Sample records for high nitrogen input

  1. Least-cost input mixtures of water and nitrogen for photosynthesis.

    PubMed

    Wright, Ian J; Reich, Peter B; Westoby, Mark

    2003-01-01

    In microeconomics, a standard framework is used for determining the optimal input mix for a two-input production process. Here we adapt this framework for understanding the way plants use water and nitrogen (N) in photosynthesis. The least-cost input mixture for generating a given output depends on the relative cost of procuring and using nitrogen versus water. This way of considering the issue integrates concepts such as water-use efficiency and photosynthetic nitrogen-use efficiency into the more inclusive objective of optimizing the input mix for a given situation. We explore the implications of deploying alternative combinations of leaf nitrogen concentration and stomatal conductance to water, focusing on comparing hypothetical species occurring in low- versus high-humidity habitats. We then present data from sites in both the United States and Australia and show that low-rainfall species operate with substantially higher leaf N concentration per unit leaf area. The extra protein reflected in higher leaf N concentration is associated with a greater drawdown of internal CO2, such that low-rainfall species achieve higher photosynthetic rates at a given stomatal conductance. This restraint of transpirational water use apparently counterbalances the multiple costs of deploying high-nitrogen leaves.

  2. A NEW GIS NITROGEN TRADING TOOL CONCEPT FOR CONSERVATION AND REDUCTION OF REACTIVE NITROGEN LOSSES TO THE ENVIRONMENT

    USDA-ARS?s Scientific Manuscript database

    Nitrogen inputs to agricultural systems are important for their sustainability. However, when N inputs are unnecessarily high, the excess can contribute to greater agricultural N losses that impact air, surface water and groundwater quality. It is paramount to reduce off-site transport of N by using...

  3. A Network Flow Analysis of the Nitrogen Metabolism in Beijing, China.

    PubMed

    Zhang, Yan; Lu, Hanjing; Fath, Brian D; Zheng, Hongmei; Sun, Xiaoxi; Li, Yanxian

    2016-08-16

    Rapid urbanization results in high nitrogen flows and subsequent environmental consequences. In this study, we identified the main metabolic components (nitrogen inputs, flows, and outputs) and used ecological network analysis to track the direct and integral (direct + indirect) metabolic flows of nitrogen in Beijing, China, from 1996 to 2012 and to quantify the structure of Beijing's nitrogen metabolic processes. We found that Beijing's input of new reactive nitrogen (Q, which represents nitrogen obtained from the atmosphere or nitrogen-containing materials used in production and consumption to support human activities) increased from 431 Gg in 1996 to 507 Gg in 2012. Flows to the industry, atmosphere, and household, and components of the system were clearly largest, with total integrated inputs plus outputs from these nodes accounting for 31, 29, and 15%, respectively, of the total integral flows for all paths. The flows through the sewage treatment and transportation components showed marked growth, with total integrated inputs plus outputs increasing to 3.7 and 5.2 times their 1996 values, respectively. Our results can help policymakers to locate the key nodes and pathways in an urban nitrogen metabolic system so they can monitor and manage these components of the system.

  4. Genomic regions associated with the nitrogen limitation response revealed in a global wheat core collection.

    PubMed

    Bordes, Jacques; Ravel, C; Jaubertie, J P; Duperrier, B; Gardet, O; Heumez, E; Pissavy, A L; Charmet, G; Le Gouis, J; Balfourier, F

    2013-03-01

    Modern wheat (Triticum aestivum L.) varieties in Western Europe have mainly been bred, and selected in conditions where high levels of nitrogen-rich fertilizer are applied. However, high input crop management has greatly increased the risk of nitrates leaching into groundwater with negative impacts on the environment. To investigate wheat nitrogen tolerance characteristics that could be adapted to low input crop management, we supplied 196 accessions of a wheat core collection of old and modern cultivars with high or moderate amounts of nitrogen fertilizer in an experimental network consisting of three sites and 2 years. The main breeding traits were assessed including grain yield and grain protein content. The response to nitrogen level was estimated for grain yield and grain number per m(2) using both the difference and the ratio between performance at the two input levels and the slope of joint regression. A large variability was observed for all the traits studied and the response to nitrogen level. Whole genome association mapping was carried out using 899 molecular markers taking into account the five ancestral group structure of the collection. We identified 54 main regions involving almost all chromosomes that influence yield and its components, plant height, heading date and grain protein concentration. Twenty-three regions, including several genes, spread over 16 chromosomes were involved in the response to nitrogen level. These chromosomal regions may be good candidates to be used in breeding programs to improve the performance of wheat varieties at moderate nitrogen input levels.

  5. Characteristics of Riverine DIN Export in Subtropical High-standing Island, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, J. C.; Kao, S. J.; Lee, T. Y.; Lin, T. C.

    2016-12-01

    Increases in nitrogen (N) availability and mobility resulting from anthropogenic activities has substantially altered nitrogen cycle both locally and globally. Taiwan characterized by the subtropical montane landscape with abundant rainfall, downwind to the most rapidly industrializing east coast of China can be a demonstration site for extreme high N input and riverine DIN (dissolved inorganic N) export. We used 49 watersheds with similar climatic and landscape settings, but classified into low-, moderate-, and highly-disturbed categories based on population density to illustrate their differences in nitrogen inputs through atmospheric N deposition, synthetic fertilizer and human emission and DIN export ratios. Our results showed that the island-wide average riverine DIN export is 3800 kg-N/km2yr, approximately 18-fold higher than the global average mostly due to the large input of synthetic fertilizer. The average riverine DIN export ratio is 0.30-0.51, which is much higher than the average of 0.20-0.25 of large rivers around the world indicating excessive N input relative to ecosystem demand or retention capacity. The low-disturbed watersheds despite of high input only export 0.06-0.18 of the input and well buffered to changes in input quantity suggesting high efficiency of nitrogen usage or high N retention capacity of the less disturbed watersheds. The moderate-disturbed watersheds show a linear increase of output with increases in total N inputs and a mean DIN export ratio of 0.20 to 0.31. The main differences in land use between low and moderately disturbed watershed are the relative proportions of agricultural land and forests, not the built-up lands. The export ratio of the highly-disturbed watersheds is 0.42-0.53, which is very high and suggests that much of the N input is transported downstream. The increases in riverine DIN export ratio along with the gradient of human disturbance in subtropical Taiwan shows a gradient in excess N saturation. Our results help to understand factors controlling riverine DIN export and provide a sound basis for N emissions/pollution control.

  6. Estimated nitrogen and phosphorus inputs to the Fish Creek watershed, Teton County, Wyoming, 2009–15

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Sando, Roy; MacDonald, Michael J.; Girard, Carlin E.

    2016-12-15

    Nutrients, such as nitrogen and phosphorus, are essential for plant and animal growth and nourishment, but the overabundance of bioavailable nitrogen and phosphorus in water can cause adverse health and ecological effects. It is generally accepted that increased primary production of surface-water bodies because of high inputs of nutrients is now the most important polluting effect in surface water in the developed world.

  7. Nitrogen mass balance in the Brazilian Amazon: an update.

    PubMed

    Martinelli, L A; Pinto, A S; Nardoto, G B; Ometto, J P H B; Filoso, S; Coletta, L D; Ravagnani, E C

    2012-08-01

    The main purpose of this study is to perform a nitrogen budget survey for the entire Brazilian Amazon region. The main inputs of nitrogen to the region are biological nitrogen fixation occurring in tropical forests (7.7 Tg.yr(-1)), and biological nitrogen fixation in agricultural lands mainly due to the cultivation of a large area with soybean, which is an important nitrogen-fixing crop (1.68 Tg.yr(-1)). The input due to the use of N fertilizers (0.48 Tg.yr(-1)) is still incipient compared to the other two inputs mentioned above. The major output flux is the riverine flux, equal to 2.80 Tg.yr(-1) and export related to foodstuff, mainly the transport of soybean and beef to other parts of the country. The continuous population growth and high rate of urbanization may pose new threats to the nitrogen cycle of the region through the burning of fossil fuel and dumping of raw domestic sewage in rivers and streams of the region.

  8. Assessment of nitrogen and phosphate balance and the roles of bacteria and viruses at the water-sediment interface in the Allal El Fassi reservoir (Morocco).

    PubMed

    Alaoui-Mhamdi, Mohamed; Dhib, Amel; Bouhaddioui, Abderrahim; Ziadi, Boutheina; Turki, Souad; Aleya, Lotfi

    2014-09-01

    Balances of nitrogen and phosphate were studied in the Allal El Fassi reservoir (Morocco); the results showing that nitrogen input (296 mg m(-2) d(-1)) was 161% higher than output (183 mg m(-2) d(-1)). Phosphate input (35.65 mg m(-2) d(-1)) was 865% higher than output (4.12 mg m(-2) d(-1)), causing a progressive increase in the internal phosphate stock. Sedimentation flux was equally high (53.80 and 18 mg m(-2) d(-1)) for both nitrogen and phosphate input, mainly from the Sebou River and in particulate form which immediately settles upon arrival in the reservoir. The release of nitrogen and phosphate from the sediment (5.40 and 1.15 mg m(-2) d(-1), respectively) depended on physicochemical and biological (bacteria and viruses) variability and the calcareous nature of the catchment basin. Calcium-bound phosphate prevailed in the reservoir. Drastic control of phosphate input is suggested to avoid accumulation of calcium-bound phosphate which may dissociate and thereby contribute to eutrophication.

  9. Regional inventory of soil surface nitrogen balances in Indian agriculture (2000-2001).

    PubMed

    Prasad, V Krishna; Badarinath, K V S; Yonemura, S; Tsuruta, H

    2004-11-01

    Nitrogen regulates several ecological and biogeochemical processes and excess reactive nitrogen in the environment can lead to pollution problems, including the deterioration of air quality, disruption of forest processes, acidification of lakes and streams, and degradation of coastal waters. Much of the excess nitrogen inputs are related to food and energy production. An important step to understanding the sources of nitrogen and ultimately defining solutions to excess nitrogen is to describe the geographic distribution of agricultural nitrogen contributions from different regions. In this study, soil surface nitrogen loads were quantified for different states of India for the period 2000-2001. Nearly 35.4 Tg of nitrogen has been estimated as inputs from different sources, with output nitrogen from harvested crops of about 21.20 Tg. The soil surface nitrogen balance, estimated as inputs minus outputs, is found to be about 14.4 Tg surplus from the agricultural land of India. Livestock manure constituted a major percentage of total inputs (44.06%), followed by inorganic fertilizer (32.48%), atmospheric deposition (11.86%) and nitrogen fixation (11.58%). Nitrogen balance varied from deficit to surplus for different states. The highest nitrogen surplus was found in Uttar Pradesh (2.50 Tg) followed by Madhya Pradesh (1.83 Tg), Andhra Pradesh (1.79 Tg), etc. A negative nitrogen balance was found in Orissa (-0.01 Tg), Andaman Nicobar Islands (-0.32 Tg) and for some of the northeastern states. Major fertilizer consumption states were found to be Tamilnadu (204 kg/ha), Haryana (132 kg/ha), Punjab (148 kg/ha), followed by others. Similarly, nitrogen inputs from total livestock excretions were found to be high for Kerala (616 kg/ha), Jammu and Kashmir (389 kg/ha), Tamil Nadu (338 kg/ha), etc. The average nitrogen surplus of about 54 kg/ha observed for the agricultural land of the entire country of India is comparatively higher than the average surplus of about 31 kg/ha reported for European countries. These results, obtained from nutrient mass balance calculations, will be useful to formulate nutrient management plans relating to fertilizer usage, livestock management and for adopting some best management strategies at a state level in India.

  10. High frequency measurements of reach scale nitrogen uptake in a fourth order river with contrasting hydromorphology and variable water chemistry (Weiße Elster, Germany)

    NASA Astrophysics Data System (ADS)

    Kunz, Julia Vanessa; Hensley, Robert; Brase, Lisa; Borchardt, Dietrich; Rode, Michael

    2017-01-01

    River networks exhibit a globally important capacity to retain and process nitrogen. However direct measurement of in-stream removal in higher order streams and rivers has been extremely limited. The recent advent of automated sensors has allowed high frequency measurements, and the development of new passive methods of quantifying nitrogen uptake which are scalable across river size. Here we extend these methods to higher order streams with anthropogenically elevated nitrogen levels, substantial tributaries, complex input signals, and multiple N species. We use a combination of two station time-series and longitudinal profiling of nitrate to assess differences in nitrogen processing dynamics in a natural versus a channelized impounded reach with WWTP effluent impacted water chemistry. Our results suggest that net mass removal rates of nitrate were markedly higher in the unmodified reach. Additionally, seasonal variations in temperature and insolation affected the relative contribution of assimilatory versus dissimilatory uptake processes, with the latter exhibiting a stronger positive dependence on temperature. From a methodological perspective, we demonstrate that a mass balance approach based on high frequency data can be useful in deriving quantitative uptake estimates, even under dynamic inputs and lateral tributary inflow. However, uncertainty in diffuse groundwater inputs and more importantly the effects of alternative nitrogen species, in this case ammonium, pose considerable challenges to this method.

  11. Linking Landscape Characteristics and High Stream Nitrogen in the Oregon Coast Range: Red Alder Complicates Use of Nutrient Criteria

    EPA Science Inventory

    Red alder (a nitrogen-fixing tree) and sea salt inputs can strongly influence stream nitrogen concentrations in western Oregon and Washington. We compiled a database of stream nitrogen and landscape characteristics in the Oregon Coast Range. Basal area of alder, expressed as a ...

  12. OPPORTUNITIES IN NITROGEN MANAGEMENT RESEARCH; IMPROVING APPLICATIONS FOR PROVEN TECHNOLOGIES AND IDENTIFYING NEW TOOLS FOR MANAGING NITROGEN FLUX AND INPUT IN ECOSYSTEMS

    EPA Science Inventory

    The presence and distribution of undesirable quantities of bioavailable nitrogenous compounds in the environment are issues of long-standing concern. Importantly for us today, deleterious effects associated with high levels of nitrogen in the ecosystem are becoming everyday news...

  13. Reversible control of biofilm formation by Cellulomonas spp. in response to nitrogen availability.

    PubMed

    Young, Jenna M; Leschine, Susan B; Reguera, Gemma

    2012-03-01

    The microbial degradation of cellulose contributes greatly to the cycling of carbon in terrestrial environments and feedbacks to the atmosphere, a process that is highly responsive to nitrogen inputs. Yet how key groups of cellulolytic microorganisms adaptively respond to the global conditions of nitrogen limitation and/or anthropogenic or climate nitrogen inputs is poorly understood. The actinobacterial genus Cellulomonas is of special interest because it incorporates the only species known to degrade cellulose aerobically and anaerobically. Furthermore, despite their inability to fix nitrogen, they are active decomposers in nitrogen-limited environments. Here we show that nitrogen limitation induced biofilm formation in Cellulomonas spp., a process that was coupled to carbon sequestration and storage in a curdlan-type biofilm matrix. The response was reversible and the curdlan matrix was solubilized and used as a carbon and energy source for biofilm dispersal once nitrogen sources became available. The biofilms attached strongly to cellulosic surfaces and, despite the growth limitation, produced cellulases and degraded cellulose more efficiently. The results show that biofilm formation is a competitive strategy for carbon and nitrogen acquisition and provide valuable insights linking nitrogen inputs to carbon sequestration and remobilization in terrestrial environments. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Reducing fertilizer-nitrogen losses from rowcrop landscapes: Insights and implications from a spatially explicit watershed model

    USGS Publications Warehouse

    McLellan, Eileen; Schilling, Keith; Robertson, Dale M.

    2015-01-01

    We present conceptual and quantitative models that predict changes in fertilizer-derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer-derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi-Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.

  15. Numerical model simulations of nitrate concentrations in groundwater using various nitrogen input scenarios, mid-Snake region, south-central Idaho

    USGS Publications Warehouse

    Skinner, Kenneth D.; Rupert, Michael G.

    2012-01-01

    As part of the U.S. Geological Survey’s National Water Quality Assessment (NAWQA) program nitrate transport in groundwater was modeled in the mid-Snake River region in south-central Idaho to project future concentrations of nitrate. Model simulation results indicated that nitrate concentrations would continue to increase over time, eventually exceeding the U.S. Environmental Protection Agency maximum contaminant level for drinking water of 10 milligrams per liter in some areas. A subregional groundwater model simulated the change of nitrate concentrations in groundwater over time in response to three nitrogen input scenarios: (1) nitrogen input fixed at 2008 levels; (2) nitrogen input increased from 2008 to 2028 using the same rate of increase as the average rate of increase during the previous 10 years (1998 through 2008); after 2028, nitrogen input is fixed at 2028 levels; and (3) nitrogen input related to agriculture completely halted, with only nitrogen input from precipitation remaining. Scenarios 1 and 2 project that nitrate concentrations in groundwater continue to increase from 10 to 50 years beyond the year nitrogen input is fixed, depending on the location in the model area. Projected nitrate concentrations in groundwater increase by as much as 2–4 milligrams per liter in many areas, with nitrate concentrations in some areas reaching 10 milligrams per liter. Scenario 3, although unrealistic, estimates how long (20–50 years) it would take nitrate in groundwater to return to background concentrations—the “flushing time” of the system. The amount of nitrate concentration increase cannot be explained solely by differences in nitrogen input; in fact, some areas with the highest amount of nitrogen input have the lowest increase in nitrate concentration. The geometry of the aquifer and the pattern of regional groundwater flow through the aquifer greatly influence nitrate concentrations. The aquifer thins toward discharge areas along the Snake River which forces upward convergence of good-quality regional groundwater that mixes with the nitrate-laden groundwater in the uppermost parts of the aquifer, which results in lowered nitrate concentrations. A new method of inputting nitrogen to the subregional groundwater model was used that prorates nitrogen input by the probability of detecting nitrate concentrations greater than 2 mg/L. The probability map is based on correlations with physical factors, and prorates an existing nitrogen input dataset providing an estimate of nitrogen flux to the water table that accounts for new factors such as soil properties. The effectiveness of this updated nitrogen input method was evaluated using the software UCODE_2005.

  16. Nutrient co-limited Trichodesmium as nitrogen source or sink in a future ocean.

    PubMed

    Walworth, Nathan G; Fu, Fei-Xue; Lee, Michael D; Cai, Xiaoni; Saito, Mak A; Webb, Eric A; Hutchins, David A

    2017-11-27

    Nitrogen-fixing (N 2 ) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen-fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally-important N 2 -fixer Trichodesmium fundamentally shifts nitrogen metabolism towards organic-nitrogen scavenging following long-term high-CO 2 adaptation under iron and/or phosphorus (co)-limitation. Global shifts in transcripts and proteins under high CO 2 /Fe-limited and/or P-limited conditions include decreases in the N 2 -fixing nitrogenase enzyme, coupled with major increases in enzymes that oxidize trimethylamine (TMA). TMA is an abundant, biogeochemically-important organic nitrogen compound that supports rapid Trichodesmium growth while inhibiting N 2 fixation. In a future high-CO 2 ocean, this whole-cell energetic reallocation towards organic nitrogen scavenging and away from N 2 -fixation may reduce new-nitrogen inputs by Trichodesmium , while simultaneously depleting the scarce fixed-nitrogen supplies of nitrogen-limited open ocean ecosystems. Importance Trichodesmium is among the most biogeochemically-significant microorganisms in the ocean, since it supplies up to 50% of the new nitrogen supporting open ocean food webs. We used Trichodesmium cultures adapted to high CO 2 for 7 years followed by additional exposure to iron and/or phosphorus (co)-limitation. We show that 'future ocean' conditions of high CO 2 and concurrent nutrient limitation(s) fundamentally shift nitrogen metabolism away from nitrogen fixation, and instead towards upregulation of organic-nitrogen scavenging pathways. We show that Trichodesmium's responses to projected future ocean conditions include decreases in the nitrogen-fixing nitrogenase enzymes, coupled with major increases in enzymes that oxidize the abundant organic nitrogen source trimethylamine (TMA). Such a shift towards organic nitrogen uptake and away from nitrogen fixation may substantially reduce new-nitrogen inputs by Trichodesmium to the rest of the microbial community in the future high-CO 2 ocean, with potential global implications for ocean carbon and nitrogen cycling. Copyright © 2017 American Society for Microbiology.

  17. Monitoring plant tissue nitrogen isotopes to assess nearshore inputs of nitrogen to Lake Crescent, Olympic National Park, Washington

    USGS Publications Warehouse

    Cox, Stephen E.; Moran, Patrick W.; Huffman, Raegan L.; Fradkin, Steven C.

    2016-05-31

    Mats of filamentous-periphytic algae present in some nearshore areas of Lake Crescent, Olympic National Park, Washington, may indicate early stages of eutrophication from nutrient enrichment of an otherwise highly oligotrophic lake. Natural abundance ratios of stable isotopes of nitrogen (δ15N) measured in plant tissue growing in nearshore areas of the lake indicate that the major source of nitrogen used by these primary producing plants is derived mainly from atmospherically fixed nitrogen in an undeveloped forested ecosystem. Exceptions to this pattern occurred in the Barnes Point area where elevated δ15N ratios indicate that effluent from septic systems also contribute nitrogen to filamentous-periphytic algae growing in the littoral zone of that area. Near the Lyre River outlet of Lake Crescent, the δ15N of filamentous-periphytic algae growing in close proximity to the spawning areas of a unique species of trout show little evidence of elevated δ15N indicating that nitrogen from on-site septic systems is not a substantial source of nitrogen for these plants. The δ15N data corroborate estimates that nitrogen input to Lake Crescent from septic sources is comparatively small relative to input from motor vehicle exhaust and vegetative sources in undeveloped forests, including litterfall, pollen, and symbiotic nitrogen fixation. The seasonal timing of blooms of filamentous-periphytic algal near the lake shoreline is also consistent with nitrogen exported from stands of red alder trees (Alnus rubra). Isotope biomonitoring of filamentous-periphytic algae may be an effective approach to monitoring the littoral zone for nutrient input to Lake Crescent from septic sources.

  18. Identification and characterization of finger millet OPAQUE2 transcription factor gene under different nitrogen inputs for understanding their role during accumulation of prolamin seed storage protein.

    PubMed

    Gaur, Vikram Singh; Kumar, Lallan; Gupta, Supriya; Jaiswal, J P; Pandey, Dinesh; Kumar, Anil

    2018-03-01

    In this study, we report the isolation and characterization of the mRNA encoding OPAQUE2 (O2) like TF of finger millet (FM) ( Eleusine coracana) ( EcO2 ). Full-length EcO2 mRNA was isolated using conserved primers designed by aligning O2 mRNAs of different cereals followed by 3' and 5' RACE (Rapid Amplification of cDNA Ends). The assembled full-length EcO2 mRNA was found to contain an ORF of 1248-nt coding the 416 amino acids O2 protein. Domain analysis revealed the presence of the BLZ and bZIP-C domains which is a characteristic feature of O2 proteins. Phylogenetic analysis of EcO2 protein with other bZIP proteins identified using finger millet transcriptome data and O2 proteins of other cereals showed that EcO2 shared high sequence similarity with barley BLZ1 protein. Transcripts of EcO2 were detected in root, stem, leaves, and seed development stages. Furthermore, to investigate nitrogen responsiveness and the role of EcO2 in regulating seed storage protein gene expression, the expression profiles of EcO2 along with an α-prolamin gene were studied during the seed development stages of two FM genotypes (GE-3885 and GE-1437) differing in grain protein content (13.8 and 6.2%, respectively) grown under increasing nitrogen inputs. Compared to GE-1437, the EcO2 was relatively highly expressed during the S2 stage of seed development which further increased as nitrogen input was increased. The Ecα - prolamin gene was strongly induced in the high protein genotype (GE-3885) at all nitrogen inputs. These results indicate the presence of nitrogen responsiveness regulatory elements which might play an important role in accumulating protein in FM genotypes through modulating EcO2 expression by sensing plant nitrogen status.

  19. Coarse woody debris in a southern Appalachian spruce-fir forest of the Great Smoky Mountains National Park

    Treesearch

    Anita Rose; N.S. Nicholas

    2009-01-01

    Spruce-fir forests in the southern Appalachian Mountains receive high atmospheric nitrogen inputs and have high nitrate levels in soil solution and streamwater. High levels of excess nitrogen have been associated with reduced tree vigor. Additionally, the balsam woolly adelgid (Adelges piceae Ratz.) has killed the...

  20. County-level estimates of nitrogen and phosphorus from commercial fertilizer for the Conterminous United States, 1987–2006

    USGS Publications Warehouse

    Gronberg, Jo Ann M.; Spahr, Norman E.

    2012-01-01

    The U.S. Geological Survey’s National Water-Quality Assessment program requires nutrient input for analysis of the national and regional assessment of water quality. Detailed information on nutrient inputs to the environment are needed to understand and address the many serious problems that arise from excess nutrients in the streams and groundwater of the Nation. This report updates estimated county-level farm and nonfarm nitrogen and phosphorus input from commercial fertilizer sales for the conterminous United States for 1987 through 2006. Estimates were calculated from the Association of American Plant Food Control Officials fertilizer sales data, Census of Agriculture fertilizer expenditures, and U.S. Census Bureau county population. A previous national approach for deriving farm and nonfarm fertilizer nutrient estimates was evaluated, and a revised method for selecting representative states to calculate national farm and nonfarm proportions was developed. A national approach was used to estimate farm and nonfarm fertilizer inputs because not all states distinguish between farm and nonfarm use, and the quality of fertilizer reporting varies from year to year. For states that distinguish between farm and nonfarm use, the spatial distribution of the ratios of nonfarm-to-total fertilizer estimates for nitrogen and phosphorus calculated using the national-based farm and nonfarm proportions were similar to the spatial distribution of the ratios generated using state-based farm and nonfarm proportions. In addition, the relative highs and lows in the temporal distribution of farm and nonfarm nitrogen and phosphorus input at the state level were maintained—the periods of high and low usage coincide between national- and state-based values. With a few exceptions, nonfarm nitrogen estimates were found to be reasonable when compared to the amounts that would result if the lawn application rates recommended by state and university agricultural agencies were used. Also, states with higher nonfarm-to-total fertilizer ratios for nitrogen and phosphorus tended to have higher urban land-use percentages.

  1. Nutrient Mass Balance for the Mobile River Basin in Alabama, Georgia, and Mississippi

    NASA Astrophysics Data System (ADS)

    Harned, D. A.; Harvill, J. S.; McMahon, G.

    2001-12-01

    The source and fate of nutrients in the Mobile River drainage basin are important water-quality concerns in Alabama, Georgia, and Mississippi. Land cover in the basin is 74 percent forested, 16 percent agricultural, 2.5 percent developed, and 4 percent wetland. A nutrient mass balance calculated for 18 watersheds in the Mobile River Basin indicates that agricultural non-point nitrogen and phosphorus sources and urban non-point nitrogen sources are the most important factors associated with nutrients in the streams. Nitrogen and phosphorus inputs from atmospheric deposition, crop fertilizer, biological nitrogen fixation, animal waste, and point sources were estimated for each of the 18 drainage basins. Total basin nitrogen inputs ranged from 27 to 93 percent from atmospheric deposition (56 percent mean), 4 to 45 percent from crop fertilizer (25 percent mean), <0.01 to 31 percent from biological nitrogen fixation (8 percent mean), 2 to 14 percent from animal waste (8 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Total basin phosphorus inputs ranged from 10 to 39 percent from atmospheric deposition (26 percent mean), 7 to 51 percent from crop fertilizer (28 percent mean), 20 to 64 percent from animal waste (41 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Nutrient outputs for the watersheds were estimated by calculating instream loads and estimating nutrient uptake, or withdrawal, by crops. The difference between the total basin inputs and outputs represents nutrients that are retained or processed within the basin while moving from the point of use to the stream, or in the stream. Nitrogen output, as a percentage of the total basin nitrogen inputs, ranged from 19 to 79 percent for instream loads (35 percent mean) and from 0.01 to 32 percent for crop harvest (10 percent mean). From 53 to 87 percent (75 percent mean) of nitrogen inputs were retained within the 18 basins. Phosphorus output ranged from 9 to 29 percent for instream loads (18 percent mean) and from 0.01 to 23 percent for crop harvest (7 percent mean). The basins retained from 60 to 87 percent (74 percent mean) of phosphorous inputs. Correlation of basin nutrient output loads and concentrations with the basin inputs and correlation of output loads and concentrations with basin land use were tested using the Spearman rank test. The correlation analysis indicated that higher nitrogen concentrations in the streams are associated with urban areas and higher loads are associated with agriculture; high phosphorus output loads and concentrations are associated with agriculture. Higher nutrient loads in agricultural basins are partly an effect of basin size-- larger basins generate larger nutrient loads. Nutrient loads and concentrations showed no significant correlation to point-source inputs. Nitrogen loads were significantly (p<0.05, correlation coefficient >0.5) higher in basins with greater cropland areas. Nitrogen concentrations also increased as residential, commercial, and total urban areas increased. Phosphorus loads were positively correlated with animal-waste inputs, pasture, and total agricultural land. Phosphorus concentrations were highest in basins with the greatest amounts of row-crop agriculture.

  2. An Isotopic view of water and nitrogen transport through the ...

    EPA Pesticide Factsheets

    Groundwater nitrate contamination affects thousands of households in Oregon’s southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding nitrogen transformations within the vadose zone. In partnership with local farmers, and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variab

  3. Toward an inventory of nitrogen input to the United States

    EPA Science Inventory

    Accurate accounting of nitrogen inputs is increasingly necessary for policy decisions related to aquatic nutrient pollution. Here we synthesize available data to provide the first integrated estimates of the amount and uncertainty of nitrogen inputs to the United States. Abou...

  4. Coarse woody debris in a Southern Appalachian spruce-fir forest of the Great Smoky Mountains National Park

    Treesearch

    Anita K. Rose; N.S. Nicholas

    2008-01-01

    Spruce-fir forests in the southern Appalachian Mountains receive high atmospheric nitrogen inputs and have high nitrate levels in soil solution and streamwater. High levels of excess nitrogen have been associated with reduced tree vigor. Additionally, the balsam woolly adelgid (Adelges piceae Ratz.) has killed the majority of endemic Fraser fir [

  5. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution

    PubMed Central

    Janke, Benjamin D.; Nidzgorski, Daniel A.; Millet, Dylan B.; Baker, Lawrence A.

    2017-01-01

    Managing excess nutrients remains a major obstacle to improving ecosystem service benefits of urban waters. To inform more ecologically based landscape nutrient management, we compared watershed inputs, outputs, and retention for nitrogen (N) and phosphorus (P) in seven subwatersheds of the Mississippi River in St. Paul, Minnesota. Lawn fertilizer and pet waste dominated N and P inputs, respectively, underscoring the importance of household actions in influencing urban watershed nutrient budgets. Watersheds retained only 22% of net P inputs versus 80% of net N inputs (watershed area-weighted averages, where net inputs equal inputs minus biomass removal) despite relatively low P inputs. In contrast to many nonurban watersheds that exhibit high P retention, these urban watersheds have high street density that enhanced transport of P-rich materials from landscapes to stormwater. High P exports in storm drainage networks and yard waste resulted in net P losses in some watersheds. Comparisons of the N/P stoichiometry of net inputs versus storm drain exports implicated denitrification or leaching to groundwater as a likely fate for retained N. Thus, these urban watersheds exported high quantities of N and P, but via contrasting pathways: P was exported primarily via stormwater runoff, contributing to surface water degradation, whereas N losses additionally contribute to groundwater pollution. Consequently, N management and P management require different strategies, with N management focusing on reducing watershed inputs and P management also focusing on reducing P movement from vegetated landscapes to streets and storm drains. PMID:28373560

  6. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system.

    PubMed

    Chen, Ping; Du, Qing; Liu, Xiaoming; Zhou, Li; Hussain, Sajad; Lei, Lu; Song, Chun; Wang, Xiaochun; Liu, Weiguo; Yang, Feng; Shu, Kai; Liu, Jiang; Du, Junbo; Yang, Wenyu; Yong, Taiwen

    2017-01-01

    The blind pursuit of high yields via increased fertilizer inputs increases the environmental costs. Relay intercropping has advantages for yield, but a strategy for N management is urgently required to decrease N inputs without yield loss in maize-soybean relay intercropping systems (IMS). Experiments were conducted with three levels of N and three planting patterns, and dry matter accumulation, nitrogen uptake, nitrogen use efficiency (NUE), competition ratio (CR), system productivity index (SPI), land equivalent ratio (LER), and crop root distribution were investigated. Our results showed that the CR of soybean was greater than 1, and that the change in root distribution in space and time resulted in an interspecific facilitation in IMS. The maximum yield of maize under monoculture maize (MM) occurred with conventional nitrogen (CN), whereas under IMS, the maximum yield occurred with reduced nitrogen (RN). The yield of monoculture soybean (MS) and of soybean in IMS both reached a maximum under RN. The LER of IMS varied from 1.85 to 2.36, and the SPI peaked under RN. Additionally, the NUE of IMS increased by 103.7% under RN compared with that under CN. In conclusion, the separation of the root ecological niche contributed to a positive interspecific facilitation, which increased the land productivity. Thus, maize-soybean relay intercropping with reduced N input provides a very useful approach to increase land productivity and avert environmental pollution.

  7. Nitrogen and harvest impact on warm-season grasses biomass yield

    USDA-ARS?s Scientific Manuscript database

    Perennial warm-season grasses have drawn interest as bioenergy feedstocks due to their high productivity with minimal amounts of inputs while producing multiple environmental benefits. Nitrogen (N) fertility and harvest timing are critical management practices when optimizing biomass yield of these ...

  8. Controls on Biogeochemical Cycling of Nitrogen in Urban Ecosystems

    NASA Astrophysics Data System (ADS)

    Templer, P. H.; Hutyra, L.; Decina, S.; Rao, P.; Gately, C.

    2017-12-01

    Rates of atmospheric nitrogen deposition are declining across much of the United States and Europe, yet they remain substantially elevated by almost an order of magnitude over pre-industrial levels and occur as hot spots in urban areas. We measured atmospheric inputs of inorganic and organic nitrogen in multiple urban sites around the Boston Metropolitan area, finding that urban rates are substantially elevated compared to nearby rural areas, and that the range of these atmospheric inputs are as large as observed urban to rural gradients. Within the City of Boston, the variation in deposition fluxes can be explained by traffic intensity, vehicle emissions, and spring fertilizer additions. Throughfall inputs of nitrogen are approximately three times greater than bulk deposition inputs in the city, demonstrating that the urban canopy amplifies rates of nitrogen reaching the ground surface. Similar to many other metropolitan areas of the United States, the City of Boston has 25% canopy cover; however, 25% of this tree canopy is located above impervious pavement. Throughfall inputs that do not have soil below the canopy to retain excess nitrogen may lead to greater inputs of nitrogen into nearby waterways through runoff. Most measurement stations for atmospheric nitrogen deposition are intentionally located away from urban areas and point sources of pollution to capture regional trends. Our data show that a major consequence of this network design is that hotspots of nitrogen deposition and runoff into urban and coastal waterways is likely underestimated to a significant degree. A more complete determination of atmospheric nitrogen deposition and its fate in urban ecosystems is critical for closing regional nitrogen budgets and for improving our understanding of biogeochemical nitrogen cycling across multiple spatial scales.

  9. [Effects of reduced nitrogen application and soybean intercropping on nitrogen balance of sugarcane field].

    PubMed

    Liu, Yu; Zhang, Ying; Yang, Wen-ting; Li, Zhi-xian; Guan, Ao-mei

    2015-03-01

    A four-year (2010-2013) field experiment was carried out to explore the effects of three planting patterns (sugarcane, soybean monoculture and sugarcane-soybean 1:2 intercropping) with two nitrogen input levels (300 and 525 kg . hm-2) on soybean nitrogen fixation, sugarcane and soybean nitrogen accumulation, and ammonia volatilization and nitrogen leaching in sugarcane field. The results showed that the soybean nitrogen fixation efficiency (NFE) of sugarcane-soybean inter-cropping was lower than that of soybean monoculture. There was no significant difference in NFE among the treatments with the two nitrogen application rates. The nitrogen application rate and inter-cropping did not remarkably affect nitrogen accumulation of sugarcane and soybean. The ammonia volatilization of the reduced nitrogen input treatment was significantly lower than that of the conventional nitrogen input treatment. Furthermore, there was no significant difference in nitrogen leaching at different nitrogen input levels and among different planting patterns. The sugarcane field nitrogen balance analysis indicated that the nitrogen application rate dominated the nitrogen budget of sugarcane field. During the four-year experiment, all treatments leaved a nitrogen surplus (from 73.10 to 400.03 kg . hm-2) , except a nitrogen deficit of 66.22 kg . hm-2 in 2011 in the treatment of sugarcane monoculture with the reduced nitrogen application. The excessive nitrogen surplus might increase the risk of nitrogen pollution in the field. In conclusion, sugarcane-soybean intercropping with reduced nitrogen application is feasible to practice in consideration of enriching the soil fertility, reducing nitrogen pollution and saving production cost in sugarcane field.

  10. Use of pharmaceuticals and pesticides to constrain nutrient sources in coastal groundwater of northwestern Long Island, New York, USA

    USGS Publications Warehouse

    Zhao, S.; Zhang, P.; Crusius, John; Kroeger, K.D.; Bratton, J.F.

    2011-01-01

    In developed, non-agricultural, unsewered areas, septic systems and fertilizer application to lawns and gardens represent two major sources of nitrogen to coastal groundwater, in addition to atmospheric input. This study was designed to distinguish between these two possible nitrogen sources by analyzing groundwater samples for pharmaceutical residuals, because fertilizers do not contain any of these pharmaceuticals, but domestic wastewater commonly does. In addition, several herbicides and insecticides used in lawn treatment were analyzed as indicators of nitrogen delivery to groundwater from fertilizers. Groundwater samples were taken through piezometres at shoreline sites in unsewered areas surrounding Northport Harbor and in sewered areas adjacent to Manhasset Bay (hereafter referred to as "Northport" and "Manhasset", respectively), both in northwestern Long Island, USA. Excessive nitrogen loading has led to reduced dissolved oxygen concentrations in Long Island Sound, and the groundwater contribution to the nitrogen budget is poorly constrained. The frequent detection of the anticonvulsant compound carbamazepine in groundwater samples of the Northport Harbor area (unsewered), together with the fact that few pesticides associated with lawn applications were detected, suggests that wastewater input and atmospheric input are the likely sources of nitrogen in the Northport groundwater. High concentrations of nitrogen were also detected in the Manhasset (sewered) groundwater. The low detection frequency and concentration of carbamazepine, however, suggest that the sewer system effectively intercepts nitrogen from wastewater there. The likely sources of nitrogen in the Manhasset groundwater are atmospheric deposition and lawn fertilizers, as this area is densely populated.

  11. Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats.

    PubMed

    Stevens, Carly J; Manning, Pete; van den Berg, Leon J L; de Graaf, Maaike C C; Wamelink, G W Wieger; Boxman, Andries W; Bleeker, Albert; Vergeer, Philippine; Arroniz-Crespo, Maria; Limpens, Juul; Lamers, Leon P M; Bobbink, Roland; Dorland, Edu

    2011-03-01

    While it is well established that ecosystems display strong responses to elevated nitrogen deposition, the importance of the ratio between the dominant forms of deposited nitrogen (NH(x) and NO(y)) in determining ecosystem response is poorly understood. As large changes in the ratio of oxidised and reduced nitrogen inputs are occurring, this oversight requires attention. One reason for this knowledge gap is that plants experience a different NH(x):NO(y) ratio in soil to that seen in atmospheric deposits because atmospheric inputs are modified by soil transformations, mediated by soil pH. Consequently species of neutral and alkaline habitats are less likely to encounter high NH(4)(+) concentrations than species from acid soils. We suggest that the response of vascular plant species to changing ratios of NH(x):NO(y) deposits will be driven primarily by a combination of soil pH and nitrification rates. Testing this hypothesis requires a combination of experimental and survey work in a range of systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Special Report on the Data Collection Programs for the Ground Based Nitrogen Washout Experiment. Volume 2 - Detailed Program Descriptions, Listings, Examples and Hardware Specifications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Personal data input, decompression data, nitrogen washout, nitrogen data, and update computer programs are described. Input data and formats; program output, reports, and data; program flowcharts; program listings; sample runs with input and output pages; hardware operation; and engineering data are provided.

  13. Impacts of prescribed fire on ecosystem C and N cycles at Fort Benning Installation, Georgia

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Liu, S.; Tieszen, L.

    2007-12-01

    A critical challenge for the land managers at military installation is to maintain the ecological sustainability of natural resources while meeting the needs of military training. Prescribed ground fire as a land management practice has been used to remove the ground layer plants at Fort Benning for two purposes: to facilitate access for military training, and to maintain and restore fire-adapted longleaf pine communities that are critical habitat for the federally endangered red-cockaded woodpecker (Picoides borealis). Nevertheless, the impacts of prescribed fire on ecosystem processes and health are not well-understood and quantified at the plot to regional scales. Frequent fire may result in ecosystem nitrogen (N) deficiency due to repeated N loss through combustion, volatilization, and leaching, threatening ecosystem sustainability at Fort Benning. On the other hand, N loss may be offset by enhanced symbiotic N2 fixation since fire favors herbaceous legumes by scarifying legume seeds and stimulating germination. Quantifying the impacts of prescribed fire on ecosystem carbon (C) and N cycles is further complicated by interactions and feedbacks among burning, nitrogen inputs, other land use practices (e.g. tree thinning or clear-cutting), and soil properties. In this study, we used the Erosion-Deposition-Carbon Model (EDCM), a process-based biogeochemical model, to simulate C and N dynamic at Fort Benning under different combinations of fire frequency, fire intensity, nitrogen deposition, legume nitrogen input, forest harvesting, and soil sand content. Model simulations indicated that prescribed fire led to nitrogen losses from ecosystems at Fort Benning, especially with high intensity and high frequency fires. Forest harvesting further intensified ecosystem nitrogen limitation, leading to reduced biophysical potential of C sequestration. The adverse impacts of prescribed fire and forest harvesting on C and N cycles were much higher in more sandy soil than in less sandy soil. N inputs from nitrogen deposition and legume N fixation helped replenish N losses to some extent. However, N losses due to fire and harvesting were not balanced or exceeded under current atmospheric N deposition and legume N input rates, suggesting additional N input (e.g., fertilization) may be needed to maintain the sustainability of current ecosystem states and management practices at Fort Benning.

  14. Effects of different N sources on riverine DIN export and retention in subtropical high-standing island, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, J.-C.; Lee, T.-Y.; Lin, T.-C.; Hein, T.; Lee, L.-C.; Shih, Y.-T.; Kao, S.-J.; Shiah, F.-K.; Lin, N.-H.

    2015-10-01

    Increases in nitrogen (N) availability and mobility resulting from anthropogenic activities has substantially altered N cycle both locally and globally. Taiwan characterized by the subtropical montane landscape with abundant rainfall, downwind to the most rapidly industrializing east coast of China can be a demonstration site for extreme high N input and riverine DIN (dissolved inorganic N) export. We used 49 watersheds classified into low-, moderate-, and highly-disturbed categories based on population density to illustrate their differences in nitrogen inputs through atmospheric N deposition, synthetic fertilizers and human emission and DIN export ratios. Our results showed that the island-wide average riverine DIN export is ~ 3800 kg N km-2 yr-1, approximately 18-fold higher than the global average mostly due to the large input of synthetic fertilizers. The average riverine DIN export ratio is 0.30-0.51, which is much higher than the average of 0.20-0.25 of large rivers around the world indicating excessive N input relative to ecosystem demand or retention capacity. The low-disturbed watersheds, despite of high N input, only export 0.06-0.18 of the input so were well buffered to changes in input quantity suggesting high efficiency of nitrogen usage or high N retention capacity of the less disturbed watersheds. The high retention capacity probably is due to the effective uptake by secondary forests in the watersheds. The moderate-disturbed watersheds show a linear increase of output with increases in total N inputs and a mean DIN export ratio of 0.20 to 0.31. The main difference in land use between low and moderately disturbed watershed is the relative proportions of agricultural land and forests, not the built-up lands. Thus, their greater DIN export quantity could be attributed to N fertilizers used in the agricultural lands. The greater export ratios also imply that agricultural lands have lower proportional N retention capacity and that reforestation could be an effective land management practice to reduce riverine DIN export. The export ratio of the highly-disturbed watersheds is 0.42-0.53, which is very high and suggests that much of the N input is transported downstream and the need of improvement in wastewater treatment capacity or sewerage systems. The increases in riverine DIN export ratio along with the gradient of human disturbance indicates a gradient in N saturation in subtropical Taiwan. Our results help to understand factors controlling riverine DIN export and provide a sound basis for N emissions/pollution control.

  15. Unusually high (210)Po activities in the surface water of the Zhubi Coral Reef Lagoon in the South China Sea.

    PubMed

    Yang, Weifeng; Huang, Yipu; Chen, Min; Qiu, Yusheng; Li, Hongbin; Zhang, Lei

    2011-10-01

    Recent researches revealed the exciting application of (210)Po in tracing carbon and nitrogen cycling in the coral reef system. In order to quantify the recycling of particulate organic nitrogen (PON), both (210)Po and (210)Pb were examined at both high and low tides in the Zhubi Coral Reef lagoon, the South China Sea. Unusually, much higher (210)Po activities and (210)Po/(210)Pb ratios, in comparison with those found in the open seawater and the lagoon subsurface water, showed additional input of (210)Po besides production from in situ(210)Pb in the lagoon surface water. Statistical analysis identified that the reef flat seawater was the additional (210)Po source. Based on a mass balance model, the input rates of (210)Po varied from 0.04 Bq m(-3)year(-1) to 8.41 Bq m(-3)year(-1). On average, the additional (210)Po contributed more than 60% of the total (210)Po. The particulate (210)Po significantly correlated with the concentrations of PON, indicating that diffusion of (210)Po from sediment could be used to quantify the recycling of nitrogen. The average input rate of nitrogen was 16 mmol m(-3)year(-1), which can support up to 11% of the primary production rate. These results suggested that the unusual behavior of (210)Po could provide new insight into the nitrogen recycling in the coral reef system. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Estimated anthropogenic nitrogen and phosphorus inputs to the land surface of the conterminous United States--1992, 1997, and 2002

    USGS Publications Warehouse

    Sprague, Lori A.; Gronberg, Jo Ann M.

    2013-01-01

    Anthropogenic inputs of nitrogen and phosphorus to each county in the conterminous United States and to the watersheds of 495 surface-water sites studied as part of the U.S. Geological Survey National Water-Quality Assessment Program were quantified for the years 1992, 1997, and 2002. Estimates of inputs of nitrogen and phosphorus from biological fixation by crops (for nitrogen only), human consumption, crop production for human consumption, animal production for human consumption, animal consumption, and crop production for animal consumption for each county are provided in a tabular dataset. These county-level estimates were allocated to the watersheds of the surface-water sites to estimate watershed-level inputs from the same sources; these estimates also are provided in a tabular dataset, together with calculated estimates of net import of food and net import of feed and previously published estimates of inputs from atmospheric deposition, fertilizer, and recoverable manure. The previously published inputs are provided for each watershed so that final estimates of total anthropogenic nutrient inputs could be calculated. Estimates of total anthropogenic inputs are presented together with previously published estimates of riverine loads of total nitrogen and total phosphorus for reference.

  17. Tracing the Fate of Atmospheric Nitrate in a Subalpine Watershed Using Δ17O.

    PubMed

    Bourgeois, Ilann; Savarino, Joël; Caillon, Nicolas; Angot, Hélène; Barbero, Albane; Delbart, Franck; Voisin, Didier; Clément, Jean-Christophe

    2018-05-15

    Nitrogen is an essential nutrient for life on Earth, but in excess, it can lead to environmental issues (e.g., N saturation, loss of biodiversity, acidification of lakes, etc.). Understanding the nitrogen budget (i.e., inputs and outputs) is essential to evaluate the prospective decay of the ecosystem services (e.g., freshwater quality, erosion control, loss of high patrimonial-value plant species, etc.) that subalpine headwater catchments provide, especially as these ecosystems experience high atmospheric nitrogen deposition. Here, we use a multi-isotopic tracer (Δ 17 O, δ 15 N and δ 18 O) of nitrate in aerosols, snow, and streams to assess the fate of atmospherically deposited nitrate in the subalpine watershed of the Lautaret Pass (French Alps). We show that atmospheric N deposition contributes significantly to stream nitrate pool year-round, either by direct inputs (up to 35%) or by in situ nitrification of atmospheric ammonium (up to 35%). Snowmelt in particular leads to high exports of atmospheric nitrate, most likely fast enough to impede assimilation by surrounding ecosystems. Yet, in a context of climate change, with shorter snow seasons, and increasing nitrogen emissions, our results hint at possibly stronger ecological consequences of nitrogen atmospheric deposition in the close future.

  18. USING MUSSEL ISTOPE RATIOS TO ASSESS ANTHROPOGENIC NITROGEN INPUTS TO FRESHWATER ECOSYSTEMS

    EPA Science Inventory

    Stable nitrogen isotope ratios ( 15N) of freshwater mussels from a series of lakes and ponds were related to watershed land use characteristics to assess their utility in determining the source of nitrogen inputs to inland water bodies. Nitrogen isotope ratios measured in freshwa...

  19. USING MUSSEL ISOTOPE RATIOS TO ASSESS ANTHROPOGEN NITROGEN INPUTS TO COASTAL ECOSYSTEMS

    EPA Science Inventory

    The stable nitrogen isotope ratio in ribbed mussel (Geukensia demissus) tissue was investigated as an indicator of the source of nitrogen inputs to coastal salt marshes. Mussels fed a diet of 15N enriched algae in the laboratory showed an increase in tissue nitrogen isotope rati...

  20. Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr; Ha, Heon-Young; Lee, Tae-Ho

    2013-08-15

    The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasingmore » δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr{sub 2}N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite.« less

  1. Watershed delineation and nitrogen source analysis for Bayou ...

    EPA Pesticide Factsheets

    Nutrient pollution in stormwater runoff from urbanized areas contributes to water quality degradation in streams and receiving waterbodies. Agriculture, population growth, and industrial activities are significant sources of nitrogen inputs for surface waters. Increased nitrogen loading stimulates eutrophication through algal blooms, which leads to an overall decrease in drinking water and aquatic habitat quality. Bayou Chico, a highly urbanized watershed in the Pensacola Bay system in northwest Florida, is a nutrient-impaired waterbody under management to reduce bacteria and nutrient loadings, in accordance with the Florida Department of Environmental Protection’s (FDEP) Basin Management Action Plan. Best management practices and green infrastructure (GI) throughout Bayou Chico help reduce nitrogen inputs by retaining and filtering water. GI can function as a nitrogen sink by sorption or infiltration into soils, sequestration into plant material, and denitrification through microbial processes. However, a better understanding of the efficiency of these systems is needed to better inform management practices on future nitrogen reduction. This project will address two issues relating to the presence of nitrogen in the Bayou Chico watershed: 1) the identification of specific nitrogen sources within urbanized areas, and 2) the potential rates of nitrogen removal and sequestration from GI and nitrogen transport throughout the bayou. To accomplish these goals, nitr

  2. Major sources of nitrogen input and loss in the upper Snake River basin, Idaho and western Wyoming, 1990

    USGS Publications Warehouse

    Rupert, Michael

    1996-01-01

    A mass balance of total nitrogen input and loss in Gooding, Jerome, Lincoln, and Twin Falls Counties suggests that more than 6,000,000 kg (6,600 tons) of total nitrogen is input in this four-county area than is discharged by the Snake River. This excess nitrogen probably is utilized by aquatic vegetation in the Snake River (causing eutrophication), stored as nitrogen in soil, stored as nitrate in the ground water and eventually discharged through the springs, utilized by noncrop vegetation, and lost through denitrification.

  3. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences

    USGS Publications Warehouse

    Howarth, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, K.; Downing, J.A.; Elmgren, Ragnar; Caraco, N.; Jordan, T.; Berendse, F.; Freney, J.; Kudeyarov, V.; Murdoch, P.; Zhu, Z.-L.

    1996-01-01

    We present estimates of total nitrogen and total phosphorus fluxes in rivers to the North Atlantic Ocean from 14 regions in North America, South America, Europe, and Africa which collectively comprise the drainage basins to the North Atlantic. The Amazon basin dominates the overall phosphorus flux and has the highest phosphorus flux per area. The total nitrogen flux from the Amazon is also large, contributing 3.3 Tg yr-1 out of a total for the entire North Atlantic region of 13.1 Tg yr-1. On a per area basis, however, the largest nitrogen fluxes are found in the highly disturbed watersheds around the North Sea, in northwestern Europe, and in the northeastern U.S., all of which have riverine nitrogen fluxes greater than 1,000 kg N km-2 yr-1. Non-point sources of nitrogen dominate riverine fluxes to the coast in all regions. River fluxes of total nitrogen from the temperate regions of the North Atlantic basin are correlated with population density, as has been observed previously for fluxes of nitrate in the world's major rivers. However, more striking is a strong linear correlation between river fluxes of total nitrogen and the sum of anthropogenically-derived nitrogen inputs to the temperate regions (fertilizer application, human-induced increases in atmospheric deposition of oxidized forms of nitrogen, fixation by leguminous crops, and the import/export of nitrogen in agricultural products). On average, regional nitrogen fluxes in rivers are only 25% of these anthropogenically derived nitrogen inputs. Denitrification in wetlands and aquatic ecosystems is probably the dominant sink, with storage in forests perhaps also of importance. Storage of nitrogen in groundwater, although of importance in some localities, is a very small sink for nitrogen inputs in all regions. Agricultural sources of nitrogen dominate inputs in many regions, particularly the Mississippi basin and the North Sea drainages. Deposition of oxidized nitrogen, primarily of industrial origin, is the major control over river nitrogen export in some regions such as the northeastern U.S. Using data from relatively pristine areas as an index of change, we estimate that riverine nitrogen fluxes in many of the temperate regions have increased from pre-industrial times by 2 to 20 fold, although some regions such as northern Canada are relatively unchanged. Fluxes from the most disturbed region, the North Sea drainages, have increased by 6 to 20 fold. Fluxes from the Amazon basin are also at least 2 to 5 fold greater than estimated fluxes from undisturbed temperate-zone regions, despite low population density and low inputs of anthropogenic nitrogen to the region. This suggests that natural riverine nitrogen fluxes in the tropics may be significantly greater than in the temperate zone. However, deforestation may be contributing to the tropical fluxes. In either case, projected increases in fertilizer use and atmospheric deposition in the coming decades are likely to cause dramatic increases in nitrogen loading to many tropical river systems. ?? 1996 Kluwer Academic Publishers.

  4. Relationship of nitrogen use efficiency with the activities of enzymes involved in nitrogen uptake and assimilation of finger millet genotypes grown under different nitrogen inputs.

    PubMed

    Gupta, Nidhi; Gupta, Atul K; Gaur, Vikram S; Kumar, Anil

    2012-01-01

    Nitrogen responsiveness of three-finger millet genotypes (differing in their seed coat colour) PRM-1 (brown), PRM-701 (golden), and PRM-801 (white) grown under different nitrogen doses was determined by analyzing the growth, yield parameters and activities of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase; GOGAT, and glutamate dehydrogenase (GDH) at different developmental stages. High nitrogen use efficiency and nitrogen utilization efficiency were observed in PRM-1 genotype, whereas high nitrogen uptake efficiency was observed in PRM-801 genotype. At grain filling nitrogen uptake efficiency in PRM-1 negatively correlated with NR, GS, GOGAT activities whereas it was positively correlated in PRM-701 and PRM-801, however, GDH showed a negative correlation. Growth and yield parameters indicated that PRM-1 responds well at high nitrogen conditions while PRM-701 and PRM-801 respond well at normal and low nitrogen conditions respectively. The study indicates that PRM-1 is high nitrogen responsive and has high nitrogen use efficiency, whereas golden PRM-701 and white PRM-801 are low nitrogen responsive genotypes and have low nitrogen use efficiency. However, the crude grain protein content was higher in PRM-801 genotype followed by PRM-701 and PRM-1, indicating negative correlation of nitrogen use efficiency with source to sink relationship in terms of seed protein content.

  5. Trends in nitrogen isotope ratios of juvenile winter flounder reflect changing nitrogen inputs to Rhode Island, USA estuarine systems

    EPA Science Inventory

    Nitrogen isotope ratios (d 15N) in juvenile winter flounder, Pseudopleuronectes americanus, were used to examine changes in nitrogen inputs to several Rhode Island, USA estuarine systems. Fish were collected over two three-year periods with a ten-year interval between sampling pe...

  6. Determination of nitrogen balance in agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Nitrogen balance in agroecosystems provides a quantitative framework of N inputs and outputs and retention in the soil that examine sustainability of agricultural productivity and soil and environmental quality. Nitrogen inputs include N additions from manures and fertilizers, atmospheric deposition...

  7. Integrated modelling of nitrogen transport and turnover in lowland catchements of northern Germany

    NASA Astrophysics Data System (ADS)

    Wriedt, G.

    2003-04-01

    Nitrogen loads in surface water often do not reflect the actual input situation. This retention of nitrogen can be explained by chemical transformations in the soil and groundwater (e.g. denitrification) and hydrological factors (e.g. transition time, mixing) in soil and groundwater and depends strongly on the geological and chemical patterns within the catchment areas (e.g. reactive substances, conductivities). In order to facilitate modelling studies on the relation between nitrogen transport and catchment characteristics we developed a modelling approach, that allows simulation of the complete nitrogen transport path from the soil input until the exfiltration into the surface water system. This approach is based on the loose coupling of a soil water model and an analytical soil nitrogen model (mRISK-N) with a groundwater flow model (MODFLOW) and a multi-species reactive transport model (RT3D). Groundwater nitrogen turnover is represented by a closed reaction scheme that explicitly includes oxidation of organic matter and pyrite oxidation by several electron acceptors as the main reactive pathways, in order to link nitrogen turnover directly to the availability of the substances involved in the chemical reactions. This reaction module has been implemented into the modelling system as a user defined reaction module within the RT3D-environment. The soil submodel was tested against lysimeter data. It was found, that soil water balance was represented quite well. Nitrogen leaching rates however, can only be interpreted for larger time scales, whereas considerable deviations from measured values do occur in single years. Nevertheless, model performance is comparable to other, more complex soil water and nitrogen models currently available. It was found, that the high uncertainty of model parameters and input data as well as limited knowledge on processes limit the accuracy of soil nitrogen models in general. The next step of the project is the model application in the study area “Schaugraben catchment”. The study area is located near Osterburg/Altmark in the north of Sachsen-Anhalt, its size is about 25 km2. The geology is determined by pleistocene deposits, mainly glacial till in the plateau areas and glaciofluvial sandy deposits in the valleys. A dense drainage network, a high groundwater table and intensive agricultural use provide a high risk for both, groundwater and surface water quality. Model application focuses on the analysis of the interactions between catchment characteristics (hydrological and geological), spatial input patterns and the fate of nitrogen within the catchment. This is done by applying sensitivity analysis, uncertainty analysis and scenario simulation. A three dimensional groundwater flow model for the Schaugraben area has been set up and calibrated in order to analyse the regional flow paths, transition times and groundwater catchments. More detailed modelling studies including the reactive groundwater transport are performed on selected cutouts and transects, defining specific hydrogeological settings, e.g. riparian areas, buffer stripes, hydrological windows etc. Under special consideration is also the influence of spatial input patterns of nitrate and organic matter leaching to the groundwater. Results of the modelling studies are expect until March ‘03. The modelling approach developed here is a tool for the assessment of transport-turnover interaction and may help to improve experimental studies and measurement strategies and to provide useful information for managing purposes.

  8. Relevance of ammonium oxidation within biological soil crust communities

    USGS Publications Warehouse

    Johnson, S.L.; Budinoff, C.R.; Belnap, J.; Garcia-Pichel, F.

    2005-01-01

    Thin, vertically structured topsoil communities that become ecologically important in arid regions (biological soil crusts or BSCs) are responsible for much of the nitrogen inputs into pristine arid lands. We studied N2 fixation and ammonium oxidation (AO) at subcentimetre resolution within BSCs from the Colorado Plateau. Pools of dissolved porewater nitrate/ nitrite, ammonium and organic nitrogen in wetted BSCs were high in comparison with those typical of aridosoils. They remained stable during incubations, indicating that input and output processes were of similar magnitude. Areal N2 fixation rates (6.5-48 ??mol C2H2 m-2 h -1) were high, the vertical distribution of N2 fixation peaking close to the surface if populations of heterocystous cyanobacteria were present, but in the subsurface if they were absent. Areal AO rates (19-46 ??mol N m-2 h-1) were commensurate with N2 fixation inputs. When considering oxygen availability, AO activity invariably peaked 2-3 mm deep and was limited by oxygen (not ammonium) supply. Most probable number (MPN)-enumerated ammonia-oxidizing bacteria (6.7-7.9 ?? 103 cells g-1 on average) clearly peaked at 2-3 mm depth. Thus, AO (hence nitrification) is a spatially restricted but important process in the nitrogen cycling of BSC, turning much of the biologically fixed nitrogen into oxidized forms, the fate of which remains to be determined.

  9. Dietary nitrogen alters codon bias and genome composition in parasitic microorganisms.

    PubMed

    Seward, Emily A; Kelly, Steven

    2016-11-15

    Genomes are composed of long strings of nucleotide monomers (A, C, G and T) that are either scavenged from the organism's environment or built from metabolic precursors. The biosynthesis of each nucleotide differs in atomic requirements with different nucleotides requiring different quantities of nitrogen atoms. However, the impact of the relative availability of dietary nitrogen on genome composition and codon bias is poorly understood. Here we show that differential nitrogen availability, due to differences in environment and dietary inputs, is a major determinant of genome nucleotide composition and synonymous codon use in both bacterial and eukaryotic microorganisms. Specifically, low nitrogen availability species use nucleotides that require fewer nitrogen atoms to encode the same genes compared to high nitrogen availability species. Furthermore, we provide a novel selection-mutation framework for the evaluation of the impact of metabolism on gene sequence evolution and show that it is possible to predict the metabolic inputs of related organisms from an analysis of the raw nucleotide sequence of their genes. Taken together, these results reveal a previously hidden relationship between cellular metabolism and genome evolution and provide new insight into how genome sequence evolution can be influenced by adaptation to different diets and environments.

  10. Groundwater nitrate pollution: High-resolution approach of calculating the nitrogen balance surplus for Germany

    NASA Astrophysics Data System (ADS)

    Klement, Laura; Bach, Martin; Breuer, Lutz; Häußermann, Uwe

    2017-04-01

    The latest inventory of the EU Water Framework Directive determined that 26.3% of Germany's groundwater bodies are in a poor chemical state regarding nitrate. As of late October 2016, the European Commission has filed a lawsuit against Germany for not taking appropriate measures against high nitrate levels in water bodies and thus failing to comply with the EU Nitrate Directive. Due to over-fertilization and high-density animal production, Agriculture was identified as the main source of nitrate pollution. One way to characterize the potential impact of reactive nitrogen on water bodies is the soil surface nitrogen balance where all agricultural nitrogen inputs within an area are contrasted with the output, i.e. the harvest. The surplus nitrogen (given in kg N per ha arable land and year) can potentially leach into the groundwater and thus can be used as a risk indicator. In order to develop and advocate appropriate measures to mitigate the agricultural nitrogen surplus with spatial precision, high-resolution data for the nitrogen surplus is needed. In Germany, not all nitrogen input data is available with the required spatial resolution, especially the use of mineral fertilizers is only given statewide. Therefore, some elements of the nitrogen balance need to be estimated based on agricultural statistics. Hitherto, statistics from the Federal Statistical Office and the statistical offices of the 16 federal states of Germany were used to calculate the soil surface balance annually for the spatial resolution of the 402 districts of Germany (mean size 890 km2). In contrast, this study presents an approach to estimate the nitrogen surplus at a much higher spatial resolution by using the comprehensive Agricultural census data collected in 2010 providing data for 326000 agricultural holdings. This resulted in a nitrogen surplus map with a 5 km x 5 km grid which was subsequently used to calculate the nitrogen concentration of percolation water. This provides a considerably more detailed insight on regions where the groundwater is particularly vulnerable to nitrate pollution and appropriate measures are most needed.

  11. An Isotopic view of water and nitrogen transport through the ...

    EPA Pesticide Factsheets

    Background/Question/MethodsGroundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding nitrogen transformations within the vadose zone. In partnership with local farmers, and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years Results/ConclusionsOur results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitatio

  12. Fusing long-term, historical, and high-resolution date to inform estimates of watershed-scale nitrogen retention

    Treesearch

    Jonathan Duncan; Lawrence Band

    2016-01-01

    Closing watershed nitrogen budgets is difficult because inputs typically far exceed outputs. A leading hypothesis to explain this discrepancy is that retention is poorly constrained because a disproportionate amount of denitrification occurs in small portions of the landscape (hot spots) during brief hydrologic conditions (hot moments).

  13. Effects of resource availability and propagule supply on native species recruitment in sagebrush ecosystems invaded by Bormus tectorum

    Treesearch

    Monica B. Mazzola; Jeanne C. Chambers; Robert R. Blank; David A. Pyke; Eugene W. Schupp; Kimberly G. Allcock; Paul S. Doescher; Robert S. Nowak

    2010-01-01

    Resource availability and propagule supply are major factors influencing establishment and persistence of both native and invasive species. Increased soil nitrogen (N) availability and high propagule inputs contribute to the ability of annual invasive grasses to dominate disturbed ecosystems. Nitrogen reduction through carbon (C) additions can potentially immobilize...

  14. Utilizing Physical Input-Output Model to Inform Nitrogen related Ecosystem Services

    EPA Science Inventory

    Here we describe the development of nitrogen PIOTs for the midwestern US state of Illinois with large inputs of nitrogen from agriculture and industry. The PIOTs are used to analyze the relationship between regional economic activities and ecosystem services in order to identify...

  15. Nitrogen fluxes in a high elevation Colorado Rocky Mountain basin

    USGS Publications Warehouse

    Baron, Jill S.; Campbell, D.H.

    1997-01-01

    Measured, calculated and simulated values were combined to develop an annual nitrogen budget for Loch Vale Watershed (LVWS) in the Colorado Front Range. Nine-year average wet nitrogen deposition values were 1??6 (s = 0??36) kg NO3-N ha-1, and 1??0 (s = 0??3) kg NH4-N ha-1. Assuming dry nitrogen deposition to be half that of measured wet deposition, this high elevation watershed receives 3??9 kg N ha-1. Although deposition values fluctuated with precipitation, measured stream nitrogen outputs were less variable. Of the total N input to the watershed (3??9 kg N ha-1 wet plus dry deposition), 49% of the total N input was immobilized. Stream losses were 2??0 kg N ha-1 (1125 kg measured dissolved inorganic N in 1992, 1-2 kg calculated dissolved organic N, plus an average of 203 kg algal N from the entire 660 ha watershed). Tundra and aquatic algae were the largest reservoirs for incoming N, at approximately 18% and 15% of the total 2574 kg N deposition, respectively. Rocky areas and forest stored the remaining 11% and 5%, respectively. Fully 80% of N losses from the watershed came from the 68% of LVWS that is alpine. ?? 1997 by John Wiley & Sons, Ltd.

  16. Use of MODIS Data in Dynamic SPARROW Analysis of Watershed Loading Reductions

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Schwarz, G. E.; Brakebill, J. W.; Hoos, A.; Moore, R. B.; Nolin, A. W.; Shih, J. S.; Journey, C. A.; Macauley, M.

    2014-12-01

    Predicting the temporal response of stream water quality to a proposed reduction in contaminant loading is a major watershed management problem due to temporary storage of contaminants in groundwater, vegetation, snowpack, etc. We describe the response of dynamically calibrated SPARROW models of total nitrogen (TN) flux to hypothetical reductions in reactive nitrogen inputs in three sub-regional watersheds: Potomac River Basin (Chesapeake Bay drainage), Long Island Sound drainage, and South Carolina coastal drainage. The models are based on seasonal water quality and watershed input data from 170 monitoring stations for the period 2002 to 2008.The spatial reference frames of the three models are stream networks containing an average 38,000 catchments and the time step is seasonal. We use MODIS Enhanced Vegetation Index (EVI) and snow/ice cover data to parameterize seasonal uptake and release of nitrogen from vegetation and snowpack. The model accounts for storage of total nitrogen inputs from fertilized cropland, pasture, urban land, and atmospheric deposition. Model calibration is by non-linear regression. Model source terms based on previous season export allow for recursive simulation of stream flux and can be used to estimate the approximate residence times of TN in the watersheds. Catchment residence times in the Long Island Sound Basin are shorter (typically < 1 year) than in the Potomac or South Carolina Basins (typically > 1 year), in part, because a significant fraction of nitrogen flux derives from snowmelt and occurs within one season of snowfall. We use the calibrated models to examine the response of TN flux to hypothetical step reductions in source inputs at the beginning of the 2002-2008 period and the influence of observed fluctuations in precipitation, temperature, vegetation growth and snow melt over the period. Following non-point source reductions of up to 100%, stream flux was found to continue to vary greatly for several years as a function of seasonal conditions, with high values in both winter (January, February, March) and spring due to high precipitation and snow melt, but much lower summer yields due to low precipitation and nitrogen retention in growing vegetation (EVI). Temporal variations in stream flux are large enough to potentially mask water quality improvements for several years.

  17. Management options to limit nitrate leaching from grassland

    NASA Astrophysics Data System (ADS)

    Cuttle, S. P.; Scholefield, D.

    1995-12-01

    Nitrate leaching can be reduced by the adoption of less intensive grassland systems which, though requiring a greater land area to achieve the same agricultural output, result in less nitrate leaching per unit of production than do intensively managed grasslands. The economic penalties associated with reductions in output can be partly offset by greater reliance on symbiotic nitrogen fixation and the use of clover-based swards in place of synthetic N fertilisers. Alternatively, specific measures can be adopted to improve the efficiency of nitrogen use in intensively managed systems in order to maintain high outputs but with reduced losses. Controls should take account of other forms of loss and flows of nitrogen between grassland and other components of the whole-farm system and, in most instances, should result in an overall reduction in nitrogen inputs. Removing stock from the fields earlier in the grazing season will reduce the accumulation of high concentrations of potentially leachable nitrate in the soil of grazed pastures but will increase the quantity of manure produced by housed animals and the need to recycle this effectively. Supplementing grass diets with low-nitrogen forages such as maize silage will reduce the quantity of nitrogen excreted by livestock but may increase the potential for nitrate leaching elsewhere on the farm if changes to cropping patterns involve more frequent cultivation of grassland. Improved utilisation by the sward of nitrogen in animal excreta and manures and released by mineralisation of soil organic matter will permit equivalent reductions to be made in fertiliser inputs, provided that adequate information is available about the supply of nitrogen from these non-fertiliser sources.

  18. Effects of Nitrogen Inputs and Watershed Characteristics on Summer Stream Nitrogen Concentrations: A National-Scale Analysis

    EPA Science Inventory

    Nitrogen (N) inputs to the landscape have been linked previously to N loads exported from watersheds at the national scale; however, stream N concentration is arguably more relevant than N load for drinking water quality, freshwater biological responses and establishment of nutri...

  19. The long-term impact of urbanization on nitrogen patterns and dynamics in Shanghai, China.

    PubMed

    Gu, Baojing; Dong, Xiaoli; Peng, Changhui; Luo, Weidong; Chang, Jie; Ge, Ying

    2012-12-01

    Urbanization is an important process that alters the regional and global nitrogen biogeochemistry. In this study, we test how long-term urbanization (1952-2004) affects the nitrogen flows, emissions and drivers in the Greater Shanghai Area (GSA) based on the coupled human and natural systems (CHANS) approach. Results show that: (1) total nitrogen input to the GSA increased from 57.7 to 587.9 Gg N yr(-1) during the period 1952-2004, mainly attributing to fossil fuel combustion (43%), Haber-Bosch nitrogen fixation (31%), and food/feed import (26%); (2) per capita nitrogen input increased from 13.5 to 45.7 kg N yr(-1), while per gross domestic product (GDP) nitrogen input reduced from 22.2 to 0.9 g N per Chinese Yuan, decoupling of nitrogen with GDP; (3) emissions of reactive nitrogen to the environment transformed from agriculture dominated to industry and human living dominated, especially for air pollution. This study provides decision-makers a novel view of nitrogen management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Abnormally high phytoplankton biomass near the lagoon mouth in the Huangyan Atoll, South China Sea.

    PubMed

    Ke, Zhixin; Liu, Huajian; Wang, Junxing; Liu, Jiaxing; Tan, Yehui

    2016-11-15

    Nutrient concentration and phytoplankton biomass were investigated in Huangyan Atoll in May 2015. The concentrations of nutrients were very low, and dissolved inorganic nitrogen was composed mainly of ammonia. Nitrogen likely was the primary limiting factor for phytoplankton growth. The spatial variation of phytoplankton biomass was significant among the lagoon, reef flats, and outer reef slopes. Extremely high chlorophyll a concentration and micro-phytoplankton abundance were found in the region near the lagoon mouth. This high phytoplankton biomass might be due to nutrient input from fishing vessels and phytoplankton aggregation driven by the southwestern wind. Our results indicate that phytoplankton biomass could be a reliable indicator of habitat differences in this coral reef ecosystem, and micro-phytoplankton seems to be more sensitive to nutrient input than pico-phytoplankton. Copyright © 2016. Published by Elsevier Ltd.

  1. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    PubMed

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  2. Watershed nitrogen and phosphorus balance: The upper Potomac River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaworski, N.A.; Groffman, P.M.; Keller, A.A.

    1992-01-01

    Nitrogen and phosphorus mass balances were estimated for the portion of the Potomac River basin watershed located above Washington, D.C. The total nitrogen (N) balance included seven input source terms, six sinks, and one 'change-in-storage' term, but was simplified to five input terms and three output terms. The phosphorus (P) baance had four input and three output terms. The estimated balances are based on watershed data from seven information sources. Major sources of nitrogen are animal waste and atmospheric deposition. The major sources of phosphorus are animal waste and fertilizer. The major sink for nitrogen is combined denitrification, volatilization, andmore » change-in-storage. The major sink for phosphorus is change-in-storage. River exports of N and P were 17% and 8%, respectively, of the total N and P inputs. Over 60% of the N and P were volatilized or stored. The major input and output terms on the budget are estimated from direct measurements, but the change-in-storage term is calculated by difference. The factors regulating retention and storage processes are discussed and research needs are identified.« less

  3. Changes in biogeochemical cycling following forest defoliation by pine wilt disease in Kiryu experimental catchment in Japan

    NASA Astrophysics Data System (ADS)

    Tokuchi, Naoko; Ohte, Nobuhito; Hobara, Satoru; Kim, Su-Jin; Masanori, Katsuyama

    2004-10-01

    Changes in nutrient budgets and hydrological processes due to the natural disturbance of pine wilt disease (PWD) were monitored in a small, forested watershed in Japan. The disturbance caused changes in soil nitrogen transformations. Pre-disturbance, mineralized nitrogen remained in the form of NH4+, whereas in disturbed areas most mineralized nitrogen was nitrified. Stream NO3- concentrations increased following PWD. There was a delay between time of disturbance and the increase of NO3- in ground and stream waters. Stream concentrations of NO3- and cations (Ca2+ + Mg2+) were significantly correlated from 1994 to 1996, whereas the correlation among NO3-, H+, and SO42- was significant only in 1995. Although both cation exchange and SO42- adsorption buffered protons, cation exchange was the dominant and continuous mechanism for acid buffering. SO42- adsorption was variable and highly pH dependent. The disturbance also resulted in slight delayed changes of input-output nutrient balances. The nitrogen contribution to PWD litter inputs was 7.39 kmol ha-1, and nitrogen loss from streamwater was less than 0.5 kmol ha-1 year-1 throughout the observation period. This large discrepancy suggested substantial nitrogen immobilization.

  4. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input.

    PubMed

    Hauggaard-Nielsen, Henrik; Lachouani, Petra; Knudsen, Marie Trydeman; Ambus, Per; Boelt, Birte; Gislum, René

    2016-01-15

    A three-season field experiment was established and repeated twice with spring barley used as cover crop for different perennial grass-legume intercrops followed by a full year pasture cropping and winter wheat after sward incorporation. Two fertilization regimes were applied with plots fertilized with either a high or a low rate of mineral nitrogen (N) fertilizer. Life cycle assessment (LCA) was used to evaluate the carbon footprint (global warming potential) of the grassland management including measured nitrous oxide (N2O) emissions after sward incorporation. Without applying any mineral N fertilizer, the forage legume pure stand, especially red clover, was able to produce about 15 t above ground dry matter ha(-1) year(-1) saving around 325 kg mineral Nfertilizer ha(-1) compared to the cocksfoot and tall fescue grass treatments. The pure stand ryegrass yielded around 3t DM more than red clover in the high fertilizer treatment. Nitrous oxide emissions were highest in the treatments containing legumes. The LCA showed that the low input N systems had markedly lower carbon footprint values than crops from the high N input system with the pure stand legumes without N fertilization having the lowest carbon footprint. Thus, a reduction in N fertilizer application rates in the low input systems offsets increased N2O emissions after forage legume treatments compared to grass plots due to the N fertilizer production-related emissions. When including the subsequent wheat yield in the total aboveground production across the three-season rotation, the pure stand red clover without N application and pure stand ryegrass treatments with the highest N input equalled. The present study illustrate how leguminous biological nitrogen fixation (BNF) represents an important low impact renewable N source without reducing crop yields and thereby farmers earnings. Copyright © 2015. Published by Elsevier B.V.

  5. Variation in watershed nitrogen input and export across the Willamette River Basin

    EPA Science Inventory

    Nitrogen (N) export from watersheds is influenced by hydrology, land use/cover, and the timing and spatial arrangement of N inputs and removal within basins. We examined the relationship between N input and watershed N export for 25 monitoring stations between 1996 and 2006 with...

  6. Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling: Fixed nitrogen and dry deposition of phosphorus

    NASA Astrophysics Data System (ADS)

    Baker, A. R.; Lesworth, T.; Adams, C.; Jickells, T. D.; Ganzeveld, L.

    2010-09-01

    Atmospheric nitrogen inputs to the ocean are estimated to have increased by up to a factor of three as a result of increased anthropogenic emissions over the last 150 years, with further increases expected in the short- to mid-term at least. Such estimates are largely based on emissions and atmospheric transport modeling, because, apart from a few island sites, there is very little observational data available for atmospheric nitrogen concentrations over the remote ocean. Here we use samples of rainwater and aerosol we obtained during 12 long-transect cruises across the Atlantic Ocean between 50°N and 50°S as the basis for a climatological estimate of nitrogen inputs to the basin. The climatology is for the 5 years 2001-2005, during which almost all of the cruises took place, and includes dry and wet deposition of nitrate and ammonium explicitly, together with a more uncertain estimate of soluble organic nitrogen deposition. Our results indicate that nitrogen inputs into the region were ˜850-1420 Gmol (12-20 Tg) N yr-1, with ˜78-85% of this in the form of wet deposition. Inputs were greater in the Northern Hemisphere and in wet regions, and wet regions had a greater proportion of input via wet deposition. The largest uncertainty in our estimate of dry inputs is associated with variability in deposition velocities, while the largest uncertainty in our wet nitrogen input estimate is due to the limited amount and uneven geographic distribution of observational data. We also estimate a lower limit of dry deposition of phosphate to be ˜0.19 Gmol P yr-1, using data from the same cruises. We compare our results to several recent estimates of N and P deposition to the Atlantic and discuss the likely sources of uncertainty, such as the potential seasonal bias introduced by our sampling, on our climatology.

  7. Nitrogen Inputs to Seventy-four Southern New England Estuaries: Application of a Watershed Nitrogen Loading Model

    EPA Science Inventory

    Excess nitrogen inputs to estuaries have been linked to deteriorating water quality and habitat conditions which in turn have direct and indirect impacts on both commercial and recreational fish and shellfish. This paper is the first of a two-part series that applies a previously...

  8. Ecosystem Services in Lakes of the Northeastern United States: Upstream Benefits from Estuarine Nitrogen Reduction Scenarios

    EPA Science Inventory

    Reduction of nitrogen inputs to estuaries can be achieved by the control of agricultural, atmospheric, and urban sources. We use the USGS MRB1 SPARROW model to estimate reductions necessary to reduce nitrogen loads to estuaries by 10%. If only agricultural inputs are reduced, ...

  9. Nitrogen attenuation in the Connecticut River, northeastern USA; a comparison of mass balance and N2 production modeling approaches

    USGS Publications Warehouse

    Smith, T.E.; Laursen, A.E.; Deacon, J.R.

    2008-01-01

    Two methods were used to measure in-stream nitrogen loss in the Connecticut River during studies conducted in April and August 2005. A mass balance on nitrogen inputs and output for two study reaches (55 and 66 km), at spring high flow and at summer low flow, was computed on the basis of total nitrogen concentrations and measured river discharges in the Connecticut River and its tributaries. In a 10.3 km subreach of the northern 66 km reach, concentrations of dissolved N2 were also measured during summer low flow and compared to modeled N2 concentrations (based on temperature and atmospheric gas exchange rates) to determine the measured "excess" N2 that indicates denitrification. Mass balance results showed no in-stream nitrogen loss in either reach during April 2005, and no nitrogen loss in the southern 55 km study reach during August 2005. In the northern 66 km reach during August 2005, however, nitrogen output was 18% less than the total nitrogen inputs to the reach. N2 sampling results gave an estimated rate of N2 production that would remove 3.3% of the nitrogen load in the river over the 10.3 km northern sub-reach. The nitrogen losses measured in the northern reach in August 2005 may represent an approximate upper limit for nitrogen attenuation in the Connecticut River because denitrification processes are most active during warm summer temperatures and because the study was performed during the annual low-flow period when total nitrogen loads are small. ?? 2008 Springer Science+Business Media B.V.

  10. The relative importance of oceanic nutrient inputs for Bass Harbor Marsh Estuary at Acadia National Park, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Fuller, Christopher; Glibert, Patricia; Sturtevant, Luke

    2014-01-01

    The U.S. Geological Survey and Acadia National Park (ANP) collaborated on a study of nutrient inputs into Bass Harbor Marsh Estuary on Mount Desert Island, Maine, to better understand ongoing eutrophication, oceanic nutrient inputs, and potential management solutions. This report includes the estimation of loads of nitrate, ammonia, total dissolved nitrogen, and total dissolved phosphorus to the estuary derived from runoff within the watershed and oceanic inputs during summers 2011 and 2012. Nutrient outputs from the estuary were also monitored, and nutrient inputs in direct precipitation to the estuary were calculated. Specific conductance, water temperature, and turbidity were monitored at the estuary outlet. This report presents a first-order analysis of the potential effects of projected sea-level rise on the inundated area and estuary volume. Historical aerial photographs were used to investigate the possibility of widening of the estuary channel over time. The scope of this report also includes analysis of sediment cores collected from the estuary and fringing marsh surfaces to assess the sediment mass accumulation rate. Median concentrations of nitrate, ammonium, and total dissolved phosphorus on the flood tide were approximately 25 percent higher than on the ebb tide during the 2011 and 2012 summer seasons. Higher concentrations on the flood tide suggest net assimilation of these nutrients in biota within the estuary. The dissolved organic nitrogen fraction dominated the dissolved nitrogen fraction in all tributaries. The median concentration of dissolved organic nitrogen was about twice as high on the on the ebb tide than the flood tide, indicating net export of dissolved organic nitrogen from the estuary. The weekly total oceanic inputs of nitrate, ammonium, and total dissolved phosphorus to the estuary were usually much larger than inputs from runoff or direct precipitation. The estuary was a net sink for nitrate and ammonium in most weeks during both years. Oceanic inputs of nitrate and ammonium were an important source of inorganic nitrogen to the estuary in both years. In both years, the total seasonal inputs of ammonium to the estuary in flood tides were much larger than the inputs from watershed runoff or direct precipitation. In 2011, the total seasonal input of nitrate from flood tides to the estuary was more than twice as large the inputs from watershed runoff and precipitation, but in 2012, the inputs from flood tides were only marginally larger than the inputs from watershed runoff and precipitation. Turbidity was measured intermittently in 2012, and the pattern that emerged from the measurements indicated that the estuary was a source of particulate matter to the ocean rather than the ocean being a source to the estuary. From the nutrient budgets determined for the estuary it is evident that oceanic sources of nitrate and ammonium are an important part of the supply of nutrients that are contributing to the growth of macroalgae in the estuary. The relative importance of these oceanic nutrients compared with sources within the watershed typically increases as the summer progresses and runoff decreases. It is likely that rising sea levels, estimated by the National Oceanic and Atmospheric Administration to be 11 centimeters from 1950 through 2006 in nearby Bar Harbor, have resulted in an increase in oceanic inputs (tidal volume and nutrients derived from oceanic sources).

  11. Linking Annual N2O Emission in Organic Soils to Mineral Nitrogen Input as Estimated by Heterotrophic Respiration and Soil C/N Ratio

    PubMed Central

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted. PMID:24798347

  12. A nitrogen mass balance for California

    NASA Astrophysics Data System (ADS)

    Liptzin, D.; Dahlgren, R. A.

    2010-12-01

    Human activities have greatly altered the global nitrogen cycle and these changes are apparent in water quality, air quality, ecosystem and human health. However, the relative magnitude of the sources of new reactive nitrogen and the fate of this nitrogen is not well established. Further, the biogeochemical aspects of the nitrogen cycle are often studied in isolation from the economic and social implications of all the transformations of nitrogen. The California Nitrogen Assessment is an interdisciplinary project whose aim is evaluating the current state of nitrogen science, practice, and policy in the state of California. Because of the close proximity of large population centers, highly productive and diverse agricultural lands and significant acreage of undeveloped land, California is a particularly interesting place for this analysis. One component of this assessment is developing a mass balance of nitrogen as well as identifying gaps in knowledge and quantifying uncertainty. The main inputs of new reactive nitrogen to the state are 1) synthetic nitrogen fertilizer, 2) biological nitrogen fixation, and 3) atmospheric nitrogen deposition. Permanent losses of nitrogen include 1) gaseous losses (N2, N2O, NHx, NOy), 2) riverine discharge, 3) wastewater discharge to the ocean, and 4) net groundwater recharge. A final term is the balance of food, feed, and fiber to support the human and animal populations. The largest input of new reactive nitrogen to California is nitrogen fertilizer, but both nitrogen fixation and atmospheric deposition contribute significantly. Non-fertilizer uses, such as the production of nylon and polyurethane, constitutes about 5% of the synthetic N synthesized production. The total nitrogen fixation in California is roughly equivalent on the 400,000 ha of alfalfa and the approximately 40 million ha of natural lands. In addition, even with highly productive agricultural lands, the large population of livestock, in particular dairy cows, requires a net influx of N in feed to the state. In terms of exports, the riverine N loads are smaller than many more mesic climates. Because many of the large population centers are on the coast, N discharged directly from wastewater treatment plants into the ocean is almost four times greater than the N discharge of all of the watersheds in the state combined. Gas losses are estimated through a combination of bottom up approaches using field data, emissions inventories, and numerical models. The largest uncertainties are in emissions of N2 and NH3. Calculated by difference, groundwater N loading represents the largest loss term in the mass balance. Contamination of groundwater with nitrates is a serious concern in many areas of the state. Given the long residence time of groundwater in many aquifers like the Central Valley the current and past N inputs to groundwater pose a hazard to drinking water supplies for decades to come. These calculations along with the analysis of management and policy tools will help elucidate the spatial location or activities that would be best to target to reduce the negative consequences of human alteration of the nitrogen cycle.

  13. Altered water and nitrogen input shifts succession in a southern California coastal sage community.

    PubMed

    Kimball, Sarah; Goulden, Michael L; Suding, Katharine N; Parker, Scot

    Vegetation-type conversions between grasslands and shrublands have occurred worldwide in semiarid regions over the last 150 years. Areas once covered by drought-deciduous shrubs in Southern California (coastal sage scrub) are converting to grasslands dominated by nonnative species. Increasing fire frequency, drought, and nitrogen deposition have all been hypothesized as causes of this conversion, though there is little direct evidence. We constructed rain-out shelters in a coastal sage scrub community following a wildfire, manipulated water and nitrogen input in a split-plot design, and collected annual data on community composition for four years. While shrub cover increased through time in all plots during the postfire succession, both drought and nitrogen significantly slowed recovery. Four years after the fire, average native shrub cover ranged from over 80% in water addition, ambient-nitrogen plots to 20% in water reduction, nitrogen addition plots. Nonnative grass cover was high following the fire and remained high in the water reduction plots through the third spring after the fire, before decreasing in the fourth year of the study. Adding nitrogen decreased the cover of native plants and increased the cover of nonnative grasses, but also increased the growth of one crown-sprouting shrub species. Our results suggest that extreme drought during postfire succession may slow or alter succession, possibly facilitating vegetation-type conversion of coastal sage scrub to grassland. Nitrogen addition slowed succession and, when combined with drought, significantly decreased native cover and increased grass cover. Fire, drought, and atmospheric N deposition are widespread aspects of environmental change that occur simultaneously in this system. Our results imply these drivers of change may reinforce each other, leading to a continued decline of native shrubs and conversion to annual grassland.

  14. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.

    PubMed

    Cocking, Edward C; Stone, Philip J; Davey, Michael R

    2005-12-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium, Gluconacetobacter diazotrophicus that naturally occurs in sugarcane. G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization by G. diazotrophicus, with minimal or zero inputs.

  15. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.

    PubMed

    Cocking, Edward C; Stone, Philip J; Davey, Michael R

    2005-09-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium,Gluconacetobacter diazotrophicus that naturally occurs in sugarcane.G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization byG. diazotrophicus, with minimal or zero inputs.

  16. Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2014-01-01

    Nutrient dynamics based on field observations made along the eastern Hainan Island during the period 2006-2009 were investigated to understand nutrient biogeochemical processes, and to provide an overview of human perturbations of coastal ecosystems in this tropical region. The rivers showed seasonal variations in nutrient concentrations, with enrichment of dissolved inorganic nitrogen and dissolved silicate, and depletion of PO43-. High riverine concentrations of nitrate mainly originated from agricultural fertilizer inputs. The DIN : PO43- ratios ranged from 37 to 1063, suggesting preferential depletion of PO43- relative to nitrogen in rivers. Chemical weathering in the drainage area might explain the high levels of dissolved silicate. Aquaculture ponds contained high concentrations of NH4+ and dissolved organic nitrogen. The particulate phosphorus concentrations in the study area were lower than those reported for estuaries worldwide. The particulate silicate levels in rivers and lagoons were lower than the global average level. Nutrient biogeochemistry in coastal areas was affected by human activities (e.g., aquaculture, agriculture), and by natural phenomena including typhoons. The nutrient concentrations in coastal waters were low because of dispersion of land-derived nutrients in the sea. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes are magnified by estuarine processes (e.g., regeneration, desorption) in estuaries and Laoyehai Lagoon, but not in Xiaohai Lagoon. Riverine and groundwater inputs were the major sources of nutrients to Xiaohai and Laoyehai lagoons, respectively, and riverine inputs and aquaculture effluents were the major sources for the eastern coast of Hainan Island. Nutrient inputs to the coastal ecosystem increased with typhoon-induced runoff of rainwater, elucidating the important influence of typhoons on small tropical rivers.

  17. Correlation of seasonal variations in phosphorous and nitrogen species in upper Black Warrior River with duckweed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabrielson, F.C. Jr.; Malatino, A.M.; Santa Cruz, G.J.

    1980-10-01

    Water samples taken throughout the year from a drainage system that had supported giant duckweed blooms were analyzed for nitrogen and phosphorus. Although seasonal separation of the data indicates possible differences within an imppoundment (Bayview Lake), extreme variations make meaningful conclusions difficult. Daily discharge from a large number of points may have masked seasonal differences. Extensive plant mats were present at minimal levels of nitrogen and phosphorus. The growth rate seemed to be governed more by climate than nutrient conditions. Laboratory investigations indicate that giant duckweed can grow under a wide range of nutrient conditions including high heavy metal concentrations.more » Growth rate data show that without a continual input of nutrients, maximum growth rates do not usually continue beyond 14 to 20 days regardless of the initial single element concentration. With a continuous nutrient input, growth would probably only be inhibited by extreme climate conditions.« less

  18. The whale pump: marine mammals enhance primary productivity in a coastal basin.

    PubMed

    Roman, Joe; McCarthy, James J

    2010-10-11

    It is well known that microbes, zooplankton, and fish are important sources of recycled nitrogen in coastal waters, yet marine mammals have largely been ignored or dismissed in this cycle. Using field measurements and population data, we find that marine mammals can enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of flocculent fecal plumes. Whales and seals may be responsible for replenishing 2.3×10(4) metric tons of N per year in the Gulf of Maine's euphotic zone, more than the input of all rivers combined. This upward "whale pump" played a much larger role before commercial harvest, when marine mammal recycling of nitrogen was likely more than three times atmospheric N input. Even with reduced populations, marine mammals provide an important ecosystem service by sustaining productivity in regions where they occur in high densities.

  19. The Whale Pump: Marine Mammals Enhance Primary Productivity in a Coastal Basin

    PubMed Central

    Roman, Joe; McCarthy, James J.

    2010-01-01

    It is well known that microbes, zooplankton, and fish are important sources of recycled nitrogen in coastal waters, yet marine mammals have largely been ignored or dismissed in this cycle. Using field measurements and population data, we find that marine mammals can enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of flocculent fecal plumes. Whales and seals may be responsible for replenishing 2.3×104 metric tons of N per year in the Gulf of Maine's euphotic zone, more than the input of all rivers combined. This upward “whale pump” played a much larger role before commercial harvest, when marine mammal recycling of nitrogen was likely more than three times atmospheric N input. Even with reduced populations, marine mammals provide an important ecosystem service by sustaining productivity in regions where they occur in high densities. PMID:20949007

  20. Hindcasting of nutrient loadings from its catchment on a highly valuable coastal lagoon: the example of the Fleet, Dorset, UK, 1866–2004

    PubMed Central

    Weber, Geraint J; O'Sullivan, Patrick E; Brassley, Paul

    2006-01-01

    Background Nutrient loadings from its catchment upon The Fleet, a highly valuable coastal lagoon in Southern England, were hindcast for the period AD 1866–2004, using a catchment model, export coefficients, and historical data on land use changes, livestock numbers, and human population. Agriculture was the main nutrient source throughout, other inputs representing minor contributions. Permanent pasture was historically the main land use, with temporary grassland and cereals increasing during the mid-20th century. Sheep, the main 19th century livestock, were replaced by cattle during the 1930s. Results Total nitrogen loadings rose from ca 41 t yr-1 during the late 19th century to 49–54 t yr-1 for the mid-20th, increasing to 98 t yr-1 by 1986. Current values are ca 77 t yr-1. Total phosphorus loads increased from ca 0.75 t yr-1 for the late 19th century to ca 1.6 t yr-1 for the mid-20th, reached ca 2.2 t yr-1 in 1986, and are now ca 1.5 t yr-1. Loadings rose most rapidly between 1946 and 1988, owing to increased use of inorganic fertilisers, and rising sheep and cattle numbers. Livestock were the main nutrient source throughout, but inputs from inorganic fertilisers increased after 1946, peaking in 1986. Sewage treatment works and other sources contribute little nitrogen, but ca 35% of total phosphorus. Abbotsbury Swannery, an ancient Mute Swan community, provides ca 0.5% of total nitrogen, and ca 5% of total phosphorus inputs. Conclusion The Fleet has been grossly overloaded with nitrogen since 1866, climaxing during the 1980s. Total phosphorus inputs lay below 'permissible' limits until the 1980s, exceeding them in inner, less tidal parts of the lagoon, during the 1940s. Loadings on Abbotsbury Bay exceeded 'permissible' limits by the 1860s, becoming 'dangerous' during the mid-20th century. Phosphorus stripping at point sources will not significantly reduce loadings to all parts of the lagoon. Installation of 5 m buffer strips throughout the catchment and shoreline will marginally affect nitrogen loadings, but will reduce phosphorus inputs to the West Fleet below 'permissible' limits. Only a combination of measures will significantly affect Abbotsbury Bay, where, without effluent diversion, loadings will remain beyond 'permissible'. PMID:17196108

  1. Inputs and internal cycling of nitrogen to a causeway influenced, hypersaline lake, Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Naftz, David L.

    2017-01-01

    Nitrogen inputs to Great Salt Lake (GSL), located in the western USA, were quantified relative to the resident nitrogen mass in order to better determine numeric nutrient criteria that may be considered at some point in the future. Total dissolved nitrogen inputs from four surface-water sources entering GSL were modeled during the 5-year study period (2010–2014) and ranged from 1.90 × 106 to 5.56 × 106 kg/year. The railroad causeway breach was a significant conduit for the export of dissolved nitrogen from Gilbert to Gunnison Bay, and in 2011 and 2012, net losses of total nitrogen mass from Gilbert Bay via the Causeway breach were 9.59 × 105 and 1.51 × 106 kg. Atmospheric deposition (wet + dry) was a significant source of nitrogen to Gilbert Bay, exceeding the dissolved nitrogen load contributed via the Farmington Bay causeway surface-water input by >100,000 kg during 2 years of the study. Closure of two railroad causeway culverts in 2012 and 2013 likely initiated a decreasing trend in the volume of the higher density Deep Brine Layer and associated declines in total dissolved nitrogen mass contained in this layer. The large dissolved nitrogen pool in Gilbert Bay relative to the amount of nitrogen contributed by surface-water inflow sources is consistent with the terminal nature of GSL and the predominance of internal nutrient cycling. The opening of the new railroad causeway breach in 2016 will likely facilitate more efficient bidirectional flow between Gilbert and Gunnison Bays, resulting in potentially substantial changes in nutrient pools within GSL.

  2. Changes in Chesapeake Bay Hypoxia over the Past Century

    NASA Astrophysics Data System (ADS)

    Friedrichs, M. A.; Kaufman, D. E.; Najjar, R.; Tian, H.; Zhang, B.; Yao, Y.

    2016-02-01

    The Chesapeake Bay, one of the world's largest estuaries, is among the many coastal systems where hypoxia is a major concern and where dissolved oxygen thus represents a critical factor in determining the health of the Bay's ecosystem. Over the past century, the population of the Chesapeake Bay region has almost quadrupled, greatly modifying land cover and management practices within the watershed. Simultaneously, the Chesapeake Bay has been experiencing a high degree of climate change, including increases in temperature, precipitation, and precipitation intensity. Together, these changes have resulted in significantly increased riverine nutrient inputs to the Bay. In order to examine how interdecadal changes in riverine nitrogen input affects biogeochemical cycling and dissolved oxygen concentrations in Chesapeake Bay, a land-estuarine-ocean biogeochemical modeling system has been developed for this region. Riverine inputs of nitrogen to the Bay are computed from a terrestrial ecosystem model (the Dynamic Land Ecosystem Model; DLEM) that resolves riverine discharge variability on scales of days to years. This temporally varying discharge is then used as input to the estuarine-carbon-biogeochemical model embedded in the Regional Modeling System (ROMS), which provides estimates of the oxygen concentrations and nitrogen fluxes within the Bay as well as advective exports from the Bay to the adjacent Mid-Atlantic Bight shelf. Simulation results from this linked modeling system for the present (early 2000s) have been extensively evaluated with in situ and remotely sensed data. Longer-term simulations are used to isolate the effect of increased riverine nitrogen loading on dissolved oxygen concentrations and biogeochemical cycling within the Chesapeake Bay.

  3. County-level estimates of nitrogen and phosphorus from animal manure for the conterminous United States, 2007 and 2012

    USGS Publications Warehouse

    Gronberg, JoAnn M.; Arnold, Terri L.

    2017-03-24

    County-level estimates of nitrogen and phosphorus inputs from animal manure for the conterminous United States were calculated from animal population inventories in the 2007 and 2012 Census of Agriculture, using previously published methods. These estimates of non-point nitrogen and phosphorus inputs from animal manure were compiled in support of the U.S. Geological Survey’s National Water-Quality Assessment Project of the National Water Quality Program and are needed to support national-scale investigations of stream and groundwater water quality. The estimates published in this report are comparable with older estimates which can be compared to show changes in nitrogen and phosphorus inputs from manure over time.

  4. A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input.

    PubMed

    Qu, Baoyuan; He, Xue; Wang, Jing; Zhao, Yanyan; Teng, Wan; Shao, An; Zhao, Xueqiang; Ma, Wenying; Wang, Junyi; Li, Bin; Li, Zhensheng; Tong, Yiping

    2015-02-01

    Increasing fertilizer consumption has led to low fertilizer use efficiency and environmental problems. Identifying nutrient-efficient genes will facilitate the breeding of crops with improved fertilizer use efficiency. This research performed a genome-wide sequence analysis of the A (NFYA), B (NFYB), and C (NFYC) subunits of Nuclear Factor Y (NF-Y) in wheat (Triticum aestivum) and further investigated their responses to nitrogen and phosphorus availability in wheat seedlings. Sequence mining together with gene cloning identified 18 NFYAs, 34 NFYBs, and 28 NFYCs. The expression of most NFYAs positively responded to low nitrogen and phosphorus availability. In contrast, microRNA169 negatively responded to low nitrogen and phosphorus availability and degraded NFYAs. Overexpressing TaNFYA-B1, a low-nitrogen- and low-phosphorus-inducible NFYA transcript factor on chromosome 6B, significantly increased both nitrogen and phosphorus uptake and grain yield under differing nitrogen and phosphorus supply levels in a field experiment. The increased nitrogen and phosphorus uptake may have resulted from the fact that that overexpressing TaNFYA-B1 stimulated root development and up-regulated the expression of both nitrate and phosphate transporters in roots. Our results suggest that TaNFYA-B1 plays essential roles in root development and in nitrogen and phosphorus usage in wheat. Furthermore, our results provide new knowledge and valuable gene resources that should be useful in efforts to breed crops targeting high yield with less fertilizer input. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. A Wheat CCAAT Box-Binding Transcription Factor Increases the Grain Yield of Wheat with Less Fertilizer Input1

    PubMed Central

    Qu, Baoyuan; He, Xue; Wang, Jing; Zhao, Yanyan; Teng, Wan; Shao, An; Zhao, Xueqiang; Ma, Wenying; Wang, Junyi; Li, Bin; Li, Zhensheng; Tong, Yiping

    2015-01-01

    Increasing fertilizer consumption has led to low fertilizer use efficiency and environmental problems. Identifying nutrient-efficient genes will facilitate the breeding of crops with improved fertilizer use efficiency. This research performed a genome-wide sequence analysis of the A (NFYA), B (NFYB), and C (NFYC) subunits of Nuclear Factor Y (NF-Y) in wheat (Triticum aestivum) and further investigated their responses to nitrogen and phosphorus availability in wheat seedlings. Sequence mining together with gene cloning identified 18 NFYAs, 34 NFYBs, and 28 NFYCs. The expression of most NFYAs positively responded to low nitrogen and phosphorus availability. In contrast, microRNA169 negatively responded to low nitrogen and phosphorus availability and degraded NFYAs. Overexpressing TaNFYA-B1, a low-nitrogen- and low-phosphorus-inducible NFYA transcript factor on chromosome 6B, significantly increased both nitrogen and phosphorus uptake and grain yield under differing nitrogen and phosphorus supply levels in a field experiment. The increased nitrogen and phosphorus uptake may have resulted from the fact that that overexpressing TaNFYA-B1 stimulated root development and up-regulated the expression of both nitrate and phosphate transporters in roots. Our results suggest that TaNFYA-B1 plays essential roles in root development and in nitrogen and phosphorus usage in wheat. Furthermore, our results provide new knowledge and valuable gene resources that should be useful in efforts to breed crops targeting high yield with less fertilizer input. PMID:25489021

  6. Controls on Nitrogen Retention and Loss in Urban and Rural Forest Ecosystems.

    NASA Astrophysics Data System (ADS)

    Templer, P. H.

    2011-12-01

    Human activities, such as the burning of fossil fuels and production of fertilizer, have increased the amount of nitrogen deposited onto terrestrial ecosystems. In addition to changes in atmospheric deposition of nitrogen, other human-induced disturbances have led to dramatic shifts in forest composition of the United States over the last 100 years. Tree species composition of many forests is changing in response to introduced pests and pathogens, competition with introduced plant species and changes in climate. Understanding the combined effects of increased nitrogen inputs and changes in plant species composition on forest nitrogen cycling is critical to our understanding of forest biogeochemistry and nutrient budgets. Despite several decades of research on the effects of atmospheric nitrogen deposition, there is still significant uncertainty about the factors that regulate nitrogen retention and loss in forest ecosystems. The use of natural abundance stable isotopes of nitrogen and oxygen has proven to be a powerful tool for tracing the sources of nitrate in water, from inputs to leaching, as it moves through an ecosystem. The evaluation of natural abundance nitrogen values in atmospheric deposition has been used to partition sources of nitrogen, such as coal-fired power plants vs. tailpipe exhaust, since each of their isotopic signatures is distinct. Similarly, natural abundance oxygen values of nitrate in atmospheric inputs and soil leachate have been used as a tool to partition sources of nitrate between precipitation and nitrate produced microbially during nitrification. We measured the natural abundance isotopic composition of nitrate to quantify rates of nitrogen inputs to the forest and to determine rates of nitrogen losses from healthy, declining and preemptively cut eastern hemlock (Tsuga canadensis) stands in both an urban forest at the Arnold Arboretum in Boston, MA, and a rural forest at Harvard Forest in Petersham, MA. The hemlock woolly adelgid (Adelges tsugae Annand), an introduced aphid-like insect from Japan, threatens hemlock stands throughout the eastern United States. The hemlock woolly adelgid was first reported in forests of the eastern United States in the early 1950s and is currently leading to mortality of eastern hemlock trees from Georgia to Massachusetts. We found that rates of nitrogen inputs to the forest floor were 4-5 times greater, and rates of nitrogen losses via leachate were more than ten times greater, at the Arnold Arboretum compared to Harvard Forest. Our results also show that current management regimes used to control the hemlock woolly adelgid, such as salvage cutting, may be reducing nitrogen losses in urban areas due to rapid regrowth of vegetation and the associated uptake of nitrogen by those plants. In contrast, cutting of trees in rural areas may be leading to proportionately greater losses of nitrogen in those sites, though the total magnitude of nitrogen lost is still smaller than in urban sites. Results of this study suggest that the combination of the hemlock woolly adelgid, atmospheric nitrogen inputs and management practices lead to changes in the nitrogen cycle within eastern hemlock forest ecosystems.

  7. Removal of organic matter and ammonia nitrogen from landfill leachate by ultrasound.

    PubMed

    Wang, Songlin; Wu, Xiaohui; Wang, Yansong; Li, Qifen; Tao, Meijun

    2008-09-01

    Experiments on the removal of organic matters and ammonia nitrogen from landfill leachate by ultrasound irradiation were carried out. The effects of COD reduction and ammonia removal of power input, initial concentration, initial pH and aeration were studied. It was found that the sonolysis of organic matters proceeds via reaction with ()OH radicals; a thermal reaction also occurs with a small contribution. The rise of COD at some intervals could be explained by the complexity of organic pollutant sonolysis in landfill leachate. Ultrasonic irradiation was shown to be an effective method for the removal of ammonia nitrogen from landfill leachate. After 180 min ultrasound irradiation, up to 96% ammonia nitrogen removal efficiency can be obtained. It was found that the mechanism of ammonia nitrogen removal by ultrasound irradiation is largely that the free ammonia molecules in leachate enter into the cavitation bubbles and transform into nitrogen molecules and hydrogen molecules via pyrolysis under instant high temperature and high pressure in the cavitation bubbles.

  8. A 100-year sedimentary record of natural and anthropogenic impacts on a shallow eutrophic lake, Lake Chaohu, China.

    PubMed

    Zan, Fengyu; Huo, Shouliang; Xi, Beidou; Zhu, Chaowei; Liao, Haiqing; Zhang, Jingtian; Yeager, Kevin M

    2012-03-01

    In this study, the sediment profiles of total organic carbon, total nitrogen, C/N ratios, total phosphorus, N/P ratios, C/P ratios, particle sizes, and stable carbon and nitrogen isotopes (δ(13)C and δ(15)N) were used to investigate natural and anthropogenic impacts on Lake Chaohu over the past 100 years. Before 1960, Lake Chaohu experienced low productivity and a relatively steady and low nutrient input. The increasing concentration and fluxes of total organic carbon, total nitrogen, total phosphorus, together with changes in the δ(13)C and δ(15)N of organic material in the sediment cores, suggested that the anthropogenic effects on trophic status first started because of an increase in nutrient input caused by a population increase in the drainage area. With the construction of the Chaohu Dam, an increase in the utilization of fertilizer and the population growth which occurred since 1960, stable depositional conditions and increasing nutrient input resulted in a dominantly algae-derived organic matter source and high productivity. Nutrient input increased most significantly around 1980 following the rapidly growing population, with concomitant urbanization, industrial and agricultural development. This study also revealed that the concentration and distribution of nutrients varied between different areas of sediment within Lake Chaohu because of the influence of different drainage basins and pollution sources. This journal is © The Royal Society of Chemistry 2012

  9. Using Bayesian Belief Networks to Explore the Effects of Nitrogen Inputs on Wetland Ecosystem Services

    EPA Science Inventory

    Increased reactive nitrogen (Nr) inputs to freshwater wetlands resulting from infrastructure development due to population growth along with intensive agricultural practices associated with food production can threaten regulating (i.e. climate change, water purification, and wast...

  10. Impact of bioenergy on regionalized nitrogen balances

    NASA Astrophysics Data System (ADS)

    Häußermann, Uwe; Klement, Laura; Bach, Martin

    2017-04-01

    Results of regionalized and overall net-N-balances are used to fulfil different reporting obligations, as well as input data for nitrate leaching modelling (Bach et al. 2014). For Germany, these regionalized net-N-balances are calculated for 402 administrative units on the NUTS-III-level (Landkreise and kreisfreie Städte in Germany), 16 administrative units on the NUTS-I-level (Bundesländer in Germany) and the whole country for every year from 1995 to 2015. The so far existing net-N-balancing method includes nitrogen inputs and outputs of crop production and animal husbandry, however, not the utilization of crops and farmyard manure for energy production (Bach et al. 2014). Due to the introduction of guaranteed feed in tariffs for electricity production from biomass by the German renewable energy law in 2000 and the introduction of more favourable conditions for electricity production from biogas in 2004 (EEG 2000, EEG 2004) in the frame of the German policy of energy transition towards renewable energies („Energiewende"), the electric capacity of biogas plants had a steep increase in the years afterwards, the installed electric capacity increased from 149 MW in 2004 to 5080 MW in 2015 (BMWi and AGEE Stat 2016). The cropping area for the production of energy cops for biogas production increased as well from 0.4 Mio ha in 2007 to 1.393 Mio ha in 2015 (Statista 2017). We introduced a method to calculate the nitrogen input via energy crops, farmyard manure and organic waste, output via biogas digestates and gaseous nitrogen losses via NH3, N2O, NOx and N2 during the anaerobic digestion, digestate storage and spreading on the field, the emission factors for these nitrogen species are obtained from the report on methods and data for the agricultural part of the German national greenhouse gas inventory and informative inventory report (Haenel et al. 2016). To obtain highly resolved information on the distribution and capacity of biogas plants on NUTS-III-level, we use a dataset which is kept and regularly updated by the Germany Federal Network Agency („Bundesnetzagentur") (Bundesnetzagentur 2016). These dataset does not include information about substrate input and therefore need to be intersect with regionalized substrate input data (DBFZ 2012), and to obtain nitrogen input quantities with the nitrogen content of these substrates (KTBL 2016). Without including bioenergy production, the linear trend of the net-N-surplus in 2003 to 2014 for Germany is -1.66x + 71.25 kg N (ha LF a)-1? , therefore, an overall decrease of the net-N-surplus of 18.3 kg N ha LF-1 within 11 years was calculated. No such decrease was calculated, when biogas production was included into the net-N-balance.

  11. Where did all the Nitrogen go? Use of Watershed-Scale Budgets to Quantify Nitrogen Inputs, Storages, and Losses.

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Goodale, C. L.; Howarth, R. W.; VanBreemen, N.

    2001-12-01

    Inputs of nitrogen (N) to aquatic and terrestrial ecosystems have increased during recent decades, primarily from the production and use of fertilizers, the planting of N-fixing crops, and the combustion of fossil fuels. We present mass-balanced budgets of N for 16 catchments along a latitudinal profile from Maine to Virginia, which encompass a range of climatic variability and are major drainages to the coast of the North Atlantic Ocean. We quantify inputs of N to each catchment from atmospheric deposition, application of nitrogenous fertilizers, biological nitrogen fixation by crops and trees, and import of N in agricultural products (food and feed). We relate these input terms to losses of N (total, organic, and nitrate) in streamflow. The importance of the relative N sources to N exports varies widely by watershed and is related to land use. Atmospheric deposition was the largest source of N to the forested catchments of northern New England (e.g., Penobscot and Kennebec); import of N in food was the largest source of N to the more populated regions of southern New England (e.g., Charles and Blackstone); and agricultural inputs were the dominant N sources in the Mid-Atlantic region (e.g., Schuylkill and Potomac). In all catchments, N inputs greatly exceed outputs, implying additional loss terms (e.g., denitrification or volatilization and transport of animal wastes), or changes in internal N stores (e.g, accumulation of N in vegetation, soil, or groundwater). We use our N budgets and several modeling approaches to constrain estimates about the fate of this excess N, including estimates of N storage in accumulating woody biomass, N losses due to in-stream denitrification, and more. This work is an effort of the SCOPE Nitrogen Project.

  12. Isotopic evidence for nitrogen mobility in peat bogs

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Stepanova, Marketa; Jackova, Ivana; Vile, Melanie A.; Wieder, R. Kelman; Buzek, Frantisek; Adamova, Marie; Erbanova, Lucie; Fottova, Daniela; Komarek, Arnost

    2014-05-01

    Elevated nitrogen (N) input may reduce carbon (C) storage in peat. Under low atmospheric deposition, most N is bound in the moss layer. Under high N inputs, Sphagnum is not able to prevent penetration of dissolved N to deeper peat. Nitrogen may become available to the roots of invading vascular plants. The concurrent oxygenation of deeper peat layers, along with higher supply of labile organic C, may enhance microbial decomposition and lead to peat thinning. The resulting higher emissions of greenhouse gases may accelerate global warming. Seepage of N to deeper peat has never been quantified. Here we present evidence for post-depositional mobility of atmogenic N in peat, based on natural-abundance N isotope ratios. We conducted a reciprocal peat transplant experiment between two Sphagnum-dominated peat bogs in the Czech Republic (Central Europe), differing in anthropogenic N inputs. The northern site VJ received as much as 33 kg N ha-1 yr-1 via spruce canopy throughfall. The southern site was less polluted (17.6 kg N ha-1 yr-1). Isotope signatures of living moss differed between the two sites (δ15N of -3‰ and -7‰ at VJ and CB, respectively). After 18 months, an isotope mass balance was constructed. In the CB-to-VJ transplant, a significant portion of original CB nitrogen (98-31%) was removed and replaced by nitrogen of the host site throughout the top 10 cm of the profile. Nitrogen, deposited at VJ, was immobilized in imported CB peat that was up to 20 years old. Additionally, we compared N concentration and N accumulation rates in 210Pb-dated peat profiles with well-constrained data on historical atmospheric N pollution. Nationwide N emissions peaked in 1990, while VJ exhibited the highest N content in peat that formed in 1930. This de-coupling of N inputs and N retention in peat might be interpreted as a result of translocation of dissolved pollutant N downcore, corroborating our δ15N results at VJ and CB. Data from a variety of peat bogs along pollution and climatic gradients would be needed to test to what extent the record of atmospheric N inputs in peat is overprinted by variable, locally-controlled decomposition rates.

  13. Changes in nitrogen budget and potential risk to the environment over 20years (1990-2010) in the agroecosystems of the Haihe Basin, China.

    PubMed

    Zheng, Mengmeng; Zheng, Hua; Wu, Yingxia; Xiao, Yi; Du, Yihua; Xu, Weihua; Lu, Fei; Wang, Xiaoke; Ouyang, Zhiyun

    2015-02-01

    The nitrogen balance can serve as an indicator of the risk to the environment of nitrogen loss from agricultural land. To investigate the temporal and spatial changes in agricultural nitrogen application and its potential threat to the environment of the Haihe Basin in China, we used a database of county-level agricultural statistics to calculate agricultural nitrogen input, output, surplus intensity, and use efficiency. Chemical fertilizer nitrogen input increased by 51.7% from 1990 to 2000 and by 37.2% from 2000 to 2010, concomitant with increasing crop yields. Simultaneously, the nitrogen surplus intensity increased by 53.5% from 1990 to 2000 and by 16.5% from 2000 to 2010, presenting a continuously increased environmental risk. Nitrogen use efficiency decreased from 0.46 in 1990 to 0.42 in 2000 and remained constant at 0.42 in 2010, partly due to fertilizer composition and type improvement. This level indicates that more than half of nitrogen inputs are lost in agroecosystems. Our results suggest that although the improvement in fertilizer composition and types has partially offset the decrease in nitrogen use efficiency, the environmental risk has still increased gradually over the past 20 years, along with the increase in crop yields and nitrogen application. It is important to achieve a better nitrogen balance through more effective management to significantly reduce the environmental risk, decrease nitrogen surplus intensity, and increase nitrogen use efficiency without sacrificing crop yields. Copyright © 2014. Published by Elsevier B.V.

  14. Denitrification Rates in a Lake Superior Coastal Wetland

    EPA Science Inventory

    Inputs of anthropogenic nitrogen to the Nation’s aquatic ecosystems have increased substantially over the past several decades. Nitrogen inputs to Lake Superior since about 1900 have increased at a rate of about 2% per year, doubling about every 35 years (Bennett, 1986), althoug...

  15. Assessing variable rate nitrogen fertilizer strategies within an extensively instrument field site using the MicroBasin model

    NASA Astrophysics Data System (ADS)

    Ward, N. K.; Maureira, F.; Yourek, M. A.; Brooks, E. S.; Stockle, C. O.

    2014-12-01

    The current use of synthetic nitrogen fertilizers in agriculture has many negative environmental and economic costs, necessitating improved nitrogen management. In the highly heterogeneous landscape of the Palouse region in eastern Washington and northern Idaho, crop nitrogen needs vary widely within a field. Site-specific nitrogen management is a promising strategy to reduce excess nitrogen lost to the environment while maintaining current yields by matching crop needs with inputs. This study used in-situ hydrologic, nutrient, and crop yield data from a heavily instrumented field site in the high precipitation zone of the wheat-producing Palouse region to assess the performance of the MicroBasin model. MicroBasin is a high-resolution watershed-scale ecohydrologic model with nutrient cycling and cropping algorithms based on the CropSyst model. Detailed soil mapping conducted at the site was used to parameterize the model and the model outputs were evaluated with observed measurements. The calibrated MicroBasin model was then used to evaluate the impact of various nitrogen management strategies on crop yield and nitrate losses. The strategies include uniform application as well as delineating the field into multiple zones of varying nitrogen fertilizer rates to optimize nitrogen use efficiency. We present how coupled modeling and in-situ data sets can inform agricultural management and policy to encourage improved nitrogen management.

  16. Spatial and Temporal Variations of Crop Fertilization and Soil Fertility in the Loess Plateau in China from the 1970s to the 2000s

    PubMed Central

    Wang, Xiaoying; Tong, Yanan; Gao, Yimin; Gao, Pengcheng; Liu, Fen; Zhao, Zuoping; Pang, Yan

    2014-01-01

    Increased fertilizer input in agricultural systems during the last few decades has resulted in large yield increases, but also in environmental problems. We used data from published papers and a soil testing and fertilization project in Shaanxi province during the years 2005 to 2009 to analyze chemical fertilizer inputs and yields of wheat (Triticum aestivum L.) and maize (Zea mays L.) on the farmers' level, and soil fertility change from the 1970s to the 2000s in the Loess Plateau in China. The results showed that in different regions of the province, chemical fertilizer NPK inputs and yields of wheat and maize increased. With regard to soil nutrient balance, N and P gradually changed from deficit to surplus levels, while K deficiency became more severe. In addition, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium increased during the same period. The PFP of N, NP and NPK on wheat and maize all decreased from the 1970s to the 2000s as a whole. With the increase in N fertilizer inputs, both soil total nitrogen and alkali-hydrolysis nitrogen increased; P fertilizer increased soil available phosphorus and K fertilizer increased soil available potassium. At the same time, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium all had positive impacts on crop yields. In order to promote food safety and environmental protection, fertilizer requirements should be assessed at the farmers' level. In many cases, farmers should be encouraged to reduce nitrogen and phosphate fertilizer inputs significantly, but increase potassium fertilizer and organic manure on cereal crops as a whole. PMID:25380401

  17. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary

    NASA Astrophysics Data System (ADS)

    Santos, Isaac R.; Burnett, William C.; Dittmar, Thorsten; Suryaputra, I. G. N. A.; Chanton, Jeffrey

    2009-03-01

    We hypothesize that nutrient cycling in a Gulf of Mexico subterranean estuary (STE) is fueled by oxygen and labile organic matter supplied by tidal pumping of seawater into the coastal aquifer. We estimate nutrient production rates using the standard estuarine model and a non-steady-state box model, separate nutrient fluxes associated with fresh and saline submarine groundwater discharge (SGD), and estimate offshore fluxes from radium isotope distributions. The results indicate a large variability in nutrient concentrations over tidal and seasonal time scales. At high tide, nutrient concentrations in shallow beach groundwater were low as a result of dilution caused by seawater recirculation. During ebb tide, the concentrations increased until they reached a maximum just before the next high tide. The dominant form of nitrogen was dissolved organic nitrogen (DON) in freshwater, nitrate in brackish waters, and ammonium in saline waters. Dissolved organic carbon (DOC) production was two-fold higher in the summer than in the winter, while nitrate and DON production were one order of magnitude higher. Oxic remineralization and denitrification most likely explain these patterns. Even though fresh SGD accounted for only ˜5% of total volumetric additions, it was an important pathway of nutrients as a result of biogeochemical inputs in the mixing zone. Fresh SGD transported ˜25% of DOC and ˜50% of total dissolved nitrogen inputs into the coastal ocean, with the remainder associated with a one-dimensional vertical seawater exchange process. While SGD volumetric inputs are similar seasonally, changes in the biogeochemical conditions of this coastal plain STE led to higher summertime SGD nutrient fluxes (40% higher for DOC and 60% higher for nitrogen in the summer compared to the winter). We suggest that coastal primary production and nutrient dynamics in the STE are linked.

  18. Fodder Resource Uses and Assessment of Nitrogen Flows on Livestock Farming with Crop Production

    NASA Astrophysics Data System (ADS)

    Shirahase, Kyoko; Kobayashi, Hisashi

    With understanding the livestock farming on cattle breeding practiced increasing of self-production of fodders by the farmland's operation as “Livestock Farming with crop production”, we investigated the utilizations of actual fodder resources and farmland for two selected different types of livestock farming systems: “Multiple Type” which practices cattle raising with fodder cultivation, and “Grazing Type” which practices grazing and fodder cultivation with similar feed self-sufficiency rates. We also prepared and compared material and nitrogen flow of both livestock farming systems. The amount of nitrogen flow is clearly different between the two types though feed self-sufficiency rates are at similar level. Moreover, we defined “Internal Nitrogen Rate (INR)” which indicates the rate of internal nitrogen use to total nitrogen use in cattle raising, “Internal Nitrogen Circulation Rate (NCR)” which indicates the ratio of nitrogen amount in internal circulation to the nitrogen amount introduced from outside, and Nitrogen Outflow Potential (Op), which is the balance of nitrogen amount between input to farmlands and uptake by plants, and analyzed the balance of the amounts of nitrogen flows in both livestock farming type. It is suggested that “Grazing type”, which had the values of relatively high NCR and absolutely low Op, was the livestock farming type with high rates of nitrogen procurement from the interregional farming and low risk of nitrogen outflow.

  19. Effects of nitrogen fertilization strategies on nitrogen use efficiency in physiology, recovery, and agronomy and redistribution of dry matter accumulation and nitrogen accumulation in two typical rice cultivars in Zhejiang, China.

    PubMed

    Xie, Wen-xia; Wang, Guang-huo; Zhang, Qi-chun; Guo, Hai-chao

    2007-03-01

    Field experiments were conducted in farmers' rice fields in 2001 and 2002 to study the effects of nitrogen (N) management strategies on N use efficiency in recovery (RE), agronomy (AE) and physiology (PE) and redistribution of dry matter accumulation (DMA) and nitrogen accumulation (NA) in two typical rice cultivars in Jinhua, Zhejiang Province. This study aimed mainly at identifying the possible causes of poor fertilizer N use efficiency (NUE) of rice in Zhejiang by comparing farmers' fertilizer practice (FFP) with advanced site-specific nutrient management (SSNM) and real-time N management (RTNM). The results showed that compared to FFP, SSNM and RTNM reduced DMA and NA before panicle initiation and increased DMA and NA at post-flowering. There is no significant difference between SSNM and FFP in post-flowering dry matter redistribution (post-DMR) and post-flowering nitrogen redistribution (post-NR). These results suggest that high input rate of fertilizer N and improper fertilizer N timing are the main factors causing low NUE of irrigated rice in the farmer's routine practice of Zhejiang. With SSNM, about 15% of the current total N input in direct-seeding early rice and 45% in single rice could be reduced without yield loss in Zhejiang, China.

  20. Tracing anthropogenic inputs to production in the Seto Inland Sea, Japan--a stable isotope approach.

    PubMed

    Miller, Todd W; Omori, Koji; Hamaoka, Hideki; Shibata, Jun-ya; Hidejiro, Onishi

    2010-10-01

    The Seto Inland Sea (SIS) receives waste runoff from ∼24% of Japan's total population, yet it is also important in regional fisheries, recreation and commerce. During August 2006 we measured carbon and nitrogen stable isotopes of particulate organic matter (POM) and zooplankton across urban population gradients of the SIS. Results showed a consistent trend of increasing δ(15)N in POM and zooplankton from the western to eastern subsystems of the SIS, corresponding to increasing population load. Principal components analysis of environmental variables indicated high positive loadings of δ(15)N and δ(13)C with high chlorophyll-a and surface water temperatures, and negative loadings of low salinities related to inputs from large rivers and high urban development in the eastern SIS. Anthropogenic nitrogen was therefore readily integrated into the SIS food web from primary production to copepods, which are a critical food source for many commercially important fishes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Nitrogen Bsalance for a Plantation Forest Drainage Canal on the North Carolina Coastal Plain

    USDA-ARS?s Scientific Manuscript database

    Human alteration of the nitrogen cycle has led to increased riverine nitrogen loads, contributing to the eutrophication of lakes, streams, estuaries, and near-coastal oceans. These riverine nitrogen loads are usually less than the total nitrogen inputs to the system, indicating nitrogen removal duri...

  2. MEAD Marine Effects of Atmospheric Deposition

    NASA Astrophysics Data System (ADS)

    Jickells, T.; Spokes, L.

    2003-04-01

    The coastal seas are one of the most valuable resources on the planet but they are threatened by human activity. We rely on the coastal area for mineral resources, waste disposal, fisheries and recreation. In Europe, high population densities and high levels of industrial activity mean that the pressures arising from these activities are particularly acute. One of the main problems concerning coastal seas is the rapid increase in the amounts of nitrogen-based pollutants entering the water. They come from many sources, the most important ones being traffic, industry and agriculture. These pollutants can be used by algae as nutrients. The increasing concentrations of these nutrients have led to excessive growth of algae, some of which are harmful. When algae die and decay, oxygen in the water is used up and the resulting lower levels of oxygen may lead to fish kills. Human activity has probably doubled the amount of chemically and biologically reactive nitrogen present globally. In Europe the increases have been greater than this, leading to real concern over the health of coastal waters. Rivers have, until recently, been thought to be the most important source of reactive nitrogen to the coastal seas but we now know that inputs from the atmosphere are large and can equal, or exceed, those from the rivers. Our initial hypothesis was that atmospheric inputs are important and potentially different in their effect on coastal ecosystems to riverine inputs and hence require different management strategies. However, we had almost no information on the direct effects of atmospheric deposition on marine ecosystems, though clearly such a large external nitrogen input should lead to enhanced phytoplankton growth The aim of this European Union funded MEAD project has been to determine how inputs of nitrogen from the atmosphere affect the chemistry and biology of coastal waters. To try to answer this, we have conducted field experiments in the Kattegat, an area where we know atmospheric deposition to be an important source of nitrogen and where various eutrophication problems are evident. Fieldwork has involved atmospheric and water column measurements using ships, automated buoys and coastal stations. The results obtained have then been used in computer models which allow us to determine how atmospheric pollutants are transported in the atmosphere, deposited to the ocean and how this affects the growth of algae. These models have then been used to predict whether changing the amounts and types of pollutants entering the atmosphere will affect algal growth in coastal waters. We have also used existing monitoring data on phytoplankton abundance in the Kattegat in a retrospective analysis to identify incidences of blooms and test for any relation between these and atmospheric deposition. The final product of the MEAD project has been an improved scientific understanding of the transport and deposition of nitrogen in coastal waters and the effect of such deposition on phytoplankton ecosystems. These results will, we hope, allow policy makers to make rational decisions as to whether increased regulation of atmospheric nitrogen emissions are necessary.

  3. Water fluxes and diffuse nitrate pollution at river basin scale: coupling of agro-economic models and hydrological approaches.

    PubMed

    Wendland, F; Kunkel, R; Bogena, H; Gömann, H; Kreins, P

    2007-01-01

    An integrated model system has been developed to estimate the impact of nitrogen reduction measures on the nitrogen load in groundwater and in river catchment areas. The focus lies on an area-wide, regionally differentiated, consistent link-up between the indicator "nitrogen balance surplus" and nitrogen charges into surface waters. As a starting point of the analysis actual nitrogen surpluses in the soil were quantified using the agro-economic RAUMIS-model, which considers the most important N-inputs to the soil and N-removals from the soil through crop harvest. The most important pathways for diffuse nitrogen inputs into river systems are modelled with the water balance model GROWA. Additionally, the time-dependent nitrogen degradation along the nitrogen pathways in soil and groundwater are modelled using the WEKU-model. The two selected river basins in Germany cover a variety of landscape units with different hydrological, hydrogeological and socio-economic characteristics. The results indicate a wide range of annual nitrogen surpluses for the rural areas between than 10 kg N ha(-1) x a(-1) and 200 kg N ha(-1) x a(-1) or more, depending on the type and intensity of farming. The level of nitrogen inputs into the surface waters is reduced because of degradation processes during transport in soil and groundwater. Policy impact analyses for a nitrogen tax and a limitation of the livestock density stress the importance of regionally adjusted measures.

  4. Trends in nitrogen isotope ratios of juvenile winter flounder reflect changing nitrogen inputs to Rhode Island, USA estuarine systems.

    PubMed

    Pruell, Richard J; Taplin, Bryan K; Miller, Kenneth M

    2017-05-15

    Nitrogen isotope ratios (δ 15 N) in juvenile winter flounder, Pseudopleuronectes americanus, were used to examine changes in nitrogen inputs to several Rhode Island, USA estuarine systems. Fish were collected over two three-year periods with a ten-year interval between sampling periods (2002-2004 and 2012-2014). During that interval numerous changes to nutrient management practices were initiated in the watersheds of these estuarine systems including the upgrade of several major wastewater treatment facilities that discharge to Narragansett Bay, which significantly reduced nitrogen inputs. Following these reductions, the δ 15 N values of flounder in several of the systems decreased as expected; however, isotope ratios in fish from upper Narragansett Bay significantly increased. We believe that low δ 15 N values measured in 2002-2004 were related to concentration-dependent fractionation at this location. Increased δ 15 N values measured between 2012 and 2014 may indicate reduced fractionation or that changes in wastewater treatment processes altered the nitrogen isotopic ratios of the effluents. Published by Elsevier Ltd.

  5. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep

    2014-05-01

    The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.

  6. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae.

    PubMed

    Thornber, Carol S; DiMilla, Peter; Nixon, Scott W; McKinney, Richard A

    2008-02-01

    The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and delta(15)N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in delta(15)N among sites, but with two exceptions had delta(15)N above 10 per thousand, reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals (delta(15)N= approximately 14-17 per thousand and 8-12 per thousand, respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries.

  7. Nitrogen and phosphorus in streams of the Great Miami River Basin, Ohio, 1998-2000

    USGS Publications Warehouse

    Reutter, David C.

    2003-01-01

    Sources and loads of nitrogen and phosphorus in streams of the Great Miami River Basin were evaluated as part of the National Water-Quality Assessment program. Water samples were collected by the U.S. Geological Survey from October 1998 through September 2000 (water years 1999 and 2000) at five locations in Ohio on a routine schedule and additionally during selected high streamflows. Stillwater River near Union, Great Miami River near Vandalia, and Mad River near Eagle City were selected to represent predominantly agricultural areas upstream from the Dayton metropolitan area. Holes Creek near Kettering is in the Dayton metropolitan area and was selected to represent an urban area in the Great Miami River Basin. Great Miami River at Hamilton is downstream from the Dayton and Hamilton-Middletown metropolitan areas and was selected to represent mixed agricultural and urban land uses of the Great Miami River Basin. Inputs of nitrogen and phosphorus to streams from point and nonpoint sources were estimated for the three agricultural basins and for the Great Miami River Basin as a whole. Nutrient inputs from point sources were computed from the facilities that discharge one-half million gallons or more per day into streams of the Great Miami River Basin. Nonpoint-source inputs estimated in this report are atmospheric deposition and commercial-fertilizer and manure applications. Loads of ammonia, nitrate, total nitrogen, orthophosphate, and total phosphorus from the five sites were computed with the ESTIMATOR program. The computations show nitrate to be the primary component of instream nitrogen loads, and particulate phosphorus to be the primary component of instream phosphorus loads. The Mad River contributed the smallest loads of total nitrogen and total phosphorus to the study area upstream from Dayton, whereas the Upper Great Miami River (upstream from Vandalia) contributed the largest loads of total nitrogen and total phosphorus to the Great Miami River Basin upstream from Dayton. An evaluation of monthly mean loads shows that nutrient loads were highest during winter 1999 and lowest during the drought of summer and autumn 1999. During the 1999 drought, point sources were the primary contributors of nitrogen and phosphorus loads to most of the study area. Nonpoint sources, however, were the primary contributors of nitrogen and phosphorus loads during months of high streamflow. Nonpoint sources were also the primary contributors of nitrogen loads to the Mad River during the 1999 drought, owing to unusually large amounts of ground-water discharge to the stream. The Stillwater River Basin had the highest nutrient yields in the study area during months of high streamflow; however, the Mad River Basin had the highest yields of all nutrients except ammonia during the months of the 1999 drought. The high wet-weather yields in the Stillwater River Basin were caused by agricultural runoff, whereas high yields in the Mad River Basin during drought resulted from the large, sustained contribution of ground water to streamflow throughout the year. In the basins upstream from Dayton, an estimated 19 to 25 percent of the nonpoint source of nitrogen and 4 to 5 percent of the nonpoint source of phosphorus that was deposited or applied to the land was transported into streams.

  8. Distribution of Argon Arc Contaminated with Nitrogen as Function of Frequency in Pulsed TIG Welding

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    TIG arc welding is the high-quality and much applicable material joining technology. However, the current has to be small because the cathode melting should be prevented. In this case, the heat input to the welding pool becomes low, then, the welding defect sometimes occurs. The pulsed TIG arc welding is used to improve this disadvantage This welding can be controlled by some current parameters such as frequency However, few report has reported the distribution of argon arc contaminated with nitrogen It is important to prevent the contamination of nitrogen because the melting depth increases in order to prevent the welding defects. In this paper, the distribution of argon arc contaminated as function of frequency with nitrogen in pulsed TIG welding is elucidated. The nitrogen concentration, the radial flow velocity, the arc temperature were calculated using the EMTF simulation when the time reached at the base current. As a result, the nitrogen concentration into the arc became low with increasing the frequency The diffusion coefficient decreased because of the decrement of temperature over 4000 K. In this case, the nitrogen concentration became low near the anode. Therefore, the nitrogen concentration became low because the frequency is high.

  9. COUPLING BETWEEN THE COASTAL OCEAN AND YAQUINA BAY, OREGON: THE IMPORTANCE OF OCEANIC INPUTS RELATIVE TO OTHER NITROGEN SOURCES

    EPA Science Inventory

    Understanding of the role of oceanic input in nutrient loadings is important for understanding nutrient and phytoplankton dynamics in estuaries adjacent to coastal upwelling regions as well as determining the natural background conditions. We examined the nitrogen sources to Yaqu...

  10. Performance of low-input turfgrass species as affected by mowing and nitrogen fertilization in Minnesota

    USDA-ARS?s Scientific Manuscript database

    In Minnesota, most lawns and higher cut turfgrass areas consist primarily of species such as Kentucky bluegrass (Poa pratensis L.) and perennial ryegrass (Lolium perenne L.) that require significant management inputs such as frequent mowing and nitrogen fertility. Several studies have shown that oth...

  11. INPUT-OUTPUT BUDGETS OF INORGANIC NITROGEN FOR 24 FOREST WATERSHEDS IN THE NORTHEASTERN UNITED STATES: A REVIEW

    EPA Science Inventory

    Input-output budgets for dissolved inorganic nitrogen (DIN) are summarized for 24 small watersheds at 15 locations in the northeasternUnited States. The study watersheds are completely forested, free of recent physical disturbances, and span a geographical region bounded by West ...

  12. Spatial Variability of Nitrogen Isotope Ratios of Particulate Material from Northwest Atlantic Continental Shelf Waters

    EPA Science Inventory

    Human encroachment on the coastal zone has led to a rise in the delivery of nitrogen (N) to estuarine and near-shore waters. Potential routes of anthropogenic N inputs include export from estuaries, atmospheric deposition, and dissolved N inputs from groundwater outflow. Stable...

  13. International food trade reduces environmental effects of nitrogen pollution in China.

    PubMed

    Shi, Yaxing; Wu, Shaohua; Zhou, Shenglu; Wang, Chunhui; Chen, Hao

    2016-09-01

    The globalization of agricultural trade has dramatically altered global nitrogen flows by changing the spatial pattern of nitrogen utilization and emissions at a global scale. As a major trading country, China uses a large amount of nitrogen, which has a profound impact on global nitrogen flows. Using data on food production and trade between China and 26 other countries and regions, we calculated nitrogen inputs and outputs in food production ecosystem in each country. We estimated nitrogen flows in international food trade and analyzed their impact on nitrogen pollution in China. We divided nitrogen flows into embodied and virtual nitrogen flows. Embodied nitrogen is taken up by the plant and incorporated into the final food product, whereas virtual nitrogen is lost to the environment throughout the food production process and is not contained in the final food product. Our results show that China mainly imports food products from America and Asia, accounting for 95 % of all imported food. Asia (mainly Japan) and Europe are the main exporters of food from China, with Japan and the EU accounting for 17 and 10 % of all exported food, respectively. Total nitrogen inputs and outputs in food production in China were 55,400 and 61,000 Gg respectively, which were much higher than in other countries. About 1440 and 950 Gg of embodied and virtual nitrogen respectively flow into China through the food trade, mainly from food-exporting countries such as the USA, Argentina, and Brazil. Meanwhile, 177 and 160 Gg of embodied and virtual nitrogen respectively flow out of China from the export of food products, mainly to Japan. China's net food imports have reduced 720 and 458 Gg for nitrogen utilization and outputs, respectively, which accounted for 1.3 and 0.78 % of total nitrogen inputs and outputs in China. These results suggest that food trade in China has a profound effect on nitrogen flows and has greatly reduced environmental impacts on nitrogen pollution in China.

  14. A comparison of drainage basin nutrient inputs with instream nutrient loads for seven rivers in Georgia and Florida, 1986-90

    USGS Publications Warehouse

    Asbury, C.E.; Oaksford, E.T.

    1997-01-01

    Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and Suwannee (7.0 percent) Rivers exporting the highest percentage of phosphorus.Although instream nutrient loads constitute only one of the various pathways nutrients may take in leaving a river basin, only a relatively small part of nutrient input to the basin leaves the basin in stream discharge for the major coastal rivers examined in this study. The actual amount of nutrient transported in a river basin depends on the ways in which nutrients are physically handled, geographically distributed, and chemically assimilated within a river basin.

  15. Economic Analysis of Nitrate Source Reductions in California Agriculture

    NASA Astrophysics Data System (ADS)

    Medellin-Azuara, J.; Howitt, R.; Rosenstock, T.; Harter, T.; Pettygrove, S. G.; Dzurella, K.; Lund, J. R.

    2011-12-01

    We present an analytical approach to assess the economic impact of improving nitrogen management practices in California agriculture. We employ positive mathematical programming to calibrate crop production to base input information. The production function representation is a nested constant elasticity of substitution with two nests: one for applied water and one for applied nitrogen. The first nest accounts for the tradeoffs between irrigation efficiency and capital investments in irrigation technology. The second nest represents the tradeoffs between nitrogen application efficiency and the marginal costs of improving nitrogen efficiency. In the production function nest, low elasticities of substitution and water and nitrogen stress constraints keep agricultural crop yields constant despite changes in nitrogen management practices. We use the Tulare Basin, and the Salinas Valley in California's Central Valley and Central Coast respectively as our case studies. Preliminary results show that initial reductions of 25% in nitrogen loads to groundwater may not impose large costs to agricultural crop production as substitution of management inputs results in only small declines in net revenue from farming and total land use. Larger reductions in the nitrogen load to groundwater of 50% imposes larger marginal costs for better nitrogen management inputs and reductions in the area of lower valued crops grown in the study areas. Despite the shortage of data on quantitative effects of improved nitrogen efficiency; our results demonstrate the potential of combining economic and agronomic data into a model that can reflect differences in cost and substitutabilty in nitrogen application methods, that can be used to reduce the quantity of nitrogen leaching into groundwater.

  16. Nitrogen use efficiency in grain production and the estimated nitrogen input/output balance in China agriculture.

    PubMed

    Li, Shutian; He, Ping; Jin, Jiyun

    2013-03-30

    Understanding the nitrogen (N) use efficiency and N input/output balance in the agricultural system is crucial for best management of N fertilisers in China. In the last 60 years, N fertiliser consumption correlated positively with grain production. During that period the partial factor productivity of N (PFPN ) declined greatly from more than 1000 kg grain kg⁻¹ N in the 1950s to nearly 30 kg grain kg⁻¹ N in 2008. This change in PFPN could be largely explained by the increase in N rate. The average agronomic efficiency of fertiliser N (AEN ) for rice, wheat and maize during 2000-2010 was 12.6, 8.3 and 11.5 kg kg⁻¹ respectively, which was similar to that in the early 1980s but lower than that in the early 1960s. Estimation based on statistical data showed that a total of 49.16 × 10⁶ t of N was input into Chinese agriculture, of which chemical N, organic fertiliser N, biological fixed N and other sources accounted for 58.2, 24.3, 10.5 and 7.0% respectively. Nitrogen was surplus in all regions, the total N surplus being 10.6 × 10⁶ t (60.6 kg ha⁻¹). The great challenge is to balance the use of current N fertilisers between regions and crops to improve N use efficiency while maintaining or increasing crop production under the high-intensity agricultural system of China. © 2012 Society of Chemical Industry.

  17. System and method for controlling ammonia levels in a selective catalytic reduction catalyst using a nitrogen oxide sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A system according to the principles of the present disclosure includes an air/fuel ratio determination module and an emission level determination module. The air/fuel ratio determination module determines an air/fuel ratio based on input from an air/fuel ratio sensor positioned downstream from a three-way catalyst that is positioned upstream from a selective catalytic reduction (SCR) catalyst. The emission level determination module selects one of a predetermined value and an input based on the air/fuel ratio. The input is received from a nitrogen oxide sensor positioned downstream from the three-way catalyst. The emission level determination module determines an ammonia level basedmore » on the one of the predetermined value and the input received from the nitrogen oxide sensor.« less

  18. Concentrated Animal Feeding Operations, Row Crops and their Relationship to Nitrate in Eastern Iowa Rivers

    PubMed Central

    Weldon, Mark B.; Hornbuckle, Keri C.

    2009-01-01

    Concentrated animal feeding operations (CAFO) and fertilizer application to row crops may contribute to poor water quality in surface waters. To test this hypothesis, we evaluated nutrient concentrations and fluxes in four Eastern Iowa watersheds sampled between 1996-2004. We found that these watersheds contribute nearly 10% of annual nitrate flux entering the Gulf of Mexico, while representing only 1.5% of the contributing drainage basin. Mass budget analysis shows stream flow to be a major loss of nitrogen (18% of total N output), second only to crop harvest (63%). The major watershed inputs of nitrogen include applied fertilizer for corn (54% of total N input) and nitrogen fixation by soybeans (26%). Despite the relatively small input from animal manure (~5%), the results of spatial analysis indicate that row crop and CAFO densities are significantly and independently correlated to higher nitrate concentration in streams. Pearson correlation coefficients of 0.59 and 0.89 were found between nitrate concentration and row crop and CAFO density, respectively. Multiple linear regression analysis produced a correlation for nitrate concentration with an R2 value of 85%. High spatial density of row crops and CAFOs are linked to the highest river nitrate concentrations (up to 15 mg/l normalized over five years). PMID:16749677

  19. New, national bottom-up estimate for tree-based biological nitrogen fixation in the US

    EPA Science Inventory

    Nitrogen is a limiting nutrient in many ecosystems, but is also a chief pollutant from human activity. Quantifying human impacts on the nitrogen cycle and investigating natural ecosystem nitrogen cycling both require an understanding of the magnitude of nitrogen inputs from biolo...

  20. Nitrogen balance in response to dryland crop rotations and cultural practices

    USDA-ARS?s Scientific Manuscript database

    Nitrogen balance provides a measure of agroecosystem performance and environmental sustainability by taking into accounts of N inputs and outputs and N retention in the soil. The objective of this study was to evaluate N balance based on N inputs and outputs and soil N sequestration after 7 yr in re...

  1. Reactive nitrogen inputs to US lands and waterways: how certain are we about sources and fluxes?

    EPA Science Inventory

    An overabundance of reactive nitrogen (N) as a result of anthropogenic activities has led to multiple human health and environmental concerns. Efforts to address these concerns require an accurate accounting of N inputs. Here, we present a novel synthesis of data describing N inp...

  2. Nitrogen use efficiency and crop production: Patterns of regional variation in the United States, 1987-2012.

    PubMed

    Swaney, Dennis P; Howarth, Robert W; Hong, Bongghi

    2018-04-17

    National-level summaries of crop production and nutrient use efficiency, important for international comparisons, only partially elucidate agricultural dynamics within a country. Agricultural production and associated environmental impacts in large countries vary significantly because of regional differences in crops, climate, resource use and production practices. Here, we review patterns of regional crop production, nitrogen use efficiency (NUE), and major inputs of nitrogen to US crops over 1987-2012, based on the Farm Resource Regions developed by the Economic Research Service (USDA-ERS). Across the US, NUE generally decreased over time over the period studied, mainly due to increased use in mineral N fertilizer above crop N requirements. The Heartland region dominates production of major crops and thus tends to drive national patterns, showing linear response of crop production to nitrogen inputs broadly consistent with an earlier analysis of global patterns of country-scale data by Lassaletta et al. (2014). Most other regions show similar responses, but the Eastern Uplands region shows a negative response to nitrogen inputs, and the Southern Seaboard shows no significant relationship. The regional differences appear as two branches in the response of aggregate production to N inputs on a cropland area basis, but not on a total area basis, suggesting that the type of scaling used is critical under changing cropland area. Nitrogen use efficiency (NUE) is positively associated with fertilizer as a percentage of N inputs in four regions, and all regions considered together. NUE is positively associated with crop N fixation in all regions except Northern Great Plains. It is negatively associated with manure (livestock excretion); in the US, manure is still treated largely as a waste to be managed rather than a nutrient resource. This significant regional variation in patterns of crop production and NUE vs N inputs, has implications for environmental quality and food security. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Switchgrass nitrogen response and estimated production costs on diverse sites

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) has been the principal perennial herbaceous crop investigated for bioenergy production in North America given its high production potential, relatively low input requirements, and potential suitability for use on marginal lands. Few large trials have determined swit...

  4. Effects of wastewater treatment plant effluent inputs on planktonic metabolic rates and microbial community composition in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Vaquer-Sunyer, Raquel; Reader, Heather E.; Muthusamy, Saraladevi; Lindh, Markus V.; Pinhassi, Jarone; Conley, Daniel J.; Kritzberg, Emma S.

    2016-08-01

    The Baltic Sea is the world's largest area suffering from eutrophication-driven hypoxia. Low oxygen levels are threatening its biodiversity and ecosystem functioning. The main causes for eutrophication-driven hypoxia are high nutrient loadings and global warming. Wastewater treatment plants (WWTP) contribute to eutrophication as they are important sources of nitrogen to coastal areas. Here, we evaluated the effects of wastewater treatment plant effluent inputs on Baltic Sea planktonic communities in four experiments. We tested for effects of effluent inputs on chlorophyll a content, bacterial community composition, and metabolic rates: gross primary production (GPP), net community production (NCP), community respiration (CR) and bacterial production (BP). Nitrogen-rich dissolved organic matter (DOM) inputs from effluents increased bacterial production and decreased primary production and community respiration. Nutrient amendments and seasonally variable environmental conditions lead to lower alpha-diversity and shifts in bacterial community composition (e.g. increased abundance of a few cyanobacterial populations in the summer experiment), concomitant with changes in metabolic rates. An increase in BP and decrease in CR could be caused by high lability of the DOM that can support secondary bacterial production, without an increase in respiration. Increases in bacterial production and simultaneous decreases of primary production lead to more carbon being consumed in the microbial loop, and may shift the ecosystem towards heterotrophy.

  5. Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850-2000)

    NASA Astrophysics Data System (ADS)

    Kopcek, J.; Vesel, J.; Stuchlk, E.

    Major fluxes of sulphur and dissolved inorganic nitrogen were estimated in Central European mountain ecosystems of the Bohemian Forest (forest lakes) and Tatra Mountains (alpine lakes) over the industrial period. Sulphur outputs from these ecosystems were comparable to inputs during a period of relatively stable atmospheric deposition (10-35 mmol m-2 yr-1) around the 1930s. Atmospheric inputs of sulphur increased by three- to four-fold between the 1950s and 1980s to ~140 and ~60 mmol mm-2 yr-1 in the Bohemian Forest and Tatra Mountains, respectively. Sulphur outputs were lower than inputs due to accumulation in soils, which was higher in forest soils than in the sparser alpine soils and represented 0.8-1.6 and 0.2-0.3 mol m-2, respectively, for the whole 1930-2000 period. In the 1990s, atmospheric inputs of sulphur decreased 80% and 50% in the Bohemian Forest and Tatra Mountains, respectively, and sulphur outputs exceeded inputs. Catchment soils became pronounced sources of sulphur with output fluxes averaging between 15 and 31 mmol m-2 yr-1. Higher sulphur accumulation in the forest soils has delayed (by several decades) recovery of forest lakes from acidification compared to alpine lakes. Estimated deposition of dissolved inorganic nitrogen was 53-75 mmol m-2 yr-1 in the Bohemian Forest and 35-45 mmol m-2 yr-1 in the Tatra Mountains in the 1880- 1950 period, i.e. below the empirically derived threshold of ~70 mmol m-2 yr-1, above which nitrogen leaching often occurs. Dissolved inorganic nitrogen was efficiently retained in the ecosystems and nitrate export was negligible (0-7 mmol m-2 yr-1). By the 1980s, nitrogen deposition increased to ~160 and ~80 mmol m-2 yr-1 in the Bohemian Forest and Tatra Mountains, respectively, and nitrogen output increased to 120 and 60 mmol m-2 yr-1. Moreover, assimilation of nitrogen in soils declined from ~40 to 10-20 mmol m-2 yr-1 in the alpine soils and even more in the Bohemian Forest, where one of the catchments has even become a net source of nitrogen. In the 1990s, nitrogen deposition decreased by ~30% and DIN output decreased to < 70 and 35 mmol m-2 yr-1 in the Bohemian Forest and Tatra Mountains, respectively. New steady-state conditions, with negligible nitrogen export, could be reached in future but at lower nitrogen depositions than in the 1930s.

  6. Spatio-temporal variability of dissolved organic nitrogen (DON), carbon (DOC), and nutrients in the Nile River, Egypt.

    PubMed

    Badr, El-Sayed A

    2016-10-01

    Increases in human activity have resulted in enhanced anthropogenic inputs of nitrogen (N) and carbon (C) into the Nile River. The Damietta Branch of the Nile is subject to inputs from industrial, agricultural, and domestic wastewater. This study investigated the distribution and seasonality of dissolved organic nitrogen (DON), dissolved organic carbon (DOC), and nutrients in the Nile Damietta Branch. Water samples were collected from 24 sites between May 2009 and February 2010. Dissolved organic nitrogen concentrations averaged 251 ± 115 μg/l, with a range of 90.2-671 μg/l, and contributed 40.8 ± 17.7 % to the total dissolved nitrogen (TDN) pool. Relative to autumn and winter, DON was a larger fraction of the TDN pool during spring and summer indicating the influence of bacterioplankton on the nitrogen cycle. Concentrations of DOC ranged from 2.23 to 11.3 mg/l with an average of 5.15 ± 2.36 mg/l, reflecting a high organic matter load from anthropogenic sources within the study area, and were highest during autumn. Higher values of biochemical oxygen demand (BOD), chemical oxygen demand (COD), DON, nitrate, and phosphate occurred downstream of the Damietta Branch and were probably due to anthropogenic inputs to the Nile from the Damietta district. A bacterial incubation experiment indicated that 52.1-95.0 % of DON was utilized by bacteria within 21 days. The decrease in DON concentration was accompanied by an increase in nitrate concentration of 54.8-87.3 %, presumably through DON mineralization. Based on these results, we recommend that water quality assessments consider DON and DOC, as their omission may result in an underestimation of the total organic matter load and impact.

  7. Chesapeake Bay nitrogen fluxes derived from a land-estuarine ocean biogeochemical modeling system: Model description, evaluation, and nitrogen budgets.

    PubMed

    Feng, Yang; Friedrichs, Marjorie A M; Wilkin, John; Tian, Hanqin; Yang, Qichun; Hofmann, Eileen E; Wiggert, Jerry D; Hood, Raleigh R

    2015-08-01

    The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land-estuarine-ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within-estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite-derived data, and a simulation using environmental conditions for 2001-2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 10 9  g N yr -1 ) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 10 9  g N yr -1 ) and buried (46 × 10 9  g N yr -1 ) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 10 9  g N yr -1 ) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50-60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf.

  8. Chesapeake Bay nitrogen fluxes derived from a land‐estuarine ocean biogeochemical modeling system: Model description, evaluation, and nitrogen budgets

    PubMed Central

    Friedrichs, Marjorie A. M.; Wilkin, John; Tian, Hanqin; Yang, Qichun; Hofmann, Eileen E.; Wiggert, Jerry D.; Hood, Raleigh R.

    2015-01-01

    Abstract The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land‐estuarine‐ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within‐estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite‐derived data, and a simulation using environmental conditions for 2001–2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 109 g N yr−1) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 109 g N yr−1) and buried (46 × 109 g N yr−1) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 109 g N yr−1) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50–60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf. PMID:27668137

  9. Increasing anthropogenic nitrogen inputs and riverine DIN exports from the Changjiang River basin under changing human pressures

    NASA Astrophysics Data System (ADS)

    Yan, Weijin; Mayorga, Emilio; Li, Xinyan; Seitzinger, Sybil P.; Bouwman, A. F.

    2010-12-01

    In this paper, we estimate the inputs of nitrogen (N) and exports of dissolved inorganic nitrogen (DIN) from the Changjiang River to the estuary for the period 1970-2003, by using the global NEWS-DIN model. Modeled DIN yields range from 260 kg N km-2 yr-1 in 1970 to 895 kg N km-2 yr-1 in 2003, with an increasing trend. The study demonstrated a varied contribution of different N inputs to river DIN yields during the period 1970-2003. Chemical fertilizer and manure together contributed about half of the river DIN yields, while atmospheric N deposition contributed an average of 21% of DIN yields in the period 1970-2003. Biological N fixation contributed 40% of DIN yields in 1970, but substantially decreased to 13% in 2003. Point sewage N input also showed a decreasing trend in contribution to DIN yields, with an average of 8% over the whole period. We also discuss possible future trajectories of DIN export based on the Global NEWS implementation of the Millennium Ecosystem Assessment scenarios. Our result indicates that anthropogenically enhanced N inputs dominate and will continue to dominate river DIN yields under changing human pressures in the basin. Therefore, nitrogen pollution is and will continue to be a great challenge to China.

  10. Mediterranean, invasive, woody species grow larger than their less-invasive counterparts under potential global environmental change.

    PubMed

    Erskine-Ogden, Jennifer; Grotkopp, Eva; Rejmánek, Marcel

    2016-04-01

    Revealing biological differences between invasive and noninvasive species is essential for predicting species' distribution changes with global environmental change. While most research has focused on differences between invasive and noninvasive species under favorable conditions using herbaceous species, invasive woody angiosperms are also of great ecological concern. Our study focused on how growth and allocation may change for invasive and noninvasive, mediterranean, woody angiosperms under future conditions caused by global change, specifically increased nitrogen deposition and drought. We tested how seedling functional traits differed between invasive and noninvasive woody angiosperms under different experimental conditions in a greenhouse setting. We compared growth rates and allocation patterns using two levels of soil nitrogen and three levels of watering. We also examined trait log response ratios to increases in nitrogen and increases in water. Our study sampled angiosperm trees and shrubs, incorporating congeneric/confamilial relationships through 13 phylogenetically controlled contrasts. Three functional traits were highly and positively associated with plant invasiveness for most conditions studied: seedling plant mass, leaf area, and height. Invasive species also had significantly higher root mass ratios at low water regardless of nitrogen input. Invasive and noninvasive species had similar log response ratios to increases in nitrogen and watering for studied traits. Mediterranean, woody, invasive species' larger mass, leaf area, and early height advantage under elevated nitrogen input and increased root production in drought conditions may lead to increased invasion of these species with expected global climate change. © 2016 Botanical Society of America.

  11. Dynamic SPARROW Modeling of Nitrogen Flux with Climate and MODIS Vegetation Indices as Drivers

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Brakebill, J.; Schwarz, G.; Alexander, R. B.; Hirsch, R. M.; Nolin, A. W.; Macauley, M.; Zhang, Q.; Shih, J.; Wang, W.; Sproles, E.

    2011-12-01

    SPARROW models are widely used to identify and quantify the sources of contaminants in watersheds and to predict their flux and concentration at specified locations downstream. Conventional SPARROW models are statistically calibrated and describe the average relationship between sources and stream conditions based on long-term water quality monitoring data and spatially-referenced explanatory information. But many watershed management issues stem from intra- and inter-annual changes in contaminant sources, hydrologic forcing, or other environmental conditions which cause a temporary imbalance between inputs and stream water quality. Dynamic behavior of the system relating to changes in watershed storage and processing then becomes important. In this study, we describe a dynamically calibrated SPARROW model of total nitrogen flux in the Potomac River Basin based on seasonal water quality and watershed input data for 80 monitoring stations over the period 2000 to 2008. One challenge in dynamic modeling of reactive nitrogen is obtaining frequently-reported, spatially-detailed input data on the phenology of agricultural production and terrestrial vegetation. In this NASA-funded research, we use the Enhanced Vegetation Index (EVI) and gross primary productivity data from the Terra Satellite-borne MODIS sensor to parameterize seasonal uptake and release of nitrogen. The spatial reference frame of the model is a 16,000-reach, 1:100,000-scale stream network, and the computational time step is seasonal. Precipitation and temperature data are from PRISM. The model formulation allows for separate storage compartments for nonpoint sources including fertilized cropland, pasture, urban land, and atmospheric deposition. Removal of nitrogen from watershed storage to stream channels and to "permanent" sinks (deep groundwater and the atmosphere) occur as parallel first-order processes. We use the model to explore an important issue in nutrient management in the Potomac and other basins: the long-term response of total nitrogen flux to changing climate. We model the nitrogen flux response to projected seasonal and inter-annual changes in temperature and precipitation, but under current seasonal nitrogen inputs, as indicated by MODIS measures of productivity. Under these constant inter-annual inputs, changing temperature and precipitation is predicted to lead to flux changes as temporary basin stores of nitrogen either grow or shrink due to changing relative rates of nitrogen removal to the atmosphere and release to streams.

  12. SENSITIVITY OF NITROGEN CONCENTRATIONS IN ESTUARIES TO LOADING AND WATER RESIDENCE TIME: APPLICATION TO THE POTOMAC ESTUARY

    EPA Science Inventory

    We use a simple nitrogen budget model to analyze concentrations of total nitrogen (TN) in estuaries for which both nitrogen inputs and water residence time are correlated with freshwater inflow rates. While the nitrogen concentration of an estuary varies linearly with TN loading ...

  13. Assessing future reactive nitrogen inputs into global croplands based on the shared socioeconomic pathways

    NASA Astrophysics Data System (ADS)

    Mogollón, J. M.; Lassaletta, L.; Beusen, A. H. W.; van Grinsven, H. J. M.; Westhoek, H.; Bouwman, A. F.

    2018-04-01

    Reactive nitrogen (N) inputs in agriculture strongly outpace the outputs at the global scale due to inefficiencies in cropland N use. While improvement in agricultural practices and environmental legislation in developed regions such as Western Europe have led to a remarkable increase in the N use efficiency since 1985, this lower requirement for reactive N inputs via synthetic fertilizers has yet to occur in many developing and transition regions. Here, we explore future N input requirements and N use efficiency in agriculture for the five shared socioeconomic pathways. Results show that under the most optimistic sustainability scenario, the global synthetic fertilizer use in croplands stabilizes and even shrinks (85 Tg N yr‑1 in 2050) regardless of the increase in crop production required to feed the larger estimated population. This scenario is highly dependent on projected increases in N use efficiency, particularly in South and East Asia. In our most pessimistic scenario, synthetic fertilization application rates are expected to increase almost threefold by 2050 (260 Tg N yr‑1). Excepting the sustainability scenario, all other projected scenarios reveal that the areal N surpluses will exceed acceptable limits in most of the developing regions.

  14. Linking Watershed Nitrogen Sources with Nitrogen Dynamics in Rivers of Western Oregon, USA

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Compton, J.; Goodwin, K. E.

    2012-12-01

    We constructed contemporary nitrogen (N) budgets for 25 river basins in the Willamette River Basin (WRB) of western Oregon, USA, to improve the understanding of how recent trends in human-driven N loading have influenced riverine N dynamics in the region. Nearly 20% of WRB stream length is currently in fair or poor condition because of high N concentrations. Additionally, nitrate contamination of drinking water affects at least 8,000 people in the WRB. We hypothesized that 1) the majority of N inputs in the WRB would originate from agricultural activities in lowland portions of watersheds, 2) annual riverine N yield (kg/ha/yr) would correspond to annual per area watershed N inputs, and 3) riverine N yields would be seasonal and highest during winter due to the region's Mediterranean climate. We calculated average annual N inputs for each study basin by summing newly available datasets describing spatially explicit N inputs of synthetic fertilizer, atmospheric deposition, crop biological N2 fixation, biological N2 fixation by red alder (Alnus rubra Bong.), livestock manure, and point sources for the period 1996 - 2007. Annual and seasonal riverine N exports were estimated with the USGS model LOADEST calibrated to N concentration data collected during the study period. We estimated that two-thirds of total N input to the WRB study basins in the 2000s came from synthetic fertilizer application. Nearly all fertilizer application occurred on the lowlands near watershed mouths. We found a wide range of riverine N yields from the study basins, ranging from one to 70 kg N/ha/yr. Across the study basins, N export was more strongly correlated to fertilizer application rates than to percent of agricultural area in the watershed. Low watershed N yields reflected a high proportion of watershed area in the forested Cascade Mountain Range, which received low N inputs mainly from atmospheric deposition. N yields from study basins were strongly seasonal, with at least 50%, and often 75%, of annual N yield occurring in fall and winter months. Our results suggest that that spatially explicit data on specific crop types and crop practices are valuable for explaining spatial and temporal variation of nutrient concentrations in WRB rivers. This emphasizes the need for careful tracking of non-point N inputs to inform water quality monitoring and management.

  15. Leaf-litter inputs from an invasive nitrogen-fixing tree influence organic-matter dynamics and nitrogen inputs in a Hawaiian river

    Treesearch

    Richard A. MacKenzie; Tracy N. Wiegner; Frances Kinslow; Nicole Cormier; Ayron M. Strauch

    2013-01-01

    Abstract. We examined how invasion of tropical riparian forests by an exotic N-fixing tree (Falcataria moluccana) affects organic-matter dynamics in a Hawaiian river by comparing early stages of leaf-litter breakdown between the exotic F. moluccana and native Metrosideros polymorpha trees. We examined early...

  16. Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria

    DOE PAGES

    Cano, Melissa A.; Holland, Steven C.; Artier, Juliana; ...

    2018-04-17

    Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies in different growth stages, with a peak upon entry into the rapid growth phase, as well as a positive correlation with light intensity. In contrast, a mutant that can no longer synthesize the main carbon storage compound glycogen showed higher energy charge. The overflow of organic acids in this mutant under nitrogen depletion could alsomore » be triggered under high light in nitrogen-replete conditions, with an energy input level dependency. Lastly, these findings suggest that energy charge in cyanobacteria is tightly linked to growth and carbon partition and that energy management is of key significance for their application as photosynthetic carbon dioxide-assimilating cell factories.« less

  17. Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, Melissa A.; Holland, Steven C.; Artier, Juliana

    Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies in different growth stages, with a peak upon entry into the rapid growth phase, as well as a positive correlation with light intensity. In contrast, a mutant that can no longer synthesize the main carbon storage compound glycogen showed higher energy charge. The overflow of organic acids in this mutant under nitrogen depletion could alsomore » be triggered under high light in nitrogen-replete conditions, with an energy input level dependency. Lastly, these findings suggest that energy charge in cyanobacteria is tightly linked to growth and carbon partition and that energy management is of key significance for their application as photosynthetic carbon dioxide-assimilating cell factories.« less

  18. Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria.

    PubMed

    Cano, Melissa; Holland, Steven C; Artier, Juliana; Burnap, Rob L; Ghirardi, Maria; Morgan, John A; Yu, Jianping

    2018-04-17

    Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies in different growth stages, with a peak upon entry into the rapid growth phase, as well as a positive correlation with light intensity. In contrast, a mutant that can no longer synthesize the main carbon storage compound glycogen showed higher energy charge. The overflow of organic acids in this mutant under nitrogen depletion could also be triggered under high light in nitrogen-replete conditions, with an energy input level dependency. These findings suggest that energy charge in cyanobacteria is tightly linked to growth and carbon partition and that energy management is of key significance for their application as photosynthetic carbon dioxide-assimilating cell factories. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. A 25-Year Retrospective Analysis of River Nitrogen Fluxes in the Atchafalaya

    NASA Astrophysics Data System (ADS)

    Xu, Y.

    2005-05-01

    Nitrogen enrichment from the upper Mississippi River Basin has been attributed to be the major cause for the hypoxia in the Northern Gulf of Mexico. The hypoxia threatens not only the aquatic ecosystem health but Louisiana's fishery industry directly among other problems. Although fresh water diversion from the lower Mississippi River into the region's wetlands has been considered an alternative means for reducing nitrogen loading, it is largely uncertain how much nitrogen can actually be retained from the overflowing waters in these natural wetlands. Generally, there is a knowledge gap in what tools are available for accurate assessment of nitrogen inflow, outflow and removal potential for the complex and diverse coastal floodplain systems. This study is to seek answers to three critical questions: (1) Does the Atchafalaya River Swamp remove a significant amount of nitrogen from the overflowing water or release more nitrogen into the Gulf than removing it? (2) How seasonally and annually do the nitrogen removal or release rates fluctuate? (3) What are the relationships between the nitrogen removal capacity and the basin's hydrologic conditions such as river stage and discharge? By utilizing river's long-term discharge and water quality data (1978-2002), monthly and annual nitrogen fluxes were quantified, and their relationships with the basin's hydrologic conditions were investigated. A total Kjeldahl nitrogen (TKN) mass input-output balance between the upstream (Simmesport) and downstream (Morgan City and Wax Lake Outlet) locations was established to examine the organic nitrogen removal potential for this largest freshwater swamp basin in North America. The results showed that on average, TKN input into the Atchafalaya was 200,323 Mg yr-1 and TKN output leaving the basin was 145,917 Mg yr-1, resulting in a 27% removal rate of nitrogen. Monthly nitrogen input and output in the basin were highest from March to June (input vs. output: 25,000 vs. 18,000 Mg mon-1) and lowest from August to November (8,000 vs. 6,000 Mg mon-1). There was a large variation in both annual and inter-annual nitrogen removals, and the variability was positively correlated with the amount of inflow water at Simmesport. However, no close relationship between the river inflow and percentage nitrogen removal rate was found. The results gained from this study suggest that regulating the river's inflow will help reduce nitrogen loading of the Mississippi River to the Gulf of Mexico. The in-stream loss of nitrogen indicates that previous studies may have overestimated nitrogen discharge from the Mississippi-Atchafalaya River system. Furthermore, the study found that knowledge on spatial hydrological conditions in the basin is needed to understand nitrogen dynamics in the Atchafalaya River Swamp.

  20. QTL and QTL x environment effects on agronomic and nitrogen acquisition traits in rice.

    PubMed

    Senthilvel, Senapathy; Vinod, Kunnummal Kurungara; Malarvizhi, Palaniappan; Maheswaran, Marappa

    2008-09-01

    Agricultural environments deteriorate due to excess nitrogen application. Breeding for low nitrogen responsive genotypes can reduce soil nitrogen input. Rice genotypes respond variably to soil available nitrogen. The present study attempted quantification of genotype x nitrogen level interaction and mapping of quantitative trait loci (QTLs) associated with nitrogen use efficiency (NUE) and other associated agronomic traits. Twelve parameters were observed across a set of 82 double haploid (DH) lines derived from IR64/Azucena. Three nitrogen regimes namely, native (0 kg/ha; no nitrogen applied), optimum (100 kg/ha) and high (200 kg/ha) replicated thrice were the environments. The parents and DH lines were significantly varying for all traits under different nitrogen regimes. All traits except plant height recorded significant genotype x environment interaction. Individual plant yield was positively correlated with nitrogen use efficiency and nitrogen uptake. Sixteen QTLs were detected by composite interval mapping. Eleven QTLs showed significant QTL x environment interactions. On chromosome 3, seven QTLs were detected associated with nitrogen use, plant yield and associated traits. A QTL region between markers RZ678, RZ574 and RZ284 was associated with nitrogen use and yield. This chromosomal region was enriched with expressed gene sequences of known key nitrogen assimilation genes.

  1. GESAMP Working Group 38, The Atmospheric Input of Chemicals to the Ocean

    NASA Astrophysics Data System (ADS)

    Duce, Robert; Liss, Peter

    2014-05-01

    There is growing recognition of the impact of the atmospheric input of both natural and anthropogenic substances on ocean chemistry, biology, and biogeochemistry as well as climate. These inputs are closely related to a number of important global change issues. For example, the increasing input of anthropogenic nitrogen species from the atmosphere to much of the ocean may cause a low level fertilization that could result in an increase in marine 'new' productivity of up to ~3% and thus impact carbon drawdown from the atmosphere. Similarly, much of the oceanic iron, which is a limiting nutrient in significant areas of the ocean, originates from the atmospheric input of minerals as a result of the long-range transport of mineral dust from continental regions. The increased supply of soluble phosphorus from atmospheric anthropogenic sources (through large-scale use of fertilizers) may also have a significant impact on surface-ocean biogeochemistry, but estimates of any effects are highly uncertain. There have been few assessments of the atmospheric inputs of sulfur and nitrogen oxides to the ocean and their impact on the rates of ocean acidification. These inputs may be particularly critical in heavily trafficked shipping lanes and in ocean regions proximate to highly industrialized land areas. Other atmospheric substances may also have an impact on the ocean, in particular lead, cadmium, and POPs. To address these and related issues the United Nations Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) initiated Working Group 38, The Atmospheric Input of Chemicals to the Ocean, in 2008. This Working Group has had four meetings. To date four peer reviewed papers have been produced from this effort, with a least eight others in the process of being written or published. This paper will discuss some of the results of the Working Group's deliberations and its plans for possible future work.

  2. Nitrogen enrichment and speciation in a coral reef lagoon driven by groundwater inputs of bird guano

    NASA Astrophysics Data System (ADS)

    McMahon, Ashly; Santos, Isaac R.

    2017-09-01

    While the influence of river inputs on coral reef biogeochemistry has been investigated, there is limited information on nutrient fluxes related to submarine groundwater discharge (SGD). Here, we investigate whether significant saline groundwater-derived nutrient inputs from bird guano drive coral reef photosynthesis and calcification off Heron Island (Great Barrier Reef, Australia). We used multiple experimental approaches including groundwater sampling, beach face transects, and detailed time series observations to assess the dynamics and speciation of groundwater nutrients as they travel across the island and discharge into the coral reef lagoon. Nitrogen speciation shifted from nitrate-dominated groundwater (>90% of total dissolved nitrogen) to a coral reef lagoon dominated by dissolved organic nitrogen (DON; ˜86%). There was a minimum input of nitrate of 2.1 mmol m-2 d-1 into the lagoon from tidally driven submarine groundwater discharge estimated from a radon mass balance model. An independent approach based on the enrichment of dissolved nutrients during isolation at low tide implied nitrate fluxes of 5.4 mmol m-2 d-1. A correlation was observed between nitrate and daytime net ecosystem production and calcification. We suggest that groundwater nutrients derived from bird guano may offer a significant addition to oligotrophic coral reef lagoons and fuel ecosystem productivity and the coastal carbon cycle near Heron Island. The large input of groundwater nutrients in Heron Island may serve as a natural ecological analogue to other coral reefs subject to large nutrient inputs from anthropogenic sources.

  3. Soil Organic Carbon and Nitrogen in the 21st Century: Projections of the Responses of an Old-Growth Douglas-Fir Forest in the Pacific Northwest under RCP 4.5 and RCP 8.5 Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Dong, Z.; Driscoll, C. T.; Hayhoe, K.; Pourmokhtarian, A.; Stoner, A. M. K.

    2015-12-01

    The biogeochemical model, PnET-BGC, was applied to Watershed 2 in H. J. Andrews Experimental Forest, Oregon, to project ecosystem carbon and nitrogen responses under different future climate change scenarios. Downscaled climate change inputs derived from two IPCC scenarios (RCP 4.5 and RCP 8.5) were interpreted by four Atmosphere-Ocean General Circulation Models (AOGCMs) at Andrews Forest. Model results showed decreases in foliar production under high temperature/CO2 scenarios due to increasing vapor pressure deficit. Projections by PnET-BGC suggest that under future climate changes in primary production coupled with an increasing rate of decomposition may result in decreases in litterfall carbon and nitrogen and soil organic carbon and nitrogen. Such changes in soil organic carbon and nitrogen may cause wide range of changes in ecosystem processing of nitrogen and carbon, such as nitrogen mineralization, plant NH4+ uptake, and stream NH4+ and dissolved organic carbon concentrations depending on climate change scenario considered. Under most high emission scenarios, net nitrogen mineralization and plant NH4+ uptake are projected to increase until the end of this century as result of increasing temperature and associated higher rates of decomposition. An accumulation of nitrogen in plant tissue due to decreasing litterfall decreases plant demand for nitrogen. Such changes in nitrogen mineralization and uptake will result in increase in stream NH4+ concentrations under high emission scenarios. Under low emission scenarios, net nitrogen mineralization and plant NH4+ uptake are projected to increase up to mid-century, then slightly decrease until the end of the century.

  4. RIBBED MUSSEL NITROGEN ISOTOPE SIGNATURES REFLECT NITROGEN SOURCES IN COASTAL MARSHES

    EPA Science Inventory

    The stable nitrogen isotope ratio in tissue of the ribbed mussel (Geukensia demissa) was investigated as an indicator of the source of nitrogen inputs to coastal salt marshes. Initially, mussels were fed a diet of 15N-enriched algae in the laboratory to determine how the tissue n...

  5. Nitrogen input from residential lawn care practices in suburban watersheds in Baltimore county, MD

    Treesearch

    Neely L. Law; Lawrence E. Band; J. Morgan Grove

    2004-01-01

    A residential lawn care survey was conducted as part of the Baltimore Ecosystem Study, a Long-term Ecological Research project funded by the National Science Foundation and collaborating agencies, to estimate the nitrogen input to urban watersheds from lawn care practices. The variability in the fertilizer N application rates and the factors affecting the application...

  6. Net anthropogenic nitrogen inputs and nitrogen fluxes from Indian watersheds: An initial assessment

    NASA Astrophysics Data System (ADS)

    Swaney, D. P.; Hong, B.; Paneer Selvam, A.; Howarth, R. W.; Ramesh, R.; Purvaja, R.

    2015-01-01

    In this paper, we apply an established methodology for estimating Net Anthropogenic Nitrogen Inputs (NANI) to India and its major watersheds. Our primary goal here is to provide initial estimates of major nitrogen inputs of NANI for India, at the country level and for major Indian watersheds, including data sources and parameter estimates, making some assumptions as needed in areas of limited data availability. Despite data limitations, we believe that it is clear that the main anthropogenic N source is agricultural fertilizer, which is being produced and applied at a growing rate, followed by N fixation associated with rice, leguminous crops, and sugar cane. While India appears to be a net exporter of N in food/feed as reported elsewhere (Lassaletta et al., 2013b), the balance of N associated with exports and imports of protein in food and feedstuffs is sensitive to protein content and somewhat uncertain. While correlating watershed N inputs with riverine N fluxes is problematic due in part to limited available riverine data, we have assembled some data for comparative purposes. We also suggest possible improvements in methods for future studies, and the potential for estimating riverine N fluxes to coastal waters.

  7. Effects of agricultural intensification on ability of natural enemies to control aphids

    PubMed Central

    Zhao, Zi-Hua; Hui, Cang; He, Da-Han; Li, Bai-Lian

    2015-01-01

    Agricultural intensification through increasing fertilization input and cropland expansion has caused rapid loss of semi-natural habitats and the subsequent loss of natural enemies of agricultural pests. It is however extremely difficult to disentangle the effects of agricultural intensification on arthropod communities at multiple spatial scales. Based on a two-year study of seventeen 1500 m-radius sites, we analyzed the relative importance of nitrogen input and cropland expansion on cereal aphids and their natural enemies. Both the input of nitrogen fertilizer and cropland expansion benefited cereal aphids more than primary parasitoids and leaf-dwelling predators, while suppressing ground-dwelling predators, leading to an disturbance of the interspecific relationship. The responses of natural enemies to cropland expansion were asymmetric and species-specific, with an increase of primary parasitism but a decline of predator/pest ratio with the increasing nitrogen input. As such, agricultural intensification (increasing nitrogen fertilizer and cropland expansion) can destabilize the interspecific relationship and lead to biodiversity loss. To this end, sustainable pest management needs to balance the benefit and cost of agricultural intensification and restore biocontrol service through proliferating the role of natural enemies at multiple scales. PMID:25620737

  8. Determination of nitrogen balance in agroecosystems.

    PubMed

    Sainju, Upendra M

    2017-01-01

    Nitrogen balance in agroecosystems provides a quantitative framework of N inputs and outputs and retention in the soil that examines the sustainability of agricultural productivity and soil and environmental quality. Nitrogen inputs include N additions from manures and fertilizers, atmospheric depositions including wet and dry depositions, irrigation water, and biological N fixation. Nitrogen outputs include N removal in crop grain and biomass and N losses through leaching, denitrification, volatilization, surface runoff, erosion, gas emissions, and plant senescence. Nitrogen balance, which is the difference between N inputs and outputs, can be reflected in changes in soil total (organic + inorganic) N during the course of the experiment duration due to N immobilization and mineralization. While increased soil N retention and mineralization can enhance crop yields and decrease N fertilization rate, reduced N losses through N leaching and gas emissions (primarily NH 4 and NO x emissions, out of which N 2 O is a potent greenhouse gas) can improve water and air quality. •This paper discusses measurements and estimations (for non-measurable parameters due to complexity) of all inputs and outputs of N as well as changes in soil N storage during the course of the experiment to calculate N balance.•The method shows N flows, retention in the soil, and losses to the environment from agroecosystems.•The method can be used to measure agroecosystem performance and soil and environmental quality from agricultural practices.

  9. Risk of nitrate in groundwaters of the United States - A national perspective

    USGS Publications Warehouse

    Nolan, B.T.; Ruddy, B.C.; Hitt, K.J.; Helsel, D.R.

    1997-01-01

    Nitrate contamination of groundwater occurs in predictable patterns, based on findings of the U.S. Geological Survey's (USGS) National Water Quality Assessment (NAWQA) Program. The NAWQA Program was begun in 1991 to describe the quality of the Nation's water resources, using nationally consistent methods. Variables affecting nitrate concentration in groundwater were grouped as 'input' factors (population density end the amount of nitrogen contributed by fertilizer, manure, and atmospheric sources) and 'aquifer vulnerability' factors (soil drainage characteristic and the ratio of woodland acres to cropland acres in agricultural areas) and compiled in a national map that shows patterns of risk for nitrate contamination of groundwater. Areas with high nitrogen input, well-drained soils, and low woodland to cropland ratio have the highest potential for contamination of shallow groundwater by nitrate. Groundwater nitrate data collected through 1992 from wells less than 100 ft deep generally verified the risk patterns shown on the national map. Median nitrate concentration was 0.2 mg/L in wells representing the low-risk group, and the maximum contaminant level (MCL) was exceeded in 3% of the wells. In contrast, median nitrate concentration was 4.8 mg/L in wells representing the high-risk group, and the MCL was exceeded in 25% of the wells.Nitrate contamination of groundwater occurs in predictable patterns, based on findings of the U.S. Geological Survey's (USGS) National Water Quality Assessment (NAWQA) Program. The NAWQA Program was begun in 1991 to describe the quality of the Nation's water resources, using nationally consistent methods. Variables affecting nitrate concentration in groundwater were grouped as `input' factors (population density and the amount of nitrogen contributed by fertilizer, manure, and atmospheric sources) and `aquifer vulnerability' factors (soil drainage characteristic and the ratio of woodland acres to cropland acres in agricultural areas) and compiled in a national map that shows patterns of risk for nitrate contamination of groundwater. Areas with high nitrogen input, well-drained soils, and low woodland to cropland ratio have the highest potential for contamination of shallow groundwater by nitrate. Groundwater nitrate data collected through 1992 from wells less than 100 ft deep generally verified the risk patterns shown on the national map. Median nitrate concentration was 0.2 mg/L in wells representing the low-risk group, and the maximum contaminant level (MCL) was exceeded in 3% of the wells. In contrast, median nitrate concentration was 4.8 mg/L in wells representing the high-risk group, and the MCL was exceeded in 25% of the wells.

  10. Finding the right compromise between productivity and environmental efficiency on high input tropical dairy farms: a case study.

    PubMed

    Berre, David; Blancard, Stéphane; Boussemart, Jean-Philippe; Leleu, Hervé; Tillard, Emmanuel

    2014-12-15

    This study focused on the trade-off between milk production and its environmental impact on greenhouse gas (GHG) emissions and nitrogen surplus in a high input tropical system. We first identified the objectives of the three main stakeholders in the dairy sector (farmers, a milk cooperative and environmentalists). The main aim of the farmers and cooperative's scenarios was to increase milk production without additional environmental deterioration but with the possibility of increasing the inputs for the cooperative. The environmentalist's objective was to reduce environmental deterioration. Second, we designed a sustainable intensification scenario combining maximization of milk production and minimization of environmental impacts. Third, the objectives for reducing the eco-inefficiency of dairy systems in Reunion Island were incorporated in a framework for activity analysis, which was used to model a technological approach with desirable and undesirable outputs. Of the four scenarios, the sustainable intensification scenario produced the best results, with a potential decrease of 238 g CO2-e per liter of milk (i.e. a reduction of 13.93% compared to the current level) and a potential 7.72 L increase in milk produced for each kg of nitrogen surplus (i.e. an increase of 16.45% compared to the current level). These results were based on the best practices observed in Reunion Island and optimized manure management, crop-livestock interactions, and production processes. Our results also showed that frontier efficiency analysis can shed new light on the challenge of developing sustainable intensification in high input tropical dairy systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Yanjie; Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Communications, Tianjin Research Institute of Water Transport Engineering, Tianjin 300456; Ji Min, E-mail: jmtju@yahoo.cn

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration inmore » the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.« less

  12. Is groundwater discharge the dominant source of nutrients to Alabama estuaries and will it keep impacting these waters for the foreseeable future?

    NASA Astrophysics Data System (ADS)

    Mortazavi, B.; Domangue, R.; Kleinhuizen, A.; Tatariw, C.

    2017-12-01

    Land use change and population growth are dominant factors impacting coastal waters. Populations in Alabama coastal counties have increased by several folds since the 1950s and a large fraction of the farmed land are now being used for growing sod requiring large amounts of fertilizers. Concurrent with these changes, marshes bordering Mobile Bay have been disappearing such that they now only cover 50% of their areal extent compared to the 1780s. These changes in land use and coastal geomorphology, as well as the population growth ultimately result in larger delivery of nutrients either through runoff or groundwater discharge to the coastal waters. The Mobile Bay estuary in Alabama is bordered with several subestuaries and a coastal lagoon. Our investigations suggest that the large inputs of nutrients through river discharge in Weeks Bay (140 g N m-2 yr-1) and groundwater discharge in Little Lagoon (300 g N m-2 yr-1) by far dominate inputs of N to the water column and exceed N input, for example, from benthic regeneration, by an order of magnitude. Furthermore, the capacity for N removal through denitrification in these systems is low and instead nitrogen is retained through dissimilatory nitrate reduction to ammonium at a rate that exceed denitrification by an order of magnitude. Our measurements also suggest that once marshes are transformed to subtidal unvegetated sediments rates of nitrogen removal by denitrification decline four folds. Excessive inputs of nitrogen and the high efficiency with which nitrogen is retained in these systems is impacting the foodweb and harmful algal blooms and fish kills are reoccurring events. While changes in agricultural practices and reconstruction of marshes can potentially reduce the delivery of N or enhance N removal by denitrification, nutrient inputs through groundwater discharge are going to impact these estuaries for the foreseeable future. Our capacity to construct nutrient budgets and to predict the trajectory of ecosystem changes will therefore depend greatly on accurate knowledge of groundwater discharge to these systems. Quantifying the magnitudes of groundwater derived nutrients and the fate of these nutrients in nearshore systems requires concerted efforts amongst hydrologists, biogeochemists, and ecologists.

  13. Grazing-induced reduction of natural nitrous oxide release from continental steppe.

    PubMed

    Wolf, Benjamin; Zheng, Xunhua; Brüggemann, Nicolas; Chen, Weiwei; Dannenmann, Michael; Han, Xingguo; Sutton, Mark A; Wu, Honghui; Yao, Zhisheng; Butterbach-Bahl, Klaus

    2010-04-08

    Atmospheric concentrations of the greenhouse gas nitrous oxide (N(2)O) have increased significantly since pre-industrial times owing to anthropogenic perturbation of the global nitrogen cycle, with animal production being one of the main contributors. Grasslands cover about 20 per cent of the temperate land surface of the Earth and are widely used as pasture. It has been suggested that high animal stocking rates and the resulting elevated nitrogen input increase N(2)O emissions. Internationally agreed methods to upscale the effect of increased livestock numbers on N(2)O emissions are based directly on per capita nitrogen inputs. However, measurements of grassland N(2)O fluxes are often performed over short time periods, with low time resolution and mostly during the growing season. In consequence, our understanding of the daily and seasonal dynamics of grassland N(2)O fluxes remains limited. Here we report year-round N(2)O flux measurements with high and low temporal resolution at ten steppe grassland sites in Inner Mongolia, China. We show that short-lived pulses of N(2)O emission during spring thaw dominate the annual N(2)O budget at our study sites. The N(2)O emission pulses are highest in ungrazed steppe and decrease with increasing stocking rate, suggesting that grazing decreases rather than increases N(2)O emissions. Our results show that the stimulatory effect of higher stocking rates on nitrogen cycling and, hence, on N(2)O emission is more than offset by the effects of a parallel reduction in microbial biomass, inorganic nitrogen production and wintertime water retention. By neglecting these freeze-thaw interactions, existing approaches may have systematically overestimated N(2)O emissions over the last century for semi-arid, cool temperate grasslands by up to 72 per cent.

  14. Variability, drivers, and effects of atmospheric nitrogen inputs across an urban area: Emerging patterns among human activities, the atmosphere, and soils.

    PubMed

    Decina, Stephen M; Templer, Pamela H; Hutyra, Lucy R; Gately, Conor K; Rao, Preeti

    2017-12-31

    Atmospheric deposition of nitrogen (N) is a major input of N to the biosphere and is elevated beyond preindustrial levels throughout many ecosystems. Deposition monitoring networks in the United States generally avoid urban areas in order to capture regional patterns of N deposition, and studies measuring N deposition in cities usually include only one or two urban sites in an urban-rural comparison or as an anchor along an urban-to-rural gradient. Describing patterns and drivers of atmospheric N inputs is crucial for understanding the effects of N deposition; however, little is known about the variability and drivers of atmospheric N inputs or their effects on soil biogeochemistry within urban ecosystems. We measured rates of canopy throughfall N as a measure of atmospheric N inputs, as well as soil net N mineralization and nitrification, soil solution N, and soil respiration at 15 sites across the greater Boston, Massachusetts area. Rates of throughfall N are 8.70±0.68kgNha -1 yr -1 , vary 3.5-fold across sites, and are positively correlated with rates of local vehicle N emissions. Ammonium (NH 4 + ) composes 69.9±2.2% of inorganic throughfall N inputs and is highest in late spring, suggesting a contribution from local fertilizer inputs. Soil solution NO 3 - is positively correlated with throughfall NO 3 - inputs. In contrast, soil solution NH 4 + , net N mineralization, nitrification, and soil respiration are not correlated with rates of throughfall N inputs. Rather, these processes are correlated with soil properties such as soil organic matter. Our results demonstrate high variability in rates of urban throughfall N inputs, correlation of throughfall N inputs with local vehicle N emissions, and a decoupling of urban soil biogeochemistry and throughfall N inputs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Nitrous oxide emissions from a peatbog after 13 years of experimental nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Leeson, Sarah R.; Levy, Peter E.; van Dijk, Netty; Drewer, Julia; Robinson, Sophie; Jones, Matthew R.; Kentisbeer, John; Washbourne, Ian; Sutton, Mark A.; Sheppard, Lucy J.

    2017-12-01

    Nitrogen deposition was experimentally increased on a Scottish peatbog over a period of 13 years (2002-2015). Nitrogen was applied in three forms, NH3 gas, NH4Cl solution, and NaNO3 solution, at rates ranging from 8 (ambient) to 64 kg N ha-1 yr-1, and higher near the NH3 fumigation source. An automated system was used to apply the nitrogen, such that the deposition was realistic in terms of rates and high frequency of deposition events. We measured the response of nitrous oxide (N2O) flux to the increased nitrogen input. Prior expectations, based on the IPCC default emission factor, were that 1 % of the added nitrogen would be emitted as N2O. In the plots treated with NH4+ and NO3- solution, no response was seen, and there was a tendency for N2O fluxes to be reduced by additional nitrogen, though this was not significant. Areas subjected to high NH3 emitted more N2O than expected, up to 8.5 % of the added nitrogen. Differences in the response are related to the impact of the nitrogen treatments on the vegetation. In the NH4+ and NO3- treatments, all the additional nitrogen is effectively immobilised in the vegetation and top 10 cm of peat. In the NH3 treatment, much of the vegetation was killed off by high doses of NH3, and the nitrogen was presumably more available to denitrifying bacteria. The design of the wet and dry experimental treatments meant that they differed in statistical power, and we are less likely to detect an effect of the NH4+ and NO3- treatments, though they avoid issues of pseudo-replication.

  16. Atmospheric deposition of selected chemicals and their effect on nonpoint-source pollution in the Twin Cities Metropolitan Area, Minnesota

    USGS Publications Warehouse

    Brown, R.G.

    1984-01-01

    The atmospheric contribution to nonpoint-source-runoff pollution of nitrogen, in the form of nitrite-plus-nitrate, and lead was extremely high contributing as much as 84 percent of the runoff load. In contrast, phosphorus and chloride inputs were low averaging of 6 percent of the total runoff load. Future investigations of nonpoint-source pollution in runoff might include collection of data on atmospheric deposition of nitrite-plus-nitrate nitrogen and lead because of the importance of that source of these constituents in runoff.

  17. EFFECT OF NUTRIENT LOADING ON BIOGEOCHEMICAL AND MICROBIAL PROCESSES IN A NEW ENGLAND HIGH SALT MARSH, SPARTINA PATNES, (AITON MUHL)

    EPA Science Inventory

    Coastal marshes represent an important transitional zone between uplands and estuaries and can assimilate nutrient inputs from uplands. We examined the effects of nitrogen (N) and phosphorus (P) fertilization on biogeochemical and microbial processes during the summer growing sea...

  18. Global manure nitrogen production and application in cropland during 1860-2014: a 5 arcmin gridded global dataset for Earth system modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Bowen; Tian, Hanqin; Lu, Chaoqun; Dangal, Shree R. S.; Yang, Jia; Pan, Shufen

    2017-09-01

    Given the important role of nitrogen input from livestock systems in terrestrial nutrient cycles and the atmospheric chemical composition, it is vital to have a robust estimation of the magnitude and spatiotemporal variation in manure nitrogen production and its application to cropland across the globe. In this study, we used the dataset from the Global Livestock Impact Mapping System (GLIMS) in conjunction with country-specific annual livestock populations to reconstruct the manure nitrogen production during 1860-2014. The estimated manure nitrogen production increased from 21.4 Tg N yr-1 in 1860 to 131.0 Tg N yr-1 in 2014 with a significant annual increasing trend (0.7 Tg N yr-1, p < 0.01). Changes in manure nitrogen production exhibited high spatial variability and concentrated in several hotspots (e.g., Western Europe, India, northeastern China, and southeastern Australia) across the globe over the study period. In the 1860s, the northern midlatitude region was the largest manure producer, accounting for ˜ 52 % of the global total, while low-latitude regions became the largest share (˜ 48 %) in the most recent 5 years (2010-2014). Among all the continents, Asia accounted for over one-fourth of the global manure production during 1860-2014. Cattle dominated the manure nitrogen production and contributed ˜ 44 % of the total manure nitrogen production in 2014, followed by goats, sheep, swine, and chickens. The manure nitrogen application to cropland accounts for less than one-fifth of the total manure nitrogen production over the study period. The 5 arcmin gridded global dataset of manure nitrogen production generated from this study could be used as an input for global or regional land surface and ecosystem models to evaluate the impacts of manure nitrogen on key biogeochemical processes and water quality. To ensure food security and environmental sustainability, it is necessary to implement proper manure management practices on cropland across the globe. Datasets are available at https://doi.org/10.1594/PANGAEA.871980 (Zhang et al., 2017).

  19. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    USGS Publications Warehouse

    Jain, A.A.; Yang, Xiaojuan; Kheshgi, H.; McGuire, A. David; Post, W.; Kicklighter, David W.

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr−1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr−1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr−1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr−1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and sinks.

  20. Effect of management on nitrogen budgets and implications for air, soil, and water quality

    USDA-ARS?s Scientific Manuscript database

    Nitrogen is a key nutrient for both national and global food security, and nitrogen inputs from organic and/or inorganic sources are essential to maintain sustainable and economically viable agricultural systems. The challenge with nitrogen is that it is very dynamic and mobile, and some forms are s...

  1. Oxidized Nitrogen in Precipitation, Throughfall, and Streamfall from a Forested Watershed in Oklahoma

    USGS Publications Warehouse

    Lawrence, Stephen J.; Wigington, Parker J.

    1987-01-01

    Oxidized nitrogen (nitrite plus nitrate N) concentrations were measured from bulk precipitation, bulk throughfall, and screamflow in a 7. 86 hectare forested watershed in southeastern Oklahoma during the wet season from March through June 1983. Oxidized nitrogen inputs comparable to results of other studies were recorded during the 19 rainstorms sampled. Oxidized nitrogen concentrations appeared to increase after rainfall interacted with the pine and hardwood canopies and were inversely related to both rainfall and throughfall depth. Oxidized N concentrations in streamflow were greatest during the rising limb of storm flow with subsequent decreases during the falling limb of storm hydrographs and lowest during base flow. The oxidized N inputs from bulk precipitation were considerably greater than outputs from streamflow resulting in a net retention of oxidized nitrogen within the watershed during the study period.

  2. Nitrogen addition affects leaf nutrition and photosynthesis in sugar maple in a nutrient-poor northern Vermont forest

    Treesearch

    David S. Ellsworth

    1999-01-01

    Sugar maple-dominated forest ecosystems in the northeastern U.S. have been receiving precipitation nitrogen (N) inputs of 15 -20 kg N ha1 year1 since at least the mid 1980s sustained chronic N inputs of this magnitude into nutrient-poor forest ecosystems may cause eutrophication and affect ecosystem functioning as well as...

  3. Macroalgae δ15N values in well-mixed estuaries: Indicator of anthropogenic nitrogen input or macroalgae metabolism?

    NASA Astrophysics Data System (ADS)

    Raimonet, Mélanie; Guillou, Gaël; Mornet, Françoise; Richard, Pierre

    2013-03-01

    Although nitrogen stable isotope ratio (δ15N) in macroalgae is widely used as a bioindicator of anthropogenic nitrogen inputs to the coastal zone, recent studies suggest the possible role of macroalgae metabolism in δ15N variability. Simultaneous determinations of δ15N of dissolved inorganic nitrogen (DIN) along the land-sea continuum, inter-species variability of δ15N and its sensitivity to environmental factors are necessary to confirm the efficiency of macroalgae δ15N in monitoring nitrogen origin in mixed-use watersheds. In this study, δ15N of annual and perennial macroalgae (Ulva sp., Enteromorpha sp., Fucus vesiculosus and Fucus serratus) are compared to δ15N-DIN along the Charente Estuary, after characterizing δ15N of the three main DIN sources (i.e. cultivated area, pasture, sewage treatment plant outlet). During late winter and spring, when human activities produce high DIN inputs, DIN sources exhibit distinct δ15N signals in nitrate (NO) and ammonium (NH): cultivated area (+6.5 ± 0.6‰ and +9.0 ± 11.0‰), pasture (+9.2 ± 1.8‰ and +12.4‰) and sewage treatment plant discharge (+16.9 ± 8.7‰ and +25.4 ± 5.9‰). While sources show distinct δN- in this multiple source catchment, the overall mixture of NO sources - generally >95% DIN - leads to low variations of δN-NO at the mouth of the estuary (+7.7 to +8.4‰). Even if estuarine δN-NO values are not significantly different from pristine continental and oceanic site (+7.3‰ and +7.4‰), macroalgae δ15N values are generally higher at the mouth of the estuary. This highlights high anthropogenic DIN inputs in the estuary, and enhanced contribution of 15N-depleted NH in oceanic waters. Although seasonal variations in δN-NO are low, the same temporal trends in macroalgae δ15N values at estuarine and oceanic sites, and inter-species differences in δ15N values, suggest that macroalgae δ15N values might be modified by the metabolic response of macroalgae to environmental parameters (e.g., temperature, light, DIN concentrations). Differences between annual and perennial macroalgae indicate both a higher integration time of perennial compared to annual macroalgae and the possible role of passive versus active uptake mechanisms. Further studies are required to characterize the sensitivity of macroalgae fractionation to variable environmental conditions and uptake mechanisms.

  4. [Further reduction of nitrogen fertilizer application in paddy field under green manuring of Taihu Area, China].

    PubMed

    Zhao, Dong; Yan, Ting-mei; Qiao, Jun; Yang, Lin-zhang; Tang, Fang; Song, Yun-fei

    2015-06-01

    This study focused on the nitrogen loss via runoff, change of nitrogen in different forms in surface water in paddy field, and grain yield, through further reduction of nitrogen fertilizer application rate under green manuring without basal dressing. Results showed that with 150 kg · hm(-2) inorganic N fertilizer input after return of green manure to soil, no basal dressing could not only sharply reduce N concentration in surface water and decrease 17.2% of N loss, but also increase 2.8% of grain yield in comparison with basal dressing. It was a worthwhile farming method that inorganic nitrogen fertilizer was not used for basal dressing but for topdressing after return of green ma- nure to soil in Taihu Area. However, the grain yield would decrease if the rate of topdressing nitro- gen was excessively reduced or increased. After all, it was feasible to realize harmonization of grain yield and environmental benefits in Taihu Area, with 133 kg · hm(-2) inorganic N fertilizer input after return of green manure to soil as well as no application of basal dressing, which could greatly reduce N fertilizer input and N loss as well as ensure rice yield.

  5. Distribution of Nitrogen Compounds in Marine Aerosol and Their Deposition Over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Uematsu, M.; Narita, Y.; Sun, S. Y.

    2016-02-01

    Nutrient supply to the ocean surface layer is an important factor controlling the marine ecosystem. The major paths of supplies of nutrients have been considered as those from nutrient-rich deep waters and riverine input, which is mostly taken up near the estuary region, but the nutrients transported through the atmosphere recognize to be important for the open ocean, where the nutrients are limiting primary productivity. Because of rapid economic development surrounding the Pacific Ocean, anthropogenic NOx emissions increased by 2-3 times during the past decades. This rapid increase of NOx emission causes a large amount of N deposition mostly in the form of nitrate and ammonium over ocean surfaces, and strongly impacts their marine ecosystems. Especially, biological N2 fixation, riverine input and atmospheric deposition contribute to support "new production" and affect CO2 air-sea exchange. The concentration of nitrogen compounds in marine aerosol has been measured on the island stations and onboard of research vessels in the Pacific Ocean over a few decades. The temporal and spatial atmospheric distribution of water-soluble particulate nitrogen compounds is summarized in this study. As the transport of anthropogenic nitrogen compounds from land, high concentration is revealed over the marginal seas in the western North Pacific. Most of nitrate exists in the coarse aerosol associated with sea-salt particle while ammonium exists in the fine particle and showing a good relationship with non-sea-salt sulfate. This different particle size affects to estimate the deposition flux of nitrogen compounds to the ocean surface. Over the high primary productive areas such as the equatorial Pacific and the Southern Ocean, ammonia is released into the atmosphere and transported to other area. By wet and dry deposition, ammonium is removed to the ocean surface and modified the distribution of nitrogen compounds in the surface waters.

  6. Benthic metabolism and nitrogen dynamics in an urbanised tidal creek: Domination of DNRA over denitrification as a nitrate reduction pathway

    NASA Astrophysics Data System (ADS)

    Dunn, Ryan J. K.; Robertson, David; Teasdale, Peter R.; Waltham, Nathan J.; Welsh, David T.

    2013-10-01

    Benthic oxygen and nutrient fluxes and nitrate reduction rates were determined seasonally under light and dark conditions at three sites in a micro-tidal creek within an urbanised catchment (Saltwater Creek, Australia). It was hypothesized that stormwater inputs of organic matter and inorganic nitrogen would stimulate rates of benthic metabolism and nutrient recycling and preferentially stimulate dissimilatory nitrate reduction to ammonium (DNRA) over denitrification as a pathway for nitrate reduction. Stormwaters greatly influenced water column dissolved inorganic nitrogen (DIN) and suspended solids concentrations with values following a large rainfall event being 5-20-fold greater than during the preceding dry period. Seasonally, maximum and minimum water column total dissolved nitrogen (TDN) and DIN concentrations occurred in the summer (wet) and winter (dry) seasons. Creek sediments were highly heterotrophic throughout the year, and strong sinks for oxygen, and large sources of dissolved organic and inorganic nitrogen during both light and dark incubations, although micro-phytobenthos (MPB) significantly decreased oxygen consumption and N-effluxes during light incubations due to photosynthetic oxygen production and photoassimilation of nutrients. Benthic denitrification rates ranged from 3.5 to 17.7 μmol N m2 h-1, denitrification efficiencies were low (<1-15%) and denitrification was a minor process compared to DNRA, which accounted for ˜75% of total nitrate reduction. Overall, due to the low denitrification efficiencies and high rates of N-regeneration, Saltwater Creek sediments would tend to increase rather than reduce dissolved nutrient loads to the downstream Gold Coast Broadwater and Moreton Bay systems. This may be especially true during wet periods when increased inputs of particulate organic nitrogen (PON) and suspended solids could respectively enhance rates of N-regeneration and decrease light availability to MPB, reducing their capacity to ameliorate N-effluxes through photoassimilation.

  7. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes

    USGS Publications Warehouse

    Alexander, Richard B.; Böhlke, John Karl; Boyer, Elizabeth W.; David, Mark B.; Harvey, Judson W.; Mulholland, Patrick J.; Seitzinger, Sybil P.; Tobias, Craig R.; Tonitto, Christina; Wollheim, Wilfred M.

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly equally to seasonal and stream-size related variations in the percentage of the stream nitrate flux removed in each watershed.

  8. Nitrogen isotopes in lake sediments (Tiefer See, NE Germany) and their potential for paleoenvironmental and human impact reconstruction

    NASA Astrophysics Data System (ADS)

    Plessen, Birgit; Kienel, Ulrike; Dräger, Nadine; Brauer, Achim

    2015-04-01

    The light stable isotopes of nitrogen and carbon can be widely used to reconstruct past paleoenvironmental conditions, agricultural landscape development, and industrial pollution. They may reflect human impact by extensive land use, manure, sewage input, and atmospheric nitrogen compounds. To understand the lake nitrogen cycle depending on natural variability and anthropogenic forcing, we study the sediment record of Lake Tiefer See (Mecklenburg/NE-Germany) together with the recent input and productivity monthly monitored in sediment traps in the hypo-, meta- and epilimnion. The monitoring of the dimictic to monomictic Lake Tiefer See (62.5 m water depth) over the last three years clearly shows high δ15N (+7 to +14‰ ), and low δ113Corg (-28 to -33‰ ) values of the deposited matter mainly corresponding to internal organic productivity driven by nutrient loading and the development of anoxia in the hypolimnion. Compared to that, surface soil and terrestrial plant materials are characterised by lower δ15N (+3 to +6‰ ), and higher δ13Corg (-28 to -25‰ ) values. Recent high δ15N values of the phytoplankton in the lake water reflect assimilation of dissolved nitrogen compounds enriched in 15N, whereas the lower δ15N of surface core sedimentary matter indicate partly decomposition of organic matter in the anoxic zone and release of 15N enriched components into the lake water. We furthermore identified in the lake sedimentary record a continuous increase in δ15N from +3 to +8‰ over the last 400 years interrupted by short term phases of decreasing 15N enrichment implying an intrusion of human activity in the nitrogen cycle starting at ca. AD 1590. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association, grant number VH-VI-415.

  9. Integrated analysis of the effects of agricultural management on nitrogen fluxes at landscape scale.

    PubMed

    Kros, J; Frumau, K F A; Hensen, A; de Vries, W

    2011-11-01

    The integrated modelling system INITIATOR was applied to a landscape in the northern part of the Netherlands to assess current nitrogen fluxes to air and water and the impact of various agricultural measures on these fluxes, using spatially explicit input data on animal numbers, land use, agricultural management, meteorology and soil. Average model results on NH(3) deposition and N concentrations in surface water appear to be comparable to observations, but the deviation can be large at local scale, despite the use of high resolution data. Evaluated measures include: air scrubbers reducing NH(3) emissions from poultry and pig housing systems, low protein feeding, reduced fertilizer amounts and low-emission stables for cattle. Low protein feeding and restrictive fertilizer application had the largest effect on both N inputs and N losses, resulting in N deposition reductions on Natura 2000 sites of 10% and 12%, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. DEVELOPING INDICATORS OF NITROGEN SOURCE IN COASTAL ECOSYSTEMS

    EPA Science Inventory

    Several studies have linked stable isotope ratios of biota to nitrogen source. In particular, ribbed mussels show promise as sensitive indicators of the origins of nitrogen inputs to coastal ecosystems. Here we expand on previous work which demonstrated that mussel isotope ratios...

  11. Watershed delineation and nitrogen source analysis for Bayou Chico, an urban watershed in northwest Florida

    EPA Science Inventory

    Nutrient pollution in stormwater runoff from urbanized areas contributes to water quality degradation in streams and receiving waterbodies. Agriculture, population growth, and industrial activities are significant sources of nitrogen inputs for surface waters. Increased nitrogen ...

  12. THE EFFECTS OF NITROGEN LOADING AND FRESHWATER RESIDENCE TIME ON THE ESTUARINE ECOSYSTEM

    EPA Science Inventory

    A simple mechanistic model, designed to predict annual average concentrations of total nitrogen (TN) concentrations from nitrogen inputs and freshwater residence time in estuaries, was applied to data for several North American estuaries from previously published literature. The ...

  13. Dissolved organic nitrogen budgets for upland, forested ecosystems in New England

    USGS Publications Warehouse

    Campbell, J.L.; Hornbeck, J.W.; McDowell, W.H.; Buso, D.C.; Shanley, J.B.; Likens, G.E.

    2000-01-01

    Relatively high deposition of nitrogen (N) in the northeastern United States has caused concern because sites could become N saturated. In the past, mass-balance studies have been used to monitor the N status of sites and to investigate the impact of increased N deposition. Typically, these efforts have focused on dissolved inorganic forms of N (DIN = NH4-N + NO3-N) and have largely ignored dissolved organic nitrogen (DON) due to difficulties in its analysis. Recent advances in the measurement of total dissolved nitrogen (TDN) have facilitated measurement of DON as the residual of TDN - DIN. We calculated DON and DIN budgets using data on precipitation and streamwater chemistry collected from 9 forested watersheds at 4 sites in New England. TDN in precipitation was composed primarily of DIN. Net retention of TDN ranged from 62 to 89% (4.7 to 10 kg ha-1 yr-1) of annual inputs. DON made up the majority of TDN in stream exports, suggesting that inclusion of DON is critical to assessing N dynamics even in areas with large anthropogenic inputs of DIN. Despite the dominance of DON in streamwater, precipitation inputs of DON were approximately equal to outputs. DON concentrations in streamwater did not appear significantly influenced by seasonal biological controls, but did increase with discharge on some watersheds. Streamwater NO3-N was the only fraction of N that exhibited a seasonal pattern, with concentrations increasing during the winter months and peaking during snowmelt runoff. Concentrations of NO3-N varied considerably among watersheds and are related to DOC:DON ratios in streamwater. Annual DIN exports were negatively correlated with streamwater DOC:DON ratios, indicating that these ratios might be a useful index of N status of upland forests.

  14. Benthic biogeochemical cycling, nutrient stoichiometry, and carbon and nitrogen mass balances in a eutrophic freshwater bay

    USGS Publications Warehouse

    Klump, J.V.; Fitzgerald, S.A.; Waplesa, J.T.

    2009-01-01

    Green Bay, while representing only ,7% of the surface area and ??1.4% of the volume of Lake Michigan, contains one-third of the watershed of the lake, and receives approximately one-third of the total nutrient loading to the Lake Michigan basin, largely from the Fox River at the southern end of the bay. With a history of eutrophic conditions dating back nearly a century, the southern portion of the bay behaves as an efficient nutrient and sediment trap, sequestering much of the annual carbon and nitrogen input within sediments accumulating at up to 1 cm per year. Depositional fluxes of organic matter varied from ??0.1 mol C m-2 yr-1 to >10 mol C m-2 yr-1 and were both fairly uniform in stoichiometric composition and relatively labile. Estimates of benthic recycling derived from pore-water concentration gradients, whole-sediment incubation experiments, and deposition-burial models of early diagenesis yielded an estimated 40% of the carbon and 50% of the nitrogen recycled back into the overlying water. Remineralization was relatively rapid with ??50% of the carbon remineralized within <15 yr of deposition, and a mean residence time for metabolizable carbon and nitrogen in the sediments of 20 yr. On average, organic carbon regeneration occurred as 75% CO2, 15% CH4, and 10% dissolved organic carbon (DOC). Carbon and nitrogen budgets for the southern bay were based upon direct measurements of inputs and burial and upon estimates of export and production derived stoichiometrically from a coupled phosphorus budget. Loadings of organic carbon from rivers were ??3.7 mol m-2 yr-1, 80% in the form of DOC and 20% as particulate organic carbon. These inputs were lost through export to northern Green Bay and Lake Michigan (39%), through sediment burial (26%), and net CO2 release to the atmosphere (35%). Total carbon input, including new production, was 4.54 mol m-2 C yr-1, equivalent to ??10% of the gross annual primary production. Nitrogen budget terms were less well quantified, with nitrogen export ??54% of total inputs and burial ??24%, leaving an unquantified residual loss term in the nitrogen budget of ??22%. ?? 2009.

  15. Land Application of Wastes: An Educational Program. Nitrogen Considerations - Module 15, Objectives, Script and Booklet.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module expands on the introductory discussion of nitrogen in other modules. The various chemical forms of nitrogen found in land treatment systems are defined. Inputs from waste application as well as natural sources are quantified for typical situations. A discussion of nitrogen transformations in the soil includes mineralization and…

  16. Input-output budgets of inorganic nitrogen for 24 forest watersheds in the northeastern United States: a review

    Treesearch

    John L. Campbell; James W. Hornbeck; Myron J. Mitchell; Mary Beth Adams; Mark S. Castro; Charles T. Driscoll; Jeffrey S. Kahl; James N. Kochenderfer; Gene E. Likens; James A. Lynch; Peter S. Murdoch; Sarah J. Nelson; James B. Shanley

    2004-01-01

    Input-output budgets for dissolved inorganic nitrogen (DIN) are summarized for 24 small watersheds at 15 locations in the northeastern United States. The study watersheds are completely forested, free of recent physical disturbances, and span a geographical region bounded by West Virginia on the south and west, and Maine on the north and east. Total N budgets are not...

  17. The Effects of Manure and Nitrogen Fertilizer Applications on Soil Organic Carbon and Nitrogen in a High-Input Cropping System

    PubMed Central

    Ren, Tao; Wang, Jingguo; Chen, Qing; Zhang, Fusuo; Lu, Shuchang

    2014-01-01

    With the goal of improving N fertilizer management to maximize soil organic carbon (SOC) storage and minimize N losses in high-intensity cropping system, a 6-years greenhouse vegetable experiment was conducted from 2004 to 2010 in Shouguang, northern China. Treatment tested the effects of organic manure and N fertilizer on SOC, total N (TN) pool and annual apparent N losses. The results demonstrated that SOC and TN concentrations in the 0-10cm soil layer decreased significantly without organic manure and mineral N applications, primarily because of the decomposition of stable C. Increasing C inputs through wheat straw and chicken manure incorporation couldn't increase SOC pools over the 4 year duration of the experiment. In contrast to the organic manure treatment, the SOC and TN pools were not increased with the combination of organic manure and N fertilizer. However, the soil labile carbon fractions increased significantly when both chicken manure and N fertilizer were applied together. Additionally, lower optimized N fertilizer inputs did not decrease SOC and TN accumulation compared with conventional N applications. Despite the annual apparent N losses for the optimized N treatment were significantly lower than that for the conventional N treatment, the unchanged SOC over the past 6 years might limit N storage in the soil and more surplus N were lost to the environment. Consequently, optimized N fertilizer inputs according to root-zone N management did not influence the accumulation of SOC and TN in soil; but beneficial in reducing apparent N losses. N fertilizer management in a greenhouse cropping system should not only identify how to reduce N fertilizer input but should also be more attentive to improving soil fertility with better management of organic manure. PMID:24830463

  18. Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States

    USGS Publications Warehouse

    Green, C.T.; Fisher, L.H.; Bekins, B.A.

    2008-01-01

    The main physical and chemical controls on nitrogen (N) fluxes between the root zone and the water table were determined for agricultural sites in California, Indiana, Maryland, Nebraska, and Washington from 2004 to 2005. Sites included irrigated and nonirrigated fields; soil textures ranging from clay to sand; crops including corn, soybeans, almonds, and pasture; and unsaturated zone thicknesses ranging from 1 to 22 m. Chemical analyses of water from lysimeters and shallow wells indicate that advective transport of nitrate is the dominant process affecting the flux of N below the root zone. Vertical profiles of (i) nitrogen species, (ii) stable isotopes of nitrogen and oxygen, and (iii) oxygen, N, and argon in unsaturated zone air and correlations between N and other agricultural chemicals indicate that reactions do not greatly affect N concentrations between the root zone and the capillary fringe. As a result, physical factors, such as N application rate, water inputs, and evapotranspiration, control the differences in concentrations among the sites. Concentrations of N in shallow lysimeters exhibit seasonal variation, whereas concentrations in lysimeters deeper than a few meters are relatively stable. Based on concentration and recharge estimates, fluxes of N through the deep unsaturated zone range from 7 to 99 kg ha-1 yr-1. Vertical fluxes of N in ground water are lower due to spatial and historical changes in N inputs. High N fluxes are associated with coarse sediments and high N application rates. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  19. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    USGS Publications Warehouse

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-01-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate show direct and rapid effects on forest streams that may be widespread, although undocumented, throughout nitrogen-polluted temperate forests. In contrast to a week-long nitrate decline during peak autumn litterfall, base flow DON concentrations increased after leaf fall and remained high for 2 months. Dissolved organic nitrogen was hydrologically flushed to the stream from riparian soils during stormflow. In contrast to distinct seasonal changes in base flow nitrate and DON concentrations, ammonium concentrations were typically at or below the detection limit, similar to the rest of the year. Our findings reveal couplings among catchment flow paths, nutrient sources, and transformations that control seasonal extremes of stream nitrogen in forested landscapes.

  20. Nitrogen in agricultural systems: Implications for conservation policy

    USDA-ARS?s Scientific Manuscript database

    Nitrogen is an important agricultural input that is critical for providing food to feed a growing world population. However, the introduction of large amount of reactive nitrogen into the environment has a number of undesirable impacts on water, terrestrial, and atmospheric resources. Careful manage...

  1. Application of a Two-Dimensional Reservoir Water-Quality Model of Beaver Lake, Arkansas, for the Evaluation of Simulated Changes in Input Water Quality, 2001-2003

    USGS Publications Warehouse

    Galloway, Joel M.; Green, W. Reed

    2007-01-01

    Beaver Lake is considered a primary watershed of concern in the State of Arkansas. As such, information is needed to assess water quality, especially nutrient enrichment, nutrient-algal relations, turbidity, and sediment issues within the system. A previously calibrated two-dimensional, laterally averaged model of hydrodynamics and water quality was used for the evaluation of changes in input nutrient and sediment concentrations on the water quality of the reservoir for the period of April 2001 to April 2003. Nitrogen and phosphorus concentrations were increased and decreased and tested independently and simultaneously to examine the nutrient concentrations and algal response in the reservoir. Suspended-solids concentrations were increased and decreased to identify how solids are distributed in the reservoir, which can contribute to decreased water clarity. The Beaver Lake model also was evaluated using a conservative tracer. A conservative tracer was applied at various locations in the reservoir model to observe the fate and transport and how the reservoir might react to the introduction of a conservative substance, or a worst-case spill scenario. In particular, tracer concentrations were evaluated at the locations of the four public water-supply intakes in Beaver Lake. Nutrient concentrations in Beaver Lake increased proportionally with increases in loads from the three main tributaries. An increase of 10 times the calibrated daily input nitrogen and phosphorus in the three main tributaries resulted in daily mean total nitrogen concentrations in the epilimnion that were nearly 4 times greater than the calibration concentrations at site L2 and more than 2 times greater than the calibrated concentrations at site L5. Increases in daily input nitrogen in the three main tributaries independently did not correspond in substantial increases in concentrations of nitrogen in Beaver Lake. The greatest proportional increase in phosphorus occurred in the epilimnion at sites L3 and L4 and the least increase occurred at sites L2 and L5 when calibrated daily input phosphorus concentrations were increased. When orthophosphorus was increased in all three tributaries simultaneously by a factor of 10, daily mean orthophosphorus concentrations in the epilimnion of the reservoir were almost 11 times greater than the calibrated concentrations at sites L2 and L5, and 15 times greater in the epilimnion of the reservoir at sites L3 and L4. Phosphorus concentrations in Beaver Lake increased less when nitrogen and phosphorus were increased simultaneously than when phosphorus was increased independently. The greatest simulated increase in algal biomass (represented as chlorophyll a) occurred when nitrogen and phosphorus were increased simultaneously in the three main tributaries. On average, the chlorophyll a values only increased less than 1 microgram per liter when concentrations of nitrogen or phosphorous were increased independently by a factor of 10 at all three tributaries. In comparison, when nitrogen and phosphorus were increased simultaneously by a factor of 10 for all three tributaries, the chlorophyll a concentration increased by about 10 micrograms per liter on average, with a maximum increase of about 57 micrograms per liter in the epilimnion at site L3 in Beaver Lake. Changes in algal biomass with changes in input nitrogen and phosphorus were variable through time in the Beaver Lake model from April 2001 to April 2003. When calibrated daily input nitrogen and phosphorus concentrations were increased simultaneously for the three main tributaries, the increase in chlorophyll a concentration was the greatest in late spring and summer of 2002. Changes in calibrated daily input inorganic suspended solids concentrations were examined because of the effect they may have on water clarity in Beaver Lake. The increase in total suspended solids was greatest in the hypolimnion at the upstream end of Beaver Lake, and negligible changes

  2. Hydrological heterogeneity, nutrient dynamics and water quality of a non-tidal lentic ecosystem (Lesina Lagoon, Italy)

    NASA Astrophysics Data System (ADS)

    Roselli, Leonilde; Fabbrocini, Adele; Manzo, Cristina; D'Adamo, Raffaele

    2009-10-01

    The dynamics of the Lesina coastal lagoon (Italy) in terms of nutrients, phytoplankton and chemical-physical parameters were evaluated, together with their functional relationships with freshwater inputs, in order to identify ecosystem responses to changes in driving forces in a Mediterranean non-tidal lentic environment. Lesina Lagoon is a shallow coastal environment characterised by limited exchange with coastal waters, which favours enrichment of nutrients and organic matter and benthic fluxes within the system. Lagoon-sea exchanges are influenced by human management. There is a steep salinity gradient from East to West. High nitrogen and silica values were found close to freshwater inputs, indicating wastewater discharges and agricultural runoff, especially in winter. Dissolved oxygen was well below saturation (65%) near sewage and runoff inputs in the western part of the lagoon during summer. Classification in accordance with EEA (2001) guidelines suggests the system is of "poor" or "bad" quality in terms of nitrogen concentrations in the eastern zone during the winter rainy period. In terms of phosphate concentrations, the majority of the stations fall into the "good" category, with only two stations (close to the sewage and runoff inputs) classed as "bad". In both cases, the raw nitrogen levels make the lagoon a P-limited system, especially in the eastern part. There was wide space-time variability in chlorophyll a concentrations, which ranged from 0.25 to 56 μg l -1. No relationships between chlorophyll a and nutrients were found, suggesting that autotrophic biomass may be controlled by a large number of internal and external forcing factors driving eutrophication processes. Water quality for this type of environment depends heavily on pressure from human activities but also on the management of sewage treatment plants, agricultural practices and the channels connecting the lagoon with the sea.

  3. Nitrogen dynamics in an Alaskan salt marsh following spring use by geese

    USGS Publications Warehouse

    Zacheis, Amy B.; Ruess, Roger W.; Hupp, Jerry W.

    2002-01-01

    Lesser snow geese (Anser caerulescens caerulescens) and Canada geese (Branta canadensis) use several salt marshes in Cook Inlet, Alaska, as stopover areas for brief periods during spring migration. We investigated the effects of geese on nitrogen cycling processes in Susitna Flats, one of the marshes. We compared net nitrogen mineralization, organic nitrogen pools and production in buried bags, nitrogen fixation by cyanobacteria, and soil and litter characteristics on grazed plots versus paired plots that had been exclosed from grazing for 3 years. Grazed areas had higher rates of net nitrogen mineralization in the spring and there was no effect of grazing on organic nitrogen availability. The increased mineralization rates in grazed plots could not be accounted for by alteration of litter quality, litter quantity, microclimate, or root biomass, which were not different between grazed and exclosed plots. In addition, fecal input was very slight in the year that we studied nitrogen cycling. We propose that trampling had two effects that could account for greater nitrogen availability in grazed areas: litter incorporation into soil, resulting in increased rates of decomposition and mineralization of litter material, and greater rates of nitrogen fixation by cyanobacteria on bare, trampled soils. A path analysis indicated that litter incorporation by trampling played a primary role in the nitrogen dynamics of the system, with nitrogen fixation secondary, and that fecal input was of little importance.

  4. Using Remote Sensing Data to Update a Dynamic Regional-Scale Water Quality Model

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Nolin, A.; Brakebill, J.; Sproles, E.; Macauley, M.

    2012-04-01

    Regional scale SPARROW models, used by the US Geological Survey, relate watershed characteristics to in stream water quality. SPARROW models are widely used to identify and quantify the sources of contaminants in watersheds and to predict their flux and concentration at specified locations downstream. Conventional SPARROW models are steady-state models and describe the average relationship between sources and stream conditions based on long-term water quality monitoring data and spatially referenced explanatory information. However, many watershed management issues stem from intra- and inter-annual changes in contaminant sources, hydrologic forcing, or other environmental conditions, which cause a temporary imbalance between inputs and stream water quality. Dynamic behavior of the system relating to changes in watershed storage and processing then becomes important. Here, we describe a dynamically calibrated SPARROW model of total nitrogen flux in the Potomac River Basin based on seasonal water quality and watershed input data for 80 monitoring stations over the period 2000 to 2008. One challenge in dynamic modeling of reactive nitrogen is obtaining spatially detailed and sufficiently frequent input data on the phenology of agricultural production and terrestrial vegetation. We use the Enhanced Vegetation Index (EVI) and gross primary productivity data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite to parameterize seasonal uptake and release of nitrogen. The spatial reference frame of the model is a 16,000-reach, 1:100,000-scale stream network, and the computational time step is seasonal. Precipitation and temperature data are from the PRISM gridded data set, augmented with snow frequency derived from MODIS. The model formulation allows for separate storage compartments for nonpoint sources including fertilized cropland, pasture, urban land, and atmospheric deposition. Removal of nitrogen from watershed storage to stream channels and to "permanent" sinks (deep groundwater and the atmosphere) occur as parallel first-order processes. We use the model to explore an important issue in nutrient management in the Potomac and other basins: the long-term response of total nitrogen flux to changing climate. We model the nitrogen flux response to projected seasonal and inter-annual changes in temperature and precipitation, but under current seasonal nitrogen inputs, as indicated by MODIS measures of productivity. Under these constant inter-annual inputs, changing temperature and precipitation are predicted to lead to flux changes as temporary basin stores of nitrogen either grow or shrink due to changing relative rates of nitrogen removal to the atmosphere and release to streams.

  5. Atmospheric Nitrogen Inputs to the Ocean and their Impact

    NASA Astrophysics Data System (ADS)

    Jickells, Tim D.

    2016-04-01

    Atmospheric Nitrogen Inputs to the Ocean and their Impact T Jickells (1), K. Altieri (2), D. Capone (3), E. Buitenhuis (1), R. Duce (4), F. Dentener (5), K. Fennel (6), J. Galloway (7), M. Kanakidou (8), J. LaRoche (9), K. Lee (10), P. Liss (1), J. Middleburg (11), K. Moore (12), S. Nickovic (13), G. Okin (14), A. Oschilies (15), J. Prospero (16), M. Sarin (17), S. Seitzinger (18), J. Scharples (19), P. Suntharalingram (1), M. Uematsu (20), L. Zamora (21) Atmospheric nitrogen inputs to the ocean have been identified as an important source of nitrogen to the oceans which has increased greatly as a result of human activity. The significance of atmospheric inputs for ocean biogeochemistry were evaluated in a seminal paper by Duce et al., 2008 (Science 320, 893-7). In this presentation we will update the Duce et al 2008 study estimating the impact of atmospheric deposition on the oceans. We will summarise the latest model estimates of total atmospheric nitrogen deposition to the ocean, their chemical form (nitrate, ammonium and organic nitrogen) and spatial distribution from the TM4 model. The model estimates are somewhat smaller than the Duce et al estimate, but with similar spatial distributions. We will compare these flux estimates with a new estimate of the impact of fluvial nitrogen inputs on the open ocean (Sharples submitted) which estimates some transfer of fluvial nitrogen to the open ocean, particularly at low latitudes, compared to the complete trapping of fluvial inputs on the continental shelf assumed by Duce et al. We will then estimate the impact of atmospheric deposition on ocean primary productivity and N2O emissions from the oceans using the PlankTOM10 model. The impacts of atmospheric deposition we estimate on ocean productivity here are smaller than those predicted by Duce et al impacts, consistent with the smaller atmospheric deposition estimates. However, the atmospheric input is still larger than the estimated fluvial inputs to the open ocean, even with the increased transport across shelf to the open ocean from low latitude fluvial systems identified. 1. School of Environmental Science University of East Anglia UK 2. Energy Research Centre University of Cape Town SA 3. Department of Biological Sciences University of S California USA 4. Departments of Oceanography and Atmospheric Sciences Texas A&M University USA 5. JRC Ispra Italy 6. Department of Oceanography Dalhousie University Canada 7. Department of Environmental Sciences U. Virginia USA 8. Department of Chemistry, University of Crete, Greece 9. Department of Biology Dalhousie University, Canada 10. School of Environmental Science and Engineering Pohang University S Korea. 11. Faculty of Geosciences University of Utrecht Netherlands 12. Department of Earth System Science University of California at Irvine USA 13. WMO Geneva 14. Department of Geography University of California USA 15. GEOMAR Keil Germany 16. Department of Atmospheric Sciences, University of Miami, USA 17. Geosciences Division at Physical Research Laboratory, Ahmedabad, India 18. Department of Environmental Studies, University of Victoria, Canada 19. School of Environmentak Sciences, U Liverpool UK 20. Center for International Collaboration, Atmosphere and Ocean Research Institute, The University of Tokyo Japan 21. Oak Ridge Associated Universities USA

  6. The nitrogen cascade from agricultural soils to the sea: modelling nitrogen transfers at regional watershed and global scales

    PubMed Central

    Billen, Gilles; Garnier, Josette; Lassaletta, Luis

    2013-01-01

    The nitrogen cycle of pre-industrial ecosystems has long been remarkably closed, in spite of the high mobility of this element in the atmosphere and hydrosphere. Inter-regional and international commercial exchanges of agricultural goods, which considerably increased after the generalization of the use of synthetic nitrogen fertilizers, introduced an additional type of nitrogen mobility, which nowadays rivals the atmospheric and hydrological fluxes in intensity, and causes their enhancement at the local, regional and global scales. Eighty-five per cent of the net anthropogenic input of reactive nitrogen occurs on only 43 per cent of the land area. Modern agriculture based on the use of synthetic fertilizers and the decoupling of crop and animal production is responsible for the largest part of anthropogenic losses of reactive nitrogen to the environment. In terms of levers for better managing the nitrogen cascade, beyond technical improvement of agricultural practices tending to increase nitrogen use efficiency, or environmental engineering management measures to increase nitrogen sinks in the landscape, the need to better localize crop production and livestock breeding, on the one hand, and agriculture and food demand on the other hand, is put forward as a condition to being able to supply food to human populations while preserving environmental resources. PMID:23713121

  7. What does atmospheric nitrogen contribute to the Gulf of Mexico area of oxygen depletion?

    NASA Astrophysics Data System (ADS)

    Rabalais, N. N.

    2017-12-01

    The northern Gulf of Mexico influenced by the freshwater discharge and nutrient loads of the Mississippi River watershed is the location of the world's second largest human-caused area of coastal hypoxia. Over 500 more anthropogenic `dead zones' exist in coastal waters. The point source inputs within the Mississippi River watershed account for about ten per cent of the total nitrogen inputs to the Mississippi River, with the remaining being nonpoint source. Atmospheric nitrogen makes up about sixteen per cent of the nonpoint source input of nitrogen. Most of the NOx is generated within the Ohio River watershed from the burning of fossil fuels. Some remains to be deposited into the same watershed, but the airshed deposits much of the NOx along the U.S. eastern seaboard, including Chesapeake Bay, which also has a hypoxia problem. Most of the volatilized ammonia is produced from fertilizers or manure within the upper Mississippi River watershed, is deposited within a localized airshed, and is not airborne long distances like the NOx. The atmospheric nitrogen input to the coastal waters affected by hypoxia is considered to be minimal. In the last half century, the nitrogen load from the Mississippi River to the Gulf of Mexico has increased 300 percent. During this period, low oxygen bottom-waters have developed in the coastal waters and worsened coincident with the increase in the nitrogen load. The 31-yr average size of the bottom-water hypoxia area in the Gulf of Mexico is 13,800 square kilometers, well over the 5,000 square kilometers goal of the Mississippi River Nutrient/Gulf of Mexico Hypoxia Task Force. Knowing the amounts and sources of excess nutrients to watersheds with adjacent coastal waters experiencing eutrophication and hypoxia is important in the management strategies to reduce those nutrients and improve water quality.

  8. Effects of salinity and nitrogen supply on the quality and health-related compounds of strawberry fruits (Fragaria × ananassa cv. Primoris).

    PubMed

    Cardeñosa, Vanessa; Medrano, Evangelina; Lorenzo, Pilar; Sánchez-Guerrero, Maria Cruz; Cuevas, Francisco; Pradas, Inmaculada; Moreno-Rojas, José M

    2015-11-01

    Different nitrogen inputs and/or development under adverse water conditions (water stress/low quality and/or high salinity/electrical conductivity), such as those prevailing in Almeria (Mediterranean coast, south-east Spain), may affect overall fruit and vegetable quality. This study evaluated the influence of salinity and nitrogen reduction in hydroponic nutrient solution on strawberry fruit quality and nutritional compounds (Fragaria × ananassa Duch., cv. Primoris). Strawberries obtained under salinity treatments recorded the highest values for soluble solids content (SSC; all samplings); fruit taste was thus enhanced. Additionally, salinity improved fruit nutritional value, with higher contents of antioxidants compounds (first sampling). During first and second samplings, strawberries grown under N reduction and non-saline conditions showed higher values for firmness compared to fruits developed under other treatments. Regarding health-related compounds, few differences were found except for total polyphenols concentration and antioxidant activity for the first sampling, where strawberries grown under saline treatments obtained the highest values for both parameters. The use of low-quality waters, such as those found in Almeria (salinity, N9S and N5S) and low nitrogen inputs (N5, avoid environmental impact) for strawberry cultivation does not exert a negative impact on overall quality. Positive differences could be found in SSC, firmness and health-related compounds when compared against the control treatment (N9). © 2014 Society of Chemical Industry.

  9. Tourism's nitrogen footprint on a Mesoamerican coral reef

    NASA Astrophysics Data System (ADS)

    Baker, D. M.; Rodríguez-Martínez, R. E.; Fogel, M. L.

    2013-09-01

    Globally, the eutrophication of coastal marine environments is a worsening problem that is accelerating the loss of biodiversity and ecosystem services. Coral reefs are among the most sensitive to this change, as chronic inputs of agricultural and wastewater effluents and atmospheric deposition disrupt their naturally oligotrophic state. Often, anthropogenic alteration of the coastal nitrogen pool can proceed undetected as rapid mixing with ocean waters can mask chronic and ephemeral nitrogen inputs. Monitoring nitrogen stable isotope values ( δ 15N) of benthic organisms provides a useful solution to this problem. Through a 7-yr monitoring effort in Quintana Roo, Mexico, we show that δ 15N values of the common sea fan Gorgonia ventalina were more variable near a developed (Akumal) site than at an undeveloped (Mahahual) site. Beginning in 2007, the global recession decreased tourist visitations to Akumal, which corresponded with a pronounced 1.6 ‰ decline in sea fan δ 15N through 2009, at which time δ 15N values were similar to those from Mahahual. With the recovery of tourism, δ 15N values increased to previous levels. Overall, 84 % of the observed variation in δ 15N was explained by tourist visitations in the preceding year alone, indicating that variable nitrogen source contributions are correlated with sea fan δ 15N values. We also found that annual precipitation accounted for some variation in δ 15N, likely due to its role in groundwater flushing into the sea. Together, these factors accounted for 96 % of the variation in δ 15N. Using a mixing model, we estimate that sewage can account for up to 42 % of nitrogen in sea fan biomass. These findings illustrate the high connectivity between land-based activities and coral reef productivity and the measurable impact of the tourism industry on the ecosystem it relies on.

  10. Fish track wastewater pollution to estuaries.

    PubMed

    Schlacher, Thomas A; Liddell, Ben; Gaston, Troy F; Schlacher-Hoenlinger, Monika

    2005-08-01

    Excess nitrogen is a forceful agent of ecological change in coastal waters, and wastewater is a prominent source of nitrogen. In catchments where multiple sources of nitrogen pollution co-exist, biological indicators are needed to gauge the degree to which wastewater-N can propagate through the receiving food webs. The purpose of this study was to test whether estuarine fish are suitable as indicators of sewage-N pollution. Fish were analysed from three estuaries within a 100-km strip on the Australian East Coast. The estuaries differ substantially in wastewater loading: (1) the Maroochy Estuary receives a large fraction of the local shire's treated sewage, (2) the Mooloolah Estuary has no licensed treated wastewater outfalls but marinas/harbours and storm-water may contribute nitrogen, and (3) the Noosa Estuary which neither receives licensed discharges nor has suspected wastewater loads. Sampling for fish included both high rainfall ('wet' season) and low rainfall ('dry' season) periods. Muscle-delta15N was the variable predicted to respond to treated wastewater loading, reflecting the relative enrichment in 15N resulting from the treatment process and distinguishing it from alternative N sources such as fertiliser and natural nitrogen inputs (both 15N-depleted). Of the 19 fish species occurring in all three estuaries, those from the Maroochy Estuary had significantly elevated delta15N values (up to 9.9 per thousand), and inter-estuarine differences in fish-delta15N were consistent across seasons. Furthermore, not only did all fish from the estuary receiving treated wastewater carry a very distinctive sewage-N tissue signal, but enriched muscle-delta15N was also evident in all species sampled from the one estuary in which sewage contamination was previously only suspected (i.e. the Mooloolah Estuary: 0.2-4.8 per thousand enrichment over fish from reference system). Thus, fish-delta15N is a suitable indicator of wastewater-N not only in systems that receive large loads, but also for the detection of more subtle nitrogen inputs. Arguably, fish may be preferred indicators of sewage-N contamination because they: (1) integrate nitrogen inputs over long time periods, (2) have an element of 'ecological relevance' because fish muscle-delta15N reflect movement of sewage-N through the food chain, and (3) pollution assessments can usually be based on evidence from multiple species.

  11. Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth

    NASA Astrophysics Data System (ADS)

    van den Elzen, Eva; Kox, Martine A. R.; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S. M.; Ettwig, Katharina F.; Lamers, Leon P. M.

    2017-03-01

    In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands, are, however, highly variable, and experimental work on regulating factors that can mechanistically explain this variation is largely lacking. For two common fen species (Sphagnum palustre and S. squarrosum) from a high nitrogen deposition area (25 kg N ha-1 yr-1), we found that diazotrophic activity (as measured by 15 - 15N2 labeling) was still present at a rate of 40 nmol N gDW-1 h-1. This was surprising, given that nitrogen fixation is a costly process. We tested the effects of phosphorus availability and buffering capacity by bicarbonate-rich water, mimicking a field situation in fens with stronger groundwater or surface water influence, as potential regulators of nitrogen fixation rates and Sphagnum performance. We expected that the addition of phosphorus, being a limiting nutrient, would stimulate both diazotrophic activity and Sphagnum growth. We indeed found that nitrogen fixation rates were doubled. Plant performance, in contrast, did not increase. Raised bicarbonate levels also enhanced nitrogen fixation, but had a strong negative impact on Sphagnum performance. These results explain the higher nitrogen fixation rates reported for minerotrophic and more nutrient-rich peatlands. In addition, nitrogen fixation was found to strongly depend on light, with rates 10 times higher in light conditions suggesting high reliance on phototrophic organisms for carbon. The contrasting effects of phosphorus and bicarbonate on Sphagnum spp. and their diazotrophic communities reveal strong differences in the optimal niche for both partners with respect to conditions and resources. This suggests a trade-off for the symbiosis of nitrogen fixing microorganisms with their Sphagnum hosts, in which a sheltered environment apparently outweighs the less favorable environmental conditions. We conclude that microbial activity is still nitrogen limited under eutrophic conditions because dissolved nitrogen is being monopolized by Sphagnum. Moreover, the fact that diazotrophic activity can significantly be upregulated by increased phosphorus addition and acid buffering, while Sphagnum spp. do not benefit, reveals remarkable differences in optimal conditions for both symbiotic partners and calls into question the regulation of nitrogen fixation by Sphagnum under these eutrophic conditions. The high nitrogen fixation rates result in high additional nitrogen loading of 6 kg ha-1 yr-1 on top of the high nitrogen deposition in these ecosystems.

  12. Variation in watershed nitrogen input and export across the Willamette River Basin

    NASA Astrophysics Data System (ADS)

    Goodwin, K. E.; Compton, J. E.; Sobota, D. J.

    2011-12-01

    Nitrogen (N) export from watersheds is influenced by hydrology, land use/cover, and the timing and spatial arrangement of N inputs and removal within basins. We examined the relationship between N input and watershed N export for 25 monitoring stations between 1996 and 2006 within the Willamette River Basin, western Oregon USA. We hypothesized that N export would be strongly correlated with N inputs, and that much of the N inputs comes from agricultural activities located in lowland portions of the basin. We also expected that N export would be strongly seasonal, reflecting the Mediterranean climate of the region. We found a wide range of export from the monitored WRB sub-basins, ranging from 1 to nearly 70 kg N ha-1 yr-1. Lower per unit area N export reflected a high proportion of watershed area in the predominantly forested Cascade Mountains, while the higher N export basins had a greater proportion of agricultural areas, particularly areas dominated by cultivated crops with high N requirements. Export of N varied greatly from year to year (up to nearly 200%), responding to interannual changes in precipitation and runoff. Export was strongly seasonal, with at least 50%, and often 75%, of the N export occurring during the fall and winter months. Snowmelt dominated Cascade Mountain streams tended to maintain flow and N export during the summer, compared with the basins draining Coast-Range and valley areas, which have less snow and spring rain inputs to maintain summer flow. Agricultural N inputs of synthetic and manure fertilizer were strongly correlated with N export from the sub-basins. Across the WRB, N export appears to be more strongly related to fertilizer application rates, as opposed to agricultural areas, indicating the importance of specific crops and crop practices as opposed to considering all agricultural lands the same in analyses of watershed N dynamics. This reinforces the need for careful tracking of N inputs to inform water quality monitoring and management. Annual N export was strongly driven by precipitation and runoff, suggesting that changes in hydrology will have important effects on N export downstream and to coastal areas in the future.

  13. Response of Functional Structure of Soil Microbial Community to Multi-level Nitrogen Additions on the Central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Yuan, Y.

    2015-12-01

    The use of fossil fuels and fertilizers has increased the amount of biologically reactive nitrogen in the atmosphere over the past century. Tibet is the one of the most threatened regions by nitrogen deposition, thus understanding how its microbial communities function maybe of high importance to predicting microbial responses to nitrogen deposition. Here we describe a short-time nitrogen addition conducted in an alpine steppe ecosystem to investigate the response of functional structure of soil microbial community to multi-level nitrogen addition. Using a GeoChip 4.0, we showed that functional diversities and richness of functional genes were unchanged at low level of nitrogen fertilizer inputs (<20 kg N ha-1 yr-1), but significantly decreased at higher nitrogen fertilizer inputs (>=40 kg N ha-1 yr-1). Detrended correspondence analysis indicated that the functional structure of microbial communities was markedly different across the nitrogen gradients. Most C degradation genes whose abundances significantly increased under elevated N fertilizer were those involved in the degradation of relatively labile C (starch, hemicellulose, cellulose), whereas the abundance of certain genes involved in the degradation of recalcitrant C (i.e. lignin) was largely decreased (such as manganese peroxidase, mnp). The results suggest that the elevated N fertilization rates might significantly accelerate the labile C degradation, but might not spur recalcitrant C degradation. The combined effect of gdh and ureC genes involved in N cycling appeared to shift the balance between ammonia and organic N toward organic N ammonification and hence increased the N mineralization potential. Moreover, Urease directly involved in urea mineralization significantly increased. Lastly, Canonical correspondence analysis showed that soil (TOC+NH4++NO3-+NO2-+pH) and plant (Aboveground plant productivity + Shannon Diversity) variables could explain 38.9% of the variation of soil microbial community composition. On the basis of above observations, we predict that increasing of nitrogen deposition on the Tibetan steppe ecosystem is very likely to change soil microbial community functional structure, with particular effects on microbial C and N-cycling genes and consequently microbe-mediated soil C and N dynamics.

  14. Accounting for the biogeochemical cycle of nitrogen in input-output life cycle assessment.

    PubMed

    Singh, Shweta; Bakshi, Bhavik R

    2013-08-20

    Nitrogen is indispensable for sustaining human activities through its role in the production of food, animal feed, and synthetic chemicals. This has encouraged significant anthropogenic mobilization of reactive nitrogen and its emissions into the environment resulting in severe disruption of the nitrogen cycle. This paper incorporates the biogeochemical cycle of nitrogen into the 2002 input-output model of the U.S. economy. Due to the complexity of this cycle, this work proposes a unique classification of nitrogen flows to facilitate understanding of the interaction between economic activities and various flows in the nitrogen cycle. The classification scheme distinguishes between the mobilization of inert nitrogen into its reactive form, use of nitrogen in various products, and nitrogen losses to the environment. The resulting inventory and model of the US economy can help quantify the direct and indirect impacts or dependence of economic sectors on the nitrogen cycle. This paper emphasizes the need for methods to manage the N cycle that focus not just on N losses, which has been the norm until now, but also include other N flows for a more comprehensive view and balanced decisions. Insight into the N profile of various sectors of the 2002 U.S. economy is presented, and the inventory can also be used for LCA or Hybrid LCA of various products. The resulting model is incorporated in the approach of Ecologically-Based LCA and available online.

  15. Nitrogen Isotope Ratios of Juvenile Winter Flounder as an Indicator of Anthropogenic Nitrogen Inputs to Estuarine Systems

    EPA Science Inventory

    Nitrogen isotope ratios (15N) were measured in muscle tissue of juvenile winter flounder, Pseudopleuronectes americanus, collected from several estuarine systems (lagoons, river, bay) along the coast of Rhode Island, USA over a three-year period. Significant differences i...

  16. Partitioning of applied nitrogen in corn and switchgrass in soils of variable depths in Central Missouri, USA

    USDA-ARS?s Scientific Manuscript database

    Deployment of biomass feedstock production systems in marginal lands with minimal external inputs is being recommended for sustainable feedstock supply. While nitrogen is critical for plant growth, injudicious application of fertilizer nitrogen in such marginal lands could magnify the existing non-p...

  17. Linking landscape characteristics and stream nitrogen in the Oregon Coast Range: Empirical modeling of water quality monitoring data

    EPA Science Inventory

    Background sources of nitrogen (N) provide a challenge for setting stream nutrient criteria in the Pacific Northwest US. Red alder (Alnus rubra), an early successional nitrogen fixing tree, and sea salt inputs can strongly influence stream N concentrations observed in individual...

  18. Nitrogen Fertilizer Dependency and Its Contradictions: A Theoretical Exploration of Social-Ecological Metabolism

    ERIC Educational Resources Information Center

    Mancus, Philip

    2007-01-01

    The global agro-food system relies heavily on inorganic nitrogenous fertilizers. In addition to consuming enormous amounts of energy, this manufactured input contributes to the accumulation of reactive nitrogen in the biosphere and undermines the biological basis of agricultural production itself. While technological inefficiency and population…

  19. Cover crop, N-rate impacts on corn yield and soil N

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilizer is a significant input expense for producers, as conversion of stable nitrogen into plant available reactive forms such as NH4 or NO3 is energy intensive and costly. These reactive forms of nitrogen (Nr), critical for crop production, can escape from agricultural systems into sur...

  20. Regional and national significance of biological nitrogen fixation by crops in the United States

    EPA Science Inventory

    Background/Questions/Methods Biological nitrogen fixation by crops (C-BNF) represents one of the largest anthropogenic inputs of reactive nitrogen (N) to land surfaces around the world. In the United States (US), existing estimates of C-BNF are uncertain because of incomplete o...

  1. Leaf nitrogen remobilisation for plant development and grain filling.

    PubMed

    Masclaux-Daubresse, C; Reisdorf-Cren, M; Orsel, M

    2008-09-01

    A major challenge of modern agriculture is to reduce the excessive input of fertilisers and, at the same time, to improve grain quality without affecting yield. One way to achieve this goal is to improve plant nitrogen economy through manipulating nitrogen recycling, and especially nitrogen remobilisation, from senescing plant organs. In this review, the contribution of nitrogen remobilisation efficiency (NRE) to global nitrogen use efficiency (NUE), and tools dedicated to the determination of NRE are described. An overall examination of the physiological, metabolic and genetic aspects of nitrogen remobilisation is presented.

  2. Recovery of nitrogen stable isotope signatures in the food web of an intermittently open estuary following removal of wastewater loads

    NASA Astrophysics Data System (ADS)

    Smith, Phoebe E.; Oakes, Joanne M.; Eyre, Bradley D.

    2016-12-01

    Nitrogen (N) stable isotope values (δ15N) were used to assess the removal of wastewater N from the food web within Tallow Creek, a small intermittently closed/open lake/lagoon (ICOLL) on the east coast of Australia, following the cessation of wastewater inputs in 2005. Current (2013) δ15N values of sediment organic carbon, plants, and animals within Tallow Creek were compared to values obtained before wastewater inputs ceased, and to values within a nearby near-pristine ICOLL (Jerusalem Creek). Most biota had significantly depleted δ15N values compared to conspecifics collected before wastewater inputs ceased (mean reduction of 6.0‰; 38% of impacted enrichment), indicating substantial loss of wastewater N since inputs ceased. However, δ15N values remained enriched compared to the near-pristine ICOLL for some components (mean enrichment of 3.3‰ or 38%), suggesting that some wastewater N remains. The δ15N recovery rate (decrease in δ15N as a percentage of the impacted enrichment) for Tallow Creek biota was slow compared to that of biota in more open systems. This slow recovery rate and the persistence of some wastewater N, even after 8 years without new inputs, reflects differences in hydrology and nitrogen cycling between permanently open and intermittently open estuarine systems and highlights the likely lower resilience of ICOLLs to anthropogenic N inputs.

  3. Environmental Nitrogen Losses from Commercial Crop Production Systems in the Suwannee River Basin of Florida.

    PubMed

    Prasad, Rishi; Hochmuth, George J

    2016-01-01

    The springs and the Suwannee river of northern Florida in Middle Suwanee River Basin (MSRB) are among several examples in this planet that have shown a temporal trend of increasing nitrate concentration primarily due to the impacts of non-point sources such as agriculture. The rate of nitrate increase in the river as documented by Ham and Hatzell (1996) was 0.02 mg N L-1 y-1. Best management practices (BMPs) for nutrients were adopted by the commercial farms in the MSRB region to reduce the amounts of pollutants entering the water bodies, however the effectiveness of BMPs remains a topic of interest and discussion among the researchers, environmental administrators and policy makers about the loads of nitrogen entering into groundwater and river systems. Through this study, an initiative was taken to estimate nitrogen losses into the environment from commercial production systems of row and vegetable crops that had adopted BMPs and were under a presumption of compliance with state water quality standards. Nitrogen mass budget was constructed by quantifying the N sources and sinks for three crops (potato (Solanum tuberosum L.), sweet corn (Zea mays L.) and silage corn (Zea mays L.)) over a four year period (2010-2013) on a large representative commercial farm in northern Florida. Fertilizer N was found to be the primary N input and represented 98.0 ± 1.4, 91.0 ± 13.9, 78.0 ± 17.3% of the total N input for potato, sweet corn, and silage corn, respectively. Average crop N uptake represented 55.5%, 60.5%, and 65.2% of the mean total input N whereas average mineral N left in top 0.3 m soil layer at harvest represented 9.1%, 4.5%, and 2.6% of the mean total input N. Mean environmental N losses represented 35.3%, 34.3%, and 32.7% of the mean total input N for potato, sweet corn, and silage corn, respectively. Nitrogen losses showed a linear trend with increase in N inputs. Although, there is no quick fix for controlling N losses from crop production in MSRB, the strategies to reduce N losses must focus on managing the crop residues, using recommended fertilizer rates, and avoiding late-season application of nitrogen.

  4. Environmental Nitrogen Losses from Commercial Crop Production Systems in the Suwannee River Basin of Florida

    PubMed Central

    Prasad, Rishi; Hochmuth, George J.

    2016-01-01

    The springs and the Suwannee river of northern Florida in Middle Suwanee River Basin (MSRB) are among several examples in this planet that have shown a temporal trend of increasing nitrate concentration primarily due to the impacts of non-point sources such as agriculture. The rate of nitrate increase in the river as documented by Ham and Hatzell (1996) was 0.02 mg N L-1 y-1. Best management practices (BMPs) for nutrients were adopted by the commercial farms in the MSRB region to reduce the amounts of pollutants entering the water bodies, however the effectiveness of BMPs remains a topic of interest and discussion among the researchers, environmental administrators and policy makers about the loads of nitrogen entering into groundwater and river systems. Through this study, an initiative was taken to estimate nitrogen losses into the environment from commercial production systems of row and vegetable crops that had adopted BMPs and were under a presumption of compliance with state water quality standards. Nitrogen mass budget was constructed by quantifying the N sources and sinks for three crops (potato (Solanum tuberosum L.), sweet corn (Zea mays L.) and silage corn (Zea mays L.)) over a four year period (2010–2013) on a large representative commercial farm in northern Florida. Fertilizer N was found to be the primary N input and represented 98.0 ± 1.4, 91.0 ± 13.9, 78.0 ± 17.3% of the total N input for potato, sweet corn, and silage corn, respectively. Average crop N uptake represented 55.5%, 60.5%, and 65.2% of the mean total input N whereas average mineral N left in top 0.3 m soil layer at harvest represented 9.1%, 4.5%, and 2.6% of the mean total input N. Mean environmental N losses represented 35.3%, 34.3%, and 32.7% of the mean total input N for potato, sweet corn, and silage corn, respectively. Nitrogen losses showed a linear trend with increase in N inputs. Although, there is no quick fix for controlling N losses from crop production in MSRB, the strategies to reduce N losses must focus on managing the crop residues, using recommended fertilizer rates, and avoiding late-season application of nitrogen. PMID:27907130

  5. Constraints on nitrogen cycling at the subtropical North Pacific Station ALOHA from isotopic measurements of nitrate and particulate nitrogen

    NASA Astrophysics Data System (ADS)

    Casciotti, K. L.; Trull, T. W.; Glover, D. M.; Davies, D.

    2008-07-01

    Nitrogen supply to surface waters can play an important role in the productivity and ecology of subtropical ecosystems. As part of the Vertical Transport in the Global Ocean (VERTIGO) program, we examined the fluxes of nitrogen into and out of the euphotic zone at station ALOHA in the North Pacific Subtropical Gyre using natural abundance stable isotopic measurements of nitrate ( δN and δO), as well as sinking and suspended particulate nitrogen (δ 15N PN). Paralleling the steep gradient in nitrate concentration in the upper thermocline at ALOHA, we observed a steep gradient in δN, decreasing from a maximum of +7.1‰ at 500 meters (m) to +1.5-2.4‰ at 150 m. δO values also decreased from +3.0‰ at 300 m to +0.7-0.9‰ at 150 m. The decreases in both δN and δO require inputs of isotopically "light" nitrate to balance the upward flux of nitrate with high δN (and δO). We conclude that both nitrogen fixation and diagenetic alteration of the sinking flux contribute to the decrease in δN and δO in the upper thermocline at station ALOHA. While nitrogen fixation is required to explain the nitrogen isotope patterns, the rates of nitrogen fixation may be lower than previously estimated. By including high-resolution nitrate isotope measurements in the nitrogen isotope budget for the euphotic zone at ALOHA, we estimate that approximately 25%, rather than 50%, of export production was fueled by N 2 fixation during our study. On the other hand, this input of N 2-derived production accumulates in the upper thermocline over time, playing a significant role in subtropical nutrient cycling through maintenance of the subsurface nitrate pool. An increase in sinking δ 15N PN between 150 and 300 m, also suggests that fractionation during remineralization contributed to the low δN values observed in this depth range by introducing a subsurface nitrate source that is 0.5‰ lower in δ 15N than the particle flux exported from the euphotic zone. While the time scale of these observations are currently limited, they highlight the need for inclusion of δN measurements in a time series program to allow a broader assessment of the variations in subsurface δN values and the links between subsurface nitrate and export flux at station ALOHA.

  6. Effects of different N sources on riverine DIN export and retention in a subtropical high-standing island, Taiwan

    PubMed Central

    Huang, Jr-Chuan; Lee, Tsung-Yu; Lin, Teng-Chiu; Hein, Thomas; Lee, Li-Chin; Shih, Yu-Ting; Kao, Shuh-Ji; Shiah, Fuh-Kwo; Lin, Neng-Huei

    2016-01-01

    Increases in nitrogen (N) availability and mobility resulting from anthropogenic activities have substantially altered the N cycle, both locally and globally. Taiwan characterized by the subtropical montane landscape with abundant rainfall, downwind of the most rapidly industrializing eastern coast of China, can be a demonstration site for extremely high N input and riverine DIN (dissolved inorganic N) export. We used 49 watersheds with similar climatic and landscape settings but classified into low, moderate, and highly disturbed categories based on population density to illustrate their differences in nitrogen inputs (through atmospheric N deposition, synthetic fertilizers, and human emission) and DIN export ratios. Our results showed that the island-wide average riverine DIN export is ~ 3800 kg N km−2 yr−1, approximately 18 times the global average. The average riverine DIN export ratios are 0.30−0.51, which are much higher than the averages of 0.20−0.25 of large rivers around the world, indicating excessive N input relative to ecosystem demand or retention capacity. The low disturbed watersheds have a high N retention capacity and DIN export ratios of 0.06−0.18 in spite of the high N input (~ 4900 kg N km−2 yr−1). The high retention capacity is likely due to effective uptake by secondary forests in the watersheds. The moderately disturbed watersheds show a linear increase in DIN export with increases in total N inputs and mean DIN export ratios of 0.20 to 0.31. The main difference in land use between low and moderately disturbed watersheds is the greater proportion of agricultural land cover in the moderately disturbed watersheds. Thus, their greater DIN export could be attributed to N fertilizers used in the agricultural lands. The greater export ratios also imply that agricultural lands have a lower proportional N retention capacity and that reforestation could be an effective land management practice to reduce riverine DIN export. The export ratios of the highly disturbed watersheds are very high, 0.42–0.53, suggesting that much of the N input is transported downstream directly, and urges the need to increase the proportion of households connected to a sewage system and improve the effectiveness of wastewater treatment systems. The increases in the riverine DIN export ratio along the gradient of human disturbance also suggest a gradient in N saturation in subtropical Taiwan. Our results help to improve our understanding of factors controlling riverine DIN export and provide empirical evidence that calls for sound N emission/pollution control measures. PMID:27212969

  7. Effects of different N sources on riverine DIN export and retention in a subtropical high-standing island, Taiwan.

    PubMed

    Huang, Jr-Chuan; Lee, Tsung-Yu; Lin, Teng-Chiu; Hein, Thomas; Lee, Li-Chin; Shih, Yu-Ting; Kao, Shuh-Ji; Shiah, Fuh-Kwo; Lin, Neng-Huei

    Increases in nitrogen (N) availability and mobility resulting from anthropogenic activities have substantially altered the N cycle, both locally and globally. Taiwan characterized by the subtropical montane landscape with abundant rainfall, downwind of the most rapidly industrializing eastern coast of China, can be a demonstration site for extremely high N input and riverine DIN (dissolved inorganic N) export. We used 49 watersheds with similar climatic and landscape settings but classified into low, moderate, and highly disturbed categories based on population density to illustrate their differences in nitrogen inputs (through atmospheric N deposition, synthetic fertilizers, and human emission) and DIN export ratios. Our results showed that the island-wide average riverine DIN export is ~ 3800 kg N km -2 yr -1 , approximately 18 times the global average. The average riverine DIN export ratios are 0.30-0.51, which are much higher than the averages of 0.20-0.25 of large rivers around the world, indicating excessive N input relative to ecosystem demand or retention capacity. The low disturbed watersheds have a high N retention capacity and DIN export ratios of 0.06-0.18 in spite of the high N input (~ 4900 kg N km -2 yr -1 ). The high retention capacity is likely due to effective uptake by secondary forests in the watersheds. The moderately disturbed watersheds show a linear increase in DIN export with increases in total N inputs and mean DIN export ratios of 0.20 to 0.31. The main difference in land use between low and moderately disturbed watersheds is the greater proportion of agricultural land cover in the moderately disturbed watersheds. Thus, their greater DIN export could be attributed to N fertilizers used in the agricultural lands. The greater export ratios also imply that agricultural lands have a lower proportional N retention capacity and that reforestation could be an effective land management practice to reduce riverine DIN export. The export ratios of the highly disturbed watersheds are very high, 0.42-0.53, suggesting that much of the N input is transported downstream directly, and urges the need to increase the proportion of households connected to a sewage system and improve the effectiveness of wastewater treatment systems. The increases in the riverine DIN export ratio along the gradient of human disturbance also suggest a gradient in N saturation in subtropical Taiwan. Our results help to improve our understanding of factors controlling riverine DIN export and provide empirical evidence that calls for sound N emission/pollution control measures.

  8. Effects of different N sources on riverine DIN export and retention in a subtropical high-standing island, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang-Chuan, Jr.; Lee, Tsung-Yu; Lin, Teng-Chiu; Hein, Thomas; Lee, Li-Chin; Shih, Yu-Ting; Kao, Shuh-Ji; Shiah, Fuh-Kwo; Lin, Neng-Huei

    2016-03-01

    Increases in nitrogen (N) availability and mobility resulting from anthropogenic activities have substantially altered the N cycle, both locally and globally. Taiwan characterized by the subtropical montane landscape with abundant rainfall, downwind of the most rapidly industrializing eastern coast of China, can be a demonstration site for extremely high N input and riverine DIN (dissolved inorganic N) export. We used 49 watersheds with similar climatic and landscape settings but classified into low, moderate, and highly disturbed categories based on population density to illustrate their differences in nitrogen inputs (through atmospheric N deposition, synthetic fertilizers, and human emission) and DIN export ratios. Our results showed that the island-wide average riverine DIN export is ˜ 3800 kg N km-2 yr-1, approximately 18 times the global average. The average riverine DIN export ratios are 0.30-0.51, which are much higher than the averages of 0.20-0.25 of large rivers around the world, indicating excessive N input relative to ecosystem demand or retention capacity. The low disturbed watersheds have a high N retention capacity and DIN export ratios of 0.06-0.18 in spite of the high N input (˜ 4900 kg N km-2 yr-1). The high retention capacity is likely due to effective uptake by secondary forests in the watersheds. The moderately disturbed watersheds show a linear increase in DIN export with increases in total N inputs and mean DIN export ratios of 0.20 to 0.31. The main difference in land use between low and moderately disturbed watersheds is the greater proportion of agricultural land cover in the moderately disturbed watersheds. Thus, their greater DIN export could be attributed to N fertilizers used in the agricultural lands. The greater export ratios also imply that agricultural lands have a lower proportional N retention capacity and that reforestation could be an effective land management practice to reduce riverine DIN export. The export ratios of the highly disturbed watersheds are very high, 0.42-0.53, suggesting that much of the N input is transported downstream directly, and urges the need to increase the proportion of households connected to a sewage system and improve the effectiveness of wastewater treatment systems. The increases in the riverine DIN export ratio along the gradient of human disturbance also suggest a gradient in N saturation in subtropical Taiwan. Our results help to improve our understanding of factors controlling riverine DIN export and provide empirical evidence that calls for sound N emission/pollution control measures.

  9. Ecosystem processes and nitrogen export in northern U.S. watersheds.

    USGS Publications Warehouse

    Stottlemyer, R.

    2001-01-01

    There is much interest in the relationship of atmospheric nitrogen (N) inputs to ecosystem outputs as an indicator of possible "nitrogen saturation" by human activity. Longer-term, ecosystem-level mass balance studies suggest that the relationship is not clear and that other ecosystem processes may dominate variation in N outputs. We have been studying small, forested watershed ecosystems in five northern watersheds for periods up to 35 years. Here I summarize the research on ecosystem processes and the N budget. During the past 2 decades, average wet-precipitation N inputs ranged from about 0.1 to 6 kg N ha(-1) year(-1) among sites. In general, sites with the lowest N inputs had the highest output-to-input ratios. In the Alaska watersheds, streamwater N output exceeded inputs by 70 to 250%. The ratio of mean monthly headwater nitrate (NO3-) concentration to precipitation NO3- concentration declined with increased precipitation concentration. A series of ecosystem processes have been studied and related to N outputs. The most important appear to be seasonal change in hydrologic flowpath, soil freezing, seasonal forest-floor inorganic N pools resulting from over-winter mineralization beneath the snowpack, spatial variation in watershed forest-floor inorganic N pools, the degree to which snowmelt percolates soils, and gross soil N mineralization rates.

  10. Long Term Dinoflagellate Bioluminescence, Chlorophyll, And Their Environmental Correlates In Southern California Coastal Waters

    DTIC Science & Technology

    2012-02-01

    river inputs into the ocean can carry high levels of nutrients needed for algal growth (Harrison 1980, Fogg 1982, Mooers et al. 1978, Lalli and Parsons...R.W.(ed.), Springer-Verlag, Berlin, 373 pp. Fogg , G.E. (1982). Nitrogen cycling in sea waters. Phil. Trans. Roy. Soc. Lond. Ser. B, 296: 511-520

  11. Responses of tree and insect herbivores to elevated nitrogen inputs: A meta-analysis

    NASA Astrophysics Data System (ADS)

    Li, Furong; Dudley, Tom L.; Chen, Baoming; Chang, Xiaoyu; Liang, Liyin; Peng, Shaolin

    2016-11-01

    Increasing atmospheric nitrogen (N) inputs have the potential to alter terrestrial ecosystem function through impacts on plant-herbivore interactions. The goal of our study is to search for a general pattern in responses of tree characteristics important for herbivores and insect herbivorous performance to elevated N inputs. We conducted a meta-analysis based on 109 papers describing impacts of nitrogen inputs on tree characteristics and 16 papers on insect performance. The differences in plant characteristics and insect performance between broadleaves and conifers were also explored. Tree aboveground biomass, leaf biomass and leaf N concentration significantly increased under elevated N inputs. Elevated N inputs had no significantly overall effect on concentrations of phenolic compounds and lignin but adversely affected tannin, as defensive chemicals for insect herbivores. Additionally, the overall effect of insect herbivore performance (including development time, insect biomass, relative growth rate, and so on) was significantly increased by elevated N inputs. According to the inconsistent responses between broadleaves and conifers, broadleaves would be more likely to increase growth by light interception and photosynthesis rather than producing more defensive chemicals to elevated N inputs by comparison with conifers. Moreover, the overall carbohydrate concentration was significantly reduced by 13.12% in broadleaves while increased slightly in conifers. The overall tannin concentration decreased significantly by 39.21% in broadleaves but a 5.8% decrease in conifers was not significant. The results of the analysis indicated that elevated N inputs would provide more food sources and ameliorate tree palatability for insects, while the resistance of trees against their insect herbivores was weakened, especially for broadleaves. Thus, global forest insect pest problems would be aggravated by elevated N inputs. As N inputs continue to rise in the future, forest ecosystem management should pay more attention to insect pest, especially in the regions dominated by broadleaves.

  12. Nitrogen input inventory in the Nooksack-Abbotsford-Sumas Transboundary Region: Key component of an international nitrogen management study

    EPA Science Inventory

    Nitrogen (N) is an essential biological element, so optimizing N use for food production while minimizing the release of N and co-pollutants to the environment is an important challenge. The Nooksack-Abbotsford-Sumas Transboundary (NAS) Region, spanning a portion of the western...

  13. Nitrogen input inventory in the Nooksack-Abbotsford-Sumas Transboundary Region: Key component of an international nitrogen management study.

    EPA Science Inventory

    Background/Question/Methods: Nitrogen (N) is an essential biological element, so optimizing N use for food production while minimizing the release of N and co-pollutants to the environment is an important challenge. The Nooksack-lower Fraser Valley, spanning a portion of the w...

  14. Seasonal and annual watershed nitrogen export within the Willamette River Basin (Water in Columia conference)

    EPA Science Inventory

    Anthropogenic nitrogen (N) enrichment is recognized as one of the leading threats to aquatic ecosystems and water quality. In order to manage this threat, we need to understand patterns of N input to the landscape and export from watersheds. Nitrogen export from watersheds is i...

  15. Diversity and antifungal activity of endophytic diazotrophic bacteria colonizing sugarcane in Egypt

    USDA-ARS?s Scientific Manuscript database

    The price of nitrogen continues to increase and is a major input in sugarcane production. Sugarcane grown in Egypt was screened for the presence of nitrogen-fixing bacteria. Nitrogen-free medium LGI-P was used to isolate bacteria from cane stalks. Among the 52 isolates subjected to acetylene redu...

  16. EFFECT OF RESIDENCE TIME ON ANNUAL EXPORT AND DENITRIFICATION OF NITROGEN IN ESTUARIES: A MODEL ANALYSIS

    EPA Science Inventory

    A simple model of annual average response of an estuary to mean nitrogen loading rate and freshwater residence time was developed and tested. It uses nitrogen inputs from land, deposition from the atmosphere, and first-order calculations of internal loss rate and export to perfor...

  17. Influence of forest disturbance on stable nitrogen isotope ratios in soil and vegetation profiles

    Treesearch

    Jennifer D. Knoepp; Scott R. Taylor; Lindsay R. Boring; Chelcy F. Miniat

    2015-01-01

    Soil and plant stable nitrogen isotope ratios (15 N) are influenced by atmospheric nitrogen (N) inputs and processes that regulate organic matter (OM) transformation and N cycling. The resulting 15N patterns may be useful for discerning ecosystem differences in N cycling. We studied two ecosystems; longleaf pine wiregrass (...

  18. Response of Benthic Microalgae to Phosphorus Inputs in Grand Bay National Estuarine Research Reserve

    NASA Astrophysics Data System (ADS)

    Sleek, J.; Caffrey, J. M.; Baine, G. C., II; Capps, R.

    2016-12-01

    Benthic microalgae are an important, but often understudied component of shallow, photic estuaries in the Gulf of Mexico. Grand Bay National Estuarine Research Reserve (GBNERR) is located in a small and relatively pristine estuary in the northern Gulf of Mexico. Freshwater input into the estuary is primarily local runoff from bayous and tidal creeks, including Bayou Cumbest, Bayou Heron, and Bangs Lake. Nutrient loading to Grand Bay is relatively small, with ambient nutrient concentrations often below detection. However, several events in 2005, 2012, 2013, and 2014 due to breaches in a containment levee from a gypsum stack have led to high phosphate levels near Bangs Lake. GBNERR staff assembled a phosphate working group to investigate scientific questions related to these phosphate loadings. This working group includes members from GBNERR, regional universities, marine labs, and Mississippi Department of Environmental Quality. In marine ecosystems, nitrogen availability normally limits growth of phytoplankton and previous research has shown this to be the case in Grand Bay. However, little is known about benthic microalgae in Grand Bay and what their response is to these phosphorus inputs. Between 2013 and 2015, summer concentrations of water column and benthic chlorophyll a were positively correlated, with the highest concentrations occurring in Bangs Lake. Benthic chlorophyll was also positively correlated with the percent surface irradiance reaching the bottom. Bottom light levels range from 3 to 36% surface irradiance. This along with experiments that showed no enhancement of growth of benthic microalgae following addition of nutrients (ammonium, phosphate or both) suggest that benthic microalgae are predominantly light limited rather than nutrient limited. Preliminary nitrogen fixation measurements suggest that nitrogen fixation was positively correlated with extractable phosphate concentrations. Thus, enhanced sediment nitrogen fixation and excess phosphate from the fertilizer plant runoff in this high light environment may enhance benthic microalgal production. The results of this research are part of the larger effort by the phosphate working group to understand the impact of repeated phosphate impacts. These results will provide information needed to help manage the reserve.

  19. Response of Benthic Microalgae to Phosphorus Inputs in Grand Bay National Estuarine Research Reserve

    NASA Astrophysics Data System (ADS)

    Sleek, J.; Caffrey, J. M.; Baine, G. C., II; Capps, R.

    2016-02-01

    Benthic microalgae are an important, but often understudied component of shallow, photic estuaries in the Gulf of Mexico. Grand Bay National Estuarine Research Reserve (GBNERR) is located in a small and relatively pristine estuary in the northern Gulf of Mexico. Freshwater input into the estuary is primarily local runoff from bayous and tidal creeks, including Bayou Cumbest, Bayou Heron, and Bangs Lake. Nutrient loading to Grand Bay is relatively small, with ambient nutrient concentrations often below detection. However, several events in 2005, 2012, 2013, and 2014 due to breaches in a containment levee from a gypsum stack have led to high phosphate levels near Bangs Lake. GBNERR staff assembled a phosphate working group to investigate scientific questions related to these phosphate loadings. This working group includes members from GBNERR, regional universities, marine labs, and Mississippi Department of Environmental Quality. In marine ecosystems, nitrogen availability normally limits growth of phytoplankton and previous research has shown this to be the case in Grand Bay. However, little is known about benthic microalgae in Grand Bay and what their response is to these phosphorus inputs. Between 2013 and 2015, summer concentrations of water column and benthic chlorophyll a were positively correlated, with the highest concentrations occurring in Bangs Lake. Benthic chlorophyll was also positively correlated with the percent surface irradiance reaching the bottom. Bottom light levels range from 3 to 36% surface irradiance. This along with experiments that showed no enhancement of growth of benthic microalgae following addition of nutrients (ammonium, phosphate or both) suggest that benthic microalgae are predominantly light limited rather than nutrient limited. Preliminary nitrogen fixation measurements suggest that nitrogen fixation was positively correlated with extractable phosphate concentrations. Thus, enhanced sediment nitrogen fixation and excess phosphate from the fertilizer plant runoff in this high light environment may enhance benthic microalgal production. The results of this research are part of the larger effort by the phosphate working group to understand the impact of repeated phosphate impacts. These results will provide information needed to help manage the reserve.

  20. Nitrogen cycle between surface and mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Watenphul, A.; Heinrich, W.

    2009-12-01

    Nitrogen cycling between the surface and the deep Earth occurs mainly through subduction of ammonium-bearing sediments and alterated oceanic crust and nitrogen release via degassing of molecular nitrogen. Whereas in most environments nitrogen is soon released to the surface via arc volcanism [1] or lost during increasing metamorphic grade [2] at cold slab conditions nitrogen remains in the rocks at least down to 90 km and very probably beyond the depth locus of island arc magmatism [3]. In these rocks, nitrogen is initially bound as ammonium, substituting potassium in the relevant K-bearing phases such as clay minerals, micas, and feldspars, due to similarities in the ionic radius and charge. Multi-anvil experiments [4] have shown that at pressures exceeding the upper stability of phengitic mica and feldspar, ammonium is easily incorporated into high-pressure successor K-bearing phases such as K-cymrite, K-Si-wadeite, K-hollandite and to minor amounts also into omphacitic clinopyroxene. This implies that NH4 can probably be transported down to the transition zone and beyond. The global nitrogen input to the mantle as NH4 via cold slab subduction and the global output to the atmosphere as N2 through mid-ocean ridge basalts and volcanic arcs roughly balance each other [3,5] and are estimated to about 3 - 5 × 1010 mol/a N. Because a large portion of the nitrogen release occurs at mid-ocean ridges [1], a nitrogen reservoir in peridotites probably does exist. High-pressure experiments up to 13 GPa, 750 °C have shown that Cr-diopside may store NH4 by up to 500 to 1000 ppm, making clinopyroxene the ideal candidate for nitrogen storage at depth. If so, the nitrogen storage capacity of the upper mantle is roughly estimated at 1012 mol N. This reservoir also contributes to the deep Earth's water budget. The input of NH4 by slab minerals and the output as N2 requires the occurrence of oxidation reactions during the recycling process. Nitrogen speciation in H-N-O fluids is dependent on oxygen fugacity fO2, which changes with depth. At relevant upper mantle conditions with fO2 around ± 2 log units relative to FMQ [6], H-N-O fluids consist of water and molecular nitrogen. With depth fO2 may decrease by several log units [6], so that in H-N-O fluids NH3/NH4+ would predominate at the middle and lower part of the upper mantle. This stabilizes the NH4-component relative to N2 plus water in Cr-diopside and possibly also in other high-pressure phases. This would imply that nitrogen indeed can be stored as ammonium within the mid and lower part of the upper mantle and that towards shallower depths it is lost due to oxidation and degassing. The stability of ammonium as a component in subducted slabs and mantle phases is, therefore, very important for long-time, large-scale recycling of nitrogen and hydrogen between the Earth's crust and the deeper mantle. References: [1] Sano et al. (2001). Chem Geol, 171, 263-271. [2] Sadofsky and Bebout (2000). GCA, 64, 2835-2849. [3] Busigny et al. (2003). EPSL, 215, 27-42. [4] Watenphul et al. (2009). Am Min, 94, 283-292. [5] Hilton et al. (2002). Rev Mineral Geochem, 47, 319-370. [6] Frost and McCammon (2008). Annu Rev Earth Pl Sc, 36, 389-420.

  1. Leaf Stable Isotope and Nutrient Status of Temperate Mangroves As Ecological Indicators to Assess Anthropogenic Activity and Recovery from Eutrophication

    PubMed Central

    Gritcan, Iana; Duxbury, Mark; Leuzinger, Sebastian; Alfaro, Andrea C.

    2016-01-01

    We measured nitrogen stable isotope values (δ15N), and total phosphorus (%P) and total nitrogen (%N) contents in leaves of the temperate mangrove (Avicennia marina sp. australasica) from three coastal ecosystems exposed to various levels of human impact (Manukau, high; Mangawhai, low; and Waitemata, intermediate) in northern New Zealand. We measured δ15N values around 10‰ in environments where the major terrestrial water inputs are sewage. The highest average total nitrogen contents and δ15N values were found in the Auckland city region (Manukau Harbour) at 2.2%N and 9.9‰, respectively. The lowest values were found in Mangawhai Harbour, situated about 80 km north of Auckland city, at 2.0%N and 5.2‰, respectively. In the Waitemata Harbour, also located in Auckland city but with less exposure to human derived sewage inputs, both parameters were intermediate, at 2.1%N and 6.4‰. Total phosphorus contents did not vary significantly. Additionally, analysis of historical mangrove leaf herbarium samples obtained from the Auckland War Memorial Museum indicated that a reduction in both leaf total nitrogen and δ15N content has occurred over the past 100 years in Auckland’s harbors. Collectively, these results suggest that anthropogenically derived nitrogen has had a significant impact on mangrove nutrient status in Auckland harbors over the last 100 years. The observed decrease in nitrogenous nutrients probably occurred due to sewage system improvements. We suggest that mangrove plant physiological response to nutrient excess could be used as an indicator of long-term eutrophication trends. Monitoring leaf nutrient status in mangroves can be used to assess environmental stress (sewage, eutrophication) on coastal ecosystems heavily impacted by human activities. Moreover, nitrogen and phosphorus leaf contents can be used to assess levels of available nutrients in the surrounding environments. PMID:28066477

  2. Effects of agricultural nutrient management on nitrogen fate and transport in Lancaster County, Pennsylvania

    USGS Publications Warehouse

    Hall, D.W.; Risser, D.W.

    1993-01-01

    Nitrogen inputs to, and outputs from, a 55-acre site in Lancaster County, Pennsylvania, were estimated to determine the pathways and relative magnitude of loads of nitrogen entering and leaving the site, and to compare the loads of nitrogen before and after the implementation of nutrient management. Inputs of nitrogen to the site were manure fertilizer, commercial fertilizer, nitrogen in precipitation, and nitrogen in ground-water inflow; and these sources averaged 93, 4, 2, and 1 percent of average annual nitrogen additions, respectively. Outputs of nitrogen from the site were nitrogen in harvested crops, loads of nitrogen in surface runoff, volatilization of nitrogen, and loads of nitrogen in ground-water discharge, which averaged 37, less than 1,25, and 38 percent of average annual nitrogen removals from the site, respectively. Virtually all of the nitrogen leaving the site that was not removed in harvested crops or by volatilization was discharged in the ground water. Applications of manure and fertilizer nitrogen to 47.5 acres of cropped fields decreased about 33 percent, from an average of 22,700 pounds per year (480 pounds per acre per year) before nutrient management to 15,175 pounds of nitrogen per year (320 pounds per acre per year) after the implementation of nutrient management practices. Nitrogen loads in ground-water discharged from the site decreased about 30 percent, from an average of 292 pounds of nitrogen per million gallons of ground water before nutrient management to an average of 203 pounds of nitrogen per million gallons as a result of the decreased manure and commercial fertilizer applications. Reductions in manure and commercial fertilizer applications caused a reduction of approximately 11,000 pounds (3,760 pounds per year, 70 pounds per acre per year) in the load of nitrogen discharged in ground water from the 55-acre site during the three-year period 1987-1990.

  3. Benchmarking carbon-nitrogen interactions in Earth System Models to observations: An inter-comparison of nitrogen limitation in global land surface models with carbon and nitrogen cycles (CLM-CN and O-CN)

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Zaehle, S.; Templer, P. H.; Goodale, C. L.

    2011-12-01

    Predictions of climate change depend on accurately modeling the feedbacks among the carbon cycle, nitrogen cycle, and climate system. Several global land surface models have shown that nitrogen limitation determines how land carbon fluxes respond to rising CO2, nitrogen deposition, and climate change, thereby influencing predictions of climate change. However, the magnitude of the carbon-nitrogen-climate feedbacks varies considerably by model, leading to critical and timely questions of why they differ and how they compare to field observations. To address these questions, we initiated a model inter-comparison of spatial patterns and drivers of nitrogen limitation. The experiment assessed the regional consequences of sustained nitrogen additions in a set of 25-year global nitrogen fertilization simulations. The model experiments were designed to cover effects from small changes in nitrogen inputs associated with plausible increases in nitrogen deposition to large changes associated with field-based nitrogen fertilization experiments. The analyses of model simulations included assessing the geographically varying degree of nitrogen limitation on plant and soil carbon cycling and the mechanisms underlying model differences. Here, we present results from two global land-surface models (CLM-CN and O-CN) with differing approaches to modeling carbon-nitrogen interactions. The predictions from each model were compared to a set of globally distributed observational data that includes nitrogen fertilization experiments, 15N tracer studies, small catchment nitrogen input-output studies, and syntheses across nitrogen deposition gradients. Together these datasets test many aspects of carbon-nitrogen coupling and are able to differentiate between the two models. Overall, this study is the first to explicitly benchmark carbon and nitrogen interactions in Earth System Models using a range of observations and is a foundation for future inter-comparisons.

  4. Nitrogen Inputs via Nitrogen Fixation in Northern Plants and Soils

    NASA Astrophysics Data System (ADS)

    Thorp, N. R.; Wieder, R. K.; Vile, M. A.

    2015-12-01

    Dominated by cold and often acidic water logged environments, mineralization of organic matter is slow in the majority of northern ecosystems. Measures of extractable ammonium and nitrate are generally low and can be undetectable in peat pore waters. Despite this apparent nitrogen limitation, many of these environments produce deep deposits of soil organic matter. Biological nitrogen fixation carried out by autotrophic and heterotrophic diazotrophs associated with cryptograms provides the majority of known nitrogen inputs in these northern ecosystems. Nitrogen fixation was assessed in a variety of northern soils within rhizospheres of dominant plant communities. We investigated the availability of this newly fixed nitrogen to the vascular plant community in nitrogen limited northern plant communities. We tracked nitrogen flow from 15N2 gas fixed in Sphagnum mosses into tissues of two native vascular plant species, boreal cranberry (Vaccinium oxycoccus) and black spruce (Picea mariana). 15N-labeled Sphagnum microcosms were grown within variable mesh size exclusion/inclusion fabrics in a nitrogen addition experiment in situ in order to investigate the role of mycorrhizal fungi in the uptake of newly fixed nitrogen. Up to 24% of daily fixed 15N label was transferred to vascular plant tissues during 2 months. Nitrogen addition resulted in decreased N2 fixation rates; however, with higher nitrogen availability there was a higher rate of 15N label uptake into the vascular plants, likely the result of increased production of dissolved organic nitrogen. Reliance on mycorrhizal networks for nitrogen acquisition was indicated by nitrogen isotope fractionation patterns. Moreover, N2 fixation activities in mosses were stimulated when vascular plants were grown in moss microcosms versus "moss only" treatments. Results indicate that bog vascular plants may derive considerable nitrogen from atmospheric N2 biologically fixed within Sphagnum mosses. This work demonstrates that diazotroph-mediated 15N labeling is a viable technique for tracking nitrogen flow without altering form and concentration of native nitrogen pools in a nitrogen limited ecosystem.

  5. Nitrogen Fertilization Elevated Spatial Heterogeneity of Soil Microbial Biomass Carbon and Nitrogen in Switchgrass and Gamagrass Croplands

    NASA Astrophysics Data System (ADS)

    Jian, S.; Li, J.; Guo, C.; Hui, D.; Deng, Q.; Yu, C. L.; Dzantor, K. E.; Lane, C.

    2017-12-01

    Nitrogen (N) fertilizers are widely used to increase bioenergy crop yield but intensive fertilizations on spatial distributions of soil microbial processes in bioenergy croplands remains unknown. To quantify N fertilization effect on spatial heterogeneity of soil microbial biomass carbon (MBC) and N (MBN), we sampled top mineral horizon soils (0-15cm) using a spatially explicit design within two 15-m2 plots under three fertilization treatments in two bioenergy croplands in a three-year long fertilization experiment in Middle Tennessee, USA. The three fertilization treatments were no N input (NN), low N input (LN: 84 kg N ha-1 in urea) and high N input (HN: 168 kg N ha-1 in urea). The two crops were switchgrass (SG: Panicum virgatum L.) and gamagrass (GG: Tripsacum dactyloides L.). Results showed that N fertilizations little altered central tendencies of microbial variables but relative to LN, HN significantly increased MBC and MBC:MBN (GG only). HN possessed the greatest within-plot variances except for MBN (GG only). Spatial patterns were generally evident under HN and LN plots and much less so under NN plots. Substantially contrasting spatial variations were also identified between croplands (GG>SG) and among variables (MBN, MBC:MBN > MBC). No significant correlations were identified between soil pH and microbial variables. This study demonstrated that spatial heterogeneity is elevated in microbial biomass of fertilized soils likely by uneven fertilizer application, the nature of soil microbial communities and bioenergy crops. Future researchers should better match sample sizes with the heterogeneity of soil microbial property (i.e. MBN) in bioenergy croplands.

  6. Complex Catchment Processes that Control Stream Nitrogen and Organic Matter Concentrations in a Northeastern USA Upland Catchment

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Pellerin, B.; Saraceno, J.; Aiken, G. R.; Boyer, E. W.; Doctor, D. H.; Kendall, C.

    2009-05-01

    There is a need to understand the coupled biogeochemical and hydrological processes that control stream hydrochemistry in upland forested catchments. At watershed 9 (W-9) of the Sleepers River Research Watershed in the northeastern USA, we use high-frequency sampling, environmental tracers, end-member mixing analysis, and stream reach mass balances to understand dynamic factors affect forms and concentrations of nitrogen and organic matter in streamflow. We found that rates of stream nitrate processing changed during autumn baseflow and that up to 70% of nitrate inputs to a stream reach were retained. At the same time, the stream reach was a net source of the dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) fractions of dissolved organic matter (DOM). The in-stream nitrate loss and DOM gains are examples of hot moments of biogeochemical transformations during autumn when deciduous litter fall increases DOM availability. As hydrological flowpaths changed during rainfall events, the sources and transformations of nitrate and DOM differed from baseflow. For example, during storm flow we measured direct inputs of unprocessed atmospheric nitrate to streams that were as large as 30% of the stream nitrate loading. At the same time, stream DOM composition shifted to reflect inputs of reactive organic matter from surficial upland soils. The transport of atmospheric nitrate and reactive DOM to streams underscores the importance of quantifying source variation during short-duration stormflow events. Building upon these findings we present a conceptual model of interacting ecosystem processes that control the flow of water and nutrients to streams in a temperate upland catchment.

  7. Atmospheric dry deposition of sulfur and nitrogen in the Athabasca Oil Sands Region, Alberta, Canada

    Treesearch

    Yu-Mei Hsu; Andrzej Bytnerowicz; Mark E. Fenn; Kevin E. Percy

    2016-01-01

    Due to the potential ecological effects on terrestrial and aquatic ecosystems from atmospheric deposition in the Athabasca Oil Sands Region (AOSR), Alberta, Canada, this study was implemented to estimate atmospheric nitrogen (N) and sulfur (S) inputs. Passive samplers were used to measure ambient concentrations of ammonia (NH3), nitrogen dioxide...

  8. Urban land use choices and biogeochemical consequences

    NASA Astrophysics Data System (ADS)

    Hutyra, L.; Reinmann, A.; Decina, S.; Templer, P. H.

    2016-12-01

    Urban areas are the clear, dominant source of global fossil fuel CO2 emissions. However, urban areas are also a heterogeneous mix of biological CO2 sources and sinks. The magnitude and timing of sources and sinks varies diurnally and seasonally with phenology, climate, and nitrogen inputs. Both the anthropogenic and biological CO2 fluxes are highly sensitive to management choices. We present results quantifying the role of management preferences and land use decisions in influencing biological CO2 fluxes across a gradient of urban development. Specifically, we explore the fluxes from soil respiration, plant growth, and the role of nitrogen deposition and amendments across urban gradients.

  9. Nitrogen Flux in Watersheds: The Role of Soil Distributions and Climate in Nitrogen Flux to the Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Showers, W. J.; Reyes, M. M.; Genna, B. J.

    2009-12-01

    Quantifying the flux of nitrate from different landscape sources in watersheds is important to understand the increased flux of nitrogen to coastal ecosystems. Recent technological advances in chemical sensor networks has demonstrated that chemical variability in aquatic environments are chronically under-sampled, and that many nutrient monitoring programs with monthly or daily sampling rates are inadequate to characterize the dominate seasonal, daily or semi-diurnal fluxes in watersheds. The RiverNet program has measured the nitrate flux in the Neuse River Basin, NC on a 15 minute interval over the past eight years. Significant diurnal variation has been observed in nitrate concentrations during high and low flow periods associated with waste water treatment plants in urban watersheds that are not present in agricultural watersheds. Discharge and N flux in the basin also has significant inter-annual variations associated with El Nino oscillations modified by the North Atlantic oscillation. Positive JMA and NAO indexes are associated with increased groundwater levels, nutrient fluxes, and estuary fish kills. To understand how climate oscillation affect discharge and nutrient fluxes, we have monitored runoff/drainages and groundwater inputs adjacent to a large waste application field over the past 4 years, and used the nitrate inputs as a tracer. Surface water run off is well correlated to precipitation patterns and is the largest nutrient flux into the river. Groundwater inputs are variable spatially and temporally, and are controlled by geology and groundwater levels. Hydric soil spatial distributions are an excellent predictor of nutrient transport across landscapes, and is related to the distribution of biogeochemical “hotspots” The isotopic composition of oxygen and nitrogen in dissolved nitrate indicate that sources change with discharge state, and that atmospherically deposited nitrogen is only important to river fluxes in forested and urban watersheds. These results also indicate that the contribution of wastewater treatment plants from urban watersheds has been greatly under-estimated in current models. Prediction of future changes in discharge and nutrient flux by the modeling of climate oscillations has important implications for water resources policy and drought management for public policy and utility managers.

  10. Isotopic and elemental indicators of nutrient sources and status of coastal habitats in the Caribbean Sea, Yucatan Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Mutchler, Troy; Dunton, Kenneth H.; Townsend-Small, Amy; Fredriksen, Stein; Rasser, Michael K.

    2007-09-01

    Nutrient inputs associated with coastal population growth threaten the integrity of coastal ecosystems around the globe. In order to assess the threat posed by rapid growth in tourism, we analyzed the nutrient concentrations as well as the δ15N of NO 3- and macrophytes to detect wastewater nitrogen (N) at 6 locations along a groundwater-dominated coastal seagrass bed on the Caribbean coast of Mexico. We predicted that locations with greater coastal development would have higher concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (P), as well as δ15N of NO 3-, reflecting wastewater sources of N. However, concentrations of NO 3- were not significantly different between developed (3.3 ± 5.3 μM NO 3-) and undeveloped (1.1 ± 0.7 μM) marine embayments. The most important control on DIN concentration appeared to be mixing of fresh and salt water, with DIN concentrations negatively correlated with salinity. The δ15N of NO 3- was elevated at an inland pond (7.0 ± 0.42‰) and a hydrologically-connected tide pool (7.6 ± 0.57‰) approximately 1 km downstream of the pond. The elevated δ15N of NO 3- at the pond was paralleled by high δ15N values of Cladophora sp., a ubiquitous green alga (10 ± 1‰). We hypothesize that inputs of nitrogen rich (NO 3- > 30 μM) groundwater, characterized by 15N enriched signatures, flow through localized submarine groundwater discharges (SGD) and contribute to the elevated δ15N signatures observed in many benthic macrophytes. However, changes in nitrogen concentrations and isotope values over the salinity gradient suggest that other processes (e.g. denitrification) could also be contributing to the 15N enrichments observed in primary producers. More measurements are needed to determine the relative importance of nitrogen transformation processes as a source of 15N to groundwaters; however, it is clear that continued inputs of anthropogenic N via SGD have the potential to severely impact ecologically and economically valuable seagrass meadows and coral reefs along the Caribbean coast of Mexico.

  11. Nutrients in Streams and Rivers Across the Nation -- 1992-2001

    USGS Publications Warehouse

    Mueller, David K.; Spahr, Norman E.

    2006-01-01

    Nutrient compounds of nitrogen and phosphorus were investigated in streams and rivers sampled as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. Nutrient data were collected in 20 NAWQA study units during 1992-95, 16 study units during 1996-98, and 15 study units during 1999-2001. To facilitate comparisons among sampling sites with variable sampling frequency, daily loads were determined by using regression models that relate constituent transport to streamflow and time. Model results were used to compute mean annual loads, yields, and concentrations of ammonia, nitrate, total nitrogen, orthophosphate, and total phosphorus, which were compared among stream and river sampling sites. Variations in the occurrence and distribution of nutrients in streams and rivers on a broad national scale reflect differences in the sources of nutrient inputs to the upstream watersheds and in watershed characteristics that affect movement of those nutrients. Sites were classified by watershed size and by land use in the upstream watershed: agriculture, urban, and undeveloped (forest or rangeland). Selection of NAWQA urban sites was intended to avoid effects of major wastewater-treatment plants and other point sources, but in some locations this was not feasible. Nutrient concentrations and yields generally increased with anthropogenic development in the watershed. Median concentrations and yields for all constituents at sites downstream from undeveloped areas were less than at sites downstream from agricultural or urban areas. Concentrations of ammonia, orthophosphate, and total phosphorus at agricultural and urban sites were not significantly different; however, concentrations of nitrate and total nitrogen were higher at agricultural than at urban sites. Total nitrogen concentrations at agricultural sites were higher in areas of high nitrogen input or enhanced transport, such as irrigation or artificial drainage that can rapidly move water from cropland to streams (Midwest, Northern Plains, and western areas of the United States). Concentrations were lower in the Southeast, where more denitrification occurs during transport of nitrogen compounds in shallow ground water. At urban sites, high concentrations of ammonia and orthophosphate were more prevalent downstream from wastewater-treatment plants. At sites with large watersheds and high mean-annual streamflow ('large-watershed' sites), concentrations of most nutrients were significantly less than at sites downstream from agricultural or urban areas. Total nitrogen concentrations at large-watershed sites were higher in Midwest agricultural areas and lower in the Western United States, where agricultural and urban development is less extensive. Total phosphorus concentrations at large-watershed sites were higher in areas of greater potential erosion and low overall runoff such as the arid areas in the West. Although not as distinct as seasonal patterns of streamflow, geographic patterns of seasonally high and low concentrations of total nitrogen and total phosphorus were identified in the data. Seasonal patterns in concentrations of total nitrogen generally mirror seasonal patterns in streamflow in the humid Eastern United States but are inverse to seasonal patterns in streamflow in the semiarid interior West. Total phosphorus concentrations typically have the opposite regional relation with streamflow; high concentrations coincide with high streamflows in the interior West. In the NAWQA Program, sites downstream from relatively undeveloped areas were selected to provide a baseline for comparison to sites with potential effects of urban development and agriculture. Concentrations of nitrate, total nitrogen, and total phosphorus at NAWQA undeveloped sites were found to be greater than values reported by other studies for conditions of essentially no development (background conditions). Concentrations at NAWQA undeveloped sites represent conditions

  12. Assessing genetic variation in lettuce for traits related to nitrogen use efficiency using susceptibility and relative efficiency indices

    USDA-ARS?s Scientific Manuscript database

    Lettuce is a high value commodity in the USA with annual value of ~$2.5 billion. California produces ~75 percent of all lettuce in the country. Overuse of agricultural inputs for crop production can cause detrimental effects to the health of Californians as well as on agricultural and natural resour...

  13. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.

    1999-01-01

    Digital data sets were compiled by the U. S. Geological Survey (USGS) and used as input for a collection of Spatially Referenced Regressions On Watershed attributes for the Chesapeake Bay region. These regressions relate streamwater loads to nutrient sources and the factors that affect the transport of these nutrients throughout the watershed. A digital segmented network based on watershed boundaries serves as the primary foundation for spatially referencing total nitrogen and total phosphorus source and land-surface characteristic data sets within a Geographic Information System. Digital data sets of atmospheric wet deposition of nitrate, point-source discharge locations, land cover, and agricultural sources such as fertilizer and manure were created and compiled from numerous sources and represent nitrogen and phosphorus inputs. Some land-surface characteristics representing factors that affect the transport of nutrients include land use, land cover, average annual precipitation and temperature, slope, and soil permeability. Nutrient input and land-surface characteristic data sets merged with the segmented watershed network provide the spatial detail by watershed segment required by the models. Nutrient stream loads were estimated for total nitrogen, total phosphorus, nitrate/nitrite, amonium, phosphate, and total suspended soilds at as many as 109 sites within the Chesapeake Bay watershed. The total nitrogen and total phosphorus load estimates are the dependent variables for the regressions and were used for model calibration. Other nutrient-load estimates may be used for calibration in future applications of the models.

  14. Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank

    PubMed Central

    Leite, Márcio F. A.; Pan, Yao; Bloem, Jaap; Berge, Hein ten; Kuramae, Eiko E.

    2017-01-01

    Use of organic amendments is a valuable strategy for crop production. However, it remains unclear how organic amendments shape both soil microbial community structure and activity, and how these changes impact nutrient mineralization rates. We evaluated the effect of various organic amendments, which range in Carbon/Nitrogen (C/N) ratio and degradability, on the soil microbiome in a mesocosm study at 32, 69 and 132 days. Soil samples were collected to determine community structure (assessed by 16S and 18S rRNA gene sequences), microbial biomass (fungi and bacteria), microbial activity (leucine incorporation and active hyphal length), and carbon and nitrogen mineralization rates. We considered the microbial soil DNA as the microbial seedbank. High C/N ratio favored fungal presence, while low C/N favored dominance of bacterial populations. Our results suggest that organic amendments shape the soil microbial community structure through a feedback mechanism by which microbial activity responds to changing organic inputs and rearranges composition of the microbial seedbank. We hypothesize that the microbial seedbank composition responds to changing organic inputs according to the resistance and resilience of individual species, while changes in microbial activity may result in increases or decreases in availability of various soil nutrients that affect plant nutrient uptake. PMID:28198425

  15. Impact of production practices on physicochemical properties of rice grain quality.

    PubMed

    Bryant, Rolfe J; Anders, Merle; McClung, Anna

    2012-02-01

    Rice growers are interested in new technologies that can reduce input costs while maintaining high field yields and grain quality. The bed-and-furrow (BF) water management system benefits farmers through decreased water usage, labor, and fuel as compared to standard flood management. Fertilizer inputs can be reduced by producing rice in rotation with soybeans, a nitrogen-fixing crop, and with the use of slow-release fertilizers that reduce nitrogen volatilization and run-off. However, the influence of these cultural management practices on rice physicochemical properties is unknown. Our objective was to evaluate the influence of nitrogen fertilizer source, water management system, and crop rotation on rice grain quality. Grain protein concentration was lower in a continuous rice production system than in a rice-soybean rotation. Neither amylose content nor gelatinization temperature was altered by fertilizer source, crop rotation, or water management. BF water management decreased peak and breakdown viscosities relative to a flooded system. Peak and final paste viscosities were decreased by all fertilizer sources, whereas, crop rotation had no influence on the Rapid Visco Analyser profile. Sustainable production systems that decrease water use and utilize crop rotations and slow-release fertilizers have no major impact on rice physicochemical properties. Published 2011 by John Wiley & Sons, Ltd.

  16. Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank.

    PubMed

    Leite, Márcio F A; Pan, Yao; Bloem, Jaap; Berge, Hein Ten; Kuramae, Eiko E

    2017-02-15

    Use of organic amendments is a valuable strategy for crop production. However, it remains unclear how organic amendments shape both soil microbial community structure and activity, and how these changes impact nutrient mineralization rates. We evaluated the effect of various organic amendments, which range in Carbon/Nitrogen (C/N) ratio and degradability, on the soil microbiome in a mesocosm study at 32, 69 and 132 days. Soil samples were collected to determine community structure (assessed by 16S and 18S rRNA gene sequences), microbial biomass (fungi and bacteria), microbial activity (leucine incorporation and active hyphal length), and carbon and nitrogen mineralization rates. We considered the microbial soil DNA as the microbial seedbank. High C/N ratio favored fungal presence, while low C/N favored dominance of bacterial populations. Our results suggest that organic amendments shape the soil microbial community structure through a feedback mechanism by which microbial activity responds to changing organic inputs and rearranges composition of the microbial seedbank. We hypothesize that the microbial seedbank composition responds to changing organic inputs according to the resistance and resilience of individual species, while changes in microbial activity may result in increases or decreases in availability of various soil nutrients that affect plant nutrient uptake.

  17. The water quality of the River Enborne, UK: insights from high-frequency monitoring

    NASA Astrophysics Data System (ADS)

    Halliday, Sarah; Skeffington, Richard; Wade, Andrew; Bowes, Mike; Gozzard, Emma; Palmer-Felgate, Elizabeth; Newman, Johnathan; Jarvie, Helen; Loewenthal, Matt

    2014-05-01

    The River Enborne is a rural lowland catchment, impacted by agricultural runoff, and septic tank and sewage treatment works (STWs) discharges. Between November 2009 and February 2012, the river was instrumented with in situ analytical equipment to take hourly measurements of total reactive phosphorus (TRP), using a Systea Micromac C; nitrate, using a Hach Lange Nitratax; and pH, chlorophyll, dissolved oxygen, conductivity, turbidity and water temperature, using a YSI 6600 Multi-parameter sonde. In addition, weekly 'grab samples' were also collected and analysed for a wide range of chemical determinands including major ions, nutrients, and trace elements. The catchment land use is largely agricultural, with wheat the dominant crop, and the average population density is 123 persons per sq. km. The river water is largely derived from calcareous groundwater, with a mean calcium concentration of 68.5 mg/l, and high nitrogen and phosphorus concentrations, with mean nitrate and TRP concentrations of 3.96 mg/l-N and 0.17 mg/l-P respectively. A mass-balance for the catchment demonstrated that agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus, accounting for 77 % and 84 % respectively. However, the concentration data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics, with the diurnal STW discharge signal discernable in the high-frequency nutrient dynamics. The nutrient dynamics and correlation structure of the data indicate a substantial contribution of groundwater and agricultural runoff to stream nitrate concentrations, whereas discharges from septic tank systems and sewage treatment works are a more important source of phosphorus. The high-frequency turbidity and conductivity dynamics reveal key information about the seasonal changes controlling the system dynamics, with marked differences in diurnal conductivity dynamics at the onset of riparian shading linked to the decreased importance of the photosynthetically-driven cycle of bicarbonate concentration. Only 4 % of the phosphorus input and 9 % of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.

  18. Numerical research of reburning-process of burning of coal-dust torch

    NASA Astrophysics Data System (ADS)

    Trinchenko, Alexey; Paramonov, Aleksandr; Kadyrov, Marsel; Koryabkin, Aleksey

    2017-10-01

    This work is dedicated to numerical research of ecological indicators of technological method of decrease in emissions of nitrogen oxides at combustion of solid fuel in coal-dust torch to improve the energy efficiency of steam boilers. The technology of step burning with additional input in zone of the maximum concentration of pollutant of strongly crushed fuel for formation of molecular nitrogen on surface of the burning carbon particles is considered. Results of modeling and numerical researches of technology, their analysis and comparison with the experimental data of the reconstructed boiler are given. Results of work show that input of secondary fuel allows to reduce emissions of nitrogen oxides by boiler installation without prejudice to its economic indicators.

  19. Seabird nutrient subsidies benefit non-nitrogen fixing trees and alter species composition in South American coastal dry forests.

    PubMed

    Havik, Gilles; Catenazzi, Alessandro; Holmgren, Milena

    2014-01-01

    Marine-derived nutrients can increase primary productivity and change species composition of terrestrial plant communities in coastal and riverine ecosystems. We hypothesized that sea nutrient subsidies have a positive effect on nitrogen assimilation and seedling survival of non-nitrogen fixing species, increasing the relative abundance of non-nitrogen fixing species close to seashore. Moreover, we proposed that herbivores can alter the effects of nutrient supplementation by preferentially feeding on high nutrient plants. We studied the effects of nutrient fertilization by seabird guano on tree recruitment and how these effects can be modulated by herbivorous lizards in the coastal dry forests of northwestern Peru. We combined field studies, experiments and stable isotope analysis to study the response of the two most common tree species in these forests, the nitrogen-fixing Prosopis pallida and the non-nitrogen-fixing Capparis scabrida. We did not find differences in herbivore pressure along the sea-inland gradient. We found that the non-nitrogen fixing C. scabrida assimilates marine-derived nitrogen and is more abundant than P. pallida closer to guano-rich soil. We conclude that the input of marine-derived nitrogen through guano deposited by seabirds feeding in the Pacific Ocean affects the two dominant tree species of the coastal dry forests of northern Peru in contrasting ways. The non-nitrogen fixing species, C. scabrida may benefit from sea nutrient subsidies by incorporating guano-derived nitrogen into its foliar tissues, whereas P. pallida, capable of atmospheric fixation, does not.

  20. Seabird Nutrient Subsidies Benefit Non-Nitrogen Fixing Trees and Alter Species Composition in South American Coastal Dry Forests

    PubMed Central

    Havik, Gilles; Catenazzi, Alessandro; Holmgren, Milena

    2014-01-01

    Marine-derived nutrients can increase primary productivity and change species composition of terrestrial plant communities in coastal and riverine ecosystems. We hypothesized that sea nutrient subsidies have a positive effect on nitrogen assimilation and seedling survival of non-nitrogen fixing species, increasing the relative abundance of non-nitrogen fixing species close to seashore. Moreover, we proposed that herbivores can alter the effects of nutrient supplementation by preferentially feeding on high nutrient plants. We studied the effects of nutrient fertilization by seabird guano on tree recruitment and how these effects can be modulated by herbivorous lizards in the coastal dry forests of northwestern Peru. We combined field studies, experiments and stable isotope analysis to study the response of the two most common tree species in these forests, the nitrogen-fixing Prosopis pallida and the non-nitrogen-fixing Capparis scabrida. We did not find differences in herbivore pressure along the sea-inland gradient. We found that the non-nitrogen fixing C. scabrida assimilates marine-derived nitrogen and is more abundant than P. pallida closer to guano-rich soil. We conclude that the input of marine-derived nitrogen through guano deposited by seabirds feeding in the Pacific Ocean affects the two dominant tree species of the coastal dry forests of northern Peru in contrasting ways. The non-nitrogen fixing species, C. scabrida may benefit from sea nutrient subsidies by incorporating guano-derived nitrogen into its foliar tissues, whereas P. pallida, capable of atmospheric fixation, does not. PMID:24466065

  1. A Greenhouse Assay on the Effect of Applied Urea Amount on the Rhizospheric Soil Bacterial Communities.

    PubMed

    Shang, Shuanghua; Yi, Yanli

    2015-12-01

    The rhizospheric bacteria play key role in plant nutrition and growth promotion. The effects of increased nitrogen inputs on plant rhizospheric soils also have impacted on whole soil microbial communities. In this study, we analyzed the effects of applied nitrogen (urea) on rhizospheric bacterial composition and diversity in a greenhouse assay using the high-throughput sequencing technique. To explore the environmental factors driving the abundance, diversity and composition of soil bacterial communities, the relationship between soil variables and the bacterial communities were also analyzed using the mantel test as well as the redundancy analysis. The results revealed significant bacterial diversity changes at different amounts of applied urea, especially between the control treatment and the N fertilized treatments. Mantel tests showed that the bacterial communities were significantly correlated with the soil nitrate nitrogen, available nitrogen, soil pH, ammonium nitrogen and total organic carbon. The present study deepened the understanding about the rhizospheric soil microbial communities under different amounts of applied urea in greenhouse conditions, and our work revealed the environmental factors affecting the abundance, diversity and composition of rhizospheric bacterial communities.

  2. UNCERTAINTIES IN NITROGEN MASS LOADINGS IN COASTAL WATERSHEDS

    EPA Science Inventory

    With the increasing reduction of nutrients for coastal eutrophication control, the importance of well defined nitrogen mass balance becomes paramount. imited number of attempts have been made to quantify inputs and outputs within major coastal ecosystems including its watersheds....

  3. 75 FR 62358 - Stakeholder Input on Stormwater Rulemaking Related to the Chesapeake Bay; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... including, but not limited to, nitrogen, phosphorus, and sediment in the Chesapeake Bay Watershed; requiring... specificity of the minimum control measures could include considerations for nitrogen, phosphorus and sediment...

  4. Net Anthropogenic Nitrogen Inputs in the Seattle, WA Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Larson, E. K.; Alberti, M.

    2014-12-01

    Nitrogen loading has been identified as a potential stressor to marine ecosystems of the Puget Sound in the Pacific Northwest, and the Washington State Department of Ecology has estimated that anthropogenic sources of dissolved inorganic nitrogen to the Sound are 2.7 times higher than natural loads (Mohamedali et al. 2011). The Seattle urban area, situated in the southeast of the Sound, has the largest population in the northwestern US. Heavily urbanized along the coast, the 4 counties comprising the region (Snohomish, King, Pierce, and Kitsap) also include forests and agriculture. Urban and agricultural areas tend to have substantial anthropogenic N loading due to fertilizer application, presence of N-fixing vegetation, N atmospheric deposition, and human and other animal waste. To determine the relative contribution of urban vs. rural agricultural activities to N loads from the Seattle region to the Puget Sound, we used the Net Anthropogenic Nitrogen Inputs (NANI) calculator developed by Hong et al. (2011) for the watersheds of this region. The NANI calculator uses nationally available datasets to calculate NANI as the sum of oxidized N deposition, fertilizer application, agricultural N fixation, net food and feed inputs, and net animal and human N consumption. We found that NANI ranged from approximately 100 to 1500 kg m-2 y-1, with some of the highest rates in watersheds with high impervious surface or agricultural areas with N-fixing crops or large fertilizer additions. Many of the agricultural watersheds have intervening low-NANI watershed between themselves and the coast, thus it is likely that agricultural NANI is attenuated before entering the Puget Sound. The urban areas in the region do not have these attenuating watersheds, and so are likely to be the main contributor to the observed total aquatic N yield. This information is helpful for developing policies to reduce N loading to the Sound.

  5. Nitrogen deposition along an elevation gradient in Taiwan

    NASA Astrophysics Data System (ADS)

    Li, Chia-Yi; Cheng, Chih-Hsin

    2017-04-01

    Taiwan is one of the areas that has high nitrogen deposition. The deposition of nitrogen, however, is not homogeneous, but rather is heterogeneous with high spatial and temporal variation. In this study, we evaluated nitrogen deposition along an elevation gradient ranged from 100 m which was closest to the agricultural and industrial areas to 1800 m which was located in the mid-elevation mountainous areas to identify how elevation affects nitrogen deposition under an annual determination. Bulk precipitation was collected using the funnel apparatus mounted on a post 1.5 m above ground level in each study site (n=7), and collected weekly or every other weekly depending on the frequency of rainfall events. Cations (K+, Na+, Ca+2, Mg+2, and NH4+), anions (F-, Cl-, SO4-2, and NO3-), pH and electric conductance (EC) of precipitation water were analyzed. The results indicated a significant trend along the elevation gradient. Volume-weighted mean concentration (μg L-1) and deposition amounts (kg ha-1) of based cations, anions, NH4+, pH and EC decreased with the elevation, whereas hydrogen ion increased with elevation. The mean ratio of NH4+-N/NO3-N for all study sites was 2.87 and no clear elevation trend existed. However, a relatively high ratio of NH4+-N/NO3-N was found in the sites with elevation less than 500 m during the periods between March and May, suggesting the seasonal agricultural input in these sites. Deposition of NH4+-N, NO3-N, and total inorganic N were 12 - 25, 4 - 10, and 16 - 37 kg N ha-1, respectively, during the period from January 2016 to August 2016. Higher nitrogen deposition is expected for the whole 2016 year. High nitrogen deposition poses an ecological threat in Taiwan and more research is warranted to understand how nitrogen deposition could be detrimental to environment.

  6. Nutrient and organic matter inputs to Hawaiian anchialine ponds: influences of n-fixing and non-n-fixing trees

    Treesearch

    Kehauwealani K. Nelson-Kaula; Rebecca Ostertag; R. Flint Hughes; Bruce D. Dudley

    2016-01-01

    Invasive nitrogen-fixing plants often increase energy and nutrient inputs to both terrestrial and aquatic ecosystems via litterfall, and these effects may be more pronounced in areas lacking native N2-fixers. We examined organic matter and nutrient inputs to and around anchialine ponds...

  7. Tracking Nitrogen Sources, Transformation, and Transport at a Basin Scale with Complex Plain River Networks.

    PubMed

    Yi, Qitao; Chen, Qiuwen; Hu, Liuming; Shi, Wenqing

    2017-05-16

    This research developed an innovative approach to reveal nitrogen sources, transformation, and transport in large and complex river networks in the Taihu Lake basin using measurement of dual stable isotopes of nitrate. The spatial patterns of δ 15 N corresponded to the urbanization level, and the nitrogen cycle was associated with the hydrological regime at the basin level. During the high flow season of summer, nonpoint sources from fertilizer/soils and atmospheric deposition constituted the highest proportion of the total nitrogen load. The point sources from sewage/manure, with high ammonium concentrations and high δ 15 N and δ 18 O contents in the form of nitrate, accounted for the largest inputs among all sources during the low flow season of winter. Hot spot areas with heavy point source pollution were identified, and the pollutant transport routes were revealed. Nitrification occurred widely during the warm seasons, with decreased δ 18 O values; whereas great potential for denitrification existed during the low flow seasons of autumn and spring. The study showed that point source reduction could have effects over the short-term; however, long-term efforts to substantially control agriculture nonpoint sources are essential to eutrophication alleviation for the receiving lake, which clarifies the relationship between point and nonpoint source control.

  8. Tracking historical increases in nitrogen-driven crop production possibilities

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Lassaletta, L.; Billen, G.; Garnier, J.; Gerber, J. S.

    2015-12-01

    The environmental costs of nitrogen use have prompted a focus on improving the efficiency of nitrogen use in the global food system, the primary source of nitrogen pollution. Typical approaches to improving agricultural nitrogen use efficiency include more targeted field-level use (timing, placement, and rate) and modification of the crop mix. However, global efficiency gains can also be achieved by improving the spatial allocation of nitrogen between regions or countries, due to consistent diminishing returns at high nitrogen use. This concept is examined by constructing a tradeoff frontier (or production possibilities frontier) describing global crop protein yield as a function of applied nitrogen from all sources, given optimal spatial allocation. Yearly variation in country-level input-output nitrogen budgets are utilized to parameterize country-specific hyperbolic yield-response models. Response functions are further characterized for three ~15-year eras beginning in 1961, and series of calculations uses these curves to simulate optimal spatial allocation in each era and determine the frontier. The analyses reveal that excess nitrogen (in recent years) could be reduced by ~40% given optimal spatial allocation. Over time, we find that gains in yield potential and in-country nitrogen use efficiency have led to increases in the global nitrogen production possibilities frontier. However, this promising shift has been accompanied by an actual spatial distribution of nitrogen use that has become less optimal, in an absolute sense, relative to the frontier. We conclude that examination of global production possibilities is a promising approach to understanding production constraints and efficiency opportunities in the global food system.

  9. Treatment efficiency and stoichiometry of a high-strength graywater.

    PubMed

    Morse, Audra; Khatri, Sukrut; Jackson, W Andrew

    2007-12-01

    The transit mission wastewater may represent a future graywater, in which toilet waste is separated from other household waste streams, and dilution water is minimal. A loading rate study indicated that denitrification is stoichiometrically limited, and nitrification was kinetically limited. Denitrification stoichiometry was developed by deriving hypothetical molecular formulas of organic carbon inputs to be represented by the relative proportions of carbon, hydrogen, oxygen, and nitrogen. The derived stoichiometry was validated against experimental data by adjusting the values of fe and fs and multiplying the total dissolved organic carbon loss across the system by the overall R equation and then comparing the total nitrogen removed in the reaction to experimentally observed total nitrogen removal. The nitrification stoichiometry was similarly validated by multiplying the R equation by the ammonium-nitrogen removed and then comparing the NO(x)-N formed in the equation to actual NO(x)-N production values. The fs values for the denitrifying and nitrifying bacteria were 0.33 and 0.15, respectively.

  10. Trends in nitrogen isotope ratios of juvenile winter flounder ...

    EPA Pesticide Factsheets

    Nitrogen isotope ratios (d 15N) in juvenile winter flounder, Pseudopleuronectes americanus, were used to examine changes in nitrogen inputs to several Rhode Island, USA estuarine systems. Fish were collected over two three-year periods with a ten-year interval between sampling periods (2002-2004 and 2012-2014). During that interval numerous changes to nutrient management practices were initiated in the watersheds of these estuarine systems including the upgrade of several major wastewater treatment facilities that discharge to Narragansett Bay, which significantly reduced nitrogen inputs. Following these reductions, the d 15N values of flounder in several of the systems decreased as expected; however, isotope ratios in fish from upper Narragansett Bay significantly increased. We believe that low d 15N values measured in 2002-2004 were related to concentration-dependant fractionation at this location. Increased d 15N values measured between 2012 and 2014 may indicate reduced fractionation or that changes in wastewater treatment processes altered the nitrogen isotopic ratios of the effluents. This manuscript advances the development of methodology to assess the influence of anthropogenic nitrogen in estuarine systems. Juvenile winter flounder were collected from several estuarine systems along the coast of Rhode Island over two three-year periods and nitrogen isotopes were measured in the muscle tissues of the flounder. The results showed that there was a good cor

  11. Nitrogen and phosphorus in the Upper Mississippi River: Transport, processing, and effects on the river ecosystem

    USGS Publications Warehouse

    Houser, J.N.; Richardson, W.B.

    2010-01-01

    Existing research on nutrients (nitrogen and phosphorus) in the Upper Mississippi River (UMR) can be organized into the following categories: (1) Long-term changes in nutrient concentrations and export, and their causes; (2) Nutrient cycling within the river; (3) Spatial and temporal patterns of river nutrient concentrations; (4) Effects of elevated nutrient concentrations on the river; and (5) Actions to reduce river nutrient concentrations and flux. Nutrient concentration and flux in the Mississippi River have increased substantially over the last century because of changes in land use, climate, hydrology, and river management and engineering. As in other large floodplain rivers, rates of processes that cycle nitrogen and phosphorus in the UMR exhibit pronounced spatial and temporal heterogeneity because of the complex morphology of the river. This spatial variability in nutrient processing creates clear spatial patterns in nutrient concentrations. For example, nitrate concentrations generally are much lower in off-channel areas than in the main channel. The specifics of in-river nutrient cycling and the effects of high rates of nutrient input on UMR have been less studied than the factors affecting nutrient input to the river and transport to the Gulf of Mexico, and important questions concerning nutrient cycling in the UMR remain. Eutrophication and resulting changes in river productivity have only recently been investigated the UMR. These recent studies indicate that the high nutrient concentrations in the river may affect community composition of aquatic vegetation (e. g., the abundance of filamentous algae and duckweeds), dissolved oxygen concentrations in off-channel areas, and the abundance of cyanobacteria. Actions to reduce nutrient input to the river include changes in land-use practices, wetland restoration, and hydrological modifications to the river. Evidence suggests that most of the above methods can contribute to reducing nutrient concentration in, and transport by, the UMR, but the impacts of mitigation efforts will likely be only slowly realized. ?? USGS, US Government 2010.

  12. Effects of silvicultural practices on soil carbon and nitrogen in a nitrogen saturated central Appalachian (USA) hardwood forest ecosystem

    Treesearch

    Frank S. Gilliam; David A. Dick; Michelle L. Kerr; Mary Beth Adams

    2004-01-01

    Silvicultural treatments represent disturbances to forest ecosystems often resulting in transient increases in net nitrification and leaching of nitrate and base cations from the soil. Response of soil carbon (C) is more complex, decreasing from enhanced soil respiration and increasing from enhanced postharvest inputs of detritus. Because nitrogen (N) saturation can...

  13. Simple additive simulation overestimates real influence: altered nitrogen and rainfall modulate the effect of warming on soil carbon fluxes.

    PubMed

    Ni, Xiangyin; Yang, Wanqin; Qi, Zemin; Liao, Shu; Xu, Zhenfeng; Tan, Bo; Wang, Bin; Wu, Qinggui; Fu, Changkun; You, Chengming; Wu, Fuzhong

    2017-08-01

    Experiments and models have led to a consensus that there is positive feedback between carbon (C) fluxes and climate warming. However, the effect of warming may be altered by regional and global changes in nitrogen (N) and rainfall levels, but the current understanding is limited. Through synthesizing global data on soil C pool, input and loss from experiments simulating N deposition, drought and increased precipitation, we quantified the responses of soil C fluxes and equilibrium to the three single factors and their interactions with warming. We found that warming slightly increased the soil C input and loss by 5% and 9%, respectively, but had no significant effect on the soil C pool. Nitrogen deposition alone increased the soil C input (+20%), but the interaction of warming and N deposition greatly increased the soil C input by 49%. Drought alone decreased the soil C input by 17%, while the interaction of warming and drought decreased the soil C input to a greater extent (-22%). Increased precipitation stimulated the soil C input by 15%, but the interaction of warming and increased precipitation had no significant effect on the soil C input. However, the soil C loss was not significantly affected by any of the interactions, although it was constrained by drought (-18%). These results implied that the positive C fluxes-climate warming feedback was modulated by the changing N and rainfall regimes. Further, we found that the additive effects of [warming × N deposition] and [warming × drought] on the soil C input and of [warming × increased precipitation] on the soil C loss were greater than their interactions, suggesting that simple additive simulation using single-factor manipulations may overestimate the effects on soil C fluxes in the real world. Therefore, we propose that more multifactorial experiments should be considered in studying Earth systems. © 2016 John Wiley & Sons Ltd.

  14. Effects of Anthropogenic Nitrogen Loading on Riverine Nitrogen Export in the Northeastern USA

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Goodale, C. L.; Howarth, R. W.

    2001-05-01

    Human activities have greatly altered the nitrogen (N) cycle, accelerating the rate of N fixation in landscapes and delivery of N to water bodies. To examine the effects of anthropogenic N inputs on riverine N export, we quantified N inputs and riverine N loss for 16 catchments along a latitudinal profile from Maine to Virginia, which encompass a range of climatic variability and are major drainages to the coast of the North Atlantic Ocean. We quantified inputs of N to each catchment: atmospheric deposition, fertilizer application, agricultural and forest biological N fixation, and the net import of N in food and feed. We compared these inputs with N losses from the system in riverine export. The importance of the relative sources varies widely by watershed and is related to land use. Atmospheric deposition was the largest source (>60%) to the forested catchments of northern New England (e.g., Penobscot and Kennebec); import of N in food was the largest source of N to the more populated regions of southern New England (e.g., Charles and Blackstone); and agricultural inputs were the dominant N sources in the Mid-Atlantic region (e.g., Schuylkill and Potomac). Total N inputs to each catchment increased with percent cover in agriculture and urban land, and decreased with percent forest. Over the combined area of the catchments, net atmospheric deposition was the largest single source input (34%), followed by imports of N in food and feed (24%), fixation in agricultural lands (21%), fertilizer use (15%), and fixation in forests (6%). Riverine export of N is well correlated with N inputs, but it accounts for only a fraction (28%) of the total N inputs. This work provides an understanding of the sources of N in landscapes, and highlights how human activities impact N cycling in the northeast region.

  15. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland

    USGS Publications Warehouse

    Lü, Xiao-Tao; Reed, Sasha; Yu, Qiang; He, Nian-Peng; Wang, Zheng-Wen; Han, Xing-Guo

    2013-01-01

    Human activities have significantly altered nitrogen (N) availability in most terrestrial ecosystems, with consequences for community composition and ecosystem functioning. Although studies of how changes in N availability affect biodiversity and community composition are relatively common, much less remains known about the effects of N inputs on the coupled biogeochemical cycling of N and phosphorus (P), and still fewer data exist regarding how increased N inputs affect the internal cycling of these two elements in plants. Nutrient resorption is an important driver of plant nutrient economies and of the quality of litter plants produce. Accordingly, resorption patterns have marked ecological implications for plant population and community fitness, as well as for ecosystem nutrient cycling. In a semiarid grassland in northern China, we studied the effects of a wide range of N inputs on foliar nutrient resorption of two dominant grasses, Leymus chinensis and Stipa grandis. After 4 years of treatments, N and P availability in soil and N and P concentrations in green and senesced grass leaves increased with increasing rates of N addition. Foliar N and P resorption significantly decreased along the N addition gradient, implying a resorption-mediated, positive plant–soil feedback induced by N inputs. Furthermore, N : P resorption ratios were negatively correlated with the rates of N addition, indicating the sensitivity of plant N and P stoichiometry to N inputs. Taken together, the results demonstrate that N additions accelerate ecosystem uptake and turnover of both N and P in the temperate steppe and that N and P cycles are coupled in dynamic ways. The convergence of N and P resorption in response to N inputs emphasizes the importance of nutrient resorption as a pathway by which plants and ecosystems adjust in the face of increasing N availability.

  16. A parsimonious modular approach to building a mechanistic belowground carbon and nitrogen model

    NASA Astrophysics Data System (ADS)

    Abramoff, Rose Z.; Davidson, Eric A.; Finzi, Adrien C.

    2017-09-01

    Soil decomposition models range from simple empirical functions to those that represent physical, chemical, and biological processes. Here we develop a parsimonious, modular C and N cycle model, the Dual Arrhenius Michaelis-Menten-Microbial Carbon and Nitrogen Phyisology (DAMM-MCNiP), that generates testable hypotheses regarding the effect of temperature, moisture, and substrate supply on C and N cycling. We compared this model to DAMM alone and an empirical model of heterotrophic respiration based on Harvard Forest data. We show that while different model structures explain similar amounts of variation in respiration, they differ in their ability to infer processes that affect C flux. We applied DAMM-MCNiP to explain an observed seasonal hysteresis in the relationship between respiration and temperature and show using an exudation simulation that the strength of the priming effect depended on the stoichiometry of the inputs. Low C:N inputs stimulated priming of soil organic matter decomposition, but high C:N inputs were preferentially utilized by microbes as a C source with limited priming. The simplicity of DAMM-MCNiP's simultaneous representations of temperature, moisture, substrate supply, enzyme activity, and microbial growth processes is unique among microbial physiology models and is sufficiently parsimonious that it could be incorporated into larger-scale models of C and N cycling.

  17. Quantifying the Role of Agriculture and Urbanization in the Nitrogen Cycle across Texas

    NASA Astrophysics Data System (ADS)

    Helper, L. C.; Yang, Z.

    2011-12-01

    Over-enrichment of nutrients throughout coastal areas has been a growing problem as population growth has enhanced agricultural and industrial processes. Enhanced nitrogen (N) fluxes from land to coast continue to be the result of over fertilization and pollution deposition. This over-enrichment of nutrients has led to eutrophication and hypoxic conditions in coastal environments. Global estimates indicate rivers export 48 Tg N yr -1 to coastal zones, and regionally North America exports 7.2 Tg N yr-1. These exports are primarily from anthropogenic N inputs (Boyer et al. 2006). Currently the U.S. is home to the second largest hypoxic zone in the world, the Mississippi River Basin, and previous work from Howarth et al. (2002) suggest much of the over enrichment of N is a result of agricultural practices. Aforementioned work has focused on global and large regional estimates; however an inventory has not been conducted on the full scope of N sources along the Gulf of Mexico. This study was conducted along the Gulf, through the state of Texas, in order to quantify all sources of N in a region which contains a large precipitation gradient, three major metropolitan areas, and one of the top livestock industries in the United States. Nitrogen inputs from fertilizer, livestock, and crop fixation were accounted for and totaled to be 0.91 Tg N for the year of 2007. Using estimates of leaching rates from Howarth et al. (2002), riverine export of N was at a minimum of 0.18 Tg for that year. Atmospheric deposition inputs were also analyzed using the Weather Research and Forecasting model with online chemistry (WRF-Chem) and were found to be significantly smaller than those of agriculture. The developed regional high-resolution gridded N budget is now available to be used as N input to next-generation land surface models for nutrient leaching and riverine transport modeling. Ultimately, this comprehensive dataset will help better understand the full pathways of anthropogenic influences on coastal systems.

  18. Organic Matter Loading Modifies the Microbial Community Responsible for Nitrogen Loss in Estuarine Sediments.

    PubMed

    Babbin, Andrew R; Jayakumar, Amal; Ward, Bess B

    2016-04-01

    Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using (15)N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more, and the fraction of nitrogen loss attributed to anammox slightly reduced, by the higher organic matter addition. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community composition as determined using a nirS microarray, indicating that the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.

  19. Threshold Level of Harvested Litter Input for Carbon Sequestration by Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Woo, D.; Quijano, J.; Kumar, P.; Chaoka, S.

    2013-12-01

    Due to the increase in the demands for bioenergy, considerable areas in the Midwestern United States could be converted into croplands for second generation bioenergy, such as the cultivation of miscanthus and switchgrass. Study on the effect of the expansion of these crops on soil carbon and nitrogen dynamics is integral to understanding their long-term environmental impacts. In this study, we focus on a comparative study between miscanthus, swichgrass, and corn-corn-soybean rotation on the below-ground dynamics of carbon and nitrogen. Fate of soil carbon and nitrogen is sensitive to harvest litter treatments and residue quality. Therefore, we attempt to address how different amounts of harvested biomass inputs into the soil impact the evolution of organic carbon and inorganic nitrogen in the subsurface. We use Precision Agricultural Landscape Modeling System, version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained from 10 years of atmospheric data recorded at both the study site and Willard Airport. Comparisons of model results against observations of drainage, ammonium and nitrate loads in tile drainage, nitrogen mineralization, nitrification, and litterfall in 2011 reveal the ability of the model to accurately capture the ecohydrology, as well as the carbon and nitrogen dynamics at the study site. The results obtained here highlight that there is a critical return of biomass to the soil when harvested for miscanthus (15% of aboveground biomass), and switchgrass (25%) after which the accumulation of carbon in the soil is significantly enhanced and nitrogen leaching is reduced, unlike corn-corn-soybean rotation. The main factor influencing the accumulation of carbon and reduction of nitrogen is the high carbon to nitrogen ratio in the biomass that is contributed as a litter from miscanthus and switchgrass when harvested. A nitrogen deficient environment in the top soil hinders microbial growth and therefore decomposition. In addition, lack of nitrogen fertilizer for miscanthus enhances even more the accumulation of carbon in the soil. On the other hand, nitrogen uptakes by miscanthus and switchgrass are not considerably affected due to a nitrogen fixation ability for miscanthus and fertilizer application for switchgrass. The simulation results obtained in this study show differences in the soil biogeochemistry induced by the different crops analyzed. We believe these results provide important findings about the impact of bioenergy crops on the carbon and nitrogen cycling in the soil.

  20. Water Quality Interaction with Alkaline Phosphatase in the Ganga River: Implications for River Health.

    PubMed

    Yadav, Amita; Pandey, Jitendra

    2017-07-01

    Carbon, nitrogen and phosphorus inputs through atmospheric deposition, surface runoff and point sources were measured in the Ganga River along a gradient of increasing human pressure. Productivity variables (chlorophyll a, gross primary productivity, biogenic silica and autotrophic index) and heterotrophy (respiration, substrate induced respiration, biological oxygen demand and fluorescein diacetate hydrolysis) showed positive relationships with these inputs. Alkaline phosphatase (AP), however, showed an opposite trend. Because AP is negatively influenced by available P, and eutrophy generates a feedback on P fertilization, the study implies that the alkaline phosphatase can be used as a high quality criterion for assessing river health.

  1. Nutrient dynamics in tropical rivers, estuarine-lagoons, and coastal ecosystems along the eastern Hainan Island

    NASA Astrophysics Data System (ADS)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2013-06-01

    Nutrient dynamics were studied along the eastern Hainan Island based on field observations during 2006-2009, to understand nutrient biogeochemical processes and to have an overview of human perturbations on coastal ecosystems in this tropical region. The concentrations of nutrients in the rivers had seasonal variations enriched with dissolved inorganic nitrogen (DIN). High riverine concentrations of nitrate were mainly originated from agricultural fertilizer input. The ratios of DIN : PO43- ranged from 37 to 1063, suggesting preferential PO43- relative to nitrogen in the rivers. The areal yields of dissolved silicate (DSi) varied from 76 to 448 × 103 mol km-2 yr-1 due to erosion over the drainage area, inducing high levels of DSi among worldwide tropical systems. Aquaculture ponds contained high concentrations of NH4+ (up to 157 μM) and DON (up to 130 μM). Particulate phosphorus concentrations (0.5 ∼1.4 μM) were in lower level comparied with estuaries around the world. Particulate silicate levels in rivers and lagoons were lower than global average level. Nutrient biogeochemistry in coastal areas were affected by human activities (e.g. aquaculture, agriculture), as well as natural events such as typhoon. Nutrient concentrations were low because open sea water dispersed land-derived nutrients. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes would be magnified by estuarine processes (e.g. regeneration, desorption) in the Wenchanghe/Wenjiaohe Estuary, Wanquan River estuary, and the Laoyehai Lagoon except in the Xiaohai Lagoon. Riverine and groundwater input were the major sources of nutrients to the Xiaohai Lagoon and the Laiyehai Lagoon, respectively. Riverine input and aquaculture effluent were the major sources of nutrients to the eastern coastal of Hainan Island. Nutrient inputs to the coastal ecosystem can be increased by typhoon-induced runoff of rainwater, and phytoplankton bloom in the sea would be caused.

  2. Nutrient input from the Loxahatchee River Environmental Control District sewage-treatment plant to the Loxahatchee River Estuary, southeastern Florida

    USGS Publications Warehouse

    Sonntag, W.H.; McPherson, B.F.

    1984-01-01

    Two test discharges of treated-sewage effluent were made to the Loxahatchee River in February and September 1981 from the ENCON sewage-treatment plant to document nutrient loading and downstream transport of the effluent to the estuary under maximum daily discharge allowable by law (4 million gallons per day). Concentrations of total nitrogen in the effluent exceeded background concentrations by as much as 7 times during the February test, while concentrations of total phosphorus exceeded background concentrations by as much as 112 times during the September test. The effluent was transported downstream to the estuary in less than 24 hours. Discharge of treated sewage effluent to the river-estuary system in the 1981 water year accounted for less than 0.5 percent of the total nitrogen and 8 percent of the total phosphorus discharged from the major tributaries to the estuary. If maximum discharges of effluent (4 million gallons per day) were sustained throughout the year, annual nitrogen loading from the effluent would account for 5 to 18 percent of the total nitrogen input by the major tributaries to the estuary. With maximum discharges of effluent, annual phosphorus loading would exceed the amount of phosphorus input by the major tributaries to the estuary by 54 to 167 percent. (USGS)

  3. Nutrient mass balance and trends, Mobile River Basin, Alabama, Georgia, and Mississippi

    USGS Publications Warehouse

    Harned, D.A.; Atkins, J.B.; Harvill, J.S.

    2004-01-01

    A nutrient mass balance - accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage - was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.

  4. Nitrogen balance of a boreal Scots pine forest

    NASA Astrophysics Data System (ADS)

    Korhonen, J. F. J.; Pihlatie, M.; Pumpanen, J.; Aaltonen, H.; Hari, P.; Levula, J.; Kieloaho, A.-J.; Nikinmaa, E.; Vesala, T.; Ilvesniemi, H.

    2013-02-01

    The productivity of boreal forests is considered to be limited by low nitrogen (N) availability. Increased atmospheric N deposition has altered the functioning and N cycling of these N-sensitive ecosystems by increasing the availability of reactive nitrogen. The most important components of N pools and fluxes were measured in a boreal Scots pine stand in Hyytiälä, Southern Finland. The measurements at the site allowed direct estimations of nutrient pools in the soil and biomass, inputs from the atmosphere and outputs as drainage flow and gaseous losses from two micro-catchments. N was accumulating in the system, mainly in woody biomass, at a rate of 7 kg N ha-1 yr-1. Nitrogen input as atmospheric deposition was 7.4 kg N ha-1 yr-1. Dry deposition and organic N in wet deposition contributed over half of the inputs in deposition. Total outputs were 0.4 kg N ha-1 yr-1, the most important outputs being N2O emission to the atmosphere and organic N flux in drainage flow. Nitrogen uptake and retranslocation were equally important sources of N for plant growth. Most of the assimilated N originated from decomposition of organic matter, and the fraction of N that could originate directly from deposition was about 30%. In conclusion, atmospheric N deposition fertilizes the site considerably, but there are no signs of N saturation. Further research is needed to estimate soil N2 fluxes (emission and fixation), which may amount up to several kg N ha-1 yr-1.

  5. [Spatio-temporal changes of nitrogen balance in 1980-2005 for agricultural land in Three Gorges Reservoir Area].

    PubMed

    Xu, Xi-bao; Yang, Gui-shan; Li, Heng-peng

    2009-08-15

    Based on the long-term agricultural statistics data at the county scale, the estimation of nitrogen balance from 1980 to 2005 for agricultural land in Three Gorges Reservoir Area was made by the OECD soil surface nitrogen balance model with some suitable modification. The spatio-temporal changes of nitrogen balance and its drivers were analyzed. The results showed that the total inputs and total surplus of nitrogen from 1980 to 2005 presented increasing trends continuously, from 23.4 x 10(4) t and 14.4 x 104 t to 45.6 x 10(4) t and 30 x 10(4) t respectively. The total output of nitrogen in 1980-1995 was at the increasing trend, from 9.0 x 10(4) t to 16.7 x 10(4) t, while that of 1996-2005 was keeping steady. The average unit surplus of nitrogen in 1980-1998 was also at the increasing trend, from 133.4 kg/hm2 to 310.3 kg/hm(2); and the trend inclined to be steady after 1998, while the spatial differential pattern toned up. The great spatial changes for nitrogen surplus from 1980 to 2005, mainly centralized at the head and the middle of the Three Gorges Reservoir Area, similar to the spatial distribution of the resettlement. Fertilizer, manure and biological fixation were the main contributors of nitrogen input sources, accumulatively totaled for above 90%. Nitrogen balance changes were mainly influenced by the macro-environment of fertilizer utilization before 1995, while which were influenced by the large amounts of the resettlement for Three Gorges Project after 1995. However, how much the effects of the resettlement on nitrogen balance need to be further explored. Developing sideline, agricultural structure transition or ecological resettlement should be considered to control nitrogen emission.

  6. Relating net nitrogen input in the Mississippi River Basin to nitrate flux in the Lower Mississippi River--A comparison of approaches

    USGS Publications Warehouse

    McIsaac, Gregory F.; David, Mark B.; Gertner, George Z.; Goolsby, Donald A.

    2002-01-01

    A quantitative understanding of the relationship between terrestrial N inputs and riverine N flux can help guide conservation, policy, and adaptive management efforts aimed at preserving or restoring water quality. The objective of this study was to compare recently published approaches for relating terrestrial N inputs to the Mississippi River basin (MRB) with measured nitrate flux in the lower Mississippi River. Nitrogen inputs to and outputs from the MRB (1951 to 1996) were estimated from state-level annual agricultural production statistics and NO y (inorganic oxides of N) deposition estimates for 20 states that comprise 90% of the MRB. A model with water yield and gross N inputs accounted for 85% of the variation in observed annual nitrate flux in the lower Mississippi River, from 1960 to 1998, but tended to underestimate high nitrate flux and overestimate low nitrate flux. A model that used water yield and net anthropogenic nitrogen inputs (NANI) accounted for 95% of the variation in riverine N flux. The NANI approach accounted for N harvested in crops and assumed that crop harvest in excess of the nutritional needs of the humans and livestock in the basin would be exported from the basin. The U.S. White House Committee on Natural Resources and Environment (CENR) developed a more comprehensive N budget that included estimates of ammonia volatilization, denitrification, and exchanges with soil organic matter. The residual N in the CENR budget was weakly and negatively correlated with observed riverine nitrate flux. The CENR estimates of soil N mineralization and immobilization suggested that there were large (2000 kg N ha−1) net losses of soil organic N between 1951 and 1996. When the CENR N budget was modified by assuming that soil organic N levels have been relatively constant after 1950, and ammonia volatilization losses are redeposited within the basin, the trend of residual N closely matched temporal variation in NANI and was positively correlated with riverine nitrate flux in the lower Mississippi River. Based on results from applying these three modeling approaches, we conclude that although the NANI approach does not address several processes that influence the N cycle, it appears to focus on the terms that can be estimated with reasonable certainty and that are correlated with riverine N flux.

  7. The Ecological and Economic Assessment of Efficiency of Environmental Technologies for CHPP (Combined Heat And Power Plant)

    NASA Astrophysics Data System (ADS)

    Rostuntsova, I. A.; Novichkov, S. V.; Zakharov, O. V.; Kochetkov, A. V.

    2017-11-01

    The analysis of the trial-industrial research of the effectiveness of burning water fuel mixtures in steam boilers of medium and high pressure at the combustion of natural gas and fuel oil is carried out. As a result of a research decrease in nitrogen oxide concentration is depending on the amount of moisture pumped to the boilers and type of the incinerated fuel. The theoretical model of the formation of nitrogen oxides in the furnace of the boiler in order to optimize the combustion process with the introduction of moisture, whereby to determine the concentrations of nitrogen oxides formed in the combustion process of the method of expansion of the exponential is received. The dependences of the maximal temperature of a torch, reaction rate of formation of nitrogen oxides, the conditional time of reaction, theoretical concentration of nitrogen oxides taking into account input of moisture in a fire chamber of a copper and coefficient of an exit of nitrogen oxides are defined at combustion of fuel taking into account moisture input. The divergence between the experimental and the theoretical value of the NOx concentration does not exceed 3.8%. The methodical provisions of the economic assessment of concentrations of pollutants reduction when entering the water are drafted. The rate the net present value (NPV) is applied. The optimal water-fuel ratio is selected based on the maximum value of the net present value (NPV). The evaluation of the application of environmental protection measures carried out taking into account the fact that by reducing the emission values in the implementation of this activity will decrease the amount of payment for emissions of polluting substances, which are collected from the profits of the enterprise. The cost estimate for the implementation of environmental activities carried out on the basis of lump-sum costs and current costs in environmental technology (increased fuel and water consumption).

  8. Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment

    NASA Astrophysics Data System (ADS)

    Houlton, B. Z.; Morford, S. L.; Dahlgren, R. A.

    2018-04-01

    Nitrogen availability is a pivotal control on terrestrial carbon sequestration and global climate change. Historical and contemporary views assume that nitrogen enters Earth’s land-surface ecosystems from the atmosphere. Here we demonstrate that bedrock is a nitrogen source that rivals atmospheric nitrogen inputs across major sectors of the global terrestrial environment. Evidence drawn from the planet’s nitrogen balance, geochemical proxies, and our spatial weathering model reveal that ~19 to 31 teragrams of nitrogen are mobilized from near-surface rocks annually. About 11 to 18 teragrams of this nitrogen are chemically weathered in situ, thereby increasing the unmanaged (preindustrial) terrestrial nitrogen balance from 8 to 26%. These findings provide a global perspective to reconcile Earth’s nitrogen budget, with implications for nutrient-driven controls over the terrestrial carbon sink.

  9. Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest

    Treesearch

    Stephen D. Sebestyen; Elizabeth W. Boyer; James B. Shanley; Carol Kendall; Daniel H. Doctor; George R. Aiken; Nobuhito Ohte

    2008-01-01

    We explored catchment processes that control stream nutrient concentrations at an upland forest in northeastern Vermont, USA, where inputs of nitrogen via atmospheric deposition are among the highest in the nation and affect ecosystem functioning. We traced sources of water, nitrate, and dissolved organic matter (DOM) using stream water samples collected at high...

  10. BELOWGROUND NITROGEN UPTAKE AND ALLOCATION BY SPARTINA ALTERNIFLORA AND DISTICHLIS SPICATA

    EPA Science Inventory

    Anthropogenic nitrogen inputs coupled with rising sea level complicate predictions of marsh stability. As marsh stability is a function of its vegetation, it is important to understand the mechanisms that drive community dynamics. Many studies have examined aboveground dynamics a...

  11. EFFECTS OF SUCCESSION ON NITROGEN EXPORT IN THE WEST-CENTRAL CASCADES, OREGON

    EPA Science Inventory

    Conceptual models predict that unpolluted, aggrading forest ecosystems tightly retain available nitrogen (N) until declining productivity by mature trees and storage in detritus reduces the demand for essential nutrients, and N export increases to equal input. Short-term nitrate ...

  12. Nitrogen Fuelling of the Pelagic Food Web of the Tropical Atlantic

    PubMed Central

    Brandt, Peter; Dengler, Marcus; Stemmann, Lars; Vandromme, Pieter; Sommer, Ulrich

    2015-01-01

    We estimated the relative contribution of atmosphere (ic Nitrogen (N) input (wet and dry deposition and N fixation) to the epipelagic food web by measuring N isotopes of different functional groups of epipelagic zooplankton along 23°W (17°N-4°S) and 18°N (20-24°W) in the Eastern Tropical Atlantic. Results were related to water column observations of nutrient distribution and vertical diffusive flux as well as colony abundance of Trichodesmium obtained with an Underwater Vision Profiler (UVP5). The thickness and depth of the nitracline and phosphocline proved to be significant predictors of zooplankton stable N isotope values. Atmospheric N input was highest (61% of total N) in the strongly stratified and oligotrophic region between 3 and 7°N, which featured very high depth-integrated Trichodesmium abundance (up to 9.4×104 colonies m-2), strong thermohaline stratification and low zooplankton δ15N (~2‰). Relative atmospheric N input was lowest south of the equatorial upwelling between 3 and 5°S (27%). Values in the Guinea Dome region and north of Cape Verde ranged between 45 and 50%, respectively. The microstructure-derived estimate of the vertical diffusive N flux in the equatorial region was about one order of magnitude higher than in any other area (approximately 8 mmol m-2 d 1). At the same time, this region received considerable atmospheric N input (35% of total). In general, zooplankton δ15N and Trichodesmium abundance were closely correlated, indicating that N fixation is the major source of atmospheric N input. Although Trichodesmium is not the only N fixing organism, its abundance can be used with high confidence to estimate the relative atmospheric N input in the tropical Atlantic (r2 = 0.95). Estimates of absolute N fixation rates are two- to tenfold higher than incubation-derived rates reported for the same regions. Our approach integrates over large spatial and temporal scales and also quantifies fixed N released as dissolved inorganic and organic N. In a global analysis, it may thus help to close the gap in oceanic N budgets. PMID:26098917

  13. Community Composition of Nitrous Oxide-Related Genes in Salt Marsh Sediments Exposed to Nitrogen Enrichment.

    PubMed

    Angell, John H; Peng, Xuefeng; Ji, Qixing; Craick, Ian; Jayakumar, Amal; Kearns, Patrick J; Ward, Bess B; Bowen, Jennifer L

    2018-01-01

    Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated profiles of microbial communities and communities of micro-organisms containing specific nitrogen cycling genes that encode several enzymes ( amoA, norB, nosZ) related to nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms involved in the production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that previously measured rates of nitrous oxide production and consumption are likely the result of changes in community structure, not simply changes in microbial activity.

  14. Modelling Nitrogen Cycling in a Mariculture Ecosystem as a Tool to Evaluate its Outflow

    NASA Astrophysics Data System (ADS)

    Lefebvre, S.; Bacher, C.; Meuret, A.; Hussenot, J.

    2001-03-01

    A model was constructed to describe an intensive mariculture ecosystem growing sea bass ( Dicentrarchus labrax), located in the salt marshes of the Fiers d'Ars Bay on the French Atlantic coast, in order to assess nitrogen cycling within the system and nitrogen outflow from the system. The land-based system was separated into three main compartments: a seawater reservoir, fish ponds and a lagoon (sedimentation pond). Three submodels were built for simulation purposes: (1) a hydrological submodel which simulated water exchange; (2) a fish growth and excretion bioenergetic submodel; and (3) a nitrogen compound transformation and loss submodel (i.e. ammonification, nitrification and assimilation processes). A two-year sampling period of nitrogen water quality concentrations and fish growth was used to validate the model. The model fitted the observations of dissolved nitrogen components, fish growth and water fluxes on a daily basis in all the compartments. The dissolved inorganic nitrogen ranged widely and over time from 0·5 to 9 g N m -3within the system, depending on seawater supply and water temperature, without affecting fish growth. Fish feed was the most important input of nitrogen into the system. The mean average input of nitrogen in the feed was 205 kg N day -1, of which 19% was retained by fish, 4% accumulated in the sediment and 61% flowed from the system as dissolved components. The farm represented about 25% of the total dissolved nitrogen export from the bay, although the farm surface area was 100 times smaller than that of the bay.

  15. Declining spatial efficiency of global cropland nitrogen allocation

    NASA Astrophysics Data System (ADS)

    Mueller, Nathaniel D.; Lassaletta, Luis; Runck, Bryan C.; Billen, Gilles; Garnier, Josette; Gerber, James S.

    2017-02-01

    Efficiently allocating nitrogen (N) across space maximizes crop productivity for a given amount of N input and reduces N losses to the environment. Here we quantify changes in the global spatial efficiency of cropland N use by calculating historical trade-off frontiers relating N inputs to possible N yield assuming efficient allocation. Time series cropland N budgets from 1961 to 2009 characterize the evolution of N input-yield response functions across 12 regions and are the basis for constructing trade-off frontiers. Improvements in agronomic technology have substantially increased cropping system yield potentials and expanded N-driven crop production possibilities. However, we find that these gains are compromised by the declining spatial efficiency of N use across regions. Since the start of the Green Revolution, N inputs and yields have moved farther from the optimal frontier over time; in recent years (1994-2009), global N surplus has grown to a value that is 69% greater than what is possible with efficient N allocation between regions. To reflect regional pollution and agricultural development goals, we construct scenarios that restrict reallocation, finding that these changes only slightly decrease potential gains in nitrogen use efficiency. Our results are inherently conservative due to the regional unit of analysis, meaning a larger potential exists than is quantified here for cross-scale policies to promote spatially efficient N use.

  16. Mycorrhizal fungal community relationship to root nitrogen concentration over a regional atmospheric nitrogen deposition gradient in the northeastern USA

    Treesearch

    Erik A. Lilleskov; Philip M. Wargo; Kristiina A. Vogt; Daniel J. Vogt

    2008-01-01

    Increased nitrogen (N) input has been found to alter ectomycorrhizal fungal communities over short deposition gradients and in fertilization experiments; however, its effects over larger spatial scales have not been determined. To address this gap, we reanalyzed data from a study originally designed to examine the effects of soil aluminum/calcium (Al/Ca) ratios on the...

  17. Interspecific divergence in foliar nutrient dynamics and stem growth in a temperate forest in response to chronic nitrogen inputs

    Treesearch

    Jeffrey D. May; Sarah Beth Burdette; Frank S. Gilliam; Mary Beth Adams

    2005-01-01

    We studied the effects of excessive nitrogen (N) fertilization on foliar nutrient dynamics and stem growth in three important tree species in a mixed-deciduous forest. Stem diameter growth, foliar N concentrations, nitrogen-phosphorus (NIP) ratios, and nutrient resorption were determined for Acer rubrum L. (ACRU), Liriodendron tulipifera L. (LITU), and Prunas serotina...

  18. Use of MODIS Vegetation Data in Dynamic SPARROW Modeling of Reactive Nitrogen Flux

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Brakebill, J.; Schwarz, G. E.; Nolin, A. W.; Shih, J.; Blomquist, J.; Alexander, R. B.; Macauley, M.

    2012-12-01

    SPARROW models are widely used to identify and quantify the sources of contaminants in watersheds and to predict their flux and concentration at specified locations downstream. Conventional SPARROW models are steady-state in form, and describe the average relationship between sources and stream conditions based on non-linear regression of long-term water quality monitoring data on spatially-referenced explanatory information. But many watershed management issues involve intra- and inter-annual changes in contaminant sources, hydrologic forcing, or other environmental conditions which cause a temporary imbalance between watershed inputs and outputs. Dynamic behavior of the system relating to changes in watershed storage and processing then becomes important. We describe the results of dynamic statistical calibration of a SPARROW model of total reactive nitrogen flux in the Potomac River Basin based on seasonal water quality and watershed explanatory data for 80 monitoring stations over the period 2000 to 2008. One challenge in dynamic modeling of reactive nitrogen is obtaining frequently-reported, spatially-detailed input data on the phenology of agricultural production and growth of other terrestrial vegetation. In this NASA-funded research, we use the Enhanced Vegetation Index (EVI) and gross primary productivity (GPP) data from the Terra Satellite-borne MODIS sensor to parameterize seasonal uptake and release of nitrogen. The spatial reference frame of the model is a 16,000-reach, 1:100,000-scale stream network, and the computational time step is seasonal. Precipitation and temperature data are from PRISM. The model describes transient storage and transport of nitrogen from multiple nonpoint sources including fertilized cropland, pasture, urban/suburban land, and atmospheric deposition. Removal of nitrogen from watershed storage to stream channels and to "permanent" sinks (deep groundwater and the atmosphere) occurs as parallel first-order processes. Point sources of nitrogen bypass storage and flow directly to stream channels. Model results indicate that, on average, a little more than half of the reactive nitrogen flux comes from transient storage; but in some sub-watersheds a large majority of the flux comes from stored nitrogen input to the watershed in previous seasons and years.

  19. Plasma-chemical processes accompanying discharge in air excited by a microwave beam

    NASA Astrophysics Data System (ADS)

    Askar'ian, G. A.; Batanov, G. M.; Gritsinin, S. I.; Kossyi, I. A.; Kostinskii, A. Iu.

    1990-11-01

    Experimental results are presented on plasma-chemical processes of nitrogen oxidation and ozone production accompanying microwave discharge in dry air and in nitrogen-oxygen mixtures. The degree of nitrogen oxidation and the energy expenditure toward the formation of oxides as a function of discharge conditions are established. The experimental results can be explained by assuming oxidation reactions of electron-excited metastable nitrogen molecules by oxygen atoms. Low ozone concentrations in the discharge indicate a significant energy input into the gas.

  20. Nutrients discharged to the Mississippi River from eastern Iowa watersheds, 1996-1997

    USGS Publications Warehouse

    Becher, Kent D.; Schnoebelen, Douglas J.; Akers, Kimberlee K.

    2000-01-01

    The introduction of nutrients from chemical fertilizer, animal manure, wastewater, and atmospheric deposition to the eastern Iowa environment creates a large potential for nutrient transport in watersheds. Agriculture constitutes 93 percent of all land use in eastern Iowa. As part of the U.S. Geological Survey National Water Quality Assessment Program, water samples were collected (typically monthly) from six small and six large watersheds in eastern Iowa between March 1996 and September 1997. A Geographic Information System (GIS) was used to determine land use and quantify inputs of nitrogen and phosphorus within the study area. Streamliow from the watersheds is to the Mississippi River. Chemical fertilizer and animal manure account for 92 percent of the estimated total nitrogen and 99.9 percent of the estimated total phosphorus input in the study area. Total nitrogen and total phosphorus loads for 1996 were estimated for nine of the 12 rivers and creeks using a minimum variance unbiased estimator model. A seasonal pattern of concentrations and loads was observed. The greatest concentrations and loads occur in the late spring to early summer in conjunction with row-crop fertilizer applications and spring nmoff and again in the late fall to early winter as vegetation goes into dormancy and additional fertilizer is applied to row-crop fields. The three largest rivers in eastern Iowa transported an estimated total of 79,000 metric tons of total nitrogen and 6,800 metric tons of total phosphorus to the Mississippi River in 1996. The estimated mass of total nitrogen and total phosphorus transported to the Mississippi River represents about 19 percent of all estimated nitrogen and 9 percent of all estimated phosphorus input to the study area.

  1. Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies

    USGS Publications Warehouse

    Fenn, M.E.; Poth, M.A.; Aber, J.D.; Baron, Jill S.; Bormann, B.T.; Johnson, D.W.; Lemly, A.D.; McNulty, S.G.; Ryan, D.F.; Stottlemyer, R.

    1998-01-01

    Most forests in North America remain nitrogen limited, although recent studies have identified forested areas that exhibit symptoms of N excess, analogous to overfertilization of arable land. Nitrogen excess in watersheds is detrimental because of disruptions in plant/soil nutrient relations, increased soil acidification and aluminum mobility, increased emissions of nitrogenous greenhouse gases from soil, reduced methane consumption in soil, decreased water quality, toxic effects on freshwater biota, and eutrophication of coastal marine waters. Elevated nitrate (NO3/-) loss to groundwater or surface waters is the primary symptom of N excess. Additional symptoms include increasing N concentrations and higher N:nutrient ratios in foliage (i.e., N:Mg, N:P), foliar accumulation of amino acids or NO3/-, and low soil C:N ratios. Recent nitrogen-fertilization studies in New England and Europe provide preliminary evidence that some forests receiving chronic N inputs may decline in productivity and experience greater mortality. Long-term fertilization at Mount Ascutney, Vermont, suggests that declining and slow N-cycling coniferous stands may be replaced by fast-growing and fast N-cycling deciduous forests. Symptoms of N saturation are particularly severe in high-elevation, nonaggrading spruce-fir ecosystems in the Appalachian Mountains and in eastern hardwood watersheds at the Fernow Experimental Forest near Parsons, West Virginia. In the Los Angeles Air Basin, mixed conifer forests and chaparral watersheds with high smog exposure are N saturated and exhibit the highest streamwater NO3/- concentrations for wildlands in North America. High-elevation alpine watersheds in the Colorado Front Range and a deciduous forest in Ontario, Canada, are N saturated, although N deposition is moderate (~8 kg??ha-1??yr-1). In contrast, the Harvard Forest hardwood stand in Massachusetts has absorbed >900 kg N/ha during 8 yr of N amendment studies without significant NO3/- leaching, illustrating that ecosystems vary widely in the capacity to retain N inputs. Overly mature forests with high N deposition, high soil N stores, and low soil C:N ratios are prone to N saturation and NO3/- leaching. Additional characteristics favoring low N retention capacity include a short growing season (reduced plant N demand) and reduced contact time between drainage water and soil (i.e., porous coarse-textured soils, exposed bedrock or talus). Temporal patterns of hydrologic fluxes interact with biotic uptake and internal cycling patterns in determining ecosystem N retention. Soils are the largest storage pool for N inputs, although vegetation uptake is also important. Recent studies indicate that nitrification may be widespread in undisturbed ecosystems, and that microbial assimilation of NO3/- may be a significant N retention mechanism, contrary to previous assumptions. Further studies are needed to elucidate the sites, forms, and mechanisms of N retention and incorporation into soil organic matter, and to test potential management options for mitigating N losses from forests. Implementation of intensive management practices in N-saturated ecosystems may only be feasible in high-priority areas and on a limited scale. Reduction of N emissions would be a preferable solution, although major reductions in the near future are unlikely in many areas due to economic, energy-use, policy, and demographic considerations.

  2. Recent Genetic Gains in Nitrogen Use Efficiency in Oilseed Rape

    PubMed Central

    Stahl, Andreas; Pfeifer, Mara; Frisch, Matthias; Wittkop, Benjamin; Snowdon, Rod J.

    2017-01-01

    Nitrogen is essential for plant growth, and N fertilization allows farmers to obtain high yields and produce sufficient agricultural commodities. On the other hand, nitrogen losses potentially cause adverse effects to ecosystems and to human health. Increasing nitrogen use efficiency (NUE) is vital to solve the conflict between productivity, to secure the demand of a growing world population, and the protection of the environment. To ensure this, genetic improvement is considered to be a paramount aspect toward ecofriendly crop production. Winter oilseed rape (Brassica napus L.) is the second most important oilseed crop in the world and is cultivated in many regions across the temperate zones. To our knowledge, this study reports the most comprehensive field-based data generated to date for an empirical evaluation of genetic improvement in winter oilseed rape varieties under two divergent nitrogen fertilization levels (NFLs). A collection of 30 elite varieties registered between 1989 and 2014, including hybrids and open pollinated varieties, was tested in a 2-year experiment in 10 environments across Germany for changes in seed yield and seed quality traits. Furthermore, NUE was calculated. We observed a highly significant genetics-driven increase in seed yield per-se and, thus, increased NUE at both NFLs. On average, seed yield from modern open-pollinated varieties and modern hybrids was higher than from old open-pollinated varieties and old hybrids. The annual yield progress across all tested varieties was ~35 kg ha−1 year−1 at low nitrogen and 45 kg ha−1 year−1 under high nitrogen fertilization. Furthermore, in modern varieties an increased oil concentration and decreased protein concentration was observed. Despite, the significant effects of nitrogen fertilization, a surprisingly low average seed yield gap of 180 kg N ha−1 was noted between high and low nitrogen fertilization. Due to contrary effects of N fertilization on seed yield per-se and seed oil concentration an oil yield of 2.04 t ha−1 was measured at both N levels. Collectively, the data reveal that genetic improvement through modern breeding techniques in conjunction with reduced N fertilizer inputs has a tremendous potential to increase NUE of oilseed rape. PMID:28638399

  3. Nitrogen deposition and its contribution to nutrient inputs to intensively managed agricultural ecosystems.

    PubMed

    He, Chun-E; Wang, Xin; Liu, Xuejun; Fangmeier, Andreas; Christie, Peter; Zhang, Fusuo

    2010-01-01

    Interest in nitrogen inputs via atmospheric deposition to agricultural ecosystems has increased recently, especially on the North China Plain because of extremely intensive agricultural systems and rapid urbanization in this region. Nitrogen deposition may make a significant contribution to crop N requirements but may also impose a considerable nutrient burden on the environment in general. We quantified total N deposition at two locations, Dongbeiwang near Beijing and Quzhou in Hebei province, over a two-year period from 2005 to 2007 using an 15N tracer method, the integrated total N input (ITNI) system. Total airborne N inputs to a maize wheat rotation system at both locations ranged from 99 to 117 kg N x ha(-1) x yr(-1), with higher N deposition during the maize season (57-66 kg N/ha) than the wheat season (42-51 kg N/ha). Plant available N from deposition for maize and wheat was about 52 kg N x ha(-1) x yr(-1), accounting for 50% of the total N deposition or 31% of total N uptake by the two crop species. In addition, a correction factor was derived for the maize season to adjust values obtained from small pots (0.057 m2) compared with field trays (0.98 m2) because of higher plant density in the pots. The results indicate that atmospheric N deposition is a very important N input and must be taken into account when calculating nutrient budgets in very intensively managed agricultural ecosystems.

  4. Soil C storage and greenhouse gas emission perennial grasses managed for bio energy feedstock

    USDA-ARS?s Scientific Manuscript database

    Perennial grasses like switchgrass or big bluestem when managed as bioenergy feedstock require nitrogenous inputs. Nitrogen fertilizer frequently cause nitrous oxide emission. Therefore, managing grasses as feedstock may reduce the greenhouse gas (GHG) mitigation potential expected from perennial. ...

  5. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input

    EPA Science Inventory

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI alo...

  6. Changes in nitrogen isotope ratios in estuarine biota following nutrient reductions to Narragansett Bay

    EPA Science Inventory

    Increased nutrient inputs globally have resulted in widespread eutrophication to many coastal water bodies including Narragansett Bay. Efforts to reduce point source nitrogen load¬ings from waste water treatment facilities (WWTFs) and combined sewer overflows (CSOs) started i...

  7. A Nitrogen Physical Input-Output Table (PIOT) Model for Illinois

    EPA Science Inventory

    Nitrogen (N) presents an important challenge for sustainability due to its role in providing goods and services to society, since release of N beyond its intended use has many negative consequences. Several systems modeling approaches have been developed to understand the tradeof...

  8. NITROGEN FLUX FROM WEST CASCADE RANGE HEADWATER STREAMS DRAINING FORESTS ALONG A SUCCESSIONAL GRADIENT

    EPA Science Inventory

    Conceptual models predict that unpolluted, aggrading forest ecosystems tightly retain available nitrogen (N) until declining productivity by mature trees reduces the demand for essential nutrients and export increases to equal N inputs. Short-term nitrate loss following disturban...

  9. COMPARISON OF GENKENSIA DEMISSA (DILLWYN) POPULATIONS IN RHODE ISLAND FRINGE MARSHES WITH VARYING NITROGEN LOADS

    EPA Science Inventory

    Increased residential development in coastal watersheds has led to increases in anthropogenic nitrogen inputs into estuaries. Sessile bivalves are good candidate organisms to examine animal condition in nutrient-enriched areas because they contribute significantly to energy flow...

  10. Effects of Atmospheric Nitrate on an Upland Stream of the Northeastern USA

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.

    2009-05-01

    Excess nitrogen cascades through terrestrial biogeochemical cycles and affects stream nitrate concentrations in upland forests where atmospheric deposition is an important source of anthropogenic nitrogen. We will discuss approaches including high-frequency sampling, isotopic tracers, and end-member mixing analysis that can be used to decipher the sources, transformations, and hydrological processes that affect nitrate transport through forested upland catchments to streams. We present results of studies at the Sleepers River Research Watershed in Vermont, USA, a site where we have intensively measured stream nitrate concentrations during baseflow and stormflow. Stream nitrate concentrations are typically low and nearly 75% of annual inorganic N inputs from atmospheric deposition are retained within the catchment. However, high concentrations and stream loadings of nitrate occur during storm events due to source variation and hydrological flushing of nitrate from catchment soils. Using isotopic tracers and end-member mixing analysis, we have quantified source inputs of unprocessed atmospheric nitrate and show that this stream is directly affected by nitrogen pollution. Using a long-term record of stream hydrochemistry and our findings on event- scale nitrate flushing dynamics, we then explore how stream nitrate loading may respond to anthropogenic climate forcing during the next century. Results suggest that stream runoff and nitrate loadings will change during future emission scenarios (i.e. longer growing seasons and higher winter precipitation rates). Understanding the timing and magnitude of hydrological and hydrochemical responses is important because climate change effects on catchment hydrology may alter how nitrate is retained, produced, and hydrologically flushed in headwater ecosystems with implications for aquatic metabolism, nutrient export from catchments, and downstream eutrophication.

  11. Dynamics of phytoplankton community structure in the South China Sea in response to the East Asian aerosol input

    NASA Astrophysics Data System (ADS)

    Guo, C.; Yu, J.; Ho, T.-Y.; Wang, L.; Song, S.; Kong, L.; Liu, H.

    2012-04-01

    Recent studies have demonstrated atmospheric deposition as an important source of bioreactive compounds to the ocean. The South China Sea (SCS), where aerosol loading is among the highest in the world, however, is poorly studied, particularly on the in situ response of phytoplankton community structures to atmospheric deposition. By conducting a series of microcosm bioassays at different hydrographical locations and simulating different aerosol event scales, we observed both positive and negative responses to the input of East Asian (EA) aerosol with high nitrogen (N) and trace metal contents, in terms of biomass, composition and physiological characteristics of phytoplankton communities. High levels of aerosol loading relieved phytoplankton nitrogen and trace metal limitations in SCS, and thus increased total phytoplankton biomass, enhanced their physiological indicators (e.g. photosynthetic efficiency) and shifted phytoplankton assemblages from being dominated by picoplankton to microphytoplanton, especially diatoms. However, under low levels of aerosol loading, the composition shift and biomass accumulation were not apparent, suggesting that the stimulation effects might be counterbalanced by enhanced grazing mortality indicated by increased abundance of protist grazers. Trace metal toxicity of the aerosols might also be the reason for the reduction of picocyanobacteria when amended with high EA aerosols. The magnitude and duration of the deposition event, as well as the hydrographical and trophic conditions of receiving waters are also important factors when predicting the influence of an aerosol deposition event. Our results demonstrated different responses of phytoplankton and microbial food web dynamics to different scales of atmospheric input events in SCS and highlighted the need for achieving an accurate comprehension of atmospheric nutrient on the biogeochemical cycles of the oceans.

  12. Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia.

    PubMed

    Knoth, Jenny L; Kim, Soo-Hyung; Ettl, Gregory J; Doty, Sharon L

    2014-01-01

    Sustainable production of biomass for bioenergy relies on low-input crop production. Inoculation of bioenergy crops with plant growth-promoting endophytes has the potential to reduce fertilizer inputs through the enhancement of biological nitrogen fixation (BNF). Endophytes isolated from native poplar growing in nutrient-poor conditions were selected for a series of glasshouse and field trials designed to test the overall hypothesis that naturally occurring diazotrophic endophytes impart growth promotion of the host plants. Endophyte inoculations contributed to increased biomass over uninoculated control plants. This growth promotion was more pronounced with multi-strain consortia than with single-strain inocula. Biological nitrogen fixation was estimated through (15)N isotope dilution to be 65% nitrogen derived from air (Ndfa). Phenotypic plasticity in biomass allocation and branch production observed as a result of endophyte inoculations may be useful in bioenergy crop breeding and engineering programs. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  13. Net anthropogenic nitrogen accumulation in the Beijing metropolitan region.

    PubMed

    Han, Yuguo; Li, Xuyong; Nan, Zhe

    2011-03-01

    A rapid increase in anthropogenic nitrogen inputs has a strong impact on terrestrial and aquatic ecosystems. We have estimated net anthropogenic nitrogen accumulation (NANA) as an index of nitrogen (N) pollution potential in the Beijing metropolitan region, China. Our research provides a basis for understanding the potential impact of anthropogenic N inputs on environmental problems, such as nation-wide water quality degradation under the current rapid urban expansion in modern China. The NANA estimation is based on an inventory of atmospheric N deposition, N fertilizer use, consumption of human food and animal feed, N fixation, and riverine N import and export. We calculated N accumulation values for the years 1991, 1997, 2003, and 2007. The average NANA values for the urban and suburban areas from 1991 to 2007 were 24,038 and 13,090 kg N km(-2) year(-1), respectively. NANA is higher in eastern and southern areas than in northern and western areas, and higher in the urban area than in the suburban area. The overall average NANA in Beijing has a downward trend from 15,187 kg N km(-2) year(-1) in 1991 to 11,606 kg N km(-2) year(-1) in 2007, but is still two to five times as that of developed countries. N input from nitrogenous fertilizer is the largest source of NANA, accounting for 44.4% (6,764 kg N km(-2) year(-1)) of the total N input, followed by atmospheric N deposition and N in human food and animal feed. NANA is closely related to land use, on average 23,140 kg N km(-2) year(-1) in densely populated developed land, 17,904 kg N km(-2) year(-1) in agricultural land, and 10,445 kg N km(-2) year(-1) in forest land. Human population density is the best single predictor of NANA.

  14. Identifying sources of nitrogen to Hanalei Bay, Kauai, utilizing the nitrogen isotope signature of macroalgae

    USGS Publications Warehouse

    Derse, E.; Knee, K.L.; Wankel, Scott D.; Kendall, C.; Berg, C.J.; Paytan, A.

    2007-01-01

    Sewage effluent, storm runoff, discharge from polluted rivers, and inputs of groundwater have all been suggested as potential sources of land derived nutrients into Hanalei Bay, Kauai. We determined the nitrogen isotopic signatures (??15N) of different nitrate sources to Hanalei Bay along with the isotopic signature recorded by 11 species of macroalgal collected in the Bay. The macroalgae integrate the isotopic signatures of the nitrate sources over time, thus these data along with the nitrate to dissolved inorganic phosphate molar ratios (N:P) of the macroalgae were used to determine the major nitrate source to the bay ecosystem and which of the macro-nutrients is limiting algae growth, respectively. Relatively low ??15N values (average -0.5???) were observed in all algae collected throughout the Bay; implicating fertilizer, rather than domestic sewage, as an important external source of nitrogen to the coastal water around Hanalei. The N:P ratio in the algae compared to the ratio in the Bay waters imply that the Hanalei Bay coastal ecosystem is nitrogen limited and thus, increased nitrogen input may potentially impactthis coastal ecosystem and specifically the coral reefs in the Bay. Identifying the major source of nutrient loading to the Bay is important for risk assessment and potential remediation plans. ?? 2007 American Chemical Society.

  15. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Burnett, William C.; Wattayakorn, Gullaya; Taniguchi, Makoto; Dulaiova, Henrieta; Sojisuporn, Pramot; Rungsupa, Sompop; Ishitobi, Tomotoshi

    2007-01-01

    We report here the first direct measurements of nutrient fluxes via groundwater discharge into the Upper Gulf of Thailand. Nutrient and standard oceanographic surveys were conducted during the wet and dry seasons along the Chao Phraya River, Estuary and out into the Upper Gulf of Thailand. Additional measurements in selected near-shore regions of the Gulf included manual and automatic seepage meter deployments, as well as nutrient evaluations of seepage and coastal waters. The river transects characterized the distribution of biogeochemical parameters in this highly contaminated urban environment. Seepage flux measurements together with nutrient analyses of seepage fluids were used to estimate nutrient fluxes via groundwater pathways for comparison to riverine fluxes. Our findings show that disseminated seepage of nutrient-rich mostly saline groundwater into the Upper Gulf of Thailand is significant. Estimated fluxes of dissolved inorganic nitrogen (DIN) supplied via groundwater discharge were 40-50% of that delivered by the Chao Phraya River, inorganic phosphate was 60-70%, and silica was 15-40%. Dissolved organic nitrogen (DON) and phosphorus (DOP) groundwater fluxes were also high at 30-40% and 30-130% of the river inputs, respectively. These observations are especially impressive since the comparison is being made to the river that is the largest source of fresh water into the Gulf of Thailand and flows directly through the megacity of Bangkok with high nutrient loadings from industrial and domestic sources.

  16. Eutrophication of Buttermilk Bay, a cape cod coastal embayment: Concentrations of nutrients and watershed nutrient budgets

    NASA Astrophysics Data System (ADS)

    Valiela, Ivan; Costa, Joseph E.

    1988-07-01

    Nutrient concentrations in Buttermilk Bay, a coastal embayment on the northern end of Buzzards Bay, MA, are higher in the nearshore where salinities are lower. This pattern suggests that freshwater sources may contribute significantly to nutrient inputs into Buttermilk Bay. To evaluate the relative importance of the various sources we estimated inputs of nutrients by each major source into the watershed and into the bay itself. Septic systems contributed about 40% of the nitrogen and phosphorus entering the watershed, with precipitation and fertilizer use adding the remainder. Groundwater transported over 85% of the nitrogen and 75% of the phosphorus entering the bay. Most nutrients entering the watershed failed to reach the bay; uptake by forests, soils, denitrification, and adsorption intercepted two-thirds of the nitrogen and nine-tenths of the phosphorus that entered the watershed. The nutrients that did reach the bay most likely originated from subsoil injections into groundwater by septic tanks, plus some leaching of fertilizers. Buttermilk Bay water has relatively low nutrient concentrations, probably because of uptake of nutrients by macrophytes and because of relatively rapid tidal flushing. Annual budgets of nutrients entering the watershed showed a low nitrogen-to-phosphorus ratio of 6, but passage of nutrients through the watershed raised N/P to 23, probably because of adsorption of PO4 during transit. The N/P ratio of water that leaves the watershed and presumably enters the bay is probably high enough to maintain active growth of nitrogenlimited coastal producers. There is a seasonal shift in N/P in the water column of Buttermilk Bay. N/P exceeded the 16∶1 Redfield ratio during midwinter; the remainder of the year N/P fell below 16∶1. This suggests that annual budgets do not provide sufficiently detailed data with which to interpret nutrient-limitation of producers. Further, some idea of water turnover is also needed to evaluate impact of loading rates. Urbanization of watersheds seems to increase loadings to nearshore environments, and to shift the nutrient loadings delivered to coastal waters to relatively high N-to-P ratios, potentially stimulating growth of nitrogen-limited primary producers.

  17. QUANTIFYING SEASONAL SHIFTS IN NITROGEN SOURCES TO OREGON ESTUARIES: PART II: TRANSPORT MODELING

    EPA Science Inventory

    Identifying the sources of dissolved inorganic nitrogen (DIN) in estuaries is complicated by the multiple sources, temporal variability in inputs, and variations in transport. We used a hydrodynamic model to simulate the transport and uptake of three sources of DIN (oceanic, riv...

  18. Effects of Nitrogen Inputs on Freshwater Wetland Ecosystem Services–A Bayesian Network Analysis

    EPA Science Inventory

    Wetlands can provide a balance between regulating water quality and one aspect of mitigating climate change, by reducing the quantity of reactive nitrogen (Nr) reaching downstream receiving water bodies, while emitting negligible amounts of nitrous oxide (N2O) during incomplete d...

  19. Nitrogen input inventory in the Nooksack-Fraser Transboundary Region: Key component of an international nitrogen management study

    EPA Science Inventory

    The Nooksack-Abbotsford-Sumas (NAS) Transboundary Watershed, spanning which spans a portion of the western interface of British Columbia, Washington State, and the Lummi Nation and the Nooksack Tribal lands , supports agriculture, estuarine fisheries, diverse wildlife, and urban ...

  20. Emerging and established technologies to increase nitrogen use efficiency of cereals

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) fertilizers are expensive inputs; additionally, loss of N increases costs, contributes to soil acidification, and causes off-site pollution of air, groundwater and waterways. This study reviews current knowledge about technologies for N fertilization with potential to increase N use eff...

  1. Effects of increased deposition of atmospheric nitrogen on an upland moor: leaching of N species and soil solution chemistry.

    PubMed

    Pilkington, M G; Caporn, S J M; Carroll, J A; Cresswell, N; Lee, J A; Ashenden, T W; Brittain, S A; Reynolds, B; Emmett, B A

    2005-05-01

    This study was designed to investigate the leaching response of an upland moorland to long-term (10 yr) ammonium nitrate additions of 40, 80 and 120 kg N ha(-1) yr(-1) and to relate this response to other indications of potential system damage, such as acidification and cation displacement. Results showed increases in nitrate leaching only in response to high rates of N input, in excess of 96 and 136 kg total N input ha(-1) yr(-1) for the organic Oh horizon and mineral Eag horizon, respectively. Individual N additions did not alter ammonium leaching from either horizon and ammonium was completely retained by the mineral horizon. Leaching of dissolved organic nitrogen (DON) from the Oh horizon was increased by the addition of 40 kg N ha(-1) yr(-1), but in spite of increases, retention of total dissolved nitrogen reached a maximum of 92% and 95% of 80 kg added N ha(-1) yr(-1) in the Oh and Eag horizons, respectively. Calcium concentrations and calcium/aluminium ratios were decreased in the Eag horizon solution with significant acidification mainly in the Oh horizon leachate. Nitrate leaching is currently regarded as an early indication of N saturation in forest systems. Litter C:N ratios were significantly lowered but values remained above a threshold predicted to increase leaching of N in forests.

  2. Modeling pathways of riverine nitrogen and phosphorus in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Radtke, H.; Neumann, T.; Voss, M.; Fennel, W.

    2012-09-01

    A better understanding of the fate of nutrients entering the Baltic Sea ecosystem is an important issue with implications for environmental management. There are two sources of nitrogen and phosphorus: riverine input and atmospheric deposition. In the case of nitrogen, the fixation of dinitrogen by diazotrophic bacteria represents a third source. From an analysis of stable nitrogen isotope ratios it was suggested that most of the riverine nitrogen is sequestered in the coastal rim, specifically along the southern Baltic Sea coast with its coarse sediments, whereas nitrogen from fixation dominates the central basins. However, pathways of nutrients and timescales between the input of the nutrients and their arrival in different basins are difficult to obtain from direct measurements. To elucidate this problem, we use a source attribution technique in a three-dimensional ecosystem model, ERGOM, to track nutrients originating from various rivers. An “age” variable is attributed to the marked elements to indicate their propagation speeds and residence times. In this paper, we specifically investigate the spreading of nitrogen and phosphorus from the riverine discharges of the Oder, Vistula, Neman and Daugava. We demonstrate which regions they are transported to and for how long they remain in the ecosystem. The model results show good agreement with source estimations from observed δ15N values in sediments. The model results suggest that 95% of nitrogen is lost by denitrification in sediments, after an average time of 1.4 years for riverine nitrogen. The residence time of riverine phosphorus is much longer and exceeds our simulated period of 35 years.

  3. Understanding the unique biogeochemistry of the Mediterranean Sea: Insights from a coupled phosphorus and nitrogen model

    NASA Astrophysics Data System (ADS)

    Powley, Helen R.; Krom, Michael D.; Van Cappellen, Philippe

    2017-06-01

    The Mediterranean Sea (MS) is an oligotrophic basin whose offshore water column exhibits low dissolved inorganic phosphorus (P) and nitrogen (N) concentrations, unusually high nitrate (NO3) to phosphate (PO4) ratios, and distinct biogeochemical differences between the Western Mediterranean Sea (WMS) and Eastern Mediterranean Sea (EMS). A new mass balance model of P and N cycling in the WMS is coupled to a pre-existing EMS model to understand these biogeochemical features. Estimated land-derived inputs of reactive P and N to the WMS and EMS are similar per unit surface area, but marine inputs are 4 to 5 times greater for the WMS, which helps explain the approximately 3 times higher primary productivity of the WMS. The lateral inputs of marine sourced inorganic and organic P support significant fractions of new production in the WMS and EMS, similar to subtropical gyres. The mass balance calculations imply that the MS is net heterotrophic: dissolved organic P and N entering the WMS and EMS, primarily via the Straits of Gibraltar and Sicily, are mineralized to PO4 and NO3 and subsequently exported out of the basin by the prevailing anti-estuarine circulation. The high deepwater (DW) molar NO3:PO4 ratios reflect the high reactive N:P ratio of inputs to the WMS and EMS, combined with low denitrification rates. The lower DW NO3:PO4 ratio of the WMS (21) compared to the EMS (28) reflects lower reactive N:P ratios of inputs to the WMS, including the relatively low N:P ratio of Atlantic surface water flowing into the WMS.Plain Language SummaryThe Mediterranean Sea (MS) is a marine desert: it exhibits extremely low biological productivity despite being almost entirely surrounded by land with high nutrient loadings from a large coastal population. To explain this paradox, we analyze the sources and fate of the two main nutrient elements that support the production of marine biomass, phosphorus (P), and nitrogen (N). We find that the main source of P and N to the MS is inflow of surface water from the Atlantic Ocean via the Strait of Gibraltar, not land-derived sources. This inflow is balanced by a return to the Atlantic Ocean of deeper Mediterranean water enriched in the biologically most active forms of P and N, phosphate and nitrate. The very low productivity of the MS therefore reflects a switch from less bioavailable chemical forms of P and N entering the MS to more bioavailable forms leaving the MS. Computer simulations reproduce these chemical differences when coupling the biological utilization and recycling of P and N to the circulation of the MS, which drives the water exchanges across the Strait of Gibraltar. These simulations also reproduce the differences in productivity and nutrient distributions between the western and eastern basins of the MS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/30886','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/30886"><span>An introduction to subirrigation in forest and conservation nurseries and some preliminary results of demonstrations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>R. Kasten Dumroese; Douglass F. Jacobs; Anthony S. Davis; Jeremy R. Pinto; Thomas D. Landis</p> <p>2007-01-01</p> <p>We are successfully using subirrigation to grow a variety of native plants. Subirrigated plants have grown at least as well as their cohorts irrigated with a fixed or traveling overhead system, but with less water inputs, less discharge of waste water, and less discharge of nitrogen fertilizer. So far, we have not been troubled with high levels of accumulated salts in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16104429','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16104429"><span>The effect of nitrogen loading on on-site system design: a model for determining land application area size.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McCardell, A; Davison, L; Edwards, A</p> <p>2005-01-01</p> <p>Designers of on-site wastewater management systems have six opportunities to remove pollutants of concern from the aqueous waste stream before it reaches ground or surface waters. These opportunities occur at source, at point of collection (primary treatment), secondary treatment, tertiary treatment, land application and buffers. This paper presents a computer based model for the sizing of on-site system land application areas applicable to the Lismore area in Northern New South Wales, a region of high rainfall. Inputs to the model include daily climatic data, soil type, number of people loading the system and size of housing allotment. Constraints include allowable phosphorus export, nitrogen export and hydraulic percolation. In the Lismore area nitrogen is the nutrient of most concern. In areas close to environmentally sensitive waterways, and in dense developments, the allowable annual nitrogen export becomes the main factor determining the land application area size. The model offers system designers the opportunity to test various combinations of nitrogen attenuation strategies (source control, secondary treatment) in order to create a solution which offers an acceptable nitrogen export rate while meeting the client's household and financial needs. The model runs on an Excel spreadsheet and has been developed by Lismore City Council.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918934S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918934S"><span>Soil quality and soil degradation in agricultural loess soils in Central Europe - impacts of traditional small-scale and modernized large-scale agriculture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, Christian</p> <p>2017-04-01</p> <p>The study analyzes the impact of different farming systems on soil quality and soil degradation in European loess landscapes. The analyses are based on geo-chemical soil properties, landscape metrics and geomorphological indicators. The German Middle Saxonian Loess Region represents loess landscapes whose ecological functions were shaped by land consolidation measures resulting in large-scale high-input farming systems. The Polish Proszowice Plateau is still characterized by a traditional small-scale peasant agriculture. The research areas were analyzed on different scale levels combining GIS, field, and laboratory methods. A digital terrain classification was used to identify representative catchment basins for detailed pedological studies which were focused on soil properties that responded to soil management within several years, like pH-value, total carbon (TC), total nitrogen (TN), inorganic carbon (IC), soil organic carbon (TOC=TC-IC), hot-water extractable carbon (HWC), hot-water extractable nitrogen (HWN), total phosphorus, plant-available phosphorus (P), plant-available potassium (K) and the potential cation exchange capacity (CEC). The study has shown that significant differences in major soil properties can be observed because of different fertilizer inputs and partly because of different cultivation techniques. Also the traditional system increases soil heterogeneity. Contrary to expectations the study has shown that the small-scale peasant farming system resulted in similar mean soil organic carbon and phosphorus contents like the industrialized high-input farming system. A further study could include investigations of the effects of soil amendments like herbicides and pesticide on soil degradation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B41H..08B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B41H..08B"><span>A Nitrogen Inventory of Major Water Regions Across the USA as a Benchmark for Future Progress in Mitigating Nitrogen Pollution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boyer, E. W.; Galloway, J. N.; Alexander, R. B.</p> <p>2012-12-01</p> <p>We present a contemporary inventory of reactive nitrogen (Nr) inputs and, air, and surface waters throughout major water regions in the United States. Inputs of Nr to the nation and the world have been increasing, largely due to human activities associated with food production and energy consumption via the combustion of fossil fuels and biofuels. Despite the obvious essential benefits of a plentiful supply of food and energy, the adverse consequences associated with the accumulation of Nr in the environment are large. Most of the Nr created by anthropogenic activities is released to the environment, often with unintended negative consequences. The greater the inputs of Nr to the landscape, the greater the potential for negative effects, caused by greenhouse gas production, ground level ozone, acid deposition, and Nr overload that can contribute to climate change, degradation of soils and vegetation, acidification of surface waters, coastal eutrophication, hypoxia and habitat loss. Here, we present a consistent accounting method for quantifying Nr sources and transport that was used in our inventory, and discuss associated data needs for tallying Nr inputs at regional scales. The inventory is a necessary tool for exploring the role of Nr contributed to the environment from various sources (e.g., from fertilizers, manure, biological fixation, human waste, atmospheric deposition) and from various industrial sectors (e.g., from agriculture, transportation, electricity generation). Agriculture and use of fertilizers to produce food, feed, and fiber (including bioenergy and biological nitrogen fixation) and combustion of fossil fuels are the largest sources of Nr released into the environment in the USA. Our inventory can be used as a benchmark of the current Nr situation against which future progress can be assessed in varying regions of the country, amidst changing Nr inputs and implementation of policy and management strategies to mitigate Nr pollution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B41I..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B41I..02B"><span>A contemporary national nitrogen inventory as a benchmark for future progress in mitigating nitrogen pollution in the USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boyer, E. W.; Galloway, J. N.; Theis, T.; Alexander, R. B.</p> <p>2011-12-01</p> <p>We present a contemporary inventory of reactive nitrogen (Nr) inputs to land, air, and water in the United States. Inputs of Nr to the nation and the world have been increasing, largely due to human activities associated with food production and energy consumption via the combustion of fossil fuels and biofuels. Despite the obvious essential benefits of a plentiful supply of food and energy, the adverse consequences associated with the accumulation of Nr in the environment are large. Most of the Nr created by anthropogenic activities is released to the environment, often with unintended negative consequences. The greater the inputs of Nr to the landscape, the greater the potential for negative effects, caused by greenhouse gas production, ground level ozone, acid deposition, and Nr overload that can contribute to climate change, degradation of soils and vegetation, acidification of surface waters, coastal eutrophication, hypoxia and habitat loss. Here, we present a consistent accounting method for quantifying Nr sources and transport that was used in our inventory, and discuss associated data needs for tallying Nr inputs at regional scales. The inventory is a necessary tool for exploring the role of Nr contributed to the environment from various sources (e.g., from fertilizers, manure, biological fixation, human waste, atmospheric deposition) and from various industrial sectors (e.g., from agriculture, transportation, electricity generation). Agriculture and use of fertilizers to produce food, feed, and fiber (including bioenergy and biological nitrogen fixation) and combustion of fossil fuels are the largest sources of Nr released into the environment in the USA. Our inventory is currently being used by the U.S. Environmental Protection Agency as a benchmark of the current Nr situation against which future progress can be assessed -- amidst changing Nr inputs and implementation of policy and management strategies to mitigate Nr pollution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13d4034R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13d4034R"><span>Nitrous oxide emissions could reduce the blue carbon value of marshes on eutrophic estuaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roughan, Brittney L.; Kellman, Lisa; Smith, Erin; Chmura, Gail L.</p> <p>2018-04-01</p> <p>The supply of nitrogen to ecosystems has surpassed the Earth’s Planetary Boundary and its input to the marine environment has caused estuarine waters to become eutrophic. Excessive supply of nitrogen to salt marshes has been associated with shifts in species’ distribution and production, as well as marsh degradation and loss. Our study of salt marshes in agriculturally intensive watersheds shows that coastal eutrophication can have an additional impact. We measured gas fluxes from marsh soils and verified emissions of nitrous oxide (N2O) in nitrogen-loaded marshes while the reference marsh was a sink for this gas. Salt marsh soils are extremely efficient carbon sinks, but emissions of N2O, a greenhouse gas 298 times more potent than CO2, reduces the value of the carbon sink, and in some marshes, may counterbalance any value of stored carbon towards mitigation of climate change. Although more research is merited on the nitrogen transformations and carbon storage in eutrophic marshes, the possibility of significant N2O emissions should be considered when evaluating the market value of carbon in salt marshes subject to high levels of nitrogen loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5684177','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5684177"><span>Trade, Diplomacy, and Warfare: The Quest for Elite Rhizobia Inoculant Strains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Checcucci, Alice; DiCenzo, George C.; Bazzicalupo, Marco; Mengoni, Alessio</p> <p>2017-01-01</p> <p>Rhizobia form symbiotic nitrogen-fixing nodules on leguminous plants, which provides an important source of fixed nitrogen input into the soil ecosystem. The improvement of symbiotic nitrogen fixation is one of the main challenges facing agriculture research. Doing so will reduce the usage of chemical nitrogen fertilizer, contributing to the development of sustainable agriculture practices to deal with the increasing global human population. Sociomicrobiological studies of rhizobia have become a model for the study of the evolution of mutualistic interactions. The exploitation of the wide range of social interactions rhizobia establish among themselves, with the soil and root microbiota, and with the host plant, could constitute a great advantage in the development of a new generation of highly effective rhizobia inoculants. Here, we provide a brief overview of the current knowledge on three main aspects of rhizobia interaction: trade of fixed nitrogen with the plant; diplomacy in terms of communication and possible synergistic effects; and warfare, as antagonism and plant control over symbiosis. Then, we propose new areas of investigation and the selection of strains based on the combination of the genetic determinants for the relevant rhizobia symbiotic behavioral phenotypes. PMID:29170661</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29170661','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29170661"><span>Trade, Diplomacy, and Warfare: The Quest for Elite Rhizobia Inoculant Strains.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Checcucci, Alice; DiCenzo, George C; Bazzicalupo, Marco; Mengoni, Alessio</p> <p>2017-01-01</p> <p>Rhizobia form symbiotic nitrogen-fixing nodules on leguminous plants, which provides an important source of fixed nitrogen input into the soil ecosystem. The improvement of symbiotic nitrogen fixation is one of the main challenges facing agriculture research. Doing so will reduce the usage of chemical nitrogen fertilizer, contributing to the development of sustainable agriculture practices to deal with the increasing global human population. Sociomicrobiological studies of rhizobia have become a model for the study of the evolution of mutualistic interactions. The exploitation of the wide range of social interactions rhizobia establish among themselves, with the soil and root microbiota, and with the host plant, could constitute a great advantage in the development of a new generation of highly effective rhizobia inoculants. Here, we provide a brief overview of the current knowledge on three main aspects of rhizobia interaction: trade of fixed nitrogen with the plant; diplomacy in terms of communication and possible synergistic effects; and warfare, as antagonism and plant control over symbiosis. Then, we propose new areas of investigation and the selection of strains based on the combination of the genetic determinants for the relevant rhizobia symbiotic behavioral phenotypes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5472036','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5472036"><span>Discrimination factors of carbon and nitrogen stable isotopes in meerkat feces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>Stable isotope analysis of feces can provide a non-invasive method for tracking the dietary habits of nearly any mammalian species. While fecal samples are often collected for macroscopic and genetic study, stable isotope analysis can also be applied to expand the knowledge of species-specific dietary ecology. It is somewhat unclear how digestion changes the isotope ratios of animals’ diets, so more controlled diet studies are needed. To date, most diet-to-feces controlled stable isotope experiments have been performed on herbivores, so in this study I analyzed the carbon and nitrogen stable isotope ratios in the diet and feces of the meerkat (Suricata suricatta), a small omnivorous mammal. The carbon trophic discrimination factor between diet and feces (Δ13Cfeces) is calculated to be 0.1 ± 1.5‰, which is not significantly different from zero, and in turn, not different than the dietary input. On the other hand, the nitrogen trophic discrimination factor (Δ15Nfeces) is 1.5 ± 1.1‰, which is significantly different from zero, meaning it is different than the average dietary input. Based on data generated in this experiment and a review of the published literature, carbon isotopes of feces characterize diet, while nitrogen isotope ratios of feces are consistently higher than dietary inputs, meaning a discrimination factor needs to be taken into account. The carbon and nitrogen stable isotope values of feces are an excellent snapshot of diet that can be used in concert with other analytical methods to better understand ecology, diets, and habitat use of mammals. PMID:28626611</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.3321C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.3321C"><span>Nitrogen transformations along a shallow subterranean estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Couturier, Mathilde; Tommi-Morin, Gwendoline; Sirois, Maude; Rao, Alexandra; Nozais, Christian; Chaillou, Gwénaëlle</p> <p>2017-07-01</p> <p>The transformations of chemical constituents in subterranean estuaries (STEs) control the delivery of nutrient loads from coastal aquifers to the ocean. It is important to determine the processes and sources that alter nutrient concentrations at a local scale in order to estimate accurate regional and global nutrient fluxes via submarine groundwater discharge (SGD), particularly in boreal environments, where data are still very scarce. Here, the biogeochemical transformations of nitrogen (N) species were examined within the STE of a boreal microtidal sandy beach located in the Magdalen Islands (Quebec, Canada). This study revealed the vertical and horizontal distribution of nitrate (NO3-), nitrite (NO2-), ammonia (NH4+), dissolved organic nitrogen (DON) and total dissolved nitrogen (TDN) measured in beach groundwater during four spring seasons (June 2011, 2012, 2013 and 2015) when aquifer recharge was maximal after snowmelt. Inland groundwater supplied high concentrations of NOx and DON to the STE, whereas inputs from seawater infiltration were very limited. Non-conservative behaviour was observed along the groundwater flow path, leading to low NOx and high NH4+ concentrations in the discharge zone. The long transit time of groundwater within the beach (˜ 166 days), coupled with oxygen-depleted conditions and high carbon concentrations, created a favourable environment for N transformations such as heterotrophic and autotrophic denitrification and ammonium production. Biogeochemical pathways led to a shift in nitrogen species along the flow path from NOx-rich to NOx-poor groundwater. An estimate of SGD fluxes of N was determined to account for biogeochemical transformations within the STE based on a N-species inventory and Darcy's flow. Fresh inland groundwater delivered 37 mol NOx yr-1 per metre of shoreline and 63 mol DON m-1 yr-1 to the STE, and NH4+ input was negligible. Near the discharge zone, the potential export of N species was estimated around 140, 1.5 and 33 mol yr-1 per metre of shoreline for NH4+, NOx and DON respectively. In contrast to the fresh inland groundwater, the N load of beach groundwater near the discharge zone was dominated by NH4+ and DON. Our study shows the importance of tidal sands in the biogeochemical transformation of the terrestrial N pool. This local export of bioavailable N probably supports benthic production and higher trophic levels leading to its rapid transformation in surface sediments and coastal waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20227804','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20227804"><span>Tracking nitrogen losses in a greenhouse crop rotation experiment in North China using the EU-Rotate_N simulation model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guo, Ruiying; Nendel, Claas; Rahn, Clive; Jiang, Chunguang; Chen, Qing</p> <p>2010-06-01</p> <p>Vegetable production in China is associated with high inputs of nitrogen, posing a risk of losses to the environment. Organic matter mineralisation is a considerable source of nitrogen (N) which is hard to quantify. In a two-year greenhouse cucumber experiment with different N treatments in North China, non-observed pathways of the N cycle were estimated using the EU-Rotate_N simulation model. EU-Rotate_N was calibrated against crop dry matter and soil moisture data to predict crop N uptake, soil mineral N contents, N mineralisation and N loss. Crop N uptake (Modelling Efficiencies (ME) between 0.80 and 0.92) and soil mineral N contents in different soil layers (ME between 0.24 and 0.74) were satisfactorily simulated by the model for all N treatments except for the traditional N management. The model predicted high N mineralisation rates and N leaching losses, suggesting that previously published estimates of N leaching for these production systems strongly underestimated the mineralisation of N from organic matter. Copyright 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612094H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612094H"><span>Grass species influence on plant N uptake - Determination of atmospheric N deposition to a semi-natural peat bog site using a 15N labelling approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hurkuck, Miriam; Brümmer, Christian; Spott, Oliver; Flessa, Heinz; Kutsch, Werner L.</p> <p>2014-05-01</p> <p>Large areas of natural peat bogs in Northwestern Germany have been converted to arable land and were subjected to draining and peat cutting in the past. The few protected peatland areas remaining are affected by high nitrogen (N) deposition. Our study site - a moderately drained raised bog - is surrounded by highly fertilized agricultural land and livestock production. In this study, we used a 15N pool dilution technique called 'Integrated Total Nitrogen Input' (ITNI) to quantify annual deposition of atmospheric N into biomonitoring pots over a two-year period. Since it considers direct N uptake by plants, it was expected to result in higher N input than conventional methods for determination of N deposition (e.g. micrometeorological approaches, bulk N samplers). Using Lolium multiflorum and Eriophorum vaginatum as monitor plants and low, medium and high levels of fertilization, we aimed to simulate increasing N deposition to planted pots and to allocate airborne N after its uptake by the soil-plant system in aboveground biomass, roots and soil. Increasing N fertilization was positively correlated with biomass production of Eriophorum vaginatum, whereas atmospheric plant N uptake decreased and highest airborne N input of 899.8 ± 67.4 µg N d-1 pot-1 was found for low N fertilization. In contrast, Lolium multiflorum showed a clear dependency of N supply on plant N uptake and was highest (688.7 ± 41.4 µg N d-1 pot-1) for highly fertilized vegetation pots. Our results suggest that grass species respond differently to increasing N input. While crop grasses such as Lolium multiflorum take up N according to N availability, species adopted to nutrient-limited conditions like Eriophorum vaginatum show N saturation effects with increasing N supply. Total airborne N input ranged from about 24 to 66 kg N ha-1 yr-1 dependent on the used indicator plant and the amount of added fertilizer. Parallel determination of atmospheric N deposition using a micrometeorological approach complemented with bulk samplers was about 24 kg N ha-1 yr-1 during both years of experiments and was thus at the lower range of results obtained by the ITNI method. The low 15N recovery rate of about 50 % during some experiments indicated an underestimation of the applied ITNI approach, resulting in a maximum possible N uptake of twice as high as the determined N input. Most likely, the intensive agricultural land management of the surrounding areas leads to this high N deposition into the protected peatland area. As a result, increasing sensitivity of ombrotrophic vegetation with a subsequent change in plant species composition and a decline in bog-specific vegetation cannot be excluded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B11O..03V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B11O..03V"><span>Carbon And Nitrogen Storage Of A Mediterranean-Type Shrubland In Response To Post-Fire Succession And Long-Term Experimental Nitrogen Deposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vourlitis, G. L.; Hentz, C. S.</p> <p>2015-12-01</p> <p>Mediterranean-type shublands are subject to periodic fire and high levels of atmospheric nitrogen (N) deposition. Little is known how N inputs interact with post-fire secondary succession to affect ecosystem carbon (C) and N storage and cycling. Thus, a field experiment was conducted in a chaparral stand located in NE San Diego County, USA that burned during a wildfire in July 2003 to test the hypotheses that rates of C and N storage would significantly increase in response to experimental N addition. The experimental layout consists of a randomized design where four-10 x 10 m plots received 5 gN m-2 (added N) in the fall of each year since 2003 and four-10 x 10 m plots served as un-manipulated controls. Aboveground biomass C and N pools and fluxes, including biomass and litter C and N pool size, litter production, net primary production (NPP), N uptake, and litter C and N mineralization were measured seasonally (every 3 months) for a period of 10 years. Belowground surface (0-10 cm) soil extractable N, pH, and total soil N and C pools and surface root biomass C and N pools were also measured seasonally for a period of 10 years, while N losses from leaching were measured over a shorted (8 year) period of time. Added N led to a rapid increase in soil extractable N and a decline in soil pH; however, total soil C and N storage have yet to be affected by N input. Added N plots initially had significantly lower C and N storage than control plots; however, rates of aboveground N and C storage became significantly higher added N plots after 4-5 years of exposure. N losses from leaching continue to be significantly higher in added N plots even with an increase in aboveground C and N storage. The impact of N enrichment on ecosystem C and N storage varied depending on the stage of succession, but the eventual N-induced increase in NPP has implications for fuel buildup and future fire intensity. While N enrichment acted to increase aboveground C and N storage, plots exposed to high N inputs lost substantially more N from leaching than control plots. These results indicate that post-fire chaparral shrublands tend to be "leaky" even though they are not yet "N-saturated." Recovering stands in high-N deposition areas will likely be large sources of N to groundwater and/or streams regardless of whether NPP is stimulated by N input.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmEn.182...75W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmEn.182...75W"><span>Nitrogen deposition in precipitation to a monsoon-affected eutrophic embayment: Fluxes, sources, and processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Yunchao; Zhang, Jingping; Liu, Songlin; Jiang, Zhijian; Arbi, Iman; Huang, Xiaoping; Macreadie, Peter Ian</p> <p>2018-06-01</p> <p>Daya Bay in the South China Sea (SCS) has experienced rapid nitrogen pollution and intensified eutrophication in the past decade due to economic development. Here, we estimated the deposition fluxes of nitrogenous species, clarified the contribution of nitrogen from precipitation and measured ions and isotopic composition (δ15N and δ18O) of nitrate in precipitation in one year period to trace its sources and formation processes among different seasons. We found that the deposition fluxes of total dissolved nitrogen (TDN), NO3-, NH4+, NO2-, and dissolved organic nitrogen (DON) to Daya Bay were 132.5, 64.4 17.5, 1.0, 49.6 mmol m-2•yr-1, respectively. DON was a significant contributor to nitrogen deposition (37% of TDN), and NO3- accounted for 78% of the DIN in precipitation. The nitrogen deposition fluxes were higher in spring and summer, and lower in winter. Nitrogen from precipitation contributed nearly 38% of the total input of nitrogen (point sources input and dry and wet deposition) in Daya Bay. The δ15N-NO3- abundance, ion compositions, and air mass backward trajectories implicated that coal combustion, vehicle exhausts, and dust from mainland China delivered by northeast monsoon were the main sources in winter, while fossil fuel combustion (coal combustion and vehicle exhausts) and dust from PRD and southeast Asia transported by southwest monsoon were the main sources in spring; marine sources, vehicle exhausts and lightning could be the potential sources in summer. δ18O results showed that OH pathway was dominant in the chemical formation process of nitrate in summer, while N2O5+ DMS/HC pathways in winter and spring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16553264','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16553264"><span>Nitrogen emissions from broilers measured by mass balance over eighteen consecutive flocks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B</p> <p>2006-03-01</p> <p>Emission of nitrogen in the form of ammonia from poultry rearing facilities has been an important topic for the poultry industry because of concerns regarding the effects of ammonia on the environment. Sound scientific data is needed to accurately estimate air emissions from poultry operations. Many factors, such as season of the year, ambient temperature and humidity, bird health, and management practices can influence ammonia volatilization from broiler rearing facilities. Precise results are often difficult to attain from commercial facilities, particularly over long periods of time. Therefore, an experiment was conducted to determine nitrogen loss from broilers in a research facility under conditions simulating commercial production for 18 consecutive flocks. Broilers were reared to 40 to 42 d of age and fed diets obtained from a commercial broiler integrator. New rice hulls were used for litter for the first flock, and the same litter was recycled for all subsequent flocks with caked litter removed between flocks. All birds, feeds, and litter materials entering and leaving the facility were quantified, sampled, and analyzed for total nitrogen content. Nitrogen loss was calculated by the mass balance method in which loss was equal to the difference between the nitrogen inputs and the nitrogen outputs. Nitrogen partitioning as a percentage of inputs averaged 15.29, 6.84, 55.52, 1.27, and 21.08% for litter, caked litter, broiler carcasses, mortalities, and nitrogen loss, respectively, over all eighteen flocks. During the production of 18 flocks of broilers on the same recycled litter, the average nitrogen emission rate was calculated to range from 4.13 to 19.74 g of N/ kg of marketed broiler (grams of nitrogen per kilogram) and averaged 11.07 g of N/kg. Nitrogen loss was significantly (P < 0.05) greater for flocks reared in summer vs. winter. Results of this experiment have demonstrated that the rate of nitrogen volatilization from broiler grow-out facilities varies significantly on a flock-to-flock basis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EaFut...6..134D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EaFut...6..134D"><span>Atmospheric Inputs of Nitrogen, Carbon, and Phosphorus across an Urban Area: Unaccounted Fluxes and Canopy Influences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Decina, Stephen M.; Templer, Pamela H.; Hutyra, Lucy R.</p> <p>2018-02-01</p> <p>Rates of atmospheric deposition are declining across the United States, yet urban areas remain hotspots of atmospheric deposition. While past studies show elevated rates of inorganic nitrogen (N) deposition in cities, less is known about atmospheric inputs of organic N, organic carbon (C), and organic and inorganic phosphorus (P), all of which can affect ecosystem processes, water quality, and air quality. Further, the effect of the tree canopy on amounts and forms of nutrients reaching urban ground surfaces is not well-characterized. We measured growing season rates of total N, organic C, and total P in bulk atmospheric inputs, throughfall, and soil solution around the greater Boston area. We found that organic N constitutes a third of total N inputs, organic C inputs are comparable to rural inputs, and inorganic P inputs are 1.2 times higher than those in sewage effluent. Atmospheric inputs are enhanced two-to-eight times in late spring and are elevated beneath tree canopies, suggesting that trees augment atmospheric inputs to ground surfaces. Additionally, throughfall inputs may directly enter runoff when trees extend above impervious surfaces, as is the case with 26.1% of Boston's tree canopy. Our results indicate that the urban atmosphere is a significant source of elemental inputs that may impact urban ecosystems and efforts to improve water quality, particularly in terms of P. Further, as cities create policies encouraging tree planting to provide ecosystem services, locating trees above permeable surfaces to reduce runoff nutrient loads may be essential to managing urban biogeochemical cycling and water quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=188370&keyword=macroalgae+AND+water+AND+treatment&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=188370&keyword=macroalgae+AND+water+AND+treatment&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Quantifying seasonal shifts in nitrogen sources to Oregon estuaries using a transport model combined with stable isotopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Identifying the sources of dissolved inorganic nitrogen (DIN) in estuaries is complicated by the multiple sources, temporal variability in inputs, and variations in transport. We used a hydrodynamic model to simulate the transport and uptake of three sources of DIN (oceanic, riv...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-01-19/pdf/2011-1011.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-01-19/pdf/2011-1011.pdf"><span>76 FR 3060 - Call for Information: Information Related to the Development of Emission-Estimating Methodologies...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-01-19</p> <p>... approach that incorporates ``mass balance'' constraints to determine emissions from AFOs. Unfortunately... ventilation rate of the monitored confinement structure. Nitrogen content of process inputs and outputs (e.g., feed, water, bedding, eggs, milk). Nitrogen content of manure excreted. Description of any control...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=326930&Lab=NHEERL&keyword=food+AND+management&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=326930&Lab=NHEERL&keyword=food+AND+management&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Influences of climate and land use on contemporary anthropogenic watershed phosphorus input and riverine export across the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Human beings have greatly accelerated nitrogen and phosphorus flows from land to aquatic ecosystems, often resulting in eutrophication, harmful algal blooms, and hypoxia in lakes and coastal waters. Although differences in nitrogen export from watersheds have been clearly linked ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=240687','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=240687"><span>A Precision Nitrogen Management Approach to Minimize Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Nitrogen fertilizer is a crucial input for crop production but contributes to agriculture’s environmental footprint via CO2 emissions, N2O emissions, and eutrophication of coastal waters. The low-cost way to minimize this impact is to eliminate over-application of N. This is more difficult than it s...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=310942&Lab=NHEERL&keyword=marine+AND+pollution&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=310942&Lab=NHEERL&keyword=marine+AND+pollution&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Carbon and nitrogen isotope ratios of juvenile winter flounder as indicators of inputs to estuarine systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Stable carbon and nitrogen isotope ratios were measured in the muscle tissues of young-of-the-year (YOY) winter flounder, Pseudopleuronectes americanus, collected from several estuarine systems along the coast of Rhode Island, USA. These systems included three coastal lagoons (Ni...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=315224','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=315224"><span>Nitrogen management to reduce nitrous oxide emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Nitrous oxide (N2O) emissions from agricultural soils represent a complex interaction between the inputs of nitrogen into the soil and the soil environment. Mitigating these emissions will have a positive impact on greenhouse gases. Agriculture is the primary source of N2O emissions and must develop...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=312551','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=312551"><span>Nitrogen source and application method impact on corn yield and nutrient uptake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Farmers are looking for better management practices to enhance production and reduce negative environmental impact from nitrogen (N) fertilizer application since N is one of the most important and costly nutrient inputs for crop production. In this field experiment pre-plant swine effluent applicati...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=92836&keyword=NH4&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=92836&keyword=NH4&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>CARBON QUALITY AND QUANTITY AFFECT THE RETENTION AND MICROBIAL PROCESSING OF APPLIED NITROGEN</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Excess nitrogen (N) from fertilizer or atmospheric deposition can have harmful effects on the environment and human health. Remediative methods of controlling N leaching and limiting other undesirable effects of excess N need to be explored if N inputs can not be reduced or bett...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=287047','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=287047"><span>Water deficit and nitrogen fertility effects on NDVI of 'Tifton 85' bermudagrass during regrowth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>A better understanding of how bermudagrass (Cynodon spp.) regrowth is influenced by production inputs will aid in advancing precision management in the southeast US. The objective of this two-yr study was to evaluate how irrigation and nitrogen influence bermudagrass regrowth. Normalized difference ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28464423','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28464423"><span>Annual climate variation modifies nitrogen induced carbon accumulation of Pinus sylvestris forests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lim, Hyungwoo; Oren, Ram; Linder, Sune; From, Fredrik; Nordin, Annika; Fahlvik, Nils; Lundmark, Tomas; Näsholm, Torgny</p> <p>2017-09-01</p> <p>We report results from long-term simulated external nitrogen (N) input experiments in three northern Pinus sylvestris forests, two of moderately high and one of moderately low productivity, assessing effects on annual net primary production (NPP) of woody mass and its interannual variation in response to variability in weather conditions. A sigmoidal response of wood NPP to external N inputs was observed in the both higher and lower productivity stands, reaching a maximum of ~65% enhancement regardless of the native site productivity, saturating at an external N input of 4-5 g N·m -2 ·yr -1 . The rate of increase in wood NPP and the N response efficiency (RE N , increase in wood NPP per external N input) were maximized at an external N input of ~3 g N·m -2 ·yr -1 , regardless of site productivity. The maximum RE N was greater in the higher productivity than the lower productivity stand (~20 vs. ~14 g C/g N). The N-induced enhancement of wood NPP and its RE N were, however, markedly contingent on climatic variables. In both of the higher and lower productivity stands, wood NPP increased with growing season precipitation (P), but only up to ~400 mm. The sensitivity of the response to P increased with increasing external N inputs. Increasing growing season temperature (T) somewhat increased the N-induced drought effect, whereas decreasing T reduced the drought effect. These responses of wood NPP infused a large temporal variation to RE N , making the use of a fixed value unadvisable. Based on these results, we suggest that regional climate conditions and future climate scenarios should be considered when modeling carbon sequestration in response to N deposition in boreal P. sylvestris, and possibly other forests. © 2017 by the Ecological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..969S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..969S"><span>Capturing sediment and nutrients in irrigated terraced landscapes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Slaets, Johanna; Schmitter, Petra; Hilger, Thomas; Piepho, Hans-Peter; Dercon, Gerd; Cadisch, Georg</p> <p>2016-04-01</p> <p>Terraces are often promoted as green filters in landscapes, buffering discharge and constituent peaks. For irrigated rice terraces, however, this mitigating potential has not been assessed at the landscape level. Additionally, sediment and nutrient inputs potentially affect soil fertility in agricultural terraces and therefore yield - the extent of the impact depending on the quality and quantity of the captured material. Quantifying such upland-lowland linkages is particularly important in intensely cultivated landscapes, as declining upland soil fertility could alter beneficial hydrological connectivity between terraces and surrounding landscapes. In this study, we therefore quantified the sediment, sediment-associated organic carbon and nitrogen inputs and losses for a 13 ha paddy rice area, surrounded by upland maize cultivation in Northwest Vietnam in 2010 and 2011. Turbidity sensors were used in combination with a linear mixed model in order to obtain continuous predictions of the constituent concentrations. Sediment texture was determined using mid-infrared spectroscopy. Uncertainty on annual load estimates was quantified by calculating 95% confidence intervals with a bootstrap approach. Sediment inputs from irrigation water to the rice area amounted to 48 Mg ha-1 a-1 and runoff during rainfall events contributed an additional 16 Mg ha-1 a-1. Export from the rice terraces equalled 63 Mg ha-1 a-1 of sediments, resulting in a net balance of 28 Mg ha-1 a-1 or a trapping of almost half of the annual sediment inputs. Runoff contributed one third of the sand inputs, while irrigated sediments were predominantly silty. As paddy outflow contained almost exclusively silt- and clay-sized material, 24 Mg ha-1 a-1 of captured sediments consisted of sand. The sediment-associated organic carbon resulted in a deposit of 1.09 Mg ha-1 a-1. For sediment-associated nitrogen, 0.68 Mg ha-1 a-1 was trapped in the terraces. Combining both sediment-associated and dissolved nitrogen, irrigation water provided a total input of 1.11 Mg ha-1 a-1, of which 54% was in the plant-available forms of ammonium and nitrate - an input larger than the recommended application of chemical fertilizer. Rice terraces were net traps for sediment and protected downstream areas by filtering coarse sediments. Combined with the importance of irrigation water as a source of organic carbon and nitrogen for the rice, this connectivity underscores the vulnerability of agricultural terraces to changes in surrounding land use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22563465','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22563465"><span>Abundances of iron-binding photosynthetic and nitrogen-fixing proteins of Trichodesmium both in culture and in situ from the North Atlantic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Richier, Sophie; Macey, Anna I; Pratt, Nicola J; Honey, David J; Moore, C Mark; Bibby, Thomas S</p> <p>2012-01-01</p> <p>Marine cyanobacteria of the genus Trichodesmium occur throughout the oligotrophic tropical and subtropical oceans, where they can dominate the diazotrophic community in regions with high inputs of the trace metal iron (Fe). Iron is necessary for the functionality of enzymes involved in the processes of both photosynthesis and nitrogen fixation. We combined laboratory and field-based quantifications of the absolute concentrations of key enzymes involved in both photosynthesis and nitrogen fixation to determine how Trichodesmium allocates resources to these processes. We determined that protein level responses of Trichodesmium to iron-starvation involve down-regulation of the nitrogen fixation apparatus. In contrast, the photosynthetic apparatus is largely maintained, although re-arrangements do occur, including accumulation of the iron-stress-induced chlorophyll-binding protein IsiA. Data from natural populations of Trichodesmium spp. collected in the North Atlantic demonstrated a protein profile similar to iron-starved Trichodesmium in culture, suggestive of acclimation towards a minimal iron requirement even within an oceanic region receiving a high iron-flux. Estimates of cellular metabolic iron requirements are consistent with the availability of this trace metal playing a major role in restricting the biomass and activity of Trichodesmium throughout much of the subtropical ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5894078','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5894078"><span>The Nitrogen Balancing Act: Tracking the Environmental Performance of Food Production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>McLellan, Eileen L; Cassman, Kenneth G; Eagle, Alison J; Woodbury, Peter B; Sela, Shai; Tonitto, Christina; Marjerison, Rebecca D; van Es, Harold M</p> <p>2018-01-01</p> <p>Abstract Farmers, food supply-chain entities, and policymakers need a simple but robust indicator to demonstrate progress toward reducing nitrogen pollution associated with food production. We show that nitrogen balance—the difference between nitrogen inputs and nitrogen outputs in an agricultural production system—is a robust measure of nitrogen losses that is simple to calculate, easily understood, and based on readily available farm data. Nitrogen balance provides farmers with a means of demonstrating to an increasingly concerned public that they are succeeding in reducing nitrogen losses while also improving the overall sustainability of their farming operation. Likewise, supply-chain companies and policymakers can use nitrogen balance to track progress toward sustainability goals. We describe the value of nitrogen balance in translating environmental targets into actionable goals for farmers and illustrate the potential roles of science, policy, and agricultural support networks in helping farmers achieve them. PMID:29662247</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29622648','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29622648"><span>Convergent evidence for widespread rock nitrogen sources in Earth's surface environment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Houlton, B Z; Morford, S L; Dahlgren, R A</p> <p>2018-04-06</p> <p>Nitrogen availability is a pivotal control on terrestrial carbon sequestration and global climate change. Historical and contemporary views assume that nitrogen enters Earth's land-surface ecosystems from the atmosphere. Here we demonstrate that bedrock is a nitrogen source that rivals atmospheric nitrogen inputs across major sectors of the global terrestrial environment. Evidence drawn from the planet's nitrogen balance, geochemical proxies, and our spatial weathering model reveal that ~19 to 31 teragrams of nitrogen are mobilized from near-surface rocks annually. About 11 to 18 teragrams of this nitrogen are chemically weathered in situ, thereby increasing the unmanaged (preindustrial) terrestrial nitrogen balance from 8 to 26%. These findings provide a global perspective to reconcile Earth's nitrogen budget, with implications for nutrient-driven controls over the terrestrial carbon sink. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=311238&simplesearch=1&searchall=nitrogen+or+phosphorus+or+nutrient&noarchive=1&sitype=sa&sitype=pr','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=311238&simplesearch=1&searchall=nitrogen+or+phosphorus+or+nutrient&noarchive=1&sitype=sa&sitype=pr"><span>Effects of Nitrogen Inputs and Watershed Characteristics on ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Nitrogen (N) inputs to the landscape have been linked previously to N loads exported from watersheds at the national scale; however, stream N concentration is arguably more relevant than N load for drinking water quality, freshwater biological responses and establishment of nutrient criteria. In this study, we combine national-scale anthropogenic N input data, including synthetic fertilizer, crop biological N fixation, manure applied to farmland, atmospheric N deposition, and point source inputs, with data from the 2008-09 National Rivers and Streams Assessment to quantify the relationship between N inputs and in-stream concentrations of total N (TN), dissolved inorganic N (DIN), and total organic N (TON) (calculated as TN – DIN). In conjunction with simple linear regression, we use multiple regression to understand how watershed and stream reach attributes modify the effect of N inputs on N concentrations. Median TN was 0.50 mg N L-1 with a maximum of 25.8 mg N L-1. Total N inputs to the watershed ranged from less than 1 to 196 kg N ha-1 y-1, with a median of 14.4 kg N ha-1 y-1. Atmospheric N deposition was the single largest anthropogenic N source in the majority of sites, but, agricultural sources generally dominate total N inputs in sites with elevated N concentrations. The sum of all N inputs were positively correlated with concentrations of all forms of N [r2 = 0.44, 0.43, and 0.18 for TN, DIN, and TON, respectively (all log-transformed), n = 1112], indi</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1065/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1065/"><span>County-level estimates of nitrogen and phosphorus from animal manure for the conterminous United States, 2002</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mueller, David K.; Gronberg, Jo Ann M.</p> <p>2013-01-01</p> <p>County-level nitrogen and phosphorus inputs from animal manure for the conterminous United States for 2002 were estimated from animal populations from the 2002 Census of Agriculture by using methods described in U.S. Geological Survey Scientific Investigations Report 2006–5012. These estimates of nitrogen and phosphorus from animal manure were compiled in support of the U.S. Geological Survey’s National Water-Quality Assessment Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.B11A0470P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.B11A0470P"><span>SOURCES AND TRANSFORMATIONS OF NITROGEN, CARBON, AND PHOSPHORUS IN THE POTOMAC RIVER ESTUARY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pennino, M. J.; Kaushal, S.</p> <p>2009-12-01</p> <p>Global transport of nitrogen (N), carbon (C), and phosphorus (P) in river ecosystems has been dramatically altered due to urbanization. We examined the capacity of a major tributary of the Chesapeake Bay, the Potomac River, to transform carbon, nitrogen, and phosphorus inputs from the world’s largest advanced wastewater treatment facility (Washington D.C. Water and Sewer Authority). Surface water and effluent samples were collected along longitudinal transects of the Potomac River seasonally and compared to long-term interannual records of carbon, nitrogen, and phosphorus. Water samples from seasonal longitudinal transects were analyzed for dissolved organic and inorganic nitrogen and phosphorus, total organic carbon, and particulate carbon, nitrogen, and phosphorus. The source and quality of organic matter was characterized using fluorescence spectroscopy, excitation emission matrices (EEMs), and PARAFAC modeling. Sources of nitrate were tracked using stable isotopes of nitrogen and oxygen. Along the river network stoichiometric ratios of C, N, and P were determined across sites and related to changes in flow conditions. Land use data and historical water chemistry data were also compared to assess the relative importance of non-point sources from land-use change versus point-sources of carbon, nitrogen, and phosphorus. Preliminary data from EEMs suggested that more humic-like organic matter was important above the wastewater treatment plant, but more protein-like organic matter was present below the treatment plant. Levels of nitrate and ammonia showed increases within the vicinity of the wastewater treatment outfall, but decreased rapidly downstream, potentially indicating nutrient uptake and/or denitrification. Phosphate levels decreased gradually along the river with a small increase near the wastewater treatment plant and a larger increase and decrease further downstream near the high salinity zone. Total organic carbon levels show a small decrease downstream. Ecological stoichiometric ratios along the river indicate increases in C/N ratios downstream, but no corresponding trend with C/P ratios. The N/P ratios increased directly below the treatment plant and then decreased gradually downstream. The C/N/P ratios remained level until the last two sampling stations within 20 miles of the Chesapeake Bay, where there is a large increase. Despite large inputs, there may be large variations in sources and ecological stoichiometry along rivers and estuaries, and knowledge of these transformations will be important in predicting changes in the amounts, forms, and stoichiometry of nutrient loads to coastal waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4574312','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4574312"><span>Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Skrzypek, Grzegorz; Wojtuń, Bronisław; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra</p> <p>2015-01-01</p> <p>Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard). The percentage of the total tundra N-pool provided by birds, ranged from 0–21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere. PMID:26376204</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26376204','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26376204"><span>Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Skrzypek, Grzegorz; Wojtuń, Bronisław; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra</p> <p>2015-01-01</p> <p>Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard). The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70156672','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70156672"><span>The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Baron, Jill S.; Hall, E.K.; Nolan, B.T.; Finlay, J.C.; Bernhardt, E.S.; Harrison, J.A.; Chan, F.; Boyer, E.W.</p> <p>2012-01-01</p> <p>Nearly all freshwaters and coastal zones of the US are degraded from inputs of excess reactive nitrogen (Nr), sources of which are runoff, atmospheric N deposition, and imported food and feed. Some major adverse effects include harmful algal blooms, hypoxia of fresh and coastal waters, ocean acidification, long-term harm to human health, and increased emissions of greenhouse gases. Nitrogen fluxes to coastal areas and emissions of nitrous oxide from waters have increased in response to N inputs. Denitrification and sedimentation of organic N to sediments are important processes that divert N from downstream transport. Aquatic ecosystems are particularly important denitrification hotspots. Carbon storage in sediments is enhanced by Nr, but whether carbon is permanently buried is unknown. The effect of climate change on N transport and processing in fresh and coastal waters will be felt most strongly through changes to the hydrologic cycle, whereas N loading is mostly climate-independent. Alterations in precipitation amount and dynamics will alter runoff, thereby influencing both rates of Nr inputs to aquatic ecosystems and groundwater and the water residence times that affect Nr removal within aquatic systems. Both infrastructure and climate change alter the landscape connectivity and hydrologic residence time that are essential to denitrification. While Nr inputs to and removal rates from aquatic systems are influenced by climate and management, reduction of N inputs from their source will be the most effective means to prevent or to minimize environmental and economic impacts of excess Nr to the nation’s water resources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=263922&keyword=leaching&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=263922&keyword=leaching&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>A synthesis of regional inputs and damage costs of reactive nitrogen in the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>We estimated the fate of N in crops and in the environment (air, land, freshwater, groundwater, and coastal zones) with published coefficients describing nutrient uptake efficiency, gaseous emissions, and leaching losses. Benefits and damage costs of anthropogenic N inputs were ...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B43E0345V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B43E0345V"><span>The Paradox of Excess Nitrogen in Boreal Peatlands: Biogeochemical Gaps in Nitrogen Cycling Revealed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vile, M. A.; Prsa, T.; Wieder, R.; Lamers, L. P.</p> <p>2011-12-01</p> <p>Globally, peatlands cover 3-4 % of the Earth's land surface (over 4 million km 2, yet they store 25-30 % of the world's soil carbon (C) and 9-16% of the world's soil nitrogen (N, 8-15 Pg) in peat. As in other terrestrial ecosystems, the cycling of C and N is closely linked, especially for ombrotrophic bogs. Bogs receive nutrient and water exclusively from the atmosphere, which ensures an N-limited, nutrient-poor habitat. In Alberta, NW Canada, peatlands have received exceptionally low atmospheric inputs of N (< 1 7 kg/ha/yr) from their first introduction on the landscape ~ 7000 yrs bp, up to the present time. Paradoxically, despite these low inputs of atmospheric N deposition, bases on 210-fixation Pb dating of peat cores, we have shown that over the past 50 years these bogs have accumulated approximately 11-21 times more N in peat than can be explained by inputs of atmospheric N. A likely missing input is N2-fixation from cyanobacteria associated with Sphagnum mosses, however this process has been largely overlooked in boreal peatlands. Here we demonstrate the importance of N2-fixation in explaining the high accumulation rates of N found in unpolluted, boreal bogs of western Canada. Calibrated (using theoretical ratio of 1.5-3:1) rates of N2-fixation for 4 bogs in northern Alberta ranged from 1.6 to 8.0 ± 0.7 kg/ha/yr, indicating that 42-58 % of the N accumulated over in peat, can be attributed to biological N2-fixation. Although most of northern Alberta's peatlands continue to receive exceptionally low atmospheric N deposition rates, over the last 3 decades, rapid development and industrial expansion of Alberta's Oil Sands Mining (OSM) potentially threaten the pristine nature of peatlands through regionally elevated deposition of N-compounds (NOx). Prior to OSM, N inputs to bogs were limited exclusively to (1) biological N fixation, and (2) bulk background deposition. We examined the response of peatlands located in the OSM area to enhanced N deposition. Despite the large accumulation rates of N in peat, mean N:P ratios in Sphagnum moss capitula (11.0 ± 3.4; mean ± stdev) suggest that peat of boreal western Canada is still severely N limited and not limited by phosphorus. Collectively, these data underscore the severity of N-limitation in pristine bogs and their potential sensitivity to increased N inputs from oils sands mining. Additionally, because the majority of the data generated for N stress in peatlands is from eastern Canada and western Europe, we stress the need to encompass the response of bogs to N deposition within the bounds of the low N deposition gradient. We postulate the loss of symbiosis between Sphagnum and N-fixing microorganisms (cyanobacteria, bacteria) in nitrogen-polluted areas, and indicate its consequences at the species level (trade-off) and ecosystem level (including C sequestration).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6004103-effects-ammonium-elemental-nutrition-red-spruce-indicator-plants-grown-acid-soil','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6004103-effects-ammonium-elemental-nutrition-red-spruce-indicator-plants-grown-acid-soil"><span>Effects of ammonium on elemental nutrition of red spruce and indicator plants grown in acid soil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hoelldampf, B.; Barker, A.V.</p> <p></p> <p>Decline of high elevation red spruce forests in the northeastern United States has been related to acid rain, particularly with respect to the deposition of nitrogenous materials. Ca and Mg deficiencies may be induced by input of air-borne nitrogenous nutrients into the forest ecosystem. This research investigated the effects of N nutrition on mineral nutrition of red spruce and radish, as an indicator plant, grown in acid forest soil. Red spruce and radishes in the greenhouse were treated with complete nutrient solutions with 15 mM N supplied as 0, 3.75, 7.5, 11.25, or 15 mM NH[sub 4][sup +] with themore » remainder being supplied as NO[sub 3][sup [minus</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4407655','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4407655"><span>Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>York, Larry M.; Galindo-Castañeda, Tania; Schussler, Jeffrey R.; Lynch, Jonathan P.</p> <p>2015-01-01</p> <p>Increasing the nitrogen use efficiency of maize is an important goal for food security and agricultural sustainability. In the past 100 years, maize breeding has focused on yield and above-ground phenes. Over this period, maize cultivation has changed from low fertilizer inputs and low population densities to intensive fertilization and dense populations. The authors hypothesized that through indirect selection the maize root system has evolved phenotypes suited to more intense competition for nitrogen. Sixteen maize varieties representing commercially successful lines over the past century were planted at two nitrogen levels and three planting densities. Root systems of the most recent material were 7 º more shallow, had one less nodal root per whorl, had double the distance from nodal root emergence to lateral branching, and had 14% more metaxylem vessels, but total mextaxylem vessel area remained unchanged because individual metaxylem vessels had 12% less area. Plasticity was also observed in cortical phenes such as aerenchyma, which increased at greater population densities. Simulation modelling with SimRoot demonstrated that even these relatively small changes in root architecture and anatomy could increase maize shoot growth by 16% in a high density and high nitrogen environment. The authors concluded that evolution of maize root phenotypes over the past century is consistent with increasing nitrogen use efficiency. Introgression of more contrasting root phene states into the germplasm of elite maize and determination of the functional utility of these phene states in multiple agronomic conditions could contribute to future yield gains. PMID:25795737</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20797849','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20797849"><span>Anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Banks, Charles J; Chesshire, Michael; Heaven, Sonia; Arnold, Rebecca</p> <p>2011-01-01</p> <p>An anaerobic digester receiving food waste collected mainly from domestic kitchens was monitored over a period of 426 days. During this time information was gathered on the waste input material, the biogas production, and the digestate characteristics. A mass balance accounted for over 90% of the material entering the plant leaving as gaseous or digestate products. A comprehensive energy balance for the same period showed that for each tonne of input material the potential recoverable energy was 405 kWh. Biogas production in the digester was stable at 642 m3 tonne(-1) VS added with a methane content of around 62%. The nitrogen in the food waste input was on average 8.9 kg tonne(-1). This led to a high ammonia concentration in the digester which may have been responsible for the accumulation of volatile fatty acids that was also observed. Copyright © 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29600380','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29600380"><span>Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aziz, Omar; Hussain, Saddam; Rizwan, Muhammad; Riaz, Muhammad; Bashir, Saqib; Lin, Lirong; Mehmood, Sajid; Imran, Muhammad; Yaseen, Rizwan; Lu, Guoan</p> <p>2018-06-01</p> <p>The looming water resources worldwide necessitate the development of water-saving technologies in rice production. An open greenhouse experiment was conducted on rice during the summer season of 2016 at Huazhong Agricultural University, Wuhan, China, in order to study the influence of irrigation methods and nitrogen (N) inputs on water productivity, N economy, and grain yield of rice. Two irrigation methods, viz. conventional irrigation (CI) and "thin-shallow-moist-dry" irrigation (TSMDI), and three levels of nitrogen, viz. 0 kg N ha -1 (N 0 ), 90 kg N ha -1 (N 1 ), and 180 kg N ha -1 (N 2 ), were examined with three replications. Study data indicated that no significant water by nitrogen interaction on grain yield, biomass, water productivity, N uptake, NUE, and fertilizer N balance was observed. Results revealed that TSMDI method showed significantly higher water productivity and irrigation water applications were reduced by 17.49% in TSMDI compared to CI. Thus, TSMDI enhanced root growth and offered significantly greater water saving along with getting more grain yield compared to CI. Nitrogen tracer ( 15 N) technique accurately assessed the absorption and distribution of added N in the soil crop environment and divulge higher nitrogen use efficiency (NUE) influenced by TSMDI. At the same N inputs, the TSMDI was the optimal method to minimize nitrogen leaching loss by decreasing water leakage about 18.63%, which are beneficial for the ecological environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2009/5199/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2009/5199/"><span>Development and Application of Regression Models for Estimating Nutrient Concentrations in Streams of the Conterminous United States, 1992-2001</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Spahr, Norman E.; Mueller, David K.; Wolock, David M.; Hitt, Kerie J.; Gronberg, JoAnn M.</p> <p>2010-01-01</p> <p>Data collected for the U.S. Geological Survey National Water-Quality Assessment program from 1992-2001 were used to investigate the relations between nutrient concentrations and nutrient sources, hydrology, and basin characteristics. Regression models were developed to estimate annual flow-weighted concentrations of total nitrogen and total phosphorus using explanatory variables derived from currently available national ancillary data. Different total-nitrogen regression models were used for agricultural (25 percent or more of basin area classified as agricultural land use) and nonagricultural basins. Atmospheric, fertilizer, and manure inputs of nitrogen, percent sand in soil, subsurface drainage, overland flow, mean annual precipitation, and percent undeveloped area were significant variables in the agricultural basin total nitrogen model. Significant explanatory variables in the nonagricultural total nitrogen model were total nonpoint-source nitrogen input (sum of nitrogen from manure, fertilizer, and atmospheric deposition), population density, mean annual runoff, and percent base flow. The concentrations of nutrients derived from regression (CONDOR) models were applied to drainage basins associated with the U.S. Environmental Protection Agency (USEPA) River Reach File (RF1) to predict flow-weighted mean annual total nitrogen concentrations for the conterminous United States. The majority of stream miles in the Nation have predicted concentrations less than 5 milligrams per liter. Concentrations greater than 5 milligrams per liter were predicted for a broad area extending from Ohio to eastern Nebraska, areas spatially associated with greater application of fertilizer and manure. Probabilities that mean annual total-nitrogen concentrations exceed the USEPA regional nutrient criteria were determined by incorporating model prediction uncertainty. In all nutrient regions where criteria have been established, there is at least a 50 percent probability of exceeding the criteria in more than half of the stream miles. Dividing calibration sites into agricultural and nonagricultural groups did not improve the explanatory capability for total phosphorus models. The group of explanatory variables that yielded the lowest model error for mean annual total phosphorus concentrations includes phosphorus input from manure, population density, amounts of range land and forest land, percent sand in soil, and percent base flow. However, the large unexplained variability and associated model error precluded the use of the total phosphorus model for nationwide extrapolations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7226530-episodic-inputs-atmospheric-nitrogen-sargasso-sea-contributions-new-production-phytoplankton-blooms','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7226530-episodic-inputs-atmospheric-nitrogen-sargasso-sea-contributions-new-production-phytoplankton-blooms"><span>Episodic inputs of atmospheric nitrogen to the Sargasso Sea: Contributions to new production and phytoplankton blooms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Michaels, A.F.; Johnson, R.J.; Siegel, D.A.</p> <p>1993-06-01</p> <p>This paper compares a recent atmospheric wet deposition record (including all measurable daily rainfall events between October 1988 and June 1991) with concurrent measurements of nitrogen cycling and biomass at the U.S. Joint Global Ocean Flux Study Bermuda Atlantic Time Series Study station. The two data sets, among the most complete synoptic records of atmospheric nitrogen deposition and ocean nitrogen cycling, provide an opportunity to directly assess the importance of nitrogen deposition in the ocean. The results indicate that individual nitrogen wet deposition events are usually small compared to the ambient nitrogen cycle and that only under sustained calm conditionsmore » following large deposition events will nitrogen deposition processes be an important signal for the understanding of ocean biochemistry. 46 refs., 7 figs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B23E0276O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B23E0276O"><span>Effects of anthropogenic nitrogen input on the aquatic food webs of river ecosystem in central Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohte, N.; Togashi, H.; Tokuchi, N.; Yoshimura, M.; Kato, Y.; Ishikawa, N. F.; Osaka, K.; Kondo, M.; Tayasu, I.</p> <p>2014-12-01</p> <p>To evaluate the impact of the anthropogenic nitrogen input to the river ecosystem, we conducted the monitoring on nutrient status of river waters and food web structures of aquatic organisms. Especially, changes of sources and concentration of nitrate (NO3-) in river water were focused to evaluate the impact of anthropogenic nitrogen loadings from agricultural and residential areas. Stable nitrogen isotope ratio (δ15N) of aquatic organisms has also intensively been monitored not only to describe their food web structure, but also to detect the influences of extraneous nitrogen inputs. Field samplings an observation campaigns were conducted in the Arida river watershed located in central part of Japan at four different seasons from September 2011 to October 2012. Five observation points were set from headwaters to the point just above the brackish waters starts. Water samples for chemical analysis were taken at the observation points for each campaign. Organisms including leaf litters, benthic algae, aquatic insects, crustacean, and fishes were sampled at each point quantitatively. Results of the riverine survey utilizing 5 regular sampling points showed that δ15N of nitrate (NO3-) increased from forested upstream (˜2 ‰) to the downstream (˜7 ‰) due to the sewage loads and fertilizer effluents from agricultural area. Correspondingly the δ15N of benthic algae and aquatic insects increased toward the downstream. This indicates that primary producers of each reach strongly relied on the local N sources and it was utilized effectively in their food web. Simulation using a GIS based mixing model considering the spatial distributions of human population density and fertilizer effluents revealed that strongest impacts of N inputs was originated from organic fertilizers applied to orchards in the middle to lower parts of catchment. Differences in δ15N between primary producers and predators were 6-7 ‰ similarly at all sampling points. Food web structural analysis using food network unfolding technique based on observed δ15N suggested that the structure of nutrient pyramid did not differ significantly along the riverine positions, while the members of species in each trophic revel changed and the impact of anthropogenic N input was visible along the river.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1015143','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1015143"><span>Patterns of nitrogen accumulation and cycling in riparian floodplain ecosystems along the Green and Yampa rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Carol E., Adair; Binkley, Dan; Andersen, Douglas C.</p> <p>2004-01-01</p> <p>Patterns of nitrogen (N) accumulation and turnover in riparian systems in semi-arid regions are poorly understood, particularly in those ecosystems that lack substantial inputs from nitrogen fixing vegetation. We investigated sources and fluxes of N in chronosequences of riparian forests along the regulated Green River and the free-flowing Yampa River in semi-arid northwestern Colorado. Both rivers lack significant inputs from N-fixing vegetation. Total soil nitrogen increased through time along both rivers, at a rate of about 7.8 g N m−2 year−1 for years 10–70, and 2.7 g N m−2year−1 from years 70–170. We found that the concentration of N in freshly deposited sediments could account for most of the soil N that accumulated in these floodplain soils. Available N (measured by ion exchange resin bags) increased with age along both rivers, more than doubling in 150 years. In contrast to the similar levels of total soil N along these rivers, N turnover rates, annual N mineralization, net nitrification rates, resin-N, and foliar N were all 2–4 times higher along the Green River than the Yampa River. N mineralization and net nitrification rates generally increased through time to steady or slightly declining rates along the Yampa River. Along the Green River, rates of mineralization and nitrification were highest in the youngest age class. The high levels of available N and N turnover in young sites are not characteristic of riparian chronosequences and could be related to changes in hydrology or plant community composition associated with the regulation of the Green River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917859H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917859H"><span>Drivers of decomposition in forest soils: Insights from a trans-European experiment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hood-Nowotny, Rebecca</p> <p>2017-04-01</p> <p>Meta-data analyses and the model based hypotheses state that global soil C storage is controlled by microbial scale processes of fungal competition for available nitrogen (N). The details of these microbe-dependent feedback mechanisms on N and C dynamics in European soils are largely unknown and contentious. Global trends of increasing atmospheric N deposition and the continuing use of inorganic N fertilizer in both agriculture and forestry mean that the soils vital function as a carbon sink is potentially under threat. We set out to experimentally investigate these hypotheses across a Trans-European gradient of forest soils and provide reliable information on soil microbial responses to nitrogen inputs for predictive climate change models. Changes in nutrient status could result in a chain reaction of interacting microbial mechanisms which in turn could lead to the shifts in underlying ecosystem biogeochemical process rates. Recent meta-analysis has shown that plant fungal symbiont community structure, exerts a greater fundamental control over soil C storage than temperature, precipitation or net primary production. Based on the hypothesis that plant associated fungi effectively scavenge all available organic and inorganic N leaving little N for the growth of the free-living decomposer microbial community and preventing further breakdown of SOM. To investigate these possible effects we have sampled forest soils across a trans European gradient (ALTER-net-MSII network) which have received additional inputs of inorganic nitrogen fertilizer or carbon in the form of sugar, over a three year period. We have studied both nitrogen and carbon dynamics in these systems using a tool box of stable isotopes, high through-put sequencing for microbial community analysis and be-spoke litter bags to tease out the dominant drivers of decomposition. The results and conclusions from these analyses will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1211873T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1211873T"><span>Effect of enhanced nitrogen input on release of nutrients and nutrient availability in stands of tall fern Athyrium distentifolium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tå¯Ma, Ivan; Holuib, Petr; Záhora, Jaroslav; Fiala, Karel</p> <p>2010-05-01</p> <p>Improved light conditions, after destruction of tree canopy, soil acidification and increased nitrogen availability, support intensive spreading of acidophilous perennial grasses and stands of tall fern (Athyrium distentifolium) on deforested sites in the Moravian-Silesian Beskydy Mts. (the Czech Republic). The aim of the study was to determine how higher inputs of nitrogen affect the release of nutrients during decomposition processes of fern litter. The experimental site was chosen on a southwest-facing slope of the Kněhyně Mt. (49o31´ N, 18o 32´E, 1170 m a.s.l.) in the Moravian-Silesin Beskydy Mts. in the Czech Republic. The area is characterized by an annual mean air temperature of 5.6 oC and annual precipitation of 1110 mm. A large fern stand was divided in four blocks (5x3 m) and on two of them higher doses of nitrogen were applied (50 kgN/ha in five doses in the course of the growing season). Similarly, mesh-bags with fresh natural litter of fern were used to determine rate of litter decomposition during one year. Samples were inserted in both nitrogen treated and untreated fern stands in autumn 2006 and 2007 collected in autumn 2007 and 2008. On the basis of litter amount estimated at the start and at the end of exposure and of actual content of minerals in original and exposed litter, the release and/or accumulation of minerals during decomposition were calculated. The availability (more or less in the case of ammonia-nitrogen) and movement of percolated nitrogen (mainly in the case of nitrate-nitrogen) was estimated in situ by the trapping of mineral N into the ion exchange resin (IER) inserted into special cover. The decomposition rate of native A. distentifolium litter was approximately the same (29-30 %) at both nitrogen availability, however the element release from decomposed litter was higher for N, P and Ca in both years and for K and Mg in the first year as well. However, decomposition rate of cellulose was two times greater in fern stands than in adjacent spruce stands without ferns. The values are expressed as the captured mineral nitrogen into ion exchange resins exposed in situ. The availability of soil ammonia- as well as nitrate- nitrogen in control stockings, and after the addition of different sources (raw silk and cellulose) were, in general, not very different below fern plants and in the bare soils. It can be concluded, that the microbial competition for available nitrogen is very high after the addition of cellulose, which consequently restrict the rate of mineral nitrogen trapped into the ion exchange resin. In contrary higher amounts of captured mineral nitrogen were estimated after the addition of raw silk. This study was supported by GP AS CR (IAA 600050616) and the Research plan No. MSM6215648905, Ministry of Education, CR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.B31D0329C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.B31D0329C"><span>Tracking Urban Air Deterioration in San Francisco: Carbon and Nitrogen Isotope Study of Weedy Plants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colman, A. S.; Wessells, A.; Swaine, M. E.; Fogel, M. L.</p> <p>2003-12-01</p> <p>Stable isotopes of carbon and nitrogen have long been used as indicators of ecosystem structure and nutrient cycling in natural and anthropogenically disturbed terrestrial ecosytems. However, relatively few of these studies have targeted urban environments, where nitrogen and CO2 emissions dramatically impact atmospheric composition. Here we present the results of carbon and nitrogen isotope analyses of herbaceous plants growing in and around San Francisco. These plants were collected mainly as part of a public outreach walking tour of San Francisco ("The Weed Walk - Concrete Jungle") sponsored by the San Francisco Exploratorium. In all cases, the plants were sampled in areas with negligible forest canopy. A consortium of species was collected at each of several distinct sites to examine the localized and regional impact of automobile traffic and proximity to the ocean on isotopic compositions of carbon and nitrogen. δ 13C measurements trend towards relatively light values in the range of --26 to --36 permil. In comparison, the leaves from similar types of herbaceous species in relatively unpolluted and unforested environments typically have δ 13C values in the range of --22 to --28 permil. The observed light carbon isotopic compositions potentially reflect input of isotopically light CO2 emissions from fossil fuel burning, boosting atmospheric CO2 concentrations to >10 % above background. δ 15N values range from +4 to +9 permil. This is substantially offset from the --4 to +1 permil values that typify vegetation in regions where nitrogen oxides from fossil fuel combustion dominate the nitrogen inputs. The nitrogen isotope compositions might suggest nitrogen contributions from a marine source (typically +6 permil).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23011299','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23011299"><span>Nitrogen cycle and ecosystem services in the Brazilian La Plata Basin: anthropogenic influence and climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Watanabe, M; Ortega, E; Bergier, I; Silva, J S V</p> <p>2012-08-01</p> <p>The increasing human demand for food, raw material and energy has radically modified both the landscape and biogeochemical cycles in many river basins in the world. The interference of human activities on the Biosphere is so significant that it has doubled the amount of reactive nitrogen due to industrial fertiliser production (Haber-Bosch), fossil fuel burning and land-use change over the last century. In this context, the Brazilian La Plata Basin contributes to the alteration of the nitrogen cycle in South America because of its huge agricultural and grazing area that meets the demands of its large urban centres - Sao Paulo, for instance - and also external markets abroad. In this paper, we estimate the current inputs and outputs of anthropogenic nitrogen (in kg N.km(-2).yr(-1)) in the basin. In the results, we observe that soybean plays a very important role in the Brazilian La Plata, since it contributes with an annual entrance of about 1.8 TgN due to biological nitrogen fixation. Moreover, our estimate indicates that the export of soybean products accounts for roughly 1.0 TgN which is greater than the annual nitrogen riverine exports from Brazilian Parana, Paraguay and Uruguay rivers together. Complimentarily, we built future scenarios representing changes in the nitrogen cycle profile considering two scenarios of climate change for 2070-2100 (based on IPCC's A2 and B2) that will affect land-use, nitrogen inputs, and loss of such nutrients in the basin. Finally, we discuss how both scenarios will affect human well-being since there is a connection between nitrogen cycle and ecosystem services that affect local and global populations, such as food and fibre production and climate regulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17674741','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17674741"><span>[Inventory of regional surface nutrient balance and policy recommendations in China].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Min-Peng; Chen, Ji-Ning</p> <p>2007-06-01</p> <p>By applying OECD surface soil nitrogen balance methodology, the framework, methodology and database for nutrient balance budget in China are established to evaluate the impact of nutrient balance on agricultural production and water environment. Results show that nitrogen and phosphorus surplus in China are 640 x 10(4) t and 98 x 10(4) t respectively, and nitrogen and phosphorus surplus intensity in China are 16.56 kg/hm2 and 2.53 kg/hm2 respectively. Because of striking spatial difference of nutrient balance across the country, China is seeing a dual-challenge of nutrient surplus management as well as nutrient deficit management. Chemical fertilizer and livestock manure are best targets to perform nutrient surplus management due to their marked contributions to nutrient input. However, it is not cost-effective to implement a uniform management for all regions since nutrient input structures of them vary considerably.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B42C..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B42C..03B"><span>Interactive effects of reactive nitrogen and climate change on US water resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baron, J.; Bernhardt, E. S.; Finlay, J. C.; Chan, F.; Nolan, B. T.; Howarth, B.; Hall, E.; Boyer, E. W.</p> <p>2011-12-01</p> <p>Water resources and aquatic ecosystems are increasingly strained by withdrawals for agriculture and drinking water supply, nitrogen and other pollutant inputs, and climate change. We describe current and projected effects of the interactions of reactive nitrogen (N) and climate change on water resources of the United States. As perturbations to the N cycle intensify in a warmer less predictable climate, interactions will negatively affect the services we expect of our water resources. There are also feedbacks to the climate system itself through the production of greenhouse gases. We conclude: 1. Nitrogen concentrations will increase in the nation's waters from increased N loading and higher N mineralization rates. N export from terrestrial to aquatic ecosystems exhibits a high sensitivity to climate variations. 2. Consequences range from eutrophication and acidification, which reduce natural biodiversity and harm economically valuable fisheries, to adverse impacts on human health. 3. Extreme flood events have the potential to transport N rapidly long distances downstream from its source. 4. A recent national assessment found 67% of streams derived more than 37% of their total nitrate load from base flow often derived from groundwater. Long residence times for groundwater nitrate below agricultural fields may cause benefits from proper N management practices to take decades to be realized under current and future climates. 5. Streams, wetlands, rivers, lakes, estuaries and continental shelves are hotspots for denitrification. Maintenance of N removal capacity thus a critical component of eutrophication management under changing climate and land use conditions. 6. The amount of N inputs from fertilizer and manure use, human population, and deposition is tightly coupled with hydrology to influence the rates and proportion of N emitted to the atmosphere as N2O. About 20% of global N2O emissions come from groundwater, lakes, rivers, and estuaries; stream and wetland emissions add to this value. 7. If current patterns of N and water resource management continue, nitrogen loading to inland waters is expected to increase while the nitrogen retention efficiency within aquatic ecosystems will decline as a function of nitrogen saturation of biological demand. 8. Management that reduces N loss to the nation's water will reduce environmental and economic damage, reduce the risk to human health, and prevent the production of some N2O. Preventing the loss of N to aquatic systems is likely to be most effective at its point of origin. Reducing reactive nitrogen emissions to the atmosphere, increasing N uptake efficiency of crops and greater N retention in soils, better animal management, and improved sewage treatment to remove N from urban waste waters will be increasingly important approaches for the provision of water resources and services in a warmer and highly populated world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919492B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919492B"><span>Does high reactive nitrogen input from the atmosphere decrease the carbon sink strength of a peatland?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brümmer, Christian; Zöll, Undine; Hurkuck, Miriam; Schrader, Frederik; Kutsch, Werner</p> <p>2017-04-01</p> <p>Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (ΣNr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ΣNr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ΣNr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study indicates that the sink strength of the peatland has likely been decreased through elevated N deposition over the past decades. It also demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23707724','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23707724"><span>Exploring the long-term response of undisturbed Mediterranean catchments to changes in atmospheric inputs through time series analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bernal, S; Belillas, C; Ibáñez, J J; Àvila, A</p> <p>2013-08-01</p> <p>The aim of this study was to gain insights on the potential hydrological and biogeochemical mechanisms controlling the response of two nested Mediterranean catchments to long-term changes in atmospheric inorganic nitrogen and sulphate deposition. One catchment was steep and fully forested (TM9, 5.9 ha) and the other one had gentler slopes and heathlands in the upper part while side slopes were steep and forested (TM0, 205 ha). Both catchments were highly responsive to the 45% decline in sulphate concentration measured in atmospheric deposition during the 1980s and 1990s, with stream concentrations decreasing by 1.4 to 3.4 μeq L(-1) y(-1). Long-term changes in inorganic nitrogen in both, atmospheric deposition and stream water were small compared to sulphate. The quick response to changes in atmospheric inputs could be explained by the small residence time of water (4-5 months) in these catchments (inferred from chloride time series variance analysis), which was attributed to steep slopes and the role of macropore flow bypassing the soil matrix during wet periods. The estimated residence time for sulphate (1.5-3 months) was substantially lower than for chloride suggesting unaccounted sources of sulphate (i.e., dry deposition, or depletion of soil adsorbed sulphate). In both catchments, inorganic nitrogen concentration in stream water was strongly damped compared to precipitation and its residence time was of the order of decades, indicating that this essential nutrient was strongly retained in these catchments. Inorganic nitrogen concentration tended to be higher at TM0 than at TM9 which was attributed to the presence of nitrogen fixing species in the heathlands. Our results indicate that these Mediterranean catchments react rapidly to environmental changes, which make them especially vulnerable to changes in atmospheric deposition. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25042417','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25042417"><span>Performance assessment of nitrate leaching models for highly vulnerable soils used in low-input farming based on lysimeter data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Groenendijk, Piet; Heinen, Marius; Klammler, Gernot; Fank, Johann; Kupfersberger, Hans; Pisinaras, Vassilios; Gemitzi, Alexandra; Peña-Haro, Salvador; García-Prats, Alberto; Pulido-Velazquez, Manuel; Perego, Alessia; Acutis, Marco; Trevisan, Marco</p> <p>2014-11-15</p> <p>The agricultural sector faces the challenge of ensuring food security without an excessive burden on the environment. Simulation models provide excellent instruments for researchers to gain more insight into relevant processes and best agricultural practices and provide tools for planners for decision making support. The extent to which models are capable of reliable extrapolation and prediction is important for exploring new farming systems or assessing the impacts of future land and climate changes. A performance assessment was conducted by testing six detailed state-of-the-art models for simulation of nitrate leaching (ARMOSA, COUPMODEL, DAISY, EPIC, SIMWASER/STOTRASIM, SWAP/ANIMO) for lysimeter data of the Wagna experimental field station in Eastern Austria, where the soil is highly vulnerable to nitrate leaching. Three consecutive phases were distinguished to gain insight in the predictive power of the models: 1) a blind test for 2005-2008 in which only soil hydraulic characteristics, meteorological data and information about the agricultural management were accessible; 2) a calibration for the same period in which essential information on field observations was additionally available to the modellers; and 3) a validation for 2009-2011 with the corresponding type of data available as for the blind test. A set of statistical metrics (mean absolute error, root mean squared error, index of agreement, model efficiency, root relative squared error, Pearson's linear correlation coefficient) was applied for testing the results and comparing the models. None of the models performed good for all of the statistical metrics. Models designed for nitrate leaching in high-input farming systems had difficulties in accurately predicting leaching in low-input farming systems that are strongly influenced by the retention of nitrogen in catch crops and nitrogen fixation by legumes. An accurate calibration does not guarantee a good predictive power of the model. Nevertheless all models were able to identify years and crops with high- and low-leaching rates. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=330359','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=330359"><span>Global sensitivity and uncertainty analysis of the nitrate leaching and crop yield simulation under different water and nitrogen management practices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Agricultural system models have become important tools in studying water and nitrogen (N) dynamics, as well as crop growth, under different management practices. Complexity in input parameters often leads to significant uncertainty when simulating dynamic processes such as nitrate leaching or crop y...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=233045&Lab=NHEERL&keyword=nitrogen+AND+balance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=233045&Lab=NHEERL&keyword=nitrogen+AND+balance&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>δ 15 N constraints on long-term nitrogen balances in temperate forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Natural abundance δ15N of ecosystems integrates nitrogen (N) inputs and losses, and thus reflects factors that control the long-term development of ecosystem N balances. We here report N and carbon (C) content of forest vegetation and soils, and associated δ15N, across nine Doug...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/53938','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/53938"><span>Mechanisms of nitrogen deposition effects on temperate forest lichens and trees</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Therese S. Carter; Christopher M. Clark; Mark E. Fenn; Sarah Jovan; Steven S. Perakis; Jennifer Riddell; Paul G. Schaberg; Tara L. Greaver; Meredith G. Hastings</p> <p>2017-01-01</p> <p>We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=61079&keyword=old+AND+earth&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=61079&keyword=old+AND+earth&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>NON-LINEAR NITROGEN RETENTION IN AN UNPOLLUTED OLD-GROWTH TEMPERATE FOREST RECEIVING A GEOMETRIC RANGE OF EXPERIMENTAL 15N ADDITIONS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Over the past century, human activities have increased the rate and extent of atmospheric nitrogen (N) deposition over large regions of Earth. These novel N inputs have driven many previously N-limited temperate forests towards a condition of "N saturation," characterized by poo...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=234112&keyword=Goodale&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=234112&keyword=Goodale&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Sinks for nitrogen inputs in terrestrial ecosystems: A meta-analysis of 15N tracer field studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Anthropogenic nitrogen (N) deposition can have a range of effects on terrestrial ecosystems, but these effects depend in part on the fate of this deposited N, particularly in the amount retained or lost from the system, and in the partitioning of retained N between plants and soi...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=137673&keyword=topography&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=137673&keyword=topography&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>NITROGEN CONCENTRATIONS IN LOADING SOURCES FOR THREE COASTAL LAGOONS FROM ATMOSPHERIC AND WATERSHED SOURCES, ADJACENT COASTAL MARSHES, TIDAL EXCHANGES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Abstract and Oral Presentation Gulf Estuarine Research Society.<br><br>Standing stocks and inputs of total dissolved nitrogen (TDN) to three coastal lagoons, hereafter referred to as Kee's Bayou, Gongora, and State Park, with varying adjacent land-use, geomorphology, and water re...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=340462','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=340462"><span>A public-industry partnership for enhancing corn nitrogen research and datasets: project description, methodology, and outcomes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Due to economic and environmental consequences of nitrogen (N) lost from fertilizer applications in corn (Zea mays L.), considerable public and industry attention has been devoted to development of N decision tools. Now a wide variety of tools are available to farmers for managing N inputs. However,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=344708','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=344708"><span>Overview of a public-industry partnership for enhancing corn nitrogen research and datasets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Due to economic and environmental consequences of nitrogen (N) lost from fertilizer applications in corn (Zea mays L.), considerable public and industry attention has been devoted to development of N decision tools. Now a wide variety of tools are available to farmers for managing N inputs. However,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/39043','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/39043"><span>Seasonal patterns of climate controls over nitrogen fixation by Alnus viridis subsp</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jennifer S. Mitchell; Roger W. Ruess</p> <p>2009-01-01</p> <p>Patterns of and controls over N2 fixation by green alder were studied in post-fire, mid-succession, and white spruce upland forests in interior Alaska, focusing on the hypothesis that ecosystem-level nitrogen (N) inputs decrease with successional development. N2-fixation rates tracked plant phenology during the 1997 (...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=235679&keyword=agriculture+AND+metrics&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=235679&keyword=agriculture+AND+metrics&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Predicting Ecosystem Services in Northeastern Lakes From Monitoring Data and USGS SPARROW Nutrient Load Estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Reduction of nitrogen inputs to estuaries can be achieved by the control of agricultural, atmospheric, and urban sources. We use the USGS MRB1 SPARROW model to estimate reductions necessary to decrease nitrogen loads to estuaries by 10%. As a first approximation we looked at s...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=231866&Lab=NERL&keyword=jenkins&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=231866&Lab=NERL&keyword=jenkins&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Runoff Water Quality During Drought in a Zero-Order Georgia Piedmont Pasture: Nitrogen and Total Organic Carbon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Approximately 11% of the Southern Piedmont (1.8 million ha) is used for pasture and hay production, mostly under low-input management. Few studies have investigated in the region long-term nitrogen and carbon losses in surface runoff, which can be significant. We present 1999 to ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=137051&Lab=NHEERL&keyword=oceanography&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=137051&Lab=NHEERL&keyword=oceanography&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>CULTURAL EUTROPHICATION IN THE CHOPTANK AND PATUXENT ESTUARIES OF CHESAPEAKE BAY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The Choptank and Patuxent tributaries of Chesapeake Bay have become eutrophic over the last 50-100 years. Systematic monitoring of nutrient inputs began in ~1970, and there have been 2-5-fold increases in nitrogen (N) and phosphorus (P) inputs during 1970-2004 due to sewage disch...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15537940','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15537940"><span>Effects of near-surface hydraulic gradients on nitrate and phosphorus losses in surface runoff.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zheng, Fen-Li; Huang, Chi-Hua; Norton, L Darrell</p> <p>2004-01-01</p> <p>Phosphorous (P) and nitrogen (N) in runoff from agricultural fields are key components of nonpoint-source pollution and can accelerate eutrophication of surface waters. A laboratory study was designed to evaluate effects of near-surface hydraulic gradients on P and N losses in surface runoff from soil pans at 5% slope under simulated rainfall. Experimental treatments included three rates of fertilizer input (control [no fertilizer input], low [40 kg P ha(-1), 100 kg N ha(-1)], and high [80 kg P ha(-1), 200 kg N ha(-1)]) and four near-surface hydraulic gradients (free drainage [FD], saturation [Sa], artesian seepage without rain [Sp], and artesian seepage with rain [Sp + R]). Simulated rainfall of 50 mm h(-1) was applied for 90 min. The results showed that near-surface hydraulic gradients have dramatic effects on NO(3)-N and PO(4)-P losses and runoff water quality. Under the low fertilizer treatment, the average concentrations in surface runoff from FD, Sa, Sp, and Sp + R were 0.08, 2.20, 529.5, and 71.8 mg L(-1) for NO(3)-N and 0.11, 0.54, 0.91, and 0.72 mg L(-1) for PO(4)-P, respectively. Similar trends were observed for the concentrations of NO(3)-N and PO(4)-P under the high fertilizer treatment. The total NO(3)-N loss under the FD treatment was only 0.01% of the applied nitrogen, while under the Sp and Sp + R treatments, the total NO(3)-N loss was 11 to 16% of the applied nitrogen. These results show that artesian seepage could make a significant contribution to water quality problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GBioC..29..341H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GBioC..29..341H"><span>Nitrogen and phosphorus fluxes from watersheds of the northeast U.S. from 1930 to 2000: Role of anthropogenic nutrient inputs, infrastructure, and runoff</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hale, Rebecca L.; Grimm, Nancy B.; Vörösmarty, Charles J.; Fekete, Balazs</p> <p>2015-03-01</p> <p>An ongoing challenge for society is to harness the benefits of nutrients, nitrogen (N) and phosphorus (P), while minimizing their negative effects on ecosystems. While there is a good understanding of the mechanisms of nutrient delivery at small scales, it is unknown how nutrient transport and processing scale up to larger watersheds and whole regions over long time periods. We used a model that incorporates nutrient inputs to watersheds, hydrology, and infrastructure (sewers, wastewater treatment plants, and reservoirs) to reconstruct historic nutrient yields for the northeastern U.S. from 1930 to 2002. Over the study period, yields of nutrients increased significantly from some watersheds and decreased in others. As a result, at the regional scale, the total yield of N and P from the region did not change significantly. Temporal variation in regional N and P yields was correlated with runoff coefficient, but not with nutrient inputs. Spatial patterns of N and P yields were best predicted by nutrient inputs, but the correlation between inputs and yields across watersheds decreased over the study period. The effect of infrastructure on yields was minimal relative to the importance of soils and rivers. However, infrastructure appeared to alter the relationships between inputs and yields. The role of infrastructure changed over time and was important in creating spatial and temporal heterogeneity in nutrient input-yield relationships.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApWS....7.3783M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApWS....7.3783M"><span>Artificial intelligence models for predicting the performance of biological wastewater treatment plant in the removal of Kjeldahl Nitrogen from wastewater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manu, D. S.; Thalla, Arun Kumar</p> <p>2017-11-01</p> <p>The current work demonstrates the support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) modeling to assess the removal efficiency of Kjeldahl Nitrogen of a full-scale aerobic biological wastewater treatment plant. The influent variables such as pH, chemical oxygen demand, total solids (TS), free ammonia, ammonia nitrogen and Kjeldahl Nitrogen are used as input variables during modeling. Model development focused on postulating an adaptive, functional, real-time and alternative approach for modeling the removal efficiency of Kjeldahl Nitrogen. The input variables used for modeling were daily time series data recorded at wastewater treatment plant (WWTP) located in Mangalore during the period June 2014-September 2014. The performance of ANFIS model developed using Gbell and trapezoidal membership functions (MFs) and SVM are assessed using different statistical indices like root mean square error, correlation coefficients (CC) and Nash Sutcliff error (NSE). The errors related to the prediction of effluent Kjeldahl Nitrogen concentration by the SVM modeling appeared to be reasonable when compared to that of ANFIS models with Gbell and trapezoidal MF. From the performance evaluation of the developed SVM model, it is observed that the approach is capable to define the inter-relationship between various wastewater quality variables and thus SVM can be potentially applied for evaluating the efficiency of aerobic biological processes in WWTP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711799G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711799G"><span>Influence of Dynamic Hydraulic Conditions on Nitrogen Cycling in Column Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gassen, Niklas; von Netzer, Frederick; Ryabenko, Evgenia; Lüders, Tillmann; Stumpp, Christine</p> <p>2015-04-01</p> <p>In order to improve management strategies of agricultural nitrogen input, it is of major importance to further understand which factors influence turnover processes within the nitrogen cycle. Many studies have focused on the fate of nitrate in hydrological systems, but up to date only little is known about the influence of dynamic hydraulic conditions on the fate of nitrate at the soil-groundwater interface. We conducted column experiments with natural sediment and compared a system with a fluctuating water table to systems with different water content and static conditions under the constant input of ammonia into the system. We used hydrochemical methods in order to trace nitrogen species, 15N isotope methods to get information about dominating turnover processes and microbial community analysis in order to connect hydrochemical and microbial information. We found that added ammonia was removed more effectively under dynamic hydraulic conditions than under static conditions. Furthermore, denitrification is the dominant process under saturated, static conditions, while nitrification is more important under unsaturated, static conditions. We conclude that a fluctuating water table creates hot spots where both nitrification and denitrification processes can occur spatially close to each other and therefore remove nitrogen more effectively from the system. Furthermore, the fluctuating water table enhances the exchange of solutes and triggers hot moments of solute turnover. Therefore we conclude that a fluctuating water table can amplify hot spots and trigger hot moments of nitrogen cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PrOce.162..257P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PrOce.162..257P"><span>Phosphorus and nitrogen trajectories in the Mediterranean Sea (1950-2030): Diagnosing basin-wide anthropogenic nutrient enrichment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Powley, Helen R.; Krom, Michael D.; Van Cappellen, Philippe</p> <p>2018-03-01</p> <p>Human activities have significantly modified the inputs of land-derived phosphorus (P) and nitrogen (N) to the Mediterranean Sea (MS). Here, we reconstruct the external inputs of reactive P and N to the Western Mediterranean Sea (WMS) and Eastern Mediterranean Sea (EMS) over the period 1950-2030. We estimate that during this period the land derived P and N loads increased by factors of 3 and 2 to the WMS and EMS, respectively, with reactive P inputs peaking in the 1980s but reactive N inputs increasing continuously from 1950 to 2030. The temporal variations in reactive P and N inputs are imposed in a coupled P and N mass balance model of the MS to simulate the accompanying changes in water column nutrient distributions and primary production with time. The key question we address is whether these changes are large enough to be distinguishable from variations caused by confounding factors, specifically the relatively large inter-annual variability in thermohaline circulation (THC) of the MS. Our analysis indicates that for the intermediate and deep water masses of the MS the magnitudes of changes in reactive P concentrations due to changes in anthropogenic inputs are relatively small and likely difficult to diagnose because of the noise created by the natural circulation variability. Anthropogenic N enrichment should be more readily detectable in time series concentration data for dissolved organic N (DON) after the 1970s, and for nitrate (NO3) after the 1990s. The DON concentrations in the EMS are predicted to exhibit the largest anthropogenic enrichment signature. Temporal variations in annual primary production over the 1950-2030 period are dominated by variations in deep-water formation rates, followed by changes in riverine P inputs for the WMS and atmospheric P deposition for the EMS. Overall, our analysis indicates that the detection of basin-wide anthropogenic nutrient concentration trends in the MS is rendered difficult due to: (1) the Atlantic Ocean contributing the largest reactive P and N inputs to the MS, hence diluting the anthropogenic nutrient signatures, (2) the anti-estuarine circulation removing at least 45% of the anthropogenic nutrients inputs added to both basins of the MS between 1950 and 2030, and (3) variations in intermediate and deep water formation rates that add high natural noise to the P and N concentration trajectories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.H51G..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.H51G..05S"><span>Tracing Nitrogen Sources in Forested Catchments Under Varying Flow Conditions: Seasonal and Event Scale Patterns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.</p> <p>2004-12-01</p> <p>Our ability to assess how stream nutrient concentrations respond to biogeochemical transformations and stream flow dynamics is often limited by datasets that do not include all flow conditions that occur over event, monthly, seasonal, and yearly time scales. At the Sleepers River Research Watershed in northeastern Vermont, USA, nitrate, DOC (dissolved organic carbon), and major ion concentrations were measured on samples collected over a wide range of flow conditions from summer 2002 through summer 2004. Nutrient flushing occurred at the W-9 catchment and high-frequency sampling revealed critical insights into seasonal and event-scale controls on nutrient concentrations. In this seasonally snow-covered catchment, the earliest stage of snowmelt introduced nitrogen directly to the stream from the snowpack. As snowmelt progressed, the source of stream nitrate shifted to flushing of soil nitrate along shallow subsurface flow paths. In the growing season, nitrogen flushing to streams varied with antecedent moisture conditions. More nitrogen was available to flush to streams when antecedent moisture was lowest, and mobile nitrogen stores in the landscape regenerated under baseflow conditions on times scales as short as 7 days. Leaf fall was another critical time when coupled hydrological and biogeochemical processes controlled nutrient fluxes. With the input of labile organic carbon from freshly decomposing leaves, nitrate concentrations declined sharply in response to in-stream immobilization or denitrification. These high-resolution hydrochemical data from multiple flow regimes are identifying "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nutrient fluxes in streams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JHyd..116...85F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JHyd..116...85F"><span>Element budgets of two contrasting catchments in the Black Forest (Federal Republic of Germany)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feger, K. H.; Brahmer, G.; Zöttl, H. W.</p> <p>1990-08-01</p> <p>Rainfall and throughfall inputs of all major cations and anions, via open-field bulk precipitation and canopy throughfall, are compared with streamwater outputs in two forested catchments at higher altitudes of the Black Forest. The sites differ considerably in terms of bedrock geology, soil type, soilwater characteristics, topography, and forest management history. Deposition at both sites is almost equal and, in contrast to other forest areas in Central Europe, of a low-to-moderate level. Dry deposition does not seem to play an important role. Distinct differences in the elemental output emerge owing to the differing site conditions. At Villingen, deposited nitrogen is almost totally retained, whereas at Schluchsee, nitrogen output and input are of the same order of magnitude. This is consistent with the different nitrogen nutrition level of the stands, microbial turnover in the soil, and former management practices (change of tree species, excessive nutrient export). Sulphur is not retained in either of the catchments. At Schluchsee, sulphur export exceeds input from canopy throughfall by a factor of 2.5. The higher output rates, both of nitrogen and sulphur at Schluchsee, are due to the much higher microbial mineralization of organic matter as shown by previous incubation tests. Differences in cation and proton export are mainly caused by a different drainage pattern. In contrast to the Schluchsee catchment, where vertical water pathways prevail, the streamwater solute output at Villingen is dominated by a shallow subsurface runoff. Atmospheric deposition is a contributing, but not the dominant, factor in the biogeochemical cycling at these sites. Hence, a generally applicable quantitative definition of 'critical loads', especially for nitrogen, is illusory and the use of such numbers will be misleading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12805693','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12805693"><span>Harmful freshwater algal blooms, with an emphasis on cyanobacteria.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Paerl, H W; Fulton, R S; Moisander, P H; Dyble, J</p> <p>2001-04-04</p> <p>Suspended algae, or phytoplankton, are the prime source of organic matter supporting food webs in freshwater ecosystems. Phytoplankton productivity is reliant on adequate nutrient supplies; however, increasing rates of nutrient supply, much of it manmade, fuels accelerating primary production or eutrophication. An obvious and problematic symptom of eutrophication is rapid growth and accumulations of phytoplankton, leading to discoloration of affected waters. These events are termed blooms. Blooms are a prime agent of water quality deterioration, including foul odors and tastes, deoxygenation of bottom waters (hypoxia and anoxia), toxicity, fish kills, and food web alterations. Toxins produced by blooms can adversely affect animal (including human) health in waters used for recreational and drinking purposes. Numerous freshwater genera within the diverse phyla comprising the phytoplankton are capable of forming blooms; however, the blue-green algae (or cyanobacteria) are the most notorious bloom formers. This is especially true for harmful toxic, surface-dwelling, scum-forming genera (e.g., Anabaena, Aphanizomenon, Nodularia, Microcystis) and some subsurface bloom-formers (Cylindrospermopsis, Oscillatoria) that are adept at exploiting nutrient-enriched conditions. They thrive in highly productive waters by being able to rapidly migrate between radiance-rich surface waters and nutrient-rich bottom waters. Furthermore, many harmful species are tolerant of extreme environmental conditions, including very high light levels, high temperatures, various degrees of desiccation, and periodic nutrient deprivation. Some of the most noxious cyanobacterial bloom genera (e.g., Anabaena, Aphanizomenon, Cylindrospermopsis, Nodularia) are capable of fixing atmospheric nitrogen (N2), enabling them to periodically dominate under nitrogen-limited conditions. Cyanobacteria produce a range of organic compounds, including those that are toxic to higher-ranked consumers, from zooplankton to further up the food chain. Both N2- and non-N2-fixing genera participate in mutualistic and symbiotic associations with microorganisms, higher plants, and animals. These associations appear to be of great benefit to their survival and periodic dominance. In this review, we address the ecological impacts and environmental controls of harmful blooms, with an emphasis on the ecology, physiology, and management of cyanobacterial bloom taxa. Combinations of physical, chemical, and biotic features of natural waters function in a synergistic fashion to determine the sensitivity of water bodies. In waters susceptible to blooms, human activities in water- and airsheds have been linked to the extent and magnitudes of blooms. Control and management of cyanobacterial and other phytoplankton blooms invariably includes nutrient input constraints, most often focused on nitrogen (N) and/or phosphorus (P). The types and amount of nutrient input constraints depend on hydrologic, climatic, geographic, and geologic factors, which interact with anthropogenic and natural nutrient input regimes. While single nutrient input constraints may be effective in some water bodies, dual N and P input reductions are usually required for effective long-term control and management of harmful blooms. In some systems where hydrologic manipulations (i.e., plentiful water supplies) are possible, reducing the water residence time by enhanced flushing and artificial mixing (in conjunction with nutrient input constraints) can be particularly effective alternatives. Implications of various management strategies, based on combined ecophysiological and environmental considerations, are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5498067','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5498067"><span>Nitrogen balance dynamics during 2000-2010 in the Yangtze River Basin croplands, with special reference to the relative contributions of cropland area and synthetic fertilizer N application rate changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Lijuan; Zhao, He; Robinson, Brian E.</p> <p>2017-01-01</p> <p>With the increases of cropland area and fertilizer nitrogen (N) application rate, general N balance characteristics in regional agroecosystems have been widely documented. However, few studies have quantitatively analyzed the drivers of spatial changes in the N budget. We constructed a mass balance model of the N budget at the soil surface using a database of county-level agricultural statistics to analyze N input, output, and proportional contribution of various factors to the overall N input changes in croplands during 2000–2010 in the Yangtze River Basin, the largest basin and the main agricultural production region in China. Over the period investigated, N input increased by 9%. Of this 87% was from fertilizer N input. In the upper and middle reaches of the basin, the increased synthetic fertilizer N application rate accounted for 84% and 76% of the N input increase, respectively, mainly due to increased N input in the cropland that previously had low synthetic fertilizer N application rate. In lower reaches of the basin, mainly due to urbanization, the decrease in cropland area and synthetic fertilizer N application rate nearly equally contributed to decreases in N input. Quantifying spatial N inputs can provide critical managerial information needed to optimize synthetic fertilizer N application rate and monitor the impacts of urbanization on agricultural production, helping to decrease agricultural environment risk and maintain sustainable agricultural production in different areas. PMID:28678841</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28678841','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28678841"><span>Nitrogen balance dynamics during 2000-2010 in the Yangtze River Basin croplands, with special reference to the relative contributions of cropland area and synthetic fertilizer N application rate changes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Lijuan; Zheng, Hua; Zhao, He; Robinson, Brian E</p> <p>2017-01-01</p> <p>With the increases of cropland area and fertilizer nitrogen (N) application rate, general N balance characteristics in regional agroecosystems have been widely documented. However, few studies have quantitatively analyzed the drivers of spatial changes in the N budget. We constructed a mass balance model of the N budget at the soil surface using a database of county-level agricultural statistics to analyze N input, output, and proportional contribution of various factors to the overall N input changes in croplands during 2000-2010 in the Yangtze River Basin, the largest basin and the main agricultural production region in China. Over the period investigated, N input increased by 9%. Of this 87% was from fertilizer N input. In the upper and middle reaches of the basin, the increased synthetic fertilizer N application rate accounted for 84% and 76% of the N input increase, respectively, mainly due to increased N input in the cropland that previously had low synthetic fertilizer N application rate. In lower reaches of the basin, mainly due to urbanization, the decrease in cropland area and synthetic fertilizer N application rate nearly equally contributed to decreases in N input. Quantifying spatial N inputs can provide critical managerial information needed to optimize synthetic fertilizer N application rate and monitor the impacts of urbanization on agricultural production, helping to decrease agricultural environment risk and maintain sustainable agricultural production in different areas.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2006/5012/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2006/5012/"><span>County-level estimates of nutrient inputs to the landsurface of the conterminous United States, 1982-2001</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ruddy, Barbara C.; Lorenz, David L.; Mueller, David K.</p> <p>2006-01-01</p> <p>Nutrient input data for fertilizer use, livestock manure, and atmospheric deposition from various sources were estimated and allocated to counties in the conterminous United States for the years 1982 through 2001. These nationally consistent nutrient input data are needed by the National Water-Quality Assessment Program for investigations of stream- and ground-water quality. For nitrogen, the largest source was farm fertilizer; for phosphorus, the largest sources were farm fertilizer and livestock manure. Nutrient inputs from fertilizer use in nonfarm areas, while locally important, were an order of magnitude smaller than inputs from other sources. Nutrient inputs from all sources increased between 1987 and 1997, but the relative proportions of nutrients from each source were constant. Farm-fertilizer inputs were highest in the upper Midwest, along eastern coastal areas, and in irrigated areas of the West. Nonfarm-fertilizer use was similar in major metropolitan areas throughout the Nation, but was more extensive in the more populated Eastern and Central States and in California. Areas of greater manure inputs were located throughout the South-central and Southeastern States and in scattered areas of the West. Nitrogen deposition from the atmosphere generally increased from west to east and is related to the location of major sources and the effects of precipitation and prevailing winds. These nutrient-loading data at the county level are expected to be the fundamental basis for national and regional assessments of water quality for the National Water-Quality Assessment Program and other large-scale programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHI34A1806W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHI34A1806W"><span>Changing ecosystem response to nitrogen load into Buzzards Bay, MA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williamson, S.; Rheuban, J. E.; Costa, J. E.; Glover, D. M.; Doney, S. C.</p> <p>2016-02-01</p> <p>Nitrogen (N) and chlorophyll-a (Chla) concentration in estuarine systems often correlate positively with increased N inputs. Evaluation of a long-term water quality data set (1992 -2013) for Buzzards Bay, MA, however reveals that ecosystem response to N inputs may be changing over time, as represented by increased yield of Chla per unit total nitrogen (TN) from 1992-2013. To determine if this change is caused by changes in nitrogen sources, we estimate nitrogen input from 28 watersheds. Combining parcel specific waste water disposal, land use, and atmospheric deposition data, we estimated N loads into Buzzards Bay from 1985-2013 using a previously verified Nitrogen Loading Model. Of the 28 watersheds analyzed, the six largest watersheds released the largest absolute N loads into receiving estuaries ranging from approximately 50,000-220,000 kg N yr-1. Normalizing N loads by watershed and estuarine areas revealed that smaller watersheds release some of the greatest relative loads into estuaries making these watersheds more vulnerable to increases in N load. A linear regression analysis of N load through time revealed decreasing N loads for most watersheds on the western side of Buzzards Bay which we believe is reflecting decreased atmospheric N from 1985-2013. Out of the ten sub-watersheds on the eastern side, increases in human waste, driven primarily by increased parcels on septic have resulted in overall N load increases for 9 watersheds. Comparison of in situ TN and Chla concentrations with N load estimates for several watersheds and adjoining estuaries suggest that varied ecosystem responses to N load may be reflecting differences in physical stressors such as estuarine morphology, residence time, and climate change. Results of this study also reveal the importance of watershed specific mitigation efforts to best accommodate dominant N sources which may be influenced regionally (atmospheric N) and locally (fertilizer and human waste).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2012/5166/pdf/sir2012-5166_report_508.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2012/5166/pdf/sir2012-5166_report_508.pdf"><span>Ambient and potential denitrification rates in marsh soils of Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.</p> <p>2012-01-01</p> <p>Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park on Mount Desert Island, Maine, because of the potential problems of degradation of water quality and eutrophication in estuaries. Degradation of water quality has been observed at Bass Harbor Marsh estuary in the park but only minimally in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential source of nutrients. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in-place denitrification rates in marsh soils in Northeast Creek and in Bass Harbor Marsh watersheds during summer 2008 and summer 2009. Denitrification was measured under ambient conditions as well as after additions of inorganic nitrogen and glucose. In-place denitrification rates under ambient conditions were similar to those reported for other coastal wetlands, although they were generally lower than those reported for salt marshes having high ambient concentrations of nitrate (NO3). Denitrification rates generally increased by at least an order of magnitude following NO3 additions, with or without glucose (as the carbohydrate) additions, compared with the ambient treatments that received no nutrient additions. The treatment that added both glucose and NO3 resulted in a variety of denitrification responses when compared with the addition of NO3 alone. In most cases, the addition of glucose to a given rate of NO3 addition resulted in higher rates of denitrification. These variable responses indicate that the amount of labile carbohydrates can limit denitrification even if NO3 is present. For most sites in both watersheds, the maximum denitrification rates ranged from of 150 to 900 micromoles of nitrous oxide per square meter per hour. These rates were equivalent to the release of 37 to 221 grams of nitrogen per square meter per year. Weak positive correlations were observed for soil temperature and for measured ammonium concentration in groundwater. Weak negative correlations were observed between denitrification rate and water level and specific conductance. The rates of denitrification in Bass Harbor Marsh and Northeast Creek under ambient conditions, both of which were relatively low, indicate that NO3 availability is low in both systems. It is evident from the addition of combined treatments of NO3 and glucose that these marsh soils are capable of comparatively high rates of denitrification, therefore, estuarine eutrophication is not a result of nitrogen inputs to marsh soils that are in excess of the denitrification capacity in these systems. If terrestrial inputs to the estuary are the cause of the observed eutrophic condition in Bass Harbor Marsh, then these inputs to the estuary must bypass the marsh in channelized surface flow, or perhaps they circumvent the marsh in shallow groundwater seepage along subsurface pathways that enter the estuary directly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GBioC..30.1418Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GBioC..30.1418Y"><span>The anthropogenic perturbation of the marine nitrogen cycle by atmospheric deposition: Nitrogen cycle feedbacks and the 15N Haber-Bosch effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Simon; Gruber, Nicolas</p> <p>2016-10-01</p> <p>Over the last 100 years, anthropogenic emissions have led to a strong increase of atmospheric nitrogen deposition over the ocean, yet the resulting impacts and feedbacks are neither well understood nor quantified. To this end, we run a suite of simulations with the ocean component of the Community Earth System Model v1.2 forced with five scenarios of nitrogen deposition over the period from 1850 through 2100, while keeping all other forcings unchanged. Even though global oceanic net primary production increases little in response to this fertilization, the higher export and the resulting expansion of the oxygen minimum zones cause an increase in pelagic and benthic denitrification and burial by about 5%. In addition, the enhanced availability of fixed nitrogen in the surface ocean reduces global ocean N2 fixation by more than 10%. Despite the compensating effects through these negative feedbacks that eliminate by the year 2000 about 60% of the deposited nitrogen, the anthropogenic nitrogen input forced the upper ocean N budget into an imbalance of between 9 and 22 Tg N yr-1 depending on the deposition scenario. The excess nitrogen accumulates to highly detectable levels and causes in most areas a distinct negative trend in the δ15N of the oceanic fixed nitrogen pools—a trend we refer to as the 15N Haber-Bosch effect. Changes in surface nitrate utilization and the nitrogen feedbacks induce further changes in the δ15N of NO3-, making it a good but complex recorder of the overall impact of the changes in atmospheric deposition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25565449','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25565449"><span>Long-term nitrogen addition causes the evolution of less-cooperative mutualists.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weese, Dylan J; Heath, Katy D; Dentinger, Bryn T M; Lau, Jennifer A</p> <p>2015-03-01</p> <p>Human activities have altered the global nitrogen (N) cycle, and as a result, elevated N inputs are causing profound ecological changes in diverse ecosystems. The evolutionary consequences of this global change have been largely ignored even though elevated N inputs are predicted to cause mutualism breakdown and the evolution of decreased cooperation between resource mutualists. Using a long-term (22 years) N-addition experiment, we find that elevated N inputs have altered the legume-rhizobium mutualism (where rhizobial bacteria trade N in exchange for photosynthates from legumes), causing the evolution of less-mutualistic rhizobia. Plants inoculated with rhizobium strains isolated from N-fertilized treatments produced 17-30% less biomass and had reduced chlorophyll content compared to plants inoculated with strains from unfertilized control plots. Because the legume-rhizobium mutualism is the major contributor of naturally fixed N to terrestrial ecosystems, the evolution of less-cooperative rhizobia may have important environmental consequences. © 2015 The Author(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP11E..03R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP11E..03R"><span>21st Century Rise in Anthropogenic Nitrogen Deposition on a Remote Coral Reef</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, H. A.; Chen, Y. C.; Wang, X. T.; Wong, G. T. F.; Cohen, A. L.; DeCarlo, T. M.; Weigand, M. A.; Mii, H. S.; Sigman, D. M.</p> <p>2017-12-01</p> <p>With the rapid rise in pollution-associated nitrogen inputs to the western Pacific, it has been suggested that even the open ocean has been impacted through atmospheric deposition. In a coral core from Dongsha Atoll, a coral reef ecosystem 340 km from the nearest continent, we observe a decline in the 15N/14N of coral skeleton-bound organic matter, signaling increased deposition of anthropogenic atmospheric N on the open ocean and its incorporation into plankton and in turn the corals living on the atoll. The decrease began just several years before 2000 CE, decades later than predicted by other work, and the amplitude of decline suggests that anthropogenic atmospheric N input is now 20±5% of the annual N input to the surface ocean in this region, less than two-thirds of that estimated by models and analyses of nutrient ratio changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20399474','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20399474"><span>Human impacts on large benthic foraminifers near a densely populated area of Majuro Atoll, Marshall Islands.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Osawa, Yoko; Fujita, Kazuhiko; Umezawa, Yu; Kayanne, Hajime; Ide, Yoichi; Nagaoka, Tatsutoshi; Miyajima, Toshihiro; Yamano, Hiroya</p> <p>2010-08-01</p> <p>Human impacts on sand-producing, large benthic foraminifers were investigated on ocean reef flats at the northeast Majuro Atoll, Marshall Islands, along a human population gradient. The densities of dominant foraminifers Calcarina and Amphistegina declined with distance from densely populated islands. Macrophyte composition on ocean reef flats differed between locations near sparsely or densely populated islands. Nutrient concentrations in reef-flat seawater and groundwater were high near or on densely populated islands. delta(15)N values in macroalgal tissues indicated that macroalgae in nearshore lagoons assimilate wastewater-derived nitrogen, whereas those on nearshore ocean reef flats assimilate nitrogen from other sources. These results suggest that increases in the human population result in high nutrient loading in groundwater and possibly into nearshore waters. High nutrient inputs into ambient seawater may have both direct and indirect negative effects on sand-producing foraminifers through habitat changes and/or the collapse of algal symbiosis. Copyright 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhDT........41W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhDT........41W"><span>Elevated CO(2) and nitrogen effects on a dominant N(2)- fixing shrub</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wallace, Alison Marie</p> <p></p> <p>The responses of N2-fixing species to global change are likely to be an important component in predicting the existence and direction of feedbacks between carbon and nitrogen cycles, as both are radically changing at an unprecedented pace. Increased carbon storage may be more likely in ecosystems not limited by available nitrogen, such as those with abundant N2-fixing species. If elevated CO2 affects growth and N2-fixation of dominant N2-fixers, then non-fixers in the system may experience indirect effects through changes in competitive interactions and nitrogen availability. The goal of this research was to investigate these effects on the growth, competitive ability, leaf and litter chemistry, and litter decomposition of Lupinus arboreus, a N2-fixing evergreen shrub, and to test the central hypothesis that an increase in growth and competitive ability would occur at low nitrogen and high CO2. In a growth chamber experiment, three CO2 levels, 350, 500, and 650 ppm were crossed with two nitrogen levels. Lupins were grown alone or in competition with an introduced annual grass, Bromus diandrus. Contrary to findings from previous studies of positive growth and competition responses by N2-fixers, Lupinus seedlings demonstrated no significant responses to CO2. Nitrogen was far more important than CO2 in affecting relative competitive ability. Nitrogen, alkaloids, and C:N ratios in fresh foliage did not change with CO2 or nitrogen. Carbon and biomass increased slightly in lupins at 500 ppm only, suggesting an early but limited growth response. Nitrogen did decrease in lupin litter at elevated CO2, but there were no effects on litter decomposition rates in the field. Simulations by the CENTURY surface litter decomposition model predicted the litter decomposition rates of field-grown litter nearly perfectly, and predicted the general direction but underestimated the rate of litter from the greenhouse grown at different CO2 levels. Very low or high nitrogen decreased growth and competitive ability of lupin seedlings in an additional greenhouse experiment. Slight increases of nitrogen in the field did not affect lupin aboveground biomass. In conclusion, it is unlikely that Lupinus abundance or rate of its nitrogen inputs will be affected by elevated CO2 and/or changes in nitrogen availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27718239','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27718239"><span>Long-term manure amendments and chemical fertilizers enhanced soil organic carbon sequestration in a wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Shuiqing; Huang, Shaomin; Li, Jianwei; Guo, Doudou; Lin, Shan; Lu, Guoan</p> <p>2017-06-01</p> <p>The carbon sequestration potential is affected by cropping system and management practices, but soil organic carbon (SOC) sequestration potential under fertilizations remains unclear in north China. This study examined SOC change, total C input to soil and, via integration of these estimates over years, carbon sequestration efficiency (CSE, the ratio of SOC change over C input) under no fertilization (control), chemical nitrogen fertilizer alone (N) or combined with phosphorus and potassium fertilizers (NP, NK, PK and NPK), or chemical fertilizers combined with low or high (1.5×) manure input (NPKM and 1.5NPKM). Results showed that, as compared with the initial condition, SOC content increased by 0.03, 0.06, 0.05, 0.09, 0.16, 0.26, 0.47 and 0.68 Mg C ha -1 year -1 under control, N, NK, PK, NP, NPK, NPKM and 1.5NPKM treatments respectively. Correspondingly, the C inputs of wheat and maize were 1.24, 1.34, 1.55, 1.33, 2.72, 2.96, 2.97 and 3.15 Mg ha -1 year -1 respectively. The long-term fertilization-induced CSE showed that about 11% of the gross C input was transformed into SOC pool. Overall, this study demonstrated that decade-long manure input combined with chemical fertilizers can maintain high crop yield and lead to SOC sequestration in north China. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21714790','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21714790"><span>Composition and diversity of nifH genes of nitrogen-fixing cyanobacteria associated with boreal forest feather mosses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ininbergs, Karolina; Bay, Guillaume; Rasmussen, Ulla; Wardle, David A; Nilsson, Marie-Charlotte</p> <p>2011-10-01</p> <p>Recent studies have revealed that nitrogen fixation by cyanobacteria living in association with feather mosses is a major input of nitrogen to boreal forests. We characterized the community composition and diversity of cyanobacterial nifH phylotypes associated with each of two feather moss species (Pleurozium schreberi and Hylocomium splendens) on each of 30 lake islands varying in ecosystem properties in northern Sweden. Nitrogen fixation was measured using acetylene reduction, and nifH sequences were amplified using general and cyanobacterial selective primers, separated and analyzed using density gradient gel electrophoresis (DGGE) or cloning, and further sequenced for phylogenetic analyses. Analyses of DGGE fingerprinting patterns revealed two host-specific clusters (one for each moss species), and sequence analysis showed five clusters of nifH phylotypes originating from heterocystous cyanobacteria. For H. splendens only, N(2) fixation was related to both nifH composition and diversity among islands. We demonstrated that the cyanobacterial communities associated with feather mosses show a high degree of host specificity. However, phylotype composition and diversity, and nitrogen fixation, did not differ among groups of islands that varied greatly in their availability of resources. These results suggest that moss species identity, but not extrinsic environmental conditions, serves as the primary determinant of nitrogen-fixing cyanobacterial communities that inhabit mosses. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4742915','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4742915"><span>Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Yaojun; Lin, Feng; Jin, Yaguo; Wang, Xiaofei; Liu, Shuwei; Zou, Jianwen</p> <p>2016-01-01</p> <p>It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to measure N2O and NO fluxes in response to chemical N fertilizer application in annual greenhouse vegetable cropping systems in southeast China. Annual N2O and NO fluxes averaged 52.05 and 14.87 μg N m−2 h−1 for the controls without N fertilizer inputs, respectively. Both N2O and NO emissions linearly increased with N fertilizer application. The emission factors of N fertilizer for N2O and NO were estimated to be 1.43% and 1.15%, with an annual background emission of 5.07 kg N2O-N ha−1 and 1.58 kg NO-N ha−1, respectively. The NO-N/N2O-N ratio was significantly affected by cropping type and fertilizer application, and NO would exceed N2O emissions when soil moisture is below 54% WFPS. Overall, local conventional input rate of chemical N fertilizer could be partially reduced to attain high yield of vegetable and low N2O and NO emissions in greenhouse vegetable cropping systems in China. PMID:26848094</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26848094','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26848094"><span>Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Yaojun; Lin, Feng; Jin, Yaguo; Wang, Xiaofei; Liu, Shuwei; Zou, Jianwen</p> <p>2016-02-05</p> <p>It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to measure N2O and NO fluxes in response to chemical N fertilizer application in annual greenhouse vegetable cropping systems in southeast China. Annual N2O and NO fluxes averaged 52.05 and 14.87 μg N m(-2) h(-1) for the controls without N fertilizer inputs, respectively. Both N2O and NO emissions linearly increased with N fertilizer application. The emission factors of N fertilizer for N2O and NO were estimated to be 1.43% and 1.15%, with an annual background emission of 5.07 kg N2O-N ha(-1) and 1.58 kg NO-N ha(-1), respectively. The NO-N/N2O-N ratio was significantly affected by cropping type and fertilizer application, and NO would exceed N2O emissions when soil moisture is below 54% WFPS. Overall, local conventional input rate of chemical N fertilizer could be partially reduced to attain high yield of vegetable and low N2O and NO emissions in greenhouse vegetable cropping systems in China.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20392017','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20392017"><span>Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McCrackin, Michelle L; Elser, James J</p> <p>2010-02-01</p> <p>Microbially mediated denitrification is an important process that may ameliorate the effects of nitrogen (N) loading by permanently removing excess N inputs. In this study, we measured the rate of denitrification and nitrous oxide (N2O) production during denitrification in sediments from 32 Norwegian lakes at the high and low ends of a gradient of atmospheric N deposition. Denitrification and N2O production rates averaged 41.7 and 1.1 micromol N x m(-2) x h(-1), respectively, for high-deposition lakes. There was no detectable denitrification or N2O production in low-deposition lakes. Epilimnetic nitrate concentration was strongly correlated with denitrification rate (r2 = 0.67). We also measured the denitrification rate in response to experimental additions of organic carbon, nitrate, and phosphorus. Experimental nitrate additions stimulated denitrification in sediments of all lakes, regardless of N deposition level. In fact, the rate of denitrification in nitrate-amended treatments was the same magnitude for lakes in both deposition areas. These findings suggest that lake sediments possess considerable capacity to remove nitrate and that this capacity has not been saturated under conditions of chronic N loading. Further, nitrous oxide was nearly 3% of the total gaseous product during denitrification in high-deposition lakes, a fraction that is comparable to polluted marine sediments. Our findings suggest that, while lakes play an important role in N removal in the landscape, they may be a source of N2O emissions, especially in areas subject to elevated N inputs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B51G0383S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B51G0383S"><span>Seasonally-Dynamic SPARROW Modeling of Nitrogen Flux Using Earth Observation Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, R. A.; Schwarz, G. E.; Brakebill, J. W.; Hoos, A. B.; Moore, R. B.; Shih, J.; Nolin, A. W.; Macauley, M.; Alexander, R. B.</p> <p>2013-12-01</p> <p>SPARROW models are widely used to identify and quantify the sources of contaminants in watersheds and to predict their flux and concentration at specified locations downstream. Conventional SPARROW models describe the average relationship between sources and stream conditions based on long-term water quality monitoring data and spatially-referenced explanatory information. But many watershed management issues stem from intra- and inter-annual changes in contaminant sources, hydrologic forcing, or other environmental conditions which cause a temporary imbalance between inputs and stream water quality. Dynamic behavior of the system relating to changes in watershed storage and processing then becomes important. In this study, we describe dynamically calibrated SPARROW models of total nitrogen flux in three sub-regional watersheds: the Potomac River Basin, Long Island Sound drainage, and coastal South Carolina drainage. The models are based on seasonal water quality and watershed input data for a total 170 monitoring stations for the period 2001 to 2008. Frequently-reported, spatially-detailed input data on the phenology of agricultural production, terrestrial vegetation growth, and snow melt are often challenging requirements of seasonal modeling of reactive nitrogen. In this NASA-funded research, we use Enhanced Vegetation Index (EVI), gross primary production and snow/ice cover data from MODIS to parameterize seasonal uptake and release of nitrogen from vegetation and snowpack. The spatial reference frames of the models are 1:100,000-scale stream networks, and the computational time steps are 0.25-year seasons. Precipitation and temperature data are from PRISM. The model formulation accounts for storage of nitrogen from nonpoint sources including fertilized cropland, pasture, urban land, and atmospheric deposition. Model calibration is by non-linear regression. Once calibrated, model source terms based on previous season export allow for recursive dynamic simulation of stream flux: gradual increases or decreases in export occur as source supply rates and hydrologic forcing change. Based on an assumption that removal of nitrogen from watershed storage to stream channels and to 'permanent' sinks (e.g. the atmosphere and deep groundwater) occur as parallel first-order processes, the models can be used to estimate the approximate residence times of nonpoint source nitrogen in the watersheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..GECQR3005L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..GECQR3005L"><span>Distinctive features of kinetics of plasma at high specific energy deposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lepikhin, Nikita; Popov, Nikolay; Starikovskaia, Svetlana</p> <p>2016-09-01</p> <p>A nanosecond capillary discharge in pure nitrogen at moderate pressures is used as an experimental tool for plasma kinetics studies at conditions of high specific deposited energy up to 1 eV/molecule. Experimental observations based on electrical (back current shunts, capacitive probe) and spectroscopic measurements (quenching rates; translational, rotational and vibrational temperature measurements) demonstrate that high specific deposited energy, at electric fields of 200-300 Td, can significantly change gas kinetics in the discharge and in the afterglow. The numerical calculations in 1D axially symmetric geometry using experimental data as input parameters show that changes in the plasma kinetics are caused by extremely high excitation degree: up to 10% of molecular nitrogen is electronically excited at present conditions. Distinctive features of kinetics of plasma at high specific energy deposition as well as details of the experimental technique and numerical calculations will be present. The work was partially supported by French National Agency, ANR (PLASMAFLAME Project, 2011 BS09 025 01), AOARD AFOSR, FA2386-13-1-4064 grant (Program Officer Prof. Chiping Li), LabEx Plas@Par and Linked International Laboratory LIA KaPPA (France-Russia).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1237346','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1237346"><span>Final Report “Physiological, demographic, competitive and biogeochemical controls on the response of California’s ecosystems to environmental change”</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Goulden, Michael L.</p> <p>2016-02-08</p> <p>The Loma Ridge Global Change Experiment is a large, well-replicated water and nitrogen input manipulation in the Santa Ana Mountain foothills that operated with DOE support from 2006 to 2015. The experiment considers the effects of increased and decreased water input and increased N input on two adjacent ecosystem types: California Annual Grassland (GL), which is dominated by exotic, Eurasian grasses and forbs, and Coastal Sage Shrubland (CSS), which is dominated by native, drought deciduous, perennial shrubs. The experiment proceeded in two phases: "Phase I Severe treatment", and "Phase II Return to ambient". Phase I showed very rapid change inmore » species composition or ANPP with altered water or N input (low resistance), whereas Phase II showed a very rapid return to initial conditions once ambient water or N input were restored (high resilience). The severe drought treatment killed most of the shrubs in the dry plots and opened the canopy to herbaceous species, but this damage was ephemeral, and the shrubland community is recovering through the mechanisms and patterns that more typically mediate recovery from crown fire. The pattern of low resistance and high resilience carries implications for other "global change experiments", which have often also seen large and rapid treatment effects (low resistance), but have less frequently considered the subsequent recovery or resilience of the system.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26094475','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26094475"><span>[Nitrogen input altered testate amoebae community in peatland of Sanjiang Plain, Northeast China].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Song, Li-hong; Yan, Xiu-min; Wang, Ke-hong; Zhu, Xiao-yan; Wu, Dong-hu</p> <p>2015-02-01</p> <p>In the present study, an in situ control experiment was carried out to explore the response of testate amoebae to exogenous nitrogen addition in peatland of Sanjiang Plain. The results showed that nitrogen addition increased the biomass of testate amoebae at lower levels (6 g N · m(-2)), while decreased it at higher levels (> 12 g N · m(-2)). At genus level, nitrogen addition significantly increased the biomass of Arcella and Phryganella, decreased the biomass of Euglypha. Only lower nitrogen addition significantly increased the biomass of Centropyxis. At species level, nitrogen addition significantly decreased the biomass of Euglypha rotunda, while the biomass of either Centropyxis cassis or Phryganella acropodia was increased by a lower nitrogen addition treatment. This study suggested that the response of peatland testate amoebae to nitrogen addition was species specific, which could potentially be used as an indicator for the environment of peatlands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70126043','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70126043"><span>Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sullivan, Benjamin W.; Smith, William K.; Townsend, Alan R.; Nasto, Megan K.; Reed, Sasha C.; Chazdon, Robin L.; Cleveland, Cory C.</p> <p>2014-01-01</p> <p>Biological nitrogen fixation (BNF) is the largest natural source of exogenous nitrogen (N) to unmanaged ecosystems and also the primary baseline against which anthropogenic changes to the N cycle are measured. Rates of BNF in tropical rainforest are thought to be among the highest on Earth, but they are notoriously difficult to quantify and are based on little empirical data. We adapted a sampling strategy from community ecology to generate spatial estimates of symbiotic and free-living BNF in secondary and primary forest sites that span a typical range of tropical forest legume abundance. Although total BNF was higher in secondary than primary forest, overall rates were roughly five times lower than previous estimates for the tropical forest biome. We found strong correlations between symbiotic BNF and legume abundance, but we also show that spatially free-living BNF often exceeds symbiotic inputs. Our results suggest that BNF in tropical forest has been overestimated, and our data are consistent with a recent top-down estimate of global BNF that implied but did not measure low tropical BNF rates. Finally, comparing tropical BNF within the historical area of tropical rainforest with current anthropogenic N inputs indicates that humans have already at least doubled reactive N inputs to the tropical forest biome, a far greater change than previously thought. Because N inputs are increasing faster in the tropics than anywhere on Earth, both the proportion and the effects of human N enrichment are likely to grow in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27628849','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27628849"><span>Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bouchet, Anne-Sophie; Laperche, Anne; Bissuel-Belaygue, Christine; Baron, Cécile; Morice, Jérôme; Rousseau-Gueutin, Mathieu; Dheu, Jean-Eric; George, Pierre; Pinochet, Xavier; Foubert, Thomas; Maes, Olivier; Dugué, Damien; Guinot, Florent; Nesi, Nathalie</p> <p>2016-09-15</p> <p>Nitrogen use efficiency is an important breeding trait that can be modified to improve the sustainability of many crop species used in agriculture. Rapeseed is a major oil crop with low nitrogen use efficiency, making its production highly dependent on nitrogen input. This complex trait is suspected to be sensitive to genotype × environment interactions, especially genotype × nitrogen interactions. Therefore, phenotyping diverse rapeseed populations under a dense network of trials is a powerful approach to study nitrogen use efficiency in this crop. The present study aimed to determine the quantitative trait loci (QTL) associated with yield in winter oilseed rape and to assess the stability of these regions under contrasting nitrogen conditions for the purpose of increasing nitrogen use efficiency. Genome-wide association studies and linkage analyses were performed on two diversity sets and two doubled-haploid populations. These populations were densely genotyped, and yield-related traits were scored in a multi-environment design including seven French locations, six growing seasons (2009 to 2014) and two nitrogen nutrition levels (optimal versus limited). Very few genotype × nitrogen interactions were detected, and a large proportion of the QTL were stable across nitrogen nutrition conditions. In contrast, strong genotype × trial interactions in which most of the QTL were specific to a single trial were found. To obtain further insight into the QTL × environment interactions, genetic analyses of ecovalence were performed to identify the genomic regions contributing to the genotype × nitrogen and genotype × trial interactions. Fifty-one critical genomic regions contributing to the additive genetic control of yield-associated traits were identified, and the structural organization of these regions in the genome was investigated. Our results demonstrated that the effect of the trial was greater than the effect of nitrogen nutrition levels on seed yield-related traits under our experimental conditions. Nevertheless, critical genomic regions associated with yield that were stable across environments were identified in rapeseed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22281043','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22281043"><span>The role of nitrogen deposition in the recent nitrate decline in lakes and rivers in Northern Italy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rogora, Michela; Arisci, Silvia; Marchetto, Aldo</p> <p>2012-02-15</p> <p>Deposition of inorganic nitrogen (N) in north-western Italy is around 20-25 kg N ha(-1)y(-1), and has remained constant during the last 30 years. This flux of N caused saturation of terrestrial catchments and increasing levels of nitrate (NO(3)) in surface waters. Recently, monitoring data for both rivers and lakes have shown a reversal in NO(3) trends. This change was widespread, affecting high-altitude lakes in the Alps and subalpine lakes and rivers, and occurred at almost the same time at all sites. The seasonal pattern of NO(3) concentrations in running waters has shown a change in the last few years, with a tendency towards slightly lower leaching of NO(3) during the growing season. Atmospheric input of N has also shown a recent decrease, mainly due to decreasing emissions and partly to the lower amount of precipitation occurring between 2003 and 2009. Surface waters are probably responding to these changing N inputs, but a further decrease of N deposition, especially reduced N, will be required to achieve full recovery from N saturation. Copyright © 2012 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=330571&Lab=NHEERL&keyword=food+AND+management&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=330571&Lab=NHEERL&keyword=food+AND+management&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Comparing and determining the causes of ribbed mussel nitrogen isotope signatures in three New England sub-watersheds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Geukensia demissa, the ribbed mussel, is a useful indicator of sources of nitrogen input into coastal watersheds as it possesses a slow tissue turnover rate and is a common salt marsh species. During the summer of 2016, we sampled ribbed mussels from three New England sub-watersh...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/986098','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/986098"><span>Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.</p> <p>2008-11-25</p> <p>A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/18822','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/18822"><span>Nitrogen fluxes and retention in urban watershed ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Peter M. Groffman; Neely L. Law; Kenneth T. Belt; Lawrence E. Band; Gary T. Fisher</p> <p>2004-01-01</p> <p>Although the watershed approach has long been used to study whole-ecosystem function, it has seldom been applied to study human-dominated systems, especially those dominated by urban and suburban land uses. Here we present 3 years of data on nitrogen (N) losses from one completely forested, one agricultural, and six urban/suburban watersheds, and input--output N...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=329449','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=329449"><span>Hyperspectral canopy reflectance as a predictor for root concentrations of nitrogen and carbon in native and non native grass species</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Land managers, scientists, and crop professionals need real-time, inexpensive, and labor-saving methods to determine below-ground biomass and potential carbon (C) and nitrogen (N) inputs of that biomass. Remote sensing is a non-destructive tool that monitors vigor of vegetation and has been used t...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=328648','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=328648"><span>Hyperspectral canopy reflectance as a predictor for root concentrations of nitrogen and carbon in native and non native grass species</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Land managers, scientists, and crop professionals need real-time, inexpensive, and labor-saving methods to determine below-ground biomass and potential carbon (C) and nitrogen (N) inputs of that biomass. Remote sensing is a non-destructive tool that monitors vigor of vegetation and has been used ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/12745','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/12745"><span>Nutrient budgets of two watersheds on the Fernow Experimental Forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>M. B. Adams; J. N. Kochenderfer; T. R. Angradi; P. J. Edwards</p> <p>1995-01-01</p> <p>Acidic deposition is an important non-point source pollutant in the Central Appalachian region that is responsible for elevated nitrogen (N) and sulfur (S) inputs to forest ecosystems. Nitrogen and calcium (Ca) budgets and plant tissue concentrations were compared for two watersheds, one that received three years of an artificial acidification treatment and an adjacent...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=327945','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=327945"><span>Ruminant urine increases uptake but decreases relative recovery of nitrogen by smooth brome grass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Nitrogen (N) fertilizer application and excreta return may contribute to poor nutrient recovery and use efficiencies in pastures. From 2011-2012, we investigated the effects of ruminant urine input (urine and distilled water control) and N fertilizer rate (0, 40, 80, 120, and 160 lb N/acre) on N res...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=341667','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=341667"><span>Nitrogen requirements of Pinot noir based on growth parameters, must composition, and fermentation behavior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>A study to reassess the nitrogen (N) requirements for Pinot noir was carried out using a pot-in-pot vineyard where N inputs were carefully controlled. Pinot noir grafted on 101-14 rootstock was exposed to five levels of N supply delivered via fertigation beginning in their fourth growing season, and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22707115','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22707115"><span>Nitrogen transformations and balance in constructed wetlands for slightly polluted river water treatment using different macrophytes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Haiming; Zhang, Jian; Wei, Rong; Liang, Shuang; Li, Cong; Xie, Huijun</p> <p>2013-01-01</p> <p>Nitrogen removal processing in different constructed wetlands treating different kinds of wastewater often varies, and the contribution to nitrogen removal by various pathways remains unclear. In this study, the seasonal nitrogen removal and transformations as well as nitrogen balance in wetland microcosms treating slightly polluted river water was investigated. The results showed that the average total nitrogen removal rates varied in different seasons. According to the mass balance approach, plant uptake removed 8.4-34.3 % of the total nitrogen input, while sediment storage and N(2)O emission contributed 20.5-34.4 % and 0.6-1.9 % of nitrogen removal, respectively. However, the percentage of other nitrogen loss such as N(2) emission due to nitrification and denitrification was estimated to be 2.0-23.5 %. The results indicated that plant uptake and sediment storage were the key factors limiting nitrogen removal besides microbial processes in surface constructed wetland for treating slightly polluted river water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29758909','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29758909"><span>Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Wenfeng; Yang, Hong; Liu, Yu; Kummu, Matti; Hoekstra, Arjen Y; Liu, Junguo; Schulin, Rainer</p> <p>2018-08-15</p> <p>Global food trade entails virtual flows of agricultural resources and pollution across countries. Here we performed a global-scale assessment of impacts of international food trade on blue water use, total water use, and nitrogen (N) inputs and on N losses in maize, rice, and wheat production. We simulated baseline conditions for the year 2000 and explored the impacts of an agricultural intensification scenario, in which low-input countries increase N and irrigation inputs to a greater extent than high-input countries. We combined a crop model with the Global Trade Analysis Project model. Results show that food exports generally occurred from regions with lower water and N use intensities, defined here as water and N uses in relation to crop yields, to regions with higher resources use intensities. Globally, food trade thus conserved a large amount of water resources and N applications, and also substantially reduced N losses. The trade-related conservation in blue water use reached 85km 3 y -1 , accounting for more than half of total blue water use for producing the three crops. Food exported from the USA contributed the largest proportion of global water and N conservation as well as N loss reduction, but also led to substantial export-associated N losses in the country itself. Under the intensification scenario, the converging water and N use intensities across countries result in a more balanced world; crop trade will generally decrease, and global water resources conservation and N pollution reduction associated with the trade will reduce accordingly. The study provides useful information to understand the implications of agricultural intensification for international crop trade, crop water use and N pollution patterns in the world. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=322953','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=322953"><span>Effect of variable annual precipitation and nutrient input on nitrogen and phosphorus transport from two Midwestern agricultural watersheds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Precipitation patterns and nutrient inputs impact transport of nitrate (NO3-N) and phosphorus (TP) from Midwest watersheds. Nutrient concentrations and yields from two subsurface-drained watersheds, the Little Cobb River (LCR) in southern Minnesota and the South Fork Iowa River (SFIR) in northern Io...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=127817&Lab=NHEERL&keyword=oceanography&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=127817&Lab=NHEERL&keyword=oceanography&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Cultural eutrophication in the Choptank and Patuxent estuaries of Chesapeake Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The Choptank and Patuxent tributaries of Chesapeake Bay have become eutrophic over the last 50–100 years. Systematic monitoring of nutrient inputs began in ;1970, and there have been 2–5-fold increases in nitrogen (N) and phosphorus (P) inputs during 1970–2004 due to sewage disch...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol6/pdf/CFR-2010-title40-vol6-sec60-44.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol6/pdf/CFR-2010-title40-vol6-sec60-44.pdf"><span>40 CFR 60.44 - Standard for nitrogen oxides (NOX).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel...) derived from gaseous fossil fuel. (2) 129 ng/J heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue, or gaseous fossil fuel and wood residue. (3) 300 ng/J heat input (0...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol6/pdf/CFR-2011-title40-vol6-sec60-44.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol6/pdf/CFR-2011-title40-vol6-sec60-44.pdf"><span>40 CFR 60.44 - Standard for nitrogen oxides (NOX).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel...) derived from gaseous fossil fuel. (2) 129 ng/J heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue, or gaseous fossil fuel and wood residue. (3) 300 ng/J heat input (0...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=70099&keyword=chemical+AND+fertilizer&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=70099&keyword=chemical+AND+fertilizer&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>LONG-TERM CHANGES IN WATERSHED NUTRIENT INPUTS AND RIVERINE EXPORTS IN THE NEUSE RIVER, NORTH CAROLINA. (U915590)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><p>We compared patterns of historical watershed nutrient inputs with in-river nutrient loads for the Neuse River, NC. Basin-wide sources of both nitrogen and phosphorus have increased substantially during the past century, marked by a sharp increase in the last 10 years resulting...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=257924&keyword=climate+AND+change+AND+anthropogenic&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=257924&keyword=climate+AND+change+AND+anthropogenic&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Mapping loading rates and sources of reactive nitrogen across the United States suggests regional interactions with climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Accurate, up-to-date information describing Nr inputs by source is needed for effective Nr management and for guiding Nr research. Here we present a new synthesis of spatial data describing present Nr inputs to terrestrial and aquatic ecosystems across the conterminous US to hel...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=344369','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=344369"><span>Tillage, crop rotation, and cultural practice impact on nitrogen balance under dryland cropping systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Accounting of N inputs and outputs and N retention in the soil provides N balance that measures agroecosystem performance and environmental sustainability. Because of the complexity of measurements of some N inputs and outputs, studies on N balance in long-term experiments are scanty. We examined th...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26336846','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26336846"><span>Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ti, Chaopu; Luo, Yongxia; Yan, Xiaoyuan</p> <p>2015-12-01</p> <p>Nitrogen (N) loss from vegetable cropping systems has become a significant environmental issue in China. In this study, estimation of N balances in both open-air and greenhouse vegetable cropping systems in China was established. Results showed that the total N input in open-air and greenhouse vegetable cropping systems in 2010 was 5.44 and 2.60 Tg, respectively. Chemical fertilizer N input in the two cropping systems was 201 kg N ha(-1) per season (open-air) and 478 kg N ha(-1) per season (greenhouse). The N use efficiency (NUE) was 25.9 ± 13.3 and 19.7 ± 9.4% for open-air and greenhouse vegetable cropping systems, respectively, significantly lower than that of maize, wheat, and rice. Approximately 30.6% of total N input was accumulated in soils and 0.8% was lost by ammonia volatilization in greenhouse vegetable system, while N accumulation and ammonia volatilization accounted for 19.1 and 11.1%, respectively, of total N input in open-air vegetable systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1015345','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1015345"><span>Controls on nitrogen flux in alpine/subalpine watersheds of Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Campbell, Donald H.; Baron, Jill S.; Tonnessen, Kathy A.; Brooks, Paul D.; Schuster, Paul F.</p> <p>2000-01-01</p> <p>High‐altitude watersheds in the Front Range of Colorado show symptoms of advanced stages of nitrogen excess, despite having less nitrogen in atmospheric deposition than other regions where watersheds retain nitrogen. In two alpine/subalpine subbasins of the Loch Vale watershed, atmospheric deposition of NO3− plus NH4+ was 3.2–5.5 kg N ha−1, and watershed export was 1.8–3.9 kg N ha−1 for water years 1992–1997. Annual N export increased in years with greater input of N, but most of the additional N was retained in the watershed, indicating that parts of the ecosystem are nitrogen‐limited. Dissolved inorganic nitrogen (DIN) concentrations were greatest in subsurface water of talus landscapes, where mineralization and nitrification augment high rates of atmospheric deposition of N. Tundra landscapes had moderately high DIN concentrations, whereas forest and wetland landscapes had low concentrations, indicating little export of nitrogen from these landscapes. Between the two subbasins the catchment of Icy Brook had greater retention of nitrogen than that of Andrews Creek because of landscape and hydrologic characteristics that favor greater N assimilation in both the terrestrial and aquatic ecosystems. These results suggest that export of N from alpine/subalpine watersheds is caused by a combination of direct flushing of N from atmospheric deposition and release of N from ecosystem biogeochemical processes (N cycling). Sensitivity of alpine ecosystems in the western United States to atmospheric deposition of N is a function of landscape heterogeneity, hydrologic flow paths, and climatic extremes that limit primary productivity and microbial activity, which, in turn, control retention and release of nitrogen. Conceptual and mechanistic models of N excess that have been developed for forested ecosystems need to be modified in order to predict the response of alpine ecosystems to future changes in climate and atmospheric deposition of N.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26143610','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26143610"><span>A new mathematical model for nitrogen gas production with special emphasis on the role of attached growth media in anammox hybrid reactor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tomar, Swati; Gupta, Sunil Kumar</p> <p>2015-11-01</p> <p>The present study emphasised on the development of new mathematical models based on mass balance and stoichiometry of nitrogen removal in anammox hybrid reactor (AHR). The performance of AHR at varying hydraulic retention times (HRTs) and nitrogen loading rates (NLRs) revealed that nitrogen removal efficiency (NRE) increases with increase in HRT and was found optimal (89 %) at HRT of 2 days. Mass balance of nitrogen revealed that major fraction (74.1 %) of input nitrogen is converted into N2 gas followed by 11.2 % utilised in biomass synthesis. Attached growth media (AGM) in AHR contributed to an additional 15.4 % ammonium removal and reduced the sludge washout rate by 29 %. This also enhanced the sludge retention capacity of AHR and thus minimised the formation of nitrate in the treated effluent, which is one of the bottlenecks of anammox process. Process kinetics was also studied using various mathematical models. The mass balance model derived from total nitrogen was found most precise and predicted N2 gas with least error (1.68 ± 4.44 %). Model validation for substrate removal kinetics dictated comparatively higher correlation for Grau second-order model (0.952) than modified Stover-Kincannon model (0.920). The study concluded that owing to features of high biomass retention, less nitrate formation and consistently higher nitrogen removal efficiency, this reactor configuration is techno-economically most efficient and viable. The study opens the door for researchers and scientists for pilot-scale testing of AHR leading to its wide industrial application.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC43F..06Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC43F..06Z"><span>Managing Nitrogen in the anthropocene: integrating social and ecological science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, X.; Mauzerall, D. L.; Davidson, E. A.; Kanter, D.; Cai, R.; Searchinger, T.</p> <p>2014-12-01</p> <p>Human alteration of the global nitrogen cycle by agricultural activities has provided nutritious food to society, but also poses increasing threats to human and ecosystem health through unintended pollution. Managing nitrogen more efficiently in crop production is critical for addressing both food security and environmental challenges. Technologies and management practices have been developed to increase the uptake of applied nitrogen by crops. However, nitrogen use efficiency (NUE, yield per unit nitrogen input) is also affected by social and economic factors. For example, to maximize profit, farmers may change crop choice or their nitrogen application rate, both of which lead to a change in NUE. To evaluate such impacts, we use both theoretical and empirical approaches on micro (farm) and macro (national) scales: 1) We developed a bio-economic model (NUE3) on a farm scale to investigate how market signals (e.g. fertilizer and crop prices), government policies, and nitrogen-efficient technologies affect NUE. We demonstrate that if factors that influence nitrogen inputs (e.g. fertilizer-to-crop price ratios) are not considered, NUE projections will be poorly constrained. The impact of nitrogen-efficient technologies on NUE not only depends on how technology changes the production function, but also relies on the prices of the technologies, fertilizers, and crops. 2) We constructed a database of the nitrogen budget in crop production for major crops and major crop producing countries from 1961 to 2010. Using this database, we investigate historical trends of NUE and its relationship to agronomic, economic, social, and policy factors. We find that NUE in most developed countries follows a "U-shape" relationship with income level, consistent with the Environmental Kuznets Curve theory. According to the dynamics revealed in the NUE3 model, we propose three major pathways by which economic development affects NUE, namely consumption, technology, and public policy. Overall, our research suggests that it is critical to include social and economic processes when studying perturbations of the global nitrogen cycle and crafting environmental and food security policy. Better collaboration across disciplines is essential to improve nitrogen management in the anthropocene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://dx.doi.org/10.2984/65.2.219','USGSPUBS'); return false;" href="http://dx.doi.org/10.2984/65.2.219"><span>Chemical ecology of red mangroves, Rhizophora mangle, in the Hawaiian Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fry, Brian; Cormier, Nicole</p> <p>2011-01-01</p> <p>The coastal red mangrove, Rhizophora mangle L., was introduced to the Hawaiian Islands from Florida 100 yr ago and has spread to cover many shallow intertidal shorelines that once were unvegetated mudflats. We used a field survey approach to test whether mangroves at the land-ocean interface could indicate watershed inputs, especially whether measurements of leaf chemistry could identify coasts with high nutrient inputs and high mangrove productivities. During 2001-2002, we sampled mangroves on dry leeward coasts of southern Moloka'i and O'ahu for 14 leaf variables including stable carbon and nitrogen isotopes (delta13C, delta15N), macronutrients (C, N, P), trace elements (B, Mn, Fe, Cu, Zn), and cations (Na, Mg, K, Ca). A new modeling approach using leaf Na, N, P, and delta13C indicated two times higher productivity for mangroves in urban versus rural settings, with rural mangroves more limited by low N and P nutrients and high-nutrient urban mangroves more limited by freshwater inputs and salt stress. Leaf chemistry also helped identify other aspects of mangrove dynamics: especially leaf delta15N values helped identify groundwater N inputs, and a combination of strongly correlated variables (C, N, P, B, Cu, Mg, K, Ca) tracked the mangrove growth response to nutrient loading. Overall, the chemical marker approach is an efficient way to survey watershed forcing of mangrove forest dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B43E0343S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B43E0343S"><span>Nitrogen retention in contrasting temperate forests exposed to high nitrogen deposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Staelens, J.; Adriaenssens, S.; Wuyts, K.; Verheyen, K.; Boeckx, P. F.</p> <p>2011-12-01</p> <p>A better understanding of factors affecting nitrogen (N) retention is needed to assess the impact of changing anthropogenic N emissions and climatic conditions on N cycling and N loss by terrestrial ecosystems. Retention of N has been demonstrated for a wide range of forests, including ecosystems exposed to chronically enhanced N deposition, but it is still unclear which factors determine this N retention capacity. Therefore, we examined the possible effects of forest type on N retention using stable N isotopes. The study was carried out in adjacent equal-aged deciduous (pedunculate oak (Quercus robur L.)) and coniferous (Scots pine (Pinus sylvestris L.)) stands with a similar stand history and growing on a well-drained sandy soil in a region with enhanced N deposition (Belgium). The N input-output budgets and gross soil N transformation rates differed significantly between the two stands. The forest floor was exposed to a high inorganic N input from atmospheric deposition, which was nearly twice as high in the pine stand (33 ± 2 kg N ha-1 yr-1; mean ± standard error) as in the oak stand (18 ± 1 kg N ha-1 yr-1). The N input was reflected in the soil solution under the rooting zone, but the mean nitrate concentration was eight times higher under pine (19 ± 5 mg N L-1) than under oak (2.3 ± 0.9 mg N L-1). Gross N dynamics in the mineral topsoil were determined by in situ 15N labelling of undisturbed soil cores combined with numerical data analysis. Gross N mineralization was two times faster in the oak soil while nitrate production was two times faster in the pine soil, indicating a dominant effect of vegetation cover on soil N cycling. The higher gross nitrification, particularly due to oxidation of organic N, in the pine soil compared to the oak soil, combined with negligible nitrate immobilization, was in line with the higher nitrate leaching under the pine forest. On a larger spatial and temporal scale, the fate of dissolved inorganic N within these forests was studied by spraying three pulses of 15N onto the forest floor during the growing season, either as ammonium or as nitrate. Four months and one year after the first application, 15N recovery was determined in the organic and mineral soil layers, fine tree roots, soil water percolate, ferns, and tree foliage. As hypothesized, N retention in the forest floor and mineral soil horizons was lower in the pine stand compared to oak, while N retention was lower for nitrate than for ammonium in both stands. The differences in 15N retention confirm that tree species affect the N balance of ecosystems under high anthropogenic N inputs and agree with the findings on gross soil N dynamics and N input-output budgets. Overall, the research underlines the importance of considering the interaction between tree species and carbon and N turnover when assessing the response of forest ecosystems to global change scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23640695','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23640695"><span>Nitrogen budget in a lowland coastal area within the Po River basin (northern Italy): multiple evidences of equilibrium between sources and internal sinks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Castaldelli, Giuseppe; Soana, Elisa; Racchetti, Erica; Pierobon, Enrica; Mastrocicco, Micol; Tesini, Enrico; Fano, Elisa Anna; Bartoli, Marco</p> <p>2013-09-01</p> <p>Detailed studies on pollutants genesis, path and transformation are needed in agricultural catchments facing coastal areas. Here, loss of nutrients should be minimized in order to protect valuable aquatic ecosystems from eutrophication phenomena. A soil system N budget was calculated for a lowland coastal area, the Po di Volano basin (Po River Delta, Northern Italy), characterized by extremely flat topography and fine soil texture and bordering a network of lagoon ecosystems. Main features of this area are the scarce relevance of livestock farming, the intense agriculture, mainly sustained by chemical fertilizers, and the developed network of artificial canals with long water residence time. Average nitrogen input exceeds output terms by ~60 kg N ha(-1) year(-1), a relatively small amount if compared to sub-basins of the same hydrological system. Analysis of dissolved inorganic nitrogen in groundwater suggests limited vertical loss and no accumulation of this element, while a nitrogen mass balance in surface waters indicates a net and significant removal within the watershed. Our data provide multiple evidences of efficient control of the nitrogen excess in this geographical area and we speculate that denitrification in soil and in the secondary drainage system performs this ecosystemic function. Additionally, the significant difference between nitrogen input and nitrogen output loads associated to the irrigation system, which is fed by the N-rich Po River, suggests that this basin metabolizes part of the nitrogen excess produced upstream. The traditionally absent livestock farming practices and consequent low use of manure as fertilizer pose the risk of excess soil mineralization and progressive loss of denitrification capacity in this area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2014/5201/pdf/sir2014-5201.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2014/5201/pdf/sir2014-5201.pdf"><span>Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.</p> <p>2014-01-01</p> <p>Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent of the orthophosphate budget. We identified several data gaps and areas for future research, which include the need for better understanding nutrient inputs to the lake from sediment resuspension and better quantification of indirect nutrient inputs to the lake from Salmon Creek.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2014/1031/pdf/ofr2014-1031.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2014/1031/pdf/ofr2014-1031.pdf"><span>Nutrient budgets, marsh inundation under sea-level rise scenarios, and sediment chronologies for the Bass Harbor Marsh estuary at Acadia National Park</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Huntington, Thomas G.; Culbertson, Charles W.; Fuller, Christopher C.; Glibert, Patricia; Sturtevant, Luke</p> <p>2014-01-01</p> <p>Eutrophication in the Bass Harbor Marsh estuary on Mount Desert Island, Maine, is an ongoing problem manifested by recurring annual blooms of green macroalgae species, principally Enteromorpha prolifera and Enteromorpha flexuosa, blooms that appear in the spring and summer. These blooms are unsightly and impair the otherwise natural beauty of this estuarine ecosystem. The macroalgae also threaten the integrity of the estuary and its inherent functions. The U.S. Geological Survey and Acadia National Park have collaborated for several years to better understand the factors related to this eutrophication problem with support from the U.S. Geological Survey and National Park Service Water Quality Assessment and Monitoring Program. The current study involved the collection of hydrologic and water-quality data necessary to investigate the relative contribution of nutrients from oceanic and terrestrial sources during summer 2011 and summer 2012. This report provides data on nutrient budgets for this estuary, sedimentation chronologies for the estuary and fringing marsh, and estuary bathymetry. The report also includes data, based on aerial photographs, on historical changes from 1944 to 2010 in estuary surface area and data, based on surface-elevation details, on changes in marsh area that may accompany sea-level rise. The LOADEST regression model was used to calculate nutrient loads into and out of the estuary during summer 2011 and summer 2012. During these summers, tidal inputs of ammonium to the estuary were more than seven times greater than the combined inputs in watershed runoff and precipitation. In 2011 tidal inputs of nitrate were about four times greater than watershed plus precipitation inputs, and in 2012 tidal inputs were only slightly larger than watershed plus precipitation inputs. In 2011, tidal inputs of total organic nitrogen were larger than watershed input by a factor of 1.6. By contrast, in 2012 inputs of total organic nitrogen in watershed runoff were much larger than tidal inputs, by a factor of 3.6. During the 2011 and 2012 summers, tidal inputs of total dissolved phosphorus to the estuary were more than seven times greater than inputs in watershed runoff. It is evident that during the summer tidal inputs of inorganic nitrogen and total dissolved phosphorus to the estuary exceed inputs from watershed runoff and precipitation. Projected sea-level rise associated with ongoing climate warming will affect the area of land within the Bass Harbor Marsh estuary watershed that is inundated during conditions of mean higher high water and during mean lower low water and hence will affect the vegetation and marsh area. Given 100-centimeter sea-level rise, the inundated area would increase from 25.7 hectares at the current condition to 77.5 hectares at mean higher high water and from 21.6 hectares to 26.7 hectares at mean lower low water. Given 50-centimeter sea-level rise, flooding of the entire marsh surface, which currently occurs only under the highest spring tides, would occur on average every other day. Radioisotope analysis of sediment cores from the estuary indicates that the sediment accumulation rate increased markedly from 1930 to 1980 and was relatively constant (0.4 to 0.5 centimeter per year) from 1980 to 2009. Similarly, from 1980 to 2009 there was a consistently high mass accumulation rate of 0.09 to 0.11 grams per square centimeter per year. The sediment accretion rates determined for the five cores collected from the marsh surface (east and west sides of the estuary) in 2011 show generally higher rates of 0.20 to 0.29 centimeter per year for the period between 1980 to 2011 than for the period before 1980, when sediment accretion rates were 0.06 to 0.25 centimeter per year. The data in this report provide resource managers at Acadia National Park with a baseline that can be used to evaluate future conditions within the estuary. Climate change, sea-level rise, and land-use change within the estuary’s watershed may influence nutrient dynamics, sedimentation, and eutrophication, and these potential effects can be studied in relation to the baseline data provided in this report. The Route 102 Bridge in Tremont, Maine is constructed over a sill that controls the amount of tidal flushing by restricting the duration of the flood tide, and structural changes to the bridge could alter tidal nutrient inputs and residence times for watershed and ocean-derived nutrients in the estuary. Ongoing sea-level rise is likely increasing ocean-derived nutrients and their residence time in the estuary on the one hand and decreasing the residence time of watershed-derived nutrients on the other.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28939867','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28939867"><span>Flamingos and drought as drivers of nutrients and microbial dynamics in a saline lake.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Batanero, Gema L; León-Palmero, Elizabeth; Li, Linlin; Green, Andy J; Rendón-Martos, Manuel; Suttle, Curtis A; Reche, Isabel</p> <p>2017-09-22</p> <p>Waterbird aggregations and droughts affect nutrient and microbial dynamics in wetlands. We analysed the effects of high densities of flamingos on nutrients and microbial dynamics in a saline lake during a wet and a dry hydrological year, and explored the effects of guano on prokaryotic growth. Concentrations of dissolved organic carbon, total phosphorus and total nitrogen in the surface waters were 2-3 fold higher during the drought and were correlated with salinity. Flamingos stimulated prokaryotic heterotrophic production and triggered cascading effects on prokaryotic abundance, viruses and dissolved nitrogen. This stimulus of heterotrophic prokaryotes was associated with soluble phosphorus inputs from guano, and also from sediments. In the experiments, the specific growth rate and the carrying capacity were almost twice as high after guano addition than in the control treatments, and were coupled with soluble phosphorus assimilation. Flamingo guano was also rich in nitrogen. Dissolved N in lake water lagged behind the abundance of flamingos, but the causes of this lag are unclear. This study demonstrates that intense droughts could lead to increases in total nutrients in wetlands; however, microbial activity is likely constrained by the availability of soluble phosphorus, which appears to be more dependent on the abundance of waterbirds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037456','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037456"><span>Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Elser, J.J.; Andersen, T.; Baron, Jill S.; Bergstrom, A.-K.; Jansson, M.; Kyle, M.; Nydick, K.R.; Steger, L.; Hessen, D.O.</p> <p>2009-01-01</p> <p>Human activities have more than doubled the amount of nitrogen (N) circulating in the biosphere. One major pathway of this anthropogenic N input into ecosystems has been increased regional deposition from the atmosphere. Here we show that atmospheric N deposition increased the stoichiometric ratio of N and phosphorus (P) in lakes in Norway, Sweden, and Colorado, United States, and, as a result, patterns of ecological nutrient limitation were shifted. Under low N deposition, phytoplankton growth is generally N-limited; however, in high-N deposition lakes, phytoplankton growth is consistently P-limited. Continued anthropogenic amplification of the global N cycle will further alter ecological processes, such as biogeochemical cycling, trophic dynamics, and biological diversity, in the world's lakes, even in lakes far from direct human disturbance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/96248','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/96248"><span>Comparative effects of climate on ecosystem nitrogen and soil biogeochemistry in U.S. national parks. FY 2001 Annual Report (Res. Rept. No. 94)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stottlemyer, R.; Edmonds, R.; Scherbarth, L.; Urbanczyk, K.; Van Miegroet, H.; Zak, J.</p> <p>2002-01-01</p> <p>In 1998, the USGS Global Change program funded research for a network of Long-Term Reference Ecosystems initially established in national parks and funded by the National Park Service. The network included Noland Divide, Great Smoky Mountains National Park, Tennessee; Pine Canyon, Big Ben National park, Texas; West Twin Creek, Olympic National Park, Washingtona?? Wallace Lake, Isle Royale National Park, Michigan; and the Asik watershed, Noatak National Preserve, Alaska. The watershed ecosystem model was used since this approach permits additional statistical power in detection of trends among variables, and the watershed in increasingly a land unit used in resource management and planning. The ecosystems represent a major fraction of lands administered by the National Park Service, and were chosen generally for the contrasts among sites. For example, tow of the site, Noland and West Twin, are characterized by high precipitation amounts, but Noland receives some of the highest atmospheric nitrogen (N) inputs in North America. In contrast, Pine Canyon and Asik are warm and cold desert sites respectively. The Asik watershed receives <1% the atmospheric N inputs Noland receives. The Asik site is at the northern extent (treeline) of the boreal biome in the North America while Wallace is at the southern ecotone between boreal and northern hardwoods. The research goal for these sites is to gain a basic understanding of ecosystem structure and function, and the response to global change especially atmospheric inputs and climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20176839','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20176839"><span>Modeling nitrate leaching and optimizing water and nitrogen management under irrigated maize in desert oases in Northwestern China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Kelin; Li, Yong; Chen, Weiping; Chen, Deli; Wei, Yongping; Edis, Robert; Li, Baoguo; Huang, Yuanfang; Zhang, Yuanpei</p> <p>2010-01-01</p> <p>Understanding water and N transport through the soil profile is important for efficient irrigation and nutrient management to minimize nitrate leaching to the groundwater, and to promote agricultural sustainable development in desert oases. In this study, a process-based water and nitrogen management model (WNMM) was used to simulate soil water movement, nitrate transport, and crop growth (maize [Zea mays L.]) under desert oasis conditions in northwestern China. The model was calibrated and validated with a field experiment. The model simulation results showed that about 35% of total water input and 58% of the total N input were leached to <1.8 m depth under traditional management practice. Excessive irrigation and N fertilizer application, high nitrate concentration in the irrigation water, together with the sandy soil texture, resulted in large nitrate leaching. Nitrate leaching was significantly reduced under the improved management practice suggested by farm extension personnel; however, the water and nitrate inputs still far exceeded the crop requirements. More than 1700 scenarios combining various types of irrigation and fertilizer practices were simulated. Quantitative analysis was conducted to obtain the best management practices (BMPs) with simultaneous consideration of crop yield, water use efficiency, fertilizer N use efficiency, and nitrate leaching. The results indicated that the BMPs under the specific desert oasis conditions are to irrigate the maize with 600 mm of water in eight times with a single fertilizer application at a rate of 75 kg N ha(-1).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22471090','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22471090"><span>Floodplain restoration enhances denitrification and reach-scale nitrogen removal in an agricultural stream.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Roley, Sarah S; Tank, Jennifer L; Stephen, Mia L; Johnson, Laura T; Beaulieu, Jake J; Witter, Jonathan D</p> <p>2012-01-01</p> <p>Streams of the agricultural Midwest, USA, export large quantities of nitrogen, which impairs downstream water quality, most notably in the Gulf of Mexico. The two-stage ditch is a novel restoration practice, in which floodplains are constructed alongside channelized ditches. During high flows, water flows across the floodplains, increasing benthic surface area and stream water residence time, as well as the potential for nitrogen removal via denitrification. To determine two-stage ditch nitrogen removal efficacy, we measured denitrification rates in the channel and on the floodplains of a two-stage ditch in north-central Indiana for one year before and two years after restoration. We found that instream rates were similar before and after the restoration, and they were influenced by surface water NO3- concentration and sediment organic matter content. Denitrification rates were lower on the constructed floodplains and were predicted by soil exchangeable NO3- concentration. Using storm flow simulations, we found that two-stage ditch restoration contributed significantly to NO3- removal during storm events, but because of the high NO3- loads at our study site, < 10% of the NO3- load was removed under all storm flow scenarios. The highest percentage of NO3- removal occurred at the lowest loads; therefore, the two-stage ditch's effectiveness at reducing downstream N loading will be maximized when the practice is coupled with efforts to reduce N inputs from adjacent fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25795737','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25795737"><span>Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>York, Larry M; Galindo-Castañeda, Tania; Schussler, Jeffrey R; Lynch, Jonathan P</p> <p>2015-04-01</p> <p>Increasing the nitrogen use efficiency of maize is an important goal for food security and agricultural sustainability. In the past 100 years, maize breeding has focused on yield and above-ground phenes. Over this period, maize cultivation has changed from low fertilizer inputs and low population densities to intensive fertilization and dense populations. The authors hypothesized that through indirect selection the maize root system has evolved phenotypes suited to more intense competition for nitrogen. Sixteen maize varieties representing commercially successful lines over the past century were planted at two nitrogen levels and three planting densities. Root systems of the most recent material were 7 º more shallow, had one less nodal root per whorl, had double the distance from nodal root emergence to lateral branching, and had 14% more metaxylem vessels, but total mextaxylem vessel area remained unchanged because individual metaxylem vessels had 12% less area. Plasticity was also observed in cortical phenes such as aerenchyma, which increased at greater population densities. Simulation modelling with SimRoot demonstrated that even these relatively small changes in root architecture and anatomy could increase maize shoot growth by 16% in a high density and high nitrogen environment. The authors concluded that evolution of maize root phenotypes over the past century is consistent with increasing nitrogen use efficiency. Introgression of more contrasting root phene states into the germplasm of elite maize and determination of the functional utility of these phene states in multiple agronomic conditions could contribute to future yield gains. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192503','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192503"><span>Fertilizer consumption and energy input for 16 crops in the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Amenumey, Sheila E.; Capel, Paul D.</p> <p>2014-01-01</p> <p>Fertilizer use by U.S. agriculture has increased over the past few decades. The production and transportation of fertilizers (nitrogen, N; phosphorus, P; potassium, K) are energy intensive. In general, about a third of the total energy input to crop production goes to the production of fertilizers, one-third to mechanization, and one-third to other inputs including labor, transportation, pesticides, and electricity. For some crops, fertilizer is the largest proportion of total energy inputs. Energy required for the production and transportation of fertilizers, as a percentage of total energy input, was determined for 16 crops in the U.S. to be: 19–60% for seven grains, 10–41% for two oilseeds, 25% for potatoes, 12–30% for three vegetables, 2–23% for two fruits, and 3% for dry beans. The harvested-area weighted-average of the fraction of crop fertilizer energy to the total input energy was 28%. The current sources of fertilizers for U.S. agriculture are dependent on imports, availability of natural gas, or limited mineral resources. Given these dependencies plus the high energy costs for fertilizers, an integrated approach for their efficient and sustainable use is needed that will simultaneously maintain or increase crop yields and food quality while decreasing adverse impacts on the environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri014137','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri014137"><span>Geohydrology and limnology of Walden Pond, Concord, Massachusetts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Colman, John A.; Friesz, Paul J.</p> <p>2001-01-01</p> <p>The trophic ecology and ground-water contributing area of Walden Pond, in Concord and Lincoln, Mass., were investigated by the U.S. Geological Survey in cooperation with the Massachusetts Department of Environmental Management from April 1997 to July 2000. Bathymetric investigation indicated that Walden Pond (24.88 hectares), a glacial kettle-hole lake with no surface inlet or outlet, has three deep areas. The maximum depth (30.5 meters) essentially was unchanged from measurements made by Henry David Thoreau in 1846. The groundwater contributing area (621,000 square meters) to Walden Pond was determined from water-table contours in areas of stratified glacial deposits and from land-surface contours in areas of bedrock highs. Walden Pond is a flow-through lake: Walden Pond gains water from the aquifer along its eastern perimeter and loses water to the aquifer along its western perimeter. Walden Pond contributing area also includes Goose Pond and its contributing area. A water budget calculated for Walden Pond, expressed as depth of water over the lake surface, indicated that 45 percent of the inflow to the lake was from precipitation (1.215 meters per year) and 55 percent from ground water (1.47 meters per year). The groundwater inflow estimate was based on the average of two different approaches including an isotope mass-balance approach. Evaporation accounted for 26 percent of the outflow from the lake (0.71 meters per year) whereas lake-water seepage to the groundwater system contributed 74 percent of the outflow (1.97 meters per year). The water-residence time of Walden Pond is approximately 5 years. Potential point sources of nutrients to ground water, the Concord municipal landfill and a trailer park, were determined to be outside the Walden Pond groundwater contributing area. A third source, the septic leach field for the Walden Pond State Reservation facilities, was within the groundwater contributing area. Nutrient budgets for the lake indicated that nitrogen inputs (858 kilograms per year) were dominated (30 percent) by plume water from the septic leach field and, possibly, by swimmers (34 percent). Phosphorus inputs (32 kilograms per year) were dominated by atmospheric dry deposition, background ground water, and estimated swimmer inputs. Swimmer inputs may represent more than 50 percent of the phosphorus load during the summer. The septic-system plume did not contribute phosphorus, but increased the nitrogen to phosphorus ratio for inputs from 41 to 59, on an atom-to-atom basis. The ratio of nitrogen to phosphorus in input loads and within the lake indicated algal growth would be strongly phosphorus limited. Nitrogen supply in excess of plant requirements may mitigate against nitrogen fixing organisms including undesirable blooms of cyanobacteria. Based on areal nutrient loading, Walden Pond is a mesotrophic lake. Hypolimnetic oxygen demand of Walden Pond has increased since a profile was measured in 1939. Currently (1999), the entire hypolimnion of Walden Pond becomes devoid of dissolved oxygen before fall turnover in late November; whereas historical data indicated dissolved oxygen likely remained in the hypolimnion during 1939. The complete depletion of dissolved oxygen likely causes release of phosphorus from the sediments. Walden Pond contains a large population of the deep-growing benthic macro alga Nitella, which has been hypothesized to promote water clarity in other clear-water lakes by sequestering nutrients and keeping large areas of the sediment surface oxygenated. Loss of Nitella populations in other lakes has correlated with a decline in water quality. Although the Nitella standing crop is large in Walden Pond, Nitella still appears to be controlled by nutrient availability. Decreasing phosphorus inputs to Walden Pond, by amounts under anthropogenic control would likely contribute to the stability of the Nitella population in the metalimnion, may reverse oxygen depletion in the hypolimnion, and decreas</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027786','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027786"><span>Nitrogen and carbon flow from rock to water: Regulation through soil biogeochemical processes, Mokelumne River watershed, California, and Grand Valley, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Holloway, J.M.; Smith, R.L.</p> <p>2005-01-01</p> <p>Soil denitrification is an ecologically important nitrogen removal mechanism that releases to the atmosphere the greenhouse gas N2O, an intermediate product from the reduction of NO3- to N 2. In this study we evaluate the relationship between soil carbon and denitrification potential in watersheds with bedrock acting as a nonpoint source of nitrogen, testing the hypothesis that nitrate leaching to stream water is in part regulated by denitrification. Two sites, one in a Mediterranean climate and the other in an arid climate, were investigated to understand the interplay between carbon and denitrification potential. Both sites included carbonaceous bedrock with relatively high nitrogen concentrations (> 1,000 mg N kg-1) and had low background nitrogen concentrations in surface and groundwater. There was a net accumulation of carbon and nitrogen in soil relative to the corresponding bedrock, with the exception of carbonaceous shale from the arid site. There the concentration of carbon in the soil (15,620 mg C kg-1) was less than the shale parent (22,460 mg C kg-1), consistent with the bedrock being a source of soil carbon. Rates of denitrification potential (0.5-83 ??g N kg-1 hr-1) derived from laboratory incubations appeared to be related to the ratio of dissolved organic carbon and nitrate extracted from soils. These data indicate that microbial processes such as denitrification can help maintain background nitrogen concentrations to tens of ??M N in relatively undisturbed ecosystems when nitrogen inputs from weathering bedrock are accompanied by sufficient organic carbon concentrations to promote microbial nitrogen transformations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031778','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031778"><span>Estimation of groundwater and nutrient fluxes to the Neuse River estuary, North Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Spruill, T.B.; Bratton, J.F.</p> <p>2008-01-01</p> <p>A study was conducted between April 2004 and September 2005 to estimate groundwater and nutrient discharge to the Neuse River estuary in North Carolina. The largest groundwater fluxes were observed to occur generally within 20 m of the shoreline. Groundwater flux estimates based on seepage meter measurements ranged from 2.86??108 to 4.33??108 m3 annually and are comparable to estimates made using radon, a simple water-budget method, and estimates derived by using Darcy's Law and previously published general aquifer characteristics of the area. The lower groundwater flux estimate (equal to about 9 m3 s-1), which assumed the narrowest groundwater discharge zone (20 m) of three zone widths selected for an area west of New Bern, North Carolina, most closely agrees with groundwater flux estimates made using radon (3-9 m3 s-1) and Darcy's Law (about 9 m3 s-1). A groundwater flux of 9 m 3 s-1 is about 40% of the surface-water flow to the Neuse River estuary between Streets Ferry and the mouth of the estuary and about 7% of the surface-water inflow from areas upstream. Estimates of annual nitrogen (333 tonnes) and phosphorus (66 tonnes) fluxes from groundwater to the estuary, based on this analysis, are less than 6% of the nitrogen and phosphorus inputs derived from all sources (excluding oceanic inputs), and approximately 8% of the nitrogen and 17% of the phosphorus annual inputs from surface-water inflow to the Neuse River estuary assuming a mean annual precipitation of 1.27 m. We provide quantitative evidence, derived from three methods, that the contribution of water and nutrients from groundwater discharge to the Neuse River estuary is relatively minor, particularly compared with upstream sources of water and nutrients and with bottom sediment sources of nutrients. Locally high groundwater discharges do occur, however, and could help explain the occurrence of localized phytoplankton blooms, submerged aquatic vegetation, or fish kills. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812383C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812383C"><span>Stable isotopes and Digital Elevation Models to study nutrient inputs in high-Arctic lakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calizza, Edoardo; Rossi, David; Costantini, Maria Letizia; Careddu, Giulio; Rossi, Loreto</p> <p>2016-04-01</p> <p>Ice cover, run-off from the watershed, aquatic and terrestrial primary productivity, guano deposition from birds are key factors controlling nutrient and organic matter inputs in high-Arctic lakes. All these factors are expected to be significantly affected by climate change. Quantifying these controls is a key baseline step to understand what combination of factors subtends the biological productivity in Arctic lakes and will drive their ecological response to environmental change. Basing on Digital Elevation Models, drainage maps, and C and N elemental content and stable isotope analysis in sediments, aquatic vegetation and a dominant macroinvertebrate species (Lepidurus arcticus Pallas 1973) belonging to Tvillingvatnet, Storvatnet and Kolhamna, three lakes located in North Spitsbergen (Svalbard), we propose an integrated approach for the analysis of (i) nutrient and organic matter inputs in lakes; (ii) the role of catchment hydro-geomorphology in determining inter-lake differences in the isotopic composition of sediments; (iii) effects of diverse nutrient inputs on the isotopic niche of Lepidurus arcticus. Given its high run-off and large catchment, organic deposits in Tvillingvatnet where dominated by terrestrial inputs, whereas inputs were mainly of aquatic origin in Storvatnet, a lowland lake with low potential run-off. In Kolhamna, organic deposits seem to be dominated by inputs from birds, which actually colonise the area. Isotopic signatures were similar between samples within each lake, representing precise tracers for studies on the effect of climate change on biogeochemical cycles in lakes. The isotopic niche of L. aricticus reflected differences in sediments between lakes, suggesting a bottom-up effect of hydro-geomorphology characterizing each lake on nutrients assimilated by this species. The presented approach proven to be an effective research pathway for the identification of factors subtending to nutrient and organic matter inputs and transfer within each water body, as well as for the modelling of expected changes in nutrient content associated to changes in isotopic composition of sediments. Key words: nitrogen; carbon, sediment; biogeochemical cycle; climate change; hydro-ecology; isotopic niche; Svalbard</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27145836','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27145836"><span>Water quality assessment of a small peri-urban river using low and high frequency monitoring.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ivanovsky, A; Criquet, J; Dumoulin, D; Alary, C; Prygiel, J; Duponchel, L; Billon, G</p> <p>2016-05-18</p> <p>The biogeochemical behaviors of small rivers that pass through suburban areas are difficult to understand because of the multi-origin inputs that can modify their behavior. In this context, a monitoring strategy has been designed for the Marque River, located in Lille Metropolitan area of northern France, that includes both low-frequency monitoring over a one-year period (monthly sampling) and high frequency monitoring (measurements every 10 minutes) in spring and summer. Several environmental and chemical parameters are evaluated including rainfall events, river flow, temperature, dissolved oxygen, turbidity, conductivity, nutritive salts and dissolved organic matter. Our results from the Marque River show that (i) it is impacted by both urban and agricultural inputs, and as a consequence, the concentrations of phosphate and inorganic nitrogen have degraded the water quality; (ii) the classic photosynthesis/respiration processes are disrupted by the inputs of organic matter and nutritive salts; (iii) during dry periods, the urban sewage inputs (treated or not) are more important during the day, as indicated by higher river flows and maximal concentrations of ammonium; (iv) phosphate concentrations depend on oxygen contents in the river; (v) high nutrient concentrations result in eutrophication of the Marque River with lower pH and oxygen concentrations in summer. During rainfalls, additional inputs of ammonium, biodegradable organic matter as well as sediment resuspension result in anoxic events; and finally (vi) concentrations of nitrate are approximately constant over the year, except in winter when higher inputs can be recorded. Having better identified the processes responsible for the observed water quality, a more informed remediation effort can be put forward to move this suburban river to a good status of water quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27236627','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27236627"><span>Drained coastal peatlands: A potential nitrogen source to marine ecosystems under prolonged drought and heavy storm events-A microcosm experiment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Hongjun; Richardson, Curtis J; Ho, Mengchi; Flanagan, Neal</p> <p>2016-10-01</p> <p>Over the past several decades there has been a massive increase in coastal eutrophication, which is often caused by increased runoff input of nitrogen from landscape alterations. Peatlands, covering 3% of land area, have stored about 12-21% of global soil organic nitrogen (12-20Pg N) around rivers, lakes and coasts over millennia and are now often drained and farmed. Their huge nitrogen pools may be released by intensified climate driven hydrologic events-prolonged droughts followed by heavy storms-and later transported to marine ecosystems. In this study, we collected peat monoliths from drained, natural, and restored coastal peatlands in the Southeastern U.S., and conducted a microcosm experiment simulating coupled prolonged-drought and storm events to (1) test whether storms could trigger a pulse of nitrogen export from drought-stressed peatlands and (2) assess how differentially hydrologic managements through shifting plant communities affect nitrogen export by combining an experiment of nitrogen release from litter. During the drought phase, we observed a significant temporal variation in net nitrogen mineralization rate (NMR). NMR spiked in the third month and then decreased rapidly. This pattern indicates that drought duration significantly affects nitrogen mineralization in peat. NMR in the drained site reached up to 490±110kgha(-1)year(-1), about 5 times higher than in the restored site. After the 14-month drought phase, we simulated a heavy storm by bringing peat monoliths to saturation. In the discharge waters, concentrations of total dissolved nitrogen in the monoliths from the drained site (72.7±16.3mgL(-1)) was about ten times as high as from the restored site. Our results indicate that previously drained peatlands under prolonged drought are a potent source of nitrogen export. Moreover, drought-induced plant community shifts to herbaceous plants substantially raise nitrogen release with lasting effects by altering litter quality in peatlands. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930062478&hterms=nitrogen+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dnitrogen%2Bproduction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930062478&hterms=nitrogen+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dnitrogen%2Bproduction"><span>Soil nitrogen cycling and nitrous oxide flux in a Rocky Mountain Douglas-fir forest - Effects of fertilization, irrigation and carbon addition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Matson, Pamela A.; Gower, Stith T.; Volkmann, Carol; Billow, Christine; Grier, Charles C.</p> <p>1992-01-01</p> <p>Nitrous oxide fluxes and soil nitrogen transformations were measured in experimentally-treated high elevation Douglas-fir forests in northwestern New Mexico. On an annual basis, forests that were fertilized with 200 kg N/ha emitted an average of 0.66 kg/ha of N2O-N, with highest fluxes occurring in July and August when soils were both warm and wet. Control, irrigated, and woodchip treated plots were not different from each other, and annual average fluxes ranged from 0.03 to 0.23 kg/ha. Fertilized soil mineralized 277 kg/ha per year in contrast to 18 kg/ha per year in control plots. Relative recovery of (N-15)H4-N applied to soil in laboratory incubations was principally in the form of NO3-N in the fertilized soils, while recovery was mostly in microbial biomass-N in the other treatments. Fertilization apparently added nitrogen that exceeded the heterotrophic microbial demand, resulting in higher rates of nitrate production and higher nitrous oxide fluxes. Global inputs of nitrogen into forests are not currently contributing significantly to the increasing concentrations of nitrous oxide in the atmosphere.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=326930&simplesearch=1&searchall=nitrogen+or+phosphorus+or+nutrient&noarchive=1&sitype=sa&sitype=pr','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=326930&simplesearch=1&searchall=nitrogen+or+phosphorus+or+nutrient&noarchive=1&sitype=sa&sitype=pr"><span>Influences of climate and land use on contemporary ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Human beings have greatly accelerated nitrogen and phosphorus flows from land to aquatic ecosystems, often resulting in eutrophication, harmful algal blooms, and hypoxia in lakes and coastal waters. Although differences in nitrogen export from watersheds have been clearly linked to a combination of human nitrogen sources and climate in the U.S., relatively less is known about how natural and anthropogenic landscape characteristics mediate losses of phosphorus from watersheds. We quantified major phosphorus inputs (fertilizer, manure, and human waste) and outputs (riverine export, crop harvest and sewage treatment) for 94 watersheds in 2012 across the continental U.S. and examined how climate, hydrology, soil characteristics, and land use influenced phosphorus exports from watersheds to rivers as total phosphorus and dissolved inorganic phosphorus concentrations and yields. We identified regional differences in major input sources as well as the importance of landscape mediating factors, highlighting the importance of both the biophysical and anthropogenic contexts on the relationship between major phosphorus sources and water quality. This study represents the most up-to-date spatially explicit inventory of anthropogenic P inputs and outputs for the conterminous United States. Linking this inventory with losses of phosphorus to waterways is an important step in understanding what policies and practices may be most effective in mitigating water quality problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70129050','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70129050"><span>Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: implications for aquatic systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Baron, Jill S.; Ojima, Dennis S.; Holland, Elisabeth A.; Parton, William J.</p> <p>1994-01-01</p> <p>We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m−2 y−1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt, high watershed gradients, rapid hydrologic flushing and lake turnover times, and possibly other nutrient limitations of aquatic organisms constrain high elevation lakes and streams from assimilating even small increases in atmospheric N. CENTURY model simulations further suggest that, while increased N deposition will worsen the situation, nitrogen saturation is an ongoing phenomenon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=271295','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=271295"><span>Evaluation of phosphorus and nitrogen balances as an indicator for the impact of agriculture on environment a comparison of case studies from Poland and the Mississippi US</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The objective of the research was to quantify the changes of nitrogen (N) and phosphorus (P) balances in Poland and Mississippi (MS). Nutrient balances were calculated as difference between input and output in the agricultural system according to Organisation for Economic Cooperation and Development...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/30538','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/30538"><span>Nitrogen deposition and cycling across an elevation and vegetation gradient in southern Appalachian forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jennifer D. Knoepp; James M. Vose; Wayne T. Swank</p> <p>2008-01-01</p> <p>We studied nitrogen (N) cycling pools and processes across vegetation and elevation gradients in. the southern Appalachian Mountains in SE USA. Measurements included bulk deposition input, watershed export, throughfall fluxes, litterfall, soil N pools and processes, and soil solution N. N deposition increased with elevation and ranged from 9.5 to 12.4 kg ha-...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47448','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47448"><span>Will more nitrogen enhance carbon storage in young forest stands in central Appalachia?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Zachariah K. Fowler; Mary Beth Adams; William T. Peterjohn</p> <p>2015-01-01</p> <p>Many temperate deciduous forests in the Eastern US are secondary, regrowing forests and have experienced decades of elevated inputs of acidic compounds and biologically available nitrogen (N) from the atmosphere. These young forests play an important role in the global carbon (C) cycle as C sinks, and it is possible that acidic deposition will influence the strength...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1435246-long-term-nitrogen-fertilization-decreases-bacterial-diversity-favors-growth-actinobacteria-proteobacteria-agro-ecosystems-across-globe','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1435246-long-term-nitrogen-fertilization-decreases-bacterial-diversity-favors-growth-actinobacteria-proteobacteria-agro-ecosystems-across-globe"><span>Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dai, Zhongmin; Su, Weiqin; Chen, Huaihai</p> <p></p> <p>Long-term Elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input and the input of N combined with phosphorus (P) and potassium (K) is still poorly understood. Here, we explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effectmore » of N fertilization on bacterial diversity depends on soil texture and water management, but independent of crop type or N application rate. Both soil pH and organic C content were positively related to changes in bacterial diversity under N fertilization, while soil organic C was the dominant factor determining changes in bacterial diversity under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of copiotrophic bacteria (i.e. Proteobacteria and Actinobacteria), but reduced the abundance of oligotrophic taxa (i.e. Acidobacteria), consistent with the general life history strategy theory for bacteria. The relative abundance of Proteobacteria was also increased by NPK fertilization. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization effect on bacterial diversity and community composition suggests that N input decreases bacterial diversity but favors the growth of copiotrophic bacteria, providing a reference for nutrient management strategies for maintaining belowground microbial diversity in agro-ecosystems worldwide.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1435246-long-term-nitrogen-fertilization-decreases-bacterial-diversity-favors-growth-actinobacteria-proteobacteria-agro-ecosystems-across-globe','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1435246-long-term-nitrogen-fertilization-decreases-bacterial-diversity-favors-growth-actinobacteria-proteobacteria-agro-ecosystems-across-globe"><span>Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Dai, Zhongmin; Su, Weiqin; Chen, Huaihai; ...</p> <p>2018-04-25</p> <p>Long-term Elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input and the input of N combined with phosphorus (P) and potassium (K) is still poorly understood. Here, we explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effectmore » of N fertilization on bacterial diversity depends on soil texture and water management, but independent of crop type or N application rate. Both soil pH and organic C content were positively related to changes in bacterial diversity under N fertilization, while soil organic C was the dominant factor determining changes in bacterial diversity under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of copiotrophic bacteria (i.e. Proteobacteria and Actinobacteria), but reduced the abundance of oligotrophic taxa (i.e. Acidobacteria), consistent with the general life history strategy theory for bacteria. The relative abundance of Proteobacteria was also increased by NPK fertilization. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization effect on bacterial diversity and community composition suggests that N input decreases bacterial diversity but favors the growth of copiotrophic bacteria, providing a reference for nutrient management strategies for maintaining belowground microbial diversity in agro-ecosystems worldwide.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20696573','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20696573"><span>Investigation of nutrient feeding strategies in a countercurrent mixed-acid multi-staged fermentation: development of segregated-nitrogen model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, Aaron D; Holtzapple, Mark T</p> <p>2010-12-01</p> <p>The MixAlco process is a biorefinery based on the production of carboxylic acids via mixed-culture fermentation. Nitrogen is essential for microbial growth and metabolism, and may exist in soluble (e.g., ammonia) or insoluble forms (e.g., cells). Understanding the dynamics of nitrogen flow in a countercurrent fermentation is necessary to develop control strategies to maximize performance. To estimate nitrogen concentration profiles in a four-stage fermentation train, a mass balance-based segregated-nitrogen model was developed, which uses separate balances for solid- and liquid-phase nitrogen with nitrogen reaction flux between phases assumed to be zero. Comparison of predictions with measured nitrogen profiles from five trains, each with a different nutrient contacting pattern, shows the segregated-nitrogen model captures basic behavior and is a reasonable tool for estimating nitrogen profiles. The segregated-nitrogen model may be used to (1) estimate optimal nitrogen loading patterns, (2) develop a reaction-based model, (3) understand influence of model inputs (e.g., operating parameters, feedstock properties, nutrient loading pattern) on the steady-state nitrogen profile, and (4) determine the direction of the nitrogen reaction flux between liquid and solid phases. Copyright (c) 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol7/pdf/CFR-2013-title40-vol7-sec60-44.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol7/pdf/CFR-2013-title40-vol7-sec60-44.pdf"><span>40 CFR 60.44 - Standard for nitrogen oxides (NOX).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... NO2 in excess of: (1) 86 ng/J heat input (0.20 lb/MMBtu) derived from gaseous fossil fuel. (2) 129 ng/J heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol7/pdf/CFR-2014-title40-vol7-sec60-44.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol7/pdf/CFR-2014-title40-vol7-sec60-44.pdf"><span>40 CFR 60.44 - Standard for nitrogen oxides (NOX).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... NO2 in excess of: (1) 86 ng/J heat input (0.20 lb/MMBtu) derived from gaseous fossil fuel. (2) 129 ng/J heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol7/pdf/CFR-2012-title40-vol7-sec60-44.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol7/pdf/CFR-2012-title40-vol7-sec60-44.pdf"><span>40 CFR 60.44 - Standard for nitrogen oxides (NOX).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... NO2 in excess of: (1) 86 ng/J heat input (0.20 lb/MMBtu) derived from gaseous fossil fuel. (2) 129 ng/J heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=349707','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=349707"><span>Soil-test biological activity with the flush of CO2: III. Corn yield responses to applied nitrogen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Corn (Zea mays L.) is an important cereal grain in many states and typically receives large N fertilizer inputs, irrespective of historical management. Tailoring N inputs to soil-specific conditions would help to increase efficiency of N use and avoid environmental contamination. A total of 47 tri...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=337596','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=337596"><span>Root biomass, root/shoot ratio, and soil water content under perennial grasses with different nitrogen rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Roots help in soil water and nutrient uptake and provide C input for soil C sequestration, but information on root biomass of bioenergy perennial grasses is lacking. Root/shoot ratios are used to estimate crop root biomass and C inputs, but the values for perennial grasses are also scanty. We examin...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=337280&simplesearch=1&searchall=nitrogen+or+phosphorus+or+nutrient&noarchive=1&sitype=sa&sitype=pr','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=337280&simplesearch=1&searchall=nitrogen+or+phosphorus+or+nutrient&noarchive=1&sitype=sa&sitype=pr"><span>Nitrogen input inventory in the Nooksack-Abbotsford-Sumas ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Background/Question/Methods: Nitrogen (N) is an essential biological element, so optimizing N use for food production while minimizing the release of N and co-pollutants to the environment is an important challenge. The Nooksack-lower Fraser Valley, spanning a portion of the western interface of British Columbia, Washington state, and the Lummi Nation and the Nooksack Tribe, supports agriculture, fisheries, diverse wildlife, and vibrant urban areas. Groundwater nitrate contamination affects thousands of households in this region. Fisheries and air quality are also affected including periodic closures of shellfish harvest. To reduce the release of N to the environment, successful approaches are needed that partner all stakeholders with appropriate institutions to integrate science, outreach and management efforts. Our goal is to determine the distribution and quantities of N inventories of the watershed. This work synthesizes publicly available data on N sources including deposition, sewage and septic inputs, fertilizer and manure applications, marine-derived N from salmon, and more. The information on cross-boundary N inputs to the landscape will be coupled with stream monitoring data and existing knowledge about N inputs and exports from the watershed to estimate the N residual and inform N management in the search for the environmentally and economically viable and effective solutions. Results/Conclusions: We will estimate the N inputs into the Nooks</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336961','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336961"><span>Nitrogen input inventory in the Nooksack-Abbotsford-Sumas ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Nitrogen (N) is an essential biological element, so optimizing N use for food production while minimizing the release of N and co-pollutants to the environment is an important challenge. The Nooksack-Abbotsford-Sumas Transboundary (NAS) Region, spanning a portion of the western interface of British Columbia, Washington state, and the Lummi Nation and the Nooksack Tribe, supports agriculture, fisheries, diverse wildlife, and vibrant urban areas. Groundwater nitrate contamination affects thousands of households in this region. Fisheries and air quality are also affected including periodic closures of shellfish harvest. To reduce the release of N to the environment, successful approaches are needed that partner all stakeholders with appropriate institutions to integrate science, outreach and management efforts. Our goal is to determine the distribution and quantities of N inventories of the watershed. This work synthesizes publicly available data on N sources including deposition, sewage and septic inputs, fertilizer and manure applications, marine-derived N from salmon, and more. The information on cross-boundary N inputs to the landscape will be coupled with stream monitoring data and existing knowledge about N inputs and exports from the watershed to estimate the N residual and inform N management in the search for the environmentally and economically viable and effective solutions. We will estimate the N inputs into the NAS region and transfers within</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005GBioC..19.1002B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005GBioC..19.1002B"><span>Exploring changes in river nitrogen export to the world's oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bouwman, A. F.; van Drecht, G.; Knoop, J. M.; Beusen, A. H. W.; Meinardi, C. R.</p> <p>2005-03-01</p> <p>Anthropogenic disturbance of river nutrient loads and export to coastal marine systems is a major global problem affecting water quality and biodiversity. Nitrogen is the major nutrient in rivers. On the basis of projections for food production and wastewater effluents, the global river N flux to coastal marine systems is shown to increase by 13% in the coming 3 decades. While the river N flux will grow by about 10% in North America and Oceania and will decrease in Europe, a 27% increase is projected for developing countries, which is a continuation of the trend observed in the past decades. This is a consequence of increasing nitrogen inputs to surface water associated with urbanization, sanitation, development of sewerage systems, and lagging wastewater treatment, as well as increasing food production and associated inputs of N fertilizer, animal manure, atmospheric N deposition, and biological N fixation in agricultural systems. Growing river N loads will lead to increased incidence of problems associated with eutrophication in coastal seas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AdG....31...15K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AdG....31...15K"><span>Regionalization of meso-scale physically based nitrogen modeling outputs to the macro-scale by the use of regression trees</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Künne, A.; Fink, M.; Kipka, H.; Krause, P.; Flügel, W.-A.</p> <p>2012-06-01</p> <p>In this paper, a method is presented to estimate excess nitrogen on large scales considering single field processes. The approach was implemented by using the physically based model J2000-S to simulate the nitrogen balance as well as the hydrological dynamics within meso-scale test catchments. The model input data, the parameterization, the results and a detailed system understanding were used to generate the regression tree models with GUIDE (Loh, 2002). For each landscape type in the federal state of Thuringia a regression tree was calibrated and validated using the model data and results of excess nitrogen from the test catchments. Hydrological parameters such as precipitation and evapotranspiration were also used to predict excess nitrogen by the regression tree model. Hence they had to be calculated and regionalized as well for the state of Thuringia. Here the model J2000g was used to simulate the water balance on the macro scale. With the regression trees the excess nitrogen was regionalized for each landscape type of Thuringia. The approach allows calculating the potential nitrogen input into the streams of the drainage area. The results show that the applied methodology was able to transfer the detailed model results of the meso-scale catchments to the entire state of Thuringia by low computing time without losing the detailed knowledge from the nitrogen transport modeling. This was validated with modeling results from Fink (2004) in a catchment lying in the regionalization area. The regionalized and modeled excess nitrogen correspond with 94%. The study was conducted within the framework of a project in collaboration with the Thuringian Environmental Ministry, whose overall aim was to assess the effect of agro-environmental measures regarding load reduction in the water bodies of Thuringia to fulfill the requirements of the European Water Framework Directive (Bäse et al., 2007; Fink, 2006; Fink et al., 2007).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B12E..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B12E..03P"><span>Biotic Nitrogen Enrichment Regulates Calcium Sources to Forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pett-Ridge, J. C.; Perakis, S. S.; Hynicka, J. D.</p> <p>2015-12-01</p> <p>Calcium is an essential nutrient in forest ecosystems that is susceptible to leaching loss and depletion. Calcium depletion can affect plant and animal productivity, soil acid buffering capacity, and fluxes of carbon and water. Excess nitrogen supply and associated soil acidification are often implicated in short-term calcium loss from soils, but the long-term role of nitrogen enrichment on calcium sources and resupply is unknown. Here we use strontium isotopes (87Sr/86Sr) as a proxy for calcium to investigate how soil nitrogen enrichment from biological nitrogen fixation interacts with bedrock calcium to regulate both short-term available supplies and the long-term sources of calcium in montane conifer forests. Our study examines 22 sites in western Oregon, spanning a 20-fold range of bedrock calcium on sedimentary and basaltic lithologies. In contrast to previous studies emphasizing abiotic control of weathering as a determinant of long-term ecosystem calcium dynamics and sources (via bedrock fertility, climate, or topographic/tectonic controls) we find instead that that biotic nitrogen enrichment of soil can strongly regulate calcium sources and supplies in forest ecosystems. For forests on calcium-rich basaltic bedrock, increasing nitrogen enrichment causes calcium sources to shift from rock-weathering to atmospheric dominance, with minimal influence from other major soil forming factors, despite regionally high rates of tectonic uplift and erosion that can rejuvenate weathering supply of soil minerals. For forests on calcium-poor sedimentary bedrock, we find that atmospheric inputs dominate regardless of degree of nitrogen enrichment. Short-term measures of soil and ecosystem calcium fertility are decoupled from calcium source sustainability, with fundamental implications for understanding nitrogen impacts, both in natural ecosystems and in the context of global change. Our finding that long-term nitrogen enrichment increases forest reliance on atmospheric calcium helps explain reports of greater ecological calcium limitation in an increasingly nitrogen-rich world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.7081M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.7081M"><span>Responses of phytoplankton community to the input of different aerosols in the East China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meng, X.; Chen, Y.; Wang, B.; Ma, Q. W.; Wang, F. J.</p> <p>2016-07-01</p> <p>Atmospheric deposition can affect marine phytoplankton by supplying macronutrients and trace elements. We conducted mesocosm experiments by adding aerosols with different composition (dominated by mineral dust, biomass burning and high Cu, and secondary aerosol, respectively) to the surface seawater of the East China Sea. Chlorophyll a concentrations were found to be the highest and lowest after adding aerosols containing the highest Fe and dissolved inorganic nitrogen (DIN), respectively. The relative abundance of Haptophyceae increased significantly after adding mineral dust, whereas diatom, Dinophyceae and Cryptophyceae reached the maximum accompanied with the highest DIN. Our results suggest that Fe may be more important than DIN in promoting primary productivity in the sampled seawater. The input of mineral dust and anthropogenic aerosols may result in distinct changes of phytoplankton community structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19565772','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19565772"><span>[Assessment of farmland soil quality under different utilization intensity in arid area].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gui, Dong-Wei; Mu, Gui-Jin; Lei, Jia-Qiang; Zeng, Fan-Jiang; Wang, Hui</p> <p>2009-04-01</p> <p>Based on the 2005-2007 experimental data in Cele oasis in the southern margin of Tarim Basin of Xinjiang, the soil quality of four typical types of farmland with different utilization intensity, i.e., farmland with high input, farmland with normal input, newly reclaimed farmland, and farmland in oasis' interior, was analyzed and assessed by using sustainable yield index, soil improvement index, and soil quality synthesis index. Among the farmlands, there were significant differences in the contents of soil organic matter, available nitrogen, and available phosphorus. Newly reclaimed farmland had the lowest level of soil quality, while the farmland in oasis' interior had relatively higher soil quality. This study could help the reasonable exploitation and utilization of farmlands in Cele oasis, and the protection of local farmland eco-environment.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3268318','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3268318"><span>High-yield maize with large net energy yield and small global warming intensity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Grassini, Patricio; Cassman, Kenneth G.</p> <p>2012-01-01</p> <p>Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N⋅ha−1) and irrigation water inputs (272 mm or 2,720 m3 ha−1). Although energy inputs (30 GJ⋅ha−1) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg⋅ha−1 and 159 GJ⋅ha−1, respectively) and lower GHG-emission intensity (231 kg of CO2e⋅Mg−1 of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N2O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals. PMID:22232684</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ERL.....9k5012H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ERL.....9k5012H"><span>A nitrogen budget for Denmark; developments between 1990 and 2010, and prospects for the future</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hutchings, N. J.; Nielsen, O.-K.; Dalgaard, T.; Mikkelsen, M. H.; Børgesen, C. D.; Thomsen, M.; Ellermann, T.; Højberg, A. L.; Mogensen, L.; Winther, M.</p> <p>2014-11-01</p> <p>A nitrogen (N) budget for Denmark has been developed for the years 1990 to 2010, describing the inputs and outputs at the national scale and the internal flows between relevant sectors of the economy. Satisfactorily closing the N budgets for some sectors of the economy was not possible, due to missing or contradictory information. The budgets were nevertheless considered sufficiently reliable to quantify the major flows. Agriculture was responsible for the majority of inputs, though fisheries and energy generation also made significant contributions. Agriculture was the main source of N input to the aquatic environment, whereas agriculture, energy generation and transport all contributed to emissions of reactive N gases to the atmosphere. Significant reductions in inputs of reactive N have been achieved during the 20 years, mainly by restricting the use of N for crop production and improving livestock feeding. This reduction has helped reduce nitrate leaching by about half. Measures to limit ammonia emissions from agriculture and mono-nitrogen oxides (NOx) emissions from energy generation and transport, has reduced gaseous emissions of reactive N. Much N flows through the food and feed processing industries and there is a cascade of N through the consumer to solid and liquid waste management systems. The budget was used to frame a discussion of the potential for further reductions in losses of reactive N to the environment. These will include increasing the recycling of N between economic sectors, increasing the need for the assessment of knock-on effects of interventions within the context of the national N cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4050591','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4050591"><span>Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sullivan, Benjamin W.; Smith, W. Kolby; Townsend, Alan R.; Nasto, Megan K.; Reed, Sasha C.; Chazdon, Robin L.; Cleveland, Cory C.</p> <p>2014-01-01</p> <p>Biological nitrogen fixation (BNF) is the largest natural source of exogenous nitrogen (N) to unmanaged ecosystems and also the primary baseline against which anthropogenic changes to the N cycle are measured. Rates of BNF in tropical rainforest are thought to be among the highest on Earth, but they are notoriously difficult to quantify and are based on little empirical data. We adapted a sampling strategy from community ecology to generate spatial estimates of symbiotic and free-living BNF in secondary and primary forest sites that span a typical range of tropical forest legume abundance. Although total BNF was higher in secondary than primary forest, overall rates were roughly five times lower than previous estimates for the tropical forest biome. We found strong correlations between symbiotic BNF and legume abundance, but we also show that spatially free-living BNF often exceeds symbiotic inputs. Our results suggest that BNF in tropical forest has been overestimated, and our data are consistent with a recent top-down estimate of global BNF that implied but did not measure low tropical BNF rates. Finally, comparing tropical BNF within the historical area of tropical rainforest with current anthropogenic N inputs indicates that humans have already at least doubled reactive N inputs to the tropical forest biome, a far greater change than previously thought. Because N inputs are increasing faster in the tropics than anywhere on Earth, both the proportion and the effects of human N enrichment are likely to grow in the future. PMID:24843146</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2014/5107/pdf/sir2014-5107.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2014/5107/pdf/sir2014-5107.pdf"><span>Occurrence and transport of nitrogen in the Big Sunflower River, northwestern Mississippi, October 2009-June 2011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barlow, Jeannie R.B.; Coupe, Richard H.</p> <p>2014-01-01</p> <p>The Big Sunflower River Basin, located within the Yazoo River Basin, is subject to large annual inputs of nitrogen from agriculture, atmospheric deposition, and point sources. Understanding how nutrients are transported in, and downstream from, the Big Sunflower River is key to quantifying their eutrophying effects on the Gulf. Recent results from two Spatially Referenced Regressions on Watershed attributes (SPARROW models), which include the Big Sunflower River, indicate minimal losses of nitrogen in stream reaches typical of the main channels of major river systems. If SPARROW assumptions of relatively conservative transport of nitrogen are correct and surface-water losses through the bed of the Big Sunflower River are negligible, then options for managing nutrient loads to the Gulf of Mexico may be limited. Simply put, if every pound of nitrogen entering the Delta is eventually delivered to the Gulf, then the only effective nutrient management option in the Delta is to reduce inputs. If, on the other hand, it can be shown that processes within river channels of the Mississippi Delta act to reduce the mass of nitrogen in transport, other hydrologic approaches may be designed to further limit nitrogen transport. Direct validation of existing SPARROW models for the Delta is a first step in assessing the assumptions underlying those models. In order to characterize spatial and temporal variability of nitrogen in the Big Sunflower River Basin, water samples were collected at four U.S. Geological Survey gaging stations located on the Big Sunflower River between October 1, 2009, and June 30, 2011. Nitrogen concentrations were generally highest at each site during the spring of the 2010 water year and the fall and winter of the 2011 water year. Additionally, the dominant form of nitrogen varied between sites. For example, in samples collected from the most upstream site (Clarksdale), the concentration of organic nitrogen was generally higher than the concentrations of ammonia and nitrate plus nitrite; conversely, at sites farther downstream (that is, at Sunflower and Anguilla), nitrate plus nitrite concentrations were generally higher than concentrations of organic nitrogen and ammonia. In addition to the routinely collected samples, water samples from the Big Sunflower River Basin were collected using a Lagrangian sampling scheme, which attempts to follow a single mass of water through time in order to determine how it changes through processing or other pathways as the water moves downstream. Lagrangian sampling was conducted five times during the study period: (1) April 8–21, 2010, (2) May 12–June 3, 2010, (3) June 15–July 1, 2010, (4) August 23–30, 2010, and (5) May 16–20, 2011. Streamflow conditions were variable for each sampling event because of input from local precipitation and irrigation return flow, and streamflow losses through the streambed. Streamflow and total nitrogen flux increased with drainage area, and the dominant form of nitrogen varied with drainage area size and temporally across sampling events. Results from each method indicate relatively conservative transport of nitrogen within the 160 miles between Clarksdale and Anguilla, providing further validation of the SPARROW models. Furthermore, these results suggest relatively conservative transport of nitrogen from the Big Sunflower River to the Gulf of Mexico and, therefore, imply a fairly close association of nutrient application and export from the Big Sunflower River Basin to the Mississippi River. However, within the Big Sunflower River Basin, two potential nitrogen sinks were identified and include the transport and potential transformation of nitrogen through the streambed and the sequestration and potential transformation of nitrogen above the drainage control structures downstream of Anguilla. By coupling these potential loss mechanisms with nitrogen transport dynamics, it may be possible to further reduce the amount of nitrogen leaving the Big Sunflower River Basin and ultimately arriving at the Gulf of Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26519590','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26519590"><span>Selection of effective macroalgal species and tracing nitrogen sources on the different part of Yantai coast, China indicated by macroalgal δ(15)N values.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yujue; Liu, Dongyan; Richard, Pierre; Di, Baoping</p> <p>2016-01-15</p> <p>To determine the dominant nitrogen sources and select effective macroalgal species for monitoring eutrophication along the Yantai coast, the total carbon (TOC), total nitrogen (TN) and nitrogen stable isotope ratio (δ(15)N) in macroalgal tissue were analyzed in conjunction with environmental variables in seawater along the Yantai coastline. The ranges of macroalgal tissue δ(15)N values together with dissolved inorganic nitrogen (DIN) composition indicated that except for the atmospheric deposition, there were three dominant types of nitrogen sources along the Yantai coast, with the agricultural fertilizer usage and factorial wastewater input at the S1 (Zhifu Island coast), the sewage discharge at S2 (the Moon Bay coast), the sewage discharge together with aquaculture impacts at S3 (Fisherman Wharf coast) and S4 (the Horse Island coast). Macroalgal growth were not limited by DIN but limited by P at S2, S3 and S4. Macroalgal species suitable or not for DIN source tracing along the Yantai coast were discussed. For sites with low DIN concentration, many species of three phyla could be used for DIN sources tracing with Laurencia okamurai, Gloiopeltis furcata and Ulva pertusa being ideal species. For site with high DIN concentration, however, species of Rhodophyta were not suitable and only Scytosiphon lomentaria and Monostroma nitidium were chosen. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6417E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6417E"><span>Increased nitrogen availability counteracts climatic change feedback from increased temperature on boreal forest soil organic matter degradation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Erhagen, Bjorn; Nilsson, Mats; Oquist, Mats; Ilstedt, Ulrik; Sparrman, Tobias; Schleucher, Jurgen</p> <p>2014-05-01</p> <p>Over the last century, the greenhouse gas concentrations in the atmosphere have increased dramatically, greatly exceeding pre-industrial levels that had prevailed for the preceding 420 000 years. At the same time the annual anthropogenic contribution to the global terrestrial nitrogen cycle has increased and currently exceeds natural inputs. Both temperature and nitrogen levels have profound effects on the global carbon cycle including the rate of organic matter decomposition, which is the most important biogeochemical process that returns CO2 to the atmosphere. Here we show for the first time that increasing the availability of nitrogen not only directly affects the rate of organic matter decomposition but also significantly affects its temperature dependence. We incubated litter and soil organic matter from a long-term (40 years) nitrogen fertilization experiment in a boreal Scots pine (Pinus silvestris L.) forest at different temperatures and determined the temperature dependence of the decomposition of the sample's organic matter in each case. Nitrogen fertilization did not affect the temperature sensitivity (Q10) of the decomposition of fresh plant litter but strongly reduced that for humus soil organic matter. The Q10 response of the 0-3 cm soil layer decreased from 2.5±0.35 to an average of 1.9±0.21 over all nitrogen treatments, and from 2.2±0.19 to 1.6±0.16 in response to the most intense nitrogen fertilization treatment in the 4-7 cm soil layer. Long-term nitrogen additions also significantly affected the organic chemical composition (as determined by 13C CP-MAS NMR spectroscopy) of the soil organic matter. These changes in chemical composition contributed significantly (p<0.05) to the reduced Q10 response. These new insights into the relationship between nitrogen availability and the temperature sensitivity of organic matter decomposition will be important for understanding and predicting how increases in global temperature and rising anthropogenic nitrogen inputs will affect the global carbon cycle and the associated climatic feedback processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16246472','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16246472"><span>Effects of nitrogen with and without acidified sulphur on an ectomycorrhizal community in a Sitka spruce (Picea sitchensis Bong. Carr) forest.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carfrae, J A; Skene, K R; Sheppard, L J; Ingleby, K; Crossley, A</p> <p>2006-05-01</p> <p>This preliminary study investigated the effects of enhanced nitrogen (NH4NO3 at 48 kg ha(-1) y(-1)), sulphur (Na2SO4 at 50 kg ha(-1) y(-1)), acidified nitrogen and sulphur (H2SO4 + NH4NO3) at pre-stated doses (pH 2.5), and acidified nitrogen and sulphur deposition at double these doses on the ectomycorrhizal community associated with a 13-year-old Sitka spruce (Picea sitchensis) forest. Sulphur deposition had little impact on below ground ectomycorrhizal diversity, but stimulated sporocarp production. Nitrogen inputs increased below ground colonisation compared to acidified nitrogen and sulphur, largely due to an increase in Tylospora fibrillosa colonisation. Sporocarp production and ectomycorrhizal root colonisation by Lactarius rufus were reduced in the nitrogen treated plots. These observations suggest that nitrogen deposition to a young plantation may suppress ectomycorrhizal fungi producing large sporocarps. It is proposed that enhanced nitrogen deposition increases ectomycorrhizal nitrogen assimilation, consuming more carbon and leaving less for extrametrical mycelium and sporocarp development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11400645','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11400645"><span>Forest ecosystems and the changing patterns of nitrogen input and acid deposition today and in the future based on a scenario.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Busch, G; Lammel, G; Beese, F O; Feichter, J; Dentener, F J; Roelofs, G J</p> <p>2001-01-01</p> <p>A global assessment of the impact of the anthropogenic perturbation of the nitrogen and sulfur cycles on forest ecosystems is carried out for both the present-day [1980-1990] and for a projection into the future [2040-2050] under a scenario of economic development which represents a medium path of development according to expert guess [IPCC IS92a]. Results show that forest soils will receive considerably increasing loads of nitrogen and acid deposition and that deposition patterns are likely to change. The regions which are most prone to depletion of soils buffering capacity and supercritical nitrogen deposition are identified in the subtropical and tropical regions of South America and Southeast Asia apart from the well known 'hotspots' North-Eastern America and Central Europe. The forest areas likely to meet these two risks are still a minor fraction of the global forest ecosystems, though. But the bias between eutrophication and acidification will become greater and an enhanced growth triggered by the fertilizing effects of increasing nitrogen input cannot be balanced by the forest soils nutrient pools. Results show increasing loads into forest ecosystems which are likely to account for 46% higher acid loads and 36% higher nitrogen loads in relation to the 1980-1990 situation. Global background deposition of up to 5 kg N ha-1 a-1 will be exceeded at more than 25% of global forest ecosystems and at more than 50% of forest ecosystems on acid sensitive soils. More than 33% of forest ecosystems on acid sensitive soils will receive acid loads which exceeds their buffering capacity. About 25% of forest areas with exceeded acid loads will receive critical nitrogen loads.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24623663','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24623663"><span>Tritrophic interactions between parasitoids and cereal aphids are mediated by nitrogen fertilizer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aqueel, Muhammad A; Raza, Abu-bakar M; Balal, Rashad M; Shahid, Muhammad A; Mustafa, Irfan; Javaid, Muhammad M; Leather, Simon R</p> <p>2015-12-01</p> <p>Host plant nutritional quality can directly and indirectly affect the third trophic levels. The aphid-parasitoid relationship provides an ideal system to investigate tritrophic interactions (as the parasitoids are completely dependent for their development upon their hosts) and assess the bottom up forces operating at different concentrations of nitrogen applications. The effects of varying nitrogen fertilizer on the performance of Aphidius colemani (V.) reared on Sitobion avenae (F.) and Aphidius rhopalosiphi (D.) reared on Rhopalosiphum padi (L.) were measured. Parasitism and percent emergence of parasitoids were positively affected by nitrogen fertilizer treatments while developmental duration (egg, larval, and pupal stages) was not affected by increasing nitrogen inputs. In males and females of both parasitoid species, adult longevity increased with the increasing nitrogen fertilizer. Hind tibia length and mummy weight of both parasitoid species increased with nitrogen fertilizer concentrations, as a result of larger aphids. This study showed that nitrogen application to the soil can have important consequences for aboveground multitrophic interactions. © 2014 Institute of Zoology, Chinese Academy of Sciences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25959905','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25959905"><span>Variation in nitrogen use efficiencies on Dutch dairy farms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Daatselaar, Co Hg; Reijs, Joan R; Oenema, Jouke; Doornewaard, Gerben J; Aarts, H Frans M</p> <p>2015-12-01</p> <p>On dairy farms, the input of nutrients including nitrogen is higher than the output in products such as milk and meat. This causes losses of nitrogen to the environment. One of the indicators for the losses of nitrogen is the nitrogen use efficiency. In the Dutch Minerals Policy Monitoring Program (LMM), many data on nutrients of a few hundred farms are collected which can be processed by the instrument Annual Nutrient Cycle Assessment (ANCA, in Dutch: Kringloopwijzer) in order to provide nitrogen use efficiencies. After dividing the dairy farms (available in the LMM program) according to soil type and in different classes for milk production ha(-1) , it is shown that considerable differences in nitrogen use efficiency exist between farms on the same soil type and with the same level of milk production ha(-1) . This offers opportunities for improvement of the nitrogen use efficiency on many dairy farms. Benchmarking will be a useful first step in this process. © 2015 Society of Chemical Industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16528595','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16528595"><span>Anthropogenic nitrogen sources and exports in a village-scale catchment in Southeast China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cao, Wenzhi; Hong, Huasheng; Zhang, Yuzhen; Chen, Nengwang; Zeng, Yue; Wang, Weiping</p> <p>2006-01-01</p> <p>An experimental village-scale catchment was selected for investigation of nitrogen (N) sources and exports. The mean N application rate over the catchment was 350.2 kg N ha(-1), but this rate varied spatially and temporally. The N leaching loss rate varied from 8.1 to 52.7 kg N ha(-1) under different land use regimes. The average N leaching loss rate was 13.4 kg N ha(-1) over the whole catchment, representing about 3.8% of the total N inputs. The N export rate through stormflows was 28.8 kg N ha(-1), about 8.2% of the total N inputs. Seasonal patterns showed that 95% of N exports through stormflows occurred during July to September in 2002. Overall, the maximum riverine N exports were 12.1% of total N inputs and 15.5% of the inorganic fertilizer N applied. Understanding N sources and exports in a village-scale catchment can provide a knowledge base for amelioration of diffuse agricultural pollution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29746125','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29746125"><span>Effects of Organic and Conventional Crop Nutrition on Profiles of Polar Metabolites in Grain of Wheat.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shewry, Peter; Rakszegi, Marianna; Lovegrove, Alison; Amos, Dominic; Corol, Delia-Irina; Tawfike, Ahmed; Mikó, Péter; Ward, Jane L</p> <p>2018-05-30</p> <p>The profiles of polar metabolites were determined in wholemeal flours of grain from the Broadbalk wheat experiment and from plants grown under organic and low-input systems to study the effects of nutrition on composition. The Broadbalk samples showed increased amino acids, acetate, and choline and decreased fructose and succinate with increasing nitrogen fertilization. Samples receiving farm yard manure had similar grain nitrogen to those receiving 96 kg of N/ha but had higher contents of amino acids, sugars, and organic acids. A comparison of the profiles of grain from organic and low-input systems showed only partial separation, with clear effects of climate and agronomy. However, supervised multivariate analysis showed that the low-input samples had higher contents of many amino acids, raffinose, glucose, organic acids, and choline and lower sucrose, fructose, and glycine. Consequently, although differences between organic and conventional grain occur, these cannot be used to confirm sample identity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PlST...20c5506A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PlST...20c5506A"><span>Behavior of an indigenously fabricated transferred arc plasma furnace for smelting studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>A, K. MANDAL; R, K. DISHWAR; O, P. SINHA</p> <p>2018-03-01</p> <p>The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc plasma furnace (TAP) can meet all requirements, but the disadvantage of this technology is the high cost. For performing experiments in the laboratory, the TAP was fabricated indigenously in a laboratory based on the different inputs provided in the literature for the furnace design and fabrication. The observed parameters such as arc length, energy consumption, graphite electrode consumption, noise level as well as lining erosion were characterized for this fabricated furnace. The nitrogen plasma increased by around 200 K (200 °C) melt temperature and noise levels decreased by ∼10 dB compared to a normal arc. Hydrogen plasma offered 100 K (100 °C) higher melt temperature with ∼5 dB higher sound level than nitrogen plasma. Nitrogen plasma arc melting showed lower electrode and energy consumption than normal arc melting, whereas hydrogen plasma showed lower energy consumption and higher electrode consumption in comparison to nitrogen plasma. The higher plasma arc temperature resulted in a shorter meltdown time than normal arc with smoother arcing. Hydrogen plasma permitted more heats, reduced meltdown time, and lower energy consumption, but with increased graphite consumption and crucible wear. The present study showed that the fabricated arc plasma is better than the normal arc furnace with respect to temperature generation, energy consumption, and environmental friendliness. Therefore, it could be used effectively for smelting-reduction studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/27041','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/27041"><span>Atmospheric nitrogen deposition and habitat alteration in terrestrial and aquatic ecosystems in southern California: implications for threatened and endangered species</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Mark Fenn; Mark Poth; Thomas Meixner</p> <p>2005-01-01</p> <p>Recent studies in the transverse ranges (including Class I Wilderness areas) of southern California have emphasized the strong linkage between levels of air pollution-related atmospheric nitrogen (N) inputs into montane watersheds and levels of nitrate in surface and subsurface drainage waters (fig. 1). Nitrate concentrations in streamwater in southern California are...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/36350','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/36350"><span>Vegetation controls on carbon and nitrogen cycling and retention: contrasts in spruce and hardwood watershed budgets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Charlene N. Kelly; Stephen H. Schoenholtz; Mary Beth Adams</p> <p>2010-01-01</p> <p>Anthropogenic sources of nitrogen (N) have altered the global N cycle to such an extent as to nearly double the rate of N that enters many terrestrial ecosystems. However, predicting the fate of N inputs continues to present challenges, as a multitude of environmental factors play major roles in determining N pathways. This research investigates the role of specific...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BGeo...13..313A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BGeo...13..313A"><span>Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Armitage, A. R.; Fourqurean, J. W.</p> <p>2016-01-01</p> <p>The carbon sequestration potential in coastal soils is linked to aboveground and belowground plant productivity and biomass, which in turn, is directly and indirectly influenced by nutrient input. We evaluated the influence of long-term and near-term nutrient input on aboveground and belowground carbon accumulation in seagrass beds, using a nutrient enrichment (nitrogen and phosphorus) experiment embedded within a naturally occurring, long-term gradient of phosphorus availability within Florida Bay (USA). We measured organic carbon stocks in soils and above- and belowground seagrass biomass after 17 months of experimental nutrient addition. At the nutrient-limited sites, phosphorus addition increased the carbon stock in aboveground seagrass biomass by more than 300 %; belowground seagrass carbon stock increased by 50-100 %. Soil carbon content slightly decreased ( ˜ 10 %) in response to phosphorus addition. There was a strong but non-linear relationship between soil carbon and Thalassia testudinum leaf nitrogen : phosphorus (N : P) or belowground seagrass carbon stock. When seagrass leaf N : P exceeded an approximate threshold of 75 : 1, or when belowground seagrass carbon stock was less than 100 g m-2, there was less than 3 % organic carbon in the sediment. Despite the marked difference in soil carbon between phosphorus-limited and phosphorus-replete areas of Florida Bay, all areas of the bay had relatively high soil carbon stocks near or above the global median of 1.8 % organic carbon. The relatively high carbon content in the soils indicates that seagrass beds have extremely high carbon storage potential, even in nutrient-limited areas with low biomass or productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGD....1216285A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGD....1216285A"><span>Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Armitage, A. R.; Fourqurean, J. W.</p> <p>2015-10-01</p> <p>The carbon sequestration potential in coastal soils is linked to aboveground and belowground plant productivity and biomass, which in turn, is directly and indirectly influenced by nutrient input. We evaluated the influence of long-term and near-term nutrient input on aboveground and belowground carbon accumulation in seagrass beds, using a nutrient enrichment (nitrogen and phosphorus) experiment embedded within a naturally occurring, long-term gradient of phosphorus availability within Florida Bay (USA). We measured organic carbon stocks in soils and above- and belowground seagrass biomass after 17 months of experimental nutrient addition. At the nutrient-limited sites, phosphorus addition increased the carbon stock in aboveground seagrass biomass by more than 300 %; belowground seagrass carbon stock increased by 50-100 %. Soil carbon content slightly decreased (~ 10 %) in response to phosphorus addition. There was a strong but non-linear relationship between soil carbon and Thalassia testudinum leaf nitrogen: phosphorus (N : P) or belowground seagrass carbon stock. When seagrass leaf N : P exceeded a threshold of 75 : 1, or when belowground seagrass carbon stock was less than 100 g m-2, there was less than 3 % organic carbon in the sediment. Despite the marked difference in soil carbon between phosphorus-limited and phosphorus-replete areas of Florida Bay, all areas of the bay had relatively high soil carbon stocks near or above the global median of 1.8 % organic carbon. The relatively high carbon content in the soils indicates that seagrass beds have extremely high carbon storage potential, even in nutrient-limited areas with low biomass or productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1015031','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1015031"><span>Ecological effects of nitrogen deposition in the western United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fenn, M.E.; Baron, Jill S.; Allen, E.B.; Rueth, H.M.; Nydick, K.R.; Geiser, L.; Bowman, W.D.; Sickman, J.O.; Meixner, T.; Johnson, D.W.; Neitlich, P.</p> <p>2003-01-01</p> <p>In the western United States vast acreages of land are exposed to low levels of atmospheric nitrogen (N) deposition, with interspersed hotspots of elevated N deposition downwind of large, expanding metropolitan centers or large agricultural operations. Biological response studies in western North America demonstrate that some aquatic and terrestrial plant and microbial communities are significantly altered by N deposition. Greater plant productivity is counterbalanced by biotic community changes and deleterious effects on sensitive organisms (lichens and phytoplankton) that respond to low inputs of N (3 to 8 kilograms N per hectare per year). Streamwater nitrate concentrations are elevated in high-elevation catchments in Colorado and are unusually high in southern California and in some chaparral catchments in the southwestern Sierra Nevada. Chronic N deposition in the West is implicated in increased fire frequency in some areas and habitat alteration for threatened species. Between hotspots, N deposition is too low to cause noticeable effects or has not been studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27756022','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27756022"><span>Tertiary wastewater treatment in membrane photobioreactor using microalgae: Comparison of forward osmosis & microfiltration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Praveen, Prashant; Heng, Jonathan Yun Ping; Loh, Kai-Chee</p> <p>2016-12-01</p> <p>Discharge of wastewater with high nitrogen and phosphorus content is a major cause of eutrophication. In this study, a microfiltration-based membrane photobioreactor (MPBR) and forward osmosis-based osmotic membrane photobioreactor (OMPBR) have been operated with Chlorella vulgaris for continuous tertiary wastewater treatment. Both the bioreactors exhibited good biomass accumulation (over 2g/L), although the OMPBR achieved better nutrients removal due to high rejection properties of the membranes. At 2days HRT, the OMPBR achieved nitrogen and phosphorus removal efficiencies of 86-99% and 100%, respectively, whereas the corresponding values in the MPBR were 48-97% and 46%, respectively. Based on the energy input, the total operating costs for OMPBR were 32-45% higher than that of the MPBR, and filtration cost for OMPBR was 3.5-4.5 folds higher than that of the MPBR. These results indicate that the integration of membrane filtration with photobioreactors is promising in microalgae-based tertiary wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/53328','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/53328"><span>Ecosystem nutrient responses to chronic nittogen inputs at Fernow Experimental Forest, West Virginia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Frank S. ​Gilliam; Mary Beth Adams; Bradley M. Yurish</p> <p>1996-01-01</p> <p>Among the current environmental concerns for forests of the eastern United States is nitrogen (N) saturation, a result of excessive inputs of N associated with acidic deposition. We studied nutrient responses on N-treated and untreated watersheds of the Fernow Experimental Forest, West Virginia, to test for evidence of N saturation on the treated watershed. The...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002HESS....6..315S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002HESS....6..315S"><span>European nitrogen policies, nitrate in rivers and the use of the INCA model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Skeffington, R.</p> <p></p> <p>This paper is concerned with nitrogen inputs to European catchments, how they are likely to change in future, and the implications for the INCA model. National N budgets show that the fifteen countries currently in the European Union (the EU-15 countries) probably have positive N balances - that is, N inputs exceed outputs. The major sources are atmospheric deposition, fertilisers and animal feed, the relative importance of which varies between countries. The magnitude of the fluxes which determine the transport and retention of N in catchments is also very variable in both space and time. The most important of these fluxes are parameterised directly or indirectly in the INCA Model, though it is doubtful whether the present version of the model is flexible enough to encompass short-term (daily) variations in inputs or longer-term (decadal) changes in soil parameters. As an aid to predicting future changes in deposition, international legislation relating to atmospheric N inputs and nitrate in rivers is reviewed briefly. Atmospheric N deposition and fertiliser use are likely to decrease over the next 10 years, but probably not sufficiently to balance national N budgets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ECSS..135...86S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ECSS..135...86S"><span>Stable nitrogen isotopes in the turtle grass Thalassia testudinum from the Mexican Caribbean: Implications of anthropogenic development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sánchez, Alberto; Ortiz-Hernández, Ma. Concepción; Talavera-Sáenz, Ana; Aguíñiga-García, Sergio</p> <p>2013-12-01</p> <p>Nutrient inputs associated with population growth threaten the integrity of coastal ecosystems. To assess the rapid increase in tourism, we compared the δ15N from Thalassia testudinum collected at sites with different levels of tourism development to detect the N inputs of wastewater discharge (WD) along the coast of Quintana Roo. The contributions of nitrogen enriched in 15N are directly related to the increase of WD inputs in areas of tourism development (Nichupte Lagoon in Cancun) and decreased toward Bahia Akumal and Tulum. The δ15N from T. testudinum was significantly lower at Mahahual and Puerto Morelos. In areas of the lowest development and with tourist activity restricted, such as the Yum Balam Reserve and Sian Ka'an Biosphere Reserve, the δ15N values were relatively enriched compared to Mahahual and Puerto Morelos. Therefore, Puerto Morelos and Mahahual may be used for baseline isotopic monitoring where tourist activities are growing and can lead to environmental pressure on the reef lagoon ecosystem. The anthropogenic N input has the potential to impact, both environmentally and economically, the seagrass meadows and the coral reefs along the coast of Quintana Roo and the Caribbean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187880','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187880"><span>A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ransom, Katherine M.; Nolan, Bernard T.; Traum, Jonathan A.; Faunt, Claudia; Bell, Andrew M.; Gronberg, Jo Ann M.; Wheeler, David C.; Zamora, Celia; Jurgens, Bryant; Schwarz, Gregory E.; Belitz, Kenneth; Eberts, Sandra; Kourakos, George; Harter, Thomas</p> <p>2017-01-01</p> <p>Intense demand for water in the Central Valley of California and related increases in groundwater nitrate concentration threaten the sustainability of the groundwater resource. To assess contamination risk in the region, we developed a hybrid, non-linear, machine learning model within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface. A database of 145 predictor variables representing well characteristics, historical and current field and landscape-scale nitrogen mass balances, historical and current land use, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The boosted regression tree (BRT) method was used to screen and rank variables to predict nitrate concentration at the depths of domestic and public well supplies. The novel approach included as predictor variables outputs from existing physically based models of the Central Valley. The top five most important predictor variables included two oxidation/reduction variables (probability of manganese concentration to exceed 50 ppb and probability of dissolved oxygen concentration to be below 0.5 ppm), field-scale adjusted unsaturated zone nitrogen input for the 1975 time period, average difference between precipitation and evapotranspiration during the years 1971–2000, and 1992 total landscape nitrogen input. Twenty-five variables were selected for the final model for log-transformed nitrate. In general, increasing probability of anoxic conditions and increasing precipitation relative to potential evapotranspiration had a corresponding decrease in nitrate concentration predictions. Conversely, increasing 1975 unsaturated zone nitrogen leaching flux and 1992 total landscape nitrogen input had an increasing relative impact on nitrate predictions. Three-dimensional visualization indicates that nitrate predictions depend on the probability of anoxic conditions and other factors, and that nitrate predictions generally decreased with increasing groundwater age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930068601&hterms=nitrogen+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dnitrogen%2Bproduction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930068601&hterms=nitrogen+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dnitrogen%2Bproduction"><span>Soil nitrogen cycling and nitrous oxide flux in a Rocky Mountain Douglas-fir forest - Effects of fertilization, irrigation and carbon addition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Matson, Pamela A.; Gower, Stith T.; Volkmann, Carol; Billow, Christine; Grier, Charles C.</p> <p>1992-01-01</p> <p>Nitrous oxide fluxes and soil nitrogen transformations were measured in experimentally-treated high elevation Douglas-fir forests in northwestern New Mexico, USA. On an annual basis, forests that were fertilized with 200 kg N/ha emitted an average of 0.66 kg/ha of N2O-N, with highest fluxes occurring in July and August when soils were both warm and wet. Control, irrigated, and woodchip treated plots did not differ, and annual average fluxes ranged from 0.03 to 0.23 kg/ha. Annual net nitrogen mineralization and nitrate production were estimated in soil and forest floor using in situ incubations; fertilized soil mineralized 277 kg/ha/y in contrast to 18 kg/ha/y in control plots. Relative recovery of 15NH4-N applied to soil in laboratory incubations was principally in the form of NO3-N in the fertilized soils, while recovery was mostly in microbial biomass-N in the other treatments. Fertilization apparently added nitrogen that exceeded the heterotrophic microbial demand, resulting in higher rates of nitrate production and higher nitrous oxide fluxes. Despite the elevated nitrous oxide emission resulting from fertilization, we estimate that global inputs of nitrogen into forests are not currently contributing significantly to the increasing concentrations of nitrous oxide in the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18487184','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18487184"><span>Impacts of atmospheric anthropogenic nitrogen on the open ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Duce, R A; LaRoche, J; Altieri, K; Arrigo, K R; Baker, A R; Capone, D G; Cornell, S; Dentener, F; Galloway, J; Ganeshram, R S; Geider, R J; Jickells, T; Kuypers, M M; Langlois, R; Liss, P S; Liu, S M; Middelburg, J J; Moore, C M; Nickovic, S; Oschlies, A; Pedersen, T; Prospero, J; Schlitzer, R; Seitzinger, S; Sorensen, L L; Uematsu, M; Ulloa, O; Voss, M; Ward, B; Zamora, L</p> <p>2008-05-16</p> <p>Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to approximately 3% of the annual new marine biological production, approximately 0.3 petagram of carbon per year. This input could account for the production of up to approximately 1.6 teragrams of nitrous oxide (N2O) per year. Although approximately 10% of the ocean's drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N2O emissions. The effects of increasing atmospheric nitrogen deposition are expected to continue to grow in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..199...25O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..199...25O"><span>Managed nutrient reduction impacts on nutrient concentrations, water clarity, primary production, and hypoxia in a north temperate estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oviatt, Candace; Smith, Leslie; Krumholz, Jason; Coupland, Catherine; Stoffel, Heather; Keller, Aimee; McManus, M. Conor; Reed, Laura</p> <p>2017-12-01</p> <p>Except for the Providence River and side embayments like Greenwich Bay, Narragansett Bay can no longer be considered eutrophic. In summer 2012 managed nitrogen treatment in Narragansett Bay achieved a goal of reducing effluent dissolved inorganic nitrogen inputs by over 50%. Narragansett Bay represents a small northeast US estuary that had been heavily loaded with sewage effluent nutrients since the late 1800s. The input reduction was reflected in standing stock nutrients resulting in a statistically significant 60% reduction in concentration. In the Providence River estuary, total nitrogen decreased from 100 μm to about 40 μm, for example. We tested four environmental changes that might be associated with the nitrogen reduction. System apparent production was significantly decreased by 31% and 45% in the upper and mid Bay. Nutrient reductions resulted in statistically improved water clarity in the mid and upper Bay and in a 34% reduction in summer hypoxia. Nitrogen reduction also reduced the winter spring diatom bloom; winter chlorophyll levels after nutrient reduction have been significantly lower than before the reduction. The impact on the Bay will continue to evolve over the next few years and be a natural experiment for other temperate estuaries that will be experiencing nitrogen reduction. To provide perspective we review factors effecting hypoxia in other estuaries with managed nutrient reduction and conclude that, as in Narragansett Bay, physical factors can be as important as nutrients. On a positive note managed nutrient reduction has mitigated further deterioration in most estuaries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16...54K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16...54K"><span>How to improve fertility of African soils? Leguminous fallows (Cameroon), addition of farmyard manure and mineral fertilizer (Kenya), organic residues management and introduction of N2 fixing species in forest plantations (Congo).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koutika, Lydie-Stella; Mareschal, Louis; Mouanda, Cadeau; Epron, Daniel</p> <p>2014-05-01</p> <p>Most of African soils are inherently infertile and poor in nutrients mainly nitrogen and phosphorus. Several practices are used to improve soil fertility, increase productivity and ensure their sustainability. Soil fertility in the leguminous fallows was evaluated through particulate organic matter (POM), the more active part of soil organic matter (SOM) in Cameroon. The combination of mineral and organic (manure) fertilizers increased microbial P biomass allowing the release of P along the plant growing period in the Kenyan soils. Organic residues management and introduction of nitrogen fixing species (Acacia) were used to improve soil fertility and sustain forest productivity on the coastal plains of Congo. SOM fractionation was made under Pueraria, Mucuna fallows and natural regrowth mainly Chromolaena and under 3 forest plantation treatments installed in previous savanna: 1) no input, 2) normal input, and 3) double input of organic residues. Microbial P biomass and sequential P fractionation were evaluated in high and low P fixing soils. N, C, available P and pH were determined on soil sampled in acacia (100A), eucalypt (100E) and mixed-species (50A:50E) stands. N and P were determined in aboveground litters and in leaves, bark and wood of trees. The two leguminous fallows increased N content in POM fractions i.e., N >1% for Pueraria and Mucuna against N<1% for natural regrowth in the 0-0.10m depth, probably through N input from N2 fixation from the atmosphere (Cameroon).The addition of mineral fertilizers and farmyard manure increases P biomass (4.8 after 2 weeks to 15.2 after 16 weeks), and then decreased to 9.7 mg P g-1 soil (week 32). It also changes the P Hedley fractions partition in the high P fixing Kenyan soil (0-0.10m). After two rotations (14 years), SOM mineralization was the highest in the double input of organic residues treatment (low coarse POM 5.6 g kg-1 of soil and high organo-mineral fraction (OMF) 115 g kg-1 of soil). The introduction of A. mangium in eucalypt plantations increased the soil N concentration under the mixed-species stand (N>0.06%) compared to under the pure eucalypt stand (N<0.05%) in the 0-0.05 m, along with an increase in soil C concentration (C>1% in the mixed stand and C< 0.9 in the pure Eucalyptus stand).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27008775','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27008775"><span>Direct quantification of long-term rock nitrogen inputs to temperate forest ecosystems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A</p> <p>2016-01-01</p> <p>Sedimentary and metasedimentary rocks contain large reservoirs of fixed nitrogen (N), but questions remain over the importance of rock N weathering inputs in terrestrial ecosystems. Here we provide direct evidence for rock N weathering (i.e., loss of N from rock) in three temperate forest sites residing on a N-rich parent material (820-1050 mg N kg(-1); mica schist) in the Klamath Mountains (northern California and southern Oregon), USA. Our method combines a mass balance model of element addition/ depletion with a procedure for quantifying fixed N in rock minerals, enabling quantification of rock N inputs to bioavailable reservoirs in soil and regolith. Across all sites, -37% to 48% of the initial bedrock N content has undergone long-term weathering in the soil. Combined with regional denudation estimates (sum of physical + chemical erosion), these weathering fractions translate to 1.6-10.7 kg x ha(-1) x yr(-1) of rock N input to these forest ecosystems. These N input fluxes are substantial in light of estimates for atmospheric sources in these sites (4.5-7.0 kg x ha(-1) x yr(-1)). In addition, N depletion from rock minerals was greater than sodium, suggesting active biologically mediated weathering of growth-limiting nutrients compared to nonessential elements. These results point to regional tectonics, biologically mediated weathering effects, and rock N chemistry in shaping the magnitude of rock N inputs to the forest ecosystems examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28492806','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28492806"><span>Plankton crustaceans in bays with different trophic status in Llanquihue lake (41° S Chile).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Escalante, P De Los Ríos; Soto, D; Santander-Massa, R; Acevedo, P</p> <p>2017-01-01</p> <p>The Llanquihue lake is included in the called Araucanian or Nord Patagonian lakes located between 38-41° S. These lakes are characterized by their oligo-mesotrophic status due to human intervention which takes to the increase in nutrients inputs from industries and towns. Effects on zooplankton assemblages are observed with marked increase of daphnids abundance. The aim of the present study is to analyze the trophic status and zooplankton relative abundance in different bays of Llanquihue lake. It was found direct associations between chlorophyll a with daphnids percentage, total dissolved nitrogen with reactive soluble phosphorus nitrogen/phosphorus molar radio with cyclopoids percentage, and an inverse relation between daphnids and calanoids percentages. The occurrence of three kinds of microcrustacean assemblages and environmental conditions was evidenced: the first one with high calanoids percentage, low species number and low chlorophyll and nutrients concentration, a second with moderate chlorophyll and nutrients concentration and moderate daphnids percentage; high species number and a third site with high chlorophyll and nutrients concentration, high daphnids percentage and high species number. Daphnids increase under mesotrophic status, agree with similar results observed for southern Argentinean and New Zealand lakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005EOSTr..86..253H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005EOSTr..86..253H"><span>U.S. nitrogen science plan focuses collaborative efforts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holland, E. A.; Guenther, A.; Lee-Taylor, J.; Bertman, S. B.; Carroll, M. A.; Shepson, P. B.; Sparks, J. P.</p> <p></p> <p>Nitrogen is a major nutrient in terrestrial ecosystems and an important catalyst in tropospheric photochemistry. Over the last century human activities have dramatically increased inputs of reactive nitrogen (Nr, the combination of oxidized, reduced, and organically bound nitrogen) to the Earth system (Figure 1). Nitrogen cycle perturbations have compromised air quality and human health, acidified ecosystems, and degraded and eutrophied lakes and coastal estuaries [Vitousek et al., 1997a, 1997b; Rabalais, 2002; Howarth et al., 2003; Townsend et al., 2003; Galloway et al., 2004].Increased Nr affects global climate. Use of agricultural fertilizers such as ammonium nitrate leads to increased soil production of nitrous oxide (N2O), which has 320 times the global warming potential of carbon dioxide (CO2). Emission of nitrogen oxides (NOx = nitric oxide, NO + nitrogen dioxide, NO2) from fossil fuel burning leads to increases in tropospheric ozone, another greenhouse gas. Ozone is phytotoxic, and may reduce terrestrial CO2 sequestration. To predict the effects of nitrogen cycling changes under changing climatic conditions, there needs to be a better understanding of the global nitrogen budget.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27552131','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27552131"><span>Global assessment of nitrogen losses and trade-offs with yields from major crop cultivations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Wenfeng; Yang, Hong; Liu, Junguo; Azevedo, Ligia B; Wang, Xiuying; Xu, Zongxue; Abbaspour, Karim C; Schulin, Rainer</p> <p>2016-12-01</p> <p>Agricultural application of reactive nitrogen (N) for fertilization is a cause of massive negative environmental problems on a global scale. However, spatially explicit and crop-specific information on global N losses into the environment and knowledge of trade-offs between N losses and crop yields are largely lacking. We use a crop growth model, Python-based Environmental Policy Integrated Climate (PEPIC), to determine global N losses from three major food crops: maize, rice, and wheat. Simulated total N losses into the environment (including water and atmosphere) are 44TgNyr -1 . Two thirds of these, or 29TgNyr -1 , are losses to water alone. Rice accounts for the highest N losses, followed by wheat and maize. The N loss intensity (NLI), defined as N losses per unit of yield, is used to address trade-offs between N losses and crop yields. The NLI presents high variation among different countries, indicating diverse N losses to produce the same amount of yields. Simulations of mitigation scenarios indicate that redistributing global N inputs and improving N management could significantly abate N losses and at the same time even increase yields without any additional total N inputs. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20080518-biofiltration-air-contaminated-styrene-effect-nitrogen-supply-gas-flow-rate-inlet-concentration','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20080518-biofiltration-air-contaminated-styrene-effect-nitrogen-supply-gas-flow-rate-inlet-concentration"><span>Biofiltration of air contaminated by styrene: Effect of nitrogen supply, gas flow rate, and inlet concentration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jorio, H.; Bibeau, L.; Heitz, M.</p> <p>2000-05-01</p> <p>The biofiltration process is a promising technology for the treatment of dilute styrene emissions in air. The efficiency of this process is however strongly dependent upon various operational parameters such as the filter bed characteristics, nutrient supplies, input contaminant concentrations, and gas flow rates. The biofiltration of air containing styrene vapors was therefore investigated, employing a novel biomass filter material, in two identical but separate laboratory scale biofiltration units (units 1 and 2), both biofilters being initially inoculated with a microbial consortium. Each biofilter was irrigated with a nutrient solution supplying nitrogen in one of two forms; i.e., mainly asmore » ammonia for unit 1 and exclusively as nitrate for unit 2. The experimental results have revealed that greater styrene elimination rates are achieved in the biofilter supplied with ammonia as the major nitrogen source in comparison to the lesser elimination performance obtained with the nitrate provided biofilter. However, in achieving the high styrene removal rates in the ammonia supplied biofilter, the excess of biomass accumulates on the filtering pellets and causes progressive clogging of the filter media. Furthermore, the effectiveness of nitrate supply as the sole nitrogen nutrient form, on reducing or controlling the biomass accumulation in the filter media in comparison to ammonia, could not be satisfactorily demonstrated because the two biofilters operated with very different styrene elimination capacities. The monitoring of the carbon dioxide concentration profile through both biofilters revealed that the ratio of carbon dioxide produced to the styrene removed was approximately 3/1, which confirms the complete biodegradation of removed styrene, given that some of the organic carbon consumed is also used for the microbial growth. The effects of the most important design parameters, namely styrene input concentrations and gas flow rates, were investigated for each nutrient solution.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70162329','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70162329"><span>Application of SPARROW modeling to understanding contaminant fate and transport from uplands to streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ator, Scott; Garcia, Ana Maria.</p> <p>2016-01-01</p> <p>Understanding spatial variability in contaminant fate and transport is critical to efficient regional water-quality restoration. An approach to capitalize on previously calibrated spatially referenced regression (SPARROW) models to improve the understanding of contaminant fate and transport was developed and applied to the case of nitrogen in the 166,000 km2 Chesapeake Bay watershed. A continuous function of four hydrogeologic, soil, and other landscape properties significant (α = 0.10) to nitrogen transport from uplands to streams was evaluated and compared among each of the more than 80,000 individual catchments (mean area, 2.1 km2) in the watershed. Budgets (including inputs, losses or net change in storage in uplands and stream corridors, and delivery to tidal waters) were also estimated for nitrogen applied to these catchments from selected upland sources. Most (81%) of such inputs are removed, retained, or otherwise processed in uplands rather than transported to surface waters. Combining SPARROW results with previous budget estimates suggests 55% of this processing is attributable to denitrification, 23% to crop or timber harvest, and 6% to volatilization. Remaining upland inputs represent a net annual increase in landscape storage in soils or biomass exceeding 10 kg per hectare in some areas. Such insights are important for planning watershed restoration and for improving future watershed models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B43E0555T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B43E0555T"><span>Measuring and modeling the temporal dynamics of nitrogen balance in an experimental-scale paddy field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tseng, C.; Lin, Y.</p> <p>2013-12-01</p> <p>Nitrogen balance involves many mechanisms and plays an important role to maintain the function of nature. Fertilizer application in agriculture activity is usually seen as a common and significant nitrogen input to environment. Improper fertilizer application on paddy field can result in great amount of various types of nitrogen losses. Hence, it is essential to understand and quantify the nitrogen dynamics in paddy field for fertilizer management and pollution control. In this study, we develop a model which considers major transformation processes of nitrogen (e.g. volatilization, nitrification, denitrification and plant uptake). In addition, we measured different types of nitrogen in plants, soil and water at plant growth stages in an experimental-scale paddy field in Taiwan. The measurement includes total nitrogen in plants and soil, and ammonium-N (NH4+-N), nitrate-N (NO3--N) and organic nitrogen in water. The measured data were used to calibrate the model parameters and validate the model for nitrogen balance simulation. The results showed that the model can accurately estimate the temporal dynamics of nitrogen balance in paddy field during the whole growth stage. This model might be helpful and useful for future fertilizer management and pollution control in paddy field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28351541','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28351541"><span>Nutrient contributions and biogas potential of co-digestion of feedstocks and dairy manure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Guiling; Neibergs, J Shannon; Harrison, Joseph H; Whitefield, Elizabeth M</p> <p>2017-06-01</p> <p>This study focused on collection of data on nutrient flow and biogas yield at a commercial anaerobic digester managed with dairy manure from a 1000 cow dairy and co-digestion of additional feedstocks. Feedstocks included: blood, fish, paper pulp, out of date beverages and grease trap waste. Mass flow of inputs and outputs, nutrient concentration of inputs and outputs, and biogas yield were obtained. It was determined that manure was the primary source of nutrients to the anaerobic digester when co-digested with feedstocks. The percentage of contribution from manure to the total nutrient inputs for total nitrogen, ammonia-nitrogen, phosphorus and total solids was 46.3%, 67.7%, 32.8% and 23.4%, respectively. On average, manure contributed the greatest amount of total nitrogen and ammonia-nitrogen. Grease trap waste contributed the greatest amount of phosphorus and total solids at approximately 50%. Results demonstrated that a reliable estimate of nutrient inflow could be obtained from the product of the nutrient analyses of a single daily composite of influent subsamples times the total daily flow estimated with an in-line flow meter. This approach to estimate total daily nutrient inflow would be more cost effective than testing and summing the contribution of individual feedstocks. Data collected after liquid-solid separation confirmed that the majority (>75%) of nutrients remain with the liquid effluent portion of the manure stream. It was demonstrated that the ash concentration in solids before and after composting could be used to estimate the mass balance of total solids during the compost process. This data confirms that biogas or methane yield could be accurately measured from the ratio of % volatile solids to % total solids. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17804807','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17804807"><span>Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Doney, Scott C; Mahowald, Natalie; Lima, Ivan; Feely, Richard A; Mackenzie, Fred T; Lamarque, Jean-Francois; Rasch, Phil J</p> <p>2007-09-11</p> <p>Fossil fuel combustion and agriculture result in atmospheric deposition of 0.8 Tmol/yr reactive sulfur and 2.7 Tmol/yr nitrogen to the coastal and open ocean near major source regions in North America, Europe, and South and East Asia. Atmospheric inputs of dissociation products of strong acids (HNO(3) and H2SO(4)) and bases (NH(3)) alter surface seawater alkalinity, pH, and inorganic carbon storage. We quantify the biogeochemical impacts by using atmosphere and ocean models. The direct acid/base flux to the ocean is predominately acidic (reducing total alkalinity) in the temperate Northern Hemisphere and alkaline in the tropics because of ammonia inputs. However, because most of the excess ammonia is nitrified to nitrate (NO(3)(-)) in the upper ocean, the effective net atmospheric input is acidic almost everywhere. The decrease in surface alkalinity drives a net air-sea efflux of CO(2), reducing surface dissolved inorganic carbon (DIC); the alkalinity and DIC changes mostly offset each other, and the decline in surface pH is small. Additional impacts arise from nitrogen fertilization, leading to elevated primary production and biological DIC drawdown that reverses in some places the sign of the surface pH and air-sea CO(2) flux perturbations. On a global scale, the alterations in surface water chemistry from anthropogenic nitrogen and sulfur deposition are a few percent of the acidification and DIC increases due to the oceanic uptake of anthropogenic CO(2). However, the impacts are more substantial in coastal waters, where the ecosystem responses to ocean acidification could have the most severe implications for mankind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20624629','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20624629"><span>Nitrogen, land and water inputs in changing cattle farming systems. A historical comparison for France, 19th-21st centuries.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chatzimpiros, Petros; Barles, Sabine</p> <p>2010-09-15</p> <p>This paper provides an original account of the long-term regional metabolism in relation to the cattle rearing in western France starting by the precise formulation of animal diets at three key dates of the 19th, 20th and 21st centuries. We established links between the demand in fodder of the meat and dairy sectors and the necessary inputs of nitrogen, water and land as well as the land cover changes occurring on the affected local and remote cattle acreage. The average agricultural productivity for fodder supply is estimated at about 50 kg N/ha in the mid-19th, 54 kg N/ha in the early 20th and 150 kg N/ha at the turning of the 21st century. Jointly for the dairy and meat productions, the potential efficiency in the conversion of the vegetal into animal protein more than doubled over the studied period, passing from less than 9% in the 19th to 20% in the 21st century. The current cattle sector is sustained for about 25% by land situated beyond the regional frontiers and uses water at intensities that approach or exceed the availability of renewable water. The nitrogen pollution is expressed in terms of the Net Anthropogenic Nitrogen Inputs (NANI) and, by comparison to the N recovered in products, is used to define the N-Environmental Efficiency of the farming. We discuss the historical succession of the factors that contributed to the growth of the meat and milk production and make a comparison of the impacts and policy between the local and distant resources. Copyright 2010 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27589892','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27589892"><span>Atmospheric S and N deposition relates to increasing riverine transport of S and N in southwest China: Implications for soil acidification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Duan, Lei; Chen, Xiao; Ma, Xiaoxiao; Zhao, Bin; Larssen, Thorjørn; Wang, Shuxiao; Ye, Zhixiang</p> <p>2016-11-01</p> <p>Following Europe and North America, East Asia has become a global hotspot for acid deposition, with very high deposition of both sulfur (S) and nitrogen (N) occurring in large areas of southwest and southeast China. This study shows that the outflow flux of sulfate (SO 4 2- ) in three major tributaries of the Upper Yangtze River in the Sichuan Basin in southwest China has been increasing over the last three decades, which implies the regional soil acidification caused by increasing sulfur dioxide (SO 2 ) emissions. Since 2005, the outflow of SO 4 2- to the Upper Yangtze River from the Sichuan Basin has even reached the atmospheric SO 2 emission from the basin. In contrast to S emissions, the rapid increase in nitrogen (N) emissions, including nitrogen oxides (NOx) and ammonia (NH 3 ), have resulted in only a slight increase in nitrate (NO 3 - ) concentrations in surface waters, indicating a large retention of N in the basin. Although N deposition currently contributes much less than S to soil acidification in this area, it is possible that catchments receiving a high input of N may be unable to retain a large fraction of the N deposition over long periods. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020849','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020849"><span>Effect of chronic nitrogen additions on soil nitrogen fractions in red spruce stands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>David, M.B.; Cupples, A.M.; Lawrence, G.B.; Shi, G.; Vogt, K.; Wargo, P.M.</p> <p>1998-01-01</p> <p>The responses of temperate and boreal forest ecosystems to increased nitrogen (N) inputs have been varied, and the responses of soil N pools have been difficult to measure. In this study, fractions and pool sizes of N were determined in the forest floor of red spruce stands at four sites in the northeastern U.S. to evaluate the effect of increased N inputs on forest floor N. Two of the stands received 100 kg N ha-1 yr-1 for three years, one stand received 34 kg N ha-1 yr-1 for six years, and the remaining stand received only ambient N inputs. No differences in total N content or N fractions were measured in samples of the Oie and Oa horizons between treated and control plots in the three sites that received N amendments. The predominant N fraction in these samples was amino acid N (31-45 % of total N), followed by hydrolyzable unidentified N (16-31% of total N), acid- soluble N (18-22 % of total N), and NH4/+-N (9-13 % of total N). Rates of atmospheric deposition varied greatly among the four stands. Ammonium N and amino acid N concentrations in the Oie horizon were positively related to wet N deposition, with respective r2 values of 0.92 and 0.94 (n = 4, p < 0.05). These relationships were somewhat stronger than that observed between atmospheric wet N deposition and total N content of the forest floor, suggesting that these pools retain atmospherically deposited N. The NH4/+- N pool may represent atmospherically deposited N that is incorporated into organic matter, whereas the amino acid N pool could result from microbial immobilization of atmospheric N inputs. The response of forest floor N pools to applications of N may be masked, possibly by the large soil N pool, which has been increased by the long-term input of N from atmospheric deposition, thereby overwhelming the short-term treatments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24742334','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24742334"><span>Influence of lag effect, soil release, and climate change on watershed anthropogenic nitrogen inputs and riverine export dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Dingjiang; Huang, Hong; Hu, Minpeng; Dahlgren, Randy A</p> <p>2014-05-20</p> <p>This study demonstrates the importance of the nitrogen-leaching lag effect, soil nitrogen release, and climate change on anthropogenic N inputs (NANI) and riverine total nitrogen (TN) export dynamics using a 30-yr record for the Yongan River watershed in eastern China. Cross-correlation analysis indicated a 7-yr, 5-yr, and 4-yr lag time in riverine TN export in response to changes in NANI, temperature, and drained agricultural land area, respectively. Enhanced by warmer temperature and improved agricultural drainage, the upper 20 cm of agricultural soils released 270 kg N ha(-1) between 1980 and 2009. Climate change also increased the fractional export of NANI to river. An empirical model (R(2) = 0.96) for annual riverine TN flux incorporating these influencing factors estimated 35%, 41%, and 24% of riverine TN flux originated from the soil N pool, NANI, and background N sources, respectively. The model forecasted an increase of 45%, 25%, and 6% and a decrease of 13% in riverine TN flux from 2010 to 2030 under continued development, climate change, status-quo, and tackling scenarios, respectively. The lag effect, soil N release, and climate change delay riverine TN export reductions with respect to decreases in NANI and should be considered in developing and evaluating N management measures.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>