel A.; Barr, Christopher M.; Pakarinen, Janne; Mamivand, Mahmood; Hattar, Khalid; Morgan, Dane D.; Taheri, Mitra; Sridharan, Kumar

    2016-10-01

    Two binary Ni-Cr model alloys with 5 wt% Cr and 18 wt% Cr were irradiated using 2 MeV protons at 400 and 500 °C and 20 MeV Ni4+ ions at 500 °C to investigate microstructural evolution as a function of composition, irradiation temperature, and irradiating ion species. Transmission electron microscopy (TEM) was applied to study irradiation-induced void and faulted Frank loops microstructures. Irradiations at 500 °C were shown to generate decreased densities of larger defects, likely due to increased barriers to defect nucleation as compared to 400 °C irradiations. Heavy ion irradiation resulted in a larger density of smaller voids when compared to proton irradiations, indicating in-cascade clustering of point defects. Cluster dynamics simulations were in good agreement with the experimental findings, suggesting that increases in Cr content lead to an increase in interstitial binding energy, leading to higher densities of smaller dislocation loops in the Ni-18Cr alloy as compared to the Ni-5Cr alloy.

  15. Corrosion Behavior of Thermally Sprayed NiCrBSi Coating on 16MnR Low-Alloy Steel in KOH Solution

    NASA Astrophysics Data System (ADS)

    Zeng, Q.; Sun, J.; Emori, W.; Jiang, S. L.

    2016-05-01

    NiCrBSi coatings were selected as protective material and air plasma-sprayed on 16MnR low-alloy steel substrates. Corrosion behavior of 16MnR substrates and NiCrBSi coatings in KOH solution were evaluated by polarization resistance ( R p), potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion corrosion tests. Electrolytes were solutions with different KOH concentrations. NiCrBSi coating showed superior corrosion resistance in KOH solution compared with the 16MnR. Corrosion current density of 16MnR substrate was 1.7-13.0 times that of NiCrBSi coating in the given concentration of KOH solution. By contrast, R p of NiCrBSi coating was 1.2-8.0 times that of the substrate, indicating that the corrosion rate of NiCrBSi coating was much lower than that of 16MnR substrate. Capacitance and total impedance value of NiCrBSi coating were much higher than those of 16MnR substrate in the same condition. This result indicates that corrosion resistance of NiCrBSi coating was better than that of 16MnR substrate, in accordance with polarization results. NiCrBSi coatings provided good protection for 16MnR substrate in KOH solution. Corrosion products were mainly Ni/Fe/Cr oxides.

  16. Temperature Dependent Electrical Transport Properties of Ni-Cr and Co-Cr Binary Alloys

    SciTech Connect

    Thakore, B. Y.; Khambholja, S. G.; Bhatt, N. K.; Jani, A. R.; Suthar, P. H.; Gajjar, P. N.

    2011-12-12

    The temperature dependent electrical transport properties viz. electrical resistivity and thermal conductivity of Ni{sub 10}Cr{sub 90} and Co{sub 20}Cr{sub 80} alloys are computed at various temperatures. The electrical resistivity has been calculated according to Faber-Ziman model combined with Ashcroft-Langreth partial structure factors. In the present work, to include the ion-electron interaction, we have used a well tested local model potential. For exchange-correlation effects, five different forms of local field correction functions due to Hartree (H), Taylor (T), Ichimaru and Utsumi (IU), Farid et al (F) and Sarkar et al (S) are used. The present results due to S function are in good agreement with the experimental data as compared to results obtained using other four functions. The S functions satisfy compressibility sum rule in long wave length limit more accurately as compared to T, IU and F functions, which may be responsible for better agreement of results, obtained using S function. Also, present result confirms the validity of present approach in determining the transport properties of alloys like Ni-Cr and Co-Cr.

  17. Effects of recasting on the amount of corrosion products released from two Ni-Cr base metal alloys.

    PubMed

    Ozdemir, S; Arikan, A

    1998-12-01

    The corrosion products released from two recast Ni-Cr base metal alloys Wirolloy and Wiron 99 were investigated. Cast samples were placed in Meyer's modified Fusayama solution for 2 months and in 0.1M Lactic acid 0.1M NaCl solution for 7 days. The release of Ni, Cr and Mo ions from both alloys was measured by using a flame model Atomic Absorption Spectrophotometer. A Scanning Electron Microscope was used to evaluate the surface morphology of the samples before and after corrosion tests. Release of Ni and Cr from Wirolloy samples immersed in 0.1M Lactic acid 0.1M NaCl solution were much higher than those of Wiron 99. The number of recastings was found to have negligible effect on surface texture and on the amount of corrosion products released. PMID:10596615

  18. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  19. Stress release phenomena in chromia scales formed on NiCr-30 alloys: Influence of metallurgical parameters

    NASA Astrophysics Data System (ADS)

    Guerain, M.; Goudeau, P.; Grosseau-Poussard, J. L.

    2011-11-01

    Stress release phenomena are studied for α-Cr2O3 thermal oxide films grown on NiCr-30 alloys. The influence of specific metallurgical parameters, such as cooling rate and initial surface roughness, is investigated thanks to Raman spectroscopy. Systematic correlations are established between the residual stress level in the scales and the damage rate resulting from a delamination process by buckling. Different buckling morphologies are characterized mainly according to the cooling rate range.

  20. on the High-Temperature Performance of Ni-Based Welding Material NiCrFe-7

    NASA Astrophysics Data System (ADS)

    Mo, Wenlin; Lu, Shanping; Li, Dianzhong; Li, Yiyi

    2014-10-01

    The effects of M 23C6 ( M = Cr, Fe) on the high-temperature performance of the NiCrFe-7 welding rods and weld metals were studied by high-temperature tensile tests and microstructure analysis. M 23C6 at the grain boundaries (GBs) has a cube-on-cube coherence with one grain in the NiCrFe-7 weld metals, and the adjacent M 23C6 has the coherence relationship with the same grain. The grain with a coherent M 23C6 has a Cr-depletion region. The number and size of M 23C6 particles can be adjusted by heat treatment and alloying. There are two temperatures [ T E1: 923 K to 1083 K (650 °C to 810 °C) and T E2: 1143 K to 1203 K (870 °C to 930 °C)] at which the GBs and grains of the NiCrFe-7 welding rod have equal strength during the high-temperature tensile test. When the temperatures are between T E1 and T E2, the strength of the GBs is lower than that of the grains, and the tensile fractures are intergranular. When the temperatures are below T E1 or over T E2, the strength of the GBs is higher than that of the grains, and the tensile fractures are dimples. M 23C6 precipitates at the GBs, which deteriorates the ductility of the welding rods at temperature between T E1 and T E2. M 23C6 aggravates ductility-dip-cracking (DDC) in the weld metals. The addition of Nb and Ti can form MX ( M = Ti, Nb, X = C, N), fix C in grain, decrease the initial precipitation temperature of M 23C6, and mitigate the precipitation of M 23C6, which is helpful for minimizing DDC in the weld.

  1. Process development for Ni-Cr-ThO2 and Ni-Cr-Al-ThO2 sheet

    NASA Technical Reports Server (NTRS)

    Cook, R. C.; Norris, L. F.

    1973-01-01

    A process was developed for the production of thin gauge Ni-Cr-ThO2 sheet. The process was based on the elevated temperature deposition of chromium onto a wrought Ni-2%ThO2 sheet and subsequent high temperature diffusion heat treatments to minimize chromium concentration gradients within the sheet. The mechanical properties of the alloy were found to be critically dependent on those of the Ni-2%ThO2 sheet. A similar process for the production of a Ni-Cr-Al-ThO2 alloy having improved oxidation resistance was investigated but the non-reproducible deposition of aluminum from duplex Cr/Al packs precluded successful scale-up. The mechanical properties of the Ni-Cr-Al-ThO2 alloys were generally equivalent to the best Ni-Cr-ThO2 alloy produced in the programme.

  2. In-plane aligned YBCO film on textured YSZ buffer layer deposited on NiCr alloy tape by laser ablation with only O+ ion beam assistance

    NASA Astrophysics Data System (ADS)

    Tang Huang, Xin; Qing Wang, You; Wang, Qiu Liang; Chen, Qing Ming

    2000-02-01

    High critical current density and in-plane aligned YBa2 Cu3 O7-x (YBCO) film on a textured yttria-stabilized zirconia (YSZ) buffer layer deposited on NiCr alloy (Hastelloy c-275) tape by laser ablation with only O+ ion beam assistance was fabricated. The values of the x-ray phi-scan full width at half-maximum (FWHM) for YSZ(202) and YBCO(103) are 18° and 11°, respectively. The critical current density of YBCO film is 7.9 × 105 A cm-2 at liquid nitrogen temperature and zero field, and its critical temperature is 90 K.

  3. Preparation of high emissivity NiCr2O4 powders with a spinel structure by spray drying

    NASA Astrophysics Data System (ADS)

    Cheng, Xu-Dong; Min, Jie; Zhu, Zhen-Qi; Ye, Wei-Ping

    2012-02-01

    Spray-drying was used to produce the high emissivity NiCr2O4 powders with a spinel structure. Preliminary investigations focused on fabricating the high emissivity powders for infrared radiation coatings and finding the relationship between microstructure and emissivity. The NiCr2O4 powders were characterized for composition, microstructure, and infrared emissivity by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared radiant instrument, and Fourier transform infrared spectra (FT-IR). Thermogravimetry and differential thermal analysis show that the appropriate baking temperature for NiCr2O4 powder preparation is about 1200°C. The emissivity measurement and FT-IR spectra show that, because of the special spinel structure, the NiCr2O4 powders have a high emissivity about 0.91. Spray-drying is a suitable method to produce the high emissivity ceramic powders.

  4. A Comparison between Shear Bond Strength of VMK Master Porcelain with Three Base-metal Alloys (Ni-cr-T3, VeraBond, Super Cast) and One Noble Alloy (X-33) in Metal-ceramic Restorations

    PubMed Central

    Ahmadzadeh, A; Neshati, A; Mousavi, N; Epakchi, S; Dabaghi Tabriz, F; Sarbazi, AH

    2013-01-01

    Statement of Problem: The increase in the use of metal-ceramic restorations and a high prevalence of porcelain chipping entails introducing an alloy which is more compatible with porcelain and causes a stronger bond between the two. This study is to compare shear bond strength of three base-metal alloys and one noble alloy with the commonly used VMK Master Porcelain. Materials and Method: Three different groups of base-metal alloys (Ni-cr-T3, Super Cast, and VeraBond) and one group of noble alloy (X-33) were selected. Each group consisted of 15 alloy samples. All groups went through the casting process and change from wax pattern into metal disks. The VMK Master Porcelain was then fired on each group. All the specimens were put in the UTM; a shear force was loaded until a fracture occurred and the fracture force was consequently recorded. The data were analyzed by SPSS Version 16 and One-Way ANOVA was run to compare the shear strength between the groups. Furthermore, the groups were compared two-by-two by adopting Tukey test. Results: The findings of this study revealed shear bond strength of Ni-Cr-T3 alloy was higher than the three other alloys (94 MPa or 330 N). Super Cast alloy had the second greatest shear bond strength (80. 87Mpa or 283.87 N). Both VeraBond (69.66 MPa or 245 N) and x-33 alloys (66.53 MPa or 234 N) took the third place. Conclusion: Ni-Cr-T3 with VMK Master Porcelain has the greatest shear bond strength. Therefore, employment of this low-cost alloy is recommended in metal-ceramic restorations. PMID:24724144

  5. Thoria stability in TD-NiCr at high temperatures in the presence of chromium in solution.

    NASA Technical Reports Server (NTRS)

    Dalal, H.; Grant, N. J.

    1973-01-01

    Study of the influence of chromium in solid solution on the coarsening of ThO2 in TD-NiCr. Comparisons were made of ThO2 coarsening in chromium-free TD-Ni and in TD-NiCr, which is known to be low in Cr2O3 as a contaminant. The results of these comparisons indicate that the presence of 20% Cr in solid solution in a nickel-base alloy does not lead to a more rapid coarsening of ThO2 at temperatures of at least 2462 deg F (1350 deg C).

  6. Surface Remelting Treated High Velocity arc Sprayed FeNiCrAlBRE Coating by Tungsten Inert Gas

    NASA Astrophysics Data System (ADS)

    Tian, H. L.; Wei, S. C.; Chen, Y. X.; Tong, H.; Liu, Y.; Xu, B. S.

    This study aims at evaluating the effect of the TIG (Tungsten Inert Gas) remelting treatment of self-fluxing FeNiCrAlBRE alloy coatings, formed by means of high velocity arc spraying on steel surfaces. The treated and untreated samples were subjected to comparative structural examination using scanning electron microscopes. For quantitative investigation of porosity, a computer image analyser was used. Additionally, the wear resistance and wear volume loss of the worn tracks before and after the remelting process were contrastively evaluated in details. After the sprayed coatings were treated by TIG remelting in a proper conditions, the microstructure examination of the remelted coatings showed that a change of the microstructure from lamellar to cellular structure. Also, the results show that the remelting process decrease the coating defects and make the coating more wearable.

  7. [Study on grinding of base metal alloys. 4. Constant pressure grinding of a Ni-Cr alloy with vitrified wheels].

    PubMed

    Miyakawa, O; Watanabe, K; Okawa, S; Nakano, S; Shiokawa, N; Kobayashi, M; Tamura, H

    1989-09-01

    The grinding techniques and the constituent element of vitrified wheels suitable for a 13% Cr-Ni dental casting alloy were determined. The lever-type grinding test machine used in the previous study was modified so that a work might be ground under a constant pressure as it moved reciprocally within a short stroke along the tangential direction of a rotating wheel. The grinding performance of two marketed wheels and eleven experimental wheels with different constituent elements was tested. Abrasive grains on the working surface of alumina wheel wore extremely due to abrasive attrition. Carborundum wheels proved to be more suitable for grinding of the comparatively soft Ni-Cr alloy. Not only depressing a wheel against a work but also moving the wheel over it with heavier pressure should be desired for the maximal grinding efficiency. The experimental carborundum wheels exhibited much the same performance as the marketed carborundum wheel under a less grinding pressure that 100 gf. Only the wheel of grain size #150 bonded with 19% binder wore obviously under the pressure of 150 or 200 gf and provided about two times the performance of the marketed wheel.

  8. Thermal stability and microstructural changes of some Ni-Cr-Mo alloys as detected by corrosion testing

    SciTech Connect

    Koehler, M.; Agarwal, D.C.

    1998-12-31

    Wrought Ni-Cr-Mo alloys of the C-family show a sensitivity to intercrystalline attack especially after exposure in the temperature range of 650 C to 950 C. Nevertheless, microstructural changes due to precipitation of intermetallic phases can occur up to a temperature level of 1050 C and this can affect the localized corrosion resistance. Thermal stability of wrought Alloy C-276 is a lot lower in comparison to Alloy 59. Sensitized at 870 C for only 1 hour, Alloy C-276 fails in the ASTM-G 28 B test due to rapid intercrystalline penetration and pitting whereas Alloy 59 can be aged up to 3 hours without any increase of the corrosion rate or any pitting attack. The same ranking applies during polythermal cooling cycles. Alloy C-276 requires a cooling rate of 150 C/min. between the solution annealing temperature and 600 C to avoid any sensitization whereas for Alloy 59 a relative slow cooling rate of 25 C/min. is acceptable. The critical pitting temperature of Alloy 59 when tested in the Green Death solution had been determined to be > 125 C. The temperature was not lowered during aging up to 3 hours at 1050 C or if a cooling speed of 25 C/min. was applied. However, cooling rates of 50 C/min. or less reduced the critical pitting temperature of Alloy C-276 from 115 C in the solution annealed and water quenched condition to only 105 C.

  9. Numerical simulation of temperature distribution and TiC growth kinetics for high power laser clad TiC/NiCrBSiC composite coatings

    NASA Astrophysics Data System (ADS)

    Lei, Yiwen; Sun, Ronglu; Tang, Ying; Niu, Wei

    2012-06-01

    A three dimensional model was proposed to simulate high power laser clad TiC/NiCrBSiC composite coatings on Ti6Al4V alloys. The temperature distribution, temperature curves on different nodes, three dimensional shape and size of TiC melting region, molten pool and heat affected zone (HAZ) of the substrate were obtained. To have a clear physical insight into the phase transformation and microstructure evolution in the coatings during laser cladding process, a theoretical kinetic analysis was performed to elucidate the nucleation, growth velocity, and size of TiC particles on the basis of simulated temperature curves of the molten pool. A good quality TiC/NiCrBSiC composite coating with low dilution rate and excellent metallurgical bond was fabricated under optimal processing parameters using powder mixture of TiC and NiCrBSiC as clad material and cuboid of Ti6Al4V alloys as substrate. To validate the reliability of the proposed model, the theoretical results were compared with the microstructure of the coatings. It shows that these theoretical results are in excellent agreement with the experiment cases.

  10. [Study on grinding of base metal alloys. 5. Constant pressure grinding of a Ni-Cr alloy with electro-deposited wheels].

    PubMed

    Miyakawa, O; Watanabe, K; Okawa, S; Nakano, S; Shiokawa, N; Kobayashi, M; Tamura, H

    1989-09-01

    The grinding techniques and electro-deposited wheels suitable for a 13% Cr-Ni dental casting alloy were determined. The lever-type grinding test machine modified in the previous study was used to investigate the grinding performance of experimental wheels of CBN- and diamond-particles. Depression of the diamond wheel against the work yielded unfavorable grinding results. Not only depression of the wheel against it but also moving the wheel over it with a heavier pressure is desired for higher grinding efficiency and its durability. Probably, the undurability of this wheel is associated with abrasive attrition due to oxidation or some chemical reaction with the work. The CBN wheel had not been suitable for the Co-Cr alloy tested in the third paper, but it exhibited very excellent performance for grinding of the Ni-Cr alloy, even without being moved over the work. Although being high in cost, the CBN wheel may pay for the very high performance and its durability.

  11. Thermally activated dislocation creep model for primary water stress corrosion cracking of NiCrFe alloys

    SciTech Connect

    Hall, M.M., Jr

    1995-12-31

    There is a growing awareness that awareness that environmentally assisted creep plays an important role in integranular stress corrosion cracking (IGSCC) of NiCrFe alloys in the primary coolant water environment of a pressurized water reactor (PWR). The expected creep mechanism is the thermally activated glide of dislocations. This mode of deformation is favored by the relatively low temperature of PWR operation combined with the large residual stresses that are most often identified as responsible for the SCC failure of plant components. Stress corrosion crack growth rate (CGR) equations that properly reflect the influence of this mechanism of crack tip deformation are required for accurate component life predictions. A phenomenological IGSCC-CGR model, which is based on an apriori assumption that the IGSCC-CGR is controlled by a low temperature dislocation creep mechanism, is developed in this report. Obstacles to dislocation creep include solute atoms such as carbon, which increase the lattice friction force, and forest dislocations, which can be introduced by cold prestrain. Dislocation creep also may be environmentally assisted due to hydrogen absorption at the crack tip. The IGSCC-CGR model developed here is based on an assumption that crack growth occurs by repeated fracture events occurring within an advancing crack-tip creep-fracture zone. Thermal activation parameters for stress corrosion cracking are obtained by fitting the CGR model to IGSCC-CGR data obtained on NiCrFe alloys, Alloy X-750 and Alloy 600. These IGSCC-CGR activation parameters are compared to activation parameters obtained from creep and stress relaxation tests. Recently reported CGR data, which exhibit an activation energy that depends on yield stress and the applied stress intensity factor, are used to benchmark the model. Finally, the effects of matrix carbon concentration, grain boundary carbides and absorbed hydrogen concentration are discussed within context of the model.

  12. Interdiffusion in Ni-rich, Ni-Cr-Al alloys at 1100 and 1200 C. I - Diffusion paths and microstructures. II - Diffusion coefficients and predicted concentration profiles

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    Interdiffusion in Ni-rich Ni-Cr-Al alloys is investigated experimentally after annealing at 1100 and 1200 C using gamma/gamma, gamma/gamma+beta, gamma/gamma+gamma prime, and gamma/gamma+alpha diffusion couples. The amount and location of Kirkendall porosity suggests that Al diffuses more rapidly than Cr which diffuses more rapidly than Ni in the gamma phase of Ni-Cr-Al alloys. The location and extent of maxima and minima in the concentration profiles of the diffusion couples indicate that both cross-term diffusion coefficients are positive. Measurements are also presented of the ternary interdiffusion coefficients of the gamma phase in the Ni-Cr-Al system. It is shown that the interdiffusion coefficients can be accurately predicted by using a ternary finite-difference interdiffusion model.

  13. Laser cladding of Ni-Cr-Al-Hf on inconel 718 for improved high-temperature oxidation resistance

    SciTech Connect

    Singh, J.; Nagarathnam, K.; Mazumder, J.

    1987-08-03

    In-situ Ni-Cr-Al-Hf alloy was developed by laser surface cladding with a mixed-powder feed for improved high-temperature oxidation resistance. Oxidation-resistant materials for operation at elevated temperatures must satisfy two requirements: diffusion through the oxide scale must occur at the lowest possible rate, and the oxide scale must resist spallation. Formation of an Al/sub 2/O/sub 3/ protective scale fulfills the former requirement but its adherence is poor. A reactive metal such as Hf is added to improve adhesion. A 10-kW CO/sub 2/ laser was used for laser cladding. Optical, SEM and STEM microanalysis techniques were employed to characterize the different phases produced during the cladding process. Microstructural studies showed a high degree of grain refinement, increased solid solubility of Hf in the matrix and the formation of Hf-rich precipitates. A thermogravimetric analysis was carried out to determine the oxidation properties of these clad alloys with an extended solid solution of Hf. Considerable improvement over the base metal was observed. This paper discusses microstructural development in this laser-clad alloy and its effect on oxidation.

  14. Characterization of air-formed surface oxide film on a Co-Ni-Cr-Mo alloy (MP35N) and its change in Hanks' solution

    NASA Astrophysics Data System (ADS)

    Nagai, Akiko; Tsutsumi, Yusuke; Suzuki, Yuta; Katayama, Keiichi; Hanawa, Takao; Yamashita, Kimihiro

    2012-05-01

    The air-formed surface oxide films used for stents were characterized to determine their composition and chemical state on a Co-Ni-Cr-Mo alloy. The change of the films in Hanks' solution was used to estimate the reconstruction of the film in the human body. Angle-resolved X-ray photoelectron spectroscopy was used to characterize the composition of the film and substrate, as well as the film's thickness. The surface oxide film on the Co-Ni-Cr-Mo alloy (when mechanically polished) consists of oxide species of cobalt, nickel, chromium, and molybdenum, contains a large amount of OH-, and has a thickness of approximately 2.5 nm. Cations exist in the oxide as Co2+, Ni2+, Cr3+, Mo4+, Mo5+, and Mo6+. Chromium is enriched and cobalt and nickel are depleted in the oxide; however, nickel is enriched and cobalt is depleted in the substrate alloy just under the surface oxide film. Concentration of chromium was low and that of nickel was high at small take-off angles. This indicates that distribution of chromium is greater in the inner layer, but nickel is distributed more in the outer layer of the surface oxide film. During immersion in Hanks' solution, cobalt and nickel dissolved, and the film composition changed to mostly chromium oxide (Cr3+), along with small amounts of cobalt, nickel, and molybdenum oxides, and calcium phosphate containing magnesium, potassium, and carbonate. After immersion in Hanks' solution, the thickness of the surface layer containing calcium phosphate increased to more than 4 nm, while the amount of OH- increased. The amount of cobalt and nickel in the surface oxide film and in the substrate alloy just below the oxide decreased during immersion.

  15. The Effect of Manganese Additions on the Reactive Evaporation of Chromium in Ni-Cr Alloys

    SciTech Connect

    Holcomb, Gordon R.; Alman, David E.

    2004-10-20

    Chromium is used as an alloy addition in stainless steels and nickel-chromium alloys to form protective chromium oxide scales. Chromium oxide undergoes reactive evaporation in high temperature exposures in the presence of oxygen and/or water vapor. The deposition of gaseous chromium species onto solid oxide fuel cell electrodes can reduce the efficiency of the fuel cell. Manganese additions to the alloy can reduce the activity of chromium in the oxide, either from solid solution replacement of chromium with manganese (at low levels of manganese) or from the formation of manganese-chromium spinels (at high levels of manganese). This reduction in chromium activity leads to a predicted reduction in chromium evaporation by as much as a factor of 35 at 800 C and 55 at 700 C. The results of evaporation loss measurements on nickel-chromium-manganese alloys are compared with the predicted reduction. Quantifying the effects of manganese additions on chromium evaporation should aid alloy development of metallic interconnects and balance-of-plant alloys.

  16. Effects of helium injection mode on void formation in Fe-Ni-Cr alloys

    NASA Astrophysics Data System (ADS)

    Kimoto, T.; Lee, E. H.; Mansur, L. K.

    1988-09-01

    The effect of the helium injection mode on void formation during ion irradiation of the pure solution-annealing alloys Fe-15Ni-7Cr, Fe-35Ni-7Cr, Fe-45Ni-7Cr, Fe-10Ni-13Cr, Fe-40Ni-13Cr, Fe-45Ni-15Cr was examined. Ion irradiation was carried out with 4 MeV Ni ions at 948 K to doses of 30 to 100 dpa with: (1) no helium injection, (2) simultaneous helium injection and (3) helium preinjection and aging. Swelling variation with helium injection differed among the 7Cr alloys and 13-15Cr alloys. Only the simultaneous helium injection mode produced a bimodal cavity size distribution in the high Ni alloys. The critical radius, as estimated from the cavity size distributions appears to have increased with increasing dose, but no clear variation of the critical radius with composition was observed. Helium preinjection and one-hour aging at 948 K formed helium bubbles along the residual dislocations, while subsequent Ni irradiation caused void formation along the dislocation lines. The calculated helium concentration deduced from observable helium bubbles was low compared with the injected helium concentration in the alloys containing higher Ni and lower Cr.

  17. Cyclic creep and fatigue of TD-NiCr (thoria-dispersion-strengthened nickel-chromium), TD-Ni, and NiCr sheet at 1200 C

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.; Spera, D. A.; Klima, S. J.

    1972-01-01

    The resistance of thin TD-NiCr sheet to cyclic deformation was compared with that of TD-Ni and a conventional nickel-chromium alloy. Strains were determined by a calibration technique which combines room-temperature strain gage and deflection measurements with high-temperature deflection measurements. Analyses of the cyclic tests using measured tensile and creep-rupture data indicated that the TD-NiCr and NiCr alloy specimens failed by a cyclic creep mechanism. The TD-Ni specimens, on the other hand, failed by a fatigue mechanism.

  18. High Temperature Erosive Wear Study of NiCrFeSiB Flame Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Sharma, S.

    2012-04-01

    In the present work erosive wear behavior of NiCrFeSiB coating deposited by flame spraying process was studied. The microstructure, porosity and hardness of the coatings have been evaluated. The high temperature (150, 300 and 450 °C) erosive wear behavior of these coatings was studied under 30, 60 and 90° impact angles against 30, 45 and 60 m/s velocity. The erosive wear was found to increase with the increase in velocity of the erodent and decrease with the increase of impact angle. The erosive wear resistance of the coating is higher than the substrate. The erosive wear of the coating was 4-5 times lower than the substrate. Scanning Electron Microscopy (SEM) analysis was carried out to determine the material removal mechanisms. The ductile fracture and platelets were revealed as the material removal mechanisms in these coatings.

  19. A mechanism of swelling suppression in phosphorous-modified Fe-Ni-Cr alloys*1

    NASA Astrophysics Data System (ADS)

    Lee, E. H.; Mansur, L. K.

    1986-11-01

    Five simple alloys were ion irradiated at 948 K in an experiment designed to investigate the mechanism of swelling suppression associated wtih phosphorous additions. One of the alloys was the simple ternary Fe-15Ni-13Cr, another had 0.05% P added and the other three had further additions of the phosphide precipitate-forming elements Ti and/or Si. Ion irradiations were carried out with heavy ions only (Ni or Fe) or with heavy ions followed by dual heavy ions and helium. The ternary with and without P swelled readily early in dose with or without helium. The other three alloys only showed swelling in the presence of helium and exhibited a long delay in dose prior to the onset of swelling. These displayed fine distributions of Fe 2P type phosphide precipitates enhanced by irradiation. The phosphide particles gave rise to very high concentrations of stable helium filled cavities at the precipitate matrix interfaces. The results were analyzed in terms of the theory of cavity swelling. The accumulation of the critical number of gas atoms in an individual cavity is required in the theory for point defect driven swelling to begin. It is concluded that the primary mechanism leading to swelling suppression is therefore the dilution of injected helium over a very large number of cavities. It is suggested that this mechanism may offer a key for alloy design for swelling resistance in high helium environments.

  20. Hot corrosion of Co-Cr, Co-Cr-Al, and Ni-Cr alloys in the temperature range of 700-750 deg C

    NASA Technical Reports Server (NTRS)

    Chiang, K. T.; Meier, G. H.

    1980-01-01

    The effect of SO3 pressure in the gas phase on the Na2SO4 induced hot corrosion of Co-Cr, Ni-Cr, and Co-Cr-Al alloys was studied in the temperature range 700 to 750 C. The degradation of the Co-Cr and Ni-Cr alloys was found to be associated with the formation of liquid mixed sulfates (CoSO4-Na2SO4 or NiSO4-Na2SO4) which provided a selective dissolution of the Co or Ni and a subsequent sulfidation oxidation mode of attack which prevented the maintenance of a protective Cr2O3 film. A clear mechanism was not developed for the degradation of Co-Cr-Al alloys. A pitting corrosion morphology was induced by a number of different mechanisms.

  1. Amorphous structure and properties in laser-clad Ni-Cr-Al coating on Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Liang, Gongying; Wong, T. T.; Su, J. Y.; Woo, C. H.

    1999-09-01

    A Ni-Cr-Al coating was clad by a 5 kW CO2 laser with different laser power on Al-Si alloy. Using transmission electron microscopy, a mixing microstructure containing Ni- based amorphous structures was observed in the laser clad zones. As the uniformity of chemical composition and temperature is poor in the laser cladding, the amorphous structure with some Ni3Al crystals coexisted in the cladding. According to the morphologies of Ni-based amorphous structures, the amorphous structure existed not only in the net-like boundaries surrounding the granular structure but also in the granular structure. The microhardness of the mixture amorphous structure is between HV 600 - 800, which is lower than that of crystal phases in the coating. A differential thermal analysis showed that Ni- based amorphous structure exhibits a higher initial crystallizing temperature (about 588 degree(s)C), which is slightly higher than that of the eutectic temperature of Al- Si alloy. The wear experimental results showed that some amorphous structure exist in the laser cladding can reduce the peeling of the granular phases from matrix, and improve the its wear resistance.

  2. Reduced Pressure Electron Beam Welding Evaluation Activities on a Ni-Cr-Mo Alloy for Nuclear Waste Packages

    SciTech Connect

    Wong, F; Punshon, C; Dorsch, T; Fielding, P; Richard, D; Yang, N; Hill, M; DeWald, A; Rebak, R; Day, S; Wong, L; Torres, S; McGregor, M; Hackel, L; Chen, H-L; Rankin, J

    2003-09-11

    The current waste package design for the proposed repository at Yucca Mountain Nevada, USA, employs gas tungsten arc welding (GTAW) in fabricating the waste packages. While GTAW is widely used in industry for many applications, it requires multiple weld passes. By comparison, single-pass welding methods inherently use lower heat input than multi-pass welding methods which results in lower levels of weld distortion and also narrower regions of residual stresses at the weld TWI Ltd. has developed a Reduced Pressure Electron Beam (RPEB) welding process which allows EB welding in a reduced pressure environment ({le} 1 mbar). As it is a single-pass welding technique, use of RPEB welding could (1) achieve a comparable or better materials performance and (2) lead to potential cost savings in the waste package manufacturing as compared to GTAW. Results will be presented on the initial evaluation of the RPEB welding on a Ni-Cr-Mo alloy (a candidate alloy for the Yucca Mountain waste packages) in the areas of (a) design and manufacturing simplifications, (b) material performance and (c) weld reliability.

  3. Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application

    NASA Astrophysics Data System (ADS)

    Kumar, Dipak; Pandey, K. N.; Das, Dipak Kumar

    2016-08-01

    In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying (APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and atomic force microscopy (AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited CoNiCrAlY bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ'-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in CoNiCrAlY bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.

  4. Fractal study of Ni Cr Mo alloy for dental applications: effect of beryllium

    NASA Astrophysics Data System (ADS)

    Eftekhari, Ali

    2003-12-01

    Different Ni-based alloys with various compositions were prepared by varying the amounts of beryllium. Effect of the amount of beryllium added to the alloy on its corrosion in an electrolyte solution of artificial saliva was investigated. Fractal dimension was used as a quantitative factor for surface analysis of the alloys before and after storage in the artificial salvia. The fractal dimensions of the electrode surfaces were determined by means of the most reliable method in this context viz. time dependency of the diffusion-limited current for a system involving "diffusion towards electrode surface". The results showed that increase of the beryllium amount in the alloy composition significantly increases the alloy corrosion. It is accompanied by increase of the fractal dimension and roughness of the electrode surface, whereas a smooth and shiny surface is required for dentures. From the methodology point of view, the approach utilized for fractal analysis of the alloy surfaces (Au-masking of metallic surfaces) is a novel and efficient method for study of denture surfaces. Generally, this approach is of interest for corrosion studies of different metals and alloys, particularly where changes in surface structure have a significant importance.

  5. Observation of changes in the metallurgical characteristics of Ni-Cr alloys using Nd:YAG laser welding

    PubMed Central

    Choi, SM

    2014-01-01

    This study aimed to determine the effect of hardness change according to penetration depth in the laser fusing zone and observed the correlation of the microstructure as an Nd:YAG laser was irradiated to Ni-Cr alloy for dental use by setting the spot diameter size to various conditions. In all groups, the hardness depth profiles in the laser fusing zone and heat-affected zone (HAZ) had larger values than those of the base metal. In addition, the hardness values in places beyond the fusing zone and the HAZ were measured as being quantitatively lower. The observation result of the diffusion of the constituent elements and microstructure using field emission scanning electron microscopy, energy-dispersive spectroscopy, and electron probe microanalyzer showed that the fusing zone revealed a much finer dendritic form than the base metal due to the self-quenching effect after welding, while no change in constituent elements was found although some evaporation of the main elements was observed. In addition, Mo- and Si-combined intermetallic compounds were formed on the interdendritic area. Through this study, the laser fusing zone had better hardenability due to the intermetallic compound and grain refinement effect. PMID:25342985

  6. Modeling of Crevice Corrosion Stability of a NiCrMo Alloy and Stainless Steel

    SciTech Connect

    F.J. Presuel-Moreno; F. Bocher; J.R. Scully; R.G. Kelly

    2006-05-19

    Damage of structural significance from crevice corrosion of corrosion resistant alloys requires that at least a portion of the creviced area remain active over a sufficiently long period. Stifling results shen the aggressive chemistry required inside the crevice to keep the material depassivated, i.e., actively corroding, cannot be maintained. This loss of critical chemistry occurs when the rate of mass transport out of the crevice exceeds the rate of dissolution and subsequent hydrolysis of metal ions inside the crevice. For the treatment considered here, the mass transport conditions are constant for a given geometry and potential. What then controls the stability of the internal chemistry is the interaction between the electrochemical kinetics at the interface and the crevice chemistry composition. This work focuses on the parameters that control the stability of crevice corrosion by modeling the evolution of the chemical and electrochemical conditions within a crevice open only at one end (e.g. the mouth) in which the entire crevice is initially filled with the Critical Chemistry Solution (CCS) or filled with chemistries slightly less or more aggressive than the CCS. The crevice mouth is in contact with a weak acid solution (pH 3) that provides the boundary conditions at the crevice mouth. The potential at the mouth was held constant at +0.1 V{sub sce} in most instances with selected cases held at 0.0 V{sub sce}. The material selected was Ni-22Cr-6Mo alloy. The electrochemical kinetics at the pH values of interest have been recently characterized via potentiodynamic polarization. Figure 1 shows the polarization curves for Ni-22Cr-6Mo samples tested at room temperature in various HCl solutions. These data were used in all calculations. That is as the pH changed, a new polarization curve was applied to the position in the crevice. E, pH was calculated at each position and from this data, current at each position was determined. The effects of the crevice gap and

  7. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Nasrallah, M.; Douglass, D. L.

    1974-01-01

    The effect of quaternary additions of 0.5% Y, 0.5 and 1.0% Th to a base alloy of Ni-10CR-5Al on the oxidation behavior and mechanism was studied during oxidation in air over the range of 1000 to 1200 C. The presence of yttrium decreased the oxidation kinetics slightly, whereas, the addition of thorium caused a slight increase. Oxide scale adherence was markedly improved by the addition of the quaternary elements. Although a number of oxides formed on yttrium containing alloys, quantitative X-ray diffraction clearly showed that the rate-controlling step was the diffusion of aluminum through short circuit paths in a thin layer of alumina that formed parabolically with time. Although the scale adherence of the yttrium containing alloy was considerably better than the base alloys, spalling did occur that was attributed to the formation of the voluminous YAG particles which grew in a mushroom-like manner, lifting the protective scale off the subrate locally. The YAG particles formed primarily at grain boundaries in the substrate in which the yttrium originally existed as YNi9.

  8. Alloy 2100 GT: A new Ta-fortified Ni-Cr-Al-alloy for land based gas turbines

    SciTech Connect

    Brill, U.; Agarwal, D.C.

    1999-11-01

    Alloy 2100 GT has been developed for use in the combustors of gas turbines. The improved high-temperature properties of the alloy should allow the metal temperature of the combustion chamber to be increased, which would provide the opportunity of increasing the efficiency, lowering emissions, and decreasing fuel consumption. This alloy is a cobalt, tungsten, and molybdenum-free Ni-base superalloy. It contains as major alloying elements 25 wt.% chromium, 8 wt.% tantalum, 3 wt.% aluminium, 0.3 wt.% carbon and 0.1 wt.% yttrium. High-temperature strength is achieved by solid solution strengthening by tantalum, carbide hardening due to the formation of primary precipitated tantalum carbides and {gamma}{prime}-precipitation hardening by aluminium and tantalum. In spite of the small grain size creep rupture strength and stress to produce 0.1 % creep is significantly increased in comparison to superalloys being in use today. Superior oxidation resistance up to 1200 C and corrosion behavior under deposits of sulfates up to 850 C is given by the formation of a very thin and tightly adherent alumina scale due to an aluminium content of approximately 3.0 wt.%, which is remarkably high for a wrought alloy, and additions of yttrium to improve spallation resistance under cycling conditions. Welding can easily be accomplished. The matching filler metal is recommended because it provides mechanical strength and oxidation resistance similar to the parent metal.

  9. The effect of zirconium on the cyclic oxidation of NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Khan, A. S.; Lowell, C. E.

    1981-01-01

    This paper examines results with cyclic oxidation tests of Ni(9-20) Cr(15-30) Al-(x)Zr alloys carried out at 1100 C and 1200 C in static air. The concentration of zirconium varies from 0 to 0.63 atomic percent. Significant aluminum penetration is found in metallographic and electron microscopic examination of oxidized surfaces. Small amounts of zirconium lead to minimal penetration, and with increased zirconium content pronounced oxide penetration is observed.

  10. Optimization of an oxide dispersion strengthened Ni-Cr-Al alloy for gas turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Klarstrom, D. L.; Grierson, R.

    1975-01-01

    The investigation was carried out to determine the optimum alloy within the Ni-16Cr-Al-Y2O3 system for use as a vane material in advanced aircraft gas turbine engines. Six alloys containing nominally 4%, 5% and 6% Al with Y2O3 levels of 0.8% and 1.2% were prepared by mechanical attrition. Six small-scale, rectangular extrusions were produced from each powder lot for property evaluation. The approximate temperatures for incipient melting were found to be 1658 K (2525 F), 1644 K (2500 F) and 1630 K (2475 F) for the 4%, 5% and 6% aluminum levels, respectively. With the exception of longitudinal crystallographic texture, the eight extrusions selected for extensive evaluation either exceeded or were close to mechanical property goals. Major differences between the alloys became apparent during dynamic oxidation testing, and in particular during the 1366 K (2000 F)/500 hour Mach 1 tests carried out by NASA-Lewis. An aluminum level of 4.75% was subsequently judged to be optimum based on considerations of dynamic oxidation resistance, susceptibility to thermal fatigue cracking and melting point.

  11. Cryo-quenched Fe-Ni-Cr alloy single crystals: A new decorative steel

    DOE PAGES

    Boatner, Lynn A.; Kolopus, James A.; Lavrik, Nicolay V.; Phani, P. Sudharshan

    2016-08-31

    In this paper, a decorative steel is described that is formed by a process that is unlike that of the fabrication methods utilized in making the original Damascus steels over 2000 years ago. The decorative aspect of the steel arises from a three-dimensional surface pattern that results from cryogenically quenching polished austenitic alloy single crystals into the martensitic phase that is present below 190 K. No forging operations are involved – the mechanism is entirely based on the metallurgical phase properties of the ternary alloy. The symmetry of the decorative pattern is determined and controlled by the crystallographic orientation andmore » symmetry of the 70%Fe,15%Ni,15%Cr alloy single crystals. Finally, in addition to using “cuts” made along principal crystallographic surface directions, an effectively infinite number of other random-orientation “cuts” can be utilized to produce decorative patterns where each pattern is unique after the austenitic-to-martensitic phase transformation.« less

  12. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding.

    PubMed

    Rocha, Rick; Pinheiro, Antônio Luiz Barbosa; Villaverde, Antonio Balbin

    2006-01-01

    Welding of metals and alloys is important to Dentistry for fabrication of dental prostheses. Several methods of soldering metals and alloys are currently used. The purpose of this study was to assess, using the flexural strength testing, the efficacy of two processes Nd:YAG laser and TIG (tungsten inert gas) for welding of pure Ti, Co-Cr and Ni-Cr alloys. Sixty cylindrical specimens were prepared (20 of each material), bisected and welded using different techniques. Four groups were formed (n=15). I: Nd:YAG laser welding; II- Nd:YAG laser welding using a filling material; III- TIG welding and IV (control): no welding (intact specimens). The specimens were tested in flexural strength and the results were analyzed statistically by one-way ANOVA. There was significant differences (p<0.001) among the non-welded materials, the Co-Cr alloy being the most resistant to deflection. Comparing the welding processes, significant differences (p<0.001) where found between TIG and laser welding and also between laser alone and laser plus filling material. In conclusion, TIG welding yielded higher flexural strength means than Nd:YAG laser welding for the tested Ti, Co-Cr and Ni-Cr alloys. PMID:16721459

  13. Hall Effect in Different Magnetic Phases of Fe-Rich γ-FeNiCr Alloys

    NASA Astrophysics Data System (ADS)

    Sinha, G.; Majudmar, A. K.

    In this paper we present the Hall effect data of Fe80-xNixCr20(14<=x<=30) alloys in four different magnetic phases within the fcc γ-phase. In the spin-glass (SG) phase (x=19) the nonlinear behaviour of the Hall resistivity (ρH) with field arises from the spin-orbit scattering. The temperature variation of ρH shows broad peaks around Tg for lower fields (<0.1 T) but they disappear at higher fields (1 T). We separate the ordinary (OHC) and the extra-ordinary (EHC) Hall coefficients in the ferromagnetic sample (x=30) and show their temperature variation. In the reentrant spin-glass (RSG) (x=26), again ρH shows a nonlinear variation with field. The temperature variation of ρH shows anomaly near both Tg and Tc. In the antiferromagnetic phase (AF) (x=14), ρH increases more or less linearly with field and its temperature variation shows broad peaks around TN for lower fields.

  14. Effect of Specimen Thickness on Microstructural Changes During Oxidation of the NiCrW Alloy 230 at 950–1050°C

    SciTech Connect

    Jalowicka, A.; Duan, R.; Huczkowski, P.; Chyrkin, A.; Grüner, D.; Pint, B. A.; Unocic, K. A.; Quadakkers, W. J.

    2015-09-25

    An accurate procedure for predicting oxidation-induced damage and lifetime limits is crucial for the reliable operation of high-temperature metallic components in practical applications. In order to develop a predictive oxidation lifetime model for Ni–Cr alloys, specimens of wrought NiCrW alloy 230 with different thicknesses were cyclically oxidized in air at 950–1050°C for up to 3000 h. After prolonged exposure, two types of carbides as well as a Cr-rich nitride (π-phase) precipitated in the γ-Ni matrix. In the case of oxidation-induced loss of Cr from the alloy resulted in the formation of subscale zones, which were free of the Cr-rich carbide and nitride but also of the Ni-W rich M6C. The width of the M6C-free zone was smaller than that free of the Cr-rich precipitates. Thermodynamic and diffusion calculations of the observed time- and temperature-dependent Cr depletion processes identified that back diffusion of C occurred which resulted in an increased volume fraction of M23C6 in the specimen core. Moreover, with increasing time and temperature, the amount of π-phase in the specimen core increased. The subscale depletion of the initially present Cr-nitrides and the formation of Cr-nitrides in the specimen center is believed to be related to a mechanism which is qualitatively similar to that described for the Cr carbide enrichment. However, with increasing time and decreasing specimen thickness, N uptake from the atmosphere becomes apparent. As a result, the precipitates present in the specimen center eventually consisted almost exclusively of nitrides.

  15. Effect of Specimen Thickness on Microstructural Changes During Oxidation of the NiCrW Alloy 230 at 950–1050°C

    DOE PAGES

    Jalowicka, A.; Duan, R.; Huczkowski, P.; Chyrkin, A.; Grüner, D.; Pint, B. A.; Unocic, K. A.; Quadakkers, W. J.

    2015-09-25

    An accurate procedure for predicting oxidation-induced damage and lifetime limits is crucial for the reliable operation of high-temperature metallic components in practical applications. In order to develop a predictive oxidation lifetime model for Ni–Cr alloys, specimens of wrought NiCrW alloy 230 with different thicknesses were cyclically oxidized in air at 950–1050°C for up to 3000 h. After prolonged exposure, two types of carbides as well as a Cr-rich nitride (π-phase) precipitated in the γ-Ni matrix. In the case of oxidation-induced loss of Cr from the alloy resulted in the formation of subscale zones, which were free of the Cr-rich carbidemore » and nitride but also of the Ni-W rich M6C. The width of the M6C-free zone was smaller than that free of the Cr-rich precipitates. Thermodynamic and diffusion calculations of the observed time- and temperature-dependent Cr depletion processes identified that back diffusion of C occurred which resulted in an increased volume fraction of M23C6 in the specimen core. Moreover, with increasing time and temperature, the amount of π-phase in the specimen core increased. The subscale depletion of the initially present Cr-nitrides and the formation of Cr-nitrides in the specimen center is believed to be related to a mechanism which is qualitatively similar to that described for the Cr carbide enrichment. However, with increasing time and decreasing specimen thickness, N uptake from the atmosphere becomes apparent. As a result, the precipitates present in the specimen center eventually consisted almost exclusively of nitrides.« less

  16. WC-Co and Cr3C2-NiCr Coatings in Low- and High-Stress Abrasive Conditions

    NASA Astrophysics Data System (ADS)

    Kašparová, Michaela; Zahálka, František; Houdková, Šárka

    2011-03-01

    The article deals with the evaluation of abrasive wear resistance and adhesive strength of thermally sprayed coatings. The main attention was paid to differences between low- and high-stress abrasive conditions of the measuring. Conclusions include the evaluation of specific properties of the WC-Co and the Cr3C2-NiCr High Velocity Oxygen Fuel coatings and the evaluation of the changes in the behavior of the abrasive media. Mainly, the relationship between the low- and high-stress abrasion conditions and the wear mechanism in the tested materials was described. For the wear test, the abrasive media of Al2O3 and SiO2 sands were chosen. During wear tests, the volume loss of the tested materials and the surface roughness of the wear tracks were measured. The wear tracks on the tested materials and abrasive sands' morphologies were observed using Scanning Electron Microscopy. It was found that high-stress abrasive conditions change the coatings' behavior very significantly, particularly that of the Cr3C2-NiCr coating. Adhesive-cohesive properties of the coatings and relationships among individual structure particles were evaluated using tensile testing. It was found that the weak bond strength among the individual splats, structure particles, and phases plays a role in the poor wear resistance of the coatings.

  17. Electrochemical corrosion behavior, Vickers microhardness, and microstructure of Co-Cr and Ni-Cr dental alloys

    NASA Astrophysics Data System (ADS)

    El-Bediwi, A.; Saad, M.; El-Fallal, A. A.; El-Helaly, T.

    Electrochemical corrosion behaviors, Vickers microhardness, microstructure, and electrical properties of Magnum H50 (Co=64.5%, Cr=29%, Mo=6.5% ) and Nikkeli-Kromi-Polttosekoitus (Ni=65.2%, Cr=22.5%, Mo=9.5%, X=2.8% Nb, Si, Fe, and Mn) dental alloys have been investigated. The corrosion potential for the Co64.5Cr29Mo6.5 alloy in HCl was higher than that of the Ni65.2Cr22.5Mo9.5X2.8 alloy. The corrosion rate with 0.5 M HCl for the Ni65.2Cr22.5Mo9.5X2.8 alloy was measured as being high and the corrosion resistance as being small as compared with the values for the Co64.5Cr29Mo6.5 alloy. Vickers hardness of the Co64.5Cr29Mo6.5 alloy was higher than that of the Ni65.2Cr22.5Mo9.5X2.8 alloy. Also Vickers hardness values of the used alloys were decreased by increasing indentation load. The thermal conductivity and minimum shear stress values of the used alloys are calculated.

  18. Effect of the environment and alloy composition on the electrochemical behavior of Ni-Cr-Mo Alloys

    SciTech Connect

    Hayes, J R; Szmodis, A W; Anderson, K L; Orme, C A

    2004-01-05

    Alloy 22 (UNS N06022) is the candidate material for the corrosion resistant, outer barrier of the Yucca Mountain nuclear waste containers. One of the potential corrosion degradation modes of the container is uniform or passive corrosion. Therefore it is of importance to understand the stability of the oxide film, which will control the passive corrosion rate of Alloy 22. Many variables such as temperature, composition and pH of the electrolyte, applied potential, and microstructure and composition of the base metal would determine the thickness and composition of the oxide film. The purpose of this research work was to use electrochemical and surface analysis techniques to explore the influence of solution pH and applied potential on the characteristics of the oxide film formed on Alloy 22 and two experimental alloys containing differing amounts of chromium (Cr) and molybdenum (Mo). Results confirm that bulk metal composition is fundamental to the passive behavior and potential breakdown of the studied alloys. In these preliminary results, welded and non-welded Alloy 22 did not show differences in their anodic behavior.

  19. Selective Internal Oxidation as a Mechanism for Intergranular Stress Corrosion Cracking of Ni-Cr-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Capell, Brent M.; Was, Gary S.

    2007-06-01

    The mechanism of selective internal oxidation (SIO) for intergranular stress corrosion cracking (IGSCC) of nickel-base alloys has been investigated through a series of experiments using high-purity alloys and a steam environment to control the formation of NiO on the surface. Five alloys (Ni-9Fe, Ni-5Cr, Ni-5Cr-9Fe, Ni-16Cr-9Fe, and Ni-30Cr-9Fe) were used to investigate oxidation and intergranular cracking behavior for hydrogen-to-water vapor partial pressure ratios (PPRs) between 0.001 and 0.9. The Ni-9Fe, Ni-5Cr, and Ni-5Cr-9Fe alloys formed a uniform Ni(OH)2 film at PPRs less than 0.09, and the higher chromium alloys formed chromium-rich oxide films over the entire PPR range studied. Corrosion coupon results show that grain boundary oxides extended for significant depths (>150 nm) below the sample surface for all but the highest Cr containing alloy. Constant extension rate tensile (CERT) test results showed that intergranular cracking varied with PPR and cracking was more pronounced at a PPR value where nonprotective Ni(OH)2 was able to form and a link between the nonprotective Ni(OH)2 film and the formation of grain boundary oxides is suggested. The observation of grain boundary oxides in stressed and unstressed samples as well as the influence of alloy content on IG cracking and oxidation support SIO as a mechanism for IGSCC.

  20. Hydrogen-Resistant Fe/Ni/Cr-Base Superalloy

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Chen, Po-Shou; Panda, Binayak

    1994-01-01

    Strong Fe/Ni/Cr-base hydrogen- and corrosion-resistant alloy developed. Superalloy exhibits high strength and exceptional resistance to embrittlement by hydrogen. Contains two-phase microstructure consisting of conductivity precipitated phase in conductivity matrix phase. Produced in wrought, weldable form and as castings, alloy maintains high ductility and strength in air and hydrogen. Strength exceeds previously known Fe/Cr/Ni hydrogen-, oxidation-, and corrosion-resistant alloys. Provides higher strength-to-weight ratios for lower weight in applications as storage vessels and pipes that must contain hydrogen.

  1. Preparation of Functionally Graded Materials (FGMs) Using Coal Fly Ash and NiCr-Based Alloy Powder by Spark Plasma Sintering (SPS)

    NASA Astrophysics Data System (ADS)

    Kaneko, Gen-yo; Kitagawa, Hiroyuki; Hasezaki, Kazuhiro; Ito, Yuji; Kakuda, Hideaki

    2008-02-01

    Functionally Graded Materials (FGMs) were prepared by spark plasma sintering (SPS) using coal fly ash and NiCr alloy powder. The coal fly ash was produced by the Misumi Coal Thermal Power Station (Chugoku Electric Power Co., Inc.), with 80 wt% nickel and 20 wt% chromium (Fukuda Metal Foil & Powder Co., Ltd.) used as source materials. The sintering temperature in the graphite die was 1000 °C. X-ray diffraction patterns of the sintered coal fly ash materials indicated that mullite (3Al2O3ṡ2SiO2) and silica (SiO2) phases were predominant. Direct joining of coal fly ash and NiCr causes fracture at the interface. This is due to the mismatch in the thermal expansion coefficients (CTE). A crack in the FGM was observed between the two layers with a CTE difference of over 4.86×10-6 K-1, while a crack in the FGM was difficult to detect when the CTE difference was less than 2.77×10-6 K-1.

  2. Preparation of Functionally Graded Materials (FGMs) Using Coal Fly Ash and NiCr-Based Alloy Powder by Spark Plasma Sintering (SPS)

    SciTech Connect

    Kaneko, Gen-yo; Kitagawa, Hiroyuki; Hasezaki, Kazuhiro; Ito, Yuji; Kakuda, Hideaki

    2008-02-15

    Functionally Graded Materials (FGMs) were prepared by spark plasma sintering (SPS) using coal fly ash and NiCr alloy powder. The coal fly ash was produced by the Misumi Coal Thermal Power Station (Chugoku Electric Power Co., Inc.), with 80 wt% nickel and 20 wt% chromium (Fukuda Metal Foil and Powder Co., Ltd.) used as source materials. The sintering temperature in the graphite die was 1000 deg. C. X-ray diffraction patterns of the sintered coal fly ash materials indicated that mullite (3Al{sub 2}O{sub 3}{center_dot}2SiO{sub 2}) and silica (SiO{sub 2}) phases were predominant. Direct joining of coal fly ash and NiCr causes fracture at the interface. This is due to the mismatch in the thermal expansion coefficients (CTE). A crack in the FGM was observed between the two layers with a CTE difference of over 4.86x10{sup -6} K{sup -1}, while a crack in the FGM was difficult to detect when the CTE difference was less than 2.77x10{sup -6} K{sup -1}.

  3. Wear Behavior of High Velocity Arc Spraying FeNiCrAlBRE/Ni95Al Composite Coatings

    NASA Astrophysics Data System (ADS)

    Tian, H. L.; Wei, S. C.; Chen, Y. X.; Tong, H.; Liu, Y.; Xu, B. S.

    Wear-resistant FeNiCrAlBRE/Ni95Al composite coatings were deposited on carbon steel plate by high velocity arc spraying. Adhesive strength of the composite coating was improved by spraying Ni95Al cored wires as transition layer between working coating and substrate. Scanning electron microscopy and Vickers hardness testing were used to evaluate coatings structure and mechanical properties. For quantitative investigation of porosity, a computer image analyzer was used. The forming, the wear resistance and its mechanism of the coatings were studied. The results show that coating has relatively high average hardness about 550 HV0.1 and adhesive strength is 47 MPa. The worn surface characterized shallow grooves and few of debris on the coating manifested that the coating has better wear resistance under dry sliding conditions.

  4. High-Temperature Erosion of HVOF Sprayed Cr3C2-NiCr Coating and Mild Steel for Boiler Tubes

    NASA Astrophysics Data System (ADS)

    Yang, Guan-Jun; Li, Chang-Jiu; Zhang, Shi-Jun; Li, Cheng-Xin

    2008-12-01

    The comparison of the high-temperature erosion behavior of a High-velocity oxyfuel (HVOF) sprayed Cr3C2-NiCr coating with mild steel for circulating fluidized bed boiler tubes was investigated. Results showed that the erosion rate of the mild steel at 800 °C was four times that at 300 °C at an erosion angle of 30°. However, the erosion rate of the HVOF sprayed Cr3C2-NiCr coating was not influenced by the temperature in the range of 300-800 °C. It was found that the erosion resistance of HVOF sprayed Cr3C2-NiCr coating was more than three times higher than that of the mild steel at 700-800 °C. In addition to the ploughing on the coating surface, the cracking along splat interfaces in the coating was clearly observed on the cross-sectional microstructure. The results indicate that the erosion performance of the HVOF sprayed Cr3C2-NiCr coating is controlled by the cohesion between splats and can be further enhanced by improving splat cohesion.

  5. Improvement in wear and corrosion resistance of AISI 1020 steel by high velocity oxy-fuel spray coating containing Ni-Cr-B-Si-Fe-C

    NASA Astrophysics Data System (ADS)

    Prince, M.; Thanu, A. Justin; Gopalakrishnan, P.

    2012-04-01

    In this investigation, AISI 1020 low carbon steel has been selected as the base material. The Ni based super alloy powder NiCrBSiFeC was sprayed on the base material using high velocity oxy-fuel spraying (HVOF) technique. The thickness of the coating was approximately 0.5 mm (500 μm). The coating was characterized using optical microscopy, Vickers microhardness testing, X-ray diffraction technique and scanning electron microscopy. Dry sliding wear tests were carried out at 3 m/s sliding speed under the load of 10 N for 1000 m sliding distance at various temperatures i.e., 35° C, 250° C and 350° C. The corrosion test was carried out in 1 M copper chloride in acetic acid solution. The polarization studies were also conducted for both base material and coating. The improvement in microhardness from 1.72 GPa (175 HV0.05) to 10.54 GPa (1075 HV0.05) was observed. The coatings exhibited 3-6 times improved wear resistance as compared with base material. Also, the corrosion rate was reduced by 3.5 times due to the presence of coatings.

  6. Brazing ZrO{sub 2} ceramic to Ti–6Al–4V alloy using NiCrSiB amorphous filler foil: Interfacial microstructure and joint properties

    SciTech Connect

    Cao, J.; Song, X.G.; Li, C.; Zhao, L.Y.; Feng, J.C.

    2013-07-15

    Reliable brazing of ZrO{sub 2} ceramic and Ti–6Al–4V alloy was achieved using NiCrSiB amorphous filler foil. The interfacial microstructure of ZrO{sub 2}/Ti–6Al–4V joints was characterized by scanning electron microscope, energy dispersive spectrometer and micro-focused X-ray diffractometer. The effects of brazing temperature on the interfacial microstructure and joining properties of brazed joints were investigated in detail. Active Ti of Ti–6Al–4V alloy dissolved into molten filler metal and reacted with ZrO{sub 2} ceramic to form a continuous TiO reaction layer, which played an important role in brazing. Various reaction phases including Ti{sub 2}Ni, Ti{sub 5}Si{sub 3} and β-Ti were formed in brazed joints. With an increasing of brazing temperature, the TiO layer thickened gradually while the Ti{sub 2}Ni amount reduced. Shear test indicated that brazed joints tend to fracture at the interface between ZrO{sub 2} ceramic and brazing seam or Ti{sub 2}Ni intermetallic layer. The maximum average shear strength reached 284.6 MPa when brazed at 1025 °C for 10 min. - Graphical Abstract: Interfacial microstructure of ZrO{sub 2}/TC4 joint brazed using NiCrSiB amorphous filler foil was: ZrO{sub 2}/TiO/Ti{sub 2}Ni + β-Ti + Ti{sub 5}Si{sub 3}/β-Ti/Widmanstätten structure/TC4. - Highlights: • Brazing of ZrO{sub 2} ceramic and Ti-6Al-4V alloy was achieved. • Interfacial microstructure was TiO/Ti{sub 2}Ni + β + Ti{sub 5}Si{sub 3}/β/Widmanstätten structure. • The formation of TiO produced the darkening effect of ZrO{sub 2} ceramic. • The highest joining strength of 284.6MPa was obtained.

  7. Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes

    NASA Astrophysics Data System (ADS)

    Sidhu, Hazoor Singh; Sidhu, Buta Singh; Prakash, S.

    2006-12-01

    The purpose of this study is to analyze and compare the mechanical properties and microstructure details at the interface of high-velocity oxyfuel (HVOF)-sprayed NiCr-coated boiler tube steels, namely ASTM-SA-210 grade A1, ASTM-SA213-T-11, and ASTM-SA213-T-22. Coatings were developed by two different techniques, and in these techniques liquefied petroleum gas was used as the fuel gas. First, the coatings were characterized by metallographic, scanning electron microscopy/energy-dispersive x-ray analysis, x-ray diffraction, surface roughness, and microhardness, and then were subjected to erosion testing. An attempt has been made to describe the transformations taking place during thermal spraying. It is concluded that the HVOF wire spraying process offers a technically viable and cost-effective alternative to HVOF powder spraying process for applications in an energy generation power plant with a point view of life enhancement and to minimize the tube failures because it gives a coating having better resistance to erosion.

  8. Thermally activated low temperature creep and primary water stress corrosion cracking of NiCrFe alloys

    SciTech Connect

    Hall, M.M. Jr.

    1993-10-01

    A phenomenological SCC-CGR model is developed based on an apriori assumption that the SCC-CGR is controlled by low temperature creep (LTC). This mode of low temperature time dependent deformation occurs at stress levels above the athermal flow stress by a dislocation glide mechanism that is thermally activated and may be environmentally assisted. The SCC-CGR model equations developed contain thermal activation parameters descriptive of the dislocation creep mechanism. Thermal activation parameters are obtained by fitting the CGR model to SCC-CGR data obtained on Alloy 600 and Alloy X-750. These SCC-CGR activation parameters are compared to LTC activation parameters obtained from stress relaxation tests. When the high concentration of hydrogen at the tip of an SCC crack is considered, the SCC-CGR activation energies and rate sensitivities are shown to be quantitatively consistent with hydrogen reducing the activation energy and increasing the strain rate sensitivity in LTC stress relaxation tests. Stress dependence of SCC-CGR activation energy consistent with that found for the LTC activation energy. Comparisons between temperature dependence of the SCC-CGR stress sensitivity and LTC stress sensitivity provide a basis for speculation on effects of hydrogen and solute carbon on SCC crack growth rates.

  9. A New Method to Produce Ni-Cr Ferroalloy Used for Stainless Steel Production

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Xian; Chu, Shao-Jun; Zhang, Guo-Hua

    2016-08-01

    A new electrosilicothermic method has been proposed in the present paper to produce Ni-Cr ferroalloy, which can be used for the production of 300 series stainless steel. Based on this new process, the Ni-Si ferroalloy is first produced as the intermediate alloy, and then the desiliconization process of Ni-Si ferroalloy melt with chromium concentrate is carried out to generate Ni-Cr ferroalloy. The silicon content in the Ni-Si ferroalloy produced in the submerged arc furnace should be more than 15 mass% (for the propose of reducing dephosphorization), in order to make sure the phosphorus content in the subsequently produced Ni-Cr ferroalloy is less than 0.03 mass%. A high utilization ratio of Si and a high recovery ratio of Cr can be obtained after the desiliconization reaction between Ni-Si ferroalloy and chromium concentrate in the electric arc furnace (EAF)-shaking ladle (SL) process.

  10. High-Temperature Exposure Studies of HVOF-Sprayed Cr3C2-25(NiCr)/(WC-Co) Coating

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Kaur, Manpreet; Prakash, Satya

    2016-08-01

    In this research, development of Cr3C2-25(NiCr) + 25%(WC-Co) composite coating was done and investigated. Cr3C2-25(NiCr) + 25%(WC-Co) composite powder [designated as HP2 powder] was prepared by mechanical mixing of [75Cr3C2-25(NiCr)] and [88WC-12Co] powders in the ratio of 75:25 by weight. The blended powders were used as feedstock to deposit composite coating on ASTM SA213-T22 substrate using High Velocity Oxy-Fuel (HVOF) spray process. High-temperature oxidation/corrosion behavior of the bare and coated boiler steels was investigated at 700 °C for 50 cycles in air, as well as, in Na2SO4-82%Fe2(SO4)3 molten salt environment in the laboratory. Erosion-corrosion behavior was investigated in the actual boiler environment at 700 ± 10 °C under cyclic conditions for 1500 h. The weight-change technique was used to establish the kinetics of oxidation/corrosion/erosion-corrosion. X-ray diffraction, field emission-scanning electron microscopy/energy-dispersive spectroscopy (FE-SEM/EDS), and EDS elemental mapping techniques were used to analyze the exposed samples. The uncoated boiler steel suffered from a catastrophic degradation in the form of intense spalling of the scale in all the environments. The oxidation/corrosion/erosion-corrosion resistance of the HVOF-sprayed HP2 coating was found to be better in comparison with standalone Cr3C2-25(NiCr) coating. A simultaneous formation of protective phases might have contributed the best properties to the coating.

  11. The effect of strain on the trapping of hydrogen at grain-boundary carbides in Ni-Cr-Fe alloys

    NASA Astrophysics Data System (ADS)

    Symons, D. M.; Young, G. A.; Scully, J. R.

    2001-02-01

    The present work quantifies the role of plastic deformation on the hydrogen-trapping behavior within the material and at the carbides. Isothermal desorption spectroscopy and thermal desorption spectroscopy (TDS) were performed on unstrained and strained alloy 600 (Ni-15Cr-8Fe) and alloy 690 (Ni-30Cr-8Fe), in order to quantify the effect of strain on the trapping energy. The results show that the M23C8 carbides in alloy 690 were stronger traps than the M7C3 carbides in alloy 600. It was further shown that cold work tended to increase the binding energy of hydrogen to the trap sites associated with grain-boundary carbides, although this effect was small.

  12. Atomic structure of interphase boundary enclosing bcc precipitate formed in fcc matrix in a Ni-Cr alloy

    SciTech Connect

    Furuhara, T.; Wada, K.; Maki, T.

    1995-08-01

    The atomic structure of the interphase boundary enclosing body-centered cubic (bcc) lath-shape precipitates formed in the face-centered cubic (fcc) matrix of a Ni-45 mass pct Cr alloy was examined by means of conventional and high-resolution transmission electron microscopy (HRTEM). Growth ledges were observed on the broad faces of the laths. The growth ledge terrace (with the macroscopic habit plane {approximately}(112){sub fcc}//(23{bar 1}){sub bcc}) contains a regular array of structural ledges whose terrace is formed by the (111){sub fcc}//(110){sub bcc} planes. A structural ledge has an effective Burgers vector corresponding to an a/12[1{bar 2}1]{sub fcc} transformation dislocation in the fcc {yields} bcc transformation. The side facet (and presumably the growth ledge riser) of the bcc lath contains two distinct types of lattice dislocation accommodating transformation strains. One type is glissile dislocations, which exist on every six layers of parallel close-packed planes. These perfectly accommodate the shear strain caused by the stacking sequence change from fcc to bcc. The second set is sessile misfit dislocations ({approximately}10 nm apart) whose Burgers vector is a/3[111]{sub fcc} = a/2[110]{sub bcc}. These perfectly accommodate the dilatational strain along the direction normal to the parallel close-packed planes. These results demonstrate that the interphase boundaries enclosing the laths are all semicoherent. Nucleation and migration of growth ledges, which are controlled by diffusion of substitutional solute atoms, result in the virtual displacement of transformation dislocations accompanying the climb of sessile misfit dislocations and the glide of glissile dislocations simultaneously. Such a growth mode assures the retention of atomic site correspondence across the growing interface.

  13. Microstructure of Al2O3 scales formed on NiCrAl alloys. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1981-01-01

    The structure of transient scales formed on pure and Y or Zr-doped Ni-15Cr-13Al alloys oxidized for 0.1 hr at 1100 C was studied by the use of transmission electron microscopy. Crystallographically oriented scales were found on all three alloys, but especially for the Zr-doped NiCrAl. The oriented scales consisted of alpha-(Al,Cr)2O3, Ni(Al,Cr)2O4 and gamma-Al2O3. They were often found in intimate contact with each other such that the close-packed planes and directions of one oxide phase were aligned with those of another. The prominent structural features of the oriented scales were approximately equal to micrometer subgrains; voids, antiphase domain boundaries and aligned precipitates were also prevalent. Randomly oriented alpha-Al2O3 was also found and was the only oxide ever observed at the immediate oxide metal interface. These approximately 0.15 micrometer grains were populated by intragranular voids which decreased in size and number towards the oxide metal interface. A sequence of oxidation was proposed in which the composition of the growing scale changed from oriented oxides rich in Ni and Cr to oriented oxides rich in Al. At the same time the structure changed from cubic spinels to hexagonal corundums with apparent precipitates of one phase in the matrix of the other. Eventually randomly oriented pure alpha-Al2O3 formed as the stable oxide with an abrupt transition: there was no gradual loss of orientation, no gradual compositional change or no gradual decrease in precipitate density.

  14. High-Temperature Mechanical Behavior of End-of-Life Cryomilled NiCrAlY Bond Coat Materials

    NASA Astrophysics Data System (ADS)

    Funk, M.; Ma, K.; Eberl, C.; Schoenung, J. M.; Göken, M.; Hemker, K. J.

    2011-08-01

    Previous work has demonstrated that the lifetime of atmospheric plasma sprayed thermal barrier coating (TBC) systems incorporating cryomilled NiCrAlY bond coats show superior reliability with up to 3 times longer lifetimes compared to conventional ones. These conventional and cryomilled NiCrAlY bond coats at end-of-life (after thermal cycle failure) were studied in detail in the present work with a focus on the mechanical behavior in the temperature range from room temperature to 1273 K (1000 °C). The investigations were carried out using microtensile samples and the DIC technique. It turns out that the low-temperature strength of the cryomilled NiCrAlY bond coat is inferior to that of conventional ones, which might be due to a more pronounced porosity. At higher temperatures (between 1173 K and 1273 K (900 °C and 1000 °C)), the cryomilled bond coat shows almost twice the strength of the conventional bond coat, despite having been exposed to almost 3 times as many thermal cycles. The thermal stability of the nitride dispersoids appears to compensate for the gamma prime dissolution that typically occurs at these elevated temperatures, allowing for strength retention.

  15. Coupled Multi-Electrode Investigation of Crevice Corrosion of 316 Stainless Steel and NiCrMo Alloy 625

    SciTech Connect

    F. Bocher; F.J. Presuel-Moreno; J.R. Scully

    2006-06-08

    Crevice corrosion is currently mostly studied using either one of two techniques depending on the information desired. The first method involves two multicrevice formers or washers fastened on both sides of a sample plate. This technique provides exposure information regarding the severity of crevice corrosion (depth, position, frequency of attack) but delivers little or no electrochemical information. The second method involves the potentiodynamic or potentiostatic study of an uncreviced sample in a model crevice solution or under a crevice former in aggressive solution where crevice corrosion may initiate and propagate and global current is recorded. However, crevice corrosion initiation and propagation behavior is highly dependent on exact position in the crevice over time. The distance from the crevice mouth will affect the solution composition, the pH, the ohmic potential drop and the true potential in the crevice. Coupled multi-electrode arrays (MEA) were used to study crevice corrosion in order to take in account spatial and temporal evolution of electrochemistry simultaneously. Scaling laws were used to rescale the crevice geometry while keeping the corrosion electrochemical properties equivalent to that of a natural crevice at a smaller length scale. one of the advantages was to be able to use commercial alloys available as wires electrode and, in the case of MEA, to spread the crevice corrosion over many individual electrodes so each one of them will have a near homogeneous electrochemical behavior. The initial step was to obtain anodic polarization curves for the relevant material in acid chloride solution which simulated the crevice electrolyte. using the software Crevicer{trademark}, the potential distribution inside the crevice as a function of the distance from the crevice mouth was determined for various crevice gaps and applied potentials, assuming constant chemistry throughout the crevice. The crevice corrosion initiation location x{sub crit} is

  16. High-Temperature Oxidation and Hot Corrosion Studies on NiCrAlY Coatings Deposited by Flame-Spray Technique

    NASA Astrophysics Data System (ADS)

    Rana, Nidhi; Mahapatra, Manas Mohan; Jayaganthan, R.; Prakash, Satya

    2015-06-01

    The NiCrAlY coatings deposited by flame-spray technique on the superalloy substrate were oxidized in the presence of air and Na2SO4 + V2O5 salt at 900 °C for 100 cycles. The kinetics of oxidation showed that the coatings deposited by flame-spray technique possess better oxidation resistance compared with coatings deposited by high-velocity oxy fuel (HVOF)-sprayed technique. The oxidized coatings were further characterized by XRD, FESEM/EDS, and x-ray mapping techniques. The mechanisms of the oxidation and hot corrosion were substantiated by analyzing the results obtained from the various characterization techniques.

  17. Weldability of Ni-Cr-W superalloy manufactured on industrial scale

    NASA Astrophysics Data System (ADS)

    Tsuji, Hirokazu; Nakajima, Hajime; Saito, Teiichiro; Takatsu, Tamao

    1993-09-01

    Research and development have been carried out on the new Ni-Cr-W superalloy as a structural material for process heating high-temperature gas-cooled reactors with coolant outlet temperatures of around 1000 C, and the optimum chemical composition has already been proposed. With a view to putting the newly developed Ni-Cr-W superalloy to a practical use, the proposed alloy was manufactured on an industrial scale, i.e., two tons. As a part of evaluation tests of the industrial scale material, weldability was examined in two kinds of heat treatment conditions, i.e., solution treatment and re-solution treatment conditions. The results of the present study can be summarized as follows: (1) Weldability of the solution treated material is fair, and no great trouble is expected in practical welding. (2) Weldability of the re-solution treated material is slightly inferior to that of the solution treated one, and the guide bend tests for the butt welded joint show unsatisfactory results. Judging from the fact that the alloy whose chemical composition was almost equivalent to that of the material in the present study showed unsatisfactory weldability in the previous study, the weldability of Ni-Cr-W superalloys is not so good. The results of this study suggest that it is important to clarify the acceptable conditions concerning the levels of minor alloying elements and the heat treatment for the alloys in order to make the weldability of the alloys stable and that there is much prospect of a success of securing the reliability of the structures with weldments applying the technique of minor alloying element adjustment and optimizing the heat treatment condition. Futur plans are that basic data on the weldability of Ni-Cr-W superalloys will be accumulated furthermore, and research and development will be carried out with a view to securing the reliability of the structures with weldments.

  18. High-Temperature Corrosion Studies of HVOF-Sprayed Cr3C2-NiCr Coating on SAE-347H Boiler Steel

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Singh, Harpreet; Prakash, Satya

    2009-12-01

    Cr3C2-NiCr coating was deposited on SAE-347H boiler steel by high velocity oxy fuel (HVOF) spray process. Subsequently, high-temperature corrosion behavior of the bare and coated boiler steel was investigated at 700 °C for 50 cycles in Na2SO4-82Fe2(SO4)3 molten salt, as well as air environments. Weight-change measurements after each cycle were made to establish the kinetics of corrosion. X-ray diffraction, field emission-scanning electron microscopy/energy dispersive spectroscopy, and x-ray mapping analyses were performed on the exposed samples to analyze the oxidation products. The bare 347H steel suffered accelerated oxidation during exposure at 700 °C in the air as well as the molten salt environment in comparison with its respective coated counterparts. The HVOF-spray Cr3C2-NiCr coating was found to be successful in maintaining its adherence in both the environments. The surface oxide scales were also found to be intact. The formation of chromium rich oxide scale might have contributed for the better hot corrosion/oxidation resistance in the coated steel.

  19. Low moment NiCr radio frequency magnetic films for multiferroic heterostructures with strong magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Beguhn, S.; Lou, J.; Rand, S.; Li, M.; Yang, X.; Li, S. D.; Liu, M.; Sun, N. X.

    2012-05-01

    Magnetic/piezoelectric multiferroic heterostructures with a magnetic thin film on a piezoelectric slab provides a great opportunity to achieve a strong converse magnetoelectric coupling with great potential for voltage tunable magnetic devices. Efforts have been made in developing highly magnetostrictive RF magnetic materials with low magnetization using magnetic/piezoelectric heterostructures to generate large electric-field induced effective magnetic fields. In this work, we report on NiCr films having low magnetization and relatively large magnetostriction. Strong converse magnetoelectric coupling and large electric field tunable ferromagnetic resonance (FMR) bandwidths are achieved in layered NiCr/lead zirconate titanate (PZT) and NiCr/lead zinc niobate lead titanate (PZN-PT) multiferroic heterostructures. A large electric field induced effective magnetic field of 260 Oe for NiCr/PZT and 756 Oe for NiCr/PZN-PT was observed, corresponding to a giant magnetoelectric coupling coefficient of 13 Oe cm/kV in NiCr/PZT and 75.6 Oe cm/kV in NiCr/PZN-PT multiferroic heterostructures. A high voltage tunable FMR frequency range was observed, with fmax/fmin being 124 and 325% for NiCr/PZT and NiCr/PZN-PT. The strong converse magnetoelectric coupling of NiCr/PZT and NiCr/PZN-PT heterostructures provide great opportunities for electric field tunable RF magnetic devices.

  20. Mechanical and Tribological Properties of HVOF-Sprayed (Cr3C2-NiCr+Ni) Composite Coating on Ductile Cast Iron

    NASA Astrophysics Data System (ADS)

    Ksiazek, Marzanna; Boron, Lukasz; Radecka, Marta; Richert, Maria; Tchorz, Adam

    2016-08-01

    The aim of the investigations was to compare the microstructure, mechanical, and wear properties of Cr3C2-NiCr+Ni and Cr3C2-NiCr coatings deposited by HVOF technique (the high-velocity oxygen fuel spray process) on ductile cast iron. The effect of nickel particles added to the chromium carbide coating on mechanical and wear behavior in the system of Cr 3 C 2 -NiCr+Ni/ductile cast iron was analyzed in order to improve the lifetime of coated materials. The structure with particular emphasis of characteristic of the interface in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron was studied using the optical, scanning, and transmission electron microscopes, as well as the analysis of chemical and phase composition in microareas. Experimental results show that HVOF-sprayed Cr3C2-NiCr+Ni composite coating exhibits low porosity, high hardness, dense structure with large, partially molten Ni particles and very fine Cr3C2 and Cr7C3 particles embedded in NiCr alloy matrix, coming to the size of nanocrystalline. The results were discussed in reference to examination of bending strength considering cracking and delamination in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron as well as hardness and wear resistance of the coating. The composite structure of the coating provides the relatively good plasticity of the coating, which in turn has a positive effect on the adhesion of coating to the substrate and cohesion of the composite coating (Cr3C2-NiCr+Ni) in wear conditions.

  1. Mechanical and Tribological Properties of HVOF-Sprayed (Cr3C2-NiCr+Ni) Composite Coating on Ductile Cast Iron

    NASA Astrophysics Data System (ADS)

    Ksiazek, Marzanna; Boron, Lukasz; Radecka, Marta; Richert, Maria; Tchorz, Adam

    2016-07-01

    The aim of the investigations was to compare the microstructure, mechanical, and wear properties of Cr3C2-NiCr+Ni and Cr3C2-NiCr coatings deposited by HVOF technique (the high-velocity oxygen fuel spray process) on ductile cast iron. The effect of nickel particles added to the chromium carbide coating on mechanical and wear behavior in the system of Cr 3 C 2 -NiCr+Ni/ductile cast iron was analyzed in order to improve the lifetime of coated materials. The structure with particular emphasis of characteristic of the interface in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron was studied using the optical, scanning, and transmission electron microscopes, as well as the analysis of chemical and phase composition in microareas. Experimental results show that HVOF-sprayed Cr3C2-NiCr+Ni composite coating exhibits low porosity, high hardness, dense structure with large, partially molten Ni particles and very fine Cr3C2 and Cr7C3 particles embedded in NiCr alloy matrix, coming to the size of nanocrystalline. The results were discussed in reference to examination of bending strength considering cracking and delamination in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron as well as hardness and wear resistance of the coating. The composite structure of the coating provides the relatively good plasticity of the coating, which in turn has a positive effect on the adhesion of coating to the substrate and cohesion of the composite coating (Cr3C2-NiCr+Ni) in wear conditions.

  2. The Phase Competition and Stability of High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Liu, W. H.; Wu, Y.; He, J. Y.; Zhang, Y.; Liu, C. T.; Lu, Z. P.

    2014-08-01

    Phase competition and stability of several typical high-entropy alloys (HEAs) were studied, and the effects of alloying additions and processing conditions on phase formation in these alloys were discussed. Alloying with chemically incompatible elements having a large difference in either the atomic size or enthalpy of mixing with constituting components in HEAs, e.g., Cu and Al in the FeCoNiCr alloy system, inevitably induced phase separation and stimulated formation of duplex solid-solution phases and even intermetallic compounds. The solid-solution phase in the as-cast FeCoNiCrMn HEA is extremely stable due to the good chemical compatibility among constituent components, but in the FeCoNiCrAl and (FeCoNiCrAl)99Si1 HEAs with the incompatible elements Al and Si, pretreatment and annealing processes could induce phase transitions and the formation of new phases, indicating that the as-cast solid-solution phases were destabilized by quenched-in chemical segregation, resulting from additions of the dissimilar elements.

  3. The Phase Competition and Stability of High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Liu, W. H.; Wu, Y.; He, J. Y.; Zhang, Y.; Liu, C. T.; Lu, Z. P.

    2014-10-01

    Phase competition and stability of several typical high-entropy alloys (HEAs) were studied, and the effects of alloying additions and processing conditions on phase formation in these alloys were discussed. Alloying with chemically incompatible elements having a large difference in either the atomic size or enthalpy of mixing with constituting components in HEAs, e.g., Cu and Al in the FeCoNiCr alloy system, inevitably induced phase separation and stimulated formation of duplex solid-solution phases and even intermetallic compounds. The solid-solution phase in the as-cast FeCoNiCrMn HEA is extremely stable due to the good chemical compatibility among constituent components, but in the FeCoNiCrAl and (FeCoNiCrAl)99Si1 HEAs with the incompatible elements Al and Si, pretreatment and annealing processes could induce phase transitions and the formation of new phases, indicating that the as-cast solid-solution phases were destabilized by quenched-in chemical segregation, resulting from additions of the dissimilar elements.

  4. Long-term carbide development in high-velocity oxygen fuel/high-velocity air fuel Cr3C2-NiCr coatings heat treated at 900 °C

    NASA Astrophysics Data System (ADS)

    Matthews, S.; Hyland, M.; James, B.

    2004-12-01

    During the deposition of Cr3C2-NiCr coatings, compositional degradation occurs, primarily through the dissolution of the carbide phase into the matrix. Exposure at an elevated temperature leads to transformations in the compositional distribution and microstructure. While these have been investigated in short-term trials, no systematic investigations of the long-term microstructural development have been presented for high-velocity sprayed coatings. In this work, high-velocity air fuel (HVAF) and high-velocity oxygen fuel (HVOF) coatings were treated at 900 °C for up to 60 days. Rapid refinement of the supersaturated matrix phase occurred, with the degree of matrix phase alloying continuing to decrease over the following 20 to 40 days. Carbide nucleation in the HVAF coatings occurred preferentially on the retained carbide grains, while that in the HVOF coatings developed in the regions of greatest carbide dissolution. This difference resulted in a variation in carbide morphologies. Preferential horizontal growth was evident in both coatings over the first 20 to 30 days of exposure, beyond which spheroidization of the microstructure occurred. After 30 days, the carbide morphology of both coatings was comparable, tending toward an expansive structure of coalesced carbide grains. The development of the carbide phase played a significant role in the microhardness variation of these coatings with time.

  5. High-Temperature Behavior of a High-Velocity Oxy-Fuel Sprayed Cr3C2-NiCr Coating

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Singh, Harpreet; Prakash, Satya

    2012-08-01

    High-velocity oxy-fuel (HVOF) sprayed coatings have the potential to enhance the high-temperature oxidation, corrosion, and erosion-corrosion resistance of boiler steels. In the current work, 75 pct chromium carbide-25 pct (nickel-20 pct chromium) [Cr3C2-NiCr] coating was deposited on ASTM SA213-T22 boiler steel using the HVOF thermal spray process. High-temperature oxidation, hot corrosion, and erosion-corrosion behavior of the coated and bare steel was evaluated in the air, molten salt [Na2SO4-82 pct Fe2(SO4)3], and actual boiler environments under cyclic conditions. Weight-change measurements were taken at the end of each cycle. Efforts were made to formulate the kinetics of the oxidation, corrosion, and erosion-corrosion. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM)/energy dispersive spectroscopy (EDS) techniques were used to analyze the oxidation products. The coating was found to be intact and spallation free in all the environments of the study in general, whereas the bare steel suffered extensive spallation and a relatively higher rate of degradation. The coating was found to be useful to enhance the high-temperature resistance of the steel in all the three environments in this study.

  6. Characterization of the mechanical and physical properties of TD-NiCr (Ni-20Cr-2ThO2) alloy sheet

    NASA Technical Reports Server (NTRS)

    Fritz, L. J.; Koster, W. P.; Taylor, R. E.

    1973-01-01

    Sheets of TD-NiCr processed using techniques developed to produce uniform material were tested to supply mechanical and physical property data. Two heats each of 0.025 and 0.051 cm thick sheet were tested. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, compression, creep-rupture, creep strength, bearing strength, shear strength, sharp notch and fatigue strength. Test temperatures covered the range from ambient to 1589K. Physical properties were also studied as a function of temperature. The physical properties measured were thermal conductivity, linear thermal expansion, specific heat, total hemispherical emittance, thermal diffusivity, and electrical conductivity.

  7. High Temperature Behavior of Cr3C2-NiCr Coatings in the Actual Coal-Fired Boiler Environment

    NASA Astrophysics Data System (ADS)

    Bhatia, Rakesh; Sidhu, Hazoor Singh; Sidhu, Buta Singh

    2015-03-01

    Erosion-corrosion is a serious problem observed in steam-powered electricity generation plants, and industrial waste incinerators. In the present study, four compositions of Cr3C2-(Ni-20Cr) alloy coating powder were deposited by high-velocity oxy-fuel spray technique on T-91 boiler tube steel. The cyclic studies were performed in a coal-fired boiler at 1123 K ± 10 K (850 °C ± 10 °C). X-ray diffraction, scanning electron microscopy/energy dispersive X-ray analysis and elemental mapping analysis techniques were used to analyze the corrosion products. All the coatings deposited on T-91 boiler tube steel imparted hot corrosion resistance. The 65 pctCr3C2 -35 pct (Ni-20Cr)-coated T-91 steel sample performed better than all other coated samples in the given environment.

  8. Characterization of Cold-Sprayed IN625 and NiCr Coatings

    NASA Astrophysics Data System (ADS)

    Srinivasan, Dheepa; Chandrasekhar, Vighnesh; Amuthan, Ramar; Lau, Y. C.; Calla, Eklavya

    2016-04-01

    Ni-based coatings IN625® and Ni20%Cr were cold sprayed on a low-alloy steel (AISI 4130) substrate, using Helium as the process gas. Dense coatings up to 3-mm thickness were deposited, having a hardness of 500-550 HV. The coatings showed a hardness maximum, with heat treatment, before dropping to a lower value. The coating microstructure revealed two distinct types of regions, comprising grains with a high dislocation density and elongated shear bands having twins. Heat treatment led to 30-50 nm grains in the IN625 coating, and >1-2 μm grains for NiCr. Both coatings showed a compressive residual stress in the as-sprayed condition, which relaxed to a zero residual stress, at 650 °C. The NiCr coatings showed a much higher compressibility, as compared to IN625. The IN625 coatings induced a much larger deformation on the 4130 steel. Overall, while both types of Ni-based alloy coatings showed similarities in terms of hardness and microstructure, they revealed distinct differences in their deformability, thermal stability, and substrate deformation, indicating a different behavior between a binary solid solution (NiCr) as compared to a multielement solid solution (IN625), as elucidated via a detailed characterization of these coatings.

  9. Corrosion Testing of Ni Alloy HVOF Coatings in High Temperature Environments for Biomass Applications

    NASA Astrophysics Data System (ADS)

    Paul, S.; Harvey, M. D. F.

    2013-03-01

    This paper reports the corrosion behavior of Ni alloy coatings deposited by high velocity oxyfuel spraying, and representative boiler substrate alloys in simulated high temperature biomass combustion conditions. Four commercially available oxidation resistant Ni alloy coating materials were selected: NiCrBSiFe, alloy 718, alloy 625, and alloy C-276. These were sprayed onto P91 substrates using a JP5000 spray system. The corrosion performance of the coatings varied when tested at ~525, 625, and 725 °C in K2SO4-KCl mixture and gaseous HCl-H2O-O2 containing environments. Alloy 625, NiCrBSiFe, and alloy 718 coatings performed better than alloy C-276 coating at 725 °C, which had very little corrosion resistance resulting in degradation similar to uncoated P91. Alloy 625 coatings provided good protection from corrosion at 725 °C, with the performance being comparable to wrought alloy 625, with significantly less attack of the substrate than uncoated P91. Alloy 625 performs best of these coating materials, with an overall ranking at 725 °C as follows: alloy 625 > NiCrBSiFe > alloy 718 ≫ alloy C-276. Although alloy C-276 coatings performed poorly in the corrosion test environment at 725 °C, at lower temperatures (i.e., below the eutectic temperature of the salt mixture) it outperformed the other coating types studied.

  10. Copper modified austenitic stainless steel alloys with improved high temperature creep resistance

    DOEpatents

    Swindeman, R.W.; Maziasz, P.J.

    1987-04-28

    An improved austenitic stainless steel that incorporates copper into a base Fe-Ni-Cr alloy having minor alloying substituents of Mo, Mn, Si, T, Nb, V, C, N, P, B which exhibits significant improvement in high temperature creep resistance over previous steels. 3 figs.

  11. Measurement of the Nickel/Nickel Oxide Transition in Ni-Cr-Fe Alloys and Updated Data and Correlations to Quantify the Effect of Aqueous Hydrogen on Primary Water SCC

    SciTech Connect

    Steven A. Attanasio; David S. Morton

    2003-06-16

    Alloys 600 and X-750 have been shown to exhibit a maximum in primary water stress corrosion cracking (PWSCC) susceptibility, when testing is conducted over a range of aqueous hydrogen (H{sub 2}) levels. Contact electric resistance (CER) and corrosion coupon testing using nickel specimens has shown that the maximum in SCC susceptibility occurs in proximity to the nickel-nickel oxide (Ni/NiO) phase transition. The measured location of the Ni/NiO transition has been shown to vary with temperature, from 25 scc/kg H{sub 2} at 360 C to 4 scc/kg H{sub 2} at 288 C. New CER measurements show that the Ni/NiO transition is located at 2 scc/kg H{sub 2} at 260 C. An updated correlation of the phase transition is provided. The present work also reports CER testing conducted using an Alloy 600 specimen at 316 C. A large change in resistance occurred between 5 and 10 scc/kg H{sub 2}, similar to the results obtained at 316 C using a nickel specimen. This result adds confidence in applying the Ni/NiO transition measurements to Ni-Cr-Fe alloys. The understanding of the importance of the Ni/NiO transition to PWSCC has been used previously to quantify H{sub 2} effects on SCC growth rate (SCCGR). Specifically, the difference in the electrochemical potential (EcP) of the specimen or component from the Ni/NiO transition (i.e., EcP{sub Ni/NiO}-EcP) has been used as a correlating parameter. In the present work, these SCCGR-H{sub 2} correlations, which were based on SCCGR data obtained at relatively high test temperatures (338 and 360 C), are evaluated via SCCGR tests at a reduced temperature (316 C). The 316 C data are in good agreement with the predictions, implying that the SCCGR-H{sub 2} correlations extrapolate well to reduced temperatures. The SCCGR-H{sub 2} correlations have been revised to reflect the updated Ni/NiO phase transition correlation. New data are presented for EN82H weld metal (also known as Alloy 82) at 338 C. Similar to other nickel alloys, SCC of EN82H is a function of

  12. Directionally solidified pseudo-binary eutectics of Ni-Cr-/Hf,Zr/

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Ashbrook, R. L.

    1975-01-01

    This report is concerned with the experimental determination of pseudo binary eutectic compositions and the directional solidification of the Ni-Cr-Hf,Zr, and Ni-Cr-Zr eutectic alloys. To determine unknown eutectics, chemical analyses were made of material bled from near eutectic ingots during incipient melting. Nominal compositions in weight per cent of Ni-18.6Cr-24.0Hf, Ni-19.6Cr-12.8Zr-2.8Hf, and Ni-19.2Cr-14.8Zr formed aligned pseudo-binary eutectic structures. The melting points were about 1270 C. The reinforcing intermetallic phases were identified as noncubic (Ni,Cr)7Hf2 and (Ni,Cr)7(Hf,Zr)2, and face centered cubic (Ni,Cr)5Zr. The volume fraction of the reinforcing phases were about 0.5.

  13. Mössbauer Investigation of Electrodeposited Sn-Zn, Sn-Cr, Sn-Cr-Zn and Fe-Ni-Cr Coatings

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Stichleutner, S.; El-Sharif, M.; Chisholm, C. U.; Sziráki, L.; Homonnay, Z.; Vértes, A.

    2002-06-01

    57Fe and 119Sn CEMS, XRD and electrochemical measurements were used to investigate the effect of the preparation parameters and the components on the structure and phase composition of electrodeposited Fe-Ni-Cr alloys in connection with their corrosion behavior. XRD of the electrodeposits reflect an amorphous-like character. 57Fe CEM spectra of Fe-Ni-Cr electrodeposited samples, prepared in a continuous flow plating plastic circulation cell with variation of current density, electrolyte velocity and temperature, can be evaluated as a doublet associated with a highly disordered paramagnetic solid solution phase. This phase was identified earlier in Fe-Ni-Cr electrodeposits that were prepared by another plating method and contained both ferromagnetic and paramagnetic metastable phases [1]. This is the first time that we have succeeded to prepare Fe-Ni-Cr alloys containing only the metastable paramagnetic phase. The effect of the plating parameters on the structure is also analysed by the quadrupole splitting distribution method. 119Sn CEM spectra of all Sn-containing plated alloys show a broad line envelop which can be decomposed at least into two components. One can be associated with β-tin. The other one can be assigned to an alloy phase. The structure and distribution of microenvironments of these phases depends on the plating parameters especially on the parameters of the reverse pulse applied.

  14. Zoned chromites with high Mn-contents in the Fe-Ni-Cr-laterite ore deposits from the Edessa area in Northern Greece

    NASA Astrophysics Data System (ADS)

    Michailidis, K. M.

    1990-07-01

    The mineralogy of the transported Fe-Ni-Cr-laterite ore bodies from the Edessa area in Northern Greece was studied. The special emphasis was on the textural features and chemistry of chromite. The chromite was residually inherited in laterites from weathered ultramafic rocks and it displays zonation. Three main zones were optically distinguished: an inner chromite zone, an intermediate ferritechromite zone and a magnetite rim. These three zones have distinct compositions. The major oxides MgO and Al2O3 decrease from the chromite core to the ferritechromite zone, while FeOt increases and Cr2O3 either increases or decreases. A characteristic chemical feature of the chromite is the very high Mn-content in the ferritechromite zone, up to 20%wt MnO. Chemical zonation has, however, been detected in optically unzoned chromite cores rimmed by magnetite. The zoning and the high Mn-content of the chromite is a result of serpentinization in the presence of Mn-rich fluids, following lateritic weathering and finally Alpine low-grade metamorphism.

  15. Evaluation of Cyclic Oxidation and Hot Corrosion Behavior of HVOF-Sprayed WC-Co/NiCrAlY Coating

    NASA Astrophysics Data System (ADS)

    Somasundaram, B.; Kadoli, Ravikiran; Ramesh, M. R.

    2014-08-01

    Corrosion of metallic structural materials at an elevated temperature in complex multicomponent gas environments are potential problems in many fossil energy systems, especially those using coal as a feedstock. Combating these problems involves a number of approaches, one of which is the use of protective coatings. The high velocity oxy fuel (HVOF) process has been used to deposit WC-Co/NiCrAlY composite powder on two types of Fe-based alloys. Thermocyclic oxidation behavior of coated alloys was investigated in the static air as well as in molten salt (Na2SO4-60%V2O5) environment at 700 °C for 50 cycles. The thermogravimetric technique was used to approximate the kinetics of oxidation. WC-Co/NiCrAlY coatings showed a lower oxidation rate in comparison to uncoated alloys. The oxidation resistance of WC-Co/NiCrAlY coatings can be ascribed to the oxide layer of Al2O3 and Cr2O3 formed on the outermost surface. Coated alloys extend a protective oxide scale composed of oxides of Ni and Cr that are known to impart resistance to the hot corrosion in the molten salt environment.

  16. NiCr etching in a reactive gas

    SciTech Connect

    Ritter, J.; Boucher, R.; Morgenroth, W.; Meyer, H. G.

    2007-05-15

    The authors have etched NiCr through a resist mask using Cl/Ar based chemistry in an electron cyclotron resonance etch system. The optimum gas mixture and etch parameters were found for various ratios of Ni to Cr, based on the etch rate, redeposits, and the etch ratio to the mask. The introduction of O{sub 2} into the chamber, which is often used in the etching of Cr, served to both increase and decrease the etch rate depending explicitly on the etching parameters. Etch rates of >50 nm min{sup -1} and ratios of >1 (NiCr:Mask) were achieved for NiCr (80:20). Pattern transfer from the mask into the NiCr was achieved with a high fidelity and without redeposits for a Cl/Ar mix of 10% Ar (90% Cl{sub 2}) at an etch rate of {approx_equal}50 nm min{sup -1} and a ratio of 0.42 (NiCr:ZEP 7000 e-beam mask)

  17. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The SAP technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of the alloy Ni-17Cr-5Al-0.2 Y. SAP-NiCrAl was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. A variety of annealing treatments were applied after working to determine the recrystallization response. NiCrAlY, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl of this study exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl as has been reported for other oxide dispersion strengthened alloys. In contrast, unoxidized NiCrAlY exhibited only primary recrystallization.

  18. Water Vapor Effects on the Oxidation Behavior of Fe-Cr and Ni-Cr Alloys in Atmospheres Relevant to Oxy-fuel Combustion

    SciTech Connect

    Mu, N.; Jung, K. Y.; Yanar, N. M.; Meier, G. H.; Pettit, F. S.; Holcomb, G. R.

    2011-10-01

    The oxidation behavior of a number of Fe–Cr- and Ni–Cr-based alloys was studied in atmospheres relevant to oxyfuel combustion at 650 °C. Oxidation was greatly enhanced in ferritic model alloys exposed in low p(O{sub 2}) CO{sub 2} + 30%H{sub 2}O and Ar + 30%H{sub 2}O gases. Rapidly growing iron oxides appear to be porous and gas permeable. Transition from non-protective to protective oxidation occurs on alloys with higher Cr contents between 13.5 and 22 wt% in H{sub 2}O. Excess oxygen, usually found in the actual oxyfuel combustion environments, disrupts the selective oxidation of Fe–Cr alloys by accelerating vaporization of early-formed Cr{sub 2}O{sub 3} in combination with accelerated chromia growth induced by the H{sub 2}O. Rapid Cr consumption leads to the nucleation and rapid growth of iron oxides. On the contrary, Ni–Cr alloys are less affected by the presence of H{sub 2}O and excess O{sub 2}. The difference between Fe–Cr and Ni–Cr alloys is not clear but is postulated to involve less acceleration of chromia growth by water vapor for the latter group of alloys.

  19. High Velocity Oxidation and Hot Corrosion Resistance of Some ODS Alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. L.

    1977-01-01

    Several oxide dispersion strengthened (ODS) alloys were tested for cyclic, high velocity, oxidation, and hot corrosion resistance. These results were compared to the resistance of an advanced, NiCrAl coated superalloy. An ODS FeCrAl were identified as having sufficient oxidation and hot corrosion resistance to allow potential use in an aircraft gas turbine without coating.

  20. Heat treatment of nicrfe alloy to optimize resistance to intergrannular stress corrosion

    SciTech Connect

    Steeves, A.F.; Bibb, A.E.

    1984-11-06

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprising heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cool the alloy body, and heat the cooled body to a temperature between 1100/sup 0/ to 1500/sup 0/ F. for about 1 to 30 hours.

  1. Development of dispersion strengthened nickel-chromium alloy (Ni-Cr-ThO2) sheet for space shuttle vehicles, part 2

    NASA Technical Reports Server (NTRS)

    Klingler, L. J.; Weinberger, W. R.; Bailey, P. G.; Baranow, S.

    1972-01-01

    Two dispersion strengthened nickel base alloy systems were developed for use at temperatures up to 1204 C(2200 F); TD nickel chromium (TDNiCr) and TD nickel chromium aluminum (TDNiCrA1). They are considered candidate materials for use on the thermal protection systems of the space shuttle and for long term use in aircraft gas turbine engine applications. Improved manufacturing processes were developed for the fabrication of TDNiCr sheet and foil to specifications. Sheet rolling process studies and extrusion studies were made on two aluminum containing alloys: Ni-16%Cr-3.5%A1-2%ThO2 and Ni-16%Cr-5.0%A12%ThO2. Over 1600 kg.(3500 lb.) of plate, sheet, foil, bar and extrusion products were supplied to NASA Centers for technology studies.

  2. Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy

    DOE PAGES

    Wu, Zhenggang; Gao, Y. F.; Bei, Hongbin

    2015-07-25

    To understand the fundamental deformation mechanisms of compositionally complex alloys, single crystals of a multi-component equiatomic FeNiCoCr alloy with face-centered cubic (FCC) structure were grown for mechanical studies. Similarly to typical FCC pure metals, slip trace analyses indicate that dislocation slips take place on (1 1 1) planes along [11¯0] directions. The critical resolved shear stress (CRSS) obeys the Schmid law at both 77 and 293 K, and tension–compression asymmetry is not observed. Although this material slips in a normal FCC manner both at 293 and 77 K, compared to typical FCC metals the CRSS’s strong temperature dependence is abnormal.

  3. Development of dispersion strengthened nickel-chromium alloy (Ni-Cr-Th-O2) sheet for space shuttle vehicles, part 1

    NASA Technical Reports Server (NTRS)

    Klingler, L. J.; Weinberger, W. R.; Bailey, P. G.; Baranow, S.

    1971-01-01

    A dispersion-strengthened alloy, TD nickel chromium (TDNiCr) is being developed for use on the thermal protection system of the space shuttle at temperatures up to 1204 C(2200 F). Manufacturing processes were developed for the fabrication of sheet and foil to specifications. The addition of aluminum to the basic TDNiCr composition provides outstanding oxidation resistance up to 1260 C(2300 F); aluminum levels of 2 to 4% are considered optimum for space shuttle application.

  4. The oxidation performance of modern high-temperature alloys

    NASA Astrophysics Data System (ADS)

    Deodeshmukh, V. P.; Srivastava, S. K.

    2009-07-01

    The high-temperature oxidation resistance of an alloy is a key design criterion for components in a variety of industrial applications, such as advanced gas turbines, industrial heating, automotive, waste incineration, power generation and energy conversion, chemical and petrochemical processing, and metals and minerals processing. The importance of correctly assessing the long-term oxidation behavior of high-temperature alloys is illustrated. As applications move to higher temperatures, new alloys are needed. In this paper, the oxidation performance of three newly developed alloys, an alumina-forming Ni-Fe-Cr-Al alloy, a γ'-strengthened Ni-Cr-Co-Mo-(Al+Ti) alloy, and a nitride-strengthened Co-Cr-Fe-Ni-(Ti+Nb) alloy is presented.

  5. Nanoscale Cellular Structures at Phase Boundaries of Ni-Cr-Al-Ti and Ni-Cr-Mo-Al-Ti Superalloys

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Dunand, David C.

    2015-06-01

    The microstructural evolution of Ni-20 pct Cr wires was studied during pack cementation where Al and Ti, with and without prior cementation with Mo, are deposited to the surface of the Ni-Cr wires and subsequently homogenized in their volumes. Mo deposition promotes the formation of Kirkendall pores and subsequent co-deposition of Al and Ti creates a triple-layered diffusional coating on the wire surface. Subsequent homogenization drives the alloying element to distribute evenly in the wires which upon further heat treatment exhibit the γ + γ' superalloy structure. Unexpectedly, formation of cellular structures is observed at some of the boundaries between primary γ' grains and γ matrix grains. Based on additional features ( i.e., ordered but not perfectly periodic structure, confinement at γ + γ' phase boundaries as a cellular film with ~100 nm width, as well as lack of topologically close-packed phases), and considering that similar, but much larger, microstructures were reported in commercial superalloys, it is concluded that the present cellular structure solidified as a thin film, composed of eutectic γ + γ' and from which the γ' phase was subsequently etched, which was created by incipient melting of a region near the phase boundary with high solute segregation.

  6. Evaluation of Thermocyclic Oxidation Behavior of HVOF-Sprayed NiCrFeSiB Coatings on Boiler Tube Steels

    NASA Astrophysics Data System (ADS)

    Ramesh, M. R.; Prakash, S.; Nath, S. K.; Sapra, Pawan Kumar; Krishnamurthy, N.

    2011-09-01

    High velocity oxy-fuel (HVOF) spray process has grown into a well-accepted industrial technology for obtaining coatings resistant to significant surface degradation processes. In the present study, HVOF process was used to deposit Ni-based hardfacing NiCrFeSiB alloy powder on kinds of boiler tube steels designated as SA210 grade-A1, SA213-T11, and SA213-T22. The microstructures and several properties of the as-sprayed coatings have been investigated. Thermocyclic oxidation studies were performed in static air at 900 °C. NiCrFeSiB-coated steels showed slow oxidation kinetics and considerably lower weight gains than that of uncoated steels. The superior performance of NiCrFeSiB coatings can be attributed to continuous and protective thin oxide scale of amorphous SiO2 and Cr2O3 formed on the surface of the oxidized coatings. The combined technique of x-ray diffraction, scanning electron microscopy, energy dispersive x-ray analysis, and electron probe microanalysis are used to characterize reaction products of the oxidized surfaces.

  7. Investigation of the oxidation behavior of dispersion stabilized alloys when exposed to a dynamic high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.

    1974-01-01

    The oxidation behavior of TD-NiCr and TD-NiCrAlY alloys have been studied at 2000 and 2200 F in static and high speed flowing air environments. The TD-NiCrAlY alloys preoxidized to produce an Al2O3 scale on the surface showed good oxidation resistance in both types of environments. The TD-NiCr alloy which had a Cr2O3 oxide scale after preoxidation was found to oxidize more than an order of magnitude faster under the dynamic test conditions than at comparable static test conditions. Although Cr2O3 normally provides good oxidation protection, it was rapidly lost due to formation of volatile CrO3 when exposed to the high speed air stream. The preferred oxide arrangement for the dynamic test consisted of an external layer of NiO with a porous mushroom type morphology, an intermediate duplex layer of NiO and Cr2O3, and a continuous inner layer of Cr2O3 in contact with the alloy substrate. An oxidation model has been developed to explain the observed microstructure and overall oxidation behavior of all alloys.

  8. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The sintered aluminum powder (SAP) technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of a nickel alloy containing, by weight, 17% Cr, 5% Al, and 0.2% Y. The SAP-NiCrAl alloy (without the ytterbium removed by oxdation) was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. Annealing treatments were applied after working to determine the recrystallization response. The NiCrAlY alloy, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl alloy exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl alloy as has been reported for other oxide dispersion strengthened alloys. In contrast, the unoxidized NiCrAlY alloy exhibited only primary recrystallization.

  9. Crack Free Tungsten Carbide Reinforced Ni(Cr) Layers obtained by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Amado, J. M.; Tobar, M. J.; Yáñez, A.; Amigó, V.; Candel, J. J.

    The development of hardfacing coatings has become technologically significant in many industries A common approach is the production of metal matrix composites (MMC) layers. In this work NiCr-WC MMC hardfacing layers are deposited on C25 steel by means of laser cladding. Spheroidal fused tungsten carbides is used as reinforcement phase. Three different NiCr alloys with different Cr content were tested. Optimum conditions to obtain dense, uniform carbide distribution and hardness close to nominal values were defined. The effect of Cr content respect to the microstructure, susceptibility for cracking and the wear rate of the resulting coating will also be discussed.

  10. Behavior of Ni-Cr-Si coating alloys in Na/sub 2/SO/sub 4/, V/sub 2/O/sub 5/, and mixed salt hot corrosion. Final report

    SciTech Connect

    Corey, R.G.; Khan, A.S.; Barkalow, R.H.; Hecht, R.J.

    1983-10-01

    This report describes the results of a program to select coating alloys that are resistant to vanadium- and sulfate-induced hot corrosion and solid particle erosion in the 700 to 900/sup 0/C temperature range. Test materials, methods, and results are discussed. The principal alloy coatings that were tested were high-chromium, nickel-base alloys with additions of silicon, aluminum, and tantalum.

  11. The effect of sulfur and zirconium Co-doping on the oxidation of NiCrAl

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1987-01-01

    The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys, the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S sup 0.2 (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggests that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys.

  12. The effect of sulfur and zirconium co-doping on the oxidation of NiCrAl

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1988-01-01

    The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys (less than 500 ppma), the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S(0.2) (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggest that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys.

  13. Feasibility study of tungsten as a diffusion barrier between nickel-chromium-aluminum and Gamma/Gamma prime - Delta eutectic alloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.

  14. Development of a CuNiCrAl Bond Coat for Thermal Barrier Coatings in Rocket Combustion Chambers

    NASA Astrophysics Data System (ADS)

    Fiedler, Torben; Rösler, Joachim; Bäker, Martin

    2015-12-01

    The lifetime of rocket combustion chambers can be increased by applying thermal barrier coatings. The standard coating systems usually used in gas turbines or aero engines will fail at the bond coat/substrate interface due to the chemical difference as well as the different thermal expansion between the copper liner and the applied NiCrAlY bond coat. A new bond coat alloy for rocket engine applications was designed previously with a chemical composition and coefficient of thermal expansion more similar to the copper substrate. Since a comparable material has not been applied by thermal spraying before, coating tests have to be carried out. In this work, the new Ni-30%Cu-6%Al-5%Cr bond coat alloy is applied via high velocity oxygen fuel spraying. In a first step, the influence of different coating parameters on, e.g., porosity, amount of unmolten particles, and coating roughness is investigated and a suitable parameter set for further studies is chosen. In a second step, copper substrates are coated with the chosen parameters to test the feasibility of the process. The high-temperature behavior and adhesion is tested with laser cycling experiments. The new coatings showed good adhesion even at temperatures beyond the maximum test temperatures of the NiCrAlY bond coat in previous studies.

  15. Corrosion performance of bi-layer Ni/Cr2C3-NiCr HVAF thermal spray coating

    NASA Astrophysics Data System (ADS)

    Sadeghimeresht, E.; Markocsan, N.; Nylén, P.; Björklund, S.

    2016-04-01

    The corrosion behavior of three HVAF thermal spray coating systems (A: single-layer Ni, B: single-layer Cr2C3-NiCr coatings, and C: bi-layer Ni/Cr2C3-NiCr coating) was comparatively studied using immersion, salt spray, and electrochemical tests. Polarization and EIS results showed that the corrosion behavior of Cr2C3-NiCr coatings in 3.5 wt.% NaCl solution was significantly improved by adding the intermediate layer of Ni. It was illustrated that the polarization resistance of the bi-layer Ni/Cr2C3-NiCr and single-layer Cr2C3-NiCr coatings were around 194 and 38 kΩ cm2, respectively. Microstructure analysis revealed that the bond coating successfully prevented the corrosion propagation toward the coating.

  16. Phase relations in the Fe-Ni-Cr-S system and the sulfidation of an austenitic stainless steel

    NASA Technical Reports Server (NTRS)

    Jacob, K. T.; Rao, D. B.; Nelson, H. G.

    1977-01-01

    The stability fields of various sulfide phases that form on Fe-Cr, Fe-Ni, Ni-Cr and Fe-Cr-Ni alloys were developed as a function of temperature and the partial pressure of sulfur. The calculated stability fields in the ternary system were displayed on plots of log P sub S sub 2 versus the conjugate extensive variable which provides a better framework for following the sulfidation of Fe-Cr-Ni alloys at high temperatures. Experimental and estimated thermodynamic data were used in developing the sulfur potential diagrams. Current models and correlations were employed to estimate the unknown thermodynamic behavior of solid solutions of sulfides and to supplement the incomplete phase diagram data of geophysical literature. These constructed stability field diagrams were in excellent agreement with the sulfide phases and compositions determined during a sulfidation experiment.

  17. Powder-Derived High-Conductivity Coatings for Copper Alloys

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.

    2003-01-01

    Makers of high-thermal-flux engines prefer copper alloys as combustion chamber liners, owing to a need to maximize heat dissipation. Since engine environments are strongly oxidizing in nature and copper alloys generally have inadequate resistance to oxidation, the liners need coatings for thermal and environmental protection; however, coatings must be chosen with great care in order to avoid significant impairment of thermal conductivity. Powder-derived chromia- and alumina- forming alloys are being studied under NASA's programs for advanced reusable launch vehicles to succeed the space shuttle fleet. NiCrAlY and Cu-Cr compositions optimized for high thermal conductivity have been tested for static and cyclic oxidation, and for susceptibility to blanching - a mode of degradation arising from oxidation-reduction cycling. The results indicate that the decision to coat the liners or not, and which coating/composition to use, depends strongly on the specific oxidative degradation mode that prevails under service conditions.

  18. Interface Microstructure and Tribological Properties of Flame Spraying NiCr/La2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu; Liang, Bunv; Guo, Hongjian

    2014-12-01

    NiCr alloy coatings with 0.5, 1.0, 1.5 and 2.0 wt.% of La2O3 were deposited on 1045 carbon steel by a flame spraying and melting processing. Interface microstructure investigations of the coating/substrate systems were conducted by field emission gun scanning electron microscopy, with attached energy dispersive spectroscopy. The effect of La2O3 addition on the tribological properties of the coatings was investigated under dry sliding wear conditions. The result showed that the microstructure of the NiCr alloy coatings are refined with proper amounts of La2O3, and the microhardness and wear resistance of the coatings show best enhancement with 1.0% La2O3.

  19. Heredity of medium-range order structure from melts to the microstructure of Ni-Cr-W superalloy

    NASA Astrophysics Data System (ADS)

    Gao, Zhongtang; Hu, Rui; Wang, Jun; Li, Jinshan

    2015-07-01

    The structure factor S( Q), intensities and pair distribution function g( r) of liquid Ni-Cr-W superalloy at different temperatures have been measured by a high-temperature X-ray diffractometer. Coordination N min, correlation radius r c, the nearest atomic distance r 1, solidification microstructure and compression performance have been studied. The results show that a pre-peak exists on the structure factor curve at the liquidus temperature, and a fine structure of equiaxed, globular and non-dendritic primary grains can be achieved by casting the alloy at liquidus temperature. Liquid structure feature of Ni-Cr-W superalloy is found to depend on temperature. During the solidification, some structural information carried by the medium-range order (MRO) structure is inherited from the melt to the microstructure, which is beneficial for grain refinement. The maximum yield strength measured from typical microstructure of the equiaxed and non-dendritic grains at 1400 °C is 543 MPa. The results show that refinement and non-dendritic grain is beneficial to the improvement of the yield strength.

  20. Effect of creep stress on microstructure of a Ni-Cr-W-Al-Ti superalloy

    SciTech Connect

    Doh, J.M.; Yoo, K.K.; Choi, J.; Hur, S.K.; Baik, H.K.

    1996-02-15

    Creep stress changes the morphology and distribution of the precipitates in the precipitation-hardened alloys. It leads to the formation of precipitate free zones (PFZs) near the grain boundaries. From the microstructural observation of the creep tested specimens of a Ni-Cr-W-Al-Ti superalloy, the relation between PFZs and the amount of plastic deformation in the creep-ruptured specimen is established and the validity of the existing model is discussed based upon the experimental results.

  1. Interdiffusion in Ni/CrMo Composition-Modulated Films

    SciTech Connect

    Jankowski, A F; Saw, C K

    2003-02-18

    The measurement of diffusivity at low temperature in the Ni-CrMo alloy system, relative to the melt point, is accomplished through the use of a composition-modulated structure. The composition-modulated structure consists of numerous pairs of alternating Ni and Cr-Mo layers that are each just a few nanometers thick. A direct assessment of alloy stability is made possible through measurement of the atomic diffusion between these layers that occurs during anneal treatments. X ray diffraction under the Bragg condition in the {theta}/2{theta} mode is the method used to quantify the changes that occur in the short-range order, i.e. the artificial composition fluctuation. The relative intensities of satellite reflections about the Bragg peaks are monitored as a function of the time at temperature. The decay rate of the artificial composition fluctuation of Ni with Cr-Mo is analyzed using the microscopic theory of diffusion to quantify a macroscopic diffusion coefficient D as 1.52 x 10{sup -19} cm{sup 2} {center_dot} sec{sup -1} for Ni{sub 2}(Cr,Mo) at 760 K.

  2. High strength nickel-chromium-iron austenitic alloy

    DOEpatents

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    A solid solution strengthened Ni-Cr-Fe alloy capable of retaining its strength at high temperatures and consisting essentially of 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminum, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06 zirconium, and the balance iron. After solution annealing at 1038.degree. C. for one hour, the alloy, when heated to a temperature of 650.degree. C., has a 2% yield strength of 307 MPa, an ultimate tensile strength of 513 MPa and a rupture strength of as high as 400 MPa after 100 hours.

  3. Abrasive Wear Study of NiCrFeSiB Flame Sprayed Coating

    NASA Astrophysics Data System (ADS)

    Sharma, Satpal

    2013-10-01

    In the present study, abrasive wear behavior of NiCrFeSiB alloy coating on carbon steel was investigated. The NiCrFeSiB coating powder was deposited by flame spraying process. The microstructure, porosity and hardness of the coatings were evaluated. Elemental mapping was carried out in order to study the distribution of various elements in the coating. The abrasive wear behavior of these coatings was investigated under three normal loads (5, 10 and 15 N) and two abrasive grit sizes (120 and 320 grit). The abrasive wear rate was found to increase with the increase of load and abrasive size. The abrasive wear resistance of coating was found to be 2-3 times as compared to the substrate. Analysis of the scanning electron microscope images revealed cutting and plowing as the material removal mechanisms in these coatings under abrasive wear conditions used in this investigation.

  4. High-Temperature Behavior of a NiCr-Coated T91 Boiler Steel in the Platen Superheater of Coal-Fired Boiler

    NASA Astrophysics Data System (ADS)

    Chatha, Sukhpal Singh; Sidhu, Hazoor S.; Sidhu, Buta S.

    2013-06-01

    Ni-20Cr coating was deposited on T91 boiler tube steel by high-velocity oxy-fuel (HVOF) process to enhance high-temperature oxidation resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under in the platen superheater zone of coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles, each of 100-h duration followed by 1-h cooling at ambient temperature. The extent of degradation of the specimens was assessed by the thickness loss and depth of internal corrosion attack. Ni-20Cr-coated steel performed better than the uncoated steel in actual boiler environment. The improved degradation resistance of Ni-20Cr coating can be attributed to the presence of Cr2O3 in the top oxide scale and dense microstructure.

  5. Factors Affecting the Hydrogen Embrittlement Resistance of Ni-Cr-Mn-Nb Welds

    SciTech Connect

    G.A. Young; C.K. Battige; N. Liwis; M.A. Penik; J. Kikel; A.J. Silvia; C.K. McDonald

    2001-03-18

    Nickel based alloys are often welded with argon/hydrogen shielding gas mixtures to minimize oxidation and improve weld quality. However, shielding gas mixtures with {ge} 1% hydrogen additions can result in hydrogen concentrations greater than 5 wt. ppm in the weld metal and reduce ductility via hydrogen embrittlement. For the conditions investigated, the degree of hydrogen embrittlement is highly variable between 5 and 14 wt. ppm. investigation of hydrogen embrittlement of EN82H GTAW welds via tensile testing, light microscopy, transmission electron microscopy, orientation imaging microscopy, and thermal desorption spectroscopy shows that this variability is due to the inhomogeneous microstructure of the welds, the presence of recrystallized grains, and complex residual plastic strains. Specifically, research indicates that high residual strains and hydrogen trapping lower the ductility of Ni-Cr-Mn-Nb weld metal when dissolved hydrogen concentrations are greater than 5 wt. ppm. The inhomogeneous microstructure contains columnar dendritic, cellular dendritic, and recrystallized grains. The decreased tensile ductility observed in embrittled samples is recovered by post weld heat treatments that decrease the bulk hydrogen concentration below 5 wt. ppm.

  6. Oxygen potentials in Ni + NiO and Ni + Cr2O3 + NiCr2O4 systems

    NASA Astrophysics Data System (ADS)

    Kale, G. M.; Fray, D. J.

    1994-06-01

    The chemical potential of O for the coexistence of Ni + NiO and Ni + Cr2O3 + NiCr2O4 equilibria has been measured employing solid-state galvanic cells, (+) Pt, Cu + Cu2O // (Y2O3)ZrO2 // Ni + NiO, Pt (-) and (+) Pt, Ni + NiO // (Y2O3)ZrO2 // Ni + Cr2O3 + NiCr2O4, Pt (-) in the temperature range of 800 to 1300 K and 1100 to 1460 K, respectively. The electromotive force (emf) of both the cells was reversible, reproducible on thermal cycling, and varied linearly with temperature. For the coexistence of the two-phase mixture of Ni + NiO, δΜO 2(Ni + NiO) = -470,768 + 171.77T (±20) J mol-1 (800 ≤ T ≤ 1300 K) and for the coexistence of Ni + Cr2O3 + NiCr2O4, δΜO 2(Ni + Cr2O3 + NiCr2O4) = -523,190 + 191.07T (±100) J mol-1 (1100≤ T≤ 1460 K) The “third-law” analysis of the present results for Ni + NiO gives the value of ‡H{298/o} = -239.8 (±0.05) kJ mol-1, which is independent of temperature, for the formation of one mole of NiO from its elements. This is in excellent agreement with the calorimetric enthalpy of formation of NiO reported in the literature.

  7. The oxidation and corrosion of ODS alloys

    NASA Technical Reports Server (NTRS)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  8. High strength alloys

    DOEpatents

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  9. High strength alloys

    DOEpatents

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  10. The use of Ni-Cr-Si-Be filler metals for brazing of stainless steels

    NASA Astrophysics Data System (ADS)

    Ivannikov, A.; Fedotov, V.; Suchkov, A.; Penyaz, M.; Fedotov, I.; Tarasov, B.

    2016-04-01

    Nanocrystalline ribbon filler metal-alloys of system Ni-Cr-Si-Be are produced by the rapidly quenching of the melt method. By these filler metals carried out hight temperature vacuum brazing of austenitic steels (12Kh18N10T and Kh18N8G2) and austenitic-ferritic class EI-811 (12Kh21N5T). The basic laws of structure-phase state foundation of brazed joints are determined, features of the interaction of the molten filler metal to the brazed materials are identified, the optimal temperature and time parameters of the brazing process are determined.

  11. Microstructures and mechanical properties of metallic NiCrBSi and composite NiCrBSi-WC layers manufactured via hybrid plasma/laser process

    NASA Astrophysics Data System (ADS)

    Serres, Nicolas; Hlawka, Françoise; Costil, Sophie; Langlade, Cécile; Machi, Frédérique

    2011-04-01

    Thermal spraying is already used in industry to protect mechanical parts against wear and/or corrosion, but results are not always satisfactory due to porosity and microstructures. In this study, atmospheric plasma spraying (APS) and in situ laser irradiation by diode laser processes were combined to modify structural characteristics of metallic NiCrBSi and composite NiCrBSi-WC coatings. The microstructure evolution was studied with the chemical composition analysis by XRD and SEM coupled with EDS techniques. Instrumented nanoindentation tests were also conducted employing a Berkovich indenter. Moreover, the effect of the influence of the volume fraction of the reinforcing WC particles on the formation and mechanical performances of the layer was also investigated. Results show that in situ laser remelting induces the growth of a dendritic structure which strongly decreases the porosity of as-sprayed coatings, without solidification cracking (one of the major defects that can occur during the solidification of metallic or composite alloys) and improves the mechanical properties of the layer. Indeed, the layer properties such as hardness, elastic modulus, shear strength and wear rate are dependent on the percentage of WC particles in the mixture.

  12. Weldability of High Alloys

    SciTech Connect

    Maroef, I

    2003-01-22

    The purpose of this study was to investigate the effect of silicon and iron on the weldability of HAYNES HR-160{reg_sign} alloy. HR-I60 alloy is a solid solution strengthened Ni-Co-Cr-Si alloy. The alloy is designed to resist corrosion in sulfidizing and other aggressive high temperature environments. Silicon is added ({approx}2.75%) to promote the formation of a protective oxide scale in environments with low oxygen activity. HR-160 alloy has found applications in waste incinerators, calciners, pulp and paper recovery boilers, coal gasification systems, and fluidized bed combustion systems. HR-160 alloy has been successfully used in a wide range of welded applications. However, the alloy can be susceptible to solidification cracking under conditions of severe restraint. A previous study by DuPont, et al. [1] showed that silicon promoted solidification cracking in the commercial alloy. In earlier work conducted at Haynes, and also from published work by DuPont et al., it was recognized that silicon segregates to the terminal liquid, creating low melting point liquid films on solidification grain boundaries. Solidification cracking has been encountered when using the alloy as a weld overlay on steel, and when joining HR-160 plate in a thickness greater than19 millimeters (0.75 inches) with matching filler metal. The effect of silicon on the weldability of HR-160 alloy has been well documented, but the effect of iron is not well understood. Prior experience at Haynes has indicated that iron may be detrimental to the solidification cracking resistance of the alloy. Iron does not segregate to the terminal solidification product in nickel-base alloys, as does silicon [2], but iron may have an indirect or interactive influence on weldability. A set of alloys covering a range of silicon and iron contents was prepared and characterized to better understand the welding metallurgy of HR-160 alloy.

  13. Development of forming and joining technology for TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Torgerson, R. T.

    1973-01-01

    Forming joining techniques and properties data were developed for thin-gage TD-NiCr sheet in the recrystallized and unrecrystallized conditions. Theoretical and actual forming limit data are presented for several gages of each type of material for five forming processes: brake forming, corrugation forming, joggling, dimpling and beading. Recrystallized sheet can be best formed at room temperature, but unrecrystallized sheet requires forming at elevated temperature. Formability is satisfactory with most processes for the longitudinal orientation but poor for the transverse orientation. Dimpling techniques require further development for both material conditions. Data on joining techniques and joint properties are presented for four joining processes: resistance seam welding (solid-state), resistance spot welding (solid-state), resistance spot welding (fusion) and brazing. Resistance seam welded (solid-state) joints with 5t overlap were stronger than parent material for both material conditions when tested in tensile-shear and stress-rupture. Brazing studies resulted in development of NASA 18 braze alloy (Ni-16Cr-15Mo-8Al-4Si) with several properties superior to baseline TD-6 braze alloy, including lower brazing temperture, reduced reaction with Td-Ni-Cr, and higher stress-rupture properties.

  14. High specialty stainless steels and nickel alloys for FGD dampers

    SciTech Connect

    Herda, W.R.; Rockel, M.B.; Grossmann, G.K.; Starke, K.

    1997-08-01

    Because of process design and construction, FGD installations normally have bypass ducts, which necessitates use of dampers. Due to corrosion from acid dew resulting from interaction of hot acidic flue gases and colder outside environments, carbon steel cannot be used as construction material under these specific conditions. In the past, commercial stainless steels have suffered by pitting and crevice corrosion and occasionally failed by stress corrosion cracking. Only high alloy specialty super-austenitic stainless steels with 6.5% Mo should be used and considered for this application. Experience in Germany and Europe has shown that with regard to safety and life cycle cost analysis as well as providing a long time warranty, a new specialty stainless steel, alloy 31--UNS N08031--(31 Ni, 27 Cr, 6.5 Mo, 0.2 N) has proven to be the best and most economical choice. Hundreds of tons in forms of sheet, rod and bar, as well as strip (for damper seals) have been used and installed in many FGD installations throughout Europe. Under extremely corrosive conditions, the new advanced Ni-Cr-Mo alloy 59--UNS N06059--(59 Ni, 23 Cr, 16 Mo) should be used. This paper describes qualification and workability of these alloys as pertains to damper applications. Some case histories are also provided.

  15. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    SciTech Connect

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600ÀC with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  16. The Behavior of Gas Powder Laser Clad NiCrBSi Coatings Under Contact Loading

    NASA Astrophysics Data System (ADS)

    Savrai, R. A.; Makarov, A. V.; Soboleva, N. N.; Malygina, I. Yu.; Osintseva, A. L.

    2016-03-01

    The behavior of NiCrBSi coatings obtained by laser cladding from powders with various chromium, carbon and boron contents has been investigated under contact loading through microindentation using a Vickers indenter and via non-impact cyclic loading as per "sphere-to-surface" contact scheme. The phase composition of the coating containing 0.48% C, 14.8% Cr, 2.1% B is γ + Ni3B + Cr23C6 and that of the coating containing 0.92% C, 18.2% Cr, 3.3% B is γ + Ni3B + Cr7C3 + CrB. The established restrictions of the processes of plastic deformation and cracking for the more heavily alloyed and harder coating under contact fatigue loading are substantially due to its increased ability to deform predominantly in the elastic region under the used cyclic loading conditions. This is indicated by the obtained microindentation data and, therefore, the microindentation method (one-time indentation) can be used to assess the ability of the laser clad NiCrBSi coatings to withstand repeated contact loads.

  17. Thermal Stability of Microstructure and Hardness of Cold-Sprayed cBN/NiCrAl Nanocomposite Coating

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Tao; Li, Chang-Jiu

    2012-06-01

    cBN/NiCrAl nanocomposite coatings were deposited by cold spraying using mechanically alloyed composite powders. To examine their thermal stability, the nanocomposite coatings were annealed at different temperatures up to 1000 °C. The microstructure of composite coatings was characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results showed that the nanostructure can be retained when the annealing temperature is not higher than 825 °C, which is 0.7 times of the melting point of the NiCrAl matrix. The dislocation density was significantly reduced when the annealing temperature was higher than 750 °C. The reaction between cBN particles and the NiCrAl matrix became noticeable when the annealing temperature was higher than 825 °C. The effects of grain refinement and work-hardening strengthening mechanisms were quantitatively estimated as a function of annealing temperature. The influence of annealing temperature on the contribution of different strengthening mechanisms to coating hardness was discussed.

  18. Hot corrosion and high temperature corrosion behavior of a new gas turbine material -- alloy 603GT

    SciTech Connect

    Agarwal, D.C.; Brill, U.; Klower, J.

    1998-12-31

    Salt deposits encountered in a variety of high temperature processes have caused premature failures in heat exchangers and superheater tubes in pulp and paper recovery boilers, waste incinerators and coal gasifiers. Molten salt corrosion studies in both land based and air craft turbines have been the subject of intense study by many researchers. This phenomenon referred to as ``hot corrosion`` has primarily been attributed to corrosion by alkali sulfates, and there is somewhat general agreement in the literature that this is caused by either basic or acidic dissolution (fluxing) of the protective metal oxide layers by complex salt deposits containing both sulfates and chlorides. This paper describes experimental studies conducted on the hot corrosion behavior of a new Ni-Cr-Al alloy 603GT (UNS N06603) in comparison to some commercially established alloys used in gas turbine components.

  19. Hot Corrosion Behavior of Bare, Cr3C2-(NiCr) and Cr3C2-(NiCr) + 0.2wt.%Zr Coated SuperNi 718 at 900 °C

    NASA Astrophysics Data System (ADS)

    Mudgal, Deepa; Singh, Surendra; Prakash, Satya

    2015-01-01

    Corrosion in incinerators, power plants, and chemical industries are frequently encountered due to the presence of salts containing sodium, sulphur, and chlorine. To obviate this problem, bare and coated alloys were tested under environments simulating the conditions present inside incinerators and power plants. 0.2 wt.% zirconium powder was incorporated in the Cr3C2-(NiCr) coating powder. The original powder and Zr containing powder was sprayed on Superni 718 alloy by D-gun technique. The bare and coated alloys were tested under Na2SO4 + K2SO4 + NaCl + KCl and Na2SO4 + NaCl environment. The corrosion rate of specimens was monitored using weight change measurements. Characterization of the corrosion products has been done using FE-SEM/EDS and XRD techniques. Bare and coated alloys showed very good corrosion resistance under given molten salt environments. Addition of 0.2wt.%Zr in Cr3C2-25%(NiCr) coating further greatly reduced the oxidation rate as well as improved the adherence of oxide scale to the coating surface during the time of corrosion.

  20. Distribution of Cd, Ni, Cr and Pb in sewage sludge amended soils

    NASA Astrophysics Data System (ADS)

    Sanfeliu, Teófilo

    2010-05-01

    , organic matter and clay content, is essential. The sewage sludge incorporation has modified the soil composition, leading to the increment of heavy metals. The heavy metals in this set of sewage sludge amended soils were mostly and variously associated with residual, reducible and carbonate forms depending on the nature and properties of the soils. Mainly, Ni, Cr and Pb are associated with residual phase. However, Cd is mainly associated with carbonate forms. Use of X-rays diffraction to observe possible associations of heavy metals with soil constituents proved to be unsuccessful due to a combination of the highly dispersed distribution of the heavy metals in the soil matrix.

  1. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  2. Effects of high temperature treatment on microstructure and mechanical properties of laser-clad NiCrBSi/WC coatings on titanium alloy substrate

    SciTech Connect

    Li, Guang Jie; Li, Jun Luo, Xing

    2014-12-15

    Laser-clad composite coatings on the Ti6Al4V substrate were heat-treated at 700, 800, and 900 °C for 1 h. The effects of post-heat treatment on the microstructure, microhardness, and fracture toughness of the coatings were investigated by scanning electron microscopy, X-ray diffractometry, energy dispersive spectroscopy, and optical microscopy. The wear resistance of the coatings was evaluated under dry reciprocating sliding friction at room temperature. The coatings mainly comprised some coarse gray blocky (W,Ti)C particles accompanied by the fine white WC particles, a large number of black TiC cellular/dendrites, and the matrix composed of NiTi and Ni{sub 3}Ti; some unknown rich Ni- and Ti-rich particles with sizes ranging from 10 nm to 50 nm were precipitated and uniformly distributed in the Ni{sub 3}Ti phase to form a thin granular layer after heat treatment at 700 °C. The granular layer spread from the edge toward the center of the Ni{sub 3}Ti phase with increasing temperature. A large number of fine equiaxed Cr{sub 23}C{sub 6} particles with 0.2–0.5 μm sizes were observed around the edges of the NiTi supersaturated solid solution when the temperature was further increased to 900 °C. The microhardness and fracture toughness of the coatings were improved with increased temperature due to the dispersion-strengthening effect of the precipitates. Dominant wear mechanisms for all the coatings included abrasive and delamination wear. The post-heat treatment not only reduced wear volume and friction coefficient, but also decreased cracking susceptibility during sliding friction. Comparatively speaking, the heat-treated coating at 900 °C presented the most excellent wear resistance. - Highlights: • TiC + WC reinforced intermetallic compound matrix composite coatings were produced. • The formation mechanism of the reinforcements was analyzed. • Two precipitates were generated at elevated temperature. • Cracking susceptibility and microhardness of the coatings were improved. • Post-heat treatment enhances wear resistance of the coatings.

  3. Alloy B-10, a new nickel-based alloy for strong chloride-containing, highly acidic and oxygen-deficient environments

    SciTech Connect

    Kohler, M.; Kirchheiner, R.; Stenner, F.

    1998-12-31

    Alloy B-10 is a Ni-Mo-Cr alloy, recently developed for highly acidic but oxygen-deficient environments in the chemical process and environmental protection industries. The new nickel-based alloy with nominally (wt. %) 62 Ni, 24 MO, 8 Cr and 6 Fe, exhibits excellent corrosion resistance in intermediate concentrations of sulfuric acid, as well as in hydrochloric acid, even with additions of small amounts of oxidizing agents. In a simulated Flue Gas Desulfurization (FGD) environment of sulfuric acid of pH 1 with additions of 7% chloride and 0.01% fluoride, and also containing 15% gypsum the new alloy demonstrated high crevice corrosion resistance at 100 C, whereas a common Ni-Cr-Mo alloy of the C-type suffers crevice corrosion under the same conditions. This new alloy can easily be welded without filler or using matching filler. Good practical experience has been gained with Alloy B-10 in a district heating power station as a tube sheet and bottom wall liner for a glass tube heat exchanger working at 130 C with condensing 70% sulfuric acid.

  4. Evaluation of Ceria-Added Cr3C2-25(NiCr) Coating on Three Superalloys under Simulated Incinerator Environment

    NASA Astrophysics Data System (ADS)

    Mudgal, Deepa; Singh, Surendra; Prakash, Satya

    2015-02-01

    Cr3C2-25(NiCr) coating is widely used in wear, erosion and corrosion applications. In the present study, D-gun-sprayed Cr3C2-25(NiCr) coatings with and without 0.4 wt.% ceria incorporated were deposited on Superni 718, Superni 600 and Superco 605 substrates. Hot-corrosion runs were conducted in 40 %Na2SO4-40 %K2SO4-10 %NaCl-10 %KCl environment at 900 °C for 100 cycles. Corrosion kinetics was monitored using weight gain measurements. Characterization of corrosion products was carried out by field-emission scanning electron microscopy (FESEM)/energy-dispersive spectroscopy (EDS) and x-ray diffraction (XRD) techniques. It was observed that Cr3C2-25(NiCr) coating with and without added ceria deposited on both of the Ni-based alloys showed resistance to corrosion under the given environment. Addition of ceria enhanced the adherence of the oxide to the coating during the corrosion run and reduced the overall weight gain. However, Cr3C2-25(NiCr)-coated Superco 605 did not perform satisfactorily under this environment.

  5. Rub tolerance evaluation of two sintered NiCrAl gas path seal materials. [wear tests of gas turbine engine seals

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1978-01-01

    Two strength level variations of sintered NiCrAl (about 40 percent dense), candidate high pressure turbine seal materials, were subject to rub tolerance testing against AM 355 steel blade tips. The high strength material (17 N/sq mm tensile strength) showed frictional and radial loads that were 20 to 50 percent higher than those measured for the low strength material (15.5 N/ sq mm tensile strength). Measured wear to the AM 355 blade tips was not significantly different for the two sintered NiCrAl seal materials. Wear of the sintered NiCrAl was characterized by material removal to a depth greater than the depth to which blade tips were driven into the seal, indicating self-erosion effects.

  6. Hot hardness of nickel-rich nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1976-01-01

    Rockwell A hardness of cast nickel-chromium-aluminum (NiCrAl) alloys was examined from ambient to 1150 K and compared to cast NiAl and IN-100. Alloy constitution was either gamma, gamma prime + gamma or gamma + beta + alpha + gamma prime. Below 1000 K beta containing NiCrAl alloys have hardnesses comparable to IN-100; above 1000 K they soften faster than IN-100. At 1150 K the hardness of beta-containing NiCrAl alloys decreases with increasing beta-content. The beta-containing NiCrAl alloys were harder than beta-NiAl. The ultimate tensile strengths of the NiCrAl alloys were estimated. The effects of NiCrAl coatings on strength and fatigue life of cooled turbine components were deduced.

  7. Degradation of a TBC with HVOF-CoNiCrAlY Bond Coat

    NASA Astrophysics Data System (ADS)

    Chen, Weijie R.

    2014-06-01

    Thermal barrier coatings (TBCs) provide both thermal insulation and oxidation and corrosion protection to the substrate metal, and their durability is influenced by delamination near the interface between the ceramic topcoat and the metallic bond coat, where a layer of thermally grown oxide (TGO) forms during service exposure. In the present work, the degradation process of a TBC with an air-plasma-spray ZrO2-8 wt.%Y2O3 topcoat and a high-velocity oxy-fuel CoNiCrAlY bond coat was studied, in terms of TGO growth kinetics and aluminum depletion in the bond coat, as well as cracking behavior. The results show that the TGO growth kinetics can be described by a transient oxidation stage with δ3 = k 1 t followed by a steady-state oxidation stage with δ2 = c + k 2 t. Significant aluminum depletion was observed in the bond coat after extended thermal exposure; however, chemical failure of the bond coat did not occur even after the aluminum content near the TGO/CoNiCrAlY interface decreased to 4.5 at.%. A power-law relationship between the maximum crack length in the TBC and the TGO thickness was observed, which may serve as the basis for TBC life prediction.

  8. Deposition and Oxidation of Oxide-Dispersed CoNiCrAlY Bondcoats

    NASA Astrophysics Data System (ADS)

    Okada, Mitsutoshi; Vassen, Robert; Karger, Matthias; Sebold, Doris; Mack, Daniel; Jarligo, Maria Ophelia; Bozza, Francesco

    2014-01-01

    CoNiCrAlY powder and nano-size alumina powder were milled by a high-energy-attrition ball-mill, and an oxide-dispersed powder was produced with a mixed structure of metal and alumina in each particle. The oxide-dispersed bond coat powder was deposited by HVOF. Pores, however, were observed in the coating since the alumina was deposited without sufficient melting. Isothermal oxidation tests were carried out for the bond coat specimens at a temperature of 1373 K up to 1000 h in air. As a result, oxidation proceeded inside the coating, since oxygen penetrated through pores formed in the dispersed alumina. However, the authors find that another deposition using higher power levels led to a bond coat without pores. A commercially available oxide-dispersed CoNiCrAlY powder was also deposited by HVOF and VPS, and isothermal oxidation tests were performed. The analysis clarifies that the HVOF bond coat exhibited the thinnest thermally grown oxide than those of the VPS bond coat and conventional metallic bond coat. Furnace cycling tests were conducted using the specimens with an additional ceramic thermal-barrier coating. The specimen with the bond coat sprayed by VPS using commercial oxide-dispersed powder showed almost same number of cycles to delamination compared with the specimen with the conventional metal bond coat.

  9. On the Early Stage Isothermal Oxidation of APS CoNiCrAlY Coatings

    NASA Astrophysics Data System (ADS)

    Di Girolamo, G.; Alfano, M.; Pagnotta, L.; Taurino, A.; Zekonyte, J.; Wood, R. J. K.

    2012-09-01

    The aim of this study is to analyze the evolution of microstructural and room temperature mechanical properties of air plasma sprayed (APS) CoNiCrAlY coatings before and after early stage high-temperature oxidation. To this purpose, selected samples were isothermally heat treated at 1110 °C for different durations. Phase analysis and oxide scale characterization were performed using x-ray diffraction. Morphological and microstructural features of as-sprayed and oxidized CoNiCrAlY coatings were analyzed by scanning electron microscopy and energy dispersive x-ray spectroscopy. After heat treatment, a duplex oxide scale, composed of an inner α-Al2O3 layer and an outer spinel-type oxide layer, was observed on coating top-surface. The nanoindentation technique was employed to study the evolution of the mechanical properties. An increase in Young's modulus and hardness with increasing the aging time was observed, this effect was mainly addressed to the partial densification of coating microstructure.

  10. Surface Modification of Cr3C2-NiCr Cermet Coatings by Direct Diode Laser Remelting Process

    NASA Astrophysics Data System (ADS)

    Abe, Nobuyuki; Morimoto, Junji; Fukuhra, Shinji; Yamada, Katsuhiro; Tsukamoto, Masahiro

    Thermal spraying technology has been used for the improvement of wear resistance, erosion resistance, heat resistance and corrosion resistance. Corrosion, wear and abrasion resistance of the substrate materials were significantly improved by the paint coatings. These organic paint coatings, however, did not endure high temperatures and did not adhere well. Modern high performance machinery parts subjected to the extremes of temperature and mechanical stress, needs surface protection against high temperature corrosive media, and mechanical wear and tear. Chromium carbide based materials are commonly used for high temperature wear applications. In this study, we treated Cr3C2-NiCr coatings by laser irradiation treatment and examined its hardness in comparison with that formed by HVOF process. Consequently, the average hardness of laser irradiated Cr3C2-NiCr coating was found out to be higher than that of HVOF coating. The laser-treated Cr3C2-35%NiCr coating further improved the solid particle erosion resistance by a factor of almost twice.

  11. Estimation of excess energies and activity coefficients for the penternary Ni-Cr-Co-Al-Mo system and its subsystems

    NASA Astrophysics Data System (ADS)

    Dogan, A.; Arslan, H.; Dogan, T.

    2015-06-01

    Using different prediction methods, such as the General Solution Model of Kohler and Muggianu, the excess energy and activities of molybdenum for the sections of the phase diagram for the penternary Ni-Cr-Co-Al-Mo system with mole ratios xNi/ xMo = 1, xCr/ xMo = 1, xCo/ xMo = 1, and xAl/ xMo = r = 0.5 and 1, were thermodynamically investigated at a temperature of 2000 K, whereas the excess energy and activities of Bi for the section corresponding to the ternary Bi-Ga-Sb system with mole ratio xGa/ xSb = 1/9 were thermodynamically investigated at a temperature of 1073 K. In the case of r = 0.5 and 1 in the alloys Ni-Cr-Co-Al-Mo, a positive deviation in the activity coefficient was revealed, as molybdenum content increased. Moreover, in the calculations performed in Chou's GSM model, the obtained values for excess Gibbs energies are negative in the whole concentration range of bismuth at 1073 K and exhibit the minimum of about -2.2 kJ/mol at the mole ratio xGa/ xSb = 1/9 in the alloy Bi-Ga-Sb.

  12. Emittance of TD-NiCr after simulated reentry

    NASA Technical Reports Server (NTRS)

    Clark, R. K.; Dicus, D. L.; Lisagor, W. B.

    1978-01-01

    The effects of simulated reentry heating on the emittance of TD-NiCr were investigated. Groups of specimens with three different preconditioning treatments were exposed to 6, 24, and 30 half-hour simulated reentry exposure cycles in a supersonic arc tunnel at each of three conditions intended to produce surface temperatures of 1255, 1365, and 1475 K. Emittance was determined at 1300 K on specimens which were preconditioned only and specimens after completion of reentry simulation exposure. Oxide morphology and chemistry were studied by scanning electron microscopy and X-ray diffraction analysis. A consistent relationship was established between oxide morphology and total normal emittance. Specimens with coarser textured oxides tended to have lower emittances than specimens with finer textured oxides.

  13. Lightweight High-Temperature Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.; Fasheh, J. I.

    1985-01-01

    Fine Ni/Cr fibers sintered into corrosion-resistant, fireproof batt. Possible applications include stoves, furnaces, safes, fire clothing, draperies in public buildings, wall firebreaks, airplane walls, and jetengine components. New insulation takes advantage of some of same properties of nickel/chromium alloy useful in heating elements in toasters, namely, corrosion and oxidation resistance even at high temperatures.

  14. New generation super alloy candidates for medical applications: corrosion behavior, cation release and biological evaluation.

    PubMed

    Reclaru, L; Ziegenhagen, R; Unger, R E; Eschler, P Y; Constantin, F

    2014-12-01

    Three super alloy candidates (X1 CrNiMoMnW 24-22-6-3-2 N, NiCr21 MoNbFe 8-3-5 AlTi, CoNiCr 35-20 Mo 10 BTi) for a prolonged contact with skin are evaluated in comparison with two reference austenitic stainless steels 316L and 904L. Several electrochemical parameters were measured and determined (E(oc), E(corr), i(corr), b(a), b(c), E(b), R(p), E(crev) and coulometric analysis) in order to compare the corrosion behavior. The cation release evaluation and in vitro biological characterization also were performed. In terms of corrosion, the results reveal that the 904L steels presented the best behavior followed by the super austenitic steel X1 CrNiMoMnW 24-22-6-3-2 N. For the other two super alloys (NiCr and CoNiCr types alloys) tested in different conditions (annealed, work hardened and work hardened+age hardened) it was found that their behavior to corrosion was weak and close to the other reference stainless steel, 316L. Regarding the extraction a mixture of cations in relatively high concentrations was noted and therefore a cocktail effect was not excluded. The results obtained in the biological assays WST-1 and TNF-alpha were in correlation with the corrosion and extraction evaluation.

  15. Hot Corrosion Studies of Detonation-Gun-Sprayed NiCrAlY + 0.4 wt.% CeO2 Coated Superalloys in Molten Salt Environment

    NASA Astrophysics Data System (ADS)

    Kamal, Subhash; Jayaganthan, R.; Prakash, Satya

    2011-08-01

    Rare earth oxide (CeO2) has been incorporated in NiCrAlY alloy and hot corrosion resistance of detonation-gun-sprayed NiCrAlY + 0.4 wt.% CeO2 coatings on superalloys, namely, superni 75, superni 718, and superfer 800H in molten 40% Na2SO4-60% V2O5 salt environment were investigated at 900 °C for 100 cycles. The coatings exhibited characteristic splat globular dendritic structure with diameter similar to the original powder particles. The weight change technique was used to establish corrosion kinetics. X-ray diffraction (XRD), field emission scanning electron microscopy/energy-dispersive analysis (FE-SEM/EDAX), and x-ray mapping techniques were used to analyze the corrosion products. Coated superfer 800H alloy showed the highest corrosion resistance among the examined superalloys. CeO2 was found to be distributed in the coating along the splat boundaries, whereas Al streaks distributed non-uniformly. The main phases observed for the coated superalloys are oxides of Ni, Cr, Al, and spinels, which are suggested to be responsible for developing corrosion resistance.

  16. High performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Winkelman, D. M.

    1989-01-01

    Electroformed copper and nickel are used in structural applications for advanced propellant combustion chambers. An improved process has been developed by Bell Aerospace Textron, Inc. wherein electroformed nickel-manganese alloy has demonstrated superior mechanical and thermal stability when compared to previously reported deposits from known nickel plating processes. Solution chemistry and parametric operating procedures are now established and material property data is established for deposition of thick, large complex shapes such as the Space Shuttle Main Engine. The critical operating variables are those governing the ratio of codeposited nickel and manganese. The deposition uniformity which in turn affects the manganese concentration distribution is affected by solution resistance and geometric effects as well as solution agitation. The manganese concentration in the deposit must be between 2000 and 3000 ppm for optimum physical properties to be realized. The study also includes data regarding deposition procedures for achieving excellent bond strength at an interface with copper, nickel-manganese or INCONEL 718. Applications for this electroformed material include fabrication of complex or re-entry shapes which would be difficult or impossible to form from high strength alloys such as INCONEL 718.

  17. PVD synthesis and high-throughput property characterization of NiFeCr alloy libraries

    SciTech Connect

    Rar, A.; Frafjord, J. J.; Fowlkes, Jason D.; Specht, E. D.; Rack, P. D.; Santella, M. L.; Bei, H.; George, E. P.; Pharr, G. M.

    2004-12-16

    Three methods of alloy library synthesis, thick-layer deposition followed by interdiffusion, composition-spread codeposition and electron-beam melting of thick deposited layers, have been applied to Ni-Fe-Cr ternary and Ni-Cr binary alloys. Structural XRD mapping and mechanical characterization by means of nanoindentation have been used to characterize the properties of the libraries. The library synthesis methods are compared from the point of view of the structural and mechanical information they can provide.

  18. Overaluminizing of a CoNiCrAlY Coating by Inward and Outward Diffusion Treatments

    NASA Astrophysics Data System (ADS)

    Bababdani, Samira Mohseni; Nogorani, Farhad Shahriari

    2014-04-01

    Overaluminizing is a commercially accepted treatment to enhance high temperature oxidation resistance of MCrAlY overlay coatings. In the current investigation, a low pressure plasma-sprayed CoNiCrAlY coating was aluminized by two different growth modes: outward growth and inward growth. The resultant microstructures were characterized by means of scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction analysis. The results showed that the final microstructure of both types of overaluminized coatings was similar and included Al-rich NiAl and Ni-rich NiAl zones from the top to the bottom. The details of the microstructures are discussed and compared with the results of simple aluminizing of the nickel-based substrate.

  19. Shear Bond Strength of a Resin Cement to Different Alloys Subjected to Various Surface Treatments

    PubMed Central

    Tabari, Kasra; Jaberi Ansari, Zahra; Torabzadeh, Hassan; Kharrazi fard, Mohammad Javad

    2016-01-01

    Objectives: Micromechanical retention of resin cements to alloys is an important factor affecting the longevity of metal base restorations. This study aimed to compare the bond strength and etching pattern of a newly introduced experimental etchant gel namely Nano Met Etch with those of conventional surface treatment techniques for nickel-chrome (Ni-Cr) and high noble alloys. Materials and Methods: A total of 120 discs (8×10×15 mm) were cast with Ni-Cr (n=20), high noble BegoStar (n=50) and gold coin alloys (n=50). Their Surfaces were ground with abrasive papers. Ni-Cr specimens received sandblasting and etching. High noble alloy specimens (BegoStar and gold coin) received sandblasting, sandblasting-alloy primer, etching, etch-alloy primer and alloy primer alone. Cylindrical specimens of Panavia were bonded to surfaces using Tygon tubes. Specimens were subjected to micro-shear bond strength testing after storing at 37°C for 24 hours. Results: In gold coin group, the highest bond strength was achieved after sandblasting (25.82±1.37MPa, P<0.001) and etching+alloy primer (26.60 ± 5.47 MPa, P<0.01). The lowest bond strength belonged to sandblasting+alloy primer (17.79±2.96MPa, P<0.01). In BegoStar group, the highest bond strength was obtained in the sandblasted group (38.40±3.29MPa, P<0.001) while the lowest bond strength was detected in the sandblast+ alloy primer group (15.38±2.92MPa, P<0.001). For the Ni-Cr alloy, bond strength in the etched group (20.79±2.01MPa) was higher than that in the sandblasted group (18.25±1.82MPa) (P<0.01). Conclusions: For the Ni-Cr alloy, etching was more efficient than sandblasting but for the high noble alloys, higher Au content increased the efficacy of etching. PMID:27536326

  20. Nickel-based Gadolinium Alloy for Neutron Adsorption Application in Ram Packages

    SciTech Connect

    Gregg Wachs; James Sterbentz; William Hurt; P. E. McConnell; C. V. Robino; F. Tovesson; T. S. Hill

    2007-10-01

    Neutron transmission experiments were performed on samples of an advanced nickel-chromium-molybdenum-gadolinium (Ni-Cr-Mo-Gd) neutron absorber alloy and chromium-nickel (Cr-Ni) stainless steel, modified by the addition of boron. The primary purpose of the experiments was to demonstrate the thermal neutron absorbing capability of the materials at specific gadolinium and boron dopant levels. The Ni-Cr-Mo-Gd alloy is envisioned to be deployed for criticality control of highly enriched U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). For these transmission experiments, test samples were fabricated with 0.0, 1.58 and 2.1 wt% natural gadolinium dispersed in a Ni-Cr-Mo base alloy and 1.16 wt% boron in stainless steel. The transmission experiments were successfully carried out at the Los Alamos Neutron Science Center (LANSCE). Measured data from the neutron transmission experiments were compared to calculated results derived from a simple exponential transmission formula using total neutron cross sections. Excellent agreement between the measured and calculated results demonstrated the expected strong thermal absorption capability of the gadolinium and boron elements and in addition, verified the measured elemental composition of the Ni-Cr-Mo-Gd alloy and borated stainless steel test samples. The good agreement also indirectly confirmed that the size and distribution of the gadolinium in both the hot-top (as-cast) and Ni-Cr-Mo-Gd converted to plate was not a discriminator related to neutron absorption. Moreover, the Evaluated Nuclear Data File (ENDF VII) total neutron cross section data were accurate.

  1. High strength ferritic alloy

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high-strength ferritic alloy useful for fast reactor duct and cladding applications where an iron base contains from about 9% to about 13% by weight chromium, from about 4% to about 8% by weight molybdenum, from about 0.2% to about 0.8% by weight niobium, from about 0.1% to about 0.3% by weight vanadium, from about 0.2% to about 0.8% by weight silicon, from about 0.2% to about 0.8% by weight manganese, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight sulfur, a maximum of about 0.02% by weight phosphorous, and from about 0.04% to about 0.12% by weight carbon.

  2. Microstructures of Metallic NiCrBSi Coatings Manufactured via Hybrid Plasma Spray and In Situ Laser Remelting Process

    NASA Astrophysics Data System (ADS)

    Serres, Nicolas; Hlawka, Françoise; Costil, Sophie; Langlade, Cécile; Machi, Frédérique

    2011-01-01

    This paper deals with coating alternatives to hard chromium plating. Thermal spraying is already used in industry, but results are not always satisfactory for reasons of porosity and microstructures. In this study, atmospheric plasma spraying (APS) and in situ laser irradiation by diode laser processes were combined to modify the structural characteristics of thick NiCrBSi alloy layers. The microstructure evolution was studied, and results show that in situ laser remelting induced the growth of a dendritic structure, which strongly decreased the porosity of as-sprayed coatings and increased the adhesion on the substrate. Moreover, no phase transition after laser treatment was observed. Lastly, a mechanical investigation demonstrated that the combination between plasma spray and in situ melting with a diode laser could result in very good mechanical properties. The increase of the laser incident power involved an increase of the mean contact pressure, along with coating hardness. The hybrid process appears to be a possible alternative to hard chromium plating, in order to protect mechanical parts, because of the improved mechanical properties of the NiCrBSi layer.

  3. Microstructure of Au-ion irradiated 316L and FeNiCr austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Jublot-Leclerc, S.; Li, X.; Legras, L.; Lescoat, M.-L.; Fortuna, F.; Gentils, A.

    2016-11-01

    Thin foils of 316L were irradiated in situ in a Transmission Electron Microscope with 4 MeV Au ions at 450 °C and 550 °C. Similar irradiations were performed at 450 °C in FeNiCr. The void and dislocation microstructure of 316L is found to depend strongly on temperature. At 450 °C, a dense network of dislocation lines is observed in situ to grow from black dot defects by absorption of other black dots and interstitial clusters whilst no Frank loops are detected. At 550 °C, no such network is observed but large Frank loops and perfect loops whose sudden appearance is concomitant with a strong increase in void density as a result of a strong coupling between voids and dislocations. Moreover, differences in both alloys microstructure show the major role played by the minor constituents of 316L, increasing the stacking fault formation energy, and possibly leading to significant differences in swelling behaviour.

  4. Interface stability in the Ni-Cr-AI system: Part I. morphological stability of β-γ diffusion couple interfaces at 1150°C

    NASA Astrophysics Data System (ADS)

    Merchant, Sailesh M.; Notis, Michael R.; Goldstein, Joseph I.

    1990-07-01

    Aluminide coatings on Ni-base superalloys offer resistance to oxidation and hot corrosion at elevated temperatures. Complex depositional and subsequent diffusional interactions of the coating with the substrate result in a multiphase product consisting primarily of β-NiAl and γ'-Ni3Al intermediate phases. An understanding of interfacial stability between the coating and the substrate is therefore necessary in order to explain the formation of such phases. The Ni-Cr-AI system serves to simplify the complex chemistry of most Ni-base superalloys. In this study, reaction diffusion and interfacial stability were investigated in solid-solid diffusion couples, consisting of a common β-Ni50Al end-member and a series of γ-pure Ni, binary Ni-Cr, and ternary Ni-Cr-Al alloys, isothermally annealed at 1150 °C for 49 hours. The morphological development of the interface was examined using optical metallography and quantitative information obtained using electron-probe microanalysis. A transition from a stable or planar to an unstable or nonplanar interface in the β-γ diffusion couples was observed with the systematic variation in Cr content of the γ end-member. Interface breakdown in the β-γ couples was explained by means of microstructural information gathered about interfaces, measured diffusion paths, and a knowledge of phase constitution relationships.

  5. Passive Corrosion Behavior of Alloy 22

    SciTech Connect

    Rebak, R B; Payer, J H

    2006-01-10

    Alloy 22 (N06022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nanometers per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  6. Passive Corrosion Behavior of Alloy 22

    SciTech Connect

    R.B. Rebak; J.H. Payer

    2006-01-20

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  7. Mechanically Alloyed High Entropy Composite

    NASA Astrophysics Data System (ADS)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  8. Manufacture and engine test of advanced oxide dispersion strengthened alloy turbine vanes. [for space shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Bailey, P. G.

    1977-01-01

    Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.

  9. Oxidation behaviors of porous Haynes 214 alloy at high temperatures

    SciTech Connect

    Wang, Yan; Liu, Yong; Tang, Huiping; Li, Weijie

    2015-09-15

    The oxidation behaviors of porous Haynes 214 alloy at temperatures from 850 to 1000 °C were investigated. The porous alloys before and after the oxidation were examined by optical microscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) analyses, and X-ray photoelectron spectroscopy (XPS). The oxidation kinetics of the porous alloy approximately follows a parabolic rate law and exhibits two stages controlled by different oxidation courses. Complex oxide scales composed of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Al{sub 2}O{sub 3} are formed on the oxidized porous alloys, and the formation of Cr{sub 2}O{sub 3} on its outer layer is promoted with the oxidation proceeding. The rough surface as well as the micropores in the microstructures of the porous alloy caused by the manufacturing process provides fast diffusion paths for oxygen so as to affect the formation of the oxide layers. Both the maximum pore size and the permeability of the porous alloys decrease with the increase of oxidation temperature and exposure time, which may limit its applications. - Highlights: • Two-stage oxidation kinetics controlled by different oxidation courses is showed. • Oxide scale mainly consists of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Al{sub 2}O{sub 3}. • Rough surface and micropores lead to the formation of uneven oxide structure. • Content of Cr{sub 2}O{sub 3} in the outer layer of the scale increases with time at 1000 °C. • Maximum pore size and permeability decrease with increasing temperature and time.

  10. High-temperature alloys and thermal spray coatings for energy conversion systems

    SciTech Connect

    Al-Taie, I.; Brigham, R.J.; Lafreniere, Y.

    1995-12-31

    Materials continue to be of primary concern as the potential limiting factor for the implementation of coal gasification technology in Canada. Superalloys and thermal spray coatings for syngas coolers represent one class of materials where a knowledge of general trends in oxidation/sulphidation and erosion resistance for a range of chemical compositions is thought to be essential for reliable operation of such technology. Alloy 800H, 304, 310, T91, Monit and Sanicro 28 along with four types of coatings (Al{sub 2}O{sub 3}, Cr{sub 2}O{sub 3}, Al{sub 2}O{sub 3}/Ni3Al and CoCrAlYNi) applied on each one of the above alloys have been subjected to a series of exposures (6 {times} 250h cycles) in two different gas mixtures containing CO, H{sub 2}, H{sub 2}S, H{sub 2}O at 600 C. The kinetics and mechanisms of corrosion and erosion of these alloys have been investigated using Scanning Electron Microscopy and surface analytical techniques. Thermal spray coatings of ceramic and composite materials were found to be problematic on austenitic alloys because of spallation. Ceramic, composite and metallic coatings adhered well to the ferritic alloy. Nickel aluminide in combination with aluminum oxide as a composite did not display the expected high degree of corrosion resistance. High temperature erosion rates were found to be low on the bare superalloys and to be decreased by highly alloyed metallic coatings such as CoCrAlYNi, FeCrAlYMo and NiCrAlYCo. Ceramic and composite coatings were ineffective in reducing erosion rates because of spallation and reactivity in the simulated gasification environment.

  11. Weld induced base metal microfissuring in high temperature alloys

    SciTech Connect

    Lingenfelter, A.C.; Shoemaker, L.E.

    1984-06-22

    Three variables control the weld-induced, base-metal microfissuring sensitivity of Ni-Cr and Ni-Cr-Fe: thermal/mechanical history of the base material, chemical analysis of the base material, and the welding process used. Elements which tend to segregate to the grain boundaries such as B, C, and Zr, and to a lesser extent P, Si, S and Mg, increase the sensitivity. Welding processes listed from most to least severe in their tendency to produce microfissures are: gas metal arc - spray transfer, electron beam, gas metal arc - pulsed transfer, gas metal arc - short circuiting transfer, gas tungsten arc, submerged arc, and shielded metal arc. Microfissuring is always intergranular in nature. Coarse-grain size, whether arrived at by hot-working procedures or pre-weld annealing treatment, increases the sensitivity to microfissuring. Literature data and data for alloy 617 developed at Huntington Alloys suggest that microfissures, at least to 0.030 in. in length, do not affect the fatigue life, room-temperature tensile, and stress-rupture properties of a weldment.

  12. Oxygen potentials in Ni + NiO and Ni + Cr[sub 2]O[sub 3] + NiCr[sub 2]O[sub 4] systems

    SciTech Connect

    Kale, G.M.; Fray, D.J. . Dept. of Mining and Mineral Engineering)

    1994-06-01

    The chemical potential of O for the coexistence of Ni + NiO and Ni + Cr[sub 2]O[sub 3] + NiCr[sub 2]O[sub 4] equilibria has been measured employing solid-state galvanic cells, (+) Pt, Cu + Cu[sub 2]O [vert bar][vert bar] (Y[sub 2]O[sub 3])ZrO[sub 2] [vert bar][vert bar] Ni + NiO, Pt (-) and (+) Pt, Ni + NiO [vert bar][vert bar] (Y[sub 2]O[sub 3])ZrO[sub 2] [vert bar][vert bar] Ni + Cr[sub 2]O[sub 3] + NiCr[sub 2]O[sub 4], Pt (-) in the temperature range of 800 to 1,300 K and 1,100 to 1,460 K, respectively. The electromotive force (emf) of both he cells was reversible, reproducible on thermal cycling, and varied linearly with temperature. for the coexistence of the two-phase mixture of Ni + NiO, [Delta][mu][sub O[sub 2

  13. Manufacturing of High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Jablonski, Paul D.; Licavoli, Joseph J.; Gao, Michael C.; Hawk, Jeffrey A.

    2015-07-01

    High entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion they have high configurational entropy, and thus they hold the promise of interesting and useful properties such as enhanced strength and phase stability. The present study investigates the microstructure of two single-phase face-centered cubic (FCC) HEAs, CoCrFeNi and CoCrFeNiMn, with special attention given to melting, homogenization and thermo-mechanical processing. Large-scale ingots were made by vacuum induction melting to avoid the extrinsic factors inherent in small-scale laboratory button samples. A computationally based homogenization heat treatment was applied to both alloys in order to eliminate segregation due to normal ingot solidification. The alloys fabricated well, with typical thermo-mechanical processing parameters being employed.

  14. Gingival pigmentation by Ni-Cr-based metal ceramic crowns: A clinical report.

    PubMed

    Tian, Min; Ma, Sai; Niu, Lina; Chen, Jihua

    2016-01-01

    This clinical report describes treatment of a patient with gingival pigmentation after the restoration of the right maxillary canine and first premolar with Ni-Cr-based metal ceramic crowns and investigation of mechanisms of gingival discoloration. Histopathological observation and energy dispersive x-ray spectroscopy analysis of the retrieved pigmented gingiva revealed brown deposits both in the epithelial cells and along the basement membranes but no trace of Ni or Cr elements in the pigmented particles, indicating that the gingival pigmentation adjacent to the Ni-Cr-based metal ceramic prosthesis may not be caused by direct deposition of the released ions. PMID:26548874

  15. Mechanical Properties and Microstructure of VPS and HVOF CoNiCrAlY Coatings

    NASA Astrophysics Data System (ADS)

    Saeidi, S.; Voisey, K. T.; McCartney, D. G.

    2011-12-01

    In this study, high velocity oxy-fuel (HVOF) and vacuum plasma spraying (VPS) coatings were sprayed using a Praxair (CO-210-24) CoNiCrAlY powder. Free-standing coatings underwent vacuum annealing at different temperatures for times of up to 840 h. Feedstock powder, and as-sprayed and annealed coatings, were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD). The hardness and Young's modulus of the as-sprayed and the annealed HVOF and VPS coatings were measured, including the determination of Young's moduli of the individual phases via nanoindentation and measurements of Young's moduli of coatings at temperatures up to 500 °C. The Eshelby inclusion model was employed to investigate the effect of microstructure on the coatings' mechanical properties. The sensitivity of the mechanical properties to microstructural details was confirmed. Young's modulus was constant up to ~200 °C, and then decreased with increasing measurement temperature. The annealing process increased Young's modulus because of a combination of decreased porosity and β volume fraction. Oxide stringers in the HVOF coating maintained its higher hardness than the VPS coating, even after annealing.

  16. Tribological Characterization of Plasma-Sprayed CoNiCrAlY-BN Abradable Coatings

    NASA Astrophysics Data System (ADS)

    Irissou, E.; Dadouche, A.; Lima, R. S.

    2014-01-01

    The processing conditions, microstructural and tribological characterizations of plasma-sprayed CoNiCrAlY-BN high temperature abradable coatings are reported in this manuscript. Plasma spray torch parameters were varied to produce a set of abradable coatings exhibiting a broad range of porosity levels (34-62%) and superficial Rockwell hardness values (0-78 HR15Y). Abradability tests have been performed using an abradable-seal test rig, capable of simulating operational wear at different rotor speeds and seal incursion rates (SIRs). These tests allowed determining the rubbing forces and quantifying the blade and seal wear characteristics for slow and fast SIRs. Erosion wear performance and ASTM C633 coating adhesion strength test results are also reported. For optimal abradability performance, it is shown that coating hardness needs to be lower than 70 and 50 HR15Y for slow and fast blade incursion rate conditions, respectively. It is shown that the erosion wear performance, as well as, the coating cohesive strength is a function of the coating hardness. The current results allow defining the coating specifications in terms of hardness and porosity for targeted applications.

  17. High strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  18. Effect of Nd2O3 Additive on Microstructure and Tribological Properties of Plasma-Sprayed NiCr-Cr2O3 Composite Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Jie; An, Yulong; Zhao, Xiaoqin; Yan, Fengyuan; Zhou, Huidi; Chen, Jianmin

    2014-02-01

    Four types of NiCr-Cr2O3 composite coatings doped with different mass fraction of Nd2O3 were deposited by atmospheric plasma spraying. The microstructure and phase composition of as-sprayed coatings were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). Furthermore, their friction and wear behaviors at 20 and 600 °C under unlubricated condition were evaluated using CSM high temperature tribometer. The results showed that Nd2O3 could refine microstructure of NiCr-Cr2O3 composite coating and make Cr2O3 distribution more uniform in the coating, which leads to the increase of average microhardness. In addition, NiCr-Cr2O3 composite coatings doped with Nd2O3 had better wear resistance than that without Nd2O3 at experimental temperatures. Especially, the coating containing 8 wt.% Nd2O3 showed the best wear resistance at 20 and 600 °C, which was attributed to the refined microstructure and improved microhardness. At 20 °C, the wear mechanism of the coating was abrasive wear, brittle fracture and splat detachment. At 600 °C, the wear mechanism was adhesion wear and plastic deformation.

  19. High Temperature Corrosion studies on Pulsed Current Gas Tungsten Arc Welded Alloy C-276 in Molten Salt Environment

    NASA Astrophysics Data System (ADS)

    Manikandan, M.; Arivarasu, M.; Arivazhagan, N.; Puneeth, T.; Sivakumar, N.; Murugan, B. Arul; Sathishkumar, M.; Sivalingam, S.

    2016-09-01

    Alloy C-276 is widely used in the power plant environment due to high strength and corrosion in highly aggressive environment. The investigation on high- temperature corrosion resistance of the alloy C-276 PCGTA weldment is necessary for prolonged service lifetime of the components used in corrosive environments. Investigation has been carried out on Pulsed Current Gas Tungsten Arc Welding by autogenous and different filler wires (ERNiCrMo-3 and ERNiCrMo-4) under molten state of K2SO4-60% NaCl environment at 675oC under cyclic condition. Thermogravimetric technique was used to establish the kinetics of corrosion. Weight gained in the molten salt reveals a steady-state parabolic rate law while the kinetics with salt deposits displays multi-stage growth rates. PCGTA ERNiCrMo-3 shows the higher parabolic constant compared to others. The scale formed on the weldment samples upon hot corrosion was characterized by using X-ray diffraction, SEM and EDAX analysis to understand the degradation mechanisms. From the results of the experiment the major phases are identified as Cr2O3, Fe2O3, and NiCr2O4. The result showed that weld fabricated by ERNiCrMo-3 found to be more prone to degradation than base metal and ERNiCrMo-4 filler wire due to higher segregation of alloying element of Mo and W in the weldment

  20. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  1. Use of a new 16% moly alloy for weld surfacing in sour environments

    SciTech Connect

    Maligas, M.N.; Vicic, J.C.; Agarwal, D.C.; Koehler, M.

    1994-12-31

    Special low iron Ni-Cr-Mo alloy 625 as a weld overlay material on low alloy steel for well head applications has been successfully used and continues to be used in the sour corrosive environments of the oil/gas industry. The presence of high chlorides, carbon dioxide and hydrogen sulfide combined with high pressures and temperatures necessitated the use of an alloy with a Pitting Resisting Equivalent as defined by PRE = % Cr + 3.3 {times} % (Mo) of at least 50 or greater. However, in certain sour environments and higher temperatures, alloy 625 reaches its limits and failures have been reported from the field. Another alternative for significantly extending the window of operation and provide better reliability and versatility is offered by a new high chromium, high molybdenum and a very high PRE alloy of the Ni-Cr-Mo family, known as alloy 59 (UNS N06059). This paper presents the initial test results of a preliminary research program conducted on alloy 59 as a better weld overlay material.

  2. Effects of Substrate Roughness on Splat Formation for Ni-Cr Particles Plasma Sprayed onto Aluminum Substrates

    NASA Astrophysics Data System (ADS)

    Brossard, S.; Munroe, P. R.; Tran, A. T. T.; Hyland, M. M.

    2010-09-01

    Roughening of the substrate, for instance by grit-blasting or etching, is often used before plasma spraying in order to provide a high degree of roughness that promotes mechanical interlocking of the sprayed coating and consequently improved adhesion. This study investigates the morphology and microstructure of NiCr splats formed on such rough Al substrates, where roughness was generated by a number of methods including grinding and etching. Cross sections of the splats and the splat-substrate interface were examined using a range of electron microscopy techniques. Localized substrate melting and chemical mixing with the splat material was observed, forming very particular structures. The formation of various oxides phases and voids was also noted and found to increase, along with the degree of the substrate melting, with increasing substrate roughness. The structures observed were related to the spray conditions and substrate morphology.

  3. Surface Modification of Oilfield Alloys by Ultrasonic Impact Peening: UNS N07718, N07716, G41400, and S17400

    NASA Astrophysics Data System (ADS)

    Singh, Virendra; Marya, Manuel

    2016-01-01

    Ultrasonic impact peening (UIP) is a severe plastic deformation process to induce localized surface hardening combined with compressive residual stresses which therefore extends the useful life of mechanical parts. In this investigation, UIP has been applied to four widespread alloys in use in the oilfields. These include two premium NiCrMo alloys, UNS N07718 (718) and UNS N07716 (625 Plus®), both characterized by satisfactory oilfield performance but lacking hardness and abrasive wear resistance, and two relatively low-cost alloys, UNS G41400 (4140) and UNS S17400 (17-4PH), both limited by their corrosion fatigue. To promote comparisons and determine important alloy parameters for successful UIP, all four alloys were carefully selected so that their respective yield strengths were within relative proximity (~780 to ~910 MPa), and then ultrasonically impact peened under identical conditions. Among major findings from microstructural examinations, micro-hardness indentations, and residual stress measurements, surface topological changes (roughness), alloy microstructural evolution (depth and extent of strain hardening, including mechanical twinning in the NiCrMo alloys), and compressive residual stresses were found to be well correlated. Among all four alloys, the NiCrMo alloys, in particular UNS N07716 was found to be best suited for UIP. This is explained by its FCC austenitic microstructure, relatively low stacking-fault energy (prone to mechanical twinning), and in practical terms high yield strength and high tensile-to-yield strength ratio, both related to its excellent plastic flow behavior under ultrasonic rates of plastic deformation.

  4. Caldron For High-Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Geringer, Henry J.

    1989-01-01

    Induction-heated caldron melts high-temperature alloys. Prevents sort of contamination of melts occurring during arc melting in ceramic crucibles. Liquefies 200 grams of solid metal components of alloy like niobium aluminum and makes alloy homogeneous in less than 3 minutes. Plugged sleeve constitutes main body of caldron. Coolant flows through sleeve to prevent it from melting. Mandrel-wound induction coils adjusted to tune source of power. Also serves as mold for casting alloys into such shapes as bars.

  5. Cd, Ni, Cr and Pb distribution in biosolid pellets used as soil amendment

    NASA Astrophysics Data System (ADS)

    Jordán, Manuel M.; Rincón-Mora, Beatriz; Belén Almendro-Candel, María; Navarro Pedreño, Jose; Gómez Lucas, Ignacio; Bech, Jaume; Roca, Nuria; Pardo, Francisco

    2016-04-01

    The application of biosolids to a soil is a method that offers important benefits (Navarro et al. 2003). The transport and application costs are quite low (mostly if they are dehydrated biosolids or pellets) if soils are located near a wastewater treatment plant. It is possible to recycle nutrients (N, P, and K) and organic matter by improving the physical and chemical characteristics of the soil and by reducing the fertilizer costs. However, the use of biosolids may also has several problems, such as the presence of quantities of metals that could be toxic for plants or could contaminate ground-waters after being leached. Heavy metals are one of the most serious environmental pollutants because of its high toxicity, abundance and easy accumulation by plant (Soriano-Disla et al. 2014; Rosen and Chen 2014). Contamination of soils by potentially toxic elements (e.g. Cd, Ni, Cr, Pb) from amendments of biosolids is subject to rigorous controls within the European Union. The present study was designed to examine the partition of selected heavy metals in biosolid pellets, and also to relate the distribution patterns of these metals. Samples were collected from the treatment of urban wastewater at the drying grounds of a wastewater processing plant. The samples correspond to biosolids with humidities below 20% and are representative of the three horizons within the pile: the isolation surface (H1), the mesophilous area (H2), and the thermophilous area (H3). Biosolid aggregates were placed in a pellet press and then compacted. Total content of metals was determined following microwave digestion and analysed by ICP/MS. Triplicate samples were weighed in polycarbonate centrifuge tubes and sequentially extracted. The distribution of chemical forms of Cd, Ni, Cr, and Pb in the biosolids was studied using a sequential extraction procedure that fractionates the metal into soluble-exchangeable, specifically sorbed-carbonate bound, oxidizable, reducible, and residual forms. The

  6. Thermal Shock Behavior of Air Plasma Sprayed CoNiCrAlY/YSZ Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Liu, Zi Wei; Wu, Wei; Hua, Jia Jie; Lin, Chu Cheng; Zheng, Xue Bin; Zeng, Yi

    2014-07-01

    The structural changes and failure mechanism of thermal barrier coatings (TBCs) during thermal shock cycling were investigated. TBCs consisting of CoNiCrAlY bond coat and partially yttria-stabilized zirconia (YSZ) top coat were deposited by atmospheric plasma spraying (APS) on a nickel-based alloy substrate and its thermal shock resistance performance was evaluated. TBCs were heated at 1100°C for 15 min followed by cold water quenching to ambient temperature. Microstructural evaluation and elemental analysis of TBCs were performed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), respectively. The crack features of YSZ coatings in TBCs during thermal shock cycling, including those of horizontal (parallel to the substrate) and vertical cracks (perpendicular to the substrate), were particularly investigated by means of SEM and image analysis. Results show that horizontal and vertical cracks have different influences on the thermal shock resistance of the coatings. Horizontal cracks that occur at the interface of YSZ and thermally growth oxidation (TGO) cause partial or large-area spalling of coatings. When vertical and horizontal cracks encounter, network segments are formed which lead to partial spalling of the coatings.

  7. Stress corrosion of high strength aluminum alloys.

    NASA Technical Reports Server (NTRS)

    Cocks, F. H.; Brummer, S. B.

    1972-01-01

    An investigation has been carried out to examine the relationship of the observed chemical and mechanical properties of Al-Cu and Al-Zn-Mg alloys to the stress corrosion mechanisms which dominate in each case. Two high purity alloys and analogous commercial alloys were selected. Fundamental differences between the behavior of Al-Cu and of Al-Zn-Mg alloys were observed. These differences in the corrosion behavior of the two types of alloys are augmented by substantial differences in their mechanical behavior. The relative cleavage energy of the grain boundaries is of particular importance.

  8. Protective claddings for high strength chromium alloys

    NASA Technical Reports Server (NTRS)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  9. Microstructure and Fracture Toughness of FeNiCr-TiC Composite Produced by Thermite Reaction

    NASA Astrophysics Data System (ADS)

    Xi, Wenjun; Shi, Chaoliang

    The microstructures of the FeNiCr-TiC composite produced by the rapid solidification thermite process were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The effects of aging treatment on the microstructure and fracture toughness of the composite were examined. Results showed that the FeNiCr-TiC composite was composed of ferrite (α-FeNiCr), TiC and NiAl (β phase). TiC particles in the matrix were in the shape of polygon and uniformly distributed, and their size was less than 3 µm. The β phase was coherent with the ferrite matrix, and its average size was about 50 nm. The fracture toughness of composite was 22 MPa·m1/2 without aging. When the aging temperature was below 600°C, the fracture toughness of the composite had higher plateau values and reached the maximum of 32 MPa·m1/2 at aging temperature 500°C due to the precipitation of NiAl phase on the nanometer scale. The fracture toughness decreased rapidly aged at 650°C, and then kept homology value in the range of 700 to 900°C, which was attributed to the precipitation of needle-shaped carbide (Cr/Fe)7C3 at the grain boundaries.

  10. A Probabilistic Performance Assessment Model for General Corrosion of Alloy 22 for High Level Nuclear Waste Disposal Container

    SciTech Connect

    J. H. Lee; H. A. Elayat

    2003-12-11

    Alloy 22 (UNS N06022) is the candidate material for the corrosion barrier of the double-wall waste package (WP) for the disposal of high-Gel nuclear waste at the proposed Yucca Mountain repository. A probabilistic temperature-dependent general corrosion model for the WP outer barrier (WPOB) was developed based on the 5-year weight-loss measurements of Alloy 22 crevice samples. The 5-year corrosion rate distribution is represented by a Weibull distribution, with scale factors = 8.88, shape factor b = 1.62, and location factor l = 0. The temperature-dependence of the general corrosion rate was modeled using an Arrhenius relation. An activation energy of 25.91 {+-} 2.46 kJ/mol was determined from the corrosion rates obtained from the short-term polarization resistance data for Alloy 22 specimens tested for a wide range of sample configurations, metallurgical conditions, and exposure conditions (temperature and water chemistry). Analysis of the data from the current study and the literature indicates that the activation energies of general corrosion rate of highly corrosion resistant Ni-Cr-Mo alloys including Alloy 22 are similar and do not change significantly, as the general corrosion rate decreases with the exposure time. The 5-year corrosion rates were conservatively selected for extrapolation over the repository time scale. Because of very low general corrosion rates of the WPOB for the conditions expected in the proposed repository, the WP performance will not be limited by general corrosion for the repository regulatory time period. The current conservative approach for the constant (time-independent) general corrosion rate at a given temperature provides an additional confidence for the general corrosion model.

  11. CHARACTERIZATION OF AN ADVANCED GADOLINIUM NEUTRON ABSORBER ALLOY BY MEANS OF NEUTRON TRANSMISSION

    SciTech Connect

    Gregg W. Wachs

    2007-09-01

    Neutron transmission experiments were performed on samples of an advanced nickel-chromium-molybdenum-gadolinium (Ni-Cr-Mo-Gd) neutron absorber alloy. The primary purpose of the experiments was to demonstrate the thermal neutron absorbing capability of the alloy at specific gadolinium dopant levels. The new alloy is to be deployed for criticality control of highly enriched DOE SNF. For the transmission experiments, alloy test samples were fabricated with 0.0, 1.58 and 2.1 wt% natural gadolinium dispersed in a Ni-Cr-Mo base alloy. The transmission experiments were successfully carried out at the Los Alamos Neutron Science Center (LANSCE). Measured data from the neutron transmission experiments were compared to calculated results derived from a simple exponential transmission formula using only radiative capture cross sections. Excellent agreement between the measured and calculated results demonstrated the expected strong thermal absorption capability of the gadolinium poison and in addition, verified the measured elemental composition of the alloy test samples. The good agreement also indirectly confirmed that the gadolinium was dispersed fairly uniformly in the alloy and the ENDF VII radiative capture cross section data were accurate.

  12. Survey of degradation modes of four nickel-chromium-molybdenum alloys

    SciTech Connect

    Gdowski, G.E.

    1991-03-01

    This report examines the degradation modes of four Ni-Cr-Mo alloys under conditions relevant to the Yucca Mountain Site Characterization Project (YMP). The materials considered are Alloys C-276, C-4, C-22, and 625 because they have desirable characteristics for the conceptual design (CD) of the high-level radioactive-waste containers presented in the YMP Site Characterization Plan (SCP). The types of degradation covered in this report are general corrosion; localized corrosion, including pitting and crevice corrosion; stress corrosion cracking in chloride environments; hydrogen embrittlement (HE); and undesirable phase transformations due to a lack of phase stability. Topics not specifically addressed are welding concerns and microbiological corrosion. The four Ni-Cr-Mo alloys have excellent corrosion resistance in chloride environments such as seawater as well as in more aggressive environments. They have significantly better corrosion resistance than the six materials considered for the CD waste container in the YMP SCP. (Those six materials are Types 304L and 3161L stainless steels, Alloy 825, unalloyed copper, Cu(70)-Ni(30), and 7% aluminum bronze.) In seawater, the Ni-Cr-Mo alloys have negligible general corrosion rates and show little evidence of localized corrosion. The four base materials of these alloys are expected to have nearly indistinguishable corrosion resistance in the YMP environments. The strength requirements of the SCP-CD waste container are met by these materials in the annealed condition; in this condition, they are highly resistant to HE. Historically, HE has been noted when these materials have been strengthened (cold-worked) and used in sour gas (H{sub 2}S and CO{sub 2}) well service -- conditions that are not expected for the YMP. Metallurgical phase stability may be a concern under conditions favoring (1) the formation of intermetallics and carbides, and (2) microstructural ordering.

  13. Progress in High-Entropy Alloys

    SciTech Connect

    Gao, Michael C

    2013-12-01

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  14. Annealing behavior of high permeability amorphous alloys

    SciTech Connect

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co/sub 71/ /sub 4/Fe/sub 4/ /sub 6/Si/sub 9/ /sub 6/B/sub 14/ /sub 4/ were investigated. Annealing this alloy below 400/sup 0/C results in magnetic hardening; annealing above 400/sup 0/C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation.

  15. Development and evaluation of advanced austenitic alloys

    SciTech Connect

    Swindeman, R.W.; Maziasz, P.J.; King, J.F.; Bolling, E.

    1990-01-01

    Research was performed on advanced austenitic alloys for tubing in heat recovery systems. Evaluations addressed the need to optimize strength, fabricability, and surface protection for specific environments and temperatures. Alloys studied included advanced lean austenitic stainless steels and higher chromium alloys to 760{degree}C, nickel-chromium-iron aluminides at temperature to 760{degree}C, and Ni--Cr alloys with capability for service to 1000{degree}C. Coordinated research was performed at a number of universities and industrial research facilities. Evaluation of the lean stainless steels focused on MC-forming alloys and a family of modified 316 stainless steels. Work nearing completion revealed that many of the alloy design criteria for the lean stainless steels could be met. With the judicious selection of thermal-mechanical processing, data indicated that high strength and ductility could be achieved in both base metal and weldments. Fabrication requirements needed to produce optimum performance called for high solution treating temperatures and small levels of cold or warm work. Evaluations of high chromium stainless steels and modifications of alloy 800H were encouraging, and good properties were observed for temperatures to 760{degree}C. Work on the alloys and claddings for service to 1000{degree}C was begun on two commercial alloys of nearest in PBFC hot gas cleanup systems. 20 refs., 3 figs., 2 tabs.

  16. Copper Alloy For High-Temperature Uses

    NASA Technical Reports Server (NTRS)

    Dreshfield, Robert L.; Ellis, David L.; Michal, Gary

    1994-01-01

    Alloy of Cu/8Cr/4Nb (numbers indicate parts by atom percent) improved over older high-temperature copper-based alloys in that it offers enhanced high temperature strength, resistance to creep, and ductility while retaining most of thermal conductivity of pure copper; in addition, alloy does not become embrittled upon exposure to hydrogen at temperatures as high as 705 degrees C. Designed for use in presence of high heat fluxes and active cooling; for example, in heat exchangers in advanced aircraft and spacecraft engines, and other high-temperature applications in which there is need for such material. High conductivity and hardness of alloy exploited in welding electrodes and in high-voltage and high-current switches and other applications in which wear poses design problem.

  17. Corrosion and degradation of a polyurethane/Co-Ni-Cr-Mo pacemaker lead

    SciTech Connect

    Sung, P.; Fraker, A.C.

    1987-12-01

    An investigation to study changes in the metal surfaces and the polyurethane insulation of heart pacemaker leads under controlled in vitro conditions was conducted. A polyurethane (Pellethane 2363-80A)/Co-Ni-Cr-Mo (MP35N) wire lead was exposed in Hanks' physiological saline solution for 14 months and then analyzed using scanning electron microscopy, x-ray energy dispersive analysis, and small angle x-ray scattering. Results showed that some leakage of solution into the lead had occurred and changes were present on both the metal and the polyurethane surfaces.

  18. Carbide Dissolution/Carbon Loss as a Function of Spray Distance in Unshrouded/Shrouded Plasma Sprayed Cr3C2-NiCr Coatings

    NASA Astrophysics Data System (ADS)

    Matthews, S.

    2015-02-01

    Thermal spraying of Cr3C2-NiCr composites generates varying degrees of carbide dissolution into the Ni binder. During high-temperature exposure, the carbide dissolution zones precipitate high concentrations of small carbides which develop into finely structured networks. This raises the possibility of producing unique tailored carbide composite structures through the generation of controlled carbide dissolution and appropriate heat treatment. The first step in this process is to produce a supersaturated Ni-Cr-C solid solution from which the carbide phase could be precipitated. In a previous work, a broad range of plasma parameters were trialed to assess their effect on the degree of carbide dissolution at a fixed spray distance of 100 mm. The current two-part work builds on the most promising plasma parameters from those trials. In Part 1 of this two-part article series, the effect of spray distance on the extent of carbide dissolution and carbon loss during high energy plasma spraying was investigated. The effectiveness of solid shield and gas shrouding is contrasted, and the mechanisms by which they influence the degree of decarburization discussed.

  19. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2015-01-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  20. Structural alloys for high field superconducting magnets

    SciTech Connect

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4/sup 0/K and by rate effects associated with adiabatic heating during the tests. 46 refs.

  1. Alloyed coatings for dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Wermuth, F. R.; Stetson, A. R.

    1971-01-01

    Processing techniques were developed for applying several diffusion barriers to TD-Ni and TD-NiCr. Barrier coated specimens of both substrates were clad with Ni-Cr-Al and Fe-Cr-Al alloys and diffusion annealed in argon. Measurement of the aluminum distribution after annealing showed that, of the readily applicable diffusion barriers, a slurry applied tungsten barrier most effectively inhibited the diffusion of aluminum from the Ni-Cr-Al clad into the TD-alloy substrates. No barrier effectively limited interdiffusion of the Fe-Cr-Al clad with the substrates. A duplex process was then developed for applying Ni-Cr-Al coating compositions to the tungsten barrier coated substrates. A Ni-(16 to 32)Cr-3Si modifier was applied by slurry spraying and firing in vacuum, and was then aluminized by a fusion slurry process. Cyclic oxidation tests at 2300 F resulted in early coating failure due to inadequate edge coverage and areas of coating porosity. EMP analysis showed that oxidation had consumed 70 to 80 percent of the aluminum in the coating in less than 50 hours.

  2. Tensile bond strength of resin-bonded non-precious alloys with chemically and mechanically roughened surfaces.

    PubMed

    Isidor, F; Hassna, N M; Josephsen, K; Kaaber, S

    1991-10-01

    The present study was carried out for investigation of the tensile bond strength of resin-bonded non-precious alloys after their surfaces were roughened by sand-blasting, chemical etching, or sugar crystal impressions. Fifty test specimens were cast in a Ni-Cr (Wiron 88) alloy and 50 in a Co-Cr (Wirobond) alloy. Twenty specimens of each alloy were surface-treated according to the sugar crystal impression method. The remaining specimens were first sand-blasted, and 20 specimens of each alloy were thereafter allocated for chemical etching and divided into subgroups with different etching conditions. The samples were chemically etched in strong inorganic acid solutions. After being etched, the specimens were bonded together in pairs by a chemically-curing resin cement (Panavia EX) with a force of 2 kg/cm2. After cementation, the specimens were stored under humid conditions at 37 degrees C for three wk. Prior to being tested, the specimens were subjected to 1000 thermal cyclings at temperatures between 10 degrees C and 55 degrees C. The tensile bond strength tests showed that Ni-Cr specimens sand-blasted and thereafter etched with a 50% conc. of HNO3 and a 50% conc. of HCl for two min and Co-Cr specimens sand-blasted and etched (conc. HCl for 15 min or three h) or sand-blasted alone resulted in similar high bonding values ranging between 33.3 and 37.2 MPa. Surface roughening with use of the sugar crystal impression method resulted in statistically significant lower bond strength values for both alloys (Ni-Cr, 17.9 MPa; Co-Cr, 10.2 MPa).

  3. High toughness-high strength iron alloy

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R. (Inventor)

    1980-01-01

    An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment.

  4. Effects of the Modification of Processing Parameters on Mechanical Properties of HVOF Cr2C3-25NiCr Coatings

    NASA Astrophysics Data System (ADS)

    López Báez, Israel; Poblano Salas, Carlos Agustín; Muñoz Saldaña, Juan; Trápaga Martínez, Luís Gerardo

    2015-08-01

    The present work shows that some mechanical properties of Cr2C3-25NiCr coatings processed by HVOF thermal spraying such as elastic modulus, hardness, fracture toughness, and wear resistance are closely linked to selected processing parameters as well as to chemistry, structure, and morphology of the feedstock material. Optimization of processing parameters was based on oxygen concentration measurements inside the flame, studied by a contour plot, and curvature data recorded during spraying. The increase in velocity of in-flight particles strongly affected the interfacial fracture toughness of the coatings, as a maximum K IC of 3.71 MPa m1/2 was reached when particle velocity increased to ~765 m/s. The micro-hardness of Cr2C3-25NiCr coatings was widely varied by changing the HVOF spray conditions, i.e., the amount of reinforcing phases and inter-splat adhesion were quite sensitive to any modification of the processing parameters. It was also found that coatings having a high inter-splat adhesion and/or low degradation of reinforcing hard phases showed reduced weight loss during erosive wear tests. Finally, from the experimental evidence reported in this work, a correlation between the elastic bending modulus of coatings and indentation crack length was also found.

  5. Multiscale Modeling of Grain Boundary Segregation and Embrittlement in Tungsten for Mechanistic Design of Alloys for Coal Fired Plants

    SciTech Connect

    Luo, Jian; Tomar, Vikas; Zhou, Naixie; Lee, Hongsuk

    2013-06-30

    Based on a recent discovery of premelting-like grain boundary segregation in refractory metals occurring at high temperatures and/or high alloying levels, this project investigated grain boundary segregation and embrittlement in tungsten (W) based alloys. Specifically, new interfacial thermodynamic models have been developed and quantified to predict high-temperature grain boundary segregation in the W-Ni binary alloy and W-Ni-Fe, W-Ni-Ti, W-Ni-Co, W-Ni-Cr, W-Ni-Zr and W-Ni-Nb ternary alloys. The thermodynamic modeling results have been experimentally validated for selected systems. Furthermore, multiscale modeling has been conducted at continuum, atomistic and quantum-mechanical levels to link grain boundary segregation with embrittlement. In summary, this 3-year project has successfully developed a theoretical framework in combination with a multiscale modeling strategy for predicting grain boundary segregation and embrittlement in W based alloys.

  6. High-temperature alloys for high-power thermionic systems

    SciTech Connect

    Shin, Kwang S.; Jacobson, D.L.; D'cruz, L.; Luo, Anhua; Chen, Bor-Ling.

    1990-08-01

    The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

  7. Nickel alloys combat high-temperature corrosion

    SciTech Connect

    Agarwal, D.C.; Herda, W.R.; Brill, U.

    1995-10-01

    During the last few decades, a better understanding of alloying effects, advances in melting technology, and the development of controlled thermomechanical processing have led to new and improved high-temperature alloys. Most such alloys have sufficient amounts of chromium (with or without additions of aluminum or silicon) to form chromium oxide, alumina, and/or silica protective oxide scales, which provide resistance to environmental degradation. However, oxides cannot protect against failure by creep, mechanical or thermal fatigue, thermal shock, or embrittlement. In the real world, failure is typically caused by a combination of two or more attack modes, which synergistically accelerate degradation. To counter these attacks, two new nickel-base alloys have been developed, in which high-temperature corrosion resistance has been optimized by the careful addition of elements such as chromium, aluminum, silicon, and rare earths. They provide economical and reliable solutions to attack by oxygen, sulfur, halogens, carbon compounds, and nitrogen in a range of high-temperature applications. For example, Alloy 602CA is utilized in heat treating equipment, catalytic automotive parts, and chemical processing apparatus. Alloy 45TM has been successfully used in coal gasification equipment, incinerators, refineries, and process machinery involving severe sulfidizing conditions.

  8. A magnetron sputtered microcrystalline β-NiAl coating for SC superalloys. Part I. Characterization and comparison of isothermal oxidation behavior at 1100 °C with a NiCrAlY coating

    NASA Astrophysics Data System (ADS)

    Hou, Shaojun; Zhu, Shenglong; Zhang, Tao; Wang, Fuhui

    2015-01-01

    A microcrystalline β-NiAl coating was prepared on a single-crystal (SC) superalloy substrate via magnetron sputtering and subsequent vacuum annealing. The grain sizes of the coating ranged from about 300 nm to 1 μm. A reference NiCrAlY coating, which was mainly comprised of γ‧-Ni3Al and α-Cr, was prepared by means of vacuum arc evaporation (VAE). Isothermal oxidation tests were carried out at 1100 °C in air for 50 h. Both coatings formed thin and adherent α-Al2O3 scales during tests, while the oxide scales on the bare superalloy primarily consisted of spinel (Ni,Co)Al2O4 with underlying α-Al2O3 scale. The parabolic rate constant of the NiAl-coated specimens was about one order of magnitude lower than that of the NiCrAlY coated specimens. After oxidation tests, only a small amount of γ‧ phase was detected at some columnar boundaries of the β-NiAl coating, and about 2/3 parts of the NiCrAlY coating transformed into γ phase which resolved the α-Cr precipitations, while an Al-depleted zone in thickness of about 10 μm formed beneath the TGO of the bare superalloy. Inter-diffusion zones and secondary reaction zones were observed on the specimens coated by either β-NiAl or NiCrAlY. The oxidation mechanism and microstructure evolvement of the specimens during high temperature exposures were discussed.

  9. Influence of cryomilling on the microstructural features in HVOF-sprayed NiCrAlY bond coats for thermal barrier coatings: Creation of a homogeneous distribution of nanoscale dispersoids

    NASA Astrophysics Data System (ADS)

    Ma, Kaka; Schoenung, Julie M.

    2010-10-01

    Previous research has revealed that thermal barrier coatings with cryomilled bond coats exhibit improved thermal cycling lifetime by growing a continuous and uniform oxide layer at a slower rate; yet the mechanism controlling the ultimate failure remains unclear. In an effort to provide a foundation for understanding the improved behavior, the influence of cryomilling on the microstructure of the NiCrAlY bond coat material is investigated in this article. Rather than focusing on the alumina scale formation, the microstructural features and their evolution within the high-velocity oxy-fuel (HVOF)-sprayed NiCrAlY bond coats themselves, prepared from conventional powder and cryomilled powder, were carefully compared through extensive scanning electron microscope/energy-dispersive X-ray spectroscopy characterization. In addition, the as-cryomilled NiCrAlY powder is characterized to provide evidence of the direct influence of cryomilling and to exclude the impact from the HVOF spraying. It is found that the essential change in microstructural features resulting from the cryomilling is the creation of a homogeneous distribution of ultrafine (nanoscale) Al-rich oxide/nitride dispersoids, which remain thermally stable even after exposure at 1100°C for 100 h. The TEM study on the as-cryomilled powder, prior to the HVOF spraying, indicates that some Al and Y-rich oxides are already present within the material as a direct result of the cryomilling process.

  10. Study of exchange bias and training effect in NiCr2O4

    NASA Astrophysics Data System (ADS)

    Barman, Junmoni; Bora, Tribedi; Ravi, S.

    2015-07-01

    Single phase sample of NiCr2O4 crystallized in a tetragonal structure of I41/amd space group was prepared. Ferrimagnetic transition at TC=73 K along with a large irreversibility has been observed from the magnetization measurement. The sample exhibits exchange bias phenomenon and it is explained by considering the anisotropic exchange interaction between the ferrimagnetic and the antiferromagnetic components of magnetic moment. Presence of training effect is also observed. The exchange bias field (HEB) is found to decay exponentially with increase in temperature and however, the coercive field (HCeff) follows the empirical relation HCeff = HCeff [ 1 - T/TC']2 . The maximum experimental values of HEB and HCeff are found to be 313 Oe and 4839 Oe respectively.

  11. Solid-state and fusion resistance spot welding of TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1973-01-01

    By using specially processed TD-NiCr sheet in both 0.4-mm (0.015-in.) and 1.6-mm (0.062-in.) thicknesses and carefully selected welding procedures, solid state resistance spot welds were produced which, after postheating at 1200 C, were indistinguishable from the parent material. Stress-rupture shear tests of single-spot lap joints in 0.4-mm (0.015-in.) thick sheet showed that these welds were as strong as the parent material. Similar results were obtained in tensile-shear tests at room temperature and 1100 C and in fatigue tests. Conventional fusion spot welds in commercial sheet were unsatisfactory because of poor stress-rupture shear properties resulting from metallurgical damage to the parent material.

  12. Wear and Corrosion Behavior of CoNiCrAlY Bond Coats

    NASA Astrophysics Data System (ADS)

    Rathod, W. S.; Khanna, A. S.; Rathod, R. C.; Sapate, S. G.

    2014-07-01

    The present study focusses on the wear and microstructural properties of CoNiCrAlY coatings fabricated on AISI 316L stainless steel substrate by using the (HVOF) and (CGDS) methods. A triobiological test was performed on the samples in order to understand the wear behaviour of thermally sprayed coatings. The microstructures of as-sprayed and worn out coatings were investigated by scanning electron microscopy. Coating hardness measurements were performed with nanoindentation. HVOF coating revealed lower hardness value in comparison with CGDS. Studies depicted better wear resistance of the CGDS sprayed with He, when compared to CGDS N2 and HVOF processing. Potentiodynamic polarization curves and tafel extrapolation experiments were carried at 7.5 pH value using 3.5 % NaCl as an electrolyte. Electrochemical studies depicted better corrosion resistance of the He processed coating when compared to N2 and HVOF processing.

  13. Microstructural evolution in a Ni-Cr-Co based superalloy during cooling from the melt

    SciTech Connect

    Kazdal Zeytin, H. . E-mail: Havva.Zeytin@mam.gov.tr; Arslan Kaya, A.; Tekin, A.

    2006-08-15

    In this study the composition of a Ni-Cr-Co based superalloy was modified with silicon additions in order to observe its effects on the microstructure. The evolution of the microstructure was investigated by electron microscopy of as-cast samples containing various amounts of Si ranging from 0.48 to 5.43 wt.%. The precipitated phases were identified through electron diffraction to be {sigma} (sigma), {chi} (chi), and M{sub 23}C{sub 6}. The {sigma} precipitates of blocky morphology appeared to enclose the precipitates of {chi} phase. Lamellar regions consisting of {sigma} and M{sub 23}C{sub 6} were observed to form along the boundaries between the {sigma} particles and the neighboring phases. These lamellar cells were observed to have grown into the intermetallic phases {sigma} and {chi}. A crystallographic relationship was also found to exist between the {sigma} and M{sub 23}C{sub 6}.

  14. Reaction diffusion in the NiCrAl and CoCrAl systems

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1978-01-01

    The paper assesses the effect of overlay coating and substrate composition on the kinetics of coating depletion by interdiffusion. This is accomplished by examining the constitution, kinetics and activation energies for a series of diffusion couples primarily of the NiCrAl/Ni-10Cr or CoCrAl/Ni-10Cr type annealed at temperatures in the range 1000-1205 C for times up to 500 hr. A general procedure is developed for analyzing diffusion in multicomponent multiphase systems. It is shown that by introducing the concept of beta-source strength, which can be determined from appropriate phase diagrams, the Wagner solution for consumption of a second phase in a semiinfinite couple is successfully applied to the analysis of MCrAl couples. Thus, correlation of beta-recession rate constants with couple composition, total and diffusional activation energies, and interdiffusion coefficients are determined.

  15. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  16. The metallurgy of high temperature alloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  17. Precipitation Hardenable High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald Dean (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Crombie, Edwin A. (Inventor)

    2010-01-01

    A composition of the invention is a high temperature shape memory alloy having high work output, and is made from (Ni+Pt+Y),Ti(100-x) wherein x is present in a total amount of 49-55 atomic % Pt is present in a total amount of 10-30 atomic %, Y is one or more of Au, Pd. and Cu and is present in a total amount of 0 to 10 atomic %. The alloy has a matrix phase wherein the total concentration of Ni, Pt, and the one or more of Pd. Au, and Cu is greater than 50 atomic %.

  18. Alloys based on NiAl for high temperature applications

    NASA Technical Reports Server (NTRS)

    Vedula, K. M.; Pathare, V.; Aslanidis, I.; Titran, R. H.

    1984-01-01

    The NiAl alloys for potential high temperature applications were studied. Alloys were prepared by powder metallurgy techniques. Flow stress values at slow strain rates and high temperatures were measured. Some ternary alloying additions (Hf, Ta and Nb) were identified. The mechanism of strengthening in alloys containing these additions appears to be a form of particle dislocation interaction. The effects of grain size and stoichiometry in binary alloys are also presented.

  19. The influence of high-energy impacts on the microstructure of synthesized metal ceramics

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V. E.; Solonenko, O. P.; Chesnokov, A. E.; Fomin, V. M.

    2012-11-01

    On the example of the metal-ceramic alloy of titanium carbide (TiC) with nickel-chromium (Ni-Cr) binder, the comparative analysis of the influence of different high-energy impacts on the dispersion of the internal structure and phase composition of the synthesized metal ceramics 70 vol % TiC + 30 vol % (Ni-Cr) has been performed for the first time (self-spreading high-temperature synthesis (SSHTS) under pressure, preliminary mechanical activation (MA) of metal components of the initial powder mixture titanium-carbon-nickel-chromium binder, subsequent MA of the whole powder mixture, and intense plastic deformation of the synthesis product). It has been demonstrated that, under intense plastic deformation with extrusion of the high-temperature synthesis product, there a metal-ceramic structure forms containing particles of the nanosized carbide phase of the stoichiometric composition.

  20. Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  1. Effect of the scanning speed on microstructural evolution and wear behaviors of laser cladding NiCrBSi composite coatings

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Li, J.; Song, R.; Bai, L. L.; Shao, J. Z.; Qu, C. C.

    2015-09-01

    Laser cladding composite coatings were fabricated on the surface of the Ti6Al4V substrate by fiber laser cladding the NiCrBSi alloy powder. The influences of scanning speed on the dilution rate and microstructure of the coatings were investigated in detail by X-ray diffraction (XRD), optical microscopy (OM) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). Combined with the analyses of microhardness and fracture toughness, the wear behaviors of the coatings obtained at different scanning speeds were revealed. Results indicated that the dilution rates of the coatings were similar (about 64.23%) with variations in scanning speed ranging from 5 mm/s to 15 mm/s. An abrupt decrease in dilution rate (37.06%) was observed at the scanning speed of 20 mm/s. Microstructural observation showed that the blocky TiB2 and the cellular dendrite TiC particles were uniformly dispersed in the TiNi-Ti2Ni dual-phase intermetallic compound matrix at scanning speeds of 5-15 mm/s. When the scanning speed was further increased to 20 mm/s, the stripe-shaped CrB, gray irregular-shaped Cr3C2 and black blocky TiC particles uniformly dispersed in the γ(Ni) matrix were synthesized in situ. The particles became finer with the increase in scanning speed. The average microhardness of the coating (1026.5 HV0.2) at the scanning speed of 20 mm/s was enhanced significantly compared with that of the other three coatings (about 886.4 HV0.2). The lowest average friction coefficient (about 0.371) was obtained at the scanning speed of 20 mm/s and was relatively stable with the change in sliding time. The lowest wear loss of the coating was also obtained at the scanning speed of 20 mm/s. Analyses of the worn surfaces showed that the coating prepared at the scanning speed of 20 mm/s was in good condition because of its excellent combination of resistance to micro-cutting and brittle debonding. Comparatively speaking, the coating produced at the scanning speed of 20 mm

  2. Process of high temperature synthesis in producing composite carbide powders for thermally sprayed coatings

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Formanek, B.

    2011-05-01

    The paper presents the characterization of powders containing hard phases of chromium carbides in a NiCr matrix, intended for thermal spraying coatings. The synthesized composite powder containing hard phases and plastic matrix, produced in high-temperature synthesis with chosen powder metallurgy processes has been presented. Commercial materials, such as NiCr- CrxCy, are fabricated by means of agglomeration and sintering method. Processes of high temperature synthesis of Cr3C2, Cr7C3, Cr23C6 carbides combined with NiCr powder mechanical alloying are presented in the article. Parameters of the carbides synthesis were determined in the reactive -protective atmosphere. In the rotation- vibration mill, processes were conducted using grinding and appropriate mechanical alloying at variable amplitude. The standard and synthesized powders were thermally sprayed by HVOF method in Jet Kote II and Diamond Jet system. The structure and phase composition of the powders and coatings were determined by: light and scanning microscopy, X-ray phase analysis (RTG) and energy dispersive X-ray analysis (EDX). The structure and wear properties of HVOF sprayed coatings containing chromium carbides has been presented. The thermally sprayed coatings are characterized of wear resistance in abrasion and erosion tests. The sprayed coatings characterized high resistance in wear conditions.

  3. Effects of Ce and Si additions to CoNiCrAlY bond coat materials on oxidation behavior and crack propagation of thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Ito, K.; Shoji, T.; Seo, D. W.; Tezuka, H.; Kato, H.

    2006-12-01

    In thermal barrier coating (TBC) systems, thermally grown oxide (TGO) forms at the interface between the top coat and the bond coat (BC) during service. Delamination or spallation at the interface occurs by the TGO formation and growth. Therefore, modifications of the BC materials are one means to inhibit the TGO formation and to improve the crack resistance of TBCs. In this study, morphologies of TGO were controlled by using Ce and Si additions to conventional CoNiCrAlY BC material. The evaluation of the crack resistance was carried out using acoustic emission methods under pure bending conditions. As a result, when the BCs of TBCs with Ce added were aged at 1373 K over 10 h, the morphologies of the TGO were changed drastically. The BC materials of TBCs coated with Ce added indicated an improved crack resistance with high-temperature exposure. It is expected that the morphologies can improve the crack resistance of TBCs.

  4. High-strength iron aluminide alloys

    SciTech Connect

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.

  5. Interfacial shear bond strength between different base metal alloys and five low fusing feldspathic ceramic systems.

    PubMed

    Sipahi, Cumhur; Ozcan, Mutlu

    2012-01-01

    This study compared the bond strength between metal alloys and 5 ceramic systems. Ceramic systems (Vita VMK68, Ivoclar IPSd. SIGN, Ceramco II, Matchmaker and Finesse) were fired onto either Ni-Cr or Co-Cr base metal alloy. Metal-ceramic interfaces were subjected to shear loading until failure. The ceramic type significantly affected the bond strength results (p<0.05). For Ni-Cr alloy, the results ranged between 15.4-25.3 MPa and for Co-Cr alloy between 13.3-19.0 MPa. The highest mean bond strength value was obtained with the combination of Ni-Cr alloy-Ceramco II (25.3 MPa), the lowest bond strength was received from the combination of Co-Cr alloy-Ivoclar IPS d.SIGN ceramic (13.3 MPa). Adhesive failures between metal and ceramic were significantly more frequent with Ni-Cr alloy (31 out of 50) than with Co-Cr (20 out of 50) (p<0.05). Ceramco II presented the highest bond strength with both Ni-Cr and Co-Cr being significantly different from one another.

  6. Surface modification of high temperature iron alloys

    DOEpatents

    Park, Jong-Hee

    1995-01-01

    A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

  7. Surface modification of high temperature iron alloys

    DOEpatents

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  8. A NiCrAl pressure cell up to 4.6 GPa and its application to cuprate and pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoki; Uwatoko, Yoshiya; Matsumoto, Takehiko

    2013-06-01

    A NiCrAl-CuBe hybrid cell has been paid much attention because its maximum pressure goes beyond 3 GPa despite its large sample space. In the previous pressurizing trials for this pressure cell, we reached 4.0 GPa under a steady load of 15 ton. In the present trial, we have succeeded in reaching 4.6 GPa by using a short Teflon capsule as a pressure-mediation-liquid container. The pressure efficiency at 15 ton was 75 %. The maximum expansion of the inner diameter of the NiCrAl cylinder was 5 %, suggesting that 4.6 GPa is the upper limit of pressure. To keep high pressure above 4 GPa, a steady load control is needed: a pressure of 4.0 GPa under a steady load decreased to 3.7 GPa after the pressure cell was clamped and the steady load was released. The pressure cell is available to various experiments that need a large sample space. We have applied this pressure cell to nuclear magnetic resonance (NMR) measurements on cuprate and pnictide superconductors, such as Sr2Ca12Cu24O41, LaFeAsO1-xFx, and CaFe1-xCoxAsF. These compounds have superconducting layers, and Tcs of these compounds are enhanced by pressure application. We review what happens at optimal pressure in electric and/or magnetic properties on a microscopic level. Grant-in-Aid (Grant No. 23340101) from the Ministry of Education, Science and Culture, Japan.

  9. XPS and electrochemical impedance spectroscopy studies on effects of the porcelain firing process on surface and corrosion properties of two nickel-chromium dental alloys.

    PubMed

    Qiu, Jing; Tang, Chun-bo; Zhu, Zhi-jun; Zhou, Guo-xing; Wang, Jie; Yang, Yi; Wang, Guo-ping

    2013-11-01

    The aim of this study was to evaluate the effects of a simulated porcelain firing process on the surface, corrosion behavior and cell culture response of two nickel-chromium (Ni-Cr) dental alloys. A Be-free alloy and a Be-containing alloy were tested. Before porcelain firing, as-cast specimens were examined for surface composition using X-ray photoelectron spectroscopy and metallurgical phases using X-ray diffraction. Corrosion behaviors were evaluated using electrochemical impedance spectroscopy. 3T3 fibroblasts were cultured and exposed indirectly to specimens. MTT assays were counted after 3 and 6 days. The cell culture mediums exposed to specimens were analyzed for metal ion release. After porcelain firing, similar specimens were examined for the same properties. In both as-cast and fired conditions, the Be-free Ni-Cr alloy showed significantly more resistance to corrosion than the Be-containing Ni-Cr alloy, which exhibited BeNi phase. After porcelain firing, the corrosion resistance of the Be-free Ni-Cr alloy decreased statistically, corresponding with evident decreases of Cr and Ni oxides on the alloy surface. Also, the alloy's MTT assay decreased significantly corresponding with an obvious increase of Ni-ion release after the firing. For the Be-containing Ni-Cr alloy, the firing process led to increases of surface oxides and metallic Be, while its corrosion resistance and cell culture response were not significantly changed after porcelain firing. The results suggested that the corrosion resistance and biocompatibility of the Be-free Ni-Cr alloy decreased after porcelain firing, whereas the firing process had little effect on the same properties of the Be-containing Ni-Cr alloy. PMID:23881280

  10. XPS and electrochemical impedance spectroscopy studies on effects of the porcelain firing process on surface and corrosion properties of two nickel-chromium dental alloys.

    PubMed

    Qiu, Jing; Tang, Chun-bo; Zhu, Zhi-jun; Zhou, Guo-xing; Wang, Jie; Yang, Yi; Wang, Guo-ping

    2013-11-01

    The aim of this study was to evaluate the effects of a simulated porcelain firing process on the surface, corrosion behavior and cell culture response of two nickel-chromium (Ni-Cr) dental alloys. A Be-free alloy and a Be-containing alloy were tested. Before porcelain firing, as-cast specimens were examined for surface composition using X-ray photoelectron spectroscopy and metallurgical phases using X-ray diffraction. Corrosion behaviors were evaluated using electrochemical impedance spectroscopy. 3T3 fibroblasts were cultured and exposed indirectly to specimens. MTT assays were counted after 3 and 6 days. The cell culture mediums exposed to specimens were analyzed for metal ion release. After porcelain firing, similar specimens were examined for the same properties. In both as-cast and fired conditions, the Be-free Ni-Cr alloy showed significantly more resistance to corrosion than the Be-containing Ni-Cr alloy, which exhibited BeNi phase. After porcelain firing, the corrosion resistance of the Be-free Ni-Cr alloy decreased statistically, corresponding with evident decreases of Cr and Ni oxides on the alloy surface. Also, the alloy's MTT assay decreased significantly corresponding with an obvious increase of Ni-ion release after the firing. For the Be-containing Ni-Cr alloy, the firing process led to increases of surface oxides and metallic Be, while its corrosion resistance and cell culture response were not significantly changed after porcelain firing. The results suggested that the corrosion resistance and biocompatibility of the Be-free Ni-Cr alloy decreased after porcelain firing, whereas the firing process had little effect on the same properties of the Be-containing Ni-Cr alloy.

  11. Solidification characterization of a new rapidly solidified Ni-Cr-Co based superalloy

    SciTech Connect

    Wu, Kai; Liu, Guoquan; Hu, Benfu; Li, Feng; Zhang, Yiwen; Tao, Yu; Liu, Jiantao

    2012-11-15

    The solidification characterization of a new rapidly solidified Ni-Cr-Co based superalloy prepared by plasma rotating electrode process was investigated by means of optical microscope, scanning electron microscope, and transmission electron microscope. The results show that the solidification microstructure changes from dendrites to cellular and microcrystal structures with decreasing powder size. The elements of Co, Cr, W and Ni are enriched in the dendrites, while Mo, Nb and Ti are higher in the interdendritic regions. The relationships between powder size with the average solid-liquid interface moving rate, the average interface temperature gradient and the average cooling rate are established. Microsegregation is increased with larger powder size. The geometric integrity of MC Prime type carbides in the powders changes from regular to diverse with decreasing powder size. The morphology and quantity of carbides depend on the thermal parameters and non-equilibrium solute partition coefficients during rapid solidification. - Highlights: Black-Right-Pointing-Pointer The relations of solidification thermal parameters with powder size are established. Black-Right-Pointing-Pointer The relation of non-equilibrium solute partition with powder size is investigated. Black-Right-Pointing-Pointer The solidification microstructure is related to thermal parameters. Black-Right-Pointing-Pointer The segregation behavior is linked to non-equilibrium partition coefficients. Black-Right-Pointing-Pointer The morphology and quantity of carbides depend on the above combined factors.

  12. Control of Surface Segregation in Bimetallic NiCr Nanoalloys Immersed in Ag Matrix

    PubMed Central

    Bohra, Murtaza; Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Toulkeridou, Evropi; Diaz, Rosa E.; Bobo, Jean-François; Sowwan, Mukhles

    2016-01-01

    Cr-surface segregation is a main roadblock encumbering many magneto-biomedical applications of bimetallic M-Cr nanoalloys (where M = Fe, Co and Ni). To overcome this problem, we developed Ni95Cr5:Ag nanocomposite as a model system, consisting of non-interacting Ni95Cr5 nanoalloys (5 ± 1 nm) immersed in non-magnetic Ag matrix by controlled simultaneous co-sputtering of Ni95Cr5 and Ag. We employed Curie temperature (TC) as an indicator of phase purity check of these nanocomposites, which is estimated to be around the bulk Ni95Cr5 value of 320 K. This confirms prevention of Cr-segregation and also entails effective control of surface oxidation. Compared to Cr-segregated Ni95Cr5 nanoalloy films and nanoclusters, we did not observe any unwanted magnetic effects such as presence Cr-antiferromagnetic transition, large non-saturation, exchange bias behavior (if any) or uncompensated higher TC values. These nanocomposites films also lose their unique magnetic properties only at elevated temperatures beyond application requirements (≥800 K), either by showing Ni-type behavior or by a complete conversion into Ni/Cr-oxides in vacuum and air environment, respectively. PMID:26750659

  13. The Kinetics of Metadynamic Recrystallization in a Ni-Cr-Mo-Based Superalloy Hastelloy C-276

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Zhang, Liwen; Shen, Wenfei; Liu, Cuiru; Xia, Yingnan

    2016-02-01

    The metadynamic recrystallization (MDRX) behavior of a typical Ni-Cr-Mo-based superalloy Hastelloy C-276 was investigated using two-stage isothermal compression tests on a Gleeble thermal-mechanical simulator in the temperature range of 1050-1200 °C, the strain rate range of 0.1-5.0 s-1, the strains of 0.32, 0.45, and 0.6 at the first stage of compression, and the interval times of 0.5-30 s. The results show that the microstructure and the stress-strain relation of the studied superalloy vary during the interruption period due to the occurrence of MDRX. The MDRX softening fraction and recrystallized grain size increase rapidly with the increasing of interval time, deformation temperature, and strain rate. The effect of strain at the first stage of compression on MDRX is less pronounced. The kinetics of MDRX softening was established based on the flow stress curves, and the apparent activation energy of MDRX of Hastelloy C-276 is evaluated as 241 kJ/mol.

  14. Control of Surface Segregation in Bimetallic NiCr Nanoalloys Immersed in Ag Matrix

    NASA Astrophysics Data System (ADS)

    Bohra, Murtaza; Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Toulkeridou, Evropi; Diaz, Rosa E.; Bobo, Jean-François; Sowwan, Mukhles

    2016-01-01

    Cr-surface segregation is a main roadblock encumbering many magneto-biomedical applications of bimetallic M-Cr nanoalloys (where M = Fe, Co and Ni). To overcome this problem, we developed Ni95Cr5:Ag nanocomposite as a model system, consisting of non-interacting Ni95Cr5 nanoalloys (5 ± 1 nm) immersed in non-magnetic Ag matrix by controlled simultaneous co-sputtering of Ni95Cr5 and Ag. We employed Curie temperature (TC) as an indicator of phase purity check of these nanocomposites, which is estimated to be around the bulk Ni95Cr5 value of 320 K. This confirms prevention of Cr-segregation and also entails effective control of surface oxidation. Compared to Cr-segregated Ni95Cr5 nanoalloy films and nanoclusters, we did not observe any unwanted magnetic effects such as presence Cr-antiferromagnetic transition, large non-saturation, exchange bias behavior (if any) or uncompensated higher TC values. These nanocomposites films also lose their unique magnetic properties only at elevated temperatures beyond application requirements (≥800 K), either by showing Ni-type behavior or by a complete conversion into Ni/Cr-oxides in vacuum and air environment, respectively.

  15. Microstructure and phase evolution in laser clad chromium carbide-NiCrMoNb

    NASA Astrophysics Data System (ADS)

    Venkatesh, L.; Samajdar, I.; Tak, Manish; Doherty, Roger D.; Gundakaram, Ravi C.; Prasad, K. Satya; Joshi, S. V.

    2015-12-01

    Microstructural development in laser clad layers of Chromium carbide (CrxCy)-NiCrMoNb on SA 516 steel has been investigated. Although the starting powder contained both Cr3C2 and Cr7C3, the clad layers showed only the presence of Cr7C3. Microtexture measurements by electron back scattered diffraction (EBSD) revealed primary dendritic Cr7C3 with Ni rich FCC metallic phase being present in the interdendritic spaces. Further annealing of the laser clad layers and furnace melting of the starting powder confirmed that Cr7C3 is the primary as well as stable carbide phase in this multi component system. Increase in laser power and scanning speed progressively reduced carbide content in the laser clad layers. Increased scanning speed, which enhances the cooling rate, also led to reduction in the secondary arm spacing (λ2) of the Cr7C3 dendrites. The clad layer hardness increased with carbide content and with decreased dendrite arm spacing.

  16. A Study of Pack Aluminizing Process for NiCrAlY Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Huang, Xiao; Liu, Rong; Yang, Qi

    2014-01-01

    Aluminizing process is widely used to provide additional Al deposition onto superalloy surface for enhanced oxidation and corrosion resistance. In this research, an aluminizing process—pack cementation process, is used to deposit Al onto the surface of NiCrAlY coatings for increasing environmental protection. The experiment is designed using Box-Behnken approach, in which three parameters, the Al content, Ni content of the pack powder, and the temperature of the process, are selected as factors; and the thickness and Al/Ni ratio of the coatings are selected as responses. The effects of the factors on the responses are analyzed and modeled empirically. It is found that these empirical models correlate well with the results from additional sets of experiment. These models can be used to produce aluminized NiCrAlY coatings with specific thicknesses and Al/Ni ratios.

  17. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  18. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  19. High-strength iron aluminide alloys

    SciTech Connect

    McKamey, C.G.; Marrero-Santos, Y.; Maziasz, P.J.

    1995-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile density due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications, despite their excellent corrosion properties. Improvements in room temperature tensile ductility have been realized mainly through alloying effects, changes in thermomechanical processing to control microstructure, and by control of the specimen`s surface condition. Ductilities of 10-20% and tensile yield strengths as high as 500 MPa have been reported. In terms of creep-rupture strength, small additions of Mo, Nb, and Zr have produced significant improvements, but at the expense of weldability and room-temperature tensile ductility. Recently an alloy containing these additions, designated FA-180, was shown to exhibit a creep-rupture life of over 2000 h after a heat treatment of 1 h at 1150{degrees}C. This study presents the results of creep-rupture tests at various test temperatures and stresses and discusses the results as part of our effort to understand the strengthening mechanisms involved with heat treatment at 1150{degrees}C.

  20. Design of refractory high-entropy alloys

    SciTech Connect

    Gao, M. C.; Carney, C. S.; Dogan, O. N.; Jablonksi, P. D.; Hawk, J. A.; Alman, D. E.

    2015-09-15

    Here, this report presents a design methodology for refractory high-entropy alloys with a body-centered cubic (bcc) structure using select empirical parameters (i.e., enthalpy of mixing, atomic size difference, Ω-parameter, and electronegativity difference) and CALPHAD approach. Sixteen alloys in equimolar compositions ranging from quinary to ennead systems were designed with experimental verification studies performed on two alloys using x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. Two bcc phases were identified in the as-cast HfMoNbTaTiVZr, whereas multiple phases formed in the as-cast HfMoNbTaTiVWZr. Observed elemental segregation in the alloys qualitatively agrees with CALPHAD prediction. Comparisons of the thermodynamic mixing properties for liquid and bcc phases using the Miedema model and CALPHAD are presented. This study demonstrates that CALPHAD is more effective in predicting HEA formation than empirical parameters, and new single bcc HEAs are suggested: HfMoNbTiZr, HfMoTaTiZr, NbTaTiVZr, HfMoNbTaTiZr, HfMoTaTiVZr, and MoNbTaTiVZr.

  1. Design of refractory high-entropy alloys

    DOE PAGES

    Gao, M. C.; Carney, C. S.; Dogan, O. N.; Jablonksi, P. D.; Hawk, J. A.; Alman, D. E.

    2015-09-15

    Here, this report presents a design methodology for refractory high-entropy alloys with a body-centered cubic (bcc) structure using select empirical parameters (i.e., enthalpy of mixing, atomic size difference, Ω-parameter, and electronegativity difference) and CALPHAD approach. Sixteen alloys in equimolar compositions ranging from quinary to ennead systems were designed with experimental verification studies performed on two alloys using x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. Two bcc phases were identified in the as-cast HfMoNbTaTiVZr, whereas multiple phases formed in the as-cast HfMoNbTaTiVWZr. Observed elemental segregation in the alloys qualitatively agrees with CALPHAD prediction. Comparisons of the thermodynamic mixing properties formore » liquid and bcc phases using the Miedema model and CALPHAD are presented. This study demonstrates that CALPHAD is more effective in predicting HEA formation than empirical parameters, and new single bcc HEAs are suggested: HfMoNbTiZr, HfMoTaTiZr, NbTaTiVZr, HfMoNbTaTiZr, HfMoTaTiVZr, and MoNbTaTiVZr.« less

  2. Formation of highly corrosion resistant stainless steel surface alloys for marine environments by laser surface alloying

    SciTech Connect

    Sridhar, K.; Deshmukh, M.B.; Khanna, A.S.; Wissenbach, K.

    1998-12-31

    Austenitic stainless steels (SS) such as UNS S30403 are being used for numerous industrial applications due to their goad mechanical properties and weldability. However in aggressive marine environments such as seawater, they suffer from localized corrosion. Even though newly developed highly alloyed SS`s possess very high pitting resistance, they are susceptible to the formation of secondary phases. In the present study, a laser surface alloying technique was employed for the formation of highly alloyed austenitic stainless steel surfaces on conventional 304 SS substrate. Microstructural characterization by optical and SEM revealed finer cells of austenitic phase in the laser alloyed zones with molybdenum contents in the range of 3 to 15 wt%. The pitting corrosion resistance of the surface alloys were ascertained by immersion and potentiodynamic polarization tests and the repassivation behavior by cyclic polarization tests. Also the influence of microstructural features on pitting behavior of highly alloyed and laser surface alloyed steels is studied.

  3. A weldability study of Haynes Alloy No 242

    SciTech Connect

    Maguire, M.C.; Headley, T.J.

    1990-01-01

    The weldability of Haynes {reg sign} Alloy No. 242 {trademark}, a new alloy derived from the Ni-Mo-Cr system, was investigated. Susceptibility to fusion zone hot cracking was determined by Varestraint testing, and hot ductility was characterized by Gleeble testing. Solidification phase transformation data was recorded with differential thermal analysis (DTA). Weld microstructures were characterized with scanning electron microscopy (SEM), analytical electron microscopy (AEM), and electron probe microanalysis (EPMA). The results of this study indicate that this alloy has better hot cracking resistance than high strength nickel base superalloy 718; however, it has lower resistance than other alloys derived from the Ni-Cr-Mo ternary such as the Hastelloy alloys B2, C-4, C-22, C-276, and W. Segregation patterns in weld microstructures agree well with established information concerning this family of alloys. Prediction of solidification products with the Ni-Mo-Cr phase diagram based on a chemical equivalence was unsuccessful due to the higher carbon content of this alloy which favors the formation of M{sub 6}C. Solidification in Alloy 242 terminates with the formation of two eutectic-like constituents: (1) a M{sub 6}C/austenite eutectic, and (2) a second eutectic with austenite and an undetermined phase. This latter phase has a composition similar to the M{sub 6}C phase, but with a different crystal structure (cubic, ao = 6.6 {Angstrom}). 11 refs., 10 figs., 4 tabs.

  4. Band anticrossing in highly mismatched semiconductor alloys

    SciTech Connect

    Walukiewicz, W.

    2002-07-26

    The basic theoretical aspects of the band anticrossing effects in highly electronegativity-mismatched semiconductor alloys are reviewed. The many-impurity Anderson model treated in the coherent potential approximation is applied to the semiconductor alloys, in which metallic anion atoms are partially substituted by atoms of a highly electronegative element. Analytical solutions for the Green's function describe dispersion relations and state broadening effects for the restructured conduction band. The solutions are identical to those obtained from the physically intuitive and widely used two-level band anticrossing model. It is shown that the model explains key experimental observations including the unusual composition and pressure dependence of the interband optical transitions and the large enhancement of the electron effective mass.

  5. Aluminized alloy boosts turbine blade life

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Grisaffe, S. J.

    1974-01-01

    Description of an aluminized alloy coating technique that involves first the application of a ductile, oxidation-resistant overlay, such as NiCrAl, which is then partially aluminized. The duplex protective system has performance advantages over conventional aluminide coatings in that it provides higher-temperature hot corrosion resistance over a longer service life.

  6. Improved high pressure turbine shroud

    NASA Technical Reports Server (NTRS)

    Bessen, I. I.; Rigney, D. V.; Schwab, R. C.

    1977-01-01

    A new high pressure turbine shroud material has been developed from the consolidation of prealloyed powders of Ni, Cr, Al and Y. The new material, a filler for cast turbine shroud body segments, is called Genaseal. The development followed the identification of oxidation resistance as the primary cause of prior shroud deterioration, since conversion to oxides reduces erosion resistance and increases spalling under thermal cycled engine conditions. The NICrAlY composition was selected in preference to NIAL and FeCRALY alloys, and was formulated to a prescribed density range that offers suitable erosion resistance, thermal conductivity and elastic modulus for improved behavior as a shroud.

  7. Laser Brazing of High Temperature Braze Alloy

    NASA Technical Reports Server (NTRS)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.

    2000-01-01

    The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of

  8. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites.

    PubMed

    Peng, Xiao

    2010-02-01

    Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale. PMID:20644803

  9. Physical Metallurgy of High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Yeh, Jien-Wei

    2015-08-01

    Two definitions of high-entropy alloys (HEAs), based on composition and entropy, are reviewed. Four core effects, i.e., high entropy, sluggish diffusion, severe lattice distortion, and cocktail effects, are mentioned to show the uniqueness of HEAs. The current state of physical metallurgy is discussed. As the compositions of HEAs are entirely different from that of conventional alloys, physical metallurgy principles might need to be modified for HEAs. The thermodynamics, kinetics, structure, and properties of HEAs are briefly discussed relating with the four core effects of HEAs. Among these, a severe lattice distortion effect is particularly emphasized because it exerts direct and indirect influences on many aspects of microstructure and properties. Because a constituent phase in HEAs can be regarded as a whole-solute matrix, every lattice site in the matrix has atomic-scale lattice distortion. In such a distorted lattice, point defects, line defects, and planar defects are different from those in conventional matrices in terms of atomic configuration, defect energy, and dynamic behavior. As a result, mechanical and physical properties are significantly influenced by such a distortion. Suitable mechanisms and theories correlating composition, microstructure, and properties for HEAs are required to be built in the future. Only these understandings make it possible to complete the physical metallurgy of the alloy world.

  10. The Effect of Hydrogen Annealing on the Impurity Content of Alumina-Forming Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2000-01-01

    Previously, the effect of hydrogen annealing on increasing the adhesion of Al2O3 scales had been related to the effective desulfurization that occurred during this process. The simultaneous reduction of other impurities has now been re-examined for up to 20 impurity elements in the case of five different alloys (NiCrAl, FeCrAl, PWA 1480, Rene'142, and Rene'N5). Hydrogen annealing produced measurable reductions in elemental concentration for B, C, Na, Mg, P, K, Sr, or Sn in varying degrees for at least one and up to three of these alloys. No single element was reduced by hydrogen annealing for all the alloys except sulfur. In many cases spalling occurred at low levels of these other impurities, while in other cases the scales were adherent at high levels of the impurities. No impurity besides sulfur was strongly correlated with adhesion.

  11. Microstructure and wear behavior of γ/Al 4C 3/TiC/CaF 2 composite coating on γ-TiAl intermetallic alloy prepared by Nd:YAG laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Xiu-Bo; Shi, Shi-Hong; Guo, Jian; Fu, Ge-Yan; Wang, Ming-Di

    2009-03-01

    As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF 2 in the preparation of precursor NiCr-Cr 3C 2-CaF 2 mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) and the friction and wear behavior of the composite coatings sliding against the hardened 0.45% C steel ring was evaluated using a block-on-ring wear tester at room temperature. It was found that the coating had a unique microstructure consisting of primary dendrites TiC and block Al 4C 3 carbides reinforcement as well as fine isolated spherical CaF 2 solid lubrication particles uniformly dispersed in the NiCrAlTi ( γ) matrix. The good friction-reducing and anti-wear abilities of the laser clad composite coating was suggested to the Ni-P electroless plating and the attendant reduction of mass loss of CaF 2 and the increasing of it's wettability with the NiCrAlTi ( γ) matrix during the laser cladding process.

  12. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Lu, Yiping; Dong, Yong; Guo, Sheng; Jiang, Li; Kang, Huijun; Wang, Tongmin; Wen, Bin; Wang, Zhijun; Jie, Jinchuan; Cao, Zhiqiang; Ruan, Haihui; Li, Tingju

    2014-08-01

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility.

  13. A promising new class of high-temperature alloys: eutectic high-entropy alloys.

    PubMed

    Lu, Yiping; Dong, Yong; Guo, Sheng; Jiang, Li; Kang, Huijun; Wang, Tongmin; Wen, Bin; Wang, Zhijun; Jie, Jinchuan; Cao, Zhiqiang; Ruan, Haihui; Li, Tingju

    2014-01-01

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility. PMID:25160691

  14. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys

    PubMed Central

    Lu, Yiping; Dong, Yong; Guo, Sheng; Jiang, Li; Kang, Huijun; Wang, Tongmin; Wen, Bin; Wang, Zhijun; Jie, Jinchuan; Cao, Zhiqiang; Ruan, Haihui; Li, Tingju

    2014-01-01

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility. PMID:25160691

  15. Study of high performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.

    1985-01-01

    The nickel-manganese experimental electrolyte was hydrogen peroxide treated and carbon purified for removal of residual sodium saccharin and related organic decomposition products from the plating of previous test panels. The saccharin additive was used to reduce stress where high concentrations of manganese and high pulse peak current densities were used. A large quantity of nickel-manganese alloy plates containing 0.35 to 0.40 percent by weight manganese was electroformed for testing to supply data for a mechanical property data table. The aluminum billet required for the machining of the subscale SSME main combustion chamber was acquired.

  16. Erosion/corrosion behavior of commercial high temperature alloys

    SciTech Connect

    Kloewer, J.

    1995-12-31

    The erosion/corrosion behavior of five commercial high temperature materials (alloy 800H, AISI 314, alloy AC66, alloy 45-TM, alloy 625) was investigated in synthetic waste incineration atmosphere using silica sand as erosive particles. It was found that the erosion/corrosion behavior depended sensitively on the particle velocity. As long as the velocity was low (880 m/h) corrosion attack occurred mainly by chlorination. Consequently materials with a high resistance to chlorine-containing atmospheres like alloys 45-TM and 625 showed the lowest corrosion rates. If the particle velocity was increased to 1660 m/h, material wastage by erosion dominated.

  17. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  18. Effect of NiCr Clad BaF2·CaF2 Addition on Wear Performance of Plasma Sprayed Chromium Carbide-Nichrome Coating

    NASA Astrophysics Data System (ADS)

    Du, Lingzhong; Huang, Chuanbing; Zhang, Weigang; Zhang, Jingmin; Liu, Wei

    2010-03-01

    NiCr clad BaF2·CaF2 fluoride eutectic powders were added into chromium carbide-nichrome feedstock to improve the tribological properties of NiCr-Cr3C2 coating, and the structures, mechanical, and ball-on-disk sliding wear performance of the coating were characterized. The results show that NiCr cladding can effectively decrease the density and thermophysical difference between the feedstock components, while alleviate the decarburization and oxidization of the constituent phases, and form the coating with a uniform and dense microstructure. However, the addition of BaF2·CaF2 has a negative effect on mechanical properties of the coating. When the temperature reaches 500 °C, the BaF2·CaF2 eutectic is soften by the heat and smeared by the counterpart, thus the low shear stress lubricating film forms between the contact surface, that improves the tribological properties dramatically. At this temperature, the dominant wear mechanisms also change from splats spallation and abrasive wear at room temperature to plastic deformation and plawing by the counterpart. Within the temperature range from 600 to 800 °C, the friction coefficient, the wear rates of NiCr/Cr3C2-10% BaF2·CaF2 coating and its coupled Si3N4 ball are 20%, 40%, and 75% lower than those of the NiCr/Cr3C2 coating, respectively. The NiCr/Cr3C2-BaF2·CaF2 coating shows superior wear performance to the NiCr/Cr3C2 coating without lubricant additive.

  19. Mechanical Properties of High Strength Al-Mg Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Choi, Bong-Jae; Hong, Kyung-Eui; Kim, Young-Jig

    The aim of this research is to develop the high strength Al alloy sheet for the automotive body. For the fabrication Al-Mg alloy sheet, the composition of alloying elements was designed by the properties database and CALPHAD (Calculation Phase Diagram) approach which can predict the phases during solidification using thermodynamic database. Al-Mg alloys were designed using CALPHAD approach according to the high content of Mg with minor alloying elements. After phase predictions by CALPHAD, designed Al-Mg alloys were manufactured. Addition of Mg in Al melts were protected by dry air/Sulphur hexafluoride (SF6) mixture gas which can control the severe Mg ignition and oxidation. After rolling procedure of manufactured Al-Mg alloys, mechanical properties were examined with the variation of the heat treatment conditions.

  20. Mixing and non-stoichiometry in Fe-Ni-Cr-Zn-O spinel compounds: density functional theory calculations.

    PubMed

    Andersson, David A; Stanek, Christopher R

    2013-10-01

    Density functional theory (DFT) calculations have been performed on A(2+)B2(3+)O4(2-) (where A(2+) = Fe, Ni or Zn, and B(3+) = Fe or Cr) spinel oxides in order to determine some of their thermodynamic properties. Mixing energies were calculated for Fe3O4-NiFe2O4, Fe3O4-ZnFe2O4, Fe3O4-FeCr2O4, NiFe2O4-ZnFe2O4, NiFe2O4-NiCr2O4, FeCr2O4-NiCr2O4, FeCr2O4-ZnCr2O4 and ZnCr2O4-ZnFe2O4 pseudo-binaries based on special quasi random (SQS) structures to account for cationic disorder. The results generally agree with available experimental data and the rule that two normal or two inverse spinel compounds easily form solid solutions, while inverse-normal spinel mixtures exhibit positive deviation from solid solution behavior (i.e. immiscibility). Even though the NiFe2O4-NiCr2O4 and Fe3O4-FeCr2O4 systems obey this rule, they exhibit additional features with implications for the corresponding phase diagrams. In addition to mixing enthalpies, non-stoichiometry was also considered by calculating the energies of the relevant defect reactions resulting in A, B and O excess (or deficiency). The DFT calculations predict close to zero or slightly exothermic reactions for both A and B excess in a number of spinel compounds.

  1. Optimization of the Ni-Cr-Al-Y/ZrO2-Y2O3 thermal barrier system

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1986-01-01

    The effects of bond and thermal barrier coating compositions, thicknesses, and densities on air plasma spray deposited Ni-Cr-Al-Y/ZrO2-Y2O3 life were evaluated in cyclic furnace oxidation tests at temperatures from 1110 to 1220 C. An empirical relation was developed to give life as a function of the above parameters. The thermal barrier system tested which had the longest life consisted of Ni-35.0 wt pct Cr-5.9 wt pct Al-0.95 wt pct Y bond coating and ZrO2-6.1 wt pct Y2O3 thermal barrier coating.

  2. Optimization of the NiCrAl-Y/ZrO-Y2O3 thermal barrier system

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1985-01-01

    The effects of bond and thermal barrier coating compositions, thicknesses, and densities on air plasma spray deposited Ni-Cr-Al-Y/ZrO2-Y2O3 life were evaluated in cyclic furnace oxidation tests at temperatures from 1110 to 1220 C. An empirical relation was developed to give life as a function of the above parameters. The thermal barrier system tested which had the longest life consisted of Ni-35.0 wt% Cr-5.9 wt% Al-0.95 wt% Y bond coating and ZrO2-6.1 wt% Y2O3 thermal barrier coating.

  3. High strength uranium-tungsten alloy process

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  4. High strength uranium-tungsten alloys

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  5. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect

    Swindeman, R.W.; Ren, W.

    1996-06-01

    The objective of the research is to provide databases and design criteria to assist in the selection of optimum alloys for construction of components needed to contain process streams in advanced heat recovery and hot-gas cleanup systems. Typical components include: steam line piping and superheater tubing for low emission boilers (600 to 700{degrees}C), heat exchanger tubing for advanced steam cycles and topping cycle systems (650 to 800{degrees}C), foil materials for recuperators, on advanced turbine systems (700 to 750{degrees}C), and tubesheets for barrier filters, liners for piping, cyclones, and blowback system tubing for hot-gas cleanup systems (850 to 1000{degrees}C). The materials being examined fall into several classes, depending on which of the advanced heat recovery concepts is of concern. These classes include martensitic steels for service to 650{degrees}C, lean stainless steels and modified 25Cr-30Ni steels for service to 700{degrees}C, modified 25Cr-20Ni steels for service to 900{degrees}C, and high Ni-Cr-Fe or Ni-Cr-Co-Fe alloys for service to 1000{degrees}C.

  6. High-entropy alloys as high-temperature thermoelectric materials

    SciTech Connect

    Shafeie, Samrand; Guo, Sheng; Hu, Qiang; Fahlquist, Henrik; Erhart, Paul; Palmqvist, Anders

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  7. High-entropy alloys as high-temperature thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Shafeie, Samrand; Guo, Sheng; Hu, Qiang; Fahlquist, Henrik; Erhart, Paul; Palmqvist, Anders

    2015-11-01

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  8. High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2014-10-01

    In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.

  9. Titanium Alloys and Processing for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Brewer, William D.; Bird, R. Keith; Wallace, Terryl A.

    1996-01-01

    Commercially available titanium alloys as well as emerging titanium alloys with limited or no production experience are being considered for a variety of applications to high speed commercial aircraft structures. A number of government and industry programs are underway to improve the performance of promising alloys by chemistry and/or processing modifications and to identify appropriate alloys and processes for specific aircraft structural applications. This paper discusses some of the results on the effects of heat treatment, service temperatures from - 54 C to +177 C, and selected processing on the mechanical properties of several candidate beta and alpha-beta titanium alloys. Included are beta alloys Timetal 21S, LCB, Beta C, Beta CEZ, and Ti-10-2-3 and alpha-beta alloys Ti-62222, Ti-6242S, Timetal 550, Ti-62S, SP-700, and Corona-X. The emphasis is on properties of rolled sheet product form and on the superplastic properties and processing of the materials.

  10. The role of formation of continues thermally grown oxide layer on the nanostructured NiCrAlY bond coat during thermal exposure in air

    NASA Astrophysics Data System (ADS)

    Daroonparvar, Mohammadreza; Hussain, Mohammad Sakhawat; Yajid, Muhammad Azizi Mat

    2012-11-01

    In recent years, the life expectancy of thermal barrier coatings is expected to be improved by applying the nanostructured NiCrAlY bond coat. The present paper reviews the main technique used in the synthesis of nano-crystalline NiCrAlY powders using a planetary ball mill and investigates the microstructural evolution of thermally grown oxide (TGO) layer on the conventional and nanostructured atmospheric plasma sprayed (APS) NiCrAlY coatings in thermal barrier coating (TBC) systems during oxidation. Microstructural characterization showed that the growth of Ni(Cr,Al)2O4 (as spinel) and NiO on the surface of Al2O3 layer (as pure TGO) in nano TBC system was much lower compared to that of normal TBC system during thermal exposure at 1150 °C. These two oxides play a detrimental role in causing crack nucleation and growth, reducing the life of the TBC in air. This microstructure optimization of TGO layer is primarily associated with the formation of a continuous, dense, uniform Al2O3 layer (at first 24 h of isothermal oxidation at 1000 °C) over the nanostructured NiCrAlY coating.

  11. Effect of Powder Structure on Microstructure of the Oxide Scales Formed on Cold-Sprayed NiCrAlY Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Chang-Jiu; Yang, Guan-Jun; Li, Cheng-Xin

    Commercially available, gas-atomized NiCrAlY powder was milled in Ar atmosphere to prepare nanostructured powder. The NiCrAlY coatings in the conventional microstructure and the nanostructure were subsequently deposited by cold spraying using the as-atomized powder and milled powder. The influence of the powder structure on the microstructure of cold-sprayed coating was investigated. It was found that dense NiCrAlY coatings can be cold-sprayed using two powders. Isothermal oxidation was performed at 1000°C in air for up to 500 hours. The results showed that the growth rate of the oxide on the nanostructured NiCrAlY coating was almost comparable to that of the conventional NiCrAlY coating. A uniform Al2O3 layer was formed on the surface of the nanostructured coating surface. Moreover, a dual-subscale oxide was formed on conventional coating composing of an inner Al2O3 oxide and an external mixed oxide.

  12. Evaporative segregation in 80% Ni-20% Cr and 60% Fe-40% Ni alloys

    NASA Technical Reports Server (NTRS)

    Gupta, K. P.; Mukherjee, J. L.; Li, C. H.

    1974-01-01

    An analytical approach is outlined to calculate the evaporative segregation behavior in metallic alloys. The theoretical predictions are based on a 'normal' evaporation model and have been examined for Fe-Ni and Ni-Cr alloys. A fairly good agreement has been found between the predicted values and the experimental results found in the literature.

  13. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1979

    SciTech Connect

    Ashdown, B.G.

    1980-04-01

    Progress is reported concerning preparation of a materials handbook for fusion, creep-fatigue of first-wall structural materials, test results on miniature compact tension fracture toughness specimens, austenitic stainless steels, Fe-Ni-Cr alloys, iron-base alloys with long-range crystal structure, ferritic steels, irradiation experiments, corrosion testing, and hydrogen permeation studies. (FS)

  14. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    SciTech Connect

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive for Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.

  15. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    DOE PAGES

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive formore » Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.« less

  16. High temperature cyclic oxidation data. Part 1: Turbine alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.; Garlick, Ralph G.; Lowell, Carl E.

    1989-01-01

    Specific-weight-change-versus-time data and x ray diffraction results are presented derived from high temperature cyclic tests on high temperature, high strength nickel-base gamma/gamma prime and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.

  17. High-temperature cyclic oxidation data. Part 2: Turbine alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.; Garlick, Ralph G.

    1989-01-01

    Specific-weight-change-versus-time data and x ray diffraction results are presented derived from high temperature cyclic tests on high temperature, high strength nickel-base gamma/gamma prime and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.

  18. Hot Corrosion Behavior of Low-Pressure Cold-Sprayed CoNiCrAlY Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, L. W.; Ning, X. J.; Lu, L.; Wang, Q. S.; Wang, L.

    2016-02-01

    CoNiCrAlY coatings were deposited by low-pressure cold spraying and pre-oxidized in a vacuum environment, and its hot corrosion behavior in pure Na2SO4 and 75 wt.% Na2SO4 + 25 wt.% NaCl salts was investigated. The pre-oxidation treatment resulted in the formation of a dense and continuous α-Al2O3 scale on the coating surface. After being corroded for 150 h at 900 °C, the pre-oxidized coating exhibited better corrosion resistance to both salts than the as-sprayed coating. The presence of preformed Al2O3 scale reduced the consumption rate of aluminum, by delaying the formation of internal oxides and sulfides and promoting the formation of a denser and more adherent Al2O3 scale. Moreover, we investigated the corrosion mechanism of cold-sprayed CoNiCrAlY coatings in the two salts and discussed the effect of the pre-oxidation treatment.

  19. Stepwise Depletion of Coating Elements as a Result of Hot Corrosion of NiCrAlY Coatings

    NASA Astrophysics Data System (ADS)

    Rana, Nidhi; Jayaganthan, R.; Prakash, Satya

    2013-11-01

    Present investigation deals with the hot corrosion behaviour of the NiCrAlY coatings deposited by HVOF technique on Superni76 under cyclic conditions at 900 °C in the presence of Na2SO4 + 60% V2O5 salt. The weight change behaviour of the coatings was followed with time up to 200 cycles and K p value was calculated for the hot corrosion process. Surface and cross-section of the corroded samples were examined by FESEM/EDS and XRD to follow the progress of corrosion up to 200 cycles. In earlier cycles, the corrosive species oxidised top surface of the coatings. With increasing number of cycles, oxidation of the coatings occurred up to 40-μm depth. A Cr-depleted band was seen below the oxide scale. Further increase in number of cycles led to migration and oxidation of Al to form Al2O3 sublayer at coating/scale interface, thereby leading to formation of Al-depleted zone in the coating below the Al2O3 sublayer. The corrosion resistance of the NiCrAlY coatings is attributed to the formation of the continuous and dense Al2O3 sublayer at the coating/scale interface, which acts as barrier to the migration of Cr to the surface. The appearance of Al3Y after 100 and 200 cycles also contributes to the increased corrosion resistance of coatings after 100 and 200 cycles.

  20. Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling

    PubMed Central

    Chaudhary, V.; Ramanujan, R.V.

    2016-01-01

    Low cost, earth abundant, rare earth free magnetocaloric nanoparticles have attracted an enormous amount of attention for green, energy efficient, active near room temperature thermal management. Hence, we investigated the magnetocaloric properties of transition metal based (Fe70Ni30)100−xCrx (x = 1, 3, 5, 6 and 7) nanoparticles. The influence of Cr additions on the Curie temperature (TC) was studied. Only 5% of Cr can reduce the TC from ~438 K to 258 K. These alloys exhibit broad entropy v/s temperature curves, which is useful to enhance relative cooling power (RCP). For a field change of 5 T, the RCP for (Fe70Ni30)99Cr1 nanoparticles was found to be 548 J-kg−1. Tunable TCin broad range, good RCP, low cost, high corrosion resistance and earth abundance make these nanoparticles suitable for low-grade waste heat recovery as well as near room temperature active cooling applications. PMID:27725754

  1. Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling

    NASA Astrophysics Data System (ADS)

    Chaudhary, V.; Ramanujan, R. V.

    2016-10-01

    Low cost, earth abundant, rare earth free magnetocaloric nanoparticles have attracted an enormous amount of attention for green, energy efficient, active near room temperature thermal management. Hence, we investigated the magnetocaloric properties of transition metal based (Fe70Ni30)100‑xCrx (x = 1, 3, 5, 6 and 7) nanoparticles. The influence of Cr additions on the Curie temperature (TC) was studied. Only 5% of Cr can reduce the TC from ~438 K to 258 K. These alloys exhibit broad entropy v/s temperature curves, which is useful to enhance relative cooling power (RCP). For a field change of 5 T, the RCP for (Fe70Ni30)99Cr1 nanoparticles was found to be 548 J-kg‑1. Tunable TCin broad range, good RCP, low cost, high corrosion resistance and earth abundance make these nanoparticles suitable for low-grade waste heat recovery as well as near room temperature active cooling applications.

  2. High Temperature Irradiation Effects in Selected Generation IV Structural Alloys

    SciTech Connect

    Nanstad, Randy K; McClintock, David A; Hoelzer, David T; Tan, Lizhen; Allen, Todd R.

    2009-01-01

    In the Generation IV Materials Program cross-cutting task, irradiation and testing were carried out to address the issue of high temperature irradiation effects with selected current and potential candidate metallic alloys. The materials tested were (1) a high-nickel iron-base alloy (Alloy 800H); (2) a nickel-base alloy (Alloy 617); (3) two advanced nano-structured ferritic alloys (designated 14YWT and 14WT); and (4) a commercial ferritic-martensitic steel (annealed 9Cr-1MoV). Small tensile specimens were irradiated in rabbit capsules in the High-Flux Isotope Reactor at temperatures from about 550 to 700 C and to irradiation doses in the range 1.2 to 1.6 dpa. The Alloy 800H and Alloy 617 exhibited significant hardening after irradiation at 580 C; some hardening occurred at 660 C as well, but the 800H showed extremely low tensile elongations when tested at 700 C. Notably, the grain boundary engineered 800H exhibited even greater hardening at 580 C and retained a high amount of ductility. Irradiation effects on the two nano-structured ferritic alloys and the annealed 9Cr-1MoV were relatively slight at this low dose.

  3. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    NASA Astrophysics Data System (ADS)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  4. High strength ferritic alloy-D53

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high strength ferritic alloy is described having from about 0.2% to about 0.8% by weight nickel, from about 2.5% to about 3.6% by weight chromium, from about 2.5% to about 3.5% by weight molybdenum, from about 0.1% to about 0.5% by weight vanadium, from about 0.1% to about 0.5% by weight silicon, from about 0.1% to about 0.6% by weight manganese, from about 0.12% to about 0.20% by weight carbon, from about 0.02% to about 0.1% by weight boron, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight phosphorous, a maximum of about 0.02% by weight sulfur, and the balance iron.

  5. Influence of the casting processing route on the corrosion behavior of dental alloys.

    PubMed

    Galo, Rodrigo; Rocha, Luis Augusto; Faria, Adriana Claudia; Silveira, Renata Rodrigues; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello

    2014-12-01

    Casting in the presence of oxygen may result in an improvement of the corrosion performance of most alloys. However, the effect of corrosion on the casting without oxygen for dental materials remains unknown. The aim of this study was to investigate the influence of the casting technique and atmosphere (argon or oxygen) on the corrosion behavior response of six different dental casting alloys. The corrosion behavior was evaluated by electrochemical measurements performed in artificial saliva for the different alloys cast in two different conditions: arc melting in argon and oxygen-gas flame centrifugal casting. A slight decrease in open-circuit potential for most alloys was observed during immersion, meaning that the corrosion tendency of the materials increases due to the contact with the solution. Exceptions were the Co-based alloys prepared by plasma, and the Co-Cr-Mo and Ni-Cr-4Ti alloys processed by oxidized flame, in which an increase in potential was observed. The amount of metallic ions released into the artificial saliva solution during immersion was similar for all specimens. Considering the pitting potential, a parameter of high importance when considering the fluctuating conditions of the oral environment, Co-based alloys show the best performance in comparison with the Ni-based alloys, independent of the processing route.

  6. Alloy

    NASA Astrophysics Data System (ADS)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  7. A study of interdiffusion in beta + gamma/gamma + gamma prime Ni-Cr-Al. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Carol, L. A.

    1985-01-01

    Ternary diffusion in the NiCrAl system at 1200 C was studied with beta + gamma/gamma + gamma prime infinite diffusion couples. Interdiffusion resulted in the formation of complex, multiphase diffusion zones. Concentration/distance profiles for Cr and Al in the phases present in the diffusion zone were measured after 200 hr. The Ni-rich portion of the NiCrAl phase diagram (1200 C) was also determined. From these data, bulk Cr and Al profiles were calculated and translated to diffusion paths on the ternary isotherm. Growth layer kinetics of the layers present in the diffusion zone were also measured.

  8. High-Throughput Screening Across Quaternary Alloy Composition Space: Oxidation of (AlxFeyNi1-x-y)∼0.8Cr∼0.2.

    PubMed

    Payne, Matthew A; Miller, James B; Gellman, Andrew J

    2016-09-12

    Composition spread alloy films (CSAFs) are commonly used as libraries for high-throughput screening of composition-property relationships in multicomponent materials science. Because lateral gradients afford two degrees of freedom, an n-component CSAF can, in principle, contain any composition range falling on a continuous two-dimensional surface through an (n - 1)-dimensional composition space. However, depending on the complexity of the CSAF gradients, characterizing and graphically representing this composition range may not be straightforward when n ≥ 4. The standard approach for combinatorial studies performed using quaternary or higher-order CSAFs has been to use fixed stoichiometric ratios of one or more components to force the composition range to fall on some well-defined plane in the composition space. In this work, we explore the synthesis of quaternary Al-Fe-Ni-Cr CSAFs with a rotatable shadow mask CSAF deposition tool, in which none of the component ratios are fixed. On the basis of the unique gradient geometry produced by the tool, we show that the continuous quaternary composition range of the CSAF can be rigorously represented using a set of two-dimensional "pseudoternary" composition diagrams. We then perform a case study of (AlxFeyNi1-x-y)∼0.8Cr∼0.2 oxidation in dry air at 427 °C to demonstrate how such CSAFs can be used to screen an alloy property across a continuous two-dimensional subspace of a quaternary composition space. We identify a continuous boundary through the (AlxFeyNi1-x-y)∼0.8Cr∼0.2 subspace at which the oxygen uptake into the CSAF between 1 and 16 h oxidation time increases abruptly with decreasing Al content. The results are compared to a previous study of the oxidation of AlxFeyNi1-x-y CSAFs in dry air at 427 °C. PMID:27379744

  9. High-Throughput Screening Across Quaternary Alloy Composition Space: Oxidation of (AlxFeyNi1-x-y)∼0.8Cr∼0.2.

    PubMed

    Payne, Matthew A; Miller, James B; Gellman, Andrew J

    2016-09-12

    Composition spread alloy films (CSAFs) are commonly used as libraries for high-throughput screening of composition-property relationships in multicomponent materials science. Because lateral gradients afford two degrees of freedom, an n-component CSAF can, in principle, contain any composition range falling on a continuous two-dimensional surface through an (n - 1)-dimensional composition space. However, depending on the complexity of the CSAF gradients, characterizing and graphically representing this composition range may not be straightforward when n ≥ 4. The standard approach for combinatorial studies performed using quaternary or higher-order CSAFs has been to use fixed stoichiometric ratios of one or more components to force the composition range to fall on some well-defined plane in the composition space. In this work, we explore the synthesis of quaternary Al-Fe-Ni-Cr CSAFs with a rotatable shadow mask CSAF deposition tool, in which none of the component ratios are fixed. On the basis of the unique gradient geometry produced by the tool, we show that the continuous quaternary composition range of the CSAF can be rigorously represented using a set of two-dimensional "pseudoternary" composition diagrams. We then perform a case study of (AlxFeyNi1-x-y)∼0.8Cr∼0.2 oxidation in dry air at 427 °C to demonstrate how such CSAFs can be used to screen an alloy property across a continuous two-dimensional subspace of a quaternary composition space. We identify a continuous boundary through the (AlxFeyNi1-x-y)∼0.8Cr∼0.2 subspace at which the oxygen uptake into the CSAF between 1 and 16 h oxidation time increases abruptly with decreasing Al content. The results are compared to a previous study of the oxidation of AlxFeyNi1-x-y CSAFs in dry air at 427 °C.

  10. Creep and intergranular cracking of Ni-Cr-Fe-C in 360 °C argon

    NASA Astrophysics Data System (ADS)

    Angeliu, Thomas M.; Was, Gary S.

    1994-06-01

    The influence of carbon and chromium on the creep and intergranular (IG) cracking behavior of controlled-purity Ni- xCr-9Fe- yC alloys in 360 °C argon was investigated using constant extension rate tension (CERT) and constant load tension (CLT) testing. The CERT test results at 360 °C show that the degree of IG cracking increases with decreasing bulk chromium or carbon content. The CLT test results at 360 °C and 430 °C reveal that, as the amounts of chromium and carbon in solution decrease, the steady-state creep rate increases. The occurrence of severe IG cracking correlates with a high steady-state creep rate, suggesting that creep plays a role in the IG cracking behavior in argon at 360 °C. The failure mode of IG cracking and the deformation mode of creep are coupled through the formation of grain boundary voids that interlink to form grain boundary cavities, resulting in eventual failure by IG cavitation and ductile overload of the remaining ligaments. Grain boundary sliding may be enhancing grain boundary cavitation by redistributing the stress from inclined to more perpendicular boundaries and concentrating stress at discontinuities for the boundaries oriented 45 deg with respect to the tensile axis. Additions of carbon or chromium, which reduce the creep rate over all stress levels, also reduce the amount of IG fracture in CERT experiments. A damage accumulation model was formulated and applied to CERT tests to determine whether creep damage during a CERT test controls failure. Results show that, while creep plays a significant role in CERT experiments, failure is likely controlled by ductile overload caused by reduction in area resulting from grain boundary void formation and interlinkage.

  11. High conductivity Be-Cu alloys for fusion reactors

    SciTech Connect

    Lilley, E.A.; Adachi, Takao; Ishibashi, Yoshiki

    1995-09-01

    The optimum material has not yet been identified. This will result in heat from plasma to the first wall and divertor. That is, because of cracks and melting by thermal power and shock. Today, it is considered to be some kinds of copper, alloys, however, for using, it must have high conductivity. And it is also needed another property, for example, high strength and so on. We have developed some new beryllium copper alloys with high conductivity, high strength, and high endurance. Therefore, we are introducing these new alloys as suitable materials for the heat sink in fusion reactors.

  12. The fabrication of rapidly solidified high temperature aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gilman, P. S.; Rateick, R. G.; Testa, A.

    The application of rapid solidification/powder metallurgy processing to metallic materials has led to a series of rapidly solidified aluminum-iron-vanadium-silicon alloys which combine a balanced set of elevated temperature strengths and ambient temperature properties critical for aerospace use. The rapidly solidified Al-Fe-V-Si alloys are finding widespread interest throughout the aerospace community. However, to be fully utilized the high temperature Al-Fe-V-Si alloys must be amendable to traditional metalworking, machining and finishing operations. Powder metallurgy derived high performance alloys at times have proven difficult to fabricate. Recent progress in the fabrication of the high temperature Al-Fe-V-Si alloys into desirable product forms will be discussed, for example the production of thin foils and spun metal components. The effects of various fabrication sequences on material properties will be described.

  13. Effect of boron on intergranular hot cracking in Ni-Cr-Fe superalloys containing niobium

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.

    1990-01-01

    Solidification mechanisms had a dominant influence on microfissuring behavior of the test group. Carbon modified the Laves formation significantly and showed that one approach to alloy design would be balancing carbide formers against Laves formers. Boron's strong effect on microfissuring can be traced to its potency as a Laves former. Boron's segregation to grain boundaries plays at best a secondary role in microfissuring.

  14. High temperature erosion of nickel alloys

    SciTech Connect

    Zhou, J.

    1995-12-31

    High temperature erosion behavior was studied on three commercial nickel alloys, Inconel 718, Inconel 601 and Inconel X-750, using a vertical sand-blast type of erosion test rig. Effect of temperature on erosion was investigated by varying test temperature in six steps from ambient up to 800 C. Other erosion variables investigated included impingement angle, changed from 10{degree} to 90{degree}, and impingement velocity, covered a range of 40 to 90 m/s. Extensive studies on erosion surface morphological features were done on eroded or eroded-corroded specimen surfaces using scanning electron microscopy. Thermogravimetric analysis and scratch test revealed corrosion rate, characteristics of oxide scale formed at high temperature, and some effects of corrosion on erosion. It was found that variation of erosion rate with temperature was directly related to temperature-dependent mechanical property changes of the materials. The mechanisms of the high-temperature erosion were analyzed based on test results. It was observed that erosion was dominant in temperature range up to 800 C, while corrosion played increased roles in upper portion of the temperature range tested.

  15. Acoustic Emission Investigation of Rolling/Sliding Contact Fatigue Failure of NiCr-Cr3C2 Coating

    NASA Astrophysics Data System (ADS)

    Guolu, Li; Zhonglin, Xu; Tianshun, Dong; Haidou, Wang; Jinhai, Liu; Jiajie, Kang

    2016-08-01

    NiCr-Cr3C2 coating was fabricated using supersonic plasma spraying technology. Subsequently, rolling/sliding contact fatigue (R/SCF) testing was carried out, using acoustic emission (AE) technology to monitor the failure process. The results showed that R/SCF consists of three failure modes, namely abrasion, spalling, and delamination. Abrasion is the main failure mode, but delamination is the most severe. The AE monitoring results indicated that the R/SCF failure process is composed of normal contact, crack initiation, crack propagation, and material removal stages. The frequency of each stage was analyzed by fast Fourier transform, revealing a peak frequency for each stage mainly distributed from 200 to 250 kHz.

  16. Acoustic Emission Investigation of Rolling/Sliding Contact Fatigue Failure of NiCr-Cr3C2 Coating

    NASA Astrophysics Data System (ADS)

    Guolu, Li; Zhonglin, Xu; Tianshun, Dong; Haidou, Wang; Jinhai, Liu; Jiajie, Kang

    2016-10-01

    NiCr-Cr3C2 coating was fabricated using supersonic plasma spraying technology. Subsequently, rolling/sliding contact fatigue (R/SCF) testing was carried out, using acoustic emission (AE) technology to monitor the failure process. The results showed that R/SCF consists of three failure modes, namely abrasion, spalling, and delamination. Abrasion is the main failure mode, but delamination is the most severe. The AE monitoring results indicated that the R/SCF failure process is composed of normal contact, crack initiation, crack propagation, and material removal stages. The frequency of each stage was analyzed by fast Fourier transform, revealing a peak frequency for each stage mainly distributed from 200 to 250 kHz.

  17. An empirical-statistical model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy

    NASA Astrophysics Data System (ADS)

    Ansari, M.; Shoja Razavi, R.; Barekat, M.

    2016-12-01

    In this study, coaxial laser cladding of NiCrAlY powder on a nickel-based superalloy is investigated from an experimental point of view so as to propose an empirical-statistical model for the process. The correlations between main processing parameters (i.e. scanning speed, powder feeding rate, and laser power) and geometrical characteristics (i.e. width, height, penetration depth, dilution and wetting angle) of single clad tracks have been predicted and are discussed using regression analysis (RA). The validity of the predictions is confirmed by providing correlation coefficient and analysis of the residuals. The correlations are established as a combined parameter (PαVβFγ) for each studied characteristic of single clad tracks. These correlations finally lead to the design of a processing map that can be practically used to select proper processing parameters for laser cladding of the particular material.

  18. Swelling of Uranium Alloys at High Exposures

    SciTech Connect

    McDonell, W.R.

    2001-03-26

    This reports summarizes the results of postirradiation examinations of a series of unrestrained dilute uranium alloy specimens irradiated to exposures up to 13,000 MWD/T in NaK-containing stainless steel capsules.

  19. Microstructure and properties of the Ti/Al2O3/NiCr composites fabricated by explosive compaction/cladding.

    PubMed

    Wang, Bingfeng; Xie, Fangyu; Wang, Bin; Luo, Xiaozhou

    2015-05-01

    Titanium/aluminum oxide/nickel chromium (Ti/Al2O3/NiCr) composite bar prepared by explosive compaction/cladding technique represents a new kind of sandwich-structural composites for medical application. Formation of the interfaces of Ti/Al2O3 and Al2O3/NiCr govern the properties of the composite material. The electrical resistivity and microstructure of the intermediate layer and the interfaces of the Ti/Al2O3/NiCr explosive compaction/cladding bar are investigated by means of four-point probe analysis, optical microscopy, scanning electron microscopy, electron microprobe analysis, and X-ray diffraction. The Ti/Al2O3/NiCr composite bar is characterized by the consolidated ceramic intermediate layer and the metallurgical bonding interfaces. The intermediate ceramic layer plays a role of insulation and thermal conductance in this composite. The average shear strength of the composite bar is about 9.36 MPa. The heat affected zone characterized by relatively larger sizes of grains is distinguished from the other part of the Ti tube. The intermetallics AlTi3 and Al0.9Ni4.22 are generated at the intermediate ceramic layer. Formation mechanism of the interfaces of the explosive compaction/cladding bar are described.

  20. Microstructure and properties of the Ti/Al2O3/NiCr composites fabricated by explosive compaction/cladding.

    PubMed

    Wang, Bingfeng; Xie, Fangyu; Wang, Bin; Luo, Xiaozhou

    2015-05-01

    Titanium/aluminum oxide/nickel chromium (Ti/Al2O3/NiCr) composite bar prepared by explosive compaction/cladding technique represents a new kind of sandwich-structural composites for medical application. Formation of the interfaces of Ti/Al2O3 and Al2O3/NiCr govern the properties of the composite material. The electrical resistivity and microstructure of the intermediate layer and the interfaces of the Ti/Al2O3/NiCr explosive compaction/cladding bar are investigated by means of four-point probe analysis, optical microscopy, scanning electron microscopy, electron microprobe analysis, and X-ray diffraction. The Ti/Al2O3/NiCr composite bar is characterized by the consolidated ceramic intermediate layer and the metallurgical bonding interfaces. The intermediate ceramic layer plays a role of insulation and thermal conductance in this composite. The average shear strength of the composite bar is about 9.36 MPa. The heat affected zone characterized by relatively larger sizes of grains is distinguished from the other part of the Ti tube. The intermetallics AlTi3 and Al0.9Ni4.22 are generated at the intermediate ceramic layer. Formation mechanism of the interfaces of the explosive compaction/cladding bar are described. PMID:25746277

  1. Does the casting mode influence microstructure, fracture and properties of different metal ceramic alloys?

    PubMed

    Bauer, José Roberto de Oliveira; Grande, Rosa Helena Miranda; Rodrigues-Filho, Leonardo Eloy; Pinto, Marcelo Mendes; Loguercio, Alessandro Dourado

    2012-01-01

    The aim of the present study was to evaluate the tensile strength, elongation, microhardness, microstructure and fracture pattern of various metal ceramic alloys cast under different casting conditions. Two Ni-Cr alloys, Co-Cr and Pd-Ag were used. The casting conditions were as follows: electromagnetic induction under argon atmosphere, vacuum, using blowtorch without atmosphere control. For each condition, 16 specimens, each measuring 25 mm long and 2.5 mm in diameter, were obtained. Ultimate tensile strength (UTS) and elongation (EL) tests were performed using a Kratos machine. Vickers Microhardness (VM), fracture mode and microstructure were analyzed by SEM. UTS, EL and VM data were statistically analyzed using ANOVA. For UTS, alloy composition had a direct influence on casting condition of alloys (Wiron 99 and Remanium CD), with higher values shown when cast with Flame/Air (p < 0.05). The factors 'alloy" and 'casting condition" influenced the EL and VM results, generally presenting opposite results, i.e., alloy with high elongation value had lower hardness (Wiron 99), and casting condition with the lowest EL values had the highest VM values (blowtorch). Both factors had significant influence on the properties evaluated, and prosthetic laboratories should select the appropriate casting method for each alloy composition to obtain the desired property. PMID:22641437

  2. High Temperature Fracture Characteristics of a Nanostructured Ferritic Alloy (NFA)

    SciTech Connect

    Byun, Thak Sang; Kim, Jeoung H; Ji Hyun, Yoon; Hoelzer, David T

    2010-01-01

    High temperature fracture behavior has been investigated for the nanostructured ferritic alloy 14YWT (SM10). The fracture toughness of the alloy was above 140 MPa m at low temperatures, room temperature (RT) and 200 C, but decreased to a low fracture toughness range of 52 82 MPa m at higher temperatures up to 700 C. This behavior was explained by the fractography results indicating that the unique nanostructure of 14YWT alloy produced shallow plasticity layers at high temperatures and a low-ductility grain boundary debonding occurred at 700 C.

  3. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution

    SciTech Connect

    Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.

    2014-09-14

    High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

  4. High-temperature alloys: Single-crystal performance boost

    NASA Astrophysics Data System (ADS)

    Schütze, Michael

    2016-08-01

    Titanium aluminide alloys are lightweight and have attractive properties for high-temperature applications. A new growth method that enables single-crystal production now boosts their mechanical performance.

  5. Microstructure and Mechanical Behavior of High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Licavoli, Joseph J.; Gao, Michael C.; Sears, John S.; Jablonski, Paul D.; Hawk, Jeffrey A.

    2015-10-01

    High-entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion, usually of equal atomic percent, they have high configurational entropy, and thus, they hold the promise of interesting and useful properties such as enhanced strength and alloy stability. The present study investigates the mechanical behavior, fracture characteristics, and microstructure of two single-phase FCC HEAs CoCrFeNi and CoCrFeNiMn with some detailed attention given to melting, homogenization, and thermo-mechanical processing. Ingots approaching 8 kg in mass were made by vacuum induction melting to avoid the extrinsic factors inherent to small-scale laboratory button samples. A computationally based homogenization heat treatment was given to both alloys in order to eliminate any solidification segregation. The alloys were then fabricated in the usual way (forging, followed by hot rolling) with typical thermo-mechanical processing parameters employed. Transmission electron microscopy was subsequently used to assess the single-phase nature of the alloys prior to mechanical testing. Tensile specimens (ASTM E8) were prepared with tensile mechanical properties obtained from room temperature through 800 °C. Material from the gage section of selected tensile specimens was extracted to document room and elevated temperature deformation within the HEAs. Fracture surfaces were also examined to note fracture failure modes. The tensile behavior and selected tensile properties were compared with results in the literature for similar alloys.

  6. The Effect of Dilution on Microsegregation in AWS ER NiCrMo-14 Alloy Welding Claddings

    NASA Astrophysics Data System (ADS)

    Miná, Émerson Mendonça; da Silva, Yuri Cruz; Dille, Jean; Silva, Cleiton Carvalho

    2016-10-01

    Dilution and microsegregation are phenomena inherent to claddings, which, in turn, directly affect their main properties. This study evaluated microsegregation in the fusion zone with different dilution levels. The overlays were welded by the TIG cold wire feed process. Dilution was calculated from the geometric characteristics of the claddings and from the conservation of mass equation using chemical composition measurements. Microsegregation was calculated using energy dispersive X-ray spectroscopy measurements of the dendrites and the chemical composition of the fusion zone. The dilution of the claddings was increased by reducing the wire feed rate. Fe showed potential to be incorporated into the solid phase (k > 1), and this increased with the increase of dilution. Mo, in turn, was segregated into the liquid phase (k < 1) and also increased with the increase of dilution. However, Cr and W showed a slight decrease in their partition coefficients (k) with the increase of dilution.

  7. Nonequilibrium Phase Chemistry in High Temperature Structure Alloys

    NASA Technical Reports Server (NTRS)

    Wang, R.

    1991-01-01

    Titanium and nickel aluminides of nonequilibrium microstructures and in thin gauge thickness were identified, characterized and produced for potential high temperature applications. A high rate sputter deposition technique for rapid surveillance of the microstructures and nonequilibrium phase is demonstrated. Alloys with specific compositions were synthesized with extended solid solutions, stable dispersoids, and specific phase boundaries associated with different heat treatments. Phase stability and mechanical behavior of these nonequilibrium alloys were investigated and compared.

  8. Materials Design for Joinable, High Performance Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Glamm, Ryan James

    An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron

  9. Iron aluminide alloys with improved properties for high temperature applications

    DOEpatents

    McKamey, Claudette G.; Liu, Chain T.

    1990-01-01

    An improved iron aluminide alloy of the DO.sub.3 type that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy corrosion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26-30 at. % aluminum, 0.5-10 at. % chromium, 0.02-0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron.

  10. Iron aluminide alloys with improved properties for high temperature applications

    DOEpatents

    McKamey, C.G.; Liu, C.T.

    1990-10-09

    An improved iron aluminide alloy of the DO[sub 3] type is described that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy conversion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26--30 at. % aluminum, 0.5--10 at. % chromium, 0.02--0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron. 3 figs.

  11. NDE detectability of fatigue type cracks in high strength alloys

    NASA Technical Reports Server (NTRS)

    Christner, B. K.; Rummel, W. D.

    1983-01-01

    Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level.

  12. High temperature ductility loss in titanium alloys -- A review

    SciTech Connect

    Rath, B.B.; Imam, M.A.; Damkroger, B.K.; Edwards, G.R.

    1994-02-01

    It is well known that two phase titanium alloy systems suffer from an abrupt drop in ductility at elevated temperatures in the range of 1,000 to 1,150 K. This loss of ductility is manifested by easy decohesion of polycrystalline aggregates along the grain boundaries of the high temperature beta phase. If the alloy is in a state of tensile stress at the aforementioned temperatures, cracks initiate at the grain boundaries and propagate readily through the alloy, leading to premature failure. This phenomenon is a cause of major concern in titanium alloy fabrication and welding. Several mechanisms have been proposed to explain high temperature crack nucleation and growth along the boundaries. A critical review of the phenomenon and possible mechanisms responsible for the observed behavior will be discussed.

  13. Mechanical alloying and high pressure processing of a TiAl-V intermetallic alloy.

    PubMed

    Dymek, S; Wróbel, M; Witczak, Z; Blicharski, M

    2010-03-01

    An alloy with a chemical composition of Ti-45Al-5V (at.%) was synthesized by mechanical alloying in a Szegvari-type attritor from elemental powders of high purity. Before compaction, the powders were characterized by X-ray diffraction and scanning as well as transmission electron microscopy. The compaction of powders was carried out by hot isostatic pressing and hot isostatic extrusion. The resulting material was subjected to microstructural and mechanical characterization. The microstructure investigated by transmission and scanning electron microscopy supplemented by X-ray diffraction revealed that the bulk material was composed of a mixture of TiAl- and Ti(3)Al-based phases, however, the typical lamellar microstructure for such alloys was not observed. The materials exhibited exceptionally high yield strength together with satisfactory ductility and fracture toughness. The high strength was unequivocally due to grain refinement and the presence of oxide dispersoid. PMID:20500422

  14. Alloy Design Strategies and Future Trends in High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Yeh, Jien-Wei

    2013-12-01

    High-entropy alloys (HEAs) are newly emerging advanced materials. In contrast to conventional alloys, HEAs contain multiple principal elements, often five or more in equimolar or near-equimolar ratios. The basic principle behind HEAs is that solid-solution phases are relatively stabilized by their significantly high entropy of mixing compared to intermetallic compounds, especially at high temperatures. This makes them feasibly synthesized, processed, analyzed, and manipulated, and as well provides many opportunities for us. There are huge numbers of possible compositions and combinations of properties in the HEA field. Wise alloy design strategies for suitable compositions and processes to fit the requirements for either academic studies or industrial applications thus become especially important. In this article, four core effects were emphasized, several misconceptions on HEAs were clarified, and several routes for future HEA research and development were suggested.

  15. Stack linings in high-alloy stainless steels and nickel-base alloys

    SciTech Connect

    Herda, W.R.; Grossmann, G.K.

    1999-11-01

    In power stations as well as in waste incineration plants, the stack is the last component in which residues and condensates can separate from the treated flue gas. The process of condensate formation due to temperatures below dewpoint, and the extreme corrosiveness of specific condensates are discussed in detail. Stack lining, using an appropriately corrosion-resistant metallic material, has proven to be an effective means of corrosion protection. Selected high-alloy stainless steels and nickel-base alloys, particularly well suited to this application, are introduced. The various techniques available for fitting such highly corrosion resistant linings are described in selected case histories.

  16. Low cost fabrication development for oxide dispersion strengthened alloy vanes

    NASA Technical Reports Server (NTRS)

    Perkins, R. J.; Bailey, P. G.

    1978-01-01

    Viable processes were developed for secondary working of oxide dispersion strengthened (ODS) alloys to near-net shapes (NNS) for aircraft turbine vanes. These processes were shown capable of producing required microstructure and properties for vane applications. Material cost savings of 40 to 50% are projected for the NNS process over the current procedures which involve machining from rectangular bar. Additional machining cost savings are projected. Of three secondary working processes evaluated, directional forging and plate bending were determined to be viable NNS processes for ODS vanes. Directional forging was deemed most applicable to high pressure turbine (HPT) vanes with their large thickness variations while plate bending was determined to be most cost effective for low pressure turbine (LPT) vanes because of their limited thickness variations. Since the F101 LPT vane was selected for study in this program, development of plate bending was carried through to establishment of a preliminary process. Preparation of ODS alloy plate for bending was found to be a straight forward process using currently available bar stock, providing that the capability for reheating between roll passes is available. Advanced ODS-NiCrAl and ODS-FeCrAl alloys were utilized on this program. Workability of all alloys was adequate for directional forging and plate bending, but only the ODS-FeCrAl had adequate workability for shaped preform extrustion.

  17. Study of high performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.

    1984-01-01

    Using the two nickel-manganese alloy electroforming baths of near identical compositions, panels were electroformed under the same deposition parameters of current density, bath temperature, pH, and pulse plating conditions of duty cycle and frequency. By changing the electrolyte agitation conditions, significant effects on mechanical properties were noted. Since electrolyte agitation conditions on the typical flat panels studied to date will not be identical to those existing on a complex curved shape such as the SSME combustion chamber simulation, it is most important that these effects be evaluated prior to Phase B studies. The subscale chamber has been fabricated and shield support tooling is being made. Electroforming of optimized alloy test bars is being deferred until the electrolyte agitation effects are more fully appraised.

  18. High temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, Philip J.; Swindeman, Robert W.; Goodwin, Gene M.

    1989-01-01

    An improved austenitic alloy having in wt % 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150.degree.-1200.degree. C. and then cold deforming 5-15 %. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700.degree. C.

  19. Improved high temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, P.J.; Swindeman, R.W.; Goodwin, G.M.

    1988-05-13

    An improved austenitic alloy having in wt% 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150-1200/degree/C and then cold deforming 5-15%. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700/degree/C. 2 figs.

  20. High temperature seal for joining ceramics and metal alloys

    DOEpatents

    Maiya, P. Subraya; Picciolo, John J.; Emerson, James E.; Dusek, Joseph T.; Balachandran, Uthamalingam

    1998-01-01

    For a combination of a membrane of SrFeCo.sub.0.5 O.sub.x and an Inconel alloy, a high-temperature seal is formed between the membrane and the alloy. The seal is interposed between the alloy and the membrane, and is a fritted compound of Sr oxide and boric oxide and a fritted compound of Sr, Fe and Co oxides. The fritted compound of SrFeCo.sub.0.50 O.sub.x is present in the range of from about 30 to 70 percent by weight of the total sealant material and the fritted compound of Sr oxide and boric oxide has a mole ratio of 2 moles of the Sr oxide for each mole of boric oxide. A method of sealing a ceramic to an Inconel metal alloy is also disclosed.

  1. High temperature seal for joining ceramics and metal alloys

    DOEpatents

    Maiya, P.S.; Picciolo, J.J.; Emerson, J.E.; Dusek, J.T.; Balachandran, U.

    1998-03-10

    For a combination of a membrane of SrFeCo{sub 0.5}O{sub x} and an Inconel alloy, a high-temperature seal is formed between the membrane and the alloy. The seal is interposed between the alloy and the membrane, and is a fritted compound of Sr oxide and boric oxide and a fritted compound of Sr, Fe and Co oxides. The fritted compound of SrFeCo{sub 0.50}O{sub x} is present in the range of from about 30 to 70 percent by weight of the total sealant material and the fritted compound of Sr oxide and boric oxide has a mole ratio of 2 moles of the Sr oxide for each mole of boric oxide. A method of sealing a ceramic to an Inconel metal alloy is also disclosed. 3 figs.

  2. A shape-memory alloy for high-temperature applications

    SciTech Connect

    Duerig, T.W.; Albrecht, J.; Gessinger, G.H.

    1982-12-01

    An alloy based on the Cu-Al-Ni ternary system has been developed at the research center of Brown, Boveri and Co., Baden, Switzerland, which provides a fully reversible (two-way) shape memory effect at significantly higher temperatures than those afforded by commercial memory alloys such as NiTi and Cu-Zn-Al. The higher temperature capability of this alloy could open new fields for the application of the shape memory effect, particularly in thermal switching and protection devices. After suitable deformation and processing, a shape change is observed while heating the alloy through the temperature interval from 175 to 190/sup 0/C. This shape change can be completely reversed during subsequent cooling from 155 to 125/sup 0/C. The magnitude of the reversible strain produced by this alloy is 1.5%; somewhat higher strains can be achieved if lower memory temperatures can be accepted, and conversely, better high temperature capabilities can be achieved by accepting smaller reversible strains. The memory effects in this alloy have been found to be unaffected by short overheatings to temperatures as high as 300/sup 0/C.

  3. Microscale characterization of metallic coatings for a high strength high conductivity copper alloy

    NASA Astrophysics Data System (ADS)

    Jain, Piyush

    NiCrAlY overlay coatings are being considered by NASA's Glenn Research Center to prevent blanching and reduce thermo-mechanical fatigue of rocket engine combustion chamber liners made of GRCop-84 (Cu-8%Cr-4%Nb) for reusable launch vehicles (RLVs). However, their successful application depends upon their integrity to the GRCop-84 during multiple firings of rocket engines. This study focuses on determining the adhesion of NiCrAlY coatings and their microstructural stability on GRCop-84 as a function of thermal cycling. Specimens were prepared by depositing NiCrAlY top coat on GRCop-84 by vacuum plasma spaying with a thin layer of Cu-26Cr as a bond coat. A thermal cycling rig was built to thermally cycle the NiCrAlY/Cu-26Cr/GRCop-84 specimens from RT to 600°C in an argon environment, with 10 minutes hold at 600°C, and 4 minutes hold at RT. Samples were cut from the coupons in as-received condition (AR), after 100 thermal cycles (TC-100), and after 300 thermal cycles (TC-300) for characterization. A newly developed interfacial microsample testing technique was employed to determine the adhesion of the coatings on GRCop-84, where bowtie shaped microsamples having interfaces normal to the tensile axis were tested. Interfacial microsamples of NiCrAlY/Cu-26Cr/GRCop-84 in all the conditions (AR, TC-100, and TC-300) failed cohesively in the substrate at a UTS of 380+/-5 MPa and their interfaces remained intact. The microstructural characterization revealed that microstructure of the NiCrAlY/Cu-26Cr/GRCop-84 specimens does not degrade as a function of thermal cycling. Constitutive properties of NiCrAlY, Cu-26Cr, and GRCop-84 were measured by testing monolithic samples and were used to build the finite element model (FEM) of the interfacial microsamples. The FE model analyzed the local stress-strain in the interfacial microsamples during the testing and confirmed the strength of the interfaces to be higher than 380+/-5 MPa. Depleted zones, devoid of Cr2Nb particles, were

  4. Restoration of Obliterated Numbers on 40NiCrMo4 Steel by Etching Method: Metallurgical and Statistical Approaches.

    PubMed

    Fortini, Annalisa; Merlin, Mattia; Soffritti, Chiara; Garagnani, Gian L

    2016-01-01

    The restoration of obliterated serial numbers is a problem of common occurrence in the forensic field. Among several restoration techniques, chemical etching is the most frequently used. The present research is aimed at studying the restoration of serial numbers, stamped on 40NiCrMo4 steel plates, by means of chemical etching. Microstructural characterization was firstly carried out to study the plastically deformed regions surrounding the marks. The obliteration was performed by controlled removals of material at increasing depths of erasure, and five etching reagents were considered to analyze their sensitivity and effectiveness. Experimental results revealed that Fry's reagent was the most sensitive, able to restore erased marks up to 60 μm under the depth of the imprint. The reagent comprising 25 mL HNO3 and 75 mL H2O provided good results, recovering the major numbers of characters. A descriptive statistical analysis was conducted to study the operator's influence on the recovered marks' identification.

  5. Combination Effect of Dry-Ice Blasting and Substrate Preheating on Plasma-Sprayed CoNiCrAlY Splats

    NASA Astrophysics Data System (ADS)

    Dong, Shujuan; Song, Bo; Hansz, Bernard; Liao, Hanlin; Coddet, Christian

    2013-02-01

    CoNiCrAlY splats were plasma-sprayed on the stainless steel substrate which was pretreated by dry-ice blasting. Only impact marks were distinguished on the glycerol-polluted substrate, while halo donut splats formed on the pretreated substrate because of the cleaning effect of dry-ice blasting on this organic substance. The proportions of different splat types vary as a function of the treatment time of dry-ice blasting. The condensation phenomenon was also detected on the substrate surface accompanying the cleaning effect after the pretreatment of dry-ice blasting. In this study, dry-ice blasting was investigated to be coupled with substrate preheating to control the substrate temperature. It was found that a regular disk-like CoNiCrAlY splat can be obtained as the substrate temperature is higher than dew point temperature.

  6. Weathering and precipitation after meteorite impact of Ni, Cr, Fe, Ca and Mn in K-T boundary clays from Stevns Klint

    NASA Astrophysics Data System (ADS)

    Miyano, Yumiko; Yoshiasa, Akira; Tobase, Tsubasa; Isobe, Hiroshi; Hongu, Hidetomo; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa

    2016-05-01

    Ni, Cr, Fe, Ca and Mn K-edge XANES and EXAFS spectra were measured on K-T boundary clays from Stevns Klint in Denmark. According to XANES spectra and EXAFS analyses, the local structures of Ni, Cr and Fe in K-T boundary clays is similar to Ni(OH)2, Cr2O3 and FeOOH, respectively. It is assumed that the Ni, Cr and Fe elements in impact related glasses is changing into stable hydrate and oxide by the weathering and diagenesis at the surface of the Earth. Ca in K-T boundary clays maintains the diopside-like structure. Local structure of Ca in K-T clays seems to keep information on the condition at meteorite impact. Mn has a local structure like MnCO3 with divalent state. It is assumed that the origin on low abundant of Mn in the Fe-group element in K-T clays was the consumption by life activity and the diffusion to other parts.

  7. Precipitate Phases in Several High Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Initiated by the aerospace industry, there has been a great interest to develop high temperature shape memory alloys (HTSMAs) for actuator type of application at elevated temperatures. Several NiTi based ternary systems have been shown to be potential candidates for HTSMAs and this work focuses on one or more alloys in the TiNiPt, TiNiPd, NiTiHf, NiPdTiHf systems. The sheer scope of alloys of varying compositions across all four systems suggests that the questions raised and addressed in this work are just the tip of the iceberg. This work focuses on materials characterization and aims to investigate microstructural evolution of these alloys as a function of heat treatment. The information gained through the study can serve as guidance for future alloy processing. The emphasis of this work is to describe novel precipitate phases that are formed under aging in the ternary systems and one quaternary system. Employing conventional transmission electron microscopy (TEM), high resolution high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM), 3D atom probe tomography (3D APT), as well as ab initio calculations, the complete description of the unit cell for the new precipitates was determined. The methodology is summarized in the appendix to help elucidate some basics of such a process.

  8. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  9. Effect of phosphorus on Fe grain boundary self-diffusion in austenitic Fe-20Ni-10Cr-xP alloys

    SciTech Connect

    Cermak, J.; Ruzickova, J.; Pokorna, A. . Inst. of Physical Metallurgy)

    1994-08-15

    Austenitic Ni-Cr steels are extensively used as refractory and corrosion-resistant materials. Frequently, they are used at temperatures approaching T[sub m]/2 (T[sub m] is melting point). In this temperature range, all transport processes controlled by diffusion almost exclusively involve high-diffusivity paths, while the lattice diffusion is frozen. In a single-phase material without interphase interfaces, grain boundaries (GB's) and dislocation pipes act as high-diffusivity paths. It is well known that impurities, the solubility limit of which are low, concentrate at GB's. Because of the very small thickness of a GB, [delta], they form relatively highly concentrated thin zones along GB's even if their mean concentration is very low. Moreover, the changes of chemical composition of these zones may be even more complicated owing to e.g., cooperative and site-competitive interactions between atoms in the GB, and/or to heterogeneous precipitation on GB's induced by segregation. Therefore, diffusion along GB's is strongly affected by the chemistry of the GB, especially by segregated so-called surface active elements. At present, there is no universal theory describing all details of diffusion along segregated GB's, which is, partially, caused by lack of experimental data. In the present paper, the effect of small concentrations of phosphorus, that is one of most deleterious impurities in iron alloys, on GB self-diffusion of iron in Fe-Ni-Cr-xP system is studied.

  10. High temperature corrosion behavior of commercial high temperature alloys under deposits of alkali salts

    SciTech Connect

    Kloewer, J.

    1995-12-31

    Corrosive deposits containing high amounts of alkali sulphates, chlorides and/or carbonates are encountered by heat exchanger tubes in a variety of industrial processes. Due to their low melting point the alkali salts can cause basic or acidic dissolution of the subjacent material, which results in rapid wastage of the tube. In order to select appropriate materials for application in heat recovery systems eight commercial high temperature materials (alloy 800H, Alloy 31, Alloy AC66, alloy 45-TM, Alloy 625, Alloy 59 and Alloy C-4) were investigated in sulphate, sulphate/chloride and sulphate/chloride/carbonate salt mixtures. The temperature range was between 550 and 750 C. In agreement with field tests the corrosion attack was high for most of the alloys tested with the corrosion rate depending sensitively on salt composition, test temperature and alloy composition. High molybdenum contents were found to be detrimental. Chromium did not effect the corrosion behavior significantly, whereas silicon had a beneficial effect on the corrosion resistance in molten alkali salts.

  11. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  12. Progress toward a tungsten alloy wire/high temperature alloy composite turbine blade

    NASA Technical Reports Server (NTRS)

    Ritzert, F. J.; Dreshfield, R. L.

    1992-01-01

    A tungsten alloy wire reinforced high temperature alloy composite is being developed for potential application as a hollow turbine blade for advanced rocket engine turbopumps. The W-24Re-HfC alloy wire used for these composite blades provides an excellent balance of strength and wire ductility. Preliminary fabrication, specimen design, and characterization studies were conducted by using commercially available W218 tungsten wire in place of the W-24Re-Hfc wire. Subsequently, two-ply, 50 vol pct composite panels using the W-24Re-HfC wire were fabricated. Tensile tests and metallographic studies were performed to determine the material viability. Tensile strengths of a Waspaloy matrix composite at 870 C were 90 pct of the value expected from rule-of-mixtures calculations. During processing of this Waspaloy matrix composite, a brittle phase was formed at the wire/matrix interface. Circumferential wire cracks were found in this phase. Wire coating and process evaluation efforts were performed in an attempt to solve the reaction problem. Although problems were encountered in this study, wire reinforced high temperature alloy composites continue to show promise for turbopump turbine blade material improvement.

  13. Al/sub 2/O/sub 3/ adherence on CoCrAl alloys

    SciTech Connect

    Kingsley, L.M.

    1980-04-01

    Adherence of protective oxides on NiCrAl and CoCrAl superalloys has been promoted by a dispersion of a highly oxygen reactive element or its oxide being produced within the protection system. Two aspects of this subject are investigated here: the use of Al/sub 2/O/sub 3/ as both the dispersion and protective oxide; and the production of an HfO/sub 2/ dispersion while simultaneously aluminizing the alloy. It was found that an Al/sub 2/O/sub 3/ dispersion will act to promote the adherence of an external scale of Al/sub 2/O/sub 3/ to a degree comparable to previously tested dispersions and an HfO/sub 2/ dispersion comparable to that produced by a Rhines pack treatment is produced during aluminization.

  14. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    SciTech Connect

    Coulter, K

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  15. High Strength and Thermally Stable Nanostructured Magnesium Alloys and Nanocomposites

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Wei

    Magnesium and its alloys are currently in the spotlight of global research because of the need to limit energy consumption and reduce the environmental impact. In particular, their low densities compared to other structural metals make them a very attractive alternative in the automobile and aerospace industries. However, their low strength compared to other structural materials (e.g. Al and steels) has limited their widespread application. This dissertation presents the results of developing and investigation of a high strength nanostructured magnesium-aluminum alloy and composite. The nanostructured magnesium alloy is prepared by cryomilling and consolidated by spark-plasma-sintering. Focused ion beam is used to prepare micropillars with different diameters ranging from 1.5 to 8 mum and micro-compression test is conducted by nanoindenter in order to evaluate the mechanical properties. The yield strength obtained in the present study is around three times higher than conventional magnesium alloys (120 MPa vs. 370 MPa). The yield strength of the nanostructured magnesium alloy is further improved through hot extrusion, resulting in a yield strength of 550 MPa and an ultimate strength of 580 MPa. The nanostructured magnesium alloy exhibits a strong size-dependence, and a significant improvement in strength is observed when the pillar diameter is reduced to below 3.5 mum. The deformation mechanisms of the compressed pillars were characterized using transmission electron microscopy. The size-induced strengthening is attributed to a less number of dislocation sources along with a higher activity of non-basal deformation mechanisms. We have also developed a high strength and thermally stable nanostructured magnesium composite by adding diamantane. A yield strength of 500 MPa is achieved, moreover, excellent thermal stability is demonstrated in the magnesium alloy containing diamantanes. The strength and grain size are thermally stable after annealing at 400°C for 100

  16. The resistance of selected high strength alloys to embrittlement by a hydrogen environment. [iron and cobalt base alloys

    NASA Technical Reports Server (NTRS)

    Benson, R. B., Jr.

    1974-01-01

    Selected high strength iron base and cobalt base alloys were resistant to degradation of mechanical properties in a one atmosphere hydrogen environment at ambient temperature. These alloys were strengthened initially by cold working which produced strain induced martensite and fcc mechanical twins in an fcc matrix. Heat treatment of the cobalt base alloy after cold working produced carbide precipitates with retention of an hcp epsilon phase which increased the yield strength level. High strength alloys can be produced which have some resistance to degradation of mechanical properties by a hydrogen environment under certain conditions.

  17. Concentration Waves in High-Entropy Alloys - a new alloy design approach

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Johnson, Duane D.

    2015-03-01

    Chemical short-range order (SRO) in solid solutions can be interpreted as a ``concentration wave'' - a Fourier decomposition of nascent order - identified experimentally via Warren-Cowley SRO parameters. We present a rigorous thermodynamic theory to predict and uniquely interpret the SRO in N -component alloys. Based on KKR-CPA electronic structure, we implemented this method using thermodynamic linear-response to include all alloying effects, e.g., band-filling, hybridization, Fermi -surface nesting and van Hove instabilities. We apply this first-principles method to high-entropy alloys (HEAs), i.e., solid solutions with N >4 that inhibit small-cell order due to large entropy competing against ordering enthalpy, as their properties are sensitive to SRO. We validated theory with comparison to experiments in A2 Nb-Al-Ti and A1 Cu-Ni-Zn . We then predict and analyze SRO and mechanical trends in Ni-Ti-Zr-Cu-Al and Co-Cr-Fe-Mn-Ni systems - showcasing this new first-principles-based alloy design method. Work was supported by the USDoE, Office of Sci., Basic Energy Sci., Materials Sci. and Eng. Division for `Materials Discovery.' Research was performed at Ames Lab, operated by Iowa State University under Contract #DE-AC02-07CH11358.

  18. PYTi-NiCr Signatures in the Columbia Hills are Present in Certain Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Clark, B. C.; Gellert, R.; Ming, D. W.; Morris, R. V.; Mittlefehldt, D. W.; Squyres, S. W.

    2006-01-01

    Uniquely high levels of phosphorus and titanium were observed in several samples [1-3] by the APXS x-ray fluorescence measurements as the MER Spirit rover climbed Husband Hill (Columbia Hills, Gusev crater, Mars). A careful study of many such samples and their geochemical variability has revealed additional elements in this pattern, and that the derived multi-element signature is also unambiguously manifested in several martian meteorites.

  19. Performance of high nickel alloys in refinery and petrochemical environments

    SciTech Connect

    Crum, J.R.; Adkins, M.E.; Lipscomb, W.G.

    1986-07-01

    In certain intermediate temperature refinery and petrochemical applications, both resistance to polythionic acid and chloride stress corrosion cracking (SCC) and high temperature strength and stability are required. The effect of simulated operating temperatures in the 900 to 1500/sup 0/F (482 to 816/sup 0/C) range on the corrosion and mechanical properties of several nickel alloys is examined.

  20. Barnacle-induced corrosion of high-alloyed steels

    SciTech Connect

    Koryakova, M.D.; Filonenko, N.Yu.; Kaplin, Yu.M.

    1995-03-01

    Local corrosion of two sorts of high-alloyed steels under the action of acorn barnacles (Balanuses) has been studied. It has been shown that in natural seawater at anaerobic conditions beneath living and dead barnacles, metabolic activity of bacteria may be considered as a primary cause for local surface depassivation.

  1. Development of Combinatorial Methods for Alloy Design and Optimization

    SciTech Connect

    Pharr, George M.; George, Easo P.; Santella, Michael L

    2005-07-01

    rapid structural and chemical characterization of alloy libraries was developed based on high intensity x-radiation available at synchrotron sources such as the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). With the technique, structural and chemical characterization of up to 2500 discrete positions on a library can made in a period of less than 4 hours. Among the parameters that can be measured are the chemical composition, crystal structure, lattice parameters, texture, and grain size. From these, one can also deduce isothermal sections of ternary phase diagrams. The equipment and techniques needed to do this are now in place for use in future combinatorial studies at the ORNL beam line at the APS. In conjunction with the chemical and structural investigations, nanoindentation techniques were developed to investigate the mechanical properties of the combinatorial libraries. The two primary mechanical properties of interest were the elastic modulus, E, and hardness, H, both of which were measured on alloy library surfaces with spatial resolutions of better than 1 m. A nanoindentation testing system at ORNL was programmed to make a series of indentations at specified locations on the library surface and automatically collect and store all the data needed to obtain hardness and modulus as a function of position. Approximately 200 indentations can be made during an overnight run, which allows for mechanical property measurement over a wide range of chemical composition in a relatively short time. Since the materials based on the Fe-Ni-Cr system often find application in highly carburizing and harsh chemical environments, simple techniques were developed to assess the resistance of Fe-Ni-Cr alloy libraries to carburization and corrosion. Alloy libraries were carburized by standard techniques, and the effectiveness of the carburization at various points along the sample surface was assessed by nanoindentation hardness measurement. Corrosion tests were

  2. Microsample Characterization of Coatings for GRCop-84 for High Temperature High Heat Flux Application

    NASA Technical Reports Server (NTRS)

    Jain, Piyush; Hemker, Kevin J.; Raj, Sai V.

    2004-01-01

    NASA's Glenn Research Center has developed GRCop-84 (Cu-8at.%Cr-4% Nb), a high conductivity, high strength copper alloy for use as liners in rocket engine combustion chambers, nozzle ramps and other actively-cooled components subject to high heat fluxes. Two metallic coatings, NiCrAlY and Cu-26%Cr, are being considered for preventing blanching, reducing 'dog- house' failures and providing better environmental resistance to the GRCop-84 liners. This presentation will outline a study of coating-substrate interactions that occur as a result of thermal cycling and coating specific properties at different temperatures. A furnace has been built to thermally cycle the samples under argon. The microsample testing approach is being used to measure the coating-substrate interfacial strength. Cu-26Cr/GRCop-84 samples did not show any obvious interdiffusion after 300 thermal cycles. Interfacial strength tests of these samples were affected by porosity present in the samples. A complete set of observations and results for Cu-26Cr and NiCrAlY coatings will be presented.

  3. Production of Ni-Cr-Ti-natural fibres composite and investigation of mechanical properties

    SciTech Connect

    Pesmen, G.; Erol, A.

    2015-03-30

    Intermetallic materials such as Ni{sub 2}Ti, Cr{sub 2}Ti are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of (%50Ni-%48Cr-%2Ti)-%10Naturel Fibres and (%64Ni-%32Cr-%4Ti)-%10Naturel Fibres powders were investigated using specimens produced by tube furnace sintering at 1000-1200-1400°C temperature. A composite consisting of ternary additions, a metallic phase, Ti,Cr and Ni have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition (%64Ni-%32Cr-%4Ti)-%10Naturel at 1400°C suggest that the best properties as 112.09HV and 5,422g/cm{sup 3} density were obtained at 1400°C.

  4. Precipitation-Strengthened, High-Temperature, High-Force Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Draper, Susan L.; Nathal, Michael V.; Crombie, Edwin A.

    2008-01-01

    Shape memory alloys (SMAs) are an enabling component in the development of compact, lightweight, durable, high-force actuation systems particularly for use where hydraulics or electrical motors are not practical. However, commercial shape memory alloys based on NiTi are only suitable for applications near room temperature, due to their relatively low transformation temperatures, while many potential applications require higher temperature capability. Consequently, a family of (Ni,Pt)(sub 1-x)Ti(sub x) shape memory alloys with Ti concentrations ranging from about 15 to 25 at.% have been developed for applications in which there are requirements for SMA actuators to exert high forces at operating temperatures higher than those of conventional binary NiTi SMAs. These alloys can be heat treated in the range of 500 C to produce a series of fine precipitate phases that increase the strength of alloy while maintaining a high transformation temperature, even in Ti-lean compositions.

  5. Computational and Experimental Development of Novel High Temperature Alloys

    SciTech Connect

    Kramer, M.J.; Ray, P.K.; and Akinc, M.

    2010-06-29

    The work done in this paper is based on our earlier work on developing an extended Miedema model and then using it to downselect potential alloy systems. Our approach is to closely couple the semi-empirical methodologies to more accurate ab initio methods to dentify the best candidates for ternary alloying additions. The architectural framework for our material's design is a refractory base metal with a high temperature intermetallic which provides both high temperature creep strength and a source of oxidatively stable elements. Potential refractory base metals are groups IIIA, IVA and VA. For Fossil applications, Ni-Al appears to be the best choice to provide the source of oxidatively stable elements but this system requires a 'boost' in melting temperatures to be a viable candidate in the ultra-high temperature regime (> 1200C). Some late transition metals and noble elements are known to increase the melting temperature of Ni-Al phases. Such an approach suggested that a Mo-Ni-Al system would be a good base alloy system that could be further improved upon by dding Platinum group metals (PGMs). In this paper, we demonstrate the variety of microstructures that can be synthesized for the base alloy system, its oxidation behavior as well as the oxidation behavior of the PGM substituted oxidation resistant B2 NiAl phase.

  6. Heavy metal content (Cd, Ni, Cr and Pb) in soil amendment with a low polluted biosolid

    NASA Astrophysics Data System (ADS)

    Gomez Lucas, Ignacio; Lag Brotons, Alfonso; Navarro-Pedreño, Jose; Belén Almendro-Candel, Maria; Jordán, Manuel M.; Bech, Jaume; Roca, Nuria

    2016-04-01

    The progressively higher water quality standards in Europe has led to the generation of large quantities of sewage sludge derived from wastewater treatment (Fytili and Zabaniotou 2008). Composting is an effective method to minimize these risks, as pathogens are biodegraded and heavy metals are stabilized as a result of organic matter transformations (Barker and Bryson 2002; Noble and Roberts 2004). Most of the studies about sewage sludge pollution are centred in medium and high polluted wastes. However, the aim of this study was to assess the effects on soil heavy metal content of a low polluted sewage sludge compost in order to identify an optimal application rate based in heavy metal concentration under a period of cultivation of a Mediterranean horticultural plant (Cynara carducnculus). The experiment was done between January to June: rainfall was 71 mm, the volume of water supplied every week was 10.5 mm, mean air temperatures was 14.2, 20.4 (maximum), and 9.2◦C (minimum). The soil was a clay-loam anthrosol (WRB 2006). The experimental plot (60 m2) was divided into five subplots with five treatments corresponding to 0, 2, 4, 6, and 8 kg compost/m2. Three top-soil (first 20 cm) samples from each treatment were taken (January, April and June) and these parameters were analysed: pH, electrical conductivity, organic matter and total content of heavy metals (microwave acid digestion followed by AAS-spectrometry determination). The results show that sewage sludge compost treatments increase the organic matter content and salinity (electrical conductivity of the soils) and diminish the pH. Cd and Ni total content in top-soil was affected and both slightly reduce their concentration. Pb and Cr show minor changes. In general, the application of this low polluted compost may affect the mobility of Cd and Ni due to the pH modification and the water added by irrigation along time but Pb and Cr remain their content in the top-soil. References Barker, A.V., and G.M. Bryson

  7. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  8. Oxidation of Palladium-Chromium Alloys for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Piltch, Nancy D.; Jih-Fen, Lei; Zeller, Mary V.

    1994-01-01

    An alloy consisting of Pd with 13 wt % Cr is a promising material for high temperature applications. High temperature performance is degraded by the oxidation of the material, which is more severe in the fine wires and thin films used for sensor applications than in the bulk. The present study was undertaken to improve our understanding of the physical and chemical changes occurring at these temperatures and to identify approaches to limit oxidation of the alloy. The alloy was studied in both ribbon and wire forms. Ribbon samples were chosen to examine the role of grain boundaries in the oxidation process because of the convenience of handling for the oxidation studies. Wire samples 25 microns in diameter which are used in resistance strain gages were studied to correlate chemical properties with observed electrical, physical, and structural properties. Overcoating the material with a metallic Cr film did prevent the segregation of Pd to the surface; however, it did not eliminate the oxidation of the alloy.

  9. Damping of High-temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Padula, Santo A., II; Scheiman, Daniel A.

    2008-01-01

    Researchers at NASA Glenn Research Center have been investigating high temperature shape memory alloys as potential damping materials for turbomachinery rotor blades. Analysis shows that a thin layer of SMA with a loss factor of 0.04 or more would be effective at reducing the resonant response of a titanium alloy beam. Two NiTiHf shape memory alloy compositions were tested to determine their loss factors at frequencies from 0.1 to 100 Hz, at temperatures from room temperature to 300 C, and at alternating strain levels of 34-35x10(exp -6). Elevated damping was demonstrated between the M(sub s) and M(sub f) phase transformation temperatures and between the A(sub s) and A(sub f) temperatures. The highest damping occurred at the lowest frequencies, with a loss factor of 0.2-0.26 at 0.1 Hz. However, the peak damping decreased with increasing frequency, and showed significant temperature hysteresis in heating and cooling. Keywords: High-temperature, shape memory alloy, damping, aircraft engine blades, NiTiHf

  10. High Temperature Fatigue Crack Growth Behavior of Alloy 10

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    Methods to improve the high temperature, dwell crack growth resistance of Alloy 10, a high strength, nickel-base disk alloy, were studied. Two approaches, heat treat variations and composition modifications, were investigated. Under the heat treat approach, solution temperature, cooling rates, and stabilization, were studied. It was found that higher solution temperatures, which promote coarser grain sizes, coupled with a 1550 F stabilization treatment were found to significantly reduce dwell crack growth rates at 1300 F Changes in the niobium and tantalum content were found to have a much smaller impact on crack growth behavior. Lowering the niobium:tantalum ratio did improve crack growth resistance and this effect was most pronounced for coarse grain microstructures. Based on these findings, a coarse grain microstructure for Alloy 10 appears to be the best option for improving dwell crack growth resistance, especially in the rim of a disk where temperatures can reach or exceed 1300 T. Further, the use of advanced processing technologies, which can produce a coarse grain rim and fine grain bore, would be the preferred option for Alloy 10 to obtain the optimal balance between tensile, creep, and crack growth requirements for small gas turbine engines.

  11. In-Situ TEM Visualization Of Vacancy Injection And Chemical Partition During Oxidation Of Ni-Cr Nanoparticles

    SciTech Connect

    Wang, Chong M.; Genc, Arda; Cheng, Huikai; Pullan, Lee; Baer, Donald R.; Bruemmer, Stephen M.

    2014-01-14

    Oxidation of alloy often involves chemical partition and injection of vacancies. Chemical partition is the consequence of selective oxidation, while injection of vacancies is associated with the differences of diffusivity of cations and anions. It is far from clear as how the injected vacancies behave during oxidation of metal. Using in-situ transmission electron microscopy, we captured unprecedented details on the collective behavior of injected vacancies during oxidation of metal, featuring an initial multi-site oxide nucleation, vacancy supersaturation, nucleation of a single cavity, sinking of vacancies into the cavity and accelerated oxidation of the particle. High sensitive energy dispersive x-ray spectroscopy mapping reveals that Cr is preferentially oxidized even at the initial oxidation, leading to a structure that Cr oxide is sandwiched near the inner wall of the hollow particle. The work provides a general guidance on tailoring of nanostructured materials involving multi-ion exchange such as core-shell structured composite nanoparticles.

  12. In-Situ TEM visualization of vacancy injection and chemical partition during oxidation of Ni-Cr nanoparticles

    PubMed Central

    Wang, Chong-Min; Genc, Arda; Cheng, Huikai; Pullan, Lee; Baer, Donald R.; Bruemmer, Stephen M.

    2014-01-01

    Oxidation of alloy often involves chemical partition and injection of vacancies. Chemical partition is the consequence of selective oxidation, while injection of vacancies is associated with the differences of diffusivity of cations and anions. It is far from clear as how the injected vacancies behave during oxidation of metal. Using in-situ transmission electron microscopy, we captured unprecedented details on the collective behavior of injected vacancies during oxidation of metal, featuring an initial multi-site oxide nucleation, vacancy supersaturation, nucleation of a single cavity, sinking of vacancies into the cavity and accelerated oxidation of the particle. High sensitive energy dispersive x-ray spectroscopy mapping reveals that Cr is preferentially oxidized even at the initial oxidation, leading to a structure that Cr oxide is sandwiched near the inner wall of the hollow particle. The work provides a general guidance on tailoring of nanostructured materials involving multi-ion exchange such as core-shell structured composite nanoparticles. PMID:24418778

  13. Simulated Single Tooth Bending of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert, F.; Burke, Christopher

    2012-01-01

    Future unmanned space missions will require mechanisms to operate at extreme conditions in order to be successful. In some of these mechanisms, very high gear reductions will be needed to permit very small motors to drive other components at low rotational speed with high output torque. Therefore gearing components are required that can meet the mission requirements. In mechanisms such as this, bending fatigue strength capacity of the gears is very important. The bending fatigue capacity of a high temperature, nickel-based alloy, typically used for turbine disks in gas turbine engines and two tool steel materials with high vanadium content, were compared to that of a typical aerospace alloy-AISI 9310. Test specimens were fabricated by electro-discharge machining without post machining processing. Tests were run at 24 and at 490 C. As test temperature increased from 24 to 490 C the bending fatigue strength was reduced by a factor of five.

  14. [Influence of different bonding agents on traction resistance of metal alloys to dentin].

    PubMed

    Adabo, G L; da Silva Filho, F P; de Sá, D N; Rettondini, W C; dos Santos Cruz, C A

    1990-01-01

    They were casted pieces using three kinds of alloy (Ni-Cr, Ag-Sn and Cu-Al) with circular and smooth surface. They were cemented to human teeth, on occlusal surface, grounded at dentin level, through three different materials kind (zinc polycarboxylate cement, glassionomer cement and composite). After 24 hours storing, the samples were subjected to the tensile test. The results showed that the samples cemented with composite and the casts made with Ag-Sn alloy had higher bond strength.

  15. Synthesis and magnetization studies of nanopowder Fe₇₀Ni₂₀Cr₁₀ alloys prepared by high energy milling

    SciTech Connect

    Chater, R.; Bououdina, M.; Chaanbi, D.; Abbas, H.

    2013-05-01

    Nanocrystalline Fe{sub 1–x–y}NixCry (x=20, y=10% in Wt)) alloy samples were prepared by mechanical alloying process. Fe, Ni and Cr elemental powders have been ball milled in a planetary mill for various periods of time, up to 27 h. XRD analysis allowed the determination of the structure of the mixture, the average crystallite size and the lattice parameter as a function of milling time. The complete formation of FeNiCr is observed after 27 h milling. With increasing milling time from 0 to 27 h, it is observed that the lattice parameter increases from 0.3515 to 0.3593 nm as well as an increase of microstrain from 0.15 to 0.40%, whereas the grain size decreases from 48 to 13 nm. Grain morphology of the powders at different formation stages was examined using SEM. Saturation magnetization and coercive fields derived from the hysteresis curves are discussed as a function of milling time. - Graphical abstract: Fe₇₀Ni₂₀Cr₁₀ nanopowders were prepared using a planetary ball mill. The structure and microstructure vary with milling time; thereby important modifications of the magnetic properties were observed and discussed. Highlights: • Nanocrystalline Fe₇₀Ni₂₀Cr₁₀ alloy were prepared by the mechanical alloying process. • The complete formation of Fe₇₀Ni₂₀Cr₁₀ is observed after 24 h milling. • With increasing milling time, the grain size decreases, while the strain increases. • The SEM images allowed following the morphology of the materials at different stages. • Ms and HC derived from the hysteresis are discussed as a function of milling time.

  16. [Studies related to the discoloration in the surrounding gingiva of fixed prosthesis. 2. Detection period of silver-sulfate and the effects of metal alloys].

    PubMed

    Yamagishi, A; Onodera, T; Ishikawa, S; Furukawa, K; Nemoto, F; Itoh, S; Ishibashi, K; Nawa, T

    1989-10-01

    The purpose of this study is to investigate the relationship between gingival discoloration and Ag2S. Minute granules of dental alloys were embedded in the gingiva during a 5-11 months span, and their histological and colorimetric analyses were undertaken. Results showed the following; 1. Cases of low melting silver alloy, 12% Au-Ag-Pd alloy, and Ni-Cr alloy all resulted in gingival discoloration, but it did not occur during the specified experimental period. 2. Regardless of the size of the granules or time, the electron microanalyser showed no signs of sulfer detection in cases of low melting silver alloy. However, in the case of 12% Au-Ag-Pd alloy, sulfer was detected 5 months later for only those granules having the size of 0.2-0.3 microns. No sulfer was detected in cases of Ni-Cr alloy. 3. Although no proliferation of inflammatory cells were observed around those areas surrounding the 12% Au-Ag-Pd alloy granules, they appeared in cases of the low melting silver alloy and Ni-Cr alloy.

  17. Low Conductive Thermal Barrier Coatings Produced by Ion Beam Assisted EB-PVD with Controlled Porosity, Microstructure Refinement and Alloying Additions for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Wolfe, Douglas E.; Singh, Jogender

    2005-01-01

    Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.

  18. Alloy performance in high temperature oil refining environments

    SciTech Connect

    Sorell, G.; Humphries, M.J.; McLaughlin, J.E.

    1995-12-31

    The performance of steels and alloys in high temperature petroleum refining applications is strongly influenced by detrimental interactions with aggressive process environments. These are encountered in conventional refining processes and especially in processing schemes for fuels conversion and upgrading. Metal-environment interactions can shorten equipment life and cause impairment of mechanical properties, metallurgical stability and weldability. Corrosion and other high temperature attack modes discussed are sulfidation, hydrogen attack, carburization, and metal dusting. Sulfidation is characterized by bulky scales that are generally ineffective corrosion barriers. Metal loss is often accompanied by sub-surface sulfide penetration. Hydrogen attack and carburization proceed without metal loss and are detectable only by metallographic examination. In advanced stages, these deterioration modes cause severe impairment of mechanical properties. Harmful metal-environment interactions are characterized and illustrated with data drawn from test exposures and plant experience. Alloys employed for high temperature oil refining equipment are identified, including some promising newcomers.

  19. Final Report for the Study on S-Implanted Alloy 22 in 1 M NaCl Solutions

    SciTech Connect

    Windisch, Charles F.; Baer, Donald R.; Jones, R. H.; Engelhard, Mark H.

    2005-11-01

    The objective of this study was to examine the effects of high levels of S in the near-surface region on the passivity of Alloy 22, a corrosion resistant Ni-Cr-Mo alloy, in deaerated 1 M NaCl solution. Near-surface concentrations of S up to 2 at.% were achieved in Alloy 22 test specimens by implanting them with S. The S-implanted samples were then evaluated in short-term electrochemical tests in the salt solution and subsequently analyzed with X-ray Photoelectron Spectroscopy (XPS) for film thickness and composition. Specimens tested included non-implanted and annealed Alloy 22 samples, samples implanted with S, and “blanks” implanted with Ar as an ion that would simulate the “damage” of S implantation without the chemical effect. A sample of S-implanted Alloy 22 was also exposed to solution for 29 days and analyzed for evidence of S accumulation at the surface over longer times.

  20. Development of ductile high-strength chromium alloys, phase 2

    NASA Technical Reports Server (NTRS)

    Filippi, A. M.

    1973-01-01

    Strength and ductility were evaluated for chromium alloys dispersion hardened with the putative TaC, TaB, CbC, and CbB compounds. TaC and TaB proved to be the most potent strengtheners, but when combined, their effect far outweighed that produced individually. Tests at 1422 K (2100 F) on an alloy containing these two compounds at the combined level of 0.5 m/o revealed a 495 MN/sq m (70 ksi) tensile strength for wrought material, and a 100 hour rupture strength of 208 MN/sq m (30 ksi) when solution annealed and aged to maximize creep resistance. These levels of high temperature strength greatly exceed that reported for any other chromium-base alloy. The ductile-to-brittle transition temperature (DBTT) of the two phase strengthened alloy occurred at approximately 588 K (600 F) when heat treated to optimize creep strength and was not improved by fabrication to produce a wrought and recovered microstructure. The lowest DBTT measured on any of the alloys investigated was 422 K (300 F). Strengthening phases actually formed in Cr-Ta-B and Cr-Cb-B compositions are probable M2CrB2 (M=Ta or Cb) compounds of tetragonal crystal structure. The likely habit relationship between these compounds and chromium is postulated. Cube habit coherency was identified for TaC precipitation in chromium by electron microscopy. In another study, the maximum solubility of carbon in chromium was indicated to lie between 3/4 and 1 a/o and that of boron to be 1/2 a/o.

  1. Band Anticrossing in Highly Mismatched Compound Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Yu, Kin Man; Wu, J.; Walukiewicz, W.; Ager, J. W.; Haller, E. E.; Miotkowski, I.; Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    Compound semiconductor alloys in which metallic anions are partially replaced with more electronegative isoelectronic atoms have recently attracted significant attention. Group IIIN(sub x)V(sub 1-x) alloys with a small amount of the electronegative N substituting more metallic column V elements has been the most extensively studied class of such Highly Mismatched Alloys (HMAs). We have shown that many of the unusual properties of the IIIN(sub x)V(sub 1-x) alloys can be well explained by the Band Anticrossing (BAC) model that describes the electronic structure in terms of an interaction between highly localized levels of substitutional N and the extended states of the host semiconductor matrix. Most recently the BAC model has been also used to explain similar modifications of the electronic band structure observed in Te-rich ZnS(sub x)Te(sub 1-x) and ZnSe(sub y)Te(sub 1-y) alloys. To date studies of HMAs have been limited to materials with relatively small concentrations of highly electronegative atoms. Here we report investigations of the electronic structure of ZnSe(sub y)Te(sub 1-y) alloys in the entire composition range, y between 0 and 1. The samples used in this study are bulk ZnSe(sub y)Te(sub 1-y) crystals grown by either a modified Bridgman method or by physical vapor transport. Photomodulated reflection (PR) spectroscopy was used to measure the composition dependence of optical transitions from the valence band edge and from the spin-orbit split off band to the conduction band. The pressure dependence of the band gap was measured using optical absorption in a diamond anvil cell. We find that the energy of the spin-orbit split off valence band edge does not depend on composition and is located at about 3 eV below the conduction band edge of ZnSe. On the Te-rich side the pressure and the composition dependence of the optical transitions are well explained by the BAC model which describes the downward shift of the conduction band edge in terms of the

  2. Band Anticrossing in Highly Mismatched Compound Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Yu, Kin Man; Wu, J.; Walukiewicz, W.; Ager, J. W.; Haller, E. E.; Miotkowski, I.; Ramdas, A.; Su, Ching-Hua; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Compound semiconductor alloys in which metallic anions are partially replaced with more electronegative isoelectronic atoms have recently attracted significant attention. Group IIIN(x)V(1-x), alloys with a small amount of the electronegative N substituting more metallic column V elements has been the most extensively studied class of such Highly Mismatched Alloys (HMAs). We have shown that many of the unusual properties of the IIIN(x),V(1-x) alloys can be well explained by the Band Anticrossing (BAC) model that describes the electronic structure in terms of an interaction between highly localized levels of substitutional N and the extended states of the host semiconductor matrix. Most recently the BAC model has been also used to explain similar modifications of the electronic band structure observed in Te-rich ZnS(x)Te(l-x) and ZnSe(Y)Te(1-y) alloys. To date studies of HMAs have been limited to materials with relatively small concentrations of highly electronegative atoms. Here we report investigations of the electronic structure of ZnSe(y)Te(1-y) alloys in the entire composition range, 0 less than or equal to y less than or equal to 1. The samples used in this study are bulk ZnSe(y)Te(1-y) crystals grown by either a modified Bridgman method or by physical vapor transport. Photomodulated reflection (PR) spectroscopy was used to measure the composition dependence of optical transitions from the valence band edge and from the spin-orbit split off band to the conduction band. The pressure dependence of the band gap was measured using optical absorption in a diamond anvil cell. We find that the energy of the spin-orbit split off valence band edge does not depend on composition and is located at about 3 eV below the conduction band edge of ZnSe. On the Te-rich side the pressure and the composition dependence of the optical transitions are well explained by the BAC model which describes the downward shift of the conduction band edge in terms of the interaction between

  3. High Strength Aluminum Alloy For High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2005-01-01

    A cast article from an aluminum alloy has improved mechanical properties at elevated temperatures. The cast article has the following composition in weight percent: Silicon 6.0-25.0, Copper 5.0-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.2, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix containing up to about 60% by volume of a secondary filler material.

  4. Study of high performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.

    1985-01-01

    More panels electroformed with intentional variations of pulse plating parameters are being made. Pulse plating frequency was noted to have a significant effect regarding mechanical properties. The use of a high pulse frequency (assuming fixed duty cycles) results in an increase in ductility and a decrease in ultimate and yield strengths. Electroforming to intermediate frequencies is being done to obtain the best possible combination of ductility and strength. Results of some tests from high frequency specimens are tabulated.

  5. High temperature, oxidation resistant noble metal-Al alloy thermocouple

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor); Gedwill, Michael G. (Inventor)

    1994-01-01

    A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-Al alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.

  6. Cyclic oxidation of coated Oxide Dispersion Strengthened (ODS) alloys in high velocity gas streams at 1100 deg C

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.

    1978-01-01

    Several overlay coatings on ODS NiCrAl's were tested in Mach 1 and Mach 0.3 burner rigs to examine oxidation and thermal fatigue performance. The coatings were applied by various methods. Based on weight change, macroscopic, and metallographic observations in Mach 1 tests Nascoat 70 on TD-NiCrAl exhibited the best oxidation resistance. In Mach 0.3 tests PWA 267 and ATD-1, about equally, were the best coatings on YD-NiCrAl (Nascoat 70 was not tested in Mach 0.3 rigs).

  7. Studies of Corrosion Resistant Materials Being Considered for High-Level Nuclear Waste Containment in Yucca Mountain Relevant Environments

    SciTech Connect

    McCright, R.D.; Ilevbare, G.; Estill, J.; Rebak, R.

    2001-12-09

    Containment of spent nuclear fuel and vitrified forms of high level nuclear waste require use of materials that are highly corrosion resistant to all of the anticipated environmental scenarios that can occur in a geological repository. Ni-Cr-Mo Alloy 22 (UNS N60622) is proposed for the corrosion resistant outer barrier of a two-layer waste package container at the potential repository site at Yucca Mountain. A range of water compositions that may contact the outer barrier is under consideration, and a testing program is underway to characterize the forms of corrosion and to quantify the corrosion rates. Results from the testing support models for long term prediction of the performance of the container. Results obtained to date indicate a very low general corrosion rate for Alloy 22 and very high resistance to all forms of localized and environmentally assisted cracking in environments tested to date.

  8. Method of making high strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel, particularly suitable for the mining industry, is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other subsitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  9. Advances in Solid State Joining of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Ding, Jeff; Schneider, Judy

    2011-01-01

    Many of the metals used in the oil and gas industry are difficult to fusion weld including Titanium and its alloys. Solid state joining processes are being pursued as an alternative process to produce robust structures more amenable to high pressure applications. Various solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature to avoid detrimental changes to the microstructure. The work presented in this presentation investigates the feasibility of joining various titanium alloys using the solid state welding processes of FSW and TSW. Process descriptions and attributes of each weld process will be presented. Weld process set ]up and welding techniques will be discussed leading to the challenges experienced. Mechanical property data will also be presented.

  10. Pressurized metallurgy for high performance special steels and alloys

    NASA Astrophysics Data System (ADS)

    Jiang, Z. H.; Zhu, H. C.; Li, H. B.; L1, Y.; Liu, F. B.

    2016-07-01

    The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.

  11. Effect of Cr/C Ratio on Microstructure and Corrosion Performance of Cr3C2-NiCr Composite Fabricated by Laser Processing

    NASA Astrophysics Data System (ADS)

    Lou, Deyuan; Liu, Dun; He, Chunlin; Bennett, Peter; Chen, Lie; Yang, Qibiao; Fearon, Eamonn; Dearden, Geoff

    2016-01-01

    The present study focuses on the effect of different Cr/C ratios on the microstructure, microhardness, and corrosion resistance of Ni-based laser clad hardfacings, reinforced by in situ synthesized chromium carbide particles. Cr3C2-NiCr composites have been laser processed with graphite/Cr/Ni powder blends with varying Cr/C ratios. Following phase analysis (x-ray diffraction) and microstructure investigation (scanning electron microscopy; energy dispersive x-ray analysis; transmission electron microscopy), the solidification of laser melt pool is discussed, and the corrosion resistances are examined. Several different zones (planar, dendritic, eutectic and re-melt zone) were formed in these samples, and the thicknesses and shapes of these zones vary with the change of Cr/C ratio. The sizes and types of carbides and the content of reserved graphite in the composites change as the Cr/C ratio varies. With the content of carbides (especially Cr3C2) grows, the microhardness is improved. The corrosive resistance of the composites to 0.2M H2SO4 aqueous solution decreases as the Cr/C ratio reduces owing to not only the decreasing Cr content in the NiCr matrix but also the galvanic corrosion formed within the carbide and graphite containing Ni matrix.

  12. Investigation of high-energy external influences on structural heredity of the Ti-Nb alloy

    NASA Astrophysics Data System (ADS)

    Khimich, M. A.; Parilov, E. A.; Kovalevskaya, Zh G.; Sharkeev, Yu P.

    2015-10-01

    The effects of high-energy external influences on structural heredity of Ti-Nb alloy is investigated in this paper. By the methods of XRD, SEM, EDX and optical microscopy it was founded that thermal treatment and severe plastic deformation lead to the phase transformations in the alloy, the dendritic segregation occurs and retains in the alloy under external influences.

  13. Highly Dispersed Alloy Catalyst for Durability

    SciTech Connect

    Vivek S. Murthi; Izzo, Elise; Bi, Wu; Guerrero, Sandra; Protsailo, Lesia

    2013-01-08

    Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  14. Materials Properties Database for Selection of High-Temperature Alloys and Concepts of Alloy Design for SOFC Applications

    SciTech Connect

    Yang, Z Gary; Paxton, Dean M.; Weil, K. Scott; Stevenson, Jeffry W.; Singh, Prabhakar

    2002-11-24

    To serve as an interconnect / gas separator in an SOFC stack, an alloy should demonstrate the ability to provide (i) bulk and surface stability against oxidation and corrosion during prolonged exposure to the fuel cell environment, (ii) thermal expansion compatibility with the other stack components, (iii) chemical compatibility with adjacent stack components, (iv) high electrical conductivity of the surface reaction products, (v) mechanical reliability and durability at cell exposure conditions, (vii) good manufacturability, processability and fabricability, and (viii) cost effectiveness. As the first step of this approach, a composition and property database was compiled for high temperature alloys in order to assist in determining which alloys offer the most promise for SOFC interconnect applications in terms of oxidation and corrosion resistance. The high temperature alloys of interest included Ni-, Fe-, Co-base superal

  15. Effects of Co and Al Contents on Cryogenic Mechanical Properties and Hydrogen Embrittlement for Austenitic Alloys

    NASA Astrophysics Data System (ADS)

    Li, X. Y.; Ma, L. M.; Li, Y. Y.

    2004-06-01

    The effects of Co and Al content on ambient and cryogenic mechanical properties, microstructure and hydrogen embrittlement of a high strength precipitate-strengthened austenitic alloy (Fe-Ni-Cr-Mo system) had been investigated with temperature range from 293K to 77 K. Hydrogen embrittlement tests were conducted using the method of high pressure thermal hydrogen charging. It was found that increasing Co content can cause increasing in ambient and cryogenic ductility, but has less effect on ultimate tensile strength. When Co content is 9.8%, obvious decrease was found in cryogenic yield strength. Increasing Al content can result in decreasing ambient and cryogenic ductility and severe hydrogen embrittlement, but slight increase in cryogenic yield strength. Increasing Co content, reducing Al content, and decreasing test temperature tend to decrease the hydrogen embrittlement tendency for the alloys. This work showed that the alloy with composition of Fe-31%Ni-15%Cr-5%Co-4.5%Mo-2.4%Ti-0.3%Al-0.3%Nb-0.2%V has the superior cryogenic mechanical properties and lower hydrogen embrittlement tendency, is a good high strength cryogenic hydrogen-resistant material.

  16. The Estimation of Localized Corrosion Behavior of Ni-Based Dental Alloys Using Electrochemical Techniques

    NASA Astrophysics Data System (ADS)

    Mareci, Daniel; Chelariu, Romeu; Iacoban, Sorin; Munteanu, Corneliu; Bolat, Georgiana; Sutiman, Daniel

    2012-07-01

    The aim of this study is to investigate the electrochemical behavior of the five non-precious Ni-based dental casting alloys in acidified artificial saliva. For comparison, nickel was also investigated. In order to study the localized corrosion resistance, the cyclic potentiodynamic polarization (CCP) and electrochemical impedance spectroscopy were performed. Scanning electron microscopy (SEM) observations were made after the CCP tests. The Ni-Cr alloys with chromium (14-18%) contents were susceptible to localized corrosion. The Ni-Cr-Mo alloy with contents of chromium (≈13%) and molybdenum (9%) presents a dangerous breakdown, but have a zero corrosion potential so that the difference between them is around 650 mV. The Ni-Cr-Mo alloys with higher chromium (22-25%) and molybdenum (9-11%) contents had a much larger passive range in the polarization curve and were immune to pitting corrosion. Pitting resistance equivalent (PRE) of about ≈54 could provide the Ni-based alloy with a good pitting corrosion resistance.

  17. III-V alloy heterostructure high speed avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Heterostructure avalanche photodiodes have been successfully fabricated in several III-V alloy systems: GaAlAs/GaAs, GaAlSb/GaAlSb, and InGaAsP/InP. These diodes cover optical wavelengths from 0.4 to 1.8 micron. Early stages of development show very encouraging results. High speed response of less than 35 ps and high quantum efficiency more than 95 percent have been obtained. The dark currents and the excess avalanche noise are also dicussed. A direct comparison of GaAlSb, GaAlAsSb, and In GaAsP avalanche photodiodes is given.

  18. Fatigue behavior of copper and selected copper alloys for high heat flux applications

    SciTech Connect

    Leedy, K.D.; Stubbins, J.F.; Singh, B.N.; Garner, F.A.

    1996-04-01

    The room temperature fatigue behavior of standard and subsize specimens was examined for five copper alloys: OFHC Cu, two CuNiBe alloys, a CuCrZr alloy, and a Cu-Al{sub 2}O{sub 3} alloy. Fatigue tests were run in strain control to failure. In addition to establishing failure lives, the stress amplitudes were monitored as a function of numbers of accrued cycles. The results indicate that the alloys with high initial yield strengths provide the best fatigue response over the range of failure lives examined in the present study: N{sub f} = 10{sup 3} to 10{sup 6}. In fact, the fatigue performance of the best alloys is dominated by the elastic portion of the strain range, as would be expected from the correlation of performance with yield properties. The alumina strengthened alloy and the two CuNiBe alloys show the best overall performance of the group examined here.

  19. Fabrication of intermetallic coatings for electrical insulation and corrosion resistance on high-temperature alloys

    SciTech Connect

    Park, J.-H.; Cho, W.D.

    1996-11-01

    Several intermetallic films were applied to high-temperature alloys (V alloys and 304, 316 stainless steels) to provide electrical insulation and corrosion resistance. Alloy grain growth at 1000 C for the V-5Cr-5Ti alloy was investigated to determine stability of the alloy substrate during coating formation by CVD or metallic vapor processes at 800-850 C. Film layers were examined by optical and scanning electron microscopy and by electron-energy-dispersive and XRD analysis; they were also tested for electrical resistivity and corrosion resistance. Results elucidated the nature of the coatings, which provided both electrical insulation and high-temperature corrosion protection.

  20. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    SciTech Connect

    Song, Bo; Nelson, Kevin; Lipinski, Ronald J.; Bignell, John L.; Ulrich, G. B.; George, E. P.

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  1. Directions for High-Temperature Shape Memory Alloys' Improvement: Straight Way to High-Entropy Materials?

    NASA Astrophysics Data System (ADS)

    Firstov, G. S.; Kosorukova, T. A.; Koval, Yu N.; Verhovlyuk, P. A.

    2015-10-01

    Nowadays, all thermo-mechanical effects, associated with the martensitic structural phase transitions, are still in the focus of scientists and engineers, especially once these phenomena are taking place at elevated temperatures. The list of the materials, undergoing high-temperature martensitic transformation, is constantly widening. Still, industrial application of these materials, called high-temperature shape memory alloys, is far enough due to the lack of understanding of the peculiarities of the high-temperature martensitic transformation and shape memory effect. The present work attempts to show how the development of the proper directions for high-temperature shape memory alloys' improvement might lead to the creation of essentially new functional materials.

  2. Influence of the type of tree habitat on the character of co-occurrence of Fe, Mn, Zn, Cu, Pb, Ni, Cr and Co in the soil of the Tatra Mountain National Park.

    PubMed

    Kwapuliński, Jerzy; Paprotny, Łukasz; Paukszto, Andrzej; Kowol, Jolanta; Rochel, Robert; Nogaj, Ewa; Musielińska, Renata; Celiński, Rafał

    2013-01-01

    The objective of the research was to determine the effect of habitat type of selected species of trees on the nature of co-occurrence of Fe, Mn, Zn, Cu, Pb, Cd, Ni, Cr and Co. The presence of speciation forms of these metals was investigated, with reference to the species composition of tree stands in selected areas of the Tatra Mountain National Park (Chochołowska Valley, Strążyska Valley, Kościeliska Valley, as well as Mała Łąka Valley).Contents of selected metals in samples were determined by the flame ASA method, with an accuracy of 0.1 µg/g. In habitats dominated by maples, the Pb content in the Chochołowska Valley, unlike Kościeliska Valley covered with beeches, the Pb content in the form directly bioavailable, was twice as high. This was clearly proved in the case of Strążyska Valley where the soil in beech tree habitats contained larger quantities of exchangeable forms of Pb, than that in the Chochołowska Valley. The soil of the valleys, including the Mała Łąka Valley, showed peculiar characteristic averaging of the contents of selected speciation forms of metals in the soil. Content corresponding to 10 percentile and geometrical average may be regarded as benchmarks in future studies of the Tatra Mountain National Park, or other protected areas. PMID:24069853

  3. The influence of cooling rate on the microstructure of stainless steel alloys

    SciTech Connect

    Elmer, J.W.

    1988-09-01

    The emergence of high energy density welding, laser surface modification and rapid solidification as commonly used metallurgical processing techniques has greatly increased the range of cooling rates that can be accessed during the solidification of metals and alloys. The microstructures which develop during these rapid cooling conditions may be significantly different from those which develop during low cooling rate conditions as the result of access to new metastable phases with the additional kinetic limitations that accompany rapid solidification. This investigation explores the influence of cooling rate on a series of seven ternary alloys which span the line of two-fold saturation in the Fe-Ni-Cr system. High speed electron beam surface melting was used to resolidify these alloys at scan speeds up to 5 m/s. The resulting cooling rates were estimated from dendrite arm spacing measurements and were confirmed by heat flow modeling to vary from 7 /times/ 10/sup 0/ /degree/C/s to 8 /times/ 10/sup 6/ /degree/C/s. The microstructures that developed from each solidification condition were examined using optical metallography, electron microprobe analysis, scanning electron microscopy and a vibrating sample magnetometer. These results were used to create diagrams to predict the primary mode of solidification, the ferrite content and the complex microstructural morphologies which develop as a function of interface velocity and composition. 158 refs., 90 figs., 45 tabs.

  4. High-temperature Hydrogen Permeation in Nickel Alloys

    SciTech Connect

    P. Calderoni; M. Ebner; R. Pawelko

    2010-10-01

    In gas cooled Very High Temperature Reactor concepts, tritium is produced as a tertiary fission product and by activation of graphite core contaminants, such as lithium; of the helium isotope, He-3, that is naturally present in the He gas coolant; and the boron in the B4C burnable poison. Because of its high mobility at the reactor outlet temperatures, tritium poses a risk of permeating through the walls of the intermediate heat exchanger (IHX) or steam generator (SG) systems, potentially contaminating the environment and in particular the hydrogen product when the reactor heat is utilized in connection with a hydrogen generation plant. An experiment to measure tritium permeation in structural materials at temperatures up to 1000 C has been constructed at the Idaho National Laboratory Safety and Tritium Applied Research (STAR) facility within the Next Generation Nuclear Plant program. The design is based on two counter flowing helium loops to represent heat exchanger conditions and was optimized to allow control of the materials surface condition and the investigation of the effects of thermal fatigue. In the ongoing campaign three nickel alloys are being considered because of their high-temperature creep properties, alloy 617, 800H and 230. This paper introduces the general issues related to tritium in the on-going assessment of gas cooled VHTR systems fission product transport and outlines the planned research activities in this area; outlines the features and capabilities of the experimental facility being operated at INL; presents and discusses the initial results of hydrogen permeability measurements in two of the selected alloys and compares them with the available database from previous studies.

  5. Martensite transformation and shape memory effect on NiTi-Zr high temperature shape memory alloys

    SciTech Connect

    Pu, Z.; Tseng, H.; Wu, K.

    1995-10-17

    NiTi-Zr high temperature alloys possess relatively poor shape memory properties and ductility in comparison with NiTi-Hf and NiTi-Pd alloys. During martensite transformation of the newly-developed NiTi-Zr high temperature shape memory alloys (SMAs) the temperature increases along with Zr content when the Zr content is more than 10 at%. As the Zr content increases, the fully reversible strain of the alloys decreases. However, complete strain recovery behavior is exhibited by all the alloys studied in this paper, even those with a Zr content of 20 at%. Stability of the NiTi-Zr alloys during thermal cycling was also tested and results indicate that the NiTi-Zr alloys have poor stability against thermal cycling. The reasons for the deterioration of the shape memory effect and stability have yet to be determined.

  6. Laser processing of high-chromium nickel-chromium coatings deposited by various thermal spraying methods

    SciTech Connect

    Longa, Y.; Takemoto, M. . Coll. of Science and Engineering)

    1994-11-01

    High-chromium Ni-Cr coatings were deposited by thermal spraying in air and in an argon gas atmosphere. Coatings sprayed in Ar gas were free of pores and defects and of the same chemical composition as the spraying material. Following thermal spraying for each coating, laser glazing or laser gas alloying was applied to provide a protective chromium oxide film, produced by the intermediate oxidation process on top of the coatings. Five types of coatings were treated: (1) arc and (2) flame spraying in Ar, (3) arc and (4) flame spraying in air, and (5) low-pressure plasma spraying (LPPS). Oxide formation mechanisms during laser processing were studied, and the oxidation and hot-corrosion resistance of the coatings in the presence of a sulfate-vanadate fused salt at 900 C in air were examined. High-chromium Ni-Cr coatings deposited by thermal spraying, and they are used mostly to prevent ash attack of boilers and furnace tubes in power plants and oil refineries.

  7. Cyclic Oxidation of High-Temperature Alloy Wires in Air

    NASA Technical Reports Server (NTRS)

    Reigel, Marissa M.

    2004-01-01

    High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.

  8. High-transition-temperature shape memory alloy film

    NASA Astrophysics Data System (ADS)

    Johnson, A. David; Martynov, Valery V.; Shahoian, Erik J.

    1995-05-01

    Using conventional magnetron sputtering deposition processes three different types of shape memory alloys (FeNi based, CuAl based and TiNi based) were examined as potential candidates for the production of high temperature SMA thin film. CuAlNi and TiNiHf SMA were successfully deposited on silicon wafers and thin films of 4 - 20 micrometers were produced. After annealing at approximately equals 500 degree(s)C both CuAlNi and TiNiHf films exhibited reversible high temperature martensitic transition. For CuAlNi thin films, annealing itself was found to be inadequate for obtaining transformation intervals corresponding to that of the target. To deal with the problem it is expected that additional quenching after solid solution heat treatment will be necessary. Of the three alloys examined, the most promising candidate for high temperature thin film microactuators is TiNiHf. It was found that by changing the Hf content in the target, the transformation start temperature of thin films can be easily adjusted in a temperature range from 100 degree(s)C to 200 degree(s)C.

  9. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    NASA Astrophysics Data System (ADS)

    Ocelík, V.; Janssen, N.; Smith, S. N.; De Hosson, J. Th. M.

    2016-07-01

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with different amounts of aluminum prepared by arc melting were investigated and compared with the laser beam remelted HEAs with the same composition. Attempts to form HEAs coatings with a direct laser deposition from the mixture of elemental powders were made for AlCoCrFeNi and AlCrFeNiTa composition. A strong influence of solidification rate on the amounts of face-centered cubic and body-centered cubic phase, their chemical composition, and spatial distribution was detected for two-phase AlCoCrFeNi HEAs. It is concluded that a high-power laser is a versatile tool to synthesize interesting HEAs with additive manufacturing processing. Critical issues are related to the rate of (re)solidification, the dilution with the substrate, powder efficiency during cladding, and differences in melting points of clad powders making additive manufacturing processing from a simple mixture of elemental powders a challenging approach.

  10. The Release of Elements from the Base Metal Alloys in a Protein Containing Biologic Environments and Artificial Saliva – An Invitro Study

    PubMed Central

    Shetty, Manoj; Prasad, D Krishna; Kanathila, Hema

    2016-01-01

    Introduction It has been reported that protein containing solutions can accelerate the release of elements from the base metal alloys. Aim This study aims to determine whether the solution in which an alloy is submerged and the exposure time have any effect on the amount of release of elements from the Ni-Cr and Co-Cr alloys. Material and Methods A total of 126 specimens were made from the Ni-Cr alloy and 42 specimens were made from Co-Cr alloy in the form of 5mm diameter discs, 2mm in thickness. Dissolution experiments were carried out in Bovine Serum Albumin (BSA) and artificial saliva for a period of seven weeks and atomic absorption spectrophotometer was used for elemental analysis. Statistical Analysis T-test was done to correlate the difference of elemental release from both BSA and artificial saliva. ANOVA test was done to compare the release at different time intervals and to compare the release of elements at different time intervals within a particular solution. TUKEY HSD test was done for comparison between the elements in a particular solution. Results The results showed that the elemental release was seen in both the solutions with a significant increase of release in BSA. The release of elements from the Ni-Cr alloy showed the predominant release of Cr. Conclusion The protein containing solution showed maximum release of elements from Ni-Cr and Co-Cr alloys. The elements that released from the alloys never reached their threshold for toxic effects. Hence these alloys can be safely used in fabrication of metal restorations without any ill effects. PMID:26894170

  11. Band anticrossing effects in highly mismatched semiconductor alloys

    SciTech Connect

    Wu, Junqiao

    2002-09-09

    The first five chapters of this thesis focus on studies of band anticrossing (BAC) effects in highly electronegativity- mismatched semiconductor alloys. The concept of bandgap bowing has been used to describe the deviation of the alloy bandgap from a linear interpolation. Bowing parameters as large as 2.5 eV (for ZnSTe) and close to zero (for AlGaAs and ZnSSe) have been observed experimentally. Recent advances in thin film deposition techniques have allowed the growth of semiconductor alloys composed of significantly different constituents with ever- improving crystalline quality (e.g., GaAs{sub 1-x}N{sub x} and GaP{sub 1-x}N{sub x} with x {approx}< 0.05). These alloys exhibit many novel and interesting properties including, in particular, a giant bandgap bowing (bowing parameters > 14 eV). A band anticrossing model has been developed to explain these properties. The model shows that the predominant bowing mechanism in these systems is driven by the anticrossing interaction between the localized level associated with the minority component and the band states of the host. In this thesis I discuss my studies of the BAC effects in these highly mismatched semiconductors. It will be shown that the results of the physically intuitive BAC model can be derived from the Hamiltonian of the many-impurity Anderson model. The band restructuring caused by the BAC interaction is responsible for a series of experimental observations such as a large bandgap reduction, an enhancement of the electron effective mass, and a decrease in the pressure coefficient of the fundamental gap energy. Results of further experimental investigations of the optical properties of quantum wells based on these materials will be also presented. It will be shown that the BAC interaction occurs not only between localized states and conduction band states at the Brillouin zone center, but also exists over all of k-space. Finally, taking ZnSTe and ZnSeTe as examples, I show that BAC also occurs between

  12. Microstructures and Hardness/Wear Performance of High-Carbon Stellite Alloys Containing Molybdenum

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Yao, J. H.; Zhang, Q. L.; Yao, M. X.; Collier, Rachel

    2015-12-01

    Conventional high-carbon Stellite alloys contain a certain amount of tungsten which mainly serves to provide strengthening to the solid solution matrix. These alloys are designed for combating severe wear. High-carbon molybdenum-containing Stellite alloys are newly developed 700 series of Stellite family, with molybdenum replacing tungsten, which are particularly employed in severe wear condition with corrosion also involved. Three high-carbon Stellite alloys, designated as Stellite 706, Stellite 712, and Stellite 720, with different carbon and molybdenum contents, are studied experimentally in this research, focusing on microstructure and phases, hardness, and wear resistance, using SEM/EDX/XRD techniques, a Rockwell hardness tester, and a pin-on-disk tribometer. It is found that both carbon and molybdenum contents influence the microstructures of these alloys significantly. The former determines the volume fraction of carbides in the alloys, and the latter governs the amount of molybdenum-rich carbides precipitated in the alloys. The hardness and wear resistance of these alloys are increased with the carbide volume fraction. However, with the same or similar carbon content, high-carbon CoCrMo Stellite alloys exhibit worse wear resistance than high-carbon CoCrW Stellite alloys.

  13. GRCop-84: A High-Temperature Copper Alloy for High-Heat-Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2005-01-01

    GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) is a new high-temperature copper-based alloy. It possesses excellent high-temperature strength, creep resistance and low-cycle fatigue up to 700 C (1292 F) along with low thermal expansion and good conductivity. GRCop-84 can be processed and joined by a variety of methods such as extrusion, rolling, bending, stamping, brazing, friction stir welding, and electron beam welding. Considerable mechanical property data has been generated for as-produced material and following simulated braze cycles. The data shows that the alloy is extremely stable during thermal exposures. This paper reviews the major GRCop-84 mechanical and thermophysical properties and compares them to literature values for a variety of other high-temperature copper-based alloys.

  14. High strength and high ductility behavior of 6061-T6 alloy after laser shock processing

    NASA Astrophysics Data System (ADS)

    Gencalp Irizalp, Simge; Saklakoglu, Nursen

    2016-02-01

    The plastic deformation behavior of 6061-T6 alloy which was subjected to severe plastic deformation (SPD) at high strain rates during laser shock processing (LSP) was researched. In LSP-treated materials, the near surface microstructural change was examined by TEM and fracture surfaces after tensile testing were examined by SEM. An increase in strength of metallic materials brings about the decrease in ductility. In this study, the results showed that LSP-treated 6061-T6 alloy exhibited both high strength and high ductility. TEM observation showed that stacking fault (SF) ribbon enlarged, deformation twins formed and twin boundary increased in LSP-treated 6061-T6 alloy. This observation was an indication of stacking fault energy (SFE) decrease. Work hardening capability was recovered after LSP impacts.

  15. Solidification mechanism of highly undercooled metal alloys. [tin-lead and nickel-tin alloys

    NASA Technical Reports Server (NTRS)

    Shiohara, Y.; Chu, M. G.; Macisaac, D. G.; Flemings, M. C.

    1982-01-01

    Experiments were conducted on metal droplet undercooling, using Sn-25wt%Pb and Ni-34wt%Sn alloys. To achieve the high degree of undercooling, emulsification treatments were employed. Results show the fraction of supersaturated primary phase is a function of the amount of undercooling, as is the fineness of the structures. The solidification behavior of the tin-lead droplets during recalescence was analyzed using three different hypotheses; (1) solid forming throughout recalescence is of the maximum thermodynamically stable composition; (2) partitionless solidification below the T sub o temperature, and solid forming thereafter is of the maximum thermodynamically stable composition; and (3) partitionless solidification below the T sub o temperature with solid forming thereafter that is of the maximum thermodynamically metastable composition that is possible. The T sub o temperature is calculated from the equal molar free energies of the liquid solid using the regular solution approximation.

  16. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys.

    PubMed

    Chen, Bo; Xia, Gang; Cao, Xin-Ming; Wang, Jue; Xu, Bi-Yao; Huang, Pu; Chen, Yue; Jiang, Qing-Wu

    2013-03-01

    This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of <1 month of the restoration duration, among which higher Ni excretions were found in those with either a higher number of teeth replaced by dental alloys or a higher index of metal crown not covered with the porcelain. Urinary levels of Cr were significantly higher in the three patient groups of <1, 1 to <3 and 3 to <6 months, especially in those with a higher metal crown exposure index. Linear curve estimations showed better relationships between urinary Ni and Cr in patients within 6-month groups. Our data suggested significant increased excretions of urinary Ni and Cr after dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.

  17. Vanadium and V-Ti alloys at high pressure

    NASA Astrophysics Data System (ADS)

    Jenei, Zsolt; Cynn, Hyunchae; Evans, William J.; MacLeod, Simon; Sinogeikin, Stanislav; Meng, Yue

    2013-03-01

    Experimental studies of vanadium found that during compression it undergoes a phase transition from the low pressure body centered cubic crystal structure to a rhombohedral phase at 65 GPa when compressed under quasihydrostatic conditions (PRB 83, 054101). Theoretical studies are in reasonable agreement with the transition pressure and predict that upon further compression above 200 GPa the bcc phase becomes stable again. The latest study (PRL 103, 235501) predicts that alloying vanadium with small amounts of the neighboring elements can increase or decrease the stability of the bcc phase relative to the rhombohedral phase. We performed powder x-ray diffraction experiments in diamond anvil cell of pure vanadium and V-Ti alloys at ambient temperature to very high pressures. We will discuss our results, including the equation of state and the stability of the rhombohedral phase at high pressures. This work performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. HPCAT use is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357.

  18. Study of the Splat Microstructure and the Effects of Substrate Heating on the Splat Formation for Ni-Cr Particles Plasma Sprayed onto Stainless Steel Substrates

    NASA Astrophysics Data System (ADS)

    Brossard, S.; Munroe, P. R.; Tran, A. T.; Hyland, M. M.

    2010-09-01

    The plasma spraying process is still poorly understood in term of the processes by which the coating is built up, especially coating interactions with the substrate. This present study enhances this understanding by studying, through a range of electron microscopy techniques, single NiCr splats plasma sprayed onto stainless steel substrates, which were first exposed to different heat treatments. The microstructure of the splats, particularly the splat-substrate interface, was characterized, and the formation of the observed features is discussed. Evidence of localized substrate melting and inter-mixing with the splat material was found, showing metallurgical bonding. The structures observed were also correlated to the treatment of the substrate, demonstrating how such treatments can influence the properties of the fully deposited coating by modifying the splat formation process. Most notably, heating the substrate during spraying was found to significantly modify splat formation by reducing splashing and increasing the extent of substrate melting.

  19. Effects of Temperature on the Hardness and Wear Resistance of High-Tungsten Stellite Alloys

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Wu, X. J.; Kapoor, Samit; Yao, M. X.; Collier, Rachel

    2015-02-01

    In this research, two new Stellite alloys containing high tungsten are developed for wear resistance application owing to the distinct beneficial effects of tungsten in Stellite alloys. The microstructures of these alloys are analyzed using a scanning electron microscope (SEM) with an EDAX energy dispersive X-ray (EDX) spectroscopy system and X-ray diffraction spectrum. The micro-hardness and wear resistance of the alloys at room temperature and at elevated temperatures are investigated utilizing a Microhardness Tester Unit, with a Hot Stage, and a Hot Pin-on-Disk Tribometer, respectively. The wear test results of these alloys are compared with those of commercial wear-resistant Stellite 3 and Stellite 12. The worn surfaces of the specimens are analyzed using SEM/EDX to explore the wear mechanisms of these alloys with temperature change. The variations of hardness and wear resistance of these alloys with temperature are studied and discussed.

  20. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Chen, Po Shou

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent thermal growth stability, surface hardness and wear resistant properties.

  1. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  2. Cleavage fracture in high strength low alloy weld metal

    SciTech Connect

    Bose, W.W.; Bowen, P.; Strangwood, M.

    1996-12-31

    The present investigation gives an evaluation of the effect of microstructure on the cleavage fracture process of High Strength Low Alloy (HSLA) multipass weld metals. With additions of alloying elements, such as Ti, Ni, Mo and Cr, the microstructure of C-Mn weld metal changes from the classical composition, i.e., allotriomorphic ferrite with acicular ferrite and Widmanstaetten ferrite, to bainite and low carbon martensite. Although the physical metallurgy of some HSLA weld metals has been studied before, more work is necessary to correlate the effect of the microstructure on the fracture behavior of such weld metals. In this work detailed microstructural analysis was carried out using optical and electron (SEM and TEM) microscopy. Single edge notched (SEN) bend testpieces were used to assess the cleavage fracture stress, {sigma}{sub F}. Inclusions beneath the notch surface were identified as the crack initiators of unstable cleavage fracture. From the size of such inclusions and the value of tensile stress predicted at the initiation site, the effective surface energy for cleavage was calculated using a modified Griffth energy balance for a penny shape crack. The results suggest that even though inclusions initiate cleavage fracture, the local microstructure may play an important role in the fracture process of these weld metals. The implications of these observations for a quantitative theory of the cleavage fracture of ferritic steels is discussed.

  3. [Study on the method for the determination of Fe, Si, Cu, Mg, Mn, Ni, Zn, Ti, Cr, Sr in aluminium alloy by ICP-AES].

    PubMed

    Zhong, Zhi-guang; Bian, Qun-zhou; Zheng, Jian-guo; Chen, Pei-ling; Liu, Chong-hua; Wei, Xian-ying

    2002-02-01

    The method for the determination of Fe, Mn, Cu, Zn, Mg, Ti, Si, Ni, Cr, Sr in aluminum alloy has been developed in this study. The sample was dissolved with sodium hydroxide, the matrix interference and interference among tested elements were studied and then corrected by matrix match and interference coefficient respectively. The method is rapid, simple and accurate, and it is suitable for daily testing of aluminum alloy for import and export.

  4. Localized Corrosion of Alloy 22 -Fabrication Effects-

    SciTech Connect

    Rebak, R B

    2005-11-05

    general and localized corrosion behavior both in the wrought and annealed condition and in the as-welded condition. The specimens for testing were mostly prepared from flat plates of material. It was important to determine if the process of fabricating a full diameter Alloy 22 container will affect the corrosion performance of this alloy. Specimens were prepared directly from a fabricated container and tested for corrosion resistance. Results show that both the anodic corrosion behavior and the localized corrosion resistance of specimens prepared from a welded fabricated container were the same as from flat welded plates. That is, rolling and welding plates using industrial practices do not hinder the corrosion resistant of Alloy 22. (3) Effect of Black Annealing Oxide Scale: The resistance of Alloy 22 to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. This was done mostly using freshly polished specimens. At this time it was important to address the effect an oxide film or scale that forms during the high temperature annealing process or solution heat treatment (SHT) and its subsequent water quenching. Electrochemical tests such as cyclic potentiodynamic polarization (CPP) have been carried out to determine the repassivation potential for localized corrosion and to assess the mode of attack on the specimens. Tests have been carried out in parallel using mill annealed (MA) specimens free from oxide on the surface. The comparative testing was carried out in six different electrolyte solutions at temperatures ranging from 60 to 100 C. Results show that the repassivation potential of the specimens containing the black anneal oxide film on the surface was practically the same as the repassivation potential for oxide-free specimens. (4) Heat-to-Heat Variability--Testing of Ni-Cr-Mo Plates with varying heat chemistry: The ASTM standard B 575 provides the range of the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr

  5. Applications of high-temperature powder metal aluminum alloys to small gas turbines

    NASA Technical Reports Server (NTRS)

    Millan, P. P., Jr.

    1982-01-01

    A program aimed at the development of advanced powder-metallurgy (PM) aluminum alloys for high-temperature applications up to 650 F using the concepts of rapid solidification and mechanical alloying is discussed. In particular, application of rapidly solidified PM aluminum alloys to centrifugal compressor impellers, currently used in auxiliary power units for both military and commercial aircraft and potentially for advanced automotive gas turbine engines, is examined. It is shown that substitution of high-temperature aluminum for titanium alloy impellers operating in the 360-650 F range provides significant savings in material and machining costs and results in reduced component weight, and consequently, reduced rotating group inertia requirements.

  6. High strain rate compressive characterization of aluminum alloy/fly ash cenosphere composites

    NASA Astrophysics Data System (ADS)

    Luong, Dung D.; Gupta, Nikhil; Daoud, Atef; Rohatgi, Pradeep K.

    2011-02-01

    The strain rate dependence of compressive response is determined for aluminum alloy/hollow fly ash cenosphere composites. A4032 alloy is used as the matrix material. Quasi-static and high strain rate compression tests are conducted on the matrix alloy and the composite. A split-Hopkinson pressure bar is used for high strain rate testing. While the matrix alloy does not show any appreciable strain rate sensitivity, the composite shows higher strength at higher strain rates. The energy absorption capability of A4032/fly ash cenosphere composites is found to be higher at higher strain rates.

  7. Burner rig alkali salt corrosion of several high temperature alloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-based alloys, a cobalt-base alloy, and an iron-base alloy were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and both concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  8. Swelling of several commercial alloys following high fluence neutron irradiation

    SciTech Connect

    Powell, R.W.; Peterson, D.T.; Zimmerschied, M.K.; Bates, J.F.

    1981-01-01

    Swelling values have been determined for a set of commercial alloys irradiated to a peak fluence of 17.8 x 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV) over the temperature range of 400 to 650/sup 0/C. The alloys studied fall into three classes: the ferritic alloys AISI 430F, AISI 416, EM-12, H-11 and 2 1/4 Cr-1 Mo; the superalloys Inconel 718 and Inconel X-750; and the refractory alloys TZM and Nb-1 Zr. After irradiation to a peak fluence approaching goal exposures envisioned for advanced fusion reactor first walls, all of the alloys display swelling resistance far superior to cold worked AISI 316. Of the three alloy classes examined the swelling resistance of the ferritics is the least sensitive to composition.

  9. Corrosion Resistance of Various High Chromium Alloys in Simulated Chemical Processing Nuclear Plant Waste Solutions

    SciTech Connect

    Anderson, P.A.; Agarwal, D.C.

    1997-12-31

    High chromium nickel alloys were tested at the Idaho Chemical Processing Plant (ICPP) to determine their corrosion performance in the high temperature aggressive chemical environments of liquid waste evaporators used in the chemical reprocessing of irradiated nuclear fuels. The results of these tests, which included a variety of base metal alloys I weld filler material combinations, are presented and discussed.

  10. High-strength alloy with resistance to hydrogen-environment embrittlement

    NASA Technical Reports Server (NTRS)

    Mcnamara, T. G.

    1975-01-01

    Alloy is precipitation-hardened, high-strength, and low-thermal-expansion materials. It is iron-based and contains nickel and chromium at lower levels than high-strength alloys. It is readily welded and brazed and has good oxidation resistance. Tests indicated there was no reduction of notched or smooth strength.

  11. High-Temperature Alloys for Automotive Stirling Engines

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Titran, R. H.

    1986-01-01

    Stirling engine is external-combustion engine that offers fuel economy, low emissions, low noise, and low vibrations. One of most critical areas in engine development concerns material selection for component parts. Alloys CG-27 and XF-818 identified capable of withstanding rigorous requirements of automotive Stirling engine. Alloys chosen for availability, performance, and manufacturability. Advanced iron-base alloys have potential for variety of applications, including stationary solar-power systems.

  12. High strength and density tungsten-uranium alloys

    DOEpatents

    Sheinberg, Haskell

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  13. Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment

    NASA Astrophysics Data System (ADS)

    Sidhu, T. S.; Prakash, S.; Agrawal, R. D.

    2006-09-01

    No alloy is immune to hot corrosion attack indefinitely. Coatings can extend the lives of substrate materials used at higher temperatures in corrosive environments by forming protective oxides layers that are reasonably effective for long-term applications. This article is concerned with studying the performance of high-velocity oxyfuel (HVOF) sprayed NiCrBSi, Cr3C2-NiCr, Ni-20Cr, and Stellite-6 coatings on a nickel-base superalloy at 900 °C in the molten salt (Na2SO4-60% V2O5) environment under cyclic oxidation conditions. The thermogravimetric technique was used to establish kinetics of corrosion. Optical microscope, x-ray diffraction, scanning electron microscopy/electron dispersive analysis by x-ray (SEM/EDAX), and electron probe microanalysis (EPMA) techniques were used to characterize the as-sprayed coatings and corrosion products. The bare superalloy suffered somewhat accelerated corrosion in the given environmental conditions. whereas hot corrosion resistance of all the coated superalloys was found to be better. Among the coating studied, Ni-20Cr coated superalloy imparted maximum hot corrosion resistance, whereas Stellite-6 coated indicated minimum resistance. The hot corrosion resistance of all the coatings may be attributed to the formation of oxides and spinels of nickel, chromium, or cobalt.

  14. New developments on optimizing properties of high-Zn aluminium cast alloys

    NASA Astrophysics Data System (ADS)

    Krajewski, W. K.; Buras, J.; Krajewski, P. K.; Greer, A. L.; Schumacher, P.; Haberl, K.

    2016-07-01

    Foundry alloys with Al-based matrices have a wide range of uses in today's global economy and there is a high demand for castings of Al alloys, including Al-Zn alloys. In this paper, investigations on the grain refinement of high-Zn aluminium cast alloys are presented. Aluminium alloys with relatively high zinc content have a tendency to be coarse-grained, especially in the case of castings with low cooling rates such as are found in sand moulds. The coarse-grained structure degrades the plasticity, specifically the elongation. Therefore, for aluminium alloys of high (10-30 wt.%) zinc content, inoculation is attractive, aiming to break up the primary dendrites of the a-phase solid solution of zinc in aluminium. Such dendrites are the principal microstructural component in these alloys. On the other hand, a finer grain structure usually reduces the damping (e.g. as measured by attenuation of ultrasound) in these alloys. In the present investigations, a binary sand-cast Al-20 wt.% Zn alloy was inoculated with different additions of AlTi3C0.15 (TiCAl) and ZnTi-based master alloys. The sand-cast samples were subjected to mechanical-property measurements (tensile strength and elongation), image analysis to determine grain size, and measurements of the attenuation of 1 MHz ultrasound. It is found that both of the master alloys used cause significant refinement of the a-AlZn primary dendrites and change their morphology from linear-branched to semi-globular, increase the elongation by about 40%, and decrease the attenuation coefficient by about 25% in comparison with the initial alloy without inoculation.

  15. Effect of high temperature fatigue on the fracture toughness of a nickel-base alloy

    SciTech Connect

    Hwang, S.K.

    1981-01-01

    The purpose of the present work was to investigate the effect of cyclic loading at high temperature on the fracture toughness of a precipitate hardened alloy. A ..gamma..' precipitate hardened Inconcel X-750 alloy was chosen because of its importance in practical applications as well as its relatively well defined microstructure compared to other superalloys. This paper presents a study of the variation of the relative fracture toughness of this alloy during continuous and hold-time fatigue at 973/sup 0/K.

  16. Procurement and screening test data for advanced austenitic alloys for 650/degree/C steam service: Part 2, final report

    SciTech Connect

    Swindeman, R.W.; Goodwin, G.M.; Maziasz, P.J.; Bolling, E.

    1988-08-01

    The results of screening tests on alloys from three compositional groups are summarized and compared to the alloy design and performance criteria identified as needed for austenitic alloys suitable as superheater/reheater tubing in advanced heat recovery systems. The three alloy groups included lean (nominally 14% Cr and 16% Ni) austenitic stainless steels that were modifications of type 316 stainless steel, 20Cr-30Ni-Fe alloys that were modifications of alloy 800H, and Ni-Cr aluminides, (Ni,Cr)/sub 3/Al. The screening tests covered fabricability, mechanical properties, weldability, and oxidation behavior. The lean stainless steels were found to possess excellent strength and ductility if cold-worked to an equivalent strain in the range 5 to 10% prior to testing. However, they possessed marginal weldability, poor oxidation resistance, and sensitivity to aging. The modified alloy 800H alloys also exhibited good strength and ductility in the cold-worked condition. The weldability was marginal, while the oxidation resistance was good. The aluminides were difficult to fabricate by methods typically used to produce superheater tubing alloys. The alloys that could be worked had marginal strength and ductility. An aluminide cast alloy, however, was found to be very strong and ductile. 23 refs., 19 figs., 13 tabs.

  17. Advances in Solid State Joining of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeff; Schneider, Judy; Walker, Bryant

    2011-01-01

    Many of the metals used in the oil and gas industry are difficult to fusion weld including titanium and its alloys. Thus solid state joining processes, such as friction stir welding (FSWing) and a patented modification termed thermal stir welding (TSWing), are being pursued as alternatives to produce robust structures more amenable to high pressure applications. Unlike the FSWing process where the tool is used to heat the workpiece, TSWing utilizes an induction coil to preheat the material prior to stirring thus minimizing the burden on the weld tool and thereby extending its life. This study reports on the initial results of using a hybrid (H)-TSW process to join commercially pure, 1.3cm thick panels of titanium (CP Ti) Grade 2.

  18. Constitutive relationships for anisotropic high-temperature alloys

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.

    1982-01-01

    A constitutive theory is presented for representing the anisotropic viscoplastic behavior of high temperature alloys that posses directional properties resulting from controlled grain growth or solidification. The theory is an extension of a viscoplastic model that was applied in structural analyses involving isotropic metals. Anisotropy is introduced through the definition of a vector field that identifies a preferential (solidification) direction at each material point. Following the development of a full multiaxial theory, application is made to homogeneously stressed elements in pure shear and to a uniaxially stressed rectangular block in plane stress with the stress direction oriented at an arbitrary angle with the material direction. It is shown that an additional material parameter introduced to characterize the degree of anisotropy can be determined on the basis of simple creep tests.

  19. High-Entropy Alloys in Hexagonal Close-Packed Structure

    NASA Astrophysics Data System (ADS)

    Gao, M. C.; Zhang, B.; Guo, S. M.; Qiao, J. W.; Hawk, J. A.

    2016-07-01

    The microstructures and properties of high-entropy alloys (HEAs) based on the face-centered cubic and body-centered cubic structures have been studied extensively in the literature, but reports on HEAs in the hexagonal close-packed (HCP) structure are very limited. Using an efficient strategy in combining phase diagram inspection, CALPHAD modeling, and ab initio molecular dynamics simulations, a variety of new compositions are suggested that may hold great potentials in forming single-phase HCP HEAs that comprise rare earth elements and transition metals, respectively. Experimental verification was carried out on CoFeReRu and CoReRuV using X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy.

  20. ANODIC BEHAVIOR OF ALLOY 22 IN HIGH NITRATE BRINES AT TEMPERATURES HIGHER THAN 100C

    SciTech Connect

    G.O. LLEVBARE; J.C. ESTILL; A. YILMAZ; R.A. ETIEN; G.A. HUST M.L. STUART

    2006-04-20

    Alloy 22 (N06022) may be susceptible to crevice corrosion in chloride solutions. Nitrate acts as an inhibitor to crevice corrosion. Several papers have been published regarding the effect of nitrate on the corrosion resistance of Alloy 22 at temperatures 100 C and lower. However, very little is known about the behavior of this alloy in highly concentrated brines at temperatures above 100 C. In the current work, electrochemical tests have been carried out to explore the anodic behavior of Alloy 22 in high chloride high nitrate electrolytes at temperatures as high as 160 C at ambient atmospheres. Even though Alloy 22 may adopt corrosion potentials in the order of +0.5 V (in the saturated silver chloride scale), it does not suffer crevice corrosion if there is high nitrate in the solution. That is, the inhibitive effect of nitrate on crevice corrosion is active for temperatures higher than 100 C.

  1. Corrosion behavior of some high-temperature alloys under high velocity burnt fuel

    SciTech Connect

    Agarwal, D.C.; Brill, U.; Ibas, O.

    1995-12-31

    In a laboratory burner rig facility developed by Krupp VDM, the corrosion behavior of three high-temperature alloys was investigated under high velocity burnt fuel. A hot gas stream of burnt natural gas hits a sample at an angle of 45{degree}. Gas velocities of up to 80 m/s are obtained, and can be continuously adjusted by varying the air volume. By changing the sample to burner nozzle distance, a temperature gradient from 1,000 C in the center to 880 C at the edges of the sample can be achieved. Corrosion behavior of the two Fe-base alloys 310 S and 800H, and the Ni-base alloy 602CA, was evaluated by means of optical microscopy and SEM/EDAX analysis. According to results obtained so far, the alumina-former, alloy 602CA, provides best performance under high velocity burnt fuel at 880--1,000 C, as well as under steady state cyclic oxidation testing in air.

  2. SCC Initiation in Alloy 600 Heat Affected Zones Exposed to High Temperature Water

    SciTech Connect

    E Richey; DS Morton; RA Etien; GA Young; RB Bucinell

    2006-11-03

    Studies have shown that grain boundary chromium carbides improve the stress corrosion cracking (SCC) resistance of nickel based alloys exposed to high temperature, high purity water. However, thermal cycles from welding can significantly alter the microstructure of the base material near the fusion line. In particular, the heat of welding can solutionize grain boundary carbides and produce locally high residual stresses and strains, reducing the SCC resistance of the Alloy 600 type material in the heat affected zone (HAZ). Testing has shown that the SCC growth rate in Alloy 600 heat affected zone samples can be {approx}30x faster than observed in the Alloy 600 base material under identical testing conditions due to fewer intergranular chromium rich carbides and increased plastic strain in the HAZ [1, 2]. Stress corrosion crack initiation tests were conducted on Alloy 600 HAZ samples at 360 C in hydrogenated, deaerated water to determine if these microstructural differences significantly affect the SCC initiation resistance of Alloy 600 heat affected zones compared to the Alloy 600 base material. Alloy 600 to EN82H to Alloy 600 heat-affected-zone (HAZ) specimens where fabricated from an Alloy 600 to Alloy 600 narrow groove weld with EN82H filler metal. The approximate middle third of the specimen gauge region was EN82H such that each specimen had two HAZ regions. Tests were conducted with in-situ monitored smooth tensile specimens under a constant load, and a direct current electric potential drop was used for in-situ detection of SCC. Test results suggest that the SCC initiation resistance of Alloy 600 and its weld metal follows the following order: EN82H > Alloy 600 HAZ > Alloy 600. The high SCC initiation resistance observed to date in Alloy 600 heat affected zones compared to wrought Alloy 600 is unexpected based on the microstructure of HAZ versus wrought material and based on prior SCC growth rate studies. The observed behavior for the HAZ specimens is likely

  3. Application of High Temperature Corrosion-Resistant Materials and Coatings Under Severe Corrosive Environment in Waste-to-Energy Boilers

    NASA Astrophysics Data System (ADS)

    Kawahara, Yuuzou

    2007-06-01

    Corrosion-resistant materials (CRMs) and coatings are key technologies to increase power generation efficiency and reduce maintenance in waste-to-energy (WTE) plants. Corrosion environment became severe as steam temperatures have increased. The steam condition of more than 400 °C/3.9 MPa became possible in WTE boilers by using highly durable corrosion-resistant coatings, such as thermal spray of Al/80Ni20Cr alloy, HVOF-sprayed NiCrSiB alloy, Alloy 625 weld overlay for waterwall tubes and also superheater tubes. Also, the use of 310S type stainless steels and high Cr-high Mo-Ni base and high Si-Cr-Ni-Fe alloys have progressed because of a better understanding of corrosion mechanisms. Furthermore, high durability coatings using cermet and ceramic materials were applied to high temperature superheaters. This paper describes the major developments and the application of CRMs and coating technologies in the last 30 years in WTE plants, the corrosion mechanisms of alloys, the deterioration mechanisms of spray coating layers, and future subjects for the development of corrosion-resistant materials and coatings.

  4. Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying

    NASA Astrophysics Data System (ADS)

    Sun, Junjie; Jiang, Tao; Liu, Hongji; Guo, Shengwu; Liu, Yongning

    2016-09-01

    The effect of delamination toughening of martensitic steel was investigated both at room and low temperatures [253 K and 233 K (-20 °C and -40 °C)]. Two low-alloy martensitic steels with and without Al alloying were both prepared. Layered structure with white band and black matrix was observed in Al alloyed steel, while a homogeneous microstructure was displayed in the steel without Al. Both steels achieved high strength (tensile strength over 1600 MPa) and good ductility (elongation over 11 pct), but they displayed stark contrasts on impact fracture mode and Charpy impact energy. Delamination fracture occurred in Al alloyed steel and the impact energies were significantly increased both at room temperature (from 75 to 138 J, i.e., nearly improved up to 2 times) and low temperatures [from 47.9 to 71.3 J at 233 K (-40 °C)] compared with the one without Al. Alloying with Al promotes the segregation of Cr, Mn, Si and C elements to form a network structure, which is martensite with higher carbon content and higher hardness than that of the matrix. And this network structure evolved into a band structure during the hot rolling process. The difference of yield stress between the band structure and the matrix gives rise to a delamination fracture during the impact test, which increases the toughness greatly.

  5. Influence of alloy elements on the plasticity of high-silicon iron iron

    SciTech Connect

    Glezer, A.M.; Maleeva, I.V.; Zakharova, A.I.

    1986-05-01

    This article considers the influence of the addition of alloy elements capable of partially or completely suppressing the occurrence of processes of atomic ordering, and of compensating the negative influence on the plasticity of the covalent constituent of the interatomic bonds. The ductile-to-brittle transition temperature was determined with a notch on a pendulum test machine. Electrical resistance of the alloys was measured by the potentiometric method. X-ray photoelectron spectroscopy was used to investigate the number of alloys of the Fe-Si and Fe-Si-Nb systems. The authors conclude that in alloying of high-silicon iron with Al, Ga, Cr, Ni, Mo and Nb its plasticity increases. The increase in plasticity of Fe-Si-alloys in alloying with Al and Ga is caused by partial suppression of atomic ordering.

  6. A high-specific-strength and corrosion-resistant magnesium alloy.

    PubMed

    Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E; Xiao, Yang; Ferry, Michael

    2015-12-01

    Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm(-3)) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy. PMID:26480229

  7. Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression

    NASA Astrophysics Data System (ADS)

    Wang, Bingfeng; Fu, Ao; Huang, Xiaoxia; Liu, Bin; Liu, Yong; Li, Zezhou; Zan, Xiang

    2016-07-01

    The equiatomic CoCrFeMnNi high entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was prepared by the spark plasma sintering technique. Dynamic compressive tests of the CoCrFeMnNi high entropy alloy were deformed at varying strain rates ranging from 1 × 103 to 3 × 103 s-1 using a split-Hopkinson pressure bar (SHPB) system. The dynamic yield strength of the CoCrFeMnNi high entropy alloy increases with increasing strain rate. The Zerilli-Armstrong (Z-A) plastic model was applied to model the dynamic flow behavior of the CoCrFeMnNi high entropy alloy, and the constitutive relationship was obtained. Serration behavior during plastic deformation was observed in the stress-strain curves. The mechanism for serration behavior of the alloy deformed at high strain rate is proposed.

  8. Molecular dynamics modeling using ab initio interatomic potentials for thermal properties of Ni-rich alloys

    SciTech Connect

    Mei, J.; Cooper, B.R.; Hao, Y.G.; Scoy, F.L. Van

    1994-12-31

    Molecular dynamics simulations have been performed to study thermal expansions of Ni-rich (fcc structure) Ni/Cr alloys (which serve as the basis for practical superalloy systems). This has been done using ab initio interatomic potentials with no experimental input. The coefficient of thermal expansion (CTE) as a function of temperature has been calculated. By admixing Re and Me atoms into fee Ni and the fee alloy system Ni/Cr, additive effects on the thermal expansion have been predicted. While addition of Cr lowers the CTE of Ni, and moderate addition of Mo lowers the CTE of Ni over a wide temperature range, moderate addition of Re raises the CTE of both Ni and Ni/Cr alloys over a significant temperature range. An explanation for the contrasting effect of additive Re on the CTE, based on a one-dimensional atomic chain model, is that the trade-off, between atomic volume effects increasing the CTE over that of pure Ni and pair-potential effects (exemplified by the Grueneisen parameter) decreasing the CTE from that of pure nickel, changes for Re compared to Cr and Mo.

  9. Development and fabrication of high strength alloy fibers for use in metal-metal matrix composites

    NASA Technical Reports Server (NTRS)

    King, G. W.; Petrasek, D. W.

    1979-01-01

    Metal fiber reinforced superalloys are being considered for construction of critical components in turbine engines that operate at high temperature. The problems involved in fabricating refractory metal alloys into wire form in such a manner as to maximize their strength properties without developing excessive structural defects are described. The fundamental principles underlying the development of such alloy fibers are also briefly discussed. The progress made to date in developing tungsten, tantalum and columbium base alloys for fiber reinforcement is reported and future prospects for alloy fiber development considered.

  10. Evaluating the Hot Corrosion Behavior of High-Temperature Alloys for Gas Turbine Engine Components

    NASA Astrophysics Data System (ADS)

    Deodeshmukh, V. P.

    2015-11-01

    The hot corrosion behavior of high-temperature alloys is critically important for gas turbine engine components operating near the marine environments. The two test methods—Two-Zone and Burner-Rig—used to evaluate the hot corrosion performance of high-temperature alloys are illustrated by comparing the Type I hot corrosion behavior of selected high-temperature alloys. Although the ranking of the alloys is quite comparable, it is evident that the two-zone hot corrosion test is significantly more aggressive than the burner-rig test. The effect of long-term exposures and the factors that influence the hot corrosion performance of high-temperature alloys are briefly discussed.

  11. Resistance of nickel-chromium-aluminum alloys to cyclic oxidation at 1100 C and 1200 C

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Lowell, C. E.

    1976-01-01

    Nickel-rich alloys in the Ni-Cr-Al system were evaluated for cyclic oxidation resistance in still air at 1,100 and 1,200 C. A first approximation oxidation attack parameter Ka was derived from specific weight change data involving both a scaling growth constant and a spalling constant. An estimating equation was derived with Ka as a function of the Cr and Al content by multiple linear regression and translated into countour ternary diagrams showing regions of minimum attack. An additional factor inferred from the regression analysis was that alloys melted in zirconia crucibles had significantly greater oxidation resistance than comparable alloys melted otherwise.

  12. Deformation and thermal fatigue in high temperature austenitic alloys

    SciTech Connect

    Ferro, P.D.; Yost, B.; Swindeman, R.W.; Li, Che-Yu . Dept. of Materials Science and Engineering)

    1991-03-01

    The flow properties of modified austenitic alloys are reviewed. The important strengthening mechanisms discussed include precipitation hardening produced by a combination of cold work and aging and by creep aging. Grain boundary sliding enhanced by reduced grain size is shown to reduce the flow strength of these alloys. 5 refs., 11 figs., 2 tabs.

  13. Critical crevice temperature for high-alloyed stainless steels in chlorinated seawater applications

    SciTech Connect

    Steinsmo, U.; Rogne, T.; Drugli, J.M.; Gartland, P.O.

    1997-01-01

    Eleven high-alloyed stainless steels (SS) were tested for application in chlorinated seawater. Critical crevice temperatures (CCT) were determined using a potentiostatic test method. Results were evaluated in terms of the critical crevice index (CCI) value of the alloys and compared to results of duplicate specimens in other tests.

  14. Dynamic compressive behavior of Pr-Nd alloy at high strain rates and temperatures

    SciTech Connect

    Wang Huanran; Cai Canyuan; Chen Danian; Ma Dongfang

    2012-07-01

    Based on compressive tests, static on 810 material test system and dynamic on the first compressive loading in split Hopkinson pressure bar (SHPB) tests for Pr-Nd alloy cylinder specimens at high strain rates and temperatures, this study determined a J-C type [G. R. Johnson and W. H. Cook, in Proceedings of Seventh International Symposium on Ballistics (The Hague, The Netherlands, 1983), pp. 541-547] compressive constitutive equation of Pr-Nd alloy. It was recorded by a high speed camera that the Pr-Nd alloy cylinder specimens fractured during the first compressive loading in SHPB tests at high strain rates and temperatures. From high speed camera images, the critical strains of the dynamic shearing instability for Pr-Nd alloy in SHPB tests were determined, which were consistent with that estimated by using Batra and Wei's dynamic shearing instability criterion [R. C. Batra and Z. G. Wei, Int. J. Impact Eng. 34, 448 (2007)] and the determined compressive constitutive equation of Pr-Nd alloy. The transmitted and reflected pulses of SHPB tests for Pr-Nd alloy cylinder specimens computed with the determined compressive constitutive equation of Pr-Nd alloy and Batra and Wei's dynamic shearing instability criterion could be consistent with the experimental data. The fractured Pr-Nd alloy cylinder specimens of compressive tests were investigated by using 3D supper depth digital microscope and scanning electron microscope.

  15. Hybrid MC/MD Method For High Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Feng, Bojun; Widom, Michael

    High entropy alloys (HEA) are materials that contain multiple components of elements consisting of a single solid solution phase which could make the entropy of mixing very high. From recent investigations, HEA's possess promising properties such as strength at high temperature, tensile strength, thermal stability and corrosion resistance. In this talk, a hybrid Molecular Dynamics (MD)/Monte Carlo (MC) simulation method is introduced to the computational analysis of HEA, treating atomic displacement by MD as well as swapping atomic species by MC. This method efficiently models the phase separation and short range order by swapping between different types of atoms, while structural deviation from the perfect lattice sites of atoms is equilibrated quickly by MD. We apply this method to HfNbTaZr HEA modeled using an embedded-atom potential. The result gives a strong phase separation of Hf-Zr and Nb-Ta pairs shown by the pair correlation function. Diffuse scattering patterns are predicted and compared to experiments. Doe Grant No. DE-SC0014506.

  16. Formation and Stability of Equiatomic and Nonequiatomic Nanocrystalline CuNiCoZnAlTi High-Entropy Alloys by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Varalakshmi, S.; Kamaraj, M.; Murty, B. S.

    2010-10-01

    Nanocrystalline equiatomic high-entropy alloys (HEAs) have been synthesized by mechanical alloying in the Cu-Ni-Co-Zn-Al-Ti system from the binary CuNi alloy to the hexanary CuNiCoZnAlTi alloy. An attempt also has been made to find the influence of nonequiatomic compositions on the HEA formation by varying the Cu content up to 50 at. pct (Cu x NiCoZnAlTi; x = 0, 8.33, 33.33, 49.98 at. pct). The phase formation and stability of mechanically alloyed powder at an elevated temperature (1073 K [800 °C] for 1 hour) were studied. The nanocrystalline equiatomic Cu-Ni-Co-Zn-Al-Ti alloys have a face-centered cubic (fcc) structure up to quinary compositions and have a body-centered cubic (bcc) structure in a hexanary alloy. In nonequiatomic alloys, bcc is the dominating phase in the alloys containing 0 and 8.33 at. pct of Cu, and the fcc phase was observed in alloys with 33.33 and 49.98 at. pct of Cu. The Vicker’s bulk hardness and compressive strength of the equiatomic nanocrystalline hexanary CuNiCoZnAlTi HEA after hot isostatic pressing is 8.79 GPa, and the compressive strength is 2.76 GPa. The hardness of these HEAs is higher than most commercial hard facing alloys ( e.g., Stellite, which is 4.94 GPa).

  17. Selective oxidation and internal nitridation during high-temperature exposure of single-crystalline nickel-base superalloys

    SciTech Connect

    Krupp, U.; Christ, H.J.

    2000-01-01

    The process of internal nitridation of the three commercial single-crystalline nickel-base superalloys CMSX-2, CMSX-6, and SRR99 has been studied in air and oxygen-free nitrogen atmospheres at 800 C to 1,100 C using thermogravimetric techniques supplemented by extensive microstructural examinations. Non-protective oxide formation, particularly cracking and spalling at edges or curved surfaces, enables nitrogen to penetrate into the alloy leading to the precipitation of stable Ti and Al nitrides. The high-temperature corrosion behavior of the superalloys studied is strongly affected by composition differences between dendritic and interdendritic areas due to segregation resulting in an inhomogeneous internal precipitation zone. Furthermore, the stability of the strengthening {radical} phase (N3i(Al, Ti, Ta)) in front of the growing internal-nitridation zone was observed to depend clearly on the alloy composition. Therefore, the near-surface area of the alloys can be weakened by {radical} depletion and by embrittlement resulting from internal-nitride precipitation. The results obtained on the nickel-base superalloys are discussed, taking into account the results of a computer-based simulation of internal-corrosion processes. Furthermore, results on Ni-base model alloys of the system Ni-Cr-Al-Ti provided information on the role of the alloy composition. It was found that a higher Cr concentration seems to increase the nitrogen solubility and diffusion in Ni-base alloys.

  18. Mold filling of titanium alloys in two different wedge-shaped molds.

    PubMed

    Shimizu, H; Habu, T; Takada, Y; Watanabe, K; Okuno, O; Okabe, T

    2002-06-01

    Pure titanium and titanium alloys are potential materials for the fabrication of cast dental appliances. One important factor in producing sound castings is the capacity of the metal to fill the mold. This study used a wedge-shaped mold to compare the mold filling of titanium with that of conventional dental casting alloys. The metals used were CP Ti, Ti-6Al-7Nb, Ti-6Al-4V, Ti with 1 and 4wt% Cu and ADA Type III gold alloy and an Ni-Cr alloy. The castings were cut into four pieces parallel to the triangular surface. Mold filling was evaluated as the distance between the tip of the cast wedge and theoretical tip of the triangle. The mold filling of the gold alloy was superior compared to all the metals tested, while the mold filling of the Ni-Cr alloy was the worst. There were no statistical differences at the 30 degrees marginal angle for all the cast titanium metals. At the sharper 15 degrees angle, CP Ti and Ti-6Al-7Nb was superior to both the Ti-Cu alloys. Although the mold filling of titanium was inferior compared to the gold alloy, the data justify the use of titanium for the production of dental appliances.

  19. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.

    PubMed

    Ozan, Sertan; Lin, Jixing; Li, Yuncang; Ipek, Rasim; Wen, Cuie

    2015-07-01

    A new series of beta Ti-Nb-Zr (TNZ) alloys with considerable plastic deformation ability during compression test, high elastic admissible strain, and excellent cytocompatibility have been developed for removable bone tissue implant applications. TNZ alloys with nominal compositions of Ti-34Nb-25Zr, Ti-30Nb-32Zr, Ti-28Nb-35.4Zr and Ti-24.8Nb-40.7Zr (wt.% hereafter) were fabricated using the cold-crucible levitation technique, and the effects of alloying element content on their microstructures, mechanical properties (tensile strength, yield strength, compressive yield strength, Young's modulus, elastic energy, toughness, and micro-hardness), and cytocompatibilities were investigated and compared. Microstructural examinations revealed that the TNZ alloys consisted of β phase. The alloy samples displayed excellent ductility with no cracking, or fracturing during compression tests. Their tensile strength, Young's modulus, elongation at rupture, and elastic admissible strain were measured in the ranges of 704-839 MPa, 62-65 GPa, 9.9-14.8% and 1.08-1.31%, respectively. The tensile strength, Young's modulus and elongation at rupture of the Ti-34Nb-25Zr alloy were measured as 839 ± 31.8 MPa, 62 ± 3.6 GPa, and 14.8 ± 1.6%, respectively; this alloy exhibited the elastic admissible strain of approximately 1.31%. Cytocompatibility tests indicated that the cell viability ratios (CVR) of the alloys are greater than those of the control group; thus the TNZ alloys possess excellent cytocompatibility.

  20. Dynamic high-temperature characterization of an iridium alloy in tension

    SciTech Connect

    Song, Bo; Nelson, Kevin; Jin, Helena; Lipinski, Ronald J.; Bignell, John; Ulrich, G. B.; George, E. P.

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  1. Isothermal oxidation behavior of ternary Zr-Nb-Y alloys at high temperature

    SciTech Connect

    Prajitno, Djoko Hadi; Soepriyanto, Syoni; Basuki, Eddy Agus; Wiryolukito, Slameto

    2014-03-24

    The effect of yttrium content on isothermal oxidation behavior of Zr-2,5%Nb-0,5%Y, Zr-2,5%Nb-1%Y Zr-2,5%Nb-1,5%Y alloy at high temperature has been studied. High temperature oxidation carried out at tube furnace in air at 600,700 and 800°C for 1 hour. Optical microscope is used for microstructure characterization of the alloy. Oxidized and un oxidized specimen was characterized by x-ray diffraction. In this study, kinetic oxidation of Zr-2,5%Nb with different Y content at high temperature has also been studied. Characterization by optical microscope showed that microstructure of Zr-Nb-Y alloys relatively unchanged and showed equiaxed microstructure. X-ray diffraction of the alloys depicted that the oxide scale formed during oxidation of zirconium alloys is monoclinic ZrO2 while unoxidised alloy showed two phase α and β phase. SEM-EDS examination shows that depletion of Zr composition took place under the oxide layer. Kinetic rate of oxidation of zirconium alloy showed that increasing oxidation temperature will increase oxidation rate but increasing yttrium content in the alloys will decrease oxidation rate.

  2. Nickel aluminide alloy for high temperature structural use

    DOEpatents

    Liu, Chain T.; Sikka, Vinod K.

    1991-01-01

    The specification discloses nickel aluminide alloys including nickel, aluminum, chromium, zirconium and boron wherein the concentration of zirconium is maintained in the range of from about 0.05 to about 0.35 atomic percent to improve the ductility, strength and fabricability of the alloys at 1200.degree. C. Titanium may be added in an amount equal to about 0.2 to about 0.5 atomic percent to improve the mechanical properties of the alloys and the addition of a small amount of carbon further improves hot fabricability.

  3. Effect of prior creep at 1365 K on the room temperature tensile properties of several oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    An experimental study was conducted to determine whether oxide dispersion-strengthened (ODS) Ni-base alloys in wrought bar form are subject to creep degradation effects similar to those found in thin-gage sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and advanced ODS-NiCrAl types; the alloys included microstructures ranging from an essentially perfect single crystal to a structure consisting of very small elongated grains. Tensile test specimens were exposed to creep at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, appearance of dispersoid free bands, grain boundary cavitation, and/or internal oxidation are interpreted as creep degradation effects. The amount of degradation depends on creep strain, and degradation appears to be due to diffusional creep which produces dispersoid free bands around grain boundaries acting as vacancy sources.

  4. Modified ferritic iron alloys with improved high-temperature mechanical properties and oxidation resistance

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.

    1975-01-01

    An alloy modification program was conducted in which the compositions of two existing Fe-Cr-Al alloys (Armco 18SR and GE-1541) were changed to achieve either improved high-temperature strength or improved fabricability. Only modifications of Armco 18SR were successful in achieving increased strength without loss of fabricability or oxidation resistance. The best modified alloy, designated NASA-18T, had twice the rupture strength of Armco 18SR at 800 and 1000 C. The NASA-18T alloy also had better oxidation resistance than Armco 18SR and comparable fabricability. The nominal composition of NASA-18T is Fe-18Cr-2Al-1Si-1.25Ta. All attempted modifications of the GE-1541 alloy were unsuccessful in terms of achieving better fabricability without sacrificing high-temperature strength and oxidation resistance.

  5. Weldability of a high entropy CrMnFeCoNi alloy

    DOE PAGES

    Wu, Zhenggang; David, Stan A.; Feng, Zhili; Bei, Hongbin

    2016-07-19

    We present the high-entropy alloys are unique alloys in which five or more elements are all in high concentrations. In order to determine its potential as a structural alloy, a model face-centered-cubic CrMnFeCoNi alloy was selected to investigate its weldability. Welds produced by electron beam welding show no cracking. The grain structures within the fusion zone (FZ) are controlled by the solidification behavior of the weld pool. The weldment possesses mechanical properties comparable to those of the base metal (BM) at both room and cryogenic temperatures. Finally, compared with the BM, deformation twinning was more pronounced in the FZ ofmore » the tested alloy.« less

  6. Gold-platinum alloy nanowires as highly sensitive materials for electrochemical detection of hydrogen peroxide.

    PubMed

    Zhou, Yibo; Yu, Gang; Chang, Fangfang; Hu, Bonian; Zhong, Chuan-Jian

    2012-12-13

    The exploitation of the unique electrical properties of nanowires requires an effective assembly of nanowires as functional materials on a signal transduction platform. This paper describes a new strategy to assemble gold-platinum alloy nanowires on microelectrode devices and demonstrates the sensing characteristics to hydrogen peroxide. The alloy nanowires have been controllably electrodeposited on microelectrodes by applying an alternating current. The composition, morphology and alloying structures of the nanowires were characterized, revealing a single-phase alloy characteristic, highly monodispersed morphology, and controllable bimetallic compositions. The alloy nanowires were shown to exhibit electrocatalytic response characteristics for the detection of hydrogen peroxide, exhibiting a high sensitivity, low detection limit, and fast response time. The nanowire's response mechanism to hydrogen peroxide is also discussed in terms of the synergistic activity of the bimetallic binding sites, which has important implications for a better design of functional nanowires as sensing materials for a wide range of applications.

  7. Phase stability and microstructures of high entropy alloys ion irradiated to high doses

    NASA Astrophysics Data System (ADS)

    Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong

    2016-11-01

    The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.

  8. High temperature exchange bias effect in melt-spun Mn55Bi45alloys

    NASA Astrophysics Data System (ADS)

    Song, Yiming; Xiang, Zhen; Wang, Taolei; Niu, Junchao; Xia, Kada; Lu, Wei; Zhang, Hong; Cao, Yongze; Yoshimura, Satoru; Saito, Hitoshi

    2016-09-01

    In this paper, we report a high-temperature exchange bias (EB) effect in melt-spun Mn55Bi45 alloy ribbons. A remarkable spontaneous exchange bias (up to 1700 Oe) was achieved at temperature from 300 K to 550 K, which is far higher than what has so far been observed in other alloy systems. Such a phenomenon is attributed to the local antiferromagnetic cluster formed in the ferromagnetic matrix. The observation of high-temperature EB in the Mn55Bi45 alloy is of interest from the perspective of practical applications, and it is a good starting point for designing high-temperature spintronic devices.

  9. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOEpatents

    Liu, C.T.; Takeyama, Masao.

    1994-02-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250 C and improved room temperature ductility. The alloys contain a Cr[sub 2]Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements. 14 figures.

  10. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOEpatents

    Liu, Chain T.; Takeyama, Masao

    1994-01-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250.degree. C. and improved room temperature ductility. The alloys contain a Cr.sub.2 Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements.

  11. High temperature static strain gage alloy development program

    NASA Technical Reports Server (NTRS)

    Hulse, C. O.; Bailey, R. S.; Lemkey, F. D.

    1985-01-01

    The literature, applicable theory and finally an experimental program were used to identify new candidate alloy systems for use as the electrical resistance elements in static strain gages up to 1250K. The program goals were 50 hours of use in the environment of a test stand gas turbine engine with measurement accuracies equal to or better than 10 percent of full scale for strains up to + or - 2000 microstrain. As part of this effort, a computerized electrical resistance measurement system was constructed for use at temperatures between 300K and 1250K and heating and cooling rates of 250K/min and 10K/min. The two best alloys were an iron-chromium-aluminum alloy and a palladium base alloy. Although significant progress was made, it was concluded that a considerable additional effort would be needed to fully optimize and evaluate these candidate systems.

  12. High-Speed Behavior of Some Shape Memory Alloys

    SciTech Connect

    Bragov, Anatoly M.; Lomunov, Andrey K.; Sergeichev, Ivan V.

    2006-07-28

    The results of dynamic tests of shape memory alloys Ti-Ni and Cu-Al-Ni are given. Compressive tests of Ti-Ni alloy were carried out at temperatures 293-573K. Considerable influence of temperature on module of elasticity prior to the dislocation plastic flow and dislocation yield limit has been mentioned in temperature interval of reverse martensitic transformation. For Cu-Al-Ni alloy a strain rate influence on phase yield limit, module of elasticity prior to the phase unelastic flow, module of elasticity prior to the dislocation plastic flow was negligible. The method of determination of duration of reverse martensitic transformation has been realized by the example of Cu-Al-Ni alloy.

  13. Triangular Ag-Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Zhang, Xiao; Tan, Chaoliang; Li, Hai; Zhang, Hua; Xue, Can

    2014-09-01

    We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag+/Pd2+ is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems.We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag+/Pd2+ is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03600j

  14. High Strength and Compatible Aluminum Alloy for Hydrogen-Peroxide Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2004-01-01

    This paper describes the development of a new high strength and Hydrogen Peroxide (HP) propellant compatible aluminum alloy for NASA Hyper-X vehicle's fuel tanks and structures. The tensile strength of the new alloy is more than 3 times stronger than the conventional 5254 alloy while it still maintains HP compatibility similar to 5254 (Class 1 category). The alloy development strategy consists of selecting certain rare earth and transition metals, with unique electrochemical properties, that will not act as catalysts to decompose liquid HP at the atomic level. Such elements will added to the aluminum alloy and the mixture will be cast and rolled into thin sheet metals. Test coupons are machined from sheet metals for HP long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloy using Friction Stir Welding has also been explored. Currently, aluminum alloy 5254 is the state-of-the-art material for HP storage, but its yield strength is very low (420 ksi) and may not be suitable for the development of light-weight fuel tanks for Hyper-X vehicles. The new high strength and HP compatible alloy could represent an enabling material technology for NASA's Hyper-X vehicles, where flight weight reduction is a critical requirement. These X-planes are currently under studied as air-breathing hypersonic research vehicles featuring a lifting body configuration with a Rocket Based Combined Cycle (RBCC) engine system.

  15. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    DOEpatents

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  16. Recent progress in the modeling of high-temperature creep and its application to alloy development

    NASA Astrophysics Data System (ADS)

    Shi, L.; Northwood, D. O.

    1995-04-01

    Recent progress in the understanding of high-temperature creep of alloys is discussed in the context of theoretical modeling and its application to alloy development. Emphasis is placed upon those engineering alloys specifically designed for high-temperature applications, such as precipitation and dispersion-strengthened (DS) alloys and metal-matrix composites (MMCs). Currently, these theoretical models use one of two different approaches, (a) a phenomenological approach, which is used in such models as those based on the internal stress concept, and those based on empirical creep equations; and (b) micromechanical models that are based on dislocation mechanisms and the interactions of dislocations with solute atoms, second-phase particles, and other reinforcements such as fibers. All these theoretical models have a common goal, namely, the understanding of high-temperature strengthening mechanisms and the relationship between high-temperature strength and the micromechanical mechanisms during high-temperature plastic deformation of the alloys. These theoretical studies can provide information that is useful in alloy design and processing, such as the selection of alloy chemistry, and the optimization of phase microstructural features (e.g., reinforcement amount, shape, size, and distribution; matrix grain size; and matrix and reinforcement interfaces) by optimization of processing methods.

  17. A comparative study on the bond strength of porcelain to the millingable Pd-Ag alloy

    PubMed Central

    Hong, Jun-Tae

    2014-01-01

    PURPOSE The porcelain fused to gold has been widely used as a restoration both with the natural esthetics of the porcelain and durability and marginal fit of metal casting. However, recently, due to the continuous rise in the price of gold, an interest towards materials to replace gold alloy is getting higher. This study compared the bond strength of porcelain to millingable palladium-silver (Pd-Ag) alloy, with that of 3 conventionally used metal-ceramic alloys. MATERIALS AND METHODS Four types of metal-ceramic alloys, castable nonprecious nickel-chrome alloy, castable precious metal alloys containing 83% and 32% of gold, and millingable Pd-Ag alloy were used to make metal specimens (n=40). And porcelain was applied on the center area of metal specimen. Three-point bending test was performed with universal testing machine. The bond strength data were analyzed with a one-way ANOVA and post hoc Scheffe's tests (α=.05). RESULTS The 3-point bending test showed the strongest (40.42 ± 5.72 MPa) metal-ceramic bond in the nonprecious Ni-Cr alloy, followed by millingable Pd-Ag alloy (37.71 ± 2.46 MPa), precious metal alloy containing 83% of gold (35.89 ± 1.93 MPa), and precious metal alloy containing 32% of gold (34.59 ± 2.63 MPa). Nonprecious Ni-Cr alloy and precious metal alloy containing 32% of gold showed significant difference (P<.05). CONCLUSION The type of metal-ceramic alloys affects the bond strength of porcelain. Every metal-ceramic alloy used in this study showed clinically applicable bond strength with porcelain (25 MPa). PMID:25352959

  18. Exchange bias and magnetization reversal in Ni(Cr1-xFex)2O4 (x=0-0.20)

    NASA Astrophysics Data System (ADS)

    Barman, Junmoni; Babu, P. D.; Ravi, S.

    2016-11-01

    Exchange bias and magnetization reversal in single phase samples of Ni(Cr1-xFex)2O4 (x=0-0.20) were studied through magnetic measurements. Substitution of Fe for Cr changes the crystal structure at room temperature from tetragonal (space group: I41/amd) to cubic (space group: Fd 3 bar m) form. Temperature variation of magnetization measurements show that these samples undergo ferrimagnetic transitions and the transition temperature (TC) increases from 73 K for x=0.0 to 314 K for x=0.20. An interesting magnetization reversal phenomenon was observed for x=0.06 sample with a magnetic compensation temperature of 49 K. M-H loop measurements at different temperature show the signature of presence of strong antiferromagnetic interactions especially at low temperature (T<50 K). Tunable exchange bias behavior with a maximum exchange bias field of 5670 Oe is observed for x=0.06 sample and it is explained by considering the exchange anisotropy between the ferrimagnetic and the antiferromagnetic components. The exchange bias field and the vertical shift in magnetization decrease exponentially with increase in temperature.

  19. Exploring artificial layered heterostructures of LaM'O3/LaM''O3 (M'M''= NiCr, FeCr and NiV).

    NASA Astrophysics Data System (ADS)

    Liu, J.; Kareev, M.; Freeland, J. W.; Kareev, A.; Lee, H. N.; Chakhalian, J.

    2008-03-01

    Digital synthesis of atomically sharp interfaces between strongly correlated electron systems can provide a template to build completely new materials. Here we present our results on magnetism and electronic structure in LaM'O3/LaM''O3 (M'M''= NiCr, FeCr and NiV) superlattices by using polarized X-ray spectroscopies. Using laser MBE, the (111) and (100) oriented ultra-thin superlattices were grown with alternating layer thicknesses of 1 unit cell. In the bulk, LaMO3 (M=Cr,Fe,V) are antiferromagnetic insulators while LaNiO3 is a paramagnetic metal. The evolution of element specific magnetism and charge at the interface of LFO/LCO, LNO/LVO and LNO/LCO superlattices with temperature and an applied magnetic field will be discussed in detail. The superlattice results will be contrasted to the bulk magnetic properties of the constituent layers. The work has been supported by U.S. DOD-ARO under Contract No. 0402-17291.

  20. Microstructure and Shear Strength in Brazing Joint of Mo-Cu Composite with 304 Stainless Steel by Ni-Cr-P Filler Metal

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Jiteng; Li, Yajiang; Zheng, Deshuang

    2015-07-01

    The brazing of Mo-Cu composite and 304 stainless steel was carried out in vacuum with Ni-Cr-P filler metal at 980 °C for 20 min. Microstructure in Mo-Cu/304 stainless steel joint was investigated by field-emission scanning electron microscope (FE-SEM) with energy dispersive spectrometer (EDS) and shear strength was measured by shearing test. The results indicate that shear strength of the Mo-Cu/304 stainless steel joint is about 155 MPa. There forms eutectic structure of γ-Ni solid solution with Ni3P in the braze seam. Ni-Cu(Mo) and Ni-Fe solid solution are at the interface beside Mo-Cu composite and 304 stainless steel, respectively. Shear fracture exhibits mixed ductile-brittle fracture feature with trans-granular fracture, ductile dimples and tearing edges. Fracture originates from the interface between brazing seam and Mo-Cu composite and it propagates to the braze seam due to the formation of brittle Ni5P2 and Cr3P precipitation.