Sample records for high operating voltage

  1. 30 CFR 56.12071 - Movement or operation of equipment near high-voltage power lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-voltage power lines. 56.12071 Section 56.12071 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... NONMETAL MINES Electricity § 56.12071 Movement or operation of equipment near high-voltage power lines. When equipment must be moved or operated near energized high-voltage powerlines (other than trolley...

  2. 30 CFR 57.12071 - Movement or operation of equipment near high-voltage powerlines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Movement or operation of equipment near high-voltage powerlines. 57.12071 Section 57.12071 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION...-voltage powerlines. When equipment must be moved or operated near energized high-voltage powerlines (other...

  3. New Insights into the Operating Voltage of Aqueous Supercapacitors.

    PubMed

    Yu, Minghao; Lu, Yongzhuang; Zheng, Haibing; Lu, Xihong

    2018-03-12

    The main limitation of aqueous supercapacitors (SCs) lies in their narrow operating voltages, especially when compared with organic SCs. Fundamental understanding of factors relevant to the operating voltage helps providing guidance for the assembly of high-voltage aqueous SCs. In this regard, this concept analyzes the deciding factors for the operating voltage of aqueous SCs. Strategies applied to expand the operating voltage are summarized and discussed from the aspects of electrolyte, electrode, and asymmetric structure. Dynamic factors associated with water electrolysis and maximally using the available potential ranges of electrodes are particularly emphasized. Finally, other promising approaches that have not been explored and their challenges are also elaborated, hoping to provide more insights for the design of high-voltage aqueous SCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Operation of a sub-terahertz CW gyrotron with an extremely low voltage

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Fedotov, A. E.; Fokin, A. P.; Glyavin, M. Yu.; Manuilov, V. N.; Osharin, I. V.

    2017-11-01

    Decreasing the operating voltage for medium-power sub-terahertz gyrotrons aimed at industrial and scientific applications is highly attractive, since it allows size and cost reduction of the tubes and power supply units. In this paper, we examine such an opportunity both numerically and experimentally for the fundamental cyclotron resonance operation of an existing gyrotron initially designed for operation at the second cyclotron harmonic with a relatively high voltage. Simulations predict that output power higher than 10 W can be produced at the fundamental harmonic at voltages less than 2 kV. To form a low-voltage helical electron beam with a sufficiently large pitch-factor, a positive voltage was applied to the first anode of the gyrotron three-electrode magnetron-injection gun with a negative voltage at the cathode. CW gyrotron operation at voltages down to 1.5 kV has been demonstrated at a frequency about of 256 GHz.

  5. Trap Healing for High-Performance Low-Voltage Polymer Transistors and Solution-Based Analog Amplifiers on Foil.

    PubMed

    Pecunia, Vincenzo; Nikolka, Mark; Sou, Antony; Nasrallah, Iyad; Amin, Atefeh Y; McCulloch, Iain; Sirringhaus, Henning

    2017-06-01

    Solution-processed semiconductors such as conjugated polymers have great potential in large-area electronics. While extremely appealing due to their low-temperature and high-throughput deposition methods, their integration in high-performance circuits has been difficult. An important remaining challenge is the achievement of low-voltage circuit operation. The present study focuses on state-of-the-art polymer thin-film transistors based on poly(indacenodithiophene-benzothiadiazole) and shows that the general paradigm for low-voltage operation via an enhanced gate-to-channel capacitive coupling is unable to deliver high-performance device behavior. The order-of-magnitude longitudinal-field reduction demanded by low-voltage operation plays a fundamental role, enabling bulk trapping and leading to compromised contact properties. A trap-reduction technique based on small molecule additives, however, is capable of overcoming this effect, allowing low-voltage high-mobility operation. This approach is readily applicable to low-voltage circuit integration, as this work exemplifies by demonstrating high-performance analog differential amplifiers operating at a battery-compatible power supply voltage of 5 V with power dissipation of 11 µW, and attaining a voltage gain above 60 dB at a power supply voltage below 8 V. These findings constitute an important milestone in realizing low-voltage polymer transistors for solution-based analog electronics that meets performance and power-dissipation requirements for a range of battery-powered smart-sensing applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High performance Si nanowire field-effect-transistors based on a CMOS inverter with tunable threshold voltage.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Sohn, Jung Inn; Cha, Seung Nam; Whang, Dongmok; Kim, Jong Min; Kang, Dae Joon

    2014-05-21

    We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary metal-oxide semiconductor (CMOS) inverter devices. This low-voltage operation was accomplished by controlling the threshold voltage of the n-type Si NWFETs through effective management of the nanowire (NW) doping concentration, while realizing high voltage gain (>10) and ultra-low static power dissipation (≤3 pW) for high-performance digital inverter devices. This result offers a viable means of fabricating high-performance, low-operation voltage, and high-density digital logic circuits using a low-temperature fabrication processing technique suitable for next-generation flexible electronics.

  7. Ion extraction capabilities of closely spaced grids

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1982-01-01

    The ion extraction capabilities of accelerator systems with small screen hole diameters (less than 2.0 mm) are investigated at net-accelerating voltages of 100, 300, and 500 V. Results show that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 1.0 mm, but impingement-limited performance was found to be dependent on the grid separation distance, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained using small hole diameters and closely spaced grids indicate a new mode of grid operation where high current density operation can be achieved with a specified net acceleration voltage by operating the grids at a high rather than low net-to-total acceleration voltage. Beam current densities as high as 25 mA/sq cm were obtained using grids with 1.0 mm diameter holes operating at a net accelerating voltage of 500 V.

  8. The Series Connected Buck Boost Regulator Concept for High Efficiency Light Weight DC Voltage Regulation

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.

    2003-01-01

    Improvements in the efficiency and size of DC-DC converters have resulted from advances in components, primarily semiconductors, and improved topologies. One topology, which has shown very high potential in limited applications, is the Series Connected Boost Unit (SCBU), wherein a small DC-DC converter output is connected in series with the input bus to provide an output voltage equal to or greater than the input voltage. Since the DC-DC converter switches only a fraction of the power throughput, the overall system efficiency is very high. But this technique is limited to applications where the output is always greater than the input. The Series Connected Buck Boost Regulator (SCBBR) concept extends partial power processing technique used in the SCBU to operation when the desired output voltage is higher or lower than the input voltage, and the implementation described can even operate as a conventional buck converter to operate at very low output to input voltage ratios. This paper describes the operation and performance of an SCBBR configured as a bus voltage regulator providing 50 percent voltage regulation range, bus switching, and overload limiting, operating above 98 percent efficiency. The technique does not provide input-output isolation.

  9. HIGH VOLTAGE GENERATOR

    DOEpatents

    Zito, G.V.

    1959-04-21

    This patent relates to high voltage supply circuits adapted for providing operating voltages for GeigerMueller counter tubes, and is especially directed to an arrangement for maintaining uniform voltage under changing conditions of operation. In the usual power supply arrangement for counter tubes the counter voltage is taken from across the power supply output capacitor. If the count rate exceeds the current delivering capaciiy of the capacitor, the capacitor voltage will drop, decreasing the counter voltage. The present invention provides a multivibrator which has its output voltage controlled by a signal proportional to the counting rate. As the counting rate increases beyond the current delivering capacity of the capacitor, the rectified voltage output from the multivibrator is increased to maintain uniform counter voltage.

  10. System for instrumenting and manipulating apparatuses in high voltage

    DOEpatents

    Jordan, Kevin

    2016-06-07

    A system for energizing, operating and manipulating apparatuses in high voltage systems. The system uses a dielectric gas such as SF.sub.6 as a driving power supply for a pneumatic motor which ultimately charges a battery or other energy storage device. The stored energy can then be used for instrumentation equipment, or to power any electrical equipment, in the high voltage deck. The accompanying method provides for the use of the SF6 system for operating an electrical device in a high-voltage environment.

  11. Control of Analyte Electrolysis in Electrospray Ionization Mass Spectrometry Using Repetitively Pulsed High Voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    Analyte electrolysis using a repetitively pulsed high voltage ion source was investigated and compared to that using a regular, continuously operating direct current high voltage ion source in electrospray ionization mass spectrometry. The extent of analyte electrolysis was explored as a function of the length and frequency of the high voltage pulse using the model compound reserpine in positive ion mode. Using +5 kV as the maximum high voltage amplitude, reserpine was oxidized to its 2, 4, 6 and 8-electron oxidation products when direct current high voltage was employed. In contrast, when using a pulsed high voltage, oxidation of reserpinemore » was eliminated by employing the appropriate high voltage pulse length and frequency. This effect was caused by inefficient mass transport of the analyte to the electrode surface during the duration of the high voltage pulse and the subsequent relaxation of the emitter electrode/ electrolyte interface during the time period when the high voltage was turned off. This mode of ESI source operation allows for analyte electrolysis to be quickly and simply switched on or off electronically via a change in voltage pulse variables.« less

  12. Analysis and Research on the effect of the Operation of Small Hydropower in the Regional Power Grid

    NASA Astrophysics Data System (ADS)

    Ang, Fu; Guangde, Dong; Xiaojun, Zhu; Ruimiao, Wang; Shengyi, Zhu

    2018-03-01

    The analysis of reactive power balance and voltage of power network not only affects the system voltage quality, but also affects the economic operation of power grid. In the calculation of reactive power balance and voltage analysis in the past, the problem of low power and low system voltage has been the concern of people. When small hydropower stations in the wet period of low load, the analysis of reactive power surplus and high voltage for the system, if small hydropower unit the capability of running in phase is considered, it can effectively solve the system low operation voltage of the key point on the high side.

  13. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    NASA Technical Reports Server (NTRS)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    1982-01-01

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  14. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    NASA Astrophysics Data System (ADS)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  15. Hybrid-PIC Modeling of a High-Voltage, High-Specific-Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani; Huang, Wensheng

    2013-01-01

    The primary life-limiting mechanism of Hall thrusters is the sputter erosion of the discharge channel walls by high-energy propellant ions. Because of the difficulty involved in characterizing this erosion experimentally, many past efforts have focused on numerical modeling to predict erosion rates and thruster lifespan, but those analyses were limited to Hall thrusters operating in the 200-400V discharge voltage range. Thrusters operating at higher discharge voltages (V(sub d) >= 500 V) present an erosion environment that may differ greatly from that of the lower-voltage thrusters modeled in the past. In this work, HPHall, a well-established hybrid-PIC code, is used to simulate NASA's High-Voltage Hall Accelerator (HiVHAc) at discharge voltages of 300, 400, and 500V as a first step towards modeling the discharge channel erosion. It is found that the model accurately predicts the thruster performance at all operating conditions to within 6%. The model predicts a normalized plasma potential profile that is consistent between all three operating points, with the acceleration zone appearing in the same approximate location. The expected trend of increasing electron temperature with increasing discharge voltage is observed. An analysis of the discharge current oscillations shows that the model predicts oscillations that are much greater in amplitude than those measured experimentally at all operating points, suggesting that the differences in oscillation amplitude are not strongly associated with discharge voltage.

  16. Influence of high-power nonlinear consumers on electric energy losses in mining high-voltage power line

    NASA Astrophysics Data System (ADS)

    Averbukh, M. A.; Prasol, D. A.

    2018-03-01

    The article elucidates the influence of high-power nonlinear consumers on electric energy losses in a mining high-voltage power line. The object of the study was a fragment of a power supply system of a mining enterprise with hoists. The investigation has assessed the electric energy losses conditioned by nonsinusoidal currents and voltages of the power line over a single hoist operation cycle. Also, the total electric energy losses in a high-voltage power line of a mining enterprise was calculated. The energy losses due to nonsinusoidal currents and voltages over single operation cycle of the cage hoist amount to 36.358 kWh. The presence of such losses increases total technological power and energy losses in the mining high-voltage power line by approximately 5-15%. The total energy losses in the components of the mining enterprise high-voltage power line caused by nonsinusoidal voltage are significant and lead to additional expenses of the company.

  17. Design and realization of high voltage disconnector condition monitoring system

    NASA Astrophysics Data System (ADS)

    Shi, Jinrui; Xu, Tianyang; Yang, Shuixian; Li, Buoyang

    2017-08-01

    The operation status of the high voltage disconnector directly affects the safe and stable operation of the power system. This article uses the wireless frequency hopping communication technology of the communication module to achieve the temperature acquisition of the switch contacts and high voltage bus, to introduce the current value of the loop in ECS, and judge the operation status of the disconnector by considering the ambient temperature, calculating the temperature rise; And through the acquisition of the current of drive motor in the process of switch closing and opening, and fault diagnosis of the disconnector by analyzing the change rule of the drive motor current, the condition monitoring of the high voltage disconnector is realized.

  18. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    DOEpatents

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  19. High Voltage SPT Performance

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jacobson, David; Jankovsky, Robert

    2001-01-01

    A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

  20. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.

    PubMed

    Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J

    2007-02-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.

  1. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz

    PubMed Central

    Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.

    2007-01-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412

  2. Coordinative Voltage Control Strategy with Multiple Resources for Distribution Systems of High PV Penetration: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiangqi; Zhang, Yingchen

    This paper presents an optimal voltage control methodology with coordination among different voltage-regulating resources, including controllable loads, distributed energy resources such as energy storage and photovoltaics (PV), and utility voltage-regulating devices such as voltage regulators and capacitors. The proposed methodology could effectively tackle the overvoltage and voltage regulation device distortion problems brought by high penetrations of PV to improve grid operation reliability. A voltage-load sensitivity matrix and voltage-regulator sensitivity matrix are used to deploy the resources along the feeder to achieve the control objectives. Mixed-integer nonlinear programming is used to solve the formulated optimization control problem. The methodology has beenmore » tested on the IEEE 123-feeder test system, and the results demonstrate that the proposed approach could actively tackle the voltage problem brought about by high penetrations of PV and improve the reliability of distribution system operation.« less

  3. 30 CFR 75.705-3 - Work on energized high-voltage surface lines; reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on energized high-voltage surface lines... Work on energized high-voltage surface lines; reporting. Any operator designating and assigning qualified persons to perform repairs on energized high-voltage surface lines under the provisions of § 75...

  4. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    DOEpatents

    Clark, Lawrence T [Phoenix, AZ; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  5. The state of the art of the development of SMES for bridging instantaneous voltage dips in Japan

    NASA Astrophysics Data System (ADS)

    Nagaya, Shigeo; Hirano, Naoki; Katagiri, Toshio; Tamada, Tsutomu; Shikimachi, Koji; Iwatani, Yu; Saito, Fusao; Ishii, Yusuke

    2012-12-01

    Development of apparatuses for protecting industrial facilities such as semiconductor plants or information industries from instantaneous voltage dips, which requires very large output power, has been expected. A Superconducting magnetic energy storage system (SMES), one of such apparatus, consists of superconducting magnets that must withstand high voltage during operation and require high reliability. We have already development of SMES using conventional superconducting coils and done the field test of the SMES for bridging instantaneous voltage dips. After field test, the commercial SMES for instantaneous voltage dips is working there. Since field test has started, we have confirmed nearly 40 operations, and all have succeeded. In 2011, three commercial SMES units for bridging instantaneous voltage dips are operating in Japan.

  6. NASCAP modelling of high-voltage power system interactions with space charged-particle environments

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Roche, J. C.; Mandell, M. J.

    1979-01-01

    A simple space power system operating in geosynchronous orbit was analyzed. This system consisted of two solar array wings and a central body. Each solar array wing was considered to be divided into three regions operating at 2000 volts. The center body was considered to be an electrical ground with the array voltages both positive and negative relative to ground. The system was analyzed for both a normal environment and a moderate geomagnetic substorm environment. Initial results indicate a high probability of arcing at the interconnects on the negative operating voltage wing. The dielectric strength of the substrate may be exceeded giving rise to breakdown in the bulk of the material. The geomagnetic substorm did not seem to increase the electrical gradients at the interconnects on the negative operating voltage wing but did increase the gradients on the positive operating voltage wing which could result in increased coupling current losses.

  7. Methods and devices for optimizing the operation of a semiconductor optical modulator

    DOEpatents

    Zortman, William A.

    2015-07-14

    A semiconductor-based optical modulator includes a control loop to control and optimize the modulator's operation for relatively high data rates (above 1 GHz) and/or relatively high voltage levels. Both the amplitude of the modulator's driving voltage and the bias of the driving voltage may be adjusted using the control loop. Such adjustments help to optimize the operation of the modulator by reducing the number of errors present in a modulated data stream.

  8. MCT/MOSFET Switch

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1990-01-01

    Metal-oxide/semiconductor-controlled thyristor (MCT) and metal-oxide/semiconductor field-effect transistor (MOSFET) connected in switching circuit to obtain better performance. Offers high utilization of silicon, low forward voltage drop during "on" period of operating cycle, fast turnon and turnoff, and large turnoff safe operating area. Includes ability to operate at high temperatures, high static blocking voltage, and ease of drive.

  9. Quench Detection and Protection for High Temperature Superconducting Transformers by Using the Active Power Method

    NASA Astrophysics Data System (ADS)

    Nanato, N.; Kobayashi, Y.

    AC high temperature superconducting (HTS) coils have been developed for transformers, motors and so on. Quench detection and protection system are essential for safety operations of the AC HTS facilities. The balance voltage method is universally used for the quench detection and protection, however especially for AC operations, the method has risks in terms of high voltage sparks. Because the method needs a voltage tap soldered to a midpoint of the coil winding and the AC HTS facilities generally operate at high voltages and therefore high voltage sparks may occur at the midpoint with no insulation. We have proposed the active power method for the quench detection and protection. The method requires no voltage tap on the midpoint of the coil winding and therefore it has in-built effectiveness for the AC HTS facilities. In this paper, we show that the method can detect the quench in an HTS transformer and moreover our proposed quench protection circuits which consist of thyristors are simple and useful for the AC HTS facilities.

  10. High-frequency high-voltage high-power DC-to-DC converters

    NASA Astrophysics Data System (ADS)

    Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.

    1981-07-01

    The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.

  11. High-frequency high-voltage high-power DC-to-DC converters

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.

    1981-01-01

    The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.

  12. 30 CFR 77.807-3 - Movement of equipment; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... high-voltage lines. 77.807-3 Section 77.807-3 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-3 Movement of equipment; minimum distance from high-voltage lines. When any part of any equipment operated on the surface of any...

  13. Optimal Operation and Dispatch of Voltage Regulation Devices Considering High Penetrations of Distributed Photovoltaic Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry A; Hodge, Brian S; Cho, Gyu-Jung

    Voltage regulation devices have been traditionally installed and utilized to support distribution voltages. Installations of distributed energy resources (DERs) in distribution systems are rapidly increasing, and many of these generation resources have variable and uncertain power output. These generators can significantly change the voltage profile for a feeder; therefore, in the distribution system planning stage of the optimal operation and dispatch of voltage regulation devices, possible high penetrations of DERs should be considered. In this paper, we model the IEEE 34-bus test feeder, including all essential equipment. An optimization method is adopted to determine the optimal siting and operation ofmore » the voltage regulation devices in the presence of distributed solar power generation. Finally, we verify the optimal configuration of the entire system through the optimization and simulation results.« less

  14. A high voltage power supply for the AE-C and D low energy electron experiment

    NASA Technical Reports Server (NTRS)

    Gillis, J. A.

    1974-01-01

    A description is given of the electrical and mechanical design and operation of high voltage power supplies for space flight use. The supply was used to generate the spiraltron high voltage for low energy electron experiment on AE-C and D. Two versions of the supply were designed and built; one design is referred to as the low power version (AE-C) and the other as the high power version (AE-D). Performance is discussed under all operating conditions.

  15. Large space system: Charged particle environment interaction technology

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Roche, J. C.; Grier, N. T.

    1979-01-01

    Large, high voltage space power systems are proposed for future space missions. These systems must operate in the charged-particle environment of space and interactions between this environment and the high voltage surfaces are possible. Ground simulation testing indicated that dielectric surfaces that usually surround biased conductors can influence these interactions. For positive voltages greater than 100 volts, it has been found that the dielectrics contribute to the current collection area. For negative voltages greater than-500 volts, the data indicates that the dielectrics contribute to discharges. A large, high-voltage power system operating in geosynchronous orbit was analyzed. Results of this analysis indicate that very strong electric fields exist in these power systems.

  16. New developments in the field of high voltage and extra-high voltage cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jocteur, R.

    1990-04-01

    In this paper, the author presents the developments in progress at the present time in France concerning the high voltage (HV) and extra-high voltage (EHV) cables with synthetic insulation and their accessories up to the 500 kV range. The authors have adopted a maximum operating field strength approaching 16 kV/mm (405 V/mil) for low density polyethylene (LDPE) insulated cables. The on-going studies should allow to bring the maximum operating field strength for crosslinked polyethylene (XLPE) insulation from 7 to 10 kV/mm (180 to 255 V/mil) and cables could be manufactured more economically with this material.

  17. 30 CFR 77.807-2 - Booms and masts; minimum distance from high-voltage lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-voltage lines. 77.807-2 Section 77.807-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-2 Booms and masts; minimum distance from high-voltage lines. The booms and masts of equipment operated on the surface of any...

  18. Design considerations for large space electric power systems

    NASA Technical Reports Server (NTRS)

    Renz, D. D.; Finke, R. C.; Stevens, N. J.; Triner, J. E.; Hansen, I. G.

    1983-01-01

    As power levels of spacecraft rise to the 50 to 100 kW range, it becomes apparent that low voltage (28 V) dc power distribution and management systems will not operate efficiently at these higher power levels. The concept of transforming a solar array voltage at 150 V dc into a 1000 V ac distribution system operating at 20 kHz is examined. The transformation is accomplished with series-resonant inverter by using a rotary transformer to isolate the solar array from the spacecraft. The power can then be distributed in any desired method such as three phase delta to delta. The distribution voltage can be easily transformed to any desired load voltage and operating frequency. The reasons for the voltage limitations on the solar array due to plasma interactions and the many advantages of a high voltage, high frequency at distribution system are discussed.

  19. Hybrid electric vehicle power management system

    DOEpatents

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  20. Low voltage to high voltage level shifter and related methods

    NASA Technical Reports Server (NTRS)

    Mentze, Erik J. (Inventor); Buck, Kevin M. (Inventor); Hess, Herbert L. (Inventor); Cox, David F. (Inventor)

    2006-01-01

    A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

  1. Deep Space One High-Voltage Bus Management

    NASA Technical Reports Server (NTRS)

    Rachocki, Ken; Nieraeth, Donald

    1999-01-01

    The design of the High Voltage Power Converter Unit on DS1 allows both the spacecraft avionics and ion propulsion to operate in a stable manner near the PPP of the solar array. This approach relies on a fairly well-defined solar array model to determine the projected PPP. The solar array voltage set-points have to be updated every week to maintain operation near PPP. Stable operation even to the LEFT of the Peak Power Point is achievable so long as you do not change the operating power level of the ion engine. The next step for this technology is to investigate the use of onboard autonomy to determine the optimum SA voltage regulation set-point (i.e. near the PPP); this is for future missions that have one or more ion propulsion subsystems.

  2. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  3. Processing circuitry for single channel radiation detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2009-01-01

    Processing circuitry is provided for a high voltage operated radiation detector. An event detector utilizes a comparator configured to produce an event signal based on a leading edge threshold value. A preferred event detector does not produce another event signal until a trailing edge threshold value is satisfied. The event signal can be utilized for counting the number of particle hits and also for controlling data collection operation for a peak detect circuit and timer. The leading edge threshold value is programmable such that it can be reprogrammed by a remote computer. A digital high voltage control is preferably operable to monitor and adjust high voltage for the detector.

  4. Special features of large-size resistors for high-voltage pulsed installations

    NASA Astrophysics Data System (ADS)

    Minakova, N. N.; Ushakov, V. Ya.

    2017-12-01

    Many structural materials in pulsed power engineering operate under extreme conditions. For example, in high-voltage electrophysical installations among which there are multistage high-voltage pulse generators (HVPG), rigid requirements are imposed on characteristics of solid-state resistors that are more promising in comparison with widely used liquid resistors. Materials of such resistors shall be able to withstand strong electric fields, operate at elevated temperatures, in transformer oil, etc. Effective charge of high-voltage capacitors distributed over the HVPG steps (levels) requires uniform voltage distribution along the steps of the installation that can be obtained using large-size resistors. For such applications, polymer composite materials are considered rather promising. They can work in transformer oil and have small mass in comparison with bulky resistors on inorganic basis. This allows technical solutions already developed and implemented in HVPG with liquid resistors to be employed. This paper is devoted to the solution of some tasks related to the application of filled polymers in high-voltage engineering.

  5. 30 CFR 75.705-9 - Operating disconnecting or cutout switches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Operating disconnecting or cutout switches. 75... Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage... insulated and maintained to protect the operator from the voltage to which he is exposed. When such switches...

  6. 30 CFR 75.705-9 - Operating disconnecting or cutout switches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Operating disconnecting or cutout switches. 75... Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage... insulated and maintained to protect the operator from the voltage to which he is exposed. When such switches...

  7. 30 CFR 75.705-9 - Operating disconnecting or cutout switches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Operating disconnecting or cutout switches. 75... Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage... insulated and maintained to protect the operator from the voltage to which he is exposed. When such switches...

  8. 30 CFR 75.705-9 - Operating disconnecting or cutout switches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Operating disconnecting or cutout switches. 75... Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage... insulated and maintained to protect the operator from the voltage to which he is exposed. When such switches...

  9. 30 CFR 75.705-9 - Operating disconnecting or cutout switches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Operating disconnecting or cutout switches. 75... Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage... insulated and maintained to protect the operator from the voltage to which he is exposed. When such switches...

  10. Apparatus and method for detecting and measuring changes in linear relationships between a number of high frequency signals

    DOEpatents

    Bittner, J.W.; Biscardi, R.W.

    1991-03-19

    An electronic measurement circuit is disclosed for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals. 2 figures.

  11. Apparatus and method for detecting and measuring changes in linear relationships between a number of high frequency signals

    DOEpatents

    Bittner, John W.; Biscardi, Richard W.

    1991-01-01

    An electronic measurement circuit for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals.

  12. 250 kV 6 mA compact Cockcroft-Walton high-voltage power supply.

    PubMed

    Ma, Zhan-Wen; Su, Xiao-Dong; Lu, Xiao-Long; Wei, Zhen; Wang, Jun-Run; Huang, Zhi-Wu; Miao, Tian-You; Su, Tong-Ling; Yao, Ze-En

    2016-08-01

    A compact power supply system for a compact neutron generator has been developed. A 4-stage symmetrical Cockcroft-Walton circuit is adopted to produce 250 kV direct current high-voltage. A 2-stage 280 kV isolation transformer system is used to drive the ion source power supply. For a compact structure, safety, and reliability during the operation, the Cockcroft-Walton circuit and the isolation transformer system are enclosed in an epoxy vessel containing the transformer oil whose size is about ∅350 mm × 766 mm. Test results indicate that the maximum output voltage of the power supply is 282 kV, and the stability of the output voltage is better than 0.63% when the high voltage power supply is operated at 250 kV, 6.9 mA with the input voltage varying ±10%.

  13. 250 kV 6 mA compact Cockcroft-Walton high-voltage power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhan-Wen; Su, Xiao-Dong; Wei, Zhen

    A compact power supply system for a compact neutron generator has been developed. A 4-stage symmetrical Cockcroft-Walton circuit is adopted to produce 250 kV direct current high-voltage. A 2-stage 280 kV isolation transformer system is used to drive the ion source power supply. For a compact structure, safety, and reliability during the operation, the Cockcroft-Walton circuit and the isolation transformer system are enclosed in an epoxy vessel containing the transformer oil whose size is about ∅350 mm × 766 mm. Test results indicate that the maximum output voltage of the power supply is 282 kV, and the stability of themore » output voltage is better than 0.63% when the high voltage power supply is operated at 250 kV, 6.9 mA with the input voltage varying ±10%.« less

  14. Neutron-induced single event burnout in high voltage electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normand, E.; Wert, J.L.; Oberg, D.L.

    Energetic neutrons with an atmospheric neutron spectrum, which were demonstrated to induce single event burnout in power MOSFETs, have been shown to induce burnout in high voltage (>3,000V) electronics when operated at voltages as low as 50% of rated voltage. The laboratory failure rates correlate well with field failure rates measured in Europe.

  15. Operational Characteristics of a High Voltage Dense Plasma Focus.

    DTIC Science & Technology

    1985-11-01

    A high voltage dense plasma focus powered by a single-stage Marx bank was designed, built and operated. The maximum bank parameters are: voltage--120...kV, energy--20 kJ, short-circuit current--600kA. The bank impedance is about 200 millohms. The plasma focus center electrode diameter is 1.27 cm. The...about 50 milliohms. The context of this work is established with a review of previous plasma focus theoretical, experimental and computational work and

  16. AN ENGINEERING SOLUTION TO THE RHIC BEAM ABORT KICKER UPGRADE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHANG,W.ROSER,T.SANDBERG,J.TAN,Y.ET AL.

    2004-05-23

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is the world largest superconducting accelerator for nuclear energy research. Particle beams traveling in opposite directions in two accelerator rings, Blue and Yellow, collide at six interaction regions to create phenomena of the early universe. There are more than 1700 superconducting magnets and very sophisticate and delicate large detectors inside the RHIC tunnel. With high beam intensity and ultra high beam energy, an inadvertent loss of beam can result severe damage to the superconducting magnets and detectors. Beam abort kickers are used to remove beam safely from the ring. Themore » large inductive load, high current capability, short beam gap, and high reliability are the challenging issues of this system design. With high intensity and high momentum beam operation, it is desirable to have all high voltage modulators located outside of RHIC tunnel. However, to generate 22 kA output current per modulator with fast rise time, a conventional low impedance PFN and matched transmission cable design can push the operation voltage easily into 100 kV range. The large quantity of high voltage pulse transmission cables required by conventional design is another difficult issue. Therefore, the existing system has all ten high voltage modulators located inside RHIC tunnel. More than a hundred plastic packaged mineral oil filled high voltage capacitors raise serious concerns of fire and smoking threats. Other issues, such as kicker misfire, device availability in the future, and inaccessibility during operation, also demand an engineering solution for the future upgrade. In this paper, we investigate an unconventional approach to meet the technical challenges of RHIC beam abort system. The proposed design has all modulators outside of the RHIC tunnel. It will transmit output pulse through high voltage cables. The modulators will utilize solid-state switches, and operate at a maximum voltage in 30 to 50 kV range.« less

  17. Adjustable electronic load-alarm relay

    DOEpatents

    Mason, Charles H.; Sitton, Roy S.

    1976-01-01

    This invention is an improved electronic alarm relay for monitoring the current drawn by an AC motor or other electrical load. The circuit is designed to measure the load with high accuracy and to have excellent alarm repeatability. Chattering and arcing of the relay contacts are minimal. The operator can adjust the set point easily and can re-set both the high and the low alarm points by means of one simple adjustment. The relay includes means for generating a signal voltage proportional to the motor current. In a preferred form of the invention a first operational amplifier is provided to generate a first constant reference voltage which is higher than a preselected value of the signal voltage. A second operational amplifier is provided to generate a second constant reference voltage which is lower than the aforementioned preselected value of the signal voltage. A circuit comprising a first resistor serially connected to a second resistor is connected across the outputs of the first and second amplifiers, and the junction of the two resistors is connected to the inverting terminal of the second amplifier. Means are provided to compare the aforementioned signal voltage with both the first and second reference voltages and to actuate an alarm if the signal voltage is higher than the first reference voltage or lower than the second reference voltage.

  18. Surface interactions and high-voltage current collection

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Katz, I.

    1985-01-01

    Spacecraft of the future will be larger and have higher power requirements than any flown to date. For several reasons, it is desirable to operate a high power system at high voltage. While the optimal voltages for many future missions are in the range 500 to 5000 volts, the highest voltage yet flown is approximately 100 volts. The NASCAP/LEO code is being developed to embody the phenomenology needed to model the environmental interactions of high voltage spacecraft. Some plasma environment are discussed. The treatment of the surface conductivity associated with emitted electrons and some simulations by NASCAP/LEO of ground based high voltage interaction experiments are described.

  19. Low voltage operation of IGZO thin film transistors enabled by ultrathin Al2O3 gate dielectric

    NASA Astrophysics Data System (ADS)

    Ma, Pengfei; Du, Lulu; Wang, Yiming; Jiang, Ran; Xin, Qian; Li, Yuxiang; Song, Aimin

    2018-01-01

    An ultrathin, 5 nm, Al2O3 film grown by atomic-layer deposition was used as a gate dielectric for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). The Al2O3 layer showed a low surface roughness of 0.15 nm, a low leakage current, and a high breakdown voltage of 6 V. In particular, a very high gate capacitance of 720 nF/cm2 was achieved, making it possible for the a-IGZO TFTs to not only operate at a low voltage of 1 V but also exhibit desirable properties including a low threshold voltage of 0.3 V, a small subthreshold swing of 100 mV/decade, and a high on/off current ratio of 1.2 × 107. Furthermore, even under an ultralow operation voltage of 0.6 V, well-behaved transistor characteristics were still observed with an on/off ratio as high as 3 × 106. The electron transport through the Al2O3 layer has also been analyzed, indicating the Fowler-Nordheim tunneling mechanism.

  20. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.

  1. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  2. High voltage testing for the Majorana Demonstrator

    DOE PAGES

    Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; ...

    2016-04-04

    The Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the Majorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of themore » high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during the Majorana Demonstrator commissioning phase were studied. Furthermore, a stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.« less

  3. High voltage testing for the Majorana Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abgrall, N.; Arnquist, Isaac J.; Avignone, F. T.

    2016-07-01

    The Majorana Collaboration is constructing theMajorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of theMajorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path,more » including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during theMajorana Demonstrator commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.« less

  4. Technical Trend of Environment-friendly High Voltage Vacuum Circuit Breaker (VCB)

    NASA Astrophysics Data System (ADS)

    Okubo, Hitoshi

    Vacuum Circuit Breakers (VCBs) have widely been used for low and medium voltage level, because of their high current interruption performance, maintenance free operations and environment-friendly characteristics. The VCB is now going to be applied to higher voltage systems for transmission and substation use. In this paper, the recent technical trend and future perspectives of high voltage VCBs are described, as well as their technical background.

  5. SABRE modification to a higher voltage high impedance inductive voltage adder (IVA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.

    The SABRE accelerator was originally designed to operate as low impedance voltage adder with 40-ohm maximum output impedance in negative polarity operation and approximately 20 ohm in positive polarity. Because of the low impedance and higher than expected energy losses in the pulse forming network, the operating input cavity voltage is of the order of 800 kV which limits the total output voltage to {approximately} 8 MV for negative polarity and 5 to 6 MV for positive polarity. The modifications presented here aim to increase the output voltage in both polarities. A new high impedance central electrode was designed capablemore » of operating both in negative and positive polarities, and the number of pulse forming lines feeding the inductively isolated cavities was reduced to half. These modifications were recently tested in positive polarity. An increase in the total accelerating voltage from 5.5 MV to 9 MV was observed while stressing all components to the level required to achieve 12 MV in negative polarity. In these experiments only 65% of the usual operating intermediate store capacitor voltage was necessary (1.7 MV instead of 2.6 MV). Currently, the device is reconfigured for negative polarity tests. The cavities are rotated by 180{degree} and a 17-inch spool is added at the base of the cantilevered center electrode (cathode electrode). Positive and negative polarity results are presented and compared with simulations.« less

  6. High PRF high current switch

    DOEpatents

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  7. A low knee voltage and high breakdown voltage of 4H-SiC TSBS employing poly-Si/Ni Schottky scheme

    NASA Astrophysics Data System (ADS)

    Kim, Dong Young; Seok, Ogyun; Park, Himchan; Bahng, Wook; Kim, Hyoung Woo; Park, Ki Cheol

    2018-02-01

    We report a low knee voltage and high breakdown voltage 4H-SiC TSBS employing poly-Si/Ni dual Schottky contacts. A knee voltage was significantly improved from 0.75 to 0.48 V by utilizing an alternative low work-function material of poly-Si as an anode electrode. Also, reverse breakdown voltage was successfully improved from 901 to 1154 V due to a shrunk low-work-function Schottky region by a proposed self-align etching process between poly-Si and SiC. SiC TSBS with poly-Si/Ni dual Schottky scheme is a suitable structure for high-efficiency rectification and high-voltage blocking operation.

  8. High-frequency high-voltage high-power DC-to-DC converters

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-01-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  9. High-frequency high-voltage high-power DC-to-DC converters

    NASA Astrophysics Data System (ADS)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  10. Operational characteristics of a high voltage dense plasma focus

    NASA Astrophysics Data System (ADS)

    Woodall, D. M.

    1985-11-01

    A high voltage dense plasma focus powered by a single stage Marx bank was designed, built and operated. The maximum bank parameters are: voltage--120 kV, energy--20 kJ, short circuit current--600kA. The bank impedance is about 200 millohms. The plasma focus center electrode diameter is 1.27 cm. The outer electrode diameter is 10.16 cm. Rundown length is about 10 cm, corresponding to a bank quarter period of about 900 millohms ns. Rundown L is about 50 milliohms. The context of this work is established with a review of previous plasma focus theoretical, experimental and computational work and related topics. Theoretical motivation for high voltage operation is presented. The design, construction and operation of this device are discussed in detail. Results and analysis of measurements obtained are presented. Device operation was investigated primarily at 80 kV (9 kJ), with a gas fill of about 1 torr H2, plus 3-5 percent A. The following diagnostics were used: gun voltage and current measurements; filtered, time resolved x ray PIN measurements of the pinch region; time integrated x ray pinhole photographs of the pinch region; fast frame visible light photographs of the sheath during rundown; and B probe measurements of the current sheath shortly before collapse.

  11. The high voltage homopolar generator

    NASA Astrophysics Data System (ADS)

    Price, J. H.; Gully, J. H.; Driga, M. D.

    1986-11-01

    System and component design features of proposed high voltage homopolar generator (HVHPG) are described. The system is to have an open circuit voltage of 500 V, a peak output current of 500 kA, 3.25 MJ of stored inertial energy and possess an average magnetic-flux density of 5 T. Stator assembly components are discussed, including the stator, mount structure, hydrostatic bearings, main and motoring brushgears and rotor. Planned operational procedures such as monitoring the rotor to full speed and operation with a superconducting field coil are delineated.

  12. Transmitter experiment package for the communications technology satellite

    NASA Technical Reports Server (NTRS)

    Farber, B.; Goldin, D. S.; Marcus, B.; Mock, P.

    1977-01-01

    The operating requirements, system design characteristics, high voltage packaging considerations, nonstandard components development, and test results for the transmitter experiment package (TEP) are described. The TEP is used for broadcasting power transmission from the Communications Technology Satellite. The TEP consists of a 12 GHz, 200-watt output stage tube (OST), a high voltage processing system that converts the unregulated spacecraft solar array power to the regulated voltages required for OST operation, and a variable conductance heat pipe system that is used to cool the OST body.

  13. Recent advances of high voltage AlGaN/GaN power HFETs

    NASA Astrophysics Data System (ADS)

    Uemoto, Yasuhiro; Ueda, Tetsuzo; Tanaka, Tsuyoshi; Ueda, Daisuke

    2009-02-01

    We review our recent advances of GaN-based high voltage power transistors. These are promising owing to low on-state resistance and high breakdown voltage taking advantages of superior material properties. However, there still remain a couple of technical issues to be solved for the GaN devices to replace the existing Si-based power devices. The most critical issue is to achieve normally-off operation which is strongly desired for the safety operation, however, it has been very difficult because of the built-in polarization electric field. Our new device called GIT (Gate Injection Transistor) utilizing conductivity modulation successfully achieves the normally-off operation keeping low on-state resistance. The fabricated GIT on a Si substrate exhibits threshold voltage of +1.0V. The obtained on-state resistance and off-state breakdown voltage were 2.6mΩ•cm2 and 800V, respectively. Remaining technical issue is to further increase the breakdown voltage. So far, the reported highest off-state breakdown voltage of AlGaN/GaN HFETs has been 1900V. Overcoming these issues by a novel device structure, we have demonstrated the world highest breakdown voltages of 10400V using thick poly-crystalline AlN as a passivation film and Via-holes through sapphire which enable very efficient layout of the lateral HFET array avoiding any undesired breakdown of passivation films. Since conventional wet or dry etching cannot be used for chemically stable sapphire, high power pulsed laser is used to form the via-holes. The presented GaN power devices demonstrate that GaN is advantageous for high voltage power switching applications replacing currently used Si-based power MOSFETs and IGBTs.

  14. Low-voltage-operated organic one-time programmable memory using printed organic thin-film transistors and antifuse capacitors.

    PubMed

    Jung, Soon-Won; Na, Bock Soon; Park, Chan Woo; Koo, Jae Bon

    2014-11-01

    We demonstrate an organic one-time programmable memory cell formed entirely at plastic-compatible temperatures. All the processes are performed at below 130 degrees C. Our memory cell consists of a printed organic transistor and an organic capacitor. Inkjet-printed organic transistors are fabricated by using high-k polymer dielectric blends comprising poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)] and poly(methyl methacrylate) (PMMA) for low-voltage operation. P(NDI2OD-T2) transistors have a high field-effect mobility of 0.2 cm2/Vs and a low operation gate voltage of less than 10 V. The operation voltage effectively decreases owing to the high permittivity of the P(VDF-TrFE):PMMA blended film. The data in the memory cell are programmed by electrically breaking the organic capacitor. The organic capacitor acts like an antifuse capacitor, because it is initially open, and it becomes permanently short-circuited by applying a high voltage. The organic memory cells are programmed with 4 V, and they are read out with 2 V. The memory data are read out by sensing the current in the memory cell. The printed organic one-time programmable memory is suitable for applications storing small amount of data, such as low-cost radio-frequency identification (RFID) tag.

  15. Experimental validation of prototype high voltage bushing

    NASA Astrophysics Data System (ADS)

    Shah, Sejal; Tyagi, H.; Sharma, D.; Parmar, D.; M. N., Vishnudev; Joshi, K.; Patel, K.; Yadav, A.; Patel, R.; Bandyopadhyay, M.; Rotti, C.; Chakraborty, A.

    2017-08-01

    Prototype High voltage bushing (PHVB) is a scaled down configuration of DNB High Voltage Bushing (HVB) of ITER. It is designed for operation at 50 kV DC to ensure operational performance and thereby confirming the design configuration of DNB HVB. Two concentric insulators viz. Ceramic and Fiber reinforced polymer (FRP) rings are used as double layered vacuum boundary for 50 kV isolation between grounded and high voltage flanges. Stress shields are designed for smooth electric field distribution. During ceramic to Kovar brazing, spilling cannot be controlled which may lead to high localized electrostatic stress. To understand spilling phenomenon and precise stress calculation, quantitative analysis was performed using Scanning Electron Microscopy (SEM) of brazed sample and similar configuration modeled while performing the Finite Element (FE) analysis. FE analysis of PHVB is performed to find out electrical stresses on different areas of PHVB and are maintained similar to DNB HV Bushing. With this configuration, the experiment is performed considering ITER like vacuum and electrical parameters. Initial HV test is performed by temporary vacuum sealing arrangements using gaskets/O-rings at both ends in order to achieve desired vacuum and keep the system maintainable. During validation test, 50 kV voltage withstand is performed for one hour. Voltage withstand test for 60 kV DC (20% higher rated voltage) have also been performed without any breakdown. Successful operation of PHVB confirms the design of DNB HV Bushing. In this paper, configuration of PHVB with experimental validation data is presented.

  16. Conceptual definition of a high voltage power supply test facility

    NASA Technical Reports Server (NTRS)

    Biess, John J.; Chu, Teh-Ming; Stevens, N. John

    1989-01-01

    NASA Lewis Research Center is presently developing a 60 GHz traveling wave tube for satellite cross-link communications. The operating voltage for this new tube is - 20 kV. There is concern about the high voltage insulation system and NASA is planning a space station high voltage experiment that will demonstrate both the 60 GHz communications and high voltage electronics technology. The experiment interfaces, requirements, conceptual design, technology issues and safety issues are determined. A block diagram of the high voltage power supply test facility was generated. It includes the high voltage power supply, the 60 GHz traveling wave tube, the communications package, the antenna package, a high voltage diagnostics package and a command and data processor system. The interfaces with the space station and the attached payload accommodations equipment were determined. A brief description of the different subsystems and a discussion of the technology development needs are presented.

  17. Digitally gain controlled linear high voltage amplifier for laboratory applications.

    PubMed

    Koçum, C

    2011-08-01

    The design of a digitally gain controlled high-voltage non-inverting bipolar linear amplifier is presented. This cost efficient and relatively simple circuit has stable operation range from dc to 90 kHz under the load of 10 kΩ and 39 pF. The amplifier can swing up to 360 V(pp) under these conditions and it has 2.5 μs rise time. The gain can be changed by the aid of JFETs. The amplifiers have been realized using a combination of operational amplifiers and high-voltage discrete bipolar junction transistors. The circuit details and performance characteristics are discussed.

  18. High-power and 2.5 kW advanced-technology ion thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1977-01-01

    Investigations for improving ion thruster components in the 30 cm engineering model thruster (EMT) resulted in the demonstration of useful techniques for grid short removal and discharge chamber erosion monitoring, establishment of relationships between double ion production and thruster operating parameters, verification of satisfactory specifications on porous tungsten vaporizer material and barium impregnated porous tungsten inserts, demonstration of a new hollow cathode configuration, and specification of magnetic circuit requirements for reproducing desired magnetic mappings. The capacity of a 30 cm EMT to operate at higher beam voltages and currents (higher power) was determined. Operation at 2 A beam current and higher beam voltage is shown to be essentially equivalent to operation at 1.1 kV with regard to efficiency, lifetime and operating conditions. The only additional requirement is an improvement in high voltage insulation and propellant isolator capacity. Operation at minimum voltage and higher beam currents is shown to increase thruster discharge chamber erosion in proportion to beam current. Studies to find alternatives to molybdenum for manufacturing ion optics grids are also reported.

  19. The advantages of the high voltage solar array for electric propulsion

    NASA Technical Reports Server (NTRS)

    Sater, B. L.

    1973-01-01

    The high voltage solar array offers improvements in efficiency, weight, and reliability for the electric propulsion power system. Conventional power processes and problems associated with ion thruster operation using SERT 2 experience are discussed and the advantages of the HVSA concept for electric propulsion are presented. Tests conducted operating the SERT 2 thruster system in conjunction with HVSA are reported. Thruster operation was observed to be normal and in some respects improved.

  20. High Voltage Design Concepts for Launch Vehicles and Orbital Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Hall, David K.; Kirkici, Hulya; Hillard, G. Barry; Schweickart, Daniel; Dunbar, Bill

    2000-01-01

    With the advent of design concepts such as, electromechanical actuation and "more electric" initiatives, has come the need for electrical power buses and electronic equipment to operate at higher than normal dc voltages to meet power requirements while keeping current levels to manageable levels. This new bus voltage has been typically 270 Volts dc nominal for launch vehicles, and 120 Volt dc for the International Space Station. This paper will discuss the new design applications for high voltage dc power in existing and future launch vehicles and spacecraft and the potential problems associated therewith. These new applications must be operational from lift-off, ascent, on orbit and descent in all of the pressure and temperature conditions for each, i.e. through the "Paschen region" twice. This paper will also attempt to stimulate an interest in the academic and professional communities to support and conduct research needed for design data applicable to high voltage dc usage.

  1. High voltage breakdown phenomena in RF window, electron gun and RF cavities in 250 kW CW C band Klystron and their preventive measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamba, O.S.; Badola, Richa; Baloda, Suman

    The paper describes voltage break down phenomenon and preventive measures in components of 250 KW CW, C band Klystron under development at CEERI Pilani. The Klystron operates at a beam voltage of 50 kV and delivers 250 kW RF power at 5 GHz frequency. The Klystron consists of several key components and regions, which are subject to high electrical stress. The most important regions of electrical breakdown are electron gun, the RF ceramic window and output cavity gap area. In the critical components voltage breakdown considered at design stage by proper gap and other techniques. All these problems discussed, asmore » well as solution to alleviate this problem. The electron gun consists basically of cathode, BFE and anode. The cathode is operated at a voltage of 50 kV. In order to maintain the voltage standoff between cathode and anode a high voltage alumina seal and RF window have been designed developed and successfully used in the tube. (author)« less

  2. Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration

    NASA Technical Reports Server (NTRS)

    DeGregorio, Kelly; Wilson, Dale G.

    2009-01-01

    Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand-alone ReBiLS chip will allow system designers to provide efficient bi-directional communication between components operating at different voltages. Embedding the ReBiLS cells into the proven Reed-Solomon encoder will demonstrate the ability to support new product development in a commercially viable, rad-hard, scalable 180-nm SOI CMOS process.

  3. High voltage threshold for stable operation in a dc electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Masahiro, E-mail: masahiro@post.kek.jp; Nishimori, Nobuyuki, E-mail: n-nishim@tagen.tohoku.ac.jp

    We report clear observation of a high voltage (HV) threshold for stable operation in a dc electron gun. The HV hold-off time without any discharge is longer than many hours for operation below the threshold, while it is roughly 10 min above the threshold. The HV threshold corresponds to the minimum voltage where discharge ceases. The threshold increases with the number of discharges during HV conditioning of the gun. Above the threshold, the amount of gas desorption per discharge increases linearly with the voltage difference from the threshold. The present experimental observations can be explained by an avalanche discharge modelmore » based on the interplay between electron stimulated desorption (ESD) from the anode surface and subsequent secondary electron emission from the cathode by the impact of ionic components of the ESD molecules or atoms.« less

  4. [4,4‧-bi(1,3,2-dioxathiolane)] 2,2‧-dioxide: A novel cathode additive for high-voltage performance in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hyun; Yoon, Sukeun; Hwang, Eui-Hyung; Kwon, Young-Gil; Lee, Young-Gi; Cho, Kuk Young

    2018-02-01

    High-voltage operation of lithium-ion batteries (LIBs) is a facile approach to obtaining high specific energy density, especially for LiNi0·5Mn0·3Co0·2O2 (NMC532) cathodes currently used in mid- and large-sized energy storage devices. However, high-voltage charging (>4.3 V) is accompanied by a rapid capacity fade over long cycles due to severe continuous electrolyte decomposition and instability at the cathode surface. In this study, the sulfite-based compound, [4,4‧-bi(1,3,2-dioxathiolane)] 2,2‧-dioxide (BDTD) is introduced as a novel electrolyte additive to enhance electrochemical performances of alumina-coated NMC532 cathodes cycled in the voltage range of 3.0-4.6 V. X-ray photoelectron spectroscopy (XPS) and AC impedance of cells reveal that BDTD preferentially oxidizes prior to the electrolyte solvents and forms stable film layers on to the cathode surface, preventing increased impedance caused by repeated electrolyte solvent decomposition in high-voltage operation. The cycling performance of the Li/NMC532 half-cell using an electrolyte of 1.0 M LiPF6 in ethylene carbonate/ethyl methyl carbonate (3/7, in volume) can be improved by adding a small amount of BDTD into the electrolyte. BDTD enables the usage of sulfite-type additives for cathodes in high-voltage operation.

  5. Low Temperature Performance of High Power Density DC/DC Converter Modules

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammond, Ahmad; Gerber, Scott; Patterson, Richard L.; Overton, Eric

    2001-01-01

    In this paper, two second-generation high power density DC/DC converter modules have been evaluated at low operating temperatures. The power rating of one converter (Module 1) was specified at 150 W with an input voltage range of 36 to 75 V and output voltage of 12 V. The other converter (Module 2) was specified at 100 W with the same input voltage range and an output voltage of 3.3 V. The converter modules were evaluated in terms of their performance as a function of operating temperature in the range of 25 to -140 C. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.

  6. Electrical safety for high voltage arrays

    NASA Technical Reports Server (NTRS)

    Marshall, N. A.

    1983-01-01

    A number of key electrical safety requirements for the high voltage arrays of central station photovoltaic power systems are explored. The suitability of representative industrial DC power switchgear for control and fault protection was evaluated. Included were AC/DC circuit breakers, electromechanical contactors and relays, load interruptors, cold disconnect devices, sectionalizing switches, and high voltage DC fuses. As appropriate, steady state and transient characteristics were analyzed. Failure modes impacting upon operation and maintenance safety were also identified, as were the voltage withstand and current interruption levels.

  7. ADVANCEMENT OF THE RHIC BEAM ABORT KICKER SYSTEM.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHANG,W.AHRENS,L.MI,J.OERTER,B.SANDBERG,J.WARBURTON,D.

    2003-05-12

    As one of the most critical system for RHIC operation, the beam abort kicker system has to be highly available, reliable, and stable for the entire operating range. Along with the RHIC commission and operation, consistent efforts have been spend to cope with immediate issues as well as inherited design issues. Major design changes have been implemented to achieve the higher operating voltage, longer high voltage hold-off time, fast retriggering and redundant triggering, and improved system protection, etc. Recent system test has demonstrated for the first time that both blue ring and yellow ring beam abort systems have achieved moremore » than 24 hours hold off time at desired operating voltage. In this paper, we report break down, thyratron reverse arcing, and to build a fast re-trigger system to reduce beam spreading in event of premature discharge.« less

  8. Resonant-Type Smooth Impact Drive Mechanism Actuator Operating at Lower Input Voltages

    NASA Astrophysics Data System (ADS)

    Morita, Takeshi; Nishimura, Takuma; Yoshida, Ryuichi; Hosaka, Hiroshi

    2013-07-01

    We report on the design and fabrication of a resonant-type smooth impact drive mechanism (SIDM) actuator based on a multilayered piezoelectric ceramic transducer. Conventional SIDMs use off-resonant sawtooth-shaped displacement in developing stick-slip motion of a slider, but require large input voltages for high-speed operation. In contrast, in resonant-type SIDMs, a quasi-sawtooth-shaped displacement is obtained by combining two resonant vibrational modes. This driving principle enables low input voltage operations. In combining the modes, their frequency ratio must be 1:2. To design and optimize the stator transducer to generate sawtooth-shaped displacements, a transfer matrix method was adopted. With a preload of 270 mN, the no-load speed was 40 mm/s under a driving voltage of 1.6 V (peak to peak). This input voltage was one-sixth that of previous SIDMs for the same performance. Concurrently, heat generation was significantly reduced because dielectric losses were suppressed under the lower input voltage operation.

  9. Performance Test Results of the NASA-457M v2 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Herman, Daniel A.; Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63.

  10. High voltage studies of inverted-geometry ceramic insulators for a 350 kV DC polarized electron gun

    DOE PAGES

    Hernandez-Garcia, C.; Poelker, M.; Hansknecht, J.

    2016-02-01

    Jefferson Lab is constructing a 350 kV direct current high voltage photoemission gun employing a compact inverted-geometry insulator. This photogun will produce polarized electron beams at an injector test facility intended for low energy nuclear physics experiments, and to assist the development of new technology for the Continuous Electron Beam Accelerator Facility. A photogun operating at 350kV bias voltage reduces the complexity of the injector design, by eliminating the need for a graded-beta radio frequency “capture” section employed to boost lower voltage beams to relativistic speed. However, reliable photogun operation at 350 kV necessitates solving serious high voltage problems relatedmore » to breakdown and field emission. This study focuses on developing effective methods to avoid breakdown at the interface between the insulator and the commercial high voltage cable that connects the photogun to the high voltage power supply. Three types of inverted insulators were tested, in combination with two electrode configurations. Our results indicate that tailoring the conductivity of the insulator material, and/or adding a cathode triple-junction screening electrode, effectively serves to increase the hold-off voltage from 300kV to more than 375kV. In conclusion, electrostatic field maps suggest these configurations serve to produce a more uniform potential gradient across the insulator.« less

  11. High voltage studies of inverted-geometry ceramic insulators for a 350 kV DC polarized electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Garcia, C.; Poelker, M.; Hansknecht, J.

    Jefferson Lab is constructing a 350 kV direct current high voltage photoemission gun employing a compact inverted-geometry insulator. This photogun will produce polarized electron beams at an injector test facility intended for low energy nuclear physics experiments, and to assist the development of new technology for the Continuous Electron Beam Accelerator Facility. A photogun operating at 350kV bias voltage reduces the complexity of the injector design, by eliminating the need for a graded-beta radio frequency “capture” section employed to boost lower voltage beams to relativistic speed. However, reliable photogun operation at 350 kV necessitates solving serious high voltage problems relatedmore » to breakdown and field emission. This study focuses on developing effective methods to avoid breakdown at the interface between the insulator and the commercial high voltage cable that connects the photogun to the high voltage power supply. Three types of inverted insulators were tested, in combination with two electrode configurations. Our results indicate that tailoring the conductivity of the insulator material, and/or adding a cathode triple-junction screening electrode, effectively serves to increase the hold-off voltage from 300kV to more than 375kV. In conclusion, electrostatic field maps suggest these configurations serve to produce a more uniform potential gradient across the insulator.« less

  12. Optimization of power systems with voltage security constraints

    NASA Astrophysics Data System (ADS)

    Rosehart, William Daniel

    As open access market principles are applied to power systems, significant changes in their operation and control are occurring. In the new marketplace, power systems are operating under higher loading conditions as market influences demand greater attention to operating cost versus stability margins. Since stability continues to be a basic requirement in the operation of any power system, new tools are being considered to analyze the effect of stability on the operating cost of the system, so that system stability can be incorporated into the costs of operating the system. In this thesis, new optimal power flow (OPF) formulations are proposed based on multi-objective methodologies to optimize active and reactive power dispatch while maximizing voltage security in power systems. The effects of minimizing operating costs, minimizing reactive power generation and/or maximizing voltage stability margins are analyzed. Results obtained using the proposed Voltage Stability Constrained OPF formulations are compared and analyzed to suggest possible ways of costing voltage security in power systems. When considering voltage stability margins the importance of system modeling becomes critical, since it has been demonstrated, based on bifurcation analysis, that modeling can have a significant effect of the behavior of power systems, especially at high loading levels. Therefore, this thesis also examines the effects of detailed generator models and several exponential load models. Furthermore, because of its influence on voltage stability, a Static Var Compensator model is also incorporated into the optimization problems.

  13. Determination of threshold and maximum operating electric stresses for selected high voltage insulations. Task 2: Investigation of oil-filled paper insulated cables

    NASA Astrophysics Data System (ADS)

    Sosnowski, M.; Eager, G. S., Jr.

    1983-06-01

    Threshold voltage of oil-impregnated paper insulated cables are investigaed. Experimental work was done on model cables specially manufactured for this project. The cables were impregnated with mineral and with synthetic oils. Standard impulse breakdown voltage tests and impulse voltage breakdown tests with dc prestressing were performed at room temperature and at 1000C. The most important result is the finding of very high level of threshold voltage stress for oil-impregnated paper insulated cables. This threshold voltage is approximately 1.5 times higher than the threshold voltage or crosslinked polyethylene insulated cables.

  14. Ion extraction capabilities of two-grid accelerator systems. [for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. A large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current is presented. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high.

  15. Monolithic stacked blue light-emitting diodes with polarization-enhanced tunnel junctions.

    PubMed

    Kuo, Yen-Kuang; Shih, Ya-Hsuan; Chang, Jih-Yuan; Lai, Wei-Chih; Liu, Heng; Chen, Fang-Ming; Lee, Ming-Lun; Sheu, Jinn-Kong

    2017-08-07

    Monolithic stacked InGaN light-emitting diode (LED) connected by a polarization-enhanced GaN/AlN-based tunnel junction is demonstrated experimentally in this study. The typical stacked LEDs exhibit 80% enhancement in output power compared with conventional single LEDs because of the repeated use of electrons and holes for photon generation. The typical operation voltage of stacked LEDs is higher than twice the operation voltage of single LEDs. This high operation voltage can be attributed to the non-optimal tunneling junction in stacked LEDs. In addition to the analyses of experimental results, theoretical analysis of different schemes of tunnel junctions, including diagrams of energy bands, diagrams of electric fields, and current-voltage relation curves, are investigated using numerical simulation. The results shown in this paper demonstrate the feasibility in developing cost-effective and highly efficient tunnel-junction LEDs.

  16. Development of longitudinally excited CO2 laser

    NASA Astrophysics Data System (ADS)

    Masroon, N. S.; Tanaka, M.; Tei, M.; Uno, K.; Tsuyama, M.; Nakano, H.

    2018-05-01

    Simple, compact, and affordable discharged-pumped CO2 laser controlled by a fast high voltage solid state switch has been developed. In this study, longitudinal excitation scheme has been adapted for simple configuration. In the longitudinal excitation scheme, the discharge is produced along the direction of the laser axis, and the electrodes are well separated with a small discharge cross-section. Triggered spark gap switch is usually used to switch out the high voltage because of simple and low cost. However, the triggered spark gap operates in the arc mode and suffer from recovery problem causing a short life time and low efficiency for high repetition rate operation. As a result, there is now considerable interest in replacing triggered spark gap switch with solid state switches. Solid state switches have significant advantages compared to triggered spark gap switch which include longer service lifetime, low cost and stable high trigger pulse. We have developed simple and low cost fast high voltage solid state switch that consists of series connected-MOSFETs. It has been installed to the longitudinally excited CO2 laser to realize the gap switch less operation. Characteristics of laser oscillation by varying the discharge length, charging voltage, capacitance and gas pressure have been evaluated. Longer discharge length produce high power of laser oscillation. Optimum charging voltage and gas pressure were existed for longitudinally excited CO2 laser.

  17. Software control program for 25 kW breadboard testing. [spacecraft power supplies; high voltage batteries

    NASA Technical Reports Server (NTRS)

    Pajak, J. A.

    1981-01-01

    A data acquisition software program developed to operate in conjunction with the automated control system of the 25 kW PM Electric Power System Breadboard Test facility is described. The proram provides limited interactive control of the breadboard test while acquiring data and monitoring parameters, allowing unattended continuous operation. The breadboard test facility has two positions for operating separate configurations. The main variable in each test setup is the high voltage Ni-Cd battery.

  18. Phase detector for three-phase power factor controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A phase detector for the three phase power factor controller (PFC) is described. The phase detector for each phase includes an operational amplifier which senses the current phase angle for that phase by sensing the voltage across the phase thyristor. Common mode rejection is achieved by providing positive feedback between the input and output of the voltage sensing operational amplifier. this feedback preferably comprises a resistor connected between the output and input of the operational amplifier. The novelty of the invention resides in providing positive feedback such that switching of the operational amplifier is synchronized with switching of the voltage across the thyristor. The invention provides a solution to problems associated with high common mode voltage and enables use of lower cost components than would be required by other approaches.

  19. Surface voltage gradient role in high voltage solar array-plasma interaction: Center Director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1985-01-01

    A large amount of experimental and analytical effort has been directed toward understanding the plasma sheath growth and discharge phenomena which lead to high voltage solar array-space plasma interactions. An important question which has not been addressed is how the surface voltage gradient on such an array may affect these interactions. The results of this study indicate that under certain conditions, the voltage gradient should be taken into account when evaluating the effect on a solar array operating in a plasma environment.

  20. CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system

    NASA Astrophysics Data System (ADS)

    Nagarajan, Booma; Reddy Sathi, Rama

    2016-01-01

    This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.

  1. DC High Voltage Conditioning of Photoemission Guns at Jefferson Lab FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Garcia, C.; Benson, S. V.; Biallas, G.

    2009-08-04

    DC high voltage photoemission electron guns with GaAs photocathodes have been used to produce polarized electron beams for nuclear physics experiments for about 3 decades with great success. In the late 1990s, Jefferson Lab adopted this gun technology for a free electron laser (FEL), but to assist with high bunch charge operation, considerably higher bias voltage is required compared to the photoguns used at the Jefferson Lab Continuous Electron Beam Accelerator Facility. The FEL gun has been conditioned above 400 kV several times, albeit encountering non-trivial challenges with ceramic insulators and field emission from electrodes. Recently, high voltage processing withmore » krypton gas was employed to process very stubborn field emitters. This work presents a summary of the high voltage techniques used to high voltage condition the Jefferson Lab FEL photoemission gun.« less

  2. A voltage-division-type low-jitter self-triggered repetition-rate switch.

    PubMed

    Su, Jian-Cang; Zeng, Bo; Gao, Peng-Cheng; Li, Rui; Wu, Xiao-Long; Zhao, Liang

    2016-10-01

    A voltage-division-type (V/N) low-jitter self-triggered multi-stage switch is put forward. It comprises of a triggered corona gap, several quasi-uniform-field gaps, and an inversion inductor. When the corona gap is in the stage of self-breakdown, the multi-stage gaps are triggered and the switch is closed via an over-voltage. This type of V/N switch has the advantage of compact structure since the auxiliary components like the gas-blowing system and the triggered system are eliminated from the whole system. It also has advantages such as low breakdown jitter and high energy efficiency. The dependence of the self-triggered voltage on the over-voltage factor and the switch operating voltage is deduced. A switch of this type is designed and fabricated and experiments to research its characteristics are conducted. The results show that this switch can operate on a voltage of 1 MV at 50 Hz and can generate 1000 successive pulses with a jitter as low as 3% and an energy efficiency as high as 90%. This V/N switch can work under a high repetition rate with a long lifetime.

  3. Analysis of a modular generator for high-voltage, high-frequency pulsed applications, using low voltage semiconductors (< 1 kV) and series connected step-up (1:10) transformers.

    PubMed

    Redondo, L M; Fernando Silva, J; Margato, E

    2007-03-01

    This article discusses the operation of a modular generator topology, which has been developed for high-frequency (kHz), high-voltage (kV) pulsed applications. The proposed generator uses individual modules, each one consisting of a pulse circuit based on a modified forward converter, which takes advantage of the required low duty cycle to operate with a low voltage clamp reset circuit for the step-up transformer. This reduces the maximum voltage on the semiconductor devices of both primary and secondary transformer sides. The secondary winding of each step-up transformer is series connected, delivering a fraction of the total voltage. Each individual pulsed module is supplied via an isolation transformer. The assembled modular laboratorial prototype, with three 5 kV modules, 800 V semiconductor switches, and 1:10 step-up transformers, has 80% efficiency, and is capable of delivering, into resistive loads, -15 kV1 A pulses with 5 micros width, 10 kHz repetition rate, with less than 1 micros pulse rise time. Experimental results for resistive loads are presented and discussed.

  4. A High Frequency Active Voltage Doubler in Standard CMOS Using Offset-Controlled Comparators for Inductive Power Transmission

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2014-01-01

    In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std. CMOS process, occupying 0.144 mm2 of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages. PMID:23853321

  5. Characteristics of Partial Discharge and Ozone Generation for Twisted-pair of Enameled Wires under High-repetitive Impulse Voltage Application

    NASA Astrophysics Data System (ADS)

    Kanazawa, Seiji; Enokizono, Masato; Shibakita, Toshihide; Umehara, Eiji; Toshimitsu, Jun; Ninomiya, Shinji; Taniguchi, Hideki; Abe, Yukari

    In recent years, inverter drive machines such as a hybrid vehicle and an electric vehicle are operated under high voltage pulse with high repetition rate. In this case, inverter surge is generated and affected the machine operation. Especially, the enameled wire of a motor is deteriorated due to the partial discharge (PD) and finally breakdown of the wire will occur. In order to investigate a PD on a resistant enameled wire, characteristics of PD in the twisted pair sample under bipolar repetitive impulse voltages are investigated experimentally. The relationship between the applied voltage and discharge current was measured at PD inception and extinction, and we estimated the repetitive PD inception and extinction voltages experimentally. The corresponding optical emission of the discharge was also observed by using an ICCD camera. Furthermore, ozone concentration due to the discharge was measured during the life-time test of the resistant enameled wires from a working environmental point of view.

  6. Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-04-01

    This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.

  7. Phosphorus Enrichment as a New Composition in the Solid Electrolyte Interphase of High-Voltage Cathodes and Its Effects on Battery Cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Pengfei; Zheng, Jianming; Kuppan, Saravanan

    2015-11-10

    Immersion of a solid into liquid often leads to the modification of both the structure and chemistry of surface of the solid, which subsequently affects the chemical and physical properties of the system. For the case of the rechargeable lithium ion battery, such a surface modification is termed as solid electrolyte interphase (SEI) layer, which has been perceived to play critical role for the stable operation of the batteries. However, the structure and chemical composition of SEI layer and its spatial distribution and dependence on the battery operating condition remain unclear. By using aberration corrected scanning transmission electron microscopy coupledmore » with ultra-high sensitive energy dispersive x-ray spectroscopy, we probed the structure and chemistry of SEI layer on several high voltage cathodes. We show that layer-structured cathodes, when cycled at a high cut off voltage, can form a P-rich SEI layer on their surface, which is a direct evidence of Li-salt (LiPF6) decomposition. Our systematical investigations indicate such cathode/Li-salt side reaction shows strong dependence on structure of the cathode materials, operating voltage and temperature, indicating the feasibility of SEI engineering. These findings provide us valuable insights into the complex interface between the high-voltage cathode and the electrolyte.« less

  8. Cascaded resonant bridge converters

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A. (Inventor)

    1989-01-01

    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  9. Achieving high mobility, low-voltage operating organic field-effect transistor nonvolatile memory by an ultraviolet-ozone treating ferroelectric terpolymer

    PubMed Central

    Xiang, Lanyi; Wang, Wei; Xie, Wenfa

    2016-01-01

    Poly(vinylidene fluoride–trifluoroethylene) has been widely used as a dielectric of the ferroelectric organic field-effect transistor (FE-OFET) nonvolatile memory (NVM). Some critical issues, including low mobility and high operation voltage, existed in these FE-OFET NVMs, should be resolved before considering to their commercial application. In this paper, we demonstrated low-voltage operating FE-OFET NVMs based on a ferroelectric terpolymer poly(vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] owed to its low coercive field. By applying an ultraviolet-ozone (UVO) treatment to modify the surface of P(VDF-TrFE-CTFE) films, the growth model of the pentacene film was changed, which improved the pentacene grain size and the interface morphology of the pentacene/P(VDF-TrFE-CTFE). Thus, the mobility of the FE-OFET was significantly improved. As a result, a high performance FE-OFET NVM, with a high mobility of 0.8 cm2 V−1 s−1, large memory window of 15.4~19.2, good memory on/off ratio of 103, the reliable memory endurance over 100 cycles and stable memory retention ability, was achieved at a low operation voltage of ±15 V. PMID:27824101

  10. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  11. High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia

    2016-10-01

    Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.

  12. Generation of electrical power

    DOEpatents

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  13. High Voltage TAL Performance

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Jankovsky, Robert S.; Rawlin, Vincent K.; Manzella, David H.

    2001-01-01

    The performance of a two-stage, anode layer Hall thruster was evaluated. Experiments were conducted in single and two-stage configurations. In single-stage configuration, the thruster was operated with discharge voltages ranging from 300 to 1700 V. Discharge specific impulses ranged from 1630 to 4140 sec. Thruster investigations were conducted with input power ranging from 1 to 8.7 kW, corresponding to power throttling of nearly 9: 1. An extensive two-stage performance map was generated. Data taken with total voltage (sum of discharge and accelerating voltage) constant revealed a decrease in thruster efficiency as the discharge voltage was increased. Anode specific impulse values were comparable in the single and two-stage configurations showing no strong advantage for two-stage operation.

  14. Quasi-multi-pulse voltage source converter design with two control degrees of freedom

    NASA Astrophysics Data System (ADS)

    Vural, A. M.; Bayindir, K. C.

    2015-05-01

    In this article, the design details of a quasi-multi-pulse voltage source converter (VSC) switched at line frequency of 50 Hz are given in a step-by-step process. The proposed converter is comprised of four 12-pulse converter units, which is suitable for the simulation of single-/multi-converter flexible alternating current transmission system devices as well as high voltage direct current systems operating at the transmission level. The magnetic interface of the converter is originally designed with given all parameters for 100 MVA operation. The so-called two-angle control method is adopted to control the voltage magnitude and the phase angle of the converter independently. PSCAD simulation results verify both four-quadrant converter operation and closed-loop control of the converter operated as static synchronous compensator (STATCOM).

  15. Electromechanical x-ray generator

    DOEpatents

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  16. Forming-free resistive switching characteristics of Ag/CeO2/Pt devices with a large memory window

    NASA Astrophysics Data System (ADS)

    Zheng, Hong; Kim, Hyung Jun; Yang, Paul; Park, Jong-Sung; Kim, Dong Wook; Lee, Hyun Ho; Kang, Chi Jung; Yoon, Tae-Sik

    2017-05-01

    Ag/CeO2(∼45 nm)/Pt devices exhibited forming-free bipolar resistive switching with a large memory window (low-resistance-state (LRS)/high-resistance-state (HRS) ratio >106) at a low switching voltage (<±1 ∼ 2 V) in voltage sweep condition. Also, they retained a large memory window (>104) at a pulse operation (±5 V, 50 μs). The high oxygen ionic conductivity of the CeO2 layer as well as the migration of silver facilitated the formation of filament for the transition to LRS at a low voltage without a high voltage forming operation. Also, a certain amount of defects in the CeO2 layer was required for stable HRS with space-charge-limited-conduction, which was confirmed comparing the devices with non-annealed and annealed CeO2 layers.

  17. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE PAGES

    Giera, Brian; Bukosky, Scott; Lee, Elaine; ...

    2018-01-23

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  18. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giera, Brian; Bukosky, Scott; Lee, Elaine

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  19. High Voltage TAL Erosion Characterization

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.

    2003-01-01

    Extended operation of a D-80 anode layer thruster at high voltage was investigated. The thruster was operated for 1200 hours at 700 Volts and 4 Amperes. Laser profilometry was employed to quantify the erosion of the thruster's graphite guard rings and electrodes at 0, 300, 600, 900, and 1200 hours. Thruster performance and electrical characteristics were monitored over the duration of the investigation. The guard rings exhibited asymmetric erosion that was greatest in the region of the cathode. Erosion of the guard rings exposed the magnet poles between 600 to 900 hours of operation.

  20. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  1. Programmable high-output-impedance, large-voltage compliance, microstimulator for low-voltage biomedical applications.

    PubMed

    Farahmand, Sina; Maghami, Mohammad Hossein; Sodagar, Amir M

    2012-01-01

    This paper reports on the design of a programmable, high output impedance, large voltage compliance microstimulator for low-voltage biomedical applications. A 6-bit binary-weighted digital to analog converter (DAC) is used to generate biphasic stimulus current pulses. A compact current mirror with large output voltage compliance and high output resistance conveys the current pulses to the target tissue. Designed and simulated in a standard 0.18µm CMOS process, the microstimulator circuit is capable of delivering a maximum stimulation current of 160µA to a 10-kΩ resistive load. Operated at a 1.8-V supply voltage, the output stage exhibits a voltage compliance of 1.69V and output resistance of 160MΩ at full scale stimulus current. Layout of the core microelectrode circuit measures 25.5µm×31.5µm.

  2. Low-voltage operating flexible ferroelectric organic field-effect transistor nonvolatile memory with a vertical phase separation P(VDF-TrFE-CTFE)/PS dielectric

    NASA Astrophysics Data System (ADS)

    Xu, Meili; Xiang, Lanyi; Xu, Ting; Wang, Wei; Xie, Wenfa; Zhou, Dayu

    2017-10-01

    Future flexible electronic systems require memory devices combining low-power operation and mechanical bendability. However, high programming/erasing voltages, which are universally needed to switch the storage states in previously reported ferroelectric organic field-effect transistor (Fe-OFET) nonvolatile memories (NVMs), severely prevent their practical applications. In this work, we develop a route to achieve a low-voltage operating flexible Fe-OFET NVM. Utilizing vertical phase separation, an ultrathin self-organized poly(styrene) (PS) buffering layer covers the surface of the ferroelectric polymer layer by one-step spin-coating from their blending solution. The ferroelectric polymer with a low coercive field contributes to low-voltage operation in the Fe-OFET NVM. The polymer PS contributes to the improvement of mobility, attributing to screening the charge scattering and decreasing the surface roughness. As a result, a high performance flexible Fe-OFET NVM is achieved at the low P/E voltages of ±10 V, with a mobility larger than 0.2 cm2 V-1 s-1, a reliable P/E endurance over 150 cycles, stable data storage retention capability over 104 s, and excellent mechanical bending durability with a slight performance degradation after 1000 repetitive tensile bending cycles at a curvature radius of 5.5 mm.

  3. Packaging of solid state devices

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  4. Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C. (Inventor); Prakash, Surya G. (Inventor); Bugga, Ratnakumar V. (Inventor); Krause, Frederick C. (Inventor)

    2015-01-01

    The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).

  5. A study of Schwarz converters for nuclear powered spacecraft

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; Schwarze, Gene E.

    1987-01-01

    High power space systems which use low dc voltage, high current sources such as thermoelectric generators, will most likely require high voltage conversion for transmission purposes. This study considers the use of the Schwarz resonant converter for use as the basic building block to accomplish this low-to-high voltage conversion for either a dc or an ac spacecraft bus. The Schwarz converter has the important assets of both inherent fault tolerance and resonant operation; parallel operation in modular form is possible. A regulated dc spacecraft bus requires only a single stage converter while a constant frequency ac bus requires a cascaded Schwarz converter configuration. If the power system requires constant output power from the dc generator, then a second converter is required to route unneeded power to a ballast load.

  6. A mini-photofragment translational spectrometer with ion velocity map imaging using low voltage acceleration

    NASA Astrophysics Data System (ADS)

    Qi, Wenke; Jiang, Pan; Lin, Dan; Chi, Xiaoping; Cheng, Min; Du, Yikui; Zhu, Qihe

    2018-01-01

    A mini time-sliced ion velocity map imaging photofragment translational spectrometer using low voltage acceleration has been constructed. The innovation of this apparatus adopts a relative low voltage (30-150 V) to substitute the traditional high voltage (650-4000 V) to accelerate and focus the fragment ions. The overall length of the flight path is merely 12 cm. There are many advantages for this instrument, such as compact structure, less interference, and easy to operate and control. Low voltage acceleration gives a longer turn-around time to the photofragment ions forming a thicker Newton sphere, which provides sufficient time for slicing. Ion trajectory simulation has been performed for determining the structure dimensions and the operating voltages. The photodissociation and multiphoton ionization of O2 at 224.999 nm is used to calibrate the ion images and examine the overall performance of the new spectrometer. The velocity resolution (Δν/ν) of this spectrometer from O2 photodissociation is about 0.8%, which is better than most previous results using high acceleration voltage. For the case of CF3I dissociation at 277.38 nm, many CF3 vibrational states have been resolved, and the anisotropy parameter has been measured. The application of low voltage acceleration has shown its advantages on the ion velocity map imaging (VMI) apparatus. The miniaturization of the VMI instruments can be realized on the premise of high resolution.

  7. Two new families of high-gain dc-dc power electronic converters for dc-microgrids

    NASA Astrophysics Data System (ADS)

    Prabhala, Venkata Anand Kishore

    Distributing the electric power in dc form is an appealing solution in many applications such as telecommunications, data centers, commercial buildings, and microgrids. A high gain dc-dc power electronic converter can be used to individually link low-voltage elements such as solar panels, fuel cells, and batteries to the dc voltage bus which is usually 400 volts. This way, it is not required to put such elements in a series string to build up their voltages. Consequently, each element can function at it optimal operating point regardless of the other elements in the system. In this dissertation, first a comparative study of dc microgrid architectures and their advantages over their ac counterparts is presented. Voltage level selection of dc distribution systems is discussed from the cost, reliability, efficiency, and safety standpoints. Next, a new family of non-isolated high-voltage-gain dc-dc power electronic converters with unidirectional power flow is introduced. This family of converters benefits from a low voltage stress across its switches. The proposed topologies are versatile as they can be utilized as single-input or double-input power converters. In either case, they draw continuous currents from their sources. Lastly, a bidirectional high-voltage-gain dc-dc power electronic converter is proposed. This converter is comprised of a bidirectional boost converter which feeds a switched-capacitor architecture. The switched-capacitor stage suggested here has several advantages over the existing approaches. For example, it benefits from a higher voltage gain while it uses less number of capacitors. The proposed converters are highly efficient and modular. The operating modes, dc voltage gain, and design procedure for each converter are discussed in details. Hardware prototypes have been developed in the lab. The results obtained from the hardware agree with those of the simulation models.

  8. KSI's Cross Insulated Core Transformer Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhmeyer, Uwe

    2009-08-04

    Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the fluxmore » compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.« less

  9. Experimental Evaluation and Comparison of Thermal Conductivity of High-Voltage Insulation Materials for Vacuum Electronic Devices

    NASA Astrophysics Data System (ADS)

    Suresh, C.; Srikrishna, P.

    2017-07-01

    Vacuum electronic devices operate with very high voltage differences between their sub-assemblies which are separated by very small distances. These devices also emit large amounts of heat that needs to be dissipated. Hence, there exists a requirement for high-voltage insulators with good thermal conductivity for voltage isolation and efficient heat dissipation. However, these voltage insulators are generally poor conductors of heat. In the present work, an effort has been made to obtain good high-voltage insulation materials with substantial improvement in their thermal conductivity. New mixtures of composites were formed by blending varying percentages (by volumes) of aluminum nitride powders with that of neat room-temperature vulcanizing (RTV) silicone elastomer compound. In this work, a thermal conductivity test setup has been devised for the quantification of the thermal conductivity of the insulators. The thermal conductivities and high-voltage isolation capabilities of various blended composites were quantified and were compared with that of neat RTV to evaluate the relative improvement.

  10. Polymer/metal oxide hybrid dielectrics for low voltage field-effect transistors with solution-processed, high-mobility semiconductors

    NASA Astrophysics Data System (ADS)

    Held, Martin; Schießl, Stefan P.; Miehler, Dominik; Gannott, Florentina; Zaumseil, Jana

    2015-08-01

    Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfOx) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states at the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100-300 nF/cm2) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfOx dielectrics.

  11. High voltage DC switchgear development for multi-kW space power system: Aerospace technology development of three types of solid state power controllers for 200-1100VDC with current ratings of 25, 50, and 80 amperes with one type utilizing an electromechanical device

    NASA Technical Reports Server (NTRS)

    Billings, W. W.

    1981-01-01

    Three types of solid state power controllers (SSPC's) for high voltage, high power DC system applications were developed. The first type utilizes a SCR power switch. The second type employes an electromechanical power switch element with solid state commutation. The third type utilizes a transistor power switch. Significant accomplishments include high operating efficiencies, fault clearing, high/low temperature performance and vacuum operation.

  12. AC motor and generator requirements for isolated WECS

    NASA Technical Reports Server (NTRS)

    Park, G. L.; Mccleer, P. J.; Hanson, B.; Weinberg, B.; Krauss, O.

    1985-01-01

    After surveying electrically driven loads used on productive farms, the investigators chose three pumps for testing at voltages and frequencies far outside the normal operating range. These loads extract and circulate water and move heat via air, and all are critical to farm productivity. The object was to determine the envelope of supply voltage and frequency over which these loads would operate stably for time intervals under 1 hour. This information is among that needed to determine the feasibility of supplying critical loads, in case of a utility outage, from a wind driven alternator whose output voltage and frequency will vary dramatically in most continental wind regimes. Other related work is surveyed. The salient features and limitations of the test configurations used and the data reduction are described. The development of simulation models suitable for a small computer are outlined. The results are primarily displayed on the voltage frequency plane with the general conclusion that the particular pump models considered will operate over the range of 50 to 90 Hz and a voltage band which starts below rated, decreases as frequency decreases, and is limited on the high side by excessive motor heating. For example, centrifugal pump operating voltage ranges as extensive .4 to 1.4 appear possible. Particular problems with starting, stalling due to lack of motor torque, high speed cavitation, and likely overheating are addressed in a listing of required properties for wind driven alternators and their controllers needed for use in the isolated or stand alone configuration considered.

  13. Programmable Multiple-Ramped-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Howell, S. K.

    1993-01-01

    Ramp waveforms range up to 2,000 V. Laboratory high-voltage power-supply system puts out variety of stable voltages programmed to remain fixed with respect to ground or float with respect to ramp waveform. Measures voltages it produces with high resolution; automatically calibrates, zeroes, and configures itself; and produces variety of input/output signals for use with other instruments. Developed for use with ultraviolet spectrometer. Also applicable to control of electron guns in general and to operation of such diverse equipment used in measuring scattering cross sections of subatomic particles and in industrial electron-beam welders.

  14. Nuclear microprobe investigation of the effects of ionization and displacement damage in vertical, high voltage GaN diodes

    DOE PAGES

    Vizkelethy, G.; King, M. P.; Aktas, O.; ...

    2016-12-02

    Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories’ nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. Here, the displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.

  15. Nuclear microprobe investigation of the effects of ionization and displacement damage in vertical, high voltage GaN diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vizkelethy, G.; King, M. P.; Aktas, O.

    Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories’ nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. Here, the displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.

  16. High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Yu-Seok

    2015-10-01

    The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  17. Modeling of high composition AlGaN channel high electron mobility transistors with large threshold voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajaj, Sanyam, E-mail: bajaj.10@osu.edu; Hung, Ting-Hsiang; Akyol, Fatih

    2014-12-29

    We report on the potential of high electron mobility transistors (HEMTs) consisting of high composition AlGaN channel and barrier layers for power switching applications. Detailed two-dimensional (2D) simulations show that threshold voltages in excess of 3 V can be achieved through the use of AlGaN channel layers. We also calculate the 2D electron gas mobility in AlGaN channel HEMTs and evaluate their power figures of merit as a function of device operating temperature and Al mole fraction in the channel. Our models show that power switching transistors with AlGaN channels would have comparable on-resistance to GaN-channel based transistors for the samemore » operation voltage. The modeling in this paper shows the potential of high composition AlGaN as a channel material for future high threshold enhancement mode transistors.« less

  18. Design and Varactors: Operational Considerations. A Reliability Study for Robust Planar GaAs

    NASA Technical Reports Server (NTRS)

    Maiwald, Frank; Schlecht, Erich; Ward, John; Lin, Robert; Leon, Rosa; Pearson, John; Mehdi, Imran

    2003-01-01

    Preliminary conclusions include: Limits for reverse currents cannot be set. Based on current data we want to avoid any reverse bias current. We know 1 micro-A is too high. Leakage current gets suppressed when operated at 120K. Migration and verification: a) Reverse Bias Voltage will be limited; b) Health check with I/V curve: 1) Minimal reverse voltage shall be x0.75 of the calculated voltage breakdown Vbr; 2) Degradation of the Reverse Bias voltage at given current will be used as indication of ESD incidents or other Damages (high RF power, heat); 3) Calculation of diodes parameter to verify initial health check result in forward direction. RF output power starts to degrade when diode I/V curve is very strongly degraded only. Experienced on 400GHz doubler and 200GHz doubler

  19. Series Connected Buck-Boost Regulator

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G. (Inventor)

    2006-01-01

    A Series Connected Buck-Boost Regulator (SCBBR) that switches only a fraction of the input power, resulting in relatively high efficiencies. The SCBBR has multiple operating modes including a buck, a boost, and a current limiting mode, so that an output voltage of the SCBBR ranges from below the source voltage to above the source voltage.

  20. High-temperature, gas-filled ceramic rectifiers, thyratrons, and voltage-reference tubes

    NASA Technical Reports Server (NTRS)

    Baum, E. A.

    1969-01-01

    Thyratron, capable of being operated as a rectifier and a voltage-reference tube, was constructed and tested for 1000 hours at temperatures to 800 degrees C. With current levels at 15 amps and peak voltages of 2000 volts and frequencies at 6000 cps, tube efficiency was greater than 97 percent.

  1. An Improved Power Quality BIBRED Converter-Based VSI-Fed BLDC Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Bist, Vashist

    2014-01-01

    This paper presents an IHQRR (integrated high-quality rectifier regulator) BIBRED (boost integrated buck rectifier energy storage DC-DC) converter-based VSI (voltage source inverter)-fed BLDC (brushless DC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the VSI using a single voltage sensor. This allows VSI to operate in fundamental frequency switching mode for electronic commutation of BLDC motor which reduces the switching losses due to high-frequency switching used in conventional approach of PWM (pulse width modulation)-based VSI-fed BLDC motor drive. A BIBRED converter is operated in a dual-DCM (discontinuous conduction mode) thus using a voltage follower approach for PFC (power factor correction) and DC link voltage control. The performance of the proposed drive is evaluated for improved power quality over a wide range of speed control and supply voltage variation for demonstrating the behavior of proposed drive. The power quality indices thus obtained are within the recommended limits by international PQ (power quality) standards such as IEC 61000-3-2.

  2. Voltage controlled Bi-mode resistive switching effects in MnO2 based devices

    NASA Astrophysics Data System (ADS)

    Hu, P.; Wu, S. X.; Wang, G. L.; Li, H. W.; Li, D.; Li, S. W.

    2018-01-01

    In this paper, the voltage induced bi-mode resistive switching behavior of an MnO2 thin film based device was studied. The device showed prominent bipolar resistive switching behavior with good reproducibility and high endurance. In addition, complementary resistive switching characteristics can be observed by extending the voltage bias during voltage sweep operations. The electrical measurement data and fitting results indicate that the oxygen vacancies act as defects to form a conductive path, which is connective or disrupted to realize a low resistive state or a high resistive state. Changing the sweep voltage can tune the oxygen vacancies distribution, which will achieve complementary resistive switching.

  3. Rad-Hard, Miniaturized, Scalable, High-Voltage Switching Module for Power Applications Rad-Hard, Miniaturized

    NASA Technical Reports Server (NTRS)

    Adell, Philippe C.; Mojarradi, Mohammad; DelCastillo, Linda Y.; Vo, Tuan A.

    2011-01-01

    A paper discusses the successful development of a miniaturized radiation hardened high-voltage switching module operating at 2.5 kV suitable for space application. The high-voltage architecture was designed, fabricated, and tested using a commercial process that uses a unique combination of 0.25 micrometer CMOS (complementary metal oxide semiconductor) transistors and high-voltage lateral DMOS (diffusion metal oxide semiconductor) device with high breakdown voltage (greater than 650 V). The high-voltage requirements are achieved by stacking a number of DMOS devices within one module, while two modules can be placed in series to achieve higher voltages. Besides the high-voltage requirements, a second generation prototype is currently being developed to provide improved switching capabilities (rise time and fall time for full range of target voltages and currents), the ability to scale the output voltage to a desired value with good accuracy (few percent) up to 10 kV, to cover a wide range of high-voltage applications. In addition, to ensure miniaturization, long life, and high reliability, the assemblies will require intensive high-voltage electrostatic modeling (optimized E-field distribution throughout the module) to complete the proposed packaging approach and test the applicability of using advanced materials in a space-like environment (temperature and pressure) to help prevent potential arcing and corona due to high field regions. Finally, a single-event effect evaluation would have to be performed and single-event mitigation methods implemented at the design and system level or developed to ensure complete radiation hardness of the module.

  4. Highly tunable local gate controlled complementary graphene device performing as inverter and voltage controlled resistor.

    PubMed

    Kim, Wonjae; Riikonen, Juha; Li, Changfeng; Chen, Ya; Lipsanen, Harri

    2013-10-04

    Using single-layer CVD graphene, a complementary field effect transistor (FET) device is fabricated on the top of separated back-gates. The local back-gate control of the transistors, which operate with low bias at room temperature, enables highly tunable device characteristics due to separate control over electrostatic doping of the channels. Local back-gating allows control of the doping level independently of the supply voltage, which enables device operation with very low VDD. Controllable characteristics also allow the compensation of variation in the unintentional doping typically observed in CVD graphene. Moreover, both p-n and n-p configurations of FETs can be achieved by electrostatic doping using the local back-gate. Therefore, the device operation can also be switched from inverter to voltage controlled resistor, opening new possibilities in using graphene in logic circuitry.

  5. Method and system for a gas tube switch-based voltage source high voltage direct current transmission system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui

    A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of themore » one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.« less

  6. The 77 K operation of a multi-resonant power converter

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The liquid-nitrogen temperature (77 K) operation of a 55 W, 200 kHz, 48/28 V zero-voltage switching multi-resonant dc/dc converter designed with commercially available components is reported. Upon dipping the complete converter (power and control circuits) into liquid-nitrogen, the converter performance improved as compared to the room-temperature operation. The switching frequency, resonant frequency, and the characteristic impedance did not change significantly. Accordingly, the zero-voltage switching was maintained from no-load to full-load for the specified line variations. Cryoelectronics can provide high density power converters, especially for high power applications.

  7. The advantages of the high voltage solar array for electric propulsion

    NASA Technical Reports Server (NTRS)

    Sater, B. L.

    1973-01-01

    The high voltage solar array (HVSA) offers improvements in efficiency, weight, and reliability for the electric propulsion power system. The basic HVSA technology involves designing the solar array to deliver power in the form required by the ion thruster. This paper delves into conventional power processes and problems associated with ion thruster operation using SERT II experience for examples. In this light, the advantages of the HVSA concept for electric propulsion are presented. Tests conducted operating the SERT II thruster system in conjunction with HVSA are discussed. Thruster operation was observed to be normal and in some respects improved.

  8. Improved Transient and Steady-State Performances of Series Resonant ZCS High-Frequency Inverter-Coupled Voltage Multiplier Converter with Dual Mode PFM Control Scheme

    NASA Astrophysics Data System (ADS)

    Chu, Enhui; Gamage, Laknath; Ishitobi, Manabu; Hiraki, Eiji; Nakaoka, Mutsuo

    The A variety of switched-mode high voltage DC power supplies using voltage-fed type or current-fed type high-frequency transformer resonant inverters using MOS gate bipolar power transistors; IGBTs have been recently developed so far for a medical-use X-ray high power generator. In general, the high voltage high power X-ray generator using voltage-fed high frequency inverter with a high voltage transformer link has to meet some performances such as (i) short rising period in start transient of X-ray tube voltage (ii) no overshoot transient response in tube voltage, (iii) minimized voltage ripple in periodic steady-state under extremely wide load variations and filament heater current fluctuation conditions of the X-ray tube. This paper presents two lossless inductor snubber-assisted series resonant zero current soft switching high-frequency inverter using a diode-capacitor ladder type voltage multiplier called Cockcroft-Walton circuit, which is effectively implemented for a high DC voltage X-ray power generator. This DC high voltage generator which incorporates pulse frequency modulated series resonant inverter using IGBT power module packages is based on the operation principle of zero current soft switching commutation scheme under discontinuous resonant current and continuous resonant current transition modes. This series capacitor compensated for transformer resonant power converter with a high frequency transformer linked voltage boost multiplier can efficiently work a novel selectively-changed dual mode PFM control scheme in order to improve the start transient and steady-state response characteristics and can completely achieve stable zero current soft switching commutation tube filament current dependent for wide load parameter setting values with the aid of two lossless inductor snubbers. It is proved on the basis of simulation and experimental results in which a simple and low cost control implementation based on selectively-changed dual-mode PFM for high-voltage X-ray DC-DC power converter with a voltage multiplier strategy has some specified voltage pattern tracking voltage response performances under rapid rising time and no overshoot in start transient tube voltage as well as the minimized steady-state voltage ripple in tube voltage.

  9. Multiple high voltage output DC-to-DC power converter

    NASA Technical Reports Server (NTRS)

    Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)

    1977-01-01

    Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.

  10. Observations of Transient ISS Floating Potential Variations During High Voltage Solar Array Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda N.; Pour, Maria Z. A.; Swenson, Charles; Nishikawa, Ken-ichi; Krause, Linda Habash

    2016-01-01

    The International Space Station (ISS) continues to be a world-class space research laboratory after over 15 years of operations, and it has proven to be a fantastic resource for observing spacecraft floating potential variations related to high voltage solar array operations in Low Earth Orbit (LEO). Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS floating potential are obtained from the Floating Potential Measurement Unit (FPMU). In particular, rapid variations in ISS floating potential during solar array operations on time scales of tens of milliseconds can be recorded due to the 128 Hz sample rate of the Floating Potential Probe (FPP) pro- viding interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting transient floating potential variations with mission operations. These complex variations are not reproduced by current models and require further study to understand the underlying physical processes. In this paper we present some of the floating potential transients observed over the past few years along with the relevant space environment parameters and solar array operations data.

  11. Fuzzy-driven energy storage system for mitigating voltage unbalance factor on distribution network with photovoltaic system

    NASA Astrophysics Data System (ADS)

    Wong, Jianhui; Lim, Yun Seng; Morris, Stella; Morris, Ezra; Chua, Kein Huat

    2017-04-01

    The amount of small-scaled renewable energy sources is anticipated to increase on the low-voltage distribution networks for the improvement of energy efficiency and reduction of greenhouse gas emission. The growth of the PV systems on the low-voltage distribution networks can create voltage unbalance, voltage rise, and reverse-power flow. Usually these issues happen with little fluctuation. However, it tends to fluctuate severely as Malaysia is a region with low clear sky index. A large amount of clouds often passes over the country, hence making the solar irradiance to be highly scattered. Therefore, the PV power output fluctuates substantially. These issues can lead to the malfunction of the electronic based equipment, reduction in the network efficiency and improper operation of the power protection system. At the current practice, the amount of PV system installed on the distribution network is constraint by the utility company. As a result, this can limit the reduction of carbon footprint. Therefore, energy storage system is proposed as a solution for these power quality issues. To ensure an effective operation of the distribution network with PV system, a fuzzy control system is developed and implemented to govern the operation of an energy storage system. The fuzzy driven energy storage system is able to mitigate the fluctuating voltage rise and voltage unbalance on the electrical grid by actively manipulates the flow of real power between the grid and the batteries. To verify the effectiveness of the proposed fuzzy driven energy storage system, an experimental network integrated with 7.2kWp PV system was setup. Several case studies are performed to evaluate the response of the proposed solution to mitigate voltage rises, voltage unbalance and reduce the amount of reverse power flow under highly intermittent PV power output.

  12. The Impact of Harness Impedance on Hall Thruster Discharge Oscillations

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.

    2017-01-01

    Hall thrusters exhibit characteristic discharge voltage and current oscillations during steady-state operation. The lower frequency breathing-mode current oscillations are inherent to each thruster and could impact thruster operation and power processing unit (PPU) design. The design of the discharge output filter, in particular, the output capacitor is important because it supplies the high peak current oscillations that the thruster demands. However, space-rated, high-voltage capacitors are not readily available and can have significant mass and volume. So, it is important for a PPU designer to know what is the minimum amount of capacitance required to operate a thruster. Through Simulation Program with Integrated Circuit Emphasis modeling and electrical measurements on the Hall Effect Rocket with Magnetic Shielding thruster, it was shown that the harness impedance between the power supply and the thruster is the main contributor towards generating voltage ripple at the thruster. Also, increasing the size of the discharge filter capacitor, as previously implemented during thruster tests, does not reduce the voltage oscillations. The electrical characteristics of the electrical harness between the discharge supply and the thruster is crucial to system performance and could have a negative impact on performance, life and operation.

  13. The Impact of Harness Impedance on Hall Thruster Discharge Oscillations

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.

    2017-01-01

    Hall thrusters exhibit characteristic discharge voltage and current oscillations during steady-state operation. The lower frequency breathing-mode current oscillations are inherent to each thruster and could impact thruster operation and PPU design. The design of the discharge output filter, in particular, the output capacitor is important because it supplies the high peak current oscillations that the thruster demands. However, space-rated, high-voltage capacitors are not readily available and can have significant mass and volume. So, it is important for a PPU designer to know what is the minimum amount of capacitance required to operate a thruster. Through SPICE modeling and electrical measurements on the Hall Effect Rocket with Magnetic Shielding (HERMeS) thruster, it was shown that the harness impedance between the power supply and the thruster is the main contributor towards generating voltage ripple at the thruster. Also, increasing the size of the discharge filter capacitor, as previously implemented during thruster tests, does not reduce the voltage oscillations. The electrical characteristics of the electrical harness between the discharge supply and the thruster is crucial to system performance and could have a negative impact on performance, life and operation.

  14. Low-voltage organic strain sensor on plastic using polymer/high- K inorganic hybrid gate dielectrics

    NASA Astrophysics Data System (ADS)

    Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.

    2007-12-01

    In this paper, gate-induced pentacene semiconductor strain sensors based on hybrid-gate dielectrics using poly-vinylphenol (PVP) and high-K inorganic, Ta IIO 5 are fabricated on flexible substrates, polyethylene naphthalate (PEN). The Ta IIO 5 gate dielectric layer is combined with a thin PVP layer to obtain very smooth and hydrophobic surfaces which improve the molecular structures of pentacene films. The PVP-Ta IIO 5 hybrid-gate dielectric films exhibit a high dielectric capacitance and low leakage current. The sensors adopting thin film transistor (TFT)-like structures show a significantly reduced operating voltage (~6V), and good device characteristics with a field-effect mobility of 1.89 cm2/V•s, a threshold voltage of -0.5 V, and an on/off ratio of 10 3. The strain sensor, one of the practical applications in large-area organic electronics, was characterized with different bending radii of 50, 40, 30, and 20 mm. The sensor output signals were significantly improved with low-operating voltages.

  15. Printed 2 V-operating organic inverter arrays employing a small-molecule/polymer blend

    NASA Astrophysics Data System (ADS)

    Shiwaku, Rei; Takeda, Yasunori; Fukuda, Takashi; Fukuda, Kenjiro; Matsui, Hiroyuki; Kumaki, Daisuke; Tokito, Shizuo

    2016-10-01

    Printed organic thin-film transistors (OTFTs) are well suited for low-cost electronic applications, such as radio frequency identification (RFID) tags and sensors. Achieving both high carrier mobility and uniform electrical characteristics in printed OTFT devices is essential in these applications. Here, we report on printed high-performance OTFTs and circuits using silver nanoparticle inks for the source/drain electrodes and a blend of dithieno[2,3-d2‧,3‧-d‧]benzo[1,2-b4,5-b‧]dithiophene (DTBDT-C6) and polystyrene for the organic semiconducting layer. A high saturation region mobility of 1.0 cm2 V-1 s-1 at low operation voltage of -5 V was obtained for relatively short channel lengths of 9 μm. All fifteen of the printed pseudo-CMOS inverter circuits were formed on a common substrate and operated at low operation voltage of 2 V with the total variation in threshold voltage of 0.35 V. Consequently, the printed OTFT devices can be used in more complex integrated circuit applications requiring low manufacturing cost over large areas.

  16. Printed 2 V-operating organic inverter arrays employing a small-molecule/polymer blend.

    PubMed

    Shiwaku, Rei; Takeda, Yasunori; Fukuda, Takashi; Fukuda, Kenjiro; Matsui, Hiroyuki; Kumaki, Daisuke; Tokito, Shizuo

    2016-10-04

    Printed organic thin-film transistors (OTFTs) are well suited for low-cost electronic applications, such as radio frequency identification (RFID) tags and sensors. Achieving both high carrier mobility and uniform electrical characteristics in printed OTFT devices is essential in these applications. Here, we report on printed high-performance OTFTs and circuits using silver nanoparticle inks for the source/drain electrodes and a blend of dithieno[2,3-d;2',3'-d']benzo[1,2-b;4,5-b']dithiophene (DTBDT-C 6 ) and polystyrene for the organic semiconducting layer. A high saturation region mobility of 1.0 cm 2  V -1  s -1 at low operation voltage of -5 V was obtained for relatively short channel lengths of 9 μm. All fifteen of the printed pseudo-CMOS inverter circuits were formed on a common substrate and operated at low operation voltage of 2 V with the total variation in threshold voltage of 0.35 V. Consequently, the printed OTFT devices can be used in more complex integrated circuit applications requiring low manufacturing cost over large areas.

  17. Spacecraft Charging Current Balance Model Applied to High Voltage Solar Array Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Pour, Maria Z. A.

    2016-01-01

    Spacecraft charging induced by high voltage solar arrays can result in power losses and degradation of spacecraft surfaces. In some cases, it can even present safety issues for astronauts performing extravehicular activities. An understanding of the dominant processes contributing to spacecraft charging induced by solar arrays is important to current space missions, such as the International Space Station, and to any future space missions that may employ high voltage solar arrays. A common method of analyzing the factors contributing to spacecraft charging is the current balance model. Current balance models are based on the simple idea that the spacecraft will float to a potential such that the current collecting to the surfaces equals the current lost from the surfaces. However, when solar arrays are involved, these currents are dependent on so many factors that the equation becomes quite complicated. In order for a current balance model to be applied to solar array operations, it must incorporate the time dependent nature of the charging of dielectric surfaces in the vicinity of conductors1-3. This poster will present the factors which must be considered when developing a current balance model for high voltage solar array operations and will compare results of a current balance model with data from the Floating Potential Measurement Unit4 on board the International Space Station.

  18. Static DC to DC Power Conditioning-Active Ripple Filter, 1 MHZ DC to DC Conversion, and Nonlinear Analysis. Ph.D. Thesis; [voltage regulation and conversion circuitry for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Sander, W. A., III

    1973-01-01

    Dc to dc static power conditioning systems on unmanned spacecraft have as their inputs highly fluctuating dc voltages which they condition to regulated dc voltages. These input voltages may be less than or greater than the desired regulated voltages. The design of two circuits which address specific problems in the design of these power conditioning systems and a nonlinear analysis of one of the circuits are discussed. The first circuit design is for a nondissipative active ripple filter which uses an operational amplifier to amplify and cancel the sensed ripple voltage. A dc to dc converter operating at a switching frequency of 1 MHz is the second circuit discussed. A nonlinear analysis of the type of dc to dc converter utilized in designing the 1 MHz converter is included.

  19. False Operation of Static Random Access Memory Cells under Alternating Current Power Supply Voltage Variation

    NASA Astrophysics Data System (ADS)

    Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto

    2013-04-01

    Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.

  20. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction. To date, however, their application to variable speed or servo drives was hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation of frequency and voltage allows independent control of rotor and stator flux, full four quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  1. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction to date, however, their application to variable speed or servo drives has been hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation offrequency and voltage allows independent control of rotor and stator flux, full four-quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  2. Voltage controlled current source

    DOEpatents

    Casne, Gregory M.

    1992-01-01

    A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

  3. Bivariate quadratic method in quantifying the differential capacitance and energy capacity of supercapacitors under high current operation

    NASA Astrophysics Data System (ADS)

    Goh, Chin-Teng; Cruden, Andrew

    2014-11-01

    Capacitance and resistance are the fundamental electrical parameters used to evaluate the electrical characteristics of a supercapacitor, namely the dynamic voltage response, energy capacity, state of charge and health condition. In the British Standards EN62391 and EN62576, the constant capacitance method can be further improved with a differential capacitance that more accurately describes the dynamic voltage response of supercapacitors. This paper presents a novel bivariate quadratic based method to model the dynamic voltage response of supercapacitors under high current charge-discharge cycling, and to enable the derivation of the differential capacitance and energy capacity directly from terminal measurements, i.e. voltage and current, rather than from multiple pulsed-current or excitation signal tests across different bias levels. The estimation results the author achieves are in close agreement with experimental measurements, within a relative error of 0.2%, at various high current levels (25-200 A), more accurate than the constant capacitance method (4-7%). The archival value of this paper is the introduction of an improved quantification method for the electrical characteristics of supercapacitors, and the disclosure of the distinct properties of supercapacitors: the nonlinear capacitance-voltage characteristic, capacitance variation between charging and discharging, and distribution of energy capacity across the operating voltage window.

  4. Physicochemical assessment criteria for high-voltage pulse capacitors

    NASA Astrophysics Data System (ADS)

    Darian, L. A.; Lam, L. Kh.

    2016-12-01

    In the paper, the applicability of decomposition products of internal insulation of high-voltage pulse capacitors is considered (aging is the reason for decomposition products of internal insulation). Decomposition products of internal insulation of high-voltage pulse capacitors can be used to evaluate their quality when in operation and in service. There have been three generations of markers of aging of insulation as in the case with power transformers. The area of applicability of markers of aging of insulation for power transformers has been studied and the area can be extended to high-voltage pulse capacitors. The research reveals that there is a correlation between the components and quantities of markers of aging of the first generation (gaseous decomposition products of insulation) dissolved in insulating liquid and the remaining life of high-voltage pulse capacitors. The application of markers of aging to evaluate the remaining service life of high-voltage pulse capacitor is a promising direction of research, because the design of high-voltage pulse capacitors keeps stability of markers of aging of insulation in high-voltage pulse capacitors. It is necessary to continue gathering statistical data concerning development of markers of aging of the first generation. One should also carry out research aimed at estimation of the remaining life of capacitors using markers of the second and the third generation.

  5. New Modulation Method and Control Strategies for Power Electronics Inverters

    NASA Astrophysics Data System (ADS)

    Aleenejad, Mohsen

    The DC to AC power Converters (so-called Inverters) are widely used in industrial applications. The MLIs are becoming increasingly popular in industrial apparatus aimed at medium to high power conversion applications. In comparison to the conventional inverters, they feature superior characteristics such as lower total harmonic distortion (THD), higher efficiency, and lower switching voltage stress. Nevertheless, the superior characteristics come at the price of a more complex topology with an increased number of power electronic switches. The increased number of power electronics switches results in more complicated control strategies for the inverter. Moreover, as the number of power electronic switches increases, the chances of fault occurrence of the switches increases, and thus the inverter's reliability decreases. Due to the extreme monetary ramifications of the interruption of operation in commercial and industrial applications, high reliability for power inverters utilized in these sectors is critical. As a result, developing simple control strategies for normal and fault-tolerant operation of MLIs has always been an interesting topic for researchers in related areas. The purpose of this dissertation is to develop new control and fault-tolerant strategies for the multilevel power inverter. For the normal operation of the inverter, a new high switching frequency technique is developed. The proposed method extends the utilization of the dc link voltage while minimizing the dv/dt of the switches. In the event of a fault, the line voltages of the faulty inverters are unbalanced and cannot be applied to the 3-phase loads. For the faulty condition of the inverter, three novel fault-tolerant techniques are developed. The proposed fault-tolerant strategies generate balanced line voltages without bypassing any healthy and operative inverter element, makes better use of the inverter capacity and generates higher output voltage. These strategies exploit the advantages of the Selective Harmonic Elimination (SHE) and Space Vector Modulation (SVM) methods in conjunction with a slightly modified Fundamental Phase Shift Compensation (FPSC) technique to generate balanced voltages and manipulate voltage harmonics at the same time. The proposed strategies are applicable to several classes of MLIs with three or more voltage levels.

  6. The development of high-voltage repetitive low-jitter corona stabilized triggered switch

    NASA Astrophysics Data System (ADS)

    Geng, Jiuyuan; Yang, Jianhua; Cheng, Xinbing; Yang, Xiao; Chen, Rong

    2018-04-01

    The high-power switch plays an important part in a pulse power system. With the trend of pulse power technology toward modularization, miniaturization, and accuracy control, higher requirements on electrical trigger and jitter of the switch have been put forward. A high-power low-jitter corona-stabilized triggered switch (CSTS) is designed in this paper. This kind of CSTS is based on corona stabilized mechanism, and it can be used as a main switch of an intense electron-beam accelerator (IEBA). Its main feature was the use of an annular trigger electrode instead of a traditional needle-like trigger electrode, taking main and side trigger rings to fix the discharging channels and using SF6/N2 gas mixture as its operation gas. In this paper, the strength of the local field enhancement was changed by a trigger electrode protrusion length Dp. The differences of self-breakdown voltage and its stability, delay time jitter, trigger requirements, and operation range of the switch were compared. Then the effect of different SF6/N2 mixture ratio on switch performance was explored. The experimental results show that when the SF6 is 15% with the pressure of 0.2 MPa, the hold-off voltage of the switch is 551 kV, the operating range is 46.4%-93.5% of the self-breakdown voltage, the jitter is 0.57 ns, and the minimum trigger voltage requirement is 55.8% of the peak. At present, the CSTS has been successfully applied to an IEBA for long time operation.

  7. The development of high-voltage repetitive low-jitter corona stabilized triggered switch.

    PubMed

    Geng, Jiuyuan; Yang, Jianhua; Cheng, Xinbing; Yang, Xiao; Chen, Rong

    2018-04-01

    The high-power switch plays an important part in a pulse power system. With the trend of pulse power technology toward modularization, miniaturization, and accuracy control, higher requirements on electrical trigger and jitter of the switch have been put forward. A high-power low-jitter corona-stabilized triggered switch (CSTS) is designed in this paper. This kind of CSTS is based on corona stabilized mechanism, and it can be used as a main switch of an intense electron-beam accelerator (IEBA). Its main feature was the use of an annular trigger electrode instead of a traditional needle-like trigger electrode, taking main and side trigger rings to fix the discharging channels and using SF 6 /N 2 gas mixture as its operation gas. In this paper, the strength of the local field enhancement was changed by a trigger electrode protrusion length Dp. The differences of self-breakdown voltage and its stability, delay time jitter, trigger requirements, and operation range of the switch were compared. Then the effect of different SF 6 /N 2 mixture ratio on switch performance was explored. The experimental results show that when the SF 6 is 15% with the pressure of 0.2 MPa, the hold-off voltage of the switch is 551 kV, the operating range is 46.4%-93.5% of the self-breakdown voltage, the jitter is 0.57 ns, and the minimum trigger voltage requirement is 55.8% of the peak. At present, the CSTS has been successfully applied to an IEBA for long time operation.

  8. Ultralow-power complementary metal-oxide-semiconductor inverters constructed on Schottky barrier modified nanowire metal-oxide-semiconductor field-effect-transistors.

    PubMed

    Ma, R M; Peng, R M; Wen, X N; Dai, L; Liu, C; Sun, T; Xu, W J; Qin, G G

    2010-10-01

    We show that the threshold voltages of both n- and p-channel metal-oxide-semiconductor field-effect-transistors (MOSFETs) can be lowered to close to zero by adding extra Schottky contacts on top of nanowires (NWs). Novel complementary metal-oxide-semiconductor (CMOS) inverters are constructed on these Schottky barrier modified n- and p-channel NW MOSFETs. Based on the high performances of the modified n- and p-channel MOSFETs, especially the low threshold voltages, the as-fabricated CMOS inverters have low operating voltage, high voltage gain, and ultra-low static power dissipation.

  9. High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepler, Keith D.; Slater, Michael

    This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The majormore » technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.« less

  10. Top-gate organic depletion and inversion transistors with doped channel and injection contact

    NASA Astrophysics Data System (ADS)

    Liu, Xuhai; Kasemann, Daniel; Leo, Karl

    2015-03-01

    Organic field-effect transistors constitute a vibrant research field and open application perspectives in flexible electronics. For a commercial breakthrough, however, significant performance improvements are still needed, e.g., stable and high charge carrier mobility and on-off ratio, tunable threshold voltage, as well as integrability criteria such as n- and p-channel operation and top-gate architecture. Here, we show pentacene-based top-gate organic transistors operated in depletion and inversion regimes, realized by doping source and drain contacts as well as a thin layer of the transistor channel. By varying the doping concentration and the thickness of the doped channel, we control the position of the threshold voltage without degrading on-off ratio or mobility. Capacitance-voltage measurements show that an inversion channel can indeed be formed, e.g., an n-doped channel can be inverted to a p-type inversion channel with highly p-doped contacts. The Cytop polymer dielectric minimizes hysteresis, and the transistors can be biased for prolonged cycles without a shift of threshold voltage, indicating excellent operation stability.

  11. Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.

  12. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thrusters anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization.

  13. Measurement of high-voltage and radiation-damage limitations to advanced solar array performance

    NASA Technical Reports Server (NTRS)

    Guidice, D. A.; Severance, P. S.; Keinhardt, K. C.

    1991-01-01

    A description is given of the reconfigured Photovoltaic Array Space Power (PASP) Plus experiment: its objectives, solar-array complement, and diagnostic sensors. Results from a successful spaceflight will lead to a better understanding of high-voltage and radiation-damage limitations in the operation of new-technology solar arrays.

  14. OB's high voltage laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1966-01-01

    The January issue of Hi-Tension News provides a detailed description of the advanced surge test facilities and procedures in daily operation at the OB High Voltage Laboratory in Barberton, Ohio. Technical competences achieved in this laboratory contribute to the essential factors of design confirmation to basic studies of ehv insulation systems, conductor and hardware performance, and optimum tower construction. Known throughout the industry for authenticity of its full scale, all weather outdoor testing, OB's High Voltage Laboratory is a full-fledged participant in the NEMA-sponsored program to make testing facilities available on a cooperative basis.

  15. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature.

    PubMed

    Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen

    2011-11-22

    The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch(-2), ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns.

  16. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature

    PubMed Central

    Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen

    2011-01-01

    The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch−2, ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns. PMID:22109527

  17. Upgrade of the TITAN EBIT High Voltage Operation

    NASA Astrophysics Data System (ADS)

    Foster, Matt; Titan Collaboration

    2016-09-01

    TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) is a setup dedicated to highly precise mass measurements of short-lived isotopes down to 10ms. TITAN's Electron Beam Ion Trap (EBIT) is a charge breeder integrated into the setup to perform in-trap decay spectroscopy of highly charged ions and increase the precision of mass measurements. In its previous configuration TITAN's EBIT could not fulfil its maximum design specification due to high voltage safety restrictions, limiting its obtainable charge states. A recently completed upgrade of the high voltage operation that will allow the EBIT to fulfil its design specification and achieve higher charge states for heavier species is undergoing preliminary tests with stable beam. Simulations were performed to optimise the injection and extraction efficiency at high voltage and initial tests have involved using a Ge detector to identify x-rays produced by charge breeding stable ions. Future work comprises exploring electron capture rates of Ne-, He- and H-like charge states of 64Cu and higher masses, which were not previously accessible. The function of the EBIT within the TITAN setup, the work carried out on the upgrade thus far and its scope for future work will be presented.

  18. Polymer/metal oxide hybrid dielectrics for low voltage field-effect transistors with solution-processed, high-mobility semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Held, Martin; Schießl, Stefan P.; Gannott, Florentina

    Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfO{sub x}) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states atmore » the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100–300 nF/cm{sup 2}) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfO{sub x} dielectrics.« less

  19. Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage

    NASA Astrophysics Data System (ADS)

    Tao, Jiayou; Liu, Nishuang; Rao, Jiangyu; Ding, Longwei; Al Bahrani, Majid Raissan; Li, Luying; Su, Jun; Gao, Yihua

    2014-11-01

    Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high output voltage.Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high output voltage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04819a

  20. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  1. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems

    NASA Astrophysics Data System (ADS)

    Béthoux, O.; Cathelin, J.

    2010-12-01

    Consuming chemical energy, fuel cells produce simultaneously heat, water and useful electrical power [J.M. Andújar, F. Segura, Renew. Sust. Energy Rev. 13, 2309 (2009)], [J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, 2003)]. As a matter of fact, the voltage generated by a fuel cell strongly depends on both the load power demand and the operating conditions. Besides, as a result of many design aspects, fuel cells are low voltage and high current electric generators. On the contrary, electric loads are commonly designed for small voltage swing and a high V/I ratio in order to minimize Joule losses. Therefore, electric loads supplied by fuel cells are typically fed by means of an intermediate power voltage regulator. The specifications of such a power converter are to be able to step up the input voltage with a high ratio (a ratio of 10 is a classic situation) and also to work with an excellent efficiency (in order to minimize its size, its weight and its losses) [A. Shahin, B. Huang, J.P. Martin, S. Pierfederici, B. Davat, Energy Conv. Manag. 51, 56 (2010)]. This paper deals with the design of this essential ancillary device. It intends to bring out the best structure for fulfilling this function. Several dc-dc converters with large voltage step-up ratios are introduced. A topology based on a coupled inductor or tapped inductor is closely studied. A detailed modelling is performed with the purpose of providing designing rules. This model is validated with both simulation and implementation. The experimental prototype is based on the following specifications: the fuel cell output voltage ranges from a 50 V open-voltage to a 25 V rated voltage while the load requires a constant 250 V voltage. The studied coupled inductor converter is compared with a classic boost converter commonly used in this voltage elevating application. Even though the voltage regulator faces severe FC specifications, the measured efficiency reaches 96% at the rated power whereas conventional boost efficiency barely achieves 91.5% in the same operating conditions.

  2. High-conductance low-voltage organic thin film transistor with locally rearranged poly(3-hexylthiophene) domain by current annealing on plastic substrate

    NASA Astrophysics Data System (ADS)

    Pei, Zingway; Tsai, Hsing-Wang; Lai, Hsin-Cheng

    2016-02-01

    The organic material based thin film transistors (TFTs) are attractive for flexible optoelectronics applications due to the ability of lager area fabrication by solution and low temperature process on plastic substrate. Recently, the research of organic TFT focus on low operation voltage and high output current to achieve a low power organic logic circuit for optoelectronic device,such as e-paper or OLED displayer. To obtain low voltage and high output current, high gate capacitance and high channel mobility are key factors. The well-arranged polymer chain by a high temperature postannealing, leading enhancement conductivity of polymer film was a general method. However, the thermal annealing applying heat for all device on the substrate and may not applicable to plastic substrate. Therefore, in this work, the low operation voltage and high output current of polymer TFTs was demonstrated by locally electrical bias annealing. The poly(styrene-comethyl methacrylate) (PS-r-PMMA) with ultra-thin thickness is used as gate dielectric that the thickness is controlled by thermal treatment after spin coated on organic electrode. In electrical bias-annealing process, the PS-r- PMMA is acted a heating layer. After electrical bias-annealing, the polymer TFTs obtain high channel mobility at low voltage that lead high output current by a locally annealing of P3HT film. In the future, the locally electrical biasannealing method could be applied on plastic substrate for flexible optoelectronic application.

  3. Investigation Of The High-Voltage Discharge On The Surface Of Gas-Liquid System

    NASA Astrophysics Data System (ADS)

    Nguyen-Kuok, Shi; Morgunov, Aleksandr; Malakhov, Yury; Korotkikh, Ivan

    2016-09-01

    This paper describes an experimental setup for study of physical processes in the high-voltage discharge on the surface of gas-liquid system at atmospheric pressure. Measurements of electrical and optical characteristics of the high-voltage discharge in gas, at the surface of the gas-liquid system and in the electrolyte are obtained. The parameters of the high-voltage discharge and the conditions for its stable operation are presented. Investigations with various electrolytes and cathode assemblies of various materials and sizes were carried out. The installation can be used for the processing and recycling of industrial and chemical liquid waste. Professor of Laboratory of Plasma Physics, National Research University MPEI, Krasnokazarmennya Str.14, 111250, Moscow, Russia.

  4. Fabrication and electrical characterization of a MOS memory device containing self-assembled metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sargentis, Ch.; Giannakopoulos, K.; Travlos, A.; Tsamakis, D.

    2007-04-01

    Floating gate devices with nanoparticles embedded in dielectrics have recently attracted much attention due to the fact that these devices operate as non-volatile memories with high speed, high density and low power consumption. In this paper, memory devices containing gold (Au) nanoparticles have been fabricated using e-gun evaporation. The Au nanoparticles are deposited on a very thin SiO 2 layer and are then fully covered by a HfO 2 layer. The HfO 2 is a high- k dielectric and gives good scalability to the fabricated devices. We studied the effect of the deposition parameters to the size and the shape of the Au nanoparticles using capacitance-voltage and conductance-voltage measurements, we demonstrated that the fabricated device can indeed operate as a low-voltage memory device.

  5. Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte - REVISED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunstrom, Joseph; Hendershot, Ron E.

    An evaluation of high voltage electrolytes which contain fluorochemicals as solvents/additive has been completed with the objective of formulating a safe, stable electrolyte capable of operation to 4.6 V. Stable cycle performance has been demonstrated in LiNi1/3Mn1/3Co1/3O2 (NMC111)/graphite cells to 4.5 V. The ability to operate at high voltage results in significant energy density gain (>30%) which would manifest as longer battery life resulting in higher range for electric vehicles. Alternatively, a higher energy density battery can be made smaller without sacrificing existing energy. In addition, the fluorinated electrolytes examined showed better safety performance when tested in abuse conditions. Themore » results are promising for future advanced battery development for vehicles as well as other applications.« less

  6. Direct coupling of pulsed radio frequency and pulsed high power in novel pulsed power system for plasma immersion ion implantation.

    PubMed

    Gong, Chunzhi; Tian, Xiubo; Yang, Shiqin; Fu, Ricky K Y; Chu, Paul K

    2008-04-01

    A novel power supply system that directly couples pulsed high voltage (HV) pulses and pulsed 13.56 MHz radio frequency (rf) has been developed for plasma processes. In this system, the sample holder is connected to both the rf generator and HV modulator. The coupling circuit in the hybrid system is composed of individual matching units, low pass filters, and voltage clamping units. This ensures the safe operation of the rf system even when the HV is on. The PSPICE software is utilized to optimize the design of circuits. The system can be operated in two modes. The pulsed rf discharge may serve as either the seed plasma source for glow discharge or high-density plasma source for plasma immersion ion implantation (PIII). The pulsed high-voltage glow discharge is induced when a rf pulse with a short duration or a larger time interval between the rf and HV pulses is used. Conventional PIII can also be achieved. Experiments conducted on the new system confirm steady and safe operation.

  7. High-voltage pulsed generator for dynamic fragmentation of rocks

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Vizir, V. A.; Kumpyak, V. V.; Zorin, V. B.; Kiselev, V. N.

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ˜50 ns, current amplitude of ˜6 kA with the 40 Ω active load, and ˜20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  8. High-voltage pulsed generator for dynamic fragmentation of rocks.

    PubMed

    Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  9. Automated qualification and analysis of protective spark gaps for DC accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Srutarshi; Rajan, Rehim N.; Dewangan, S.

    2014-07-01

    Protective spark gaps are used in the high voltage multiplier column of a 3 MeV DC Accelerator to prevent excessive voltage build-ups. Precise gap of 5 mm is maintained between the electrodes in these spark gaps for obtaining 120 kV± 5 kV in 6 kg/cm{sup 2} SF{sub 6} environment which is the dielectric medium. There are 74 such spark gaps used in the multiplier. Each spark gap has to be qualified for electrical performance before fitting in the accelerator to ensure reliable operation. As the breakdown voltage stabilizes after a large number of sparks between the electrodes, the qualification processmore » becomes time consuming and cumbersome. For qualifying large number of spark gaps an automatic breakdown analysis setup has been developed. This setup operates in air, a dielectric medium. The setup consists of a flyback topology based high voltage power supply with maximum rating of 25 kV. This setup works in conjunction with spark detection and automated shutdown circuit. The breakdown voltage is sensed using a peak detector circuit. The voltage breakdown data is recorded and statistical distribution of the breakdown voltage has been analyzed. This paper describes details of the diagnostics and the spark gap qualification process based on the experimental data. (author)« less

  10. Feasibility Study of a 400 Hz, 4160 Volt 3-Phase Electrical Power Distribution System

    DTIC Science & Technology

    1977-02-25

    accordance with HIL-E-917. 8. The primary insulation shall be adequate to withstand a high potential test of 60 Hz voltage windings to winding and to ground... withstand a short circuit current of 500 percent for 10 seconds without exceeding the voltage rating of any capacitors. They shall operate within...shaft. separation is required to withstand high voltages . The limited contact movement results in a very small contactor size be- cause it permits the use

  11. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  12. Statistical characteristics of transient enclosure voltage in ultra-high-voltage gas-insulated switchgear

    NASA Astrophysics Data System (ADS)

    Cai, Yuanji; Guan, Yonggang; Liu, Weidong

    2017-06-01

    Transient enclosure voltage (TEV), which is a phenomenon induced by the inner dielectric breakdown of SF6 during disconnector operations in a gas-insulated switchgear (GIS), may cause issues relating to shock hazard and electromagnetic interference to secondary equipment. This is a critical factor regarding the electromagnetic compatibility of ultra-high-voltage (UHV) substations. In this paper, the statistical characteristics of TEV at UHV level are collected from field experiments, and are analyzed and compared to those from a repeated strike process. The TEV waveforms during disconnector operations are recorded by a self-developed measurement system first. Then, statistical characteristics, such as the pulse number, duration of pulses, frequency components, magnitude and single pulse duration, are extracted. The transmission line theory is introduced to analyze the TEV and is validated by the experimental results. Finally, the relationship between the TEV and the repeated strike process is analyzed. This proves that the pulse voltage of the TEV is proportional to the corresponding breakdown voltage. The results contribute to the definition of the standard testing waveform of the TEV, and can aid the protection of electronic devices in substations by minimizing the threat of this phenomenon.

  13. Ultra High Voltage Propellant Isolators and Insulators for JIMO Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Gaier, James R.; Hung, Ching-Cheh; Walters, Patty A.; Sechkar, Ed; Panko, Scott; Kamiotis, Christina A.

    2004-01-01

    Within NASA's Project Prometheus, high specific impulse ion thrusters for electric propulsion of spacecraft for the proposed Jupiter Icy Moon Orbiter (JIMO) mission to three of Jupiter's moons: Callisto, Ganymede and Europa will require high voltage operation to meet mission propulsion. The anticipated approx.6,500 volt net ion energy will require electrical insulation and propellant isolation which must exceed that used successfully by the NASA Solar Electric Propulsion Technology Readiness (NSTAR) Deep Space 1 mission thruster by a factor of approx.6. Xenon propellant isolator prototypes that operate at near one atmosphere and prototypes that operate at low pressures (<100 Torr) have been designed and are being tested for suitability to the JIMO mission requirements. Propellant isolators must be durable to Paschen breakdown, sputter contamination, high temperature, and high voltage while operating for factors longer duration than for the Deep Space 1 Mission. Insulators used to mount the thrusters as well as those needed to support the ion optics have also been designed and are under evaluation. Isolator and insulator concepts, design issues, design guidelines, fabrication considerations and performance issues are presented. The objective of the investigation was to identify candidate isolators and insulators that are sufficiently robust to perform durably and reliably during the proposed JIMO mission.

  14. Low voltage electrowetting lenticular lens by using multilayer dielectric structure

    NASA Astrophysics Data System (ADS)

    Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Sim, Jee Hoon; Won, Yong Hyub

    2017-02-01

    Lenticular type multi-view display is one of the most popular ways for implementing three dimensional display. This method has a simple structure and exhibits a high luminance. However, fabricating the lenticular lens is difficult because it requires optically complex calculations. 2D-3D conversion is also impossible due to the fixed shape of the lenticular lens. Electrowetting based liquid lenticular lens has a simple fabrication process compared to the solid lenticular lens and the focal length of the liquid lenticular lens can be changed by applying the voltage. 3D and 2D images can be observed with a convex and a flat lens state respectively. Despite these advantages, the electrowetting based liquid lenticular lens demands high driving voltage and low breakdown voltage with a single dielectric layer structure. A certain degree of thickness of the dielectric layer is essential for a uniform operation and a low degradation over time. This paper presents multilayer dielectric structure which results in low driving voltage and the enhanced dielectric breakdown. Aluminum oxide (Al2O3), silicon oxide (SiO2) and parylene C were selected as the multilayer insulators. The total thickness of the dielectric layer of all samples was the same. This method using the multilayer dielectric structure can achieve the lower operating voltage than when using the single dielectric layer. We compared the liquid lenticular lens with three kinds of the multilayer dielectric structure to one with the parylene C single dielectric layer in regard to operational characteristics such as the driving voltage and the dielectric breakdown.

  15. A soft-switching coupled inductor bidirectional DC-DC converter with high-conversion ratio

    NASA Astrophysics Data System (ADS)

    Chao, Kuei-Hsiang; Jheng, Yi-Cing

    2018-01-01

    A soft-switching bidirectional DC-DC converter is presented herein as a way to improve the conversion efficiency of a photovoltaic (PV) system. Adoption of coupled inductors enables the presented converter not only to provide a high-conversion ratio but also to suppress the transient surge voltage via the release of the energy stored in leakage flux of the coupled inductors, and the cost can kept down consequently. A combined use of a switching mechanism and an auxiliary resonant branch enables the converter to successfully perform zero-voltage switching operations on the main switches and improves the efficiency accordingly. It was testified by experiments that our proposed converter works relatively efficiently in full-load working range. Additionally, the framework of the converter intended for testifying has high-conversion ratio. The results of a test, where a generating system using PV module array coupled with batteries as energy storage device was used as the low-voltage input side, and DC link was used as high-voltage side, demonstrated our proposed converter framework with high-conversion ratio on both high-voltage and low-voltage sides.

  16. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung

    2014-09-01

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in LixNi0.8Co0.15Al0.05O2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J E; Smith, J T; Mathis, M V

    Based on the limited measurements and the attempts to activate the high voltage power supply, the Source Range Monitor which includes NI-AMP-2 is not operating. Since there appears to be an excessive load on the high voltage, it appears that either the detector or cable is defective. However, TDR measurements did not indicate a significant problem with the cable using low level test signals.

  18. Power supply system for negative ion source at IPR

    NASA Astrophysics Data System (ADS)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K. G.; Soni, Jignesh; Bandyopadhyay, M.; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the design basis, topology selection, manufacturing, testing, commissioning, integration and control strategy of these HVPS. A complete power interconnection scheme, which includes all protective devices and measuring devices, low & high voltage power supplies, monitoring and control signals etc. shall also be discussed. The paper also discusses the protocols involved in grounding and shielding, particularly in operating the system in RF environment.

  19. Linearity optimizations of analog ring resonator modulators through bias voltage adjustments

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Arash; Middlebrook, Christopher T.

    2018-03-01

    The linearity of ring resonator modulator (RRM) in microwave photonic links is studied in terms of instantaneous bandwidth, fabrication tolerances, and operational bandwidth. A proposed bias voltage adjustment method is shown to maximize spur-free dynamic range (SFDR) at instantaneous bandwidths required by microwave photonic link (MPL) applications while also mitigating RRM fabrication tolerances effects. The proposed bias voltage adjustment method shows RRM SFDR improvement of ∼5.8 dB versus common Mach-Zehnder modulators at 500 MHz instantaneous bandwidth. Analyzing operational bandwidth effects on SFDR shows RRMs can be promising electro-optic modulators for MPL applications which require high operational frequencies while in a limited bandwidth such as radio-over-fiber 60 GHz wireless network access.

  20. Power spool test, TSH-002, SPTF No. 19

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInturff, A.D.

    1982-05-28

    The data presented in this Technical Memo will pertain to the operating characteristics of Power Spool TSH-002. This spool had a large number of thermometers built into it. These thermometers monitored most of the thermal characteristics of the 5000 A American Magnetics, Inc. vapor-cooled leads used in this power spool. Operating conditions, such as peak temperatures, ramp and dc lead cooling gas flow requirements, voltage as an indicator of stable conditions (ac and dc) and general voltage characteristics (i.e., amount of ice formed outside of leads vs high-pot voltage) were measured and observed. It was found that previous operating conditionsmore » of the power leads influenced the temperature gradients of the leads in certain cases.« less

  1. Performance of the Micropower Voltage Reference ADR3430 Under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    Electronic systems designed for use in space exploration systems are expected to be exposed to harsh temperatures. For example, operation at cryogenic temperatures is anticipated in space missions such as polar craters of the moon (-223 C), James Webb Space Telescope (-236 C), Mars (-140 C), Europa (-223 C), Titan (-178 C), and other deep space probes away from the sun. Similarly, rovers and landers on the lunar surface, and deep space probes intended for the exploration of Venus are expected to encounter high temperature extremes. Electronics capable of operation under extreme temperatures would not only meet the requirements of future spacebased systems, but would also contribute to enhancing efficiency and improving reliability of these systems through the elimination of the thermal control elements that present electronics need for proper operation under the harsh environment of space. In this work, the performance of a micropower, high accuracy voltage reference was evaluated over a wide temperature range. The Analog Devices ADR3430 chip uses a patented voltage reference architecture to achieve high accuracy, low temperature coefficient, and low noise in a CMOS process [1]. The device combines two voltages of opposite temperature coefficients to create an output voltage that is almost independent of ambient temperature. It is rated for the industrial temperature range of -40 C to +125 C, and is ideal for use in low power precision data acquisition systems and in battery-powered devices. Table 1 shows some of the manufacturer s device specifications.

  2. Substrate effects in high gain, low operating voltage SnSe2 photoconductor

    NASA Astrophysics Data System (ADS)

    Krishna, Murali; Kallatt, Sangeeth; Majumdar, Kausik

    2018-01-01

    High gain photoconductive devices find wide spread applications in low intensity light detection. Ultra-thin layered materials have recently drawn a lot of attention from researchers in this regard. However, in general, a large operating voltage is required to obtain large responsivity in these devices. In addition, the characteristics are often confounded by substrate induced trap effects. Here we report multi-layer SnSe2 based photoconductive devices using two different structures: (1) SiO2 substrate supported inter-digitated electrode (IDE), and (2) suspended channel. The IDE device exhibits a responsivity of ≈ {10}3 A W-1 and ≈ 8.66× {10}4 A W-1 at operating voltages of 1 mV and 100 mV, respectively—a superior low voltage performance over existing literature on planar 2D structures. However, the responsivity reduces by more than two orders of magnitude, while the transient response improves for the suspended device—providing insights into the critical role played by the channel-substrate interface in the gain mechanism. The results, on one hand, are promising for highly sensitive photoconductive applications consuming ultra-low power, and on the other hand, show a generic methodology that could be applied to other layered material based photoconductive devices as well for extracting the intrinsic behavior.

  3. An Enhanced Three-Level Voltage Switching State Scheme for Direct Torque Controlled Open End Winding Induction Motor

    NASA Astrophysics Data System (ADS)

    Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar

    2018-01-01

    Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.

  4. An Enhanced Three-Level Voltage Switching State Scheme for Direct Torque Controlled Open End Winding Induction Motor

    NASA Astrophysics Data System (ADS)

    Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar

    2018-06-01

    Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.

  5. Power Electronic Transformer based Three-Phase PWM AC Drives

    NASA Astrophysics Data System (ADS)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common-mode voltage suppression at the load end, 3) High quality output voltage waveform (comparable to conventional space vector PWM modulated two level inverter) and 4) Minimization of output voltage loss, common-mode voltage switching and distortion of the load current waveform due to leakage inductance commutation. All of the proposed topologies along with the proposed control schemes have been analyzed and simulated in MATLABSimulink. A hardware prototype has been fabricated and tested. The simulation and experimental results verify the operation and advantages of the proposed topologies and their control.

  6. Ultra-compact Marx-type high-voltage generator

    DOEpatents

    Goerz, David A.; Wilson, Michael J.

    2000-01-01

    An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

  7. Physicochemical assessment criteria for high-voltage pulse capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darian, L. A., E-mail: LDarian@rambler.ru; Lam, L. Kh.

    In the paper, the applicability of decomposition products of internal insulation of high-voltage pulse capacitors is considered (aging is the reason for decomposition products of internal insulation). Decomposition products of internal insulation of high-voltage pulse capacitors can be used to evaluate their quality when in operation and in service. There have been three generations of markers of aging of insulation as in the case with power transformers. The area of applicability of markers of aging of insulation for power transformers has been studied and the area can be extended to high-voltage pulse capacitors. The research reveals that there is amore » correlation between the components and quantities of markers of aging of the first generation (gaseous decomposition products of insulation) dissolved in insulating liquid and the remaining life of high-voltage pulse capacitors. The application of markers of aging to evaluate the remaining service life of high-voltage pulse capacitor is a promising direction of research, because the design of high-voltage pulse capacitors keeps stability of markers of aging of insulation in high-voltage pulse capacitors. It is necessary to continue gathering statistical data concerning development of markers of aging of the first generation. One should also carry out research aimed at estimation of the remaining life of capacitors using markers of the second and the third generation.« less

  8. Copper pillar and memory characteristics using Al2O3 switching material for 3D architecture.

    PubMed

    Maikap, Siddheswar; Panja, Rajeswar; Jana, Debanjan

    2014-01-01

    A novel idea by using copper (Cu) pillar is proposed in this study, which can replace the through-silicon-vias (TSV) technique in future three-dimensional (3D) architecture. The Cu pillar formation under external bias in an Al/Cu/Al2O3/TiN structure is simple and low cost. The Cu pillar is formed in the Al2O3 film under a small operation voltage of <5 V and a high-current-carrying conductor of >70 mA is obtained. More than 100 devices have shown tight distribution of the Cu pillars in Al2O3 film for high current compliance (CC) of 70 mA. Robust read pulse endurances of >10(6) cycles are observed with read voltages of -1, 1, and 4 V. However, read endurance is failed with read voltages of -1.5, -2, and -4 V. By decreasing negative read voltage, the read endurance is getting worst, which is owing to ruptured Cu pillar. Surface roughness and TiO x N y on TiN bottom electrode are observed by atomic force microscope and transmission electron microscope, respectively. The Al/Cu/Al2O3/TiN memory device shows good bipolar resistive switching behavior at a CC of 500 μA under small operating voltage of ±1 V and good data retention characteristics of >10(3) s with acceptable resistance ratio of >10 is also obtained. This suggests that high-current operation will help to form Cu pillar and lower-current operation will have bipolar resistive switching memory. Therefore, this new Cu/Al2O3/TiN structure will be benefited for 3D architecture in the future.

  9. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  10. Controlled phase stability of highly Na-active triclinic structure in nanoscale high-voltage Na2-2xCo1+xP2O7 cathode for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Song, Hee Jo; Kim, Jae-Chan; Dar, Mushtaq Ahmad; Kim, Dong-Wan

    2018-02-01

    With the increasing demand for high energy density in energy-storage systems, a high-voltage cathode is essential in rechargeable Li-ion and Na-ion batteries. The operating voltage of a triclinic-polymorph Na2CoP2O7, also known as the rose form, is above 4.0 V (vs. Na/Na+), which is relatively high compared to that of other cathode materials. Thus, it can be employed as a potential high-voltage cathode material in Na-ion batteries. However, it is difficult to synthesize a pure rose phase because of its low phase stability, thus limiting its use in high-voltage applications. Herein, compositional-engineered, rose-phase Na2-2xCo1+xP2O7/C (x = 0, 0.1 and 0.2) nanopowder are prepared using a wet-chemical method. The Na2-2xCo1+xP2O7/C cathode shows high electrochemical reactivity with Na ions at 4.0 V, delivering high capacity and high energy density.

  11. Method for improving fuel cell performance

    DOEpatents

    Uribe, Francisco A.; Zawodzinski, Thomas

    2003-10-21

    A method is provided for operating a fuel cell at high voltage for sustained periods of time. The cathode is switched to an output load effective to reduce the cell voltage at a pulse width effective to reverse performance degradation from OH adsorption onto cathode catalyst surfaces. The voltage is stepped to a value of less than about 0.6 V to obtain the improved and sustained performance.

  12. Development of the Fast Scintillation Detector with Programmable High Voltage Adjustment Suitable for Moessbauer Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prochazka, R.; Frydrych, J.; Pechousek, J.

    2010-07-13

    This work is focused on a development of a compact fast scintillation detector suitable for Moessbauer spectroscopy (low energy X-ray/{gamma}-ray detection) where high counting rates are inevitable. Optimization of this part was necessary for a reliable function, better time resolution and to avoid a detector pulses pile-up effect. The pile-up effect decreases the measurement performance, significantly depends on the source activity and also on the pulse duration. Our new detection unit includes a fast scintillation crystal YAP:Ce, an R6095 photomultiplier tube, a high voltage power supply socket C9028-01 assembly, an AD5252 digital potentiometer with an I2C interface and an AD8000more » ultra fast operation preamplifier. The main advantages of this solution lie in a short pulse duration (less than 200 ns), stable operation for high activities, programmable gain of the high voltage supply and compact design in the aluminum housing.« less

  13. High-performance, low-operating voltage, and solution-processable organic field-effect transistor with silk fibroin as the gate dielectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Leilei; Xu, Xinjun, E-mail: xuxj@mater.ustb.edu.cn, E-mail: lidong@mater.ustb.edu.cn; Ma, Mingchao

    2014-01-13

    We report the use of silk fibroin as the gate dielectric material in solution-processed organic field-effect transistors (OFETs) with poly(3-hexylthiophene) (P3HT) as the semiconducting layer. Such OFETs exhibit a low threshold of −0.77 V and a low-operating voltage (0 to −3 V) compatible with the voltage level commonly-used in current electronic industry. The carrier mobility of such OFETs is as high as 0.21 cm{sup 2} V{sup −1} s{sup −1} in the saturation regime, comparable to the best value of P3HT-based OFETs with dielectric layer that is not solution-processed. The high-performance of this kind of OFET is related with the high contentmore » of β strands in fibroin dielectric which leads to an array of fibers in a highly ordered structure, thus reducing the trapping sites at the semiconductor/dielectric interface.« less

  14. Printed 2 V-operating organic inverter arrays employing a small-molecule/polymer blend

    PubMed Central

    Shiwaku, Rei; Takeda, Yasunori; Fukuda, Takashi; Fukuda, Kenjiro; Matsui, Hiroyuki; Kumaki, Daisuke; Tokito, Shizuo

    2016-01-01

    Printed organic thin-film transistors (OTFTs) are well suited for low-cost electronic applications, such as radio frequency identification (RFID) tags and sensors. Achieving both high carrier mobility and uniform electrical characteristics in printed OTFT devices is essential in these applications. Here, we report on printed high-performance OTFTs and circuits using silver nanoparticle inks for the source/drain electrodes and a blend of dithieno[2,3-d;2′,3′-d′]benzo[1,2-b;4,5-b′]dithiophene (DTBDT-C6) and polystyrene for the organic semiconducting layer. A high saturation region mobility of 1.0 cm2 V−1 s−1 at low operation voltage of −5 V was obtained for relatively short channel lengths of 9 μm. All fifteen of the printed pseudo-CMOS inverter circuits were formed on a common substrate and operated at low operation voltage of 2 V with the total variation in threshold voltage of 0.35 V. Consequently, the printed OTFT devices can be used in more complex integrated circuit applications requiring low manufacturing cost over large areas. PMID:27698493

  15. Xenon excimer emission from pulsed high-pressure capillary microdischarges

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Joon; Rahaman, Hasibur; Petzenhauser, Isfried; Frank, Klaus; Giapis, Konstantinos P.

    2007-06-01

    Intense xenon vacuum ultraviolet (VUV) emission is observed from a high-pressure capillary cathode microdischarge in direct current operation, by superimposing a high-voltage pulse of 50ns duration. Under stagnant gas conditions, the total VUV light intensity increases linearly with pressure from 400 to 1013mbar for a fixed voltage pulse. At fixed pressure, however, the VUV light intensity increases superlinearly with voltage pulse height ranging from 08to2.8kV. Gains in emission intensity are obtained by inducing gas flow through the capillary cathode, presumably because of excimer dimer survival due to gas cooling.

  16. The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2007-01-01

    High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.

  17. Direct conversion of light to radio frequency energy. [using photoklystrons for solar power satellites

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.; Simons, S.

    1981-01-01

    A description is presented of the test results obtained with the latest models of the phototron. The phototron was conceived as a replacement for the high voltage solar cell-high power klystron combination for the solar power satellite concept. Physically, the phototron is a cylindrical evacuated glass tube with a photocathode, two grids, and a reflector electrode in a planar configuration. The phototron can be operated either in a biased mode where a low voltage is used to accelerate the electron beam produced by the photocathode or in an unbiased mode referred to as self-oscillation. The device is easily modulated by light input or voltage to broadcast in AM or FM. The range of operation of the present test model phototrons is from 2 to 200 MHz.

  18. Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators

    PubMed

    Dimitrakopoulos; Purushothaman; Kymissis; Callegari; Shaw

    1999-02-05

    The gate bias dependence of the field-effect mobility in pentacene-based insulated gate field-effect transistors (IGFETs) was interpreted on the basis of the interaction of charge carriers with localized trap levels in the band gap. This understanding was used to design and fabricate IGFETs with mobility of more than 0.3 square centimeter per volt per second and current modulation of 10(5), with the use of amorphous metal oxide gate insulators. These values were obtained at operating voltage ranges as low as 5 volts, which are much smaller than previously reported results. An all-room-temperature fabrication process sequence was used, which enabled the demonstration of high-performance organic IGFETs on transparent plastic substrates, at low operating voltages for organic devices.

  19. High-mobility and low-operating voltage organic thin film transistor with epoxy based siloxane binder as the gate dielectric

    NASA Astrophysics Data System (ADS)

    Tewari, Amit; Gandla, Srinivas; Pininti, Anil Reddy; Karuppasamy, K.; Böhm, Siva; Bhattacharyya, Arup R.; McNeill, Christopher R.; Gupta, Dipti

    2015-09-01

    This paper reports the fabrication of pentacene-based organic thin-film transistors using a dielectric material, Dynasylan ®SIVO110. The devices exhibit excellent performance characterized by a low threshold voltage of -1.4 V (operating voltage: 0 to -4 V) together with a mobility of 1.9 cm2 V-1s-1. These results are promising because it uses only a single layer of dielectric without performing any intermediate treatment. The reason is attributed to the high charge storage capacity of the dielectric (κ ˜ 20.02), a low interfacial trap density (2.56 × 1011cm-2), and favorable pentacene film morphology consisting of large and interconnected grains having an average size of 234 nm.

  20. An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Cheng; Zhang, Kai; Xiong, Jian

    Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less

  1. An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch

    DOE PAGES

    Wang, Cheng; Zhang, Kai; Xiong, Jian; ...

    2017-09-26

    Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less

  2. High voltage electrical amplifier having a short rise time

    DOEpatents

    Christie, David J.; Dallum, Gregory E.

    1991-01-01

    A circuit, comprising an amplifier and a transformer is disclosed that produces a high power pulse having a fast response time, and that responds to a digital control signal applied through a digital-to-analog converter. The present invention is suitable for driving a component such as an electro-optic modulator with a voltage in the kilovolt range. The circuit is stable at high frequencies and during pulse transients, and its impedance matching circuit matches the load impedance with the output impedance. The preferred embodiment comprises an input stage compatible with high-speed semiconductor components for amplifying the voltage of the input control signal, a buffer for isolating the input stage from the output stage; and a plurality of current amplifiers connected to the buffer. Each current amplifier is connected to a field effect transistor (FET), which switches a high voltage power supply to a transformer which then provides an output terminal for driving a load. The transformer comprises a plurality of transmission lines connected to the FETs and the load. The transformer changes the impedance and voltage of the output. The preferred embodiment also comprises a low voltage power supply for biasing the FETs at or near an operational voltage.

  3. Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2012-06-01

    This paper introduces the concept of constant Volt/Hz operation of offshore wind power plants. The deployment of offshore WPPs requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cables, there is a need to use High-Voltage Direct Current transmission, which is economical for transmission distances longer than 50 kilometers. In the concept presented here, the onshore substation is operated at 60 Hz synced with the grid, and the offshore substation is operated at variable frequency and voltage, thus allowing the WPP to be operated at constant Volt/Hz.

  4. Working group report on advanced high-voltage high-power and energy-storage space systems

    NASA Technical Reports Server (NTRS)

    Cohen, H. A.; Cooke, D. L.; Evans, R. W.; Hastings, D.; Jongeward, G.; Laframboise, J. G.; Mahaffey, D.; Mcintyre, B.; Pfizer, K. A.; Purvis, C.

    1986-01-01

    Space systems in the future will probably include high-voltage, high-power energy-storage and -production systems. Two such technologies are high-voltage ac and dc systems and high-power electrodynamic tethers. The working group identified several plasma interaction phenomena that will occur in the operation of these power systems. The working group felt that building an understanding of these critical interaction issues meant that several gaps in our knowledge had to be filled, and that certain aspects of dc power systems have become fairly well understood. Examples of these current collection are in quiescent plasmas and snap over effects. However, high-voltage dc and almost all ac phenomena are, at best, inadequately understood. In addition, there is major uncertainty in the knowledge of coupling between plasmas and large scale current flows in space plasmas. These gaps in the knowledge are addressed.

  5. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G.; Wu, S. C.; Zhou, Z. B.

    2013-12-15

    A simple high-voltage circuit with a voltage range of 0 to 900 V and an open-loop bandwidth of 11 kHz is realized by using an operational amplifier and a MOSFET combination. The circuit is used for the levitation of a test mass of 71 g, suspended below the top-electrodes with a gap distance of 57 μm, so that the performance of an electrostatic accelerometer can be tested on the ground. The translation noise of the accelerometer, limited by seismic noise, is about 4 × 10{sup −8} m/s{sup 2}/Hz{sup 1/2} at 0.1 Hz, while the high-voltage coupling noise is one-order ofmore » magnitude lower.« less

  6. Treatment of emulsified oils by electrocoagulation: pulsed voltage applications.

    PubMed

    Genc, Ayten; Bakirci, Busra

    2015-01-01

    The effect of pulsed voltage application on energy consumption during electrocoagulation was investigated. Three voltage profiles having the same arithmetic average with respect to time were applied to the electrodes. The specific energy consumption for these profiles were evaluated and analyzed together with oil removal efficiencies. The effects of applied voltages, electrode materials, electrode configurations, and pH on oil removal efficiency were determined. Electrocoagulation experiments were performed by using synthetic and real wastewater samples. The pulsed voltages saved energy during the electrocoagulation process. In continuous operation, energy saving was as high as 48%. Aluminum electrodes used for the treatment of emulsified oils resulted in higher oil removal efficiencies in comparison with stainless steel and iron electrodes. When the electrodes gap was less than 1 cm, higher oil removal efficiencies were obtained. The highest oil removal efficiencies were 95% and 35% for the batch and continuous operating modes, respectively.

  7. High frequency capacitor-diode voltage multiplier dc-dc converter development

    NASA Technical Reports Server (NTRS)

    Kisch, J. J.; Martinelli, R. M.

    1977-01-01

    A power conditioner was developed which used a capacitor diode voltage multiplier to provide a high voltage without the use of a step-up transformer. The power conditioner delivered 1200 Vdc at 100 watts and was operated from a 120 Vdc line. The efficiency was in excess of 90 percent. The component weight was 197 grams. A modified boost-add circuit was used for the regulation. A short circuit protection circuit was used which turns off the drive circuit upon a fault condition, and recovers within 5 ms after removal of the short. High energy density polysulfone capacitors and high speed diodes were used in the multiplier circuit.

  8. High voltage insulation of bushing for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Jin; Choi, Jae-Hyeong; Kim, Sang-Hyun

    2012-12-01

    For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. Liquid nitrogen (LN2) is an attractive dielectric liquid. Also, the polymer insulating materials are expected to be used as solid materials such as glass fiber reinforced plastic (GFRP), polytetra-fluoroethylene (PTFE, Teflon), Silicon (Si) rubber, aromatic polyamide (Nomex), EPDM/Silicon alloy compound (EPDM/Si). In this paper, the surface flashover characteristics of various insulating materials in LN2 are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The use of GFRP and Teflon as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in LN2 and operation of superconducting equipments.

  9. High-voltage compatible, full-depleted CCD

    DOEpatents

    Holland, Stephen Edward

    2007-09-18

    A charge coupled device for detecting electromagnetic and particle radiation is described. The device includes a high-resistivity semiconductor substrate, buried channel regions, gate electrode circuitry, and amplifier circuitry. For good spatial resolution and high performance, especially when operated at high voltages with full or nearly full depletion of the substrate, the device can also include a guard ring positioned near channel regions, a biased channel stop, and a biased polysilicon electrode over the channel stop.

  10. Low-voltage operation of Si-based ferroelectric field effect transistors using organic ferroelectrics, poly(vinylidene fluoride-trifluoroethylene), as a gate dielectric

    NASA Astrophysics Data System (ADS)

    Miyata, Yusuke; Yoshimura, Takeshi; Ashida, Atsushi; Fujimura, Norifumi

    2016-04-01

    Si-based metal-ferroelectric-semiconductor (MFS) capacitors have been fabricated using poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as a ferroelectric gate. The pinhole-free P(VDF-TrFE) thin films with high resistivity were able to be prepared by spin-coating directly onto hydrogen-terminated Si. The capacitance-voltage (C-V) characteristics of the ferroelectric gate field effect transistor (FeFET) using this MFS structure clearly show butterfly-shaped hysteresis originating from the ferroelectricity, indicating carrier modulation on the Si surface at gate voltages below 2 V. The drain current-gate voltage (I D-V G) characteristics also show counterclockwise hysteresis at gate voltages below 5 V. This is the first report on the low-voltage operation of a Si-based FeFET using P(VDF-TrFE) as a gate dielectric. This organic gate FeFET without any insulator layer at the ferroelectric/Si interface should be one of the promising devices for overcoming the critical issues of the FeFET, such as depolarization field and a decrease in the gate voltage.

  11. Threshold-voltage modulated phase change heterojunction for application of high density memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Baihan; Tong, Hao, E-mail: tonghao@hust.edu.cn; Qian, Hang

    2015-09-28

    Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-raymore » photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.« less

  12. Highly sensitive vacuum ion pump current measurement system

    DOEpatents

    Hansknecht, John Christopher [Williamsburg, VA

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  13. A miniature high-efficiency fully digital adaptive voltage scaling buck converter

    NASA Astrophysics Data System (ADS)

    Li, Hangbiao; Zhang, Bo; Luo, Ping; Zhen, Shaowei; Liao, Pengfei; He, Yajuan; Li, Zhaoji

    2015-09-01

    A miniature high-efficiency fully digital adaptive voltage scaling (AVS) buck converter is proposed in this paper. The pulse skip modulation with flexible duty cycle (FD-PSM) is used in the AVS controller, which simplifies the circuit architecture (<170 gates) and greatly saves the die area and the power consumption. The converter is implemented in a 0.13-μm one-poly-eight-metal (1P8 M) complementary metal oxide semiconductor process and the active on-chip area of the controller is only 0.003 mm2, which is much smaller. The measurement results show that when the operating frequency of the digital load scales dynamically from 25.6 MHz to 112.6 MHz, the supply voltage of which can be scaled adaptively from 0.84 V to 1.95 V. The controller dissipates only 17.2 μW, while the supply voltage of the load is 1 V and the operating frequency is 40 MHz.

  14. A complementary organic inverter of porphyrazine thin films: low-voltage operation using ionic liquid gate dielectrics.

    PubMed

    Fujimoto, Takuya; Miyoshi, Yasuhito; Matsushita, Michio M; Awaga, Kunio

    2011-05-28

    We studied a complementary organic inverter consisting of a p-type semiconductor, metal-free phthalocyanine (H(2)Pc), and an n-type semiconductor, tetrakis(thiadiazole)porphyrazine (H(2)TTDPz), operated through the ionic-liquid gate dielectrics of N,N-diethyl-N-methyl(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)imide (DEME-TFSI). This organic inverter exhibits high performance with a very low operation voltage below 1.0 V and a dynamic response up to 20 Hz. © The Royal Society of Chemistry 2011

  15. High performance low voltage organic field effect transistors on plastic substrate for amplifier circuits

    NASA Astrophysics Data System (ADS)

    Houin, G.; Duez, F.; Garcia, L.; Cantatore, E.; Torricelli, F.; Hirsch, L.; Belot, D.; Pellet, C.; Abbas, M.

    2016-09-01

    The high performance air stable organic semiconductor small molecule dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) was chosen as active layer for field effect transistors built to realize flexible amplifier circuits. Initial device on rigid Si/SiO2 substrate showed appreciable performance with hysteresis-free characteristics. A number of approaches were applied to simplify the process, improve device performance and decrease the operating voltage: they include an oxide interfacial layer to decrease contact resistance; a polymer passivation layer to optimize semiconductor/dielectric interface and an anodized high-k oxide as dielectric layer for low voltage operation. The devices fabricated on plastic substrate yielded excellent electrical characteristics, showing mobility of 1.6 cm2/Vs, lack of hysteresis, operation below 5 V and on/off current ratio above 105. An OFET model based on variable ranging hopping theory was used to extract the relevant parameters from the transfer and output characteristics, which enabled us to simulate our devices achieving reasonable agreement with the measurements

  16. Wide Bandgap Extrinsic Photoconductive Switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, James S.

    2012-01-20

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the widemore » bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.« less

  17. Performance documentation of the engineering model 30-cm diameter thruster

    NASA Technical Reports Server (NTRS)

    Bechtel, R. T.; Rawlin, V. K.

    1976-01-01

    The results of extensive testing of two 30-cm ion thrusters which are virtually identical to the 900 series Engineering Model Thruster in an ongoing 15,000-hour life test are presented. Performance data for the nominal fullpower (2650 W) operating point; performance sensitivities to discharge voltage, discharge losses, accelerator voltage, and magnetic baffle current; and several power throttling techniques (maximum Isp, maximum thrust/power ratio, and two cases in between are included). Criteria for throttling are specified in terms of the screen power supply envelope, thruster operating limits, and control stability. In addition, reduced requirements for successful high voltage recycles are presented.

  18. First test of a high voltage feedthrough for liquid Argon TPCs connected to a 300 kV power supply

    NASA Astrophysics Data System (ADS)

    Cantini, C.; Gendotti, A.; Molina Bueno, L.; Murphy, S.; Radics, B.; Regenfus, C.; Rigaut, Y.-A.; Rubbia, A.; Sergiampietri, F.; Viant, T.; Wu, S.

    2017-03-01

    Voltages above a hundred kilo-volt will be required to generate the drift field of future very large liquid Argon Time Projection Chambers. One of the most delicate component is the feedthrough whose role is to safely deliver the very high voltage to the cathode through the thick insulating walls of the cryostat without compromising the purity of the argon inside. This requires a feedthrough that is typically meters long and carefully designed to be vacuum tight and have small heat input. Furthermore, all materials should be carefully chosen to allow operation in cryogenic conditions. In addition, electric fields in liquid argon should be kept below a threshold to reduce risks of discharges. The combination of all above requirements represents significant challenges from the design and manufacturing perspective. In this paper, we report on the successful operation of a feedthrough satisfying all the above requirements. The details of the feedthrough design and its manufacturing steps are provided. Very high voltages up to unprecedented voltages of -300 kV could be applied during long periods repeatedly. A source of instability was observed, which was specific to the setup configuration which was used for the test and not due to the feedthrough itself.

  19. Increasing the High Voltage Capabilities and Exploring Parameter Space of an Inertial Electrostatic Confinement Fusion Neutron Source for the Detection of Chemical Explosives

    NASA Astrophysics Data System (ADS)

    Michalak, Matthew K.

    The objectives of the work presented here include understanding key operating principles and providing precise data sets that can be used to test inertial electrostatic confinement (IEC) fusion theory and optimize IEC device operation. The underlying physical behavior was separated from superficial trends observed in an IEC device at the University of Wisconsin-Madison (UW). The effects of changing voltage (30-170 kV) and current (30-100 mA) were thoroughly explored, pressure effects (0.15-1.25 mTorr) were mapped, and the effect of impurities in the system was quantified. The most challenging part of this work was designing a high voltage feedthrough that could reliably operate at higher voltages for far longer times than previously attained. A system to detect conventional explosives using fusion neutrons was also designed, constructed, and tested. Precise data sets were created by taking into account and minimizing the effects of short and long term trends in the experiment. Detailed meter current scans were taken that showed a linear relationship of the neutron production rate with current. Cathode voltage scans were slightly greater than linear in the neutron rate from 30 to 170 kV, but the rate increase diminished to near linear as 170 kV was approached. A new high voltage feedthrough was designed that surpassed the performance of past UW IEC lab feedthroughs and shows promise for long duration operation at still higher voltages. Limitations of other equipment in the IEC lab prevented testing the feedthrough to voltages above 175 kV. A more robust construction of the feedthrough and reducing the consequences of a feedthrough failure were also important design criteria that were met. A detector array was made to detect explosives via the 10.8 MeV neutron capture prompt gamma from nitrogen. Signals from four separate detectors were combined to make the individual detectors act similar to one large detector. The detector signals were both summed and combined to compare the performance of the two methods. An overwhelming background radiation signal and insufficient time resolution were two factors that led to the combined signal not performing as well as the summed signal.

  20. Electron-Optical System of the Gyrotron Designed for Operation in the DNP-NMR Spectrometer Cryomagnet ("Gyrotrino")

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Fedotov, A. E.; Kalynov, Yu. K.; Manuilov, V. N.

    2017-08-01

    The formation and utilization of a helical electron beam are studied theoretically for a gyrotron with a very low operating voltage in a range 1.5-1.8 kV. Such a gyrotron ("gyrotrino") was earlier proposed for operation inside a magnetic system of an NMR spectrometer with a dynamic nuclear polarization upgrade. Despite the very low voltage, the optimization of the electrode shape can provide velocity and positional electron spreads not exceeding these values for conventional high-voltage gyrotrons. A very small cathode-anode separation makes the gyrotrino very sensitive to thermal expansion of the gun elements that should be compensated by movement of the cathode. Estimations for long-pulse and CW regimes of the gyrotrino operation show that the ion background significantly decreases the reduction of the beam potential and leads to an acceptable drift of the electron cyclotron frequency at the voltage front. A satisfactory thermal load on the waste-beam collector located in a strong uniform magnetic field can be achieved due to the omnidirectional heat flow regime occurring in the case of thin beam footprint.

  1. Design and Vertical Tests of SPS-series Double-Quarter Wave (DQW) Cavity Prototypes for the HL-LHC Crab Cavity System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdú-Andrés, S.; et al.

    Crab crossing is essential for high-luminosity colliders. The High Luminosity Large Hadron Collider (HL-LHC) will equip one of its Interaction Points (IP1) with Double-Quarter Wave (DQW) crab cavities. A DQW cavity is a new generation of deflecting RF cavities that stands out for its compactness and broad frequency separation between fundamental and first high-order modes. The deflecting kick is provided by its fundamental mode. Each HL-LHC DQW cavity shall provide a nominal deflecting voltage of 3.4 MV, although up to 5.0 MV may be required. A Proof-of-Principle (PoP) DQW cavity was limited by quench at 4.6 MV. This paper describesmore » a new, highly optimized cavity, designated DQW SPS-series, which satisfies dimensional, cryogenic, manufacturing and impedance requirements for beam tests at SPS and operation in LHC. Two prototypes of this DQW SPS-series were fabricated by US industry and cold tested after following conventional SRF surface treatment. Both units outperformed the PoP cavity, reaching a deflecting voltage of 5.3-5.9 MV. This voltage - the highest reached by a DQW cavity - is well beyond the nominal voltage of 3.4 MV and may even operate at the ultimate voltage of 5.0MVwith sufficient margin. This paper covers fabrication, surface preparation and cryogenic RF test results and implications.« less

  2. Characterization of RPC operation with new environmental friendly mixtures for LHC application and beyond

    NASA Astrophysics Data System (ADS)

    Guida, R.; Capeans, M.; Mandelli, B.

    2016-07-01

    The large muon trigger systems based on Resistive Plate Chambers (RPC) at the LHC experiments are currently operated with R134a based mixture. Unfortunately R134a is considered a greenhouse gas with high impact on the enviroment and therefore will be subject to regulations aiming in strongly reducing the available quantity on the market. The immediat effects might be instability on the price and incertitude in the product availability. Alternative gases (HFO-1234yf and HFO-1234ze) have been already identified by industry for specific applications as replacement of R134a. Moreover, HFCs similar to the R134a but with lower global warming potential (GWP) are already available (HFC-245fa, HFC-32, HFC-152a). The present contribution describes the results obtained with RPCs operated with new enviromemtal friendly gases. A particular attention has been addressed to the possibility of maintening the current operation conditions (i.e. currently used applied voltage and front-end electronics) in order to be able to use a new mixture for RPC systems even where the common infrastructure (i.e. high voltage and detector components) cannot be replaced for operation at higher applied voltages.

  3. A micro-power precision amplifier for converting the output of light sensors to a voltage readable by miniature data loggers.

    PubMed

    Phillips, Nathan; Bond, Barbara J.

    1999-07-01

    To record photosynthetically active radiation (PAR) simultaneously at a number of points throughout a forest canopy, we developed a simple, inexpensive (< $10 US) current-to-voltage converter that processes the current generated by a photodiode radiation sensor to a voltage range that is recordable with a miniature data logger. The converter, which weighs less than 75 g and has a volume of only 100 cm(3), is built around an ultra-low power OP-90 precision operational amplifier, which consumes less than 0.5 mA at 9 V when converting the output of a Li-Cor LI-190SA quantum sensor exposed to photosynthetically active radiation (PAR) of 2500 &mgr;mol m(-2) s(-1) or only 5 &mgr;A in low light. A small 9-V battery thus powers the amplifier for more than 1000 h of continuous operation. Correlations between photometer readings and voltage output from the current-to-voltage converter were high and linear at both high and low PAR. Sixteen Li-Cor LI-190SA quantum sensors each equipped with current-to-voltage converters and connected to a miniature data logger were deployed in the upper branches of a Panamanian tropical rainforest canopy. Each unit performed reliably during a one- or two-week evaluation.

  4. High stability amplifier

    NASA Technical Reports Server (NTRS)

    Adams, W. A.; Reinhardt, V. S. (Inventor)

    1983-01-01

    An electrical RF signal amplifier for providing high temperature stability and RF isolation and comprised of an integrated circuit voltage regulator, a single transistor, and an integrated circuit operational amplifier mounted on a circuit board such that passive circuit elements are located on side of the circuit board while the active circuit elements are located on the other side is described. The active circuit elements are embedded in a common heat sink so that a common temperature reference is provided for changes in ambient temperature. The single transistor and operational amplifier are connected together to form a feedback amplifier powered from the voltage regulator with transistor implementing primarily the desired signal gain while the operational amplifier implements signal isolation. Further RF isolation is provided by the voltage regulator which inhibits cross-talk from other like amplifiers powered from a common power supply. Input and output terminals consisting of coaxial connectors are located on the sides of a housing in which all the circuit components and heat sink are located.

  5. Towards highly stable polymer electronics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nikolka, Mark; Nasrallah, Iyad; Broch, Katharina; Sadhanala, Aditya; Hurhangee, Michael; McCulloch, Iain; Sirringhaus, Henning

    2016-11-01

    Due to their ease of processing, organic semiconductors are promising candidates for applications in high performance flexible displays and fast organic electronic circuitry. Recently, a lot of advances have been made on organic semiconductors exhibiting surprisingly high performance and carrier mobilities exceeding those of amorphous silicon. However, there remain significant concerns about their operational and environmental stability, particularly in the context of applications that require a very high level of threshold voltage stability, such as active-matrix addressing of organic light-emitting diode (OLED) displays. Here, we report a novel technique for dramatically improving the operational stress stability, performance and uniformity of high mobility polymer field-effect transistors by the addition of specific small molecule additives to the polymer semiconductor film. We demonstrate for the first time polymer FETs that exhibit stable threshold voltages with threshold voltage shifts of less than 1V when subjected to a constant current operational stress for 1 day under conditions that are representative for applications in OLED active matrix displays. The approach constitutes in our view a technological breakthrough; it also makes the device characteristics independent of the atmosphere in which it is operated, causes a significant reduction in contact resistance and significantly improves device uniformity. We will discuss in detail the microscopic mechanism by which the molecular additives lead to this significant improvement in device performance and stability.

  6. New controller for high voltage converter modulator at spallation neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wezensky, Mark W; Brown, David L; Lee, Sung-Woo

    2017-01-01

    The Spallation Neutron Source (SNS) has developed a new control system for the High Voltage Convertor Modulator (HVCM) at the SNS to replace the original control system which is approaching obsolescence. The original system was based on controllers for similar high voltage systems that were already in use [1]. The new controller, based on National Instruments PXI/FlexRIO Field Programmable Gate Array (FPGA) platform, offers enhancements such as modular construction, flexibility and non-proprietary software. The new controller also provides new capabilities like various methods for modulator pulse flattening, waveform capture, and first fault detection. This paper will discuss the design ofmore » the system, including the human machine interface, based on lessons learned at the SNS and other projects. It will also discuss performance and other issues related to its operation in an accelerator facility which requires high availability. To date, 73% of the operational HVCMs have been upgraded to with the new controller, and the remainder are scheduled for completion by mid-2017.« less

  7. Hybrid permeable metal-base transistor with large common-emitter current gain and low operational voltage.

    PubMed

    Feng, Chengang; Yi, Mingdong; Yu, Shunyang; Hümmelgen, Ivo A; Zhang, Tong; Ma, Dongge

    2008-04-01

    We demonstrate the suitability of N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), an organic semiconductor widely used in organic light-emitting diodes (OLEDs), for high-gain, low operational voltage nanostructured vertical-architecture transistors, which operate as permeable-base transistors. By introducing vanadium oxide (V2O5) between the injecting metal and NPB layer at the transistor emitter, we reduced the emitter operational voltage. The addition of two Ca layers, leading to a Ca/Ag/Ca base, allowed to obtain a large value of common-emitter current gain, but still retaining the permeable-base transistor character. This kind of vertical devices produced by simple technologies offer attractive new possibilities due to the large variety of available molecular semiconductors, opening the possibility of incorporating new functionalities in silicon-based devices.

  8. Interactions between large space power systems and low-Earth-orbit plasmas

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1985-01-01

    There is a growing tendency to plan space missions that will incorporate very large space power systems. These space power systems must function in the space plasma environment, which can impose operational limitations. As the power output increases, the operating voltage also must increase and this voltage, exposed at solar array interconnects, interacts with the local plasma. The implications of such interactions are considered. The available laboratory data for biased array segment tests are reviewed to demonstrate the basic interactions considered. A data set for a floating high voltage array test was used to generate approximate relationships for positive and negative current collection from plasmas. These relationships were applied to a hypothetical 100 kW power system operating in a 400 km, near equatorial orbit. It was found that discharges from the negative regions of the array are the most probable limiting factor in array operation.

  9. Performance analysis of radiation cooled dc transmission lines for high power space systems

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1985-01-01

    As space power levels increase to meet mission objectives and also as the transmission distance between power source and load increases, the mass, volume, power loss, and operating voltage and temperature become important system design considerations. This analysis develops the dependence of the specific mass and percent power loss on hte power and voltage levels, transmission distance, operating temperature and conductor material properties. Only radiation cooling is considered since the transmission line is assumed to operate in a space environment. The results show that the limiting conditions for achieving low specific mass, percent power loss, and volume for a space-type dc transmission line are the permissible transmission voltage and operating temperature. Other means to achieve low specific mass include the judicious choice of conductor materials. The results of this analysis should be immediately applicable to power system trade-off studies including comparisons with ac transmission systems.

  10. Review of biased solar arraay. Plasma interaction studies

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1981-01-01

    The Solar Electric Propulsion System (SEPS) is proposed for a variety of space missions. Power for operating SEPS is obtained from large solar array wings capable of generating tens of kilowatts of power. To minimize resistive losses in the solar array bus lines, the array is designed to operate at voltages up to 400 volts. This use of high voltage can increase interactions between the biased solar cell interconnects and plasma environments. With thrusters operating, the system ground is maintained at space plasma potential which exposes large areas of the arrays at the operating voltages. This can increase interactions with both the natural and enhanced charged particle environments. Available data on interactions between biased solar array surfaces and plasma environments are summarized. The apparent relationship between collection phenomena and solar cell size and effects of array size on interactions are discussed. The impact of these interactions on SEPS performance is presented.

  11. NASA's Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Rawlin, Vincent K.; Mason, Lee S.; Mantenieks, Maris A.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2001-01-01

    NASA's Hall thruster program has base research and focused development efforts in support of the Advanced Space Transportation Program, Space-Based Program, and various other programs. The objective of the base research is to gain an improved understanding of the physical processes and engineering constraints of Hall thrusters to enable development of advanced Hall thruster designs. Specific technical questions that are current priorities of the base effort are: (1) How does thruster life vary with operating point? (2) How can thruster lifetime and wear rate be most efficiently evaluated? (3) What are the practical limitations for discharge voltage as it pertains to high specific impulse operation (high discharge voltage) and high thrust operation (low discharge voltage)? (4) What are the practical limits for extending Hall thrusters to very high input powers? and (5) What can be done during thruster design to reduce cost and integration concerns? The objective of the focused development effort is to develop a 50 kW-class Hall propulsion system, with a milestone of a 50 kW engineering model thruster/system by the end of program year 2006. Specific program wear 2001 efforts, along with the corporate and academic participation, are described.

  12. Permanent split capacitor single phase electric motor system

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation.

  13. High Efficiency Single Output ZVS-ZCS Voltage Doubled Flyback Converter

    NASA Astrophysics Data System (ADS)

    Kaliyaperumal, Deepa; Saju, Hridya Merin; Kumar, M. Vijaya

    2016-06-01

    A switch operating at high switching frequency increases the switching losses of the converter resulting in lesser efficiency. Hence this paper proposes a new topology which has resonant switches [zero voltage switching (ZVS)] in the primary circuit to eliminate the above said disadvantages, and voltage doubler zero current switching (ZCS) circuit in the secondary to double the output voltage, and hence the output power, power density and efficiency. The design aspects of the proposed topology for a single output of 5 V at 50 kHz, its simulation and hardware results are discussed in detail. The analysis of the results obtained from a 2.5 W converter reveals the superiority of the proposed converter.

  14. Completely explosive ultracompact high-voltage nanosecond pulse-generating system

    NASA Astrophysics Data System (ADS)

    Shkuratov, Sergey I.; Talantsev, Evgueni F.; Baird, Jason; Rose, Millard F.; Shotts, Zachary; Altgilbers, Larry L.; Stults, Allen H.

    2006-04-01

    A conventional pulsed power technology has been combined with an explosive pulsed power technology to produce an autonomous high-voltage power supply. The power supply contained an explosive-driven high-voltage primary power source and a power-conditioning stage. The ultracompact explosive-driven primary power source was based on the physical effect of shock-wave depolarization of high-energy Pb (Zr52Ti48)O3 ferroelectric material. The volume of the energy-carrying ferroelectric elements in the shock-wave ferroelectric generators (SWFEGs) varied from 1.2 to 2.6cm3. The power-conditioning stage was based on the spiral vector inversion generator (VIG). The SWFEG-VIG system demonstrated successful operation and good performance. The amplitude of the output voltage pulse of the SWFEG-VIG system exceeded 90kV, with a rise time of 5.2ns.

  15. Absolute Determination of High DC Voltages by Means of Frequency Measurement

    NASA Astrophysics Data System (ADS)

    Peier, Dirk; Schulz, Bernd

    1983-01-01

    A novel absolute measuring procedure is presented for the definition of fixed points of the voltage in the 100 kV range. The method is based on transit time measurements with accelerated electrons. By utilizing the selective interaction of a monoenergetic electron beam with the electromagnetic field of a special cavity resonator, the voltage is referred to fundamental constants and the base unit second. Possible balance voltages are indicated by a current detector. Experimental investigations are carried out with resonators in the normal conducting range. With a copper resonator operating at the temperature of boiling nitrogen (77 K), the relative uncertainty of the voltage points is estimated to be +/- 4 × 10-4. The technically realizable uncertainty can be reduced to +/- 1 × 10-5 by the proposed application of a superconducting niobium resonator. Thus this measuring device becomes suitable as a primary standard for the high-voltage range.

  16. Load insensitive electrical device. [power converters for supplying direct current at one voltage from a source at another voltage

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C. (Inventor)

    1974-01-01

    A class of power converters is described for supplying direct current at one voltage from a source at another voltage. It includes a simple passive circuit arrangement of solid-state switches, inductors, and capacitors by which the output voltage of the converter tends to remain constant in spite of changes in load. The switches are sensitive to the current flowing in the circuit and are employed to permit the charging of capacitance devices in accordance with the load requirements. Because solid-state switches (such as SCR's) may be used with relatively high voltage and because of the inherent efficiency of the invention that permits relatively high switching frequencies, power supplies built in accordance with the invention, together with their associated cabling, can be substantially lighter in weight for a given output power level and efficiency of operation than systems of the prior art.

  17. Fuel Cell/Electrochemical Cell Voltage Monitor

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  18. Cryogenic lifetime tests on a commercial epoxy resin high voltage bushing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenterly, S W; Pleva, Ed; Ha, Tam T

    2012-06-12

    High-temperature superconducting (HTS) power devices operating in liquid nitrogen frequently require high-voltage bushings to carry the current leads from the superconducting windings to the room temperature grid connections. Oak Ridge National Laboratory is collaborating with Waukesha Electric Systems, SuperPower, and Southern California Edison to develop and demonstrate an HTS utility power transformer. Previous dielectric high voltage tests in support of this program have been carried out in test cryostats with commercial epoxy resin bushings from Electro Composites Inc. (ECI). Though the bushings performed well in these short-term tests, their long-term operation at high voltage in liquid nitrogen needs to bemore » verified for use on the utility grid. Long-term tests are being carried out on a sample 28-kV-class ECI bushing. The bushing has a monolithic cast, cycloaliphatic resin body and is fire- and shatter-resistant. The test cryostat is located in an interlocked cage and is energized at 25 kVac around the clock. Liquid nitrogen (LN) is automatically refilled every 9.5 hours. Partial discharge, capacitance, and leakage resistance tests are periodically performed to check for deviations from factory values. At present, over 2400 hours have been accumulated with no changes in these parameters. The tests are scheduled to run for four to six months.« less

  19. Cryogenic lifetime tests on a commercial epoxy resin high voltage bushing

    NASA Astrophysics Data System (ADS)

    Schwenterly, S. W.; Pleva, E. F.; Ha, T. T.

    2012-06-01

    High-temperature superconducting (HTS) power devices operating in liquid nitrogen frequently require high-voltage bushings to carry the current leads from the superconducting windings to the room temperature grid connections. Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES), SuperPower (SP), and Southern California Edison (SCE) to develop and demonstrate an HTS utility power transformer. Previous dielectric high voltage tests in support of this program have been carried out in test cryostats with commercial epoxy resin bushings from Electro Composites Inc. (ECI). Though the bushings performed well in these short-term tests, their long-term operation at high voltage in liquid nitrogen (LN) needs to be verified for use on the utility grid. Long-term tests are being carried out on a sample 28-kV-rms-class ECI bushing. The bushing has a monolithic cast, cycloaliphatic resin body and is fire- and shatter-resistant. The test cryostat is located in an interlocked cage and is continuously energized at 25 kVac rms. LN is automatically refilled every 9.5 hours. Partial discharge, capacitance, and leakage resistance tests are periodically performed to check for deviations from factory values. At present, over 2400 hours have been accumulated with no changes in these parameters. The tests are scheduled to run for four to six months.

  20. Manufacture and mechanical characterisation of high voltage insulation for superconducting busbars - (Part 1) Materials selection and development

    NASA Astrophysics Data System (ADS)

    Clayton, N.; Crouchen, M.; Devred, A.; Evans, D.; Gung, C.-Y.; Lathwell, I.

    2017-04-01

    It is planned that the high voltage electrical insulation on the ITER feeder busbars will consist of interleaved layers of epoxy resin pre-impregnated glass tapes ('pre-preg') and polyimide. In addition to its electrical insulation function, the busbar insulation must have adequate mechanical properties to sustain the loads imposed on it during ITER magnet operation. This paper reports an investigation into suitable materials to manufacture the high voltage insulation for the ITER superconducting busbars and pipework. An R&D programme was undertaken in order to identify suitable pre-preg and polyimide materials from a range of suppliers. Pre-preg materials were obtained from 3 suppliers and used with Kapton HN, to make mouldings using the desired insulation architecture. Two main processing routes for pre-pregs have been investigated, namely vacuum bag processing (out of autoclave processing) and processing using a material with a high coefficient of thermal expansion (silicone rubber), to apply the compaction pressure on the insulation. Insulation should have adequate mechanical properties to cope with the stresses induced by the operating environment and a low void content necessary in a high voltage application. The quality of the mouldings was assessed by mechanical testing at 77 K and by the measurement of the void content.

  1. E-H mode transition of a high-power inductively coupled plasma torch at atmospheric pressure with a metallic confinement tube

    NASA Astrophysics Data System (ADS)

    Altenberend, Jochen; Chichignoud, Guy; Delannoy, Yves

    2012-08-01

    Inductively coupled plasma torches need high ignition voltages for the E-H mode transition and are therefore difficult to operate. In order to reduce the ignition voltage of an RF plasma torch with a metallic confinement tube the E-H mode transition was studied. A Tesla coil was used to create a spark discharge and the E-H mode transition of the plasma was then filmed using a high-speed camera. The electrical potential of the metallic confinement tube was measured using a high-voltage probe. It was found that an arc between the grounded injector and the metallic confinement tube is maintained by the electric field (E-mode). The transition to H-mode occurred at high magnetic fields when the arc formed a loop. The ignition voltage could be reduced by connecting the metallic confinement tube with a capacitor to the RF generator.

  2. DC partial discharge/environmental test screening of space TWTS

    NASA Astrophysics Data System (ADS)

    Hai, F.; Paschen, K. W.

    Direct-current partial discharge/environmental tests are being conducted on traveling wave tubes (TWTs) designated for long-term space operation to screen out tubes with high voltage defects. Two types of TWTs with different external high-voltage insulation are being examined: (1) TWTs with polymeric potting, and (2) TWTs with ceramic feedthroughs. Detection of high voltage defects in the form of cracks and seprations in potted systems is enhanced by combining dc partial discharge testing with environmental (temperature and pressure) testing. These defects are usually caused by high stresses in the potting produced during temperature excursions by the difference in thermal expansion between the potting material and the confining ceramic-metal structure. Tests of all-ceramic-insulated TWTs indicate that the high voltage problem is internal to the vacuum envelope and requires both leakage and discharge measurements for diagnosis. This problem appears to be field emission from contaminated surfaces.

  3. An ultra-stable voltage source for precision Penning-trap experiments

    NASA Astrophysics Data System (ADS)

    Böhm, Ch.; Sturm, S.; Rischka, A.; Dörr, A.; Eliseev, S.; Goncharov, M.; Höcker, M.; Ketter, J.; Köhler, F.; Marschall, D.; Martin, J.; Obieglo, D.; Repp, J.; Roux, C.; Schüssler, R. X.; Steigleder, M.; Streubel, S.; Wagner, Th.; Westermann, J.; Wieder, V.; Zirpel, R.; Melcher, J.; Blaum, K.

    2016-08-01

    An ultra-stable and low-noise 25-channel voltage source providing 0 to -100 V has been developed. It will supply stable bias potentials for Penning-trap electrodes used in high-precision experiments. The voltage source generates all its supply voltages via a specially designed transformer. Each channel can be operated either in a precision mode or can be dynamically ramped. A reference module provides reference voltages for all the channels, each of which includes a low-noise amplifier to gain a factor of 10 in the output stage. A relative voltage stability of δV / V ≈ 2 ×10-8 has been demonstrated at -89 V within about 10 min.

  4. A magnesium–sodium hybrid battery with high operating voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Hui; Li, Yifei; Liang, Yanliang

    2016-06-10

    We report a high performance magnesium-sodium hybrid battery utilizing a magnesium-sodium dual-salt electrolyte, a magnesium anode, and a Berlin green cathode. The cell delivers an average discharge voltage of 2.2 V and a reversible capacity of 143 mAh g -1. We also demonstrate the cell with an energy density of 135 Wh kg -1 and a high power density of up to 1.67 kW kg -1.

  5. High voltage and high current density vertical GaN power diodes

    DOE PAGES

    Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; ...

    2016-01-01

    We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm 2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm 2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

  6. Fiber-coupled LED gas sensor and its application to online monitoring of ecoefficient dielectric insulation gases in high-voltage circuit breakers.

    PubMed

    Kramer, Axel; Over, Daniel; Stoller, Patrick; Paul, Thomas A

    2017-05-20

    Novel dielectric insulation gases used as alternatives to sulfur hexafluoride in gas-insulated switchgear (GIS) include several mixtures containing fluorinated organic compounds. We developed a fiber-optic analyzer enabling concentration measurement of fluoroketones used in medium- and high-voltage switchgear applications by ABB, with concurrent compensation of disturbing effects caused by dust and dirt. The sensor enables measurements in GIS and even in operating high-voltage circuit breakers. The online availability of concentration readings of fluoroketones is important for development tests, but can also be applied for monitoring or diagnostics of field installations.

  7. Hybrid vehicle control

    DOEpatents

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  8. Analysis of partial discharge activity by a conducting particle in liquid nitrogen under AC voltages adopting UHF technique

    NASA Astrophysics Data System (ADS)

    Sarathi, R.; Giridhar, A. V.; Sethupathi, K.

    2010-01-01

    Liquid nitrogen (LN 2) is used as an insulant as well as coolant in high temperature superconducting power equipments. Particle contamination in liquid nitrogen is one of the major cause for formation of partial discharges during operation. An attempt has been made in the present study to understand the feasibility of using Ultra High Frequency (UHF) sensors for identification of partial discharge (PD) formed due to particle movement in liquid nitrogen under AC voltages. It is observed that the partial discharge formed in LN 2 radiates UHF signal. The results of the study indicate that the conventional partial discharge measurement and UHF peak amplitude measurement have direct correlation. The Phase Resolved Partial Discharge (PRPD) analysis indicates that the partial discharge formed due to particle movement occurs in the entire phase windows of the AC voltage. The PD magnitude increases with increase in applied voltage. The frequency content of UHF signal generated due to particle movement in liquid nitrogen under AC voltages lies in the range of 0.5-1.5 GHz. The UHF sensor output signal analyzed using spectrum analyzer by operating it in zero-span mode, indicates that burst type PD occurs due to particle movement.

  9. Non-Contact Thermal Characterization of NASA's HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Myers, James L.; Yim, John T.; Neff, Gregory

    2015-01-01

    The thermal characterization test of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding has been completed. This thruster was developed to support a number of potential Solar Electric Propulsion Technology Demonstration Mission concepts, including the Asteroid Redirect Robotic Mission concept. As a part of the preparation for this characterization test, an infrared-based, non-contact thermal imaging system was developed to measure the temperature of various thruster surfaces that are exposed to high voltage or plasma. An in-situ calibration array was incorporated into the setup to improve the accuracy of the temperature measurement. The key design parameters for the calibration array were determined in a separate pilot test. The raw data from the characterization test was analyzed though further work is needed to obtain accurate anode temperatures. Examination of the front pole and discharge channel temperatures showed that the thruster temperature was driven more by discharge voltage than by discharge power. Operation at lower discharge voltages also yielded more uniform temperature distributions than at higher discharge voltages. When operating at high discharge voltage, increasing the magnetic field strength appeared to have made the thermal loading azimuthally more uniform.

  10. Standard design for National Ignition Facility x-ray streak and framing cameras.

    PubMed

    Kimbrough, J R; Bell, P M; Bradley, D K; Holder, J P; Kalantar, D K; MacPhee, A G; Telford, S

    2010-10-01

    The x-ray streak camera and x-ray framing camera for the National Ignition Facility were redesigned to improve electromagnetic pulse hardening, protect high voltage circuits from pressure transients, and maximize the use of common parts and operational software. Both instruments use the same PC104 based controller, interface, power supply, charge coupled device camera, protective hermetically sealed housing, and mechanical interfaces. Communication is over fiber optics with identical facility hardware for both instruments. Each has three triggers that can be either fiber optic or coax. High voltage protection consists of a vacuum sensor to enable the high voltage and pulsed microchannel plate phosphor voltage. In the streak camera, the high voltage is removed after the sweep. Both rely on the hardened aluminum box and a custom power supply to reduce electromagnetic pulse/electromagnetic interference (EMP/EMI) getting into the electronics. In addition, the streak camera has an EMP/EMI shield enclosing the front of the streak tube.

  11. High Voltage Insulation Technology

    NASA Astrophysics Data System (ADS)

    Scherb, V.; Rogalla, K.; Gollor, M.

    2008-09-01

    In preparation of new Electronic Power Conditioners (EPC's) for Travelling Wave Tub Amplifiers (TWTA's) on telecom satellites a study for the development of new high voltage insulation technology is performed. The initiative is mandatory to allow compact designs and to enable higher operating voltages. In a first task a market analysis was performed, comparing different materials with respect to their properties and processes. A hierarchy of selection criteria was established and finally five material candidates (4 Epoxy resins and 1 Polyurethane resin) were selected to be further investigated in the test program. Samples for the test program were designed to represent core elements of an EPC, the high voltage transformer and Printed Circuit Boards of the high voltage section. All five materials were assessed in the practical work flow of the potting process and electrical, mechanical, thermal and lifetime testing was performed. Although the lifetime tests results were overlayed by a larges scatter, finally two candidates have been identified for use in a subsequent qualification program. This activity forms part of element 5 of the ESA ARTES Programme.

  12. Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2016-06-09

    We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (∼6) and ultralow static power dissipation (≤0.3 pW) at an input voltage of ±3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.

  13. Permanent split capacitor single phase electric motor system

    DOEpatents

    Kirschbaum, H.S.

    1984-08-14

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation. 4 figs.

  14. High performance n-channel thin-film transistors with an amorphous phase C60 film on plastic substrate

    NASA Astrophysics Data System (ADS)

    Na, Jong H.; Kitamura, M.; Arakawa, Y.

    2007-11-01

    We fabricated high mobility, low voltage n-channel transistors on plastic substrates by combining an amorphous phase C60 film and a high dielectric constant gate insulator titanium silicon oxide (TiSiO2). The transistors exhibited high performance with a threshold voltage of 1.13V, an inverse subthreshold swing of 252mV/decade, and a field-effect mobility up to 1cm2/Vs at an operating voltage as low as 5V. The amorphous phase C60 films can be formed at room temperature, implying that this transistor is suitable for corresponding n-channel transistors in flexible organic logic devices.

  15. Power Controller

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The power factor controller (PFC) senses shifts in the relationship between voltage and current, and matches them with a motor's need. This prevents waste as motors do not need a high voltage when they are not operating at full load conditions. PFC is manufactured by Nordic Controls Company, among others, and has proved extremely cost effective.

  16. Optical Characterization of Component Wear and Near-Field Plasma of the Hermes Thruster

    NASA Technical Reports Server (NTRS)

    Williams, George J., Jr.; Kamhawi, Hani

    2015-01-01

    Optical emission spectral (OES) data are presented which correlate trends in sputtered species and the near-field plasma with the Hall-Effect Rocket with Magnetic Shielding (HERMeS) thruster operating condition. The relative density of singly-ionized xenon (Xe II) is estimated using a collisional-radiative model. OES data were collected at three radial and several axial locations downstream of the thruster's exit plane. These data were deconvolved to show the structure for the near-field plasma as a function of thruster operating condition. The magnetic field is shown to have a much greater affect on plasma structure than the discharge voltage with the primary ionization/acceleration zone boundary being similar for all nominal operating voltages at constant power. OES measurement of sputtered boron shows that the HERMeS thruster is magnetically shielded across its operating envelope. Preliminary assessment of carbon sputtered from the keeper face suggest it increases significantly with operating voltage, but the uncertainty associated with these measurements is very high.

  17. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain <10 MV/m at the desired operating voltage aiming at little or no field emission once conditioned. Typical electrode surface preparation involves diamond-paste polishing by skilled personnel, requiring several weeks of effort per electrode. In this work, we describe a centrifugal barrel-polishing techniquemore » commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (~11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Here, tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.« less

  18. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    DOE PAGES

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; ...

    2017-09-11

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain <10 MV/m at the desired operating voltage aiming at little or no field emission once conditioned. Typical electrode surface preparation involves diamond-paste polishing by skilled personnel, requiring several weeks of effort per electrode. In this work, we describe a centrifugal barrel-polishing techniquemore » commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (~11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Here, tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.« less

  19. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    NASA Astrophysics Data System (ADS)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; Wang, Y.; Poelker, M.

    2017-09-01

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain <10 MV/m at the desired operating voltage aiming at little or no field emission once conditioned. Typical electrode surface preparation involves diamond-paste polishing by skilled personnel, requiring several weeks of effort per electrode. In this work, we describe a centrifugal barrel-polishing technique commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (˜11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.

  20. Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Santiago, Walter

    2004-01-01

    The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.

  1. Low-Voltage Continuous Electrospinning Patterning.

    PubMed

    Li, Xia; Li, Zhaoying; Wang, Liyun; Ma, Guokun; Meng, Fanlong; Pritchard, Robyn H; Gill, Elisabeth L; Liu, Ye; Huang, Yan Yan Shery

    2016-11-30

    Electrospinning is a versatile technique for the construction of microfibrous and nanofibrous structures with considerable potential in applications ranging from textile manufacturing to tissue engineering scaffolds. In the simplest form, electrospinning uses a high voltage of tens of thousands volts to draw out ultrafine polymer fibers over a large distance. However, the high voltage limits the flexible combination of material selection, deposition substrate, and control of patterns. Prior studies show that by performing electrospinning with a well-defined "near-field" condition, the operation voltage can be decreased to the kilovolt range, and further enable more precise patterning of fibril structures on a planar surface. In this work, by using solution dependent "initiators", we demonstrate a further lowering of voltage with an ultralow voltage continuous electrospinning patterning (LEP) technique, which reduces the applied voltage threshold to as low as 50 V, simultaneously permitting direct fiber patterning. The versatility of LEP is shown using a wide range of combination of polymer and solvent systems for thermoplastics and biopolymers. Novel functionalities are also incorporated when a low voltage mode is used in place of a high voltage mode, such as direct printing of living bacteria; the construction of suspended single fibers and membrane networks. The LEP technique reported here should open up new avenues in the patterning of bioelements and free-form nano- to microscale fibrous structures.

  2. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers.

    PubMed

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  3. 18/20 T high magnetic field scanning tunneling microscope with fully low voltage operability, high current resolution, and large scale searching ability.

    PubMed

    Li, Quanfeng; Wang, Qi; Hou, Yubin; Lu, Qingyou

    2012-04-01

    We present a home-built 18/20 T high magnetic field scanning tunneling microscope (STM) featuring fully low voltage (lower than ±15 V) operability in low temperatures, large scale searching ability, and 20 fA high current resolution (measured by using a 100 GOhm dummy resistor to replace the tip-sample junction) with a bandwidth of 3.03 kHz. To accomplish low voltage operation which is important in achieving high precision, low noise, and low interference with the strong magnetic field, the coarse approach is implemented with an inertial slider driven by the lateral bending of a piezoelectric scanner tube (PST) whose inner electrode is axially split into two for enhanced bending per volt. The PST can also drive the same sliding piece to inertial slide in the other bending direction (along the sample surface) of the PST, which realizes the large area searching ability. The STM head is housed in a three segment tubular chamber, which is detachable near the STM head for the convenience of sample and tip changes. Atomic resolution images of a graphite sample taken under 17.6 T and 18.0001 T are presented to show its performance. © 2012 American Institute of Physics

  4. High power density dc-to-dc converters for aerospace applications

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1990-01-01

    Three dc-to-dc converter topologies aimed at high-power high-frequency applications are introduced. Major system parasitics, namely, the leakage inductance of the transformer and the device output capacitance are efficiently utilized. Of the three circuits, the single-phase and three-phase versions of the dual active bridge topology demonstrate minimal stresses, better utilization of the transformer, bidirectional, and buck-boost modes of operation. All circuits operate at a constant switching frequency, thus simplifying design of the reactive elements. The power transfer characteristics and soft-switching regions on the Vout-Iout plane are identified. Two coaxial transformers with different cross-sections were built for a rating of 50 kVA. Based on the single-phase dual active bridge topology, a 50 kW, 50 kHz converter operating at an input voltage of 200 Vdc and an output voltage of 1600 Vdc was fabricated. Characteristics of current-fed output make the dual active bridge topologies amenable to paralleling and hence extension to megawatt power levels. Projections to a 1 MW system operating from a 500 Vdc input, at an output voltage of 10 kVdc and a switching frequency of 50 kHz, using MOS-controlled thyristors, coaxially wound transformers operating at three times the present current density with cooling, and multilayer ceramic capacitors, suggests an overall power density of 0.075 to 0.08 kg/kW and an overall efficiency of 96 percent.

  5. Telescience operations with the solar array module plasma interaction experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Bibyk, Irene K.

    1995-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

  6. Research on multi-switch synchronization based on single trigger generator

    NASA Astrophysics Data System (ADS)

    Geng, Jiuyuan; Cheng, Xinbing; Yang, Jianhua; Yang, Xiao; Chen, Rong

    2018-05-01

    Multi-switch synchronous operation is an effective approach to provide high-voltage high-current for a high-power device. In this paper, we present a synchronization system with a corona stabilized triggered switch (CSTS) as main switch and an all-solid modularized quasi-square pulse forming system. In addition, this paper provides explanations of low jitter and accurate triggering of CSTS based on streamer theory. Different switches of the module are triggered by an electrical pulse created by a trigger generator, a quasi-square pulse can be created on the load. The experimental results show that it is able to switch voltages in excess of 40kV with nanosecond system jitter for three-module synchronous operation.

  7. Optical Diagnostic Characterization of High-Power Hall Thruster Wear and Operation

    NASA Technical Reports Server (NTRS)

    Williams, George J., Jr.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    Optical emission spectroscopy is employed to correlate BN insulator erosion with high-power Hall thruster operation. Specifically, actinometry leveraging excited xenon states is used to normalize the emission spectra of ground state boron as a function of thruster operating condition. Trends in the strength of the boron signal are correlated with thruster power, discharge voltage, and discharge current. In addition, the technique is demonstrated on metallic coupons embedded in the walls of the HiVHAc EM thruster. The OES technique captured the overall trend in the erosion of the coupons which boosts credibility in the method since there are no data to which to calibrate the erosion rates of high-power Hall thrusters. The boron signals are shown to trend linearly with discharge voltage for a fixed discharge current as expected. However, the boron signals of the higher-power NASA 300M and NASA 457Mv2 trend with discharge current and show an unexpectedly weak to inverse dependence on discharge voltage. Electron temperatures measured optically in the near-field plume of the thruster agree well with Langmuir probe data. However, the optical technique used to determine Te showed unacceptable sensitivity to the emission intensities. Near-field, single-frequency imaging of the xenon neutrals is also presented as a function of operating condition for the NASA 457 Mv2.

  8. Triple voltage dc-to-dc converter and method

    DOEpatents

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  9. Safety aspects for public access defibrillation using automated external defibrillators near high-voltage power lines.

    PubMed

    Schlimp, C J; Breiteneder, M; Lederer, W

    2004-05-01

    Automated external defibrillators (AEDs) must combine easy operability and high-quality diagnosis even under unfavorable conditions. This study determined the influence of electromagnetic interference caused by high-voltage power lines with 16.7-Hz alternating current on the quality of AEDs' rhythm analysis. Two AEDs frequently used in Austria were tested near high-voltage power lines (15 kV or 110 kV, alternating current with 16.7 Hz). The defibrillation electrodes were attached either to a proband with true sinus rhythm or to a resuscitation dummy with generated sinus rhythm, ventricular fibrillation, ventricular tachycardia or asystole. Electromagnetic interference was much more prominent in a human's than in a dummy's electrocardiogram and depended on the position of the electrodes and cables in relation to the power line. Near high-voltage power lines the AEDs showed a significant operational fault. One AED interpreted the interference as a motion artifact, even when underlying rhythms were clearly detectable. The other AED interpreted 16.7-Hz oscillation as ventricular fibrillation with consequent shock advice when no underlying rhythm was detected. The tested AEDs neither filter nor recognize a technical interference of 16.7 Hz caused by 15-kV power lines above railway tracks or 110-kV overland power lines, as run by railway companies in Austria, Germany, Norway, Sweden and Switzerland. These failures in AEDs' algorithms for rhythm analysis may cause substantial harm to patients undergoing public access defibrillation. The proper function of AEDs needs to be reconsidered to guarantee patients' safety near high-voltage power lines.

  10. Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage.

    PubMed

    Tao, Jiayou; Liu, Nishuang; Rao, Jiangyu; Ding, Longwei; Al Bahrani, Majid Raissan; Li, Luying; Su, Jun; Gao, Yihua

    2014-12-21

    Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO(2) nanowire/carbon nanotube (CNT) composites and MoO(3) nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm(-3) at a scan rate of 2 mV s(-1) and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm(-3) at a power density of 261.4 mW cm(-3), and exhibits excellent cycling performance of 99.6% capacitance retention over 10,000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high output voltage.

  11. The Design and Characterization of a Prototype Wideband Voltage Sensor Based on a Resistive Divider

    PubMed Central

    Garnacho, Fernando; Khamlichi, Abderrahim; Rovira, Jorge

    2017-01-01

    The most important advantage of voltage dividers over traditional voltage transformers is that voltage dividers do not have an iron core with non-linear hysteresis characteristics. The voltage dividers have a linear behavior with respect to over-voltages and a flat frequency response larger frequency range. The weak point of a voltage divider is the influence of external high-voltage (HV) and earth parts in its vicinity. Electrical fields arising from high voltages in neighboring phases and from ground conductors and structures are one of their main sources for systematic measurement errors. This paper describes a shielding voltage divider for a 24 kV medium voltage network insulated in SF6 composed of two resistive-capacitive dividers, one integrated within the other, achieving a flat frequency response up to 10 kHz for ratio error and up to 5 kHz for phase displacement error. The metal shielding improves its immunity against electric and magnetic fields. The characterization performed on the built-in voltage sensor shows an accuracy class of 0.2 for a frequency range from 20 Hz to 5 kHz and a class of 0.5 for 1 Hz up to 20 Hz. A low temperature effect is also achieved for operation conditions of MV power grids. PMID:29149085

  12. The Design and Characterization of a Prototype Wideband Voltage Sensor Based on a Resistive Divider.

    PubMed

    Garnacho, Fernando; Khamlichi, Abderrahim; Rovira, Jorge

    2017-11-17

    The most important advantage of voltage dividers over traditional voltage transformers is that voltage dividers do not have an iron core with non-linear hysteresis characteristics. The voltage dividers have a linear behavior with respect to over-voltages and a flat frequency response larger frequency range. The weak point of a voltage divider is the influence of external high-voltage (HV) and earth parts in its vicinity. Electrical fields arising from high voltages in neighboring phases and from ground conductors and structures are one of their main sources for systematic measurement errors. This paper describes a shielding voltage divider for a 24 kV medium voltage network insulated in SF6 composed of two resistive-capacitive dividers, one integrated within the other, achieving a flat frequency response up to 10 kHz for ratio error and up to 5 kHz for phase displacement error. The metal shielding improves its immunity against electric and magnetic fields. The characterization performed on the built-in voltage sensor shows an accuracy class of 0.2 for a frequency range from 20 Hz to 5 kHz and a class of 0.5 for 1 Hz up to 20 Hz. A low temperature effect is also achieved for operation conditions of MV power grids.

  13. Systems and methods for process and user driven dynamic voltage and frequency scaling

    DOEpatents

    Mallik, Arindam [Evanston, IL; Lin, Bin [Hillsboro, OR; Memik, Gokhan [Evanston, IL; Dinda, Peter [Evanston, IL; Dick, Robert [Evanston, IL

    2011-03-22

    Certain embodiments of the present invention provide a method for power management including determining at least one of an operating frequency and an operating voltage for a processor and configuring the processor based on the determined at least one of the operating frequency and the operating voltage. The operating frequency is determined based at least in part on direct user input. The operating voltage is determined based at least in part on an individual profile for processor.

  14. Lightweight, high-frequency transformers

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1983-01-01

    The 25-kVA space transformer was developed under contract by Thermal Technology Laboratory, Buffalo, N. Y. The NASA Lewis transformer technology program attempted to develop the baseline technology. For the 25-kVA transformer the input voltage was chosen as 200 V, the output voltage as 1500 V, the input voltage waveform as square wave, the duty cycle as continuous, the frequency range (within certain constraints) as 10 to 40 kHz, the operating temperatures as 85 deg. and 130 C, the baseplate temperature as 50 C, the equivalent leakage inductance as less than 10 micro-h, the operating environment as space, and the life expectancy as 10 years. Such a transformer can also be used for aircraft, ship and terrestrial applications.

  15. OFCC based voltage and transadmittance mode instrumentation amplifier

    NASA Astrophysics Data System (ADS)

    Nand, Deva; Pandey, Neeta; Pandey, Rajeshwari; Tripathi, Prateek; Gola, Prashant

    2017-07-01

    The operational floating current conveyor (OFCC) is a versatile active block due to the availability of both low and high input and output impedance terminals. This paper addresses the realization of OFCC based voltage and transadmittance mode instrumentation amplifiers (VMIA and TAM IA). It employs three OFCCs and seven resistors. The transadmittance mode operation can easily be obtained by simply connecting an OFCC based voltage to current converter at the output. The effect of non-idealities of OFCC, in particular finite transimpedance and tracking error, on system performance is also dealt with and corresponding mathematical expressions are derived. The functional verification is performed through SPICE simulation using CMOS based implementation of OFCC.

  16. Soft switching resonant converter with duty-cycle control in DC micro-grid system

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-01-01

    Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.

  17. Challenges and approaches for high-voltage spinel lithium-ion batteries.

    PubMed

    Kim, Jung-Hyun; Pieczonka, Nicholas P W; Yang, Li

    2014-07-21

    Lithium-ion (Li-ion) batteries have been developed for electric vehicle (EV) applications, owing to their high energy density. Recent research and development efforts have been devoted to finding the next generation of cathode materials for Li-ion batteries to extend the driving distance of EVs and lower their cost. LiNi(0.5)Mn(1.5)O(4) (LNMO) high-voltage spinel is a promising candidate for a next-generation cathode material based on its high operating voltage (4.75 V vs. Li), potentially low material cost, and excellent rate capability. Over the last decade, much research effort has focused on achieving a fundamental understanding of the structure-property relationship in LNMO materials. Recent studies, however, demonstrated that the most critical barrier for the commercialization of high-voltage spinel Li-ion batteries is electrolyte decomposition and concurrent degradative reactions at electrode/electrolyte interfaces, which results in poor cycle life for LNMO/graphite full cells. Despite scattered reports addressing these processes in high-voltage spinel full cells, they have not been consolidated into a systematic review article. With this perspective, emphasis is placed herein on describing the challenges and the various approaches to mitigate electrolyte decomposition and other degradative reactions in high-voltage spinel cathodes in full cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Experimental results on plasma interactions with large surfaces at high voltages

    NASA Technical Reports Server (NTRS)

    Grier, N. T.

    1980-01-01

    Multikilowatt power levels for future payloads can be more efficiently generated using solar arrays operating in the kilovolt range. This implies that large areas of the array at high operating voltages will be exposed to the space plasma environment. The resulting interactions of these high voltage surfaces with space plasma environments can seriously impact the performance of the satellite system. The plasma-surface interaction phenomena were studied in tests performed in two separate vacuum chambers, a 4.6 m diameter by 19.2 long chamber and a 20 m diameter by 27.4 m long chamber. The generated plasma density was approximately 1x10 to the 4th power/cu cm. Ten solar array panels, each with areas of 1400 sq cm were used in the tests. Nine of the solar panels were tested as a composite unit in the form of a 3x3 solar panel matrix. The results from all the tests confirmed small sample tests results: insulators were found to enhance the plasma coupling current for high positive bias and arcing was found to occur at high negative bias.

  19. Extended performance solar electric propulsion thrust system study. Volume 5. Capacitor-diode voltage multiplier: Technology evaluation

    NASA Technical Reports Server (NTRS)

    Martinelli, R. M.

    1977-01-01

    A 1-kW capacitor-diode voltage multiplier (CDVM) was designed, fabricated and tested to demonstrate the power of feasibility of high power CDVM's and to verify the analytical techniques that had been used to predict the performance characteristics of a 6-kw CDVM. High efficiency (96.2%), a low ratio of component weight to power (0.55 kg/kW), and low output ripple voltage (less than 1%, peak to peak) were obtained during the operation of a 1-kW CDVM various input line, load current, and load fault conditions.

  20. Study of seismic response and vibration control of High voltage electrical equipment damper based on TMD

    NASA Astrophysics Data System (ADS)

    Liu, Chuncheng; Wang, Chongyang; Mao, Long; Zha, Chuanming

    2016-11-01

    Substation high voltage electrical equipment such as mutual inductor, circuit interrupter, disconnecting switch, etc., has played a key role in maintaining the normal operation of the power system. When the earthquake disaster, the electrical equipment of the porcelain in the transformer substation is the most easily to damage, causing great economic losses. In this paper, using the method of numerical analysis, the establishment of a typical high voltage electrical equipment of three dimensional finite element model, to study the seismic response of a typical SF6 circuit breaker, at the same time, analysis and contrast the installation ring tuned mass damper (TMD damper for short), by changing the damper damping coefficient and the mass block, install annular TMD vibration control effect is studied. The results of the study for guiding the seismic design of high voltage electrical equipment to provide valuable reference.

  1. In-situ diagnostic tools for hydrogen transfer leak characterization in PEM fuel cell stacks part II: Operational applications

    NASA Astrophysics Data System (ADS)

    Niroumand, Amir M.; Homayouni, Hooman; DeVaal, Jake; Golnaraghi, Farid; Kjeang, Erik

    2016-08-01

    This paper describes a diagnostic tool for in-situ characterization of the rate and distribution of hydrogen transfer leaks in Polymer Electrolyte Membrane (PEM) fuel cell stacks. The method is based on reducing the air flow rate from a high to low value at a fixed current, while maintaining an anode overpressure. At high air flow rates, the reduction in air flow results in lower oxygen concentration in the cathode and therefore reduction in cell voltages. Once the air flow rate in each cell reaches a low value at which the cell oxygen-starves, the voltage of the corresponding cell drops to zero. However, oxygen starvation results from two processes: 1) the electrochemical oxygen reduction reaction which produces current; and 2) the chemical reaction between oxygen and the crossed over hydrogen. In this work, a diagnostic technique has been developed that accounts for the effect of the electrochemical reaction on cell voltage to identify the hydrogen leak rate and number of leaky cells in a fuel cell stack. This technique is suitable for leak characterization during fuel cell operation, as it only requires stack air flow and voltage measurements, which are readily available in an operational fuel cell system.

  2. Performance Characterization of a Novel Plasma Thruster to Provide a Revolutionary Operationally Responsive Space Capability with Micro- and Nano-Satellites

    DTIC Science & Technology

    2011-03-24

    and radiation resistance of rare earth permanent magnets for applications such as ion thrusters and high efficiency Stirling Radioisotope Generators...from Electron Transitioning Discharge Current Discharge Power Discharge Voltage Θ Divergence Angle Earths Gravity at Sea Level...Hall effect thruster HIVAC High Voltage Hall Accelerator LEO Low Earth Orbit LDS Laser Displacement System LVDT Linear variable differential

  3. Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System

    NASA Astrophysics Data System (ADS)

    Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.

    2014-10-01

    High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  4. Evaluation of the Fretting Resistance of the High Voltage Insulation on the ITER Magnet Feeder Busbars

    NASA Astrophysics Data System (ADS)

    Clayton, N.; Crouchen, M.; Evans, D.; Gung, C.-Y.; Su, M.; Devred, A.; Piccin, R.

    2017-12-01

    The high voltage (HV) insulation on the ITER magnet feeder superconducting busbars and current leads will be prepared from S-glass fabric, pre-impregnated with an epoxy resin, which is interleaved with polyimide film and wrapped onto the components and cured during feeder manufacture. The insulation architecture consists of nine half-lapped layers of glass/Kapton, which is then enveloped in a ground-screen, and two further half-lapped layers of glass pre-preg for mechanical protection. The integrity of the HV insulation is critical in order to inhibit electrical arcs within the feeders. The insulation over the entire length of the HV components (bus bar, current leads and joints) must provide a level of voltage isolation of 30 kV. In operation, the insulation on ITER busbars will be subjected to high mechanical loads, arising from Lorentz forces, and in addition will be subjected to fretting erosion against stainless steel clamps, as the pulsed nature of some magnets results in longitudinal movement of the busbar. This work was aimed at assessing the wear on, and the changes in, the electrical properties of the insulation when subjected to typical ITER operating conditions. High voltage tests demonstrated that the electrical isolation of the insulation was intact after the fretting test.

  5. 30 CFR 77.704-9 - Operating disconnecting or cutout switches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Operating disconnecting or cutout switches. 77... UNDERGROUND COAL MINES Grounding § 77.704-9 Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage surface lines shall be operated only with insulated sticks...

  6. 30 CFR 77.704-9 - Operating disconnecting or cutout switches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Operating disconnecting or cutout switches. 77... UNDERGROUND COAL MINES Grounding § 77.704-9 Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage surface lines shall be operated only with insulated sticks...

  7. 30 CFR 77.704-9 - Operating disconnecting or cutout switches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Operating disconnecting or cutout switches. 77... UNDERGROUND COAL MINES Grounding § 77.704-9 Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage surface lines shall be operated only with insulated sticks...

  8. 30 CFR 77.704-9 - Operating disconnecting or cutout switches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Operating disconnecting or cutout switches. 77... UNDERGROUND COAL MINES Grounding § 77.704-9 Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage surface lines shall be operated only with insulated sticks...

  9. 30 CFR 77.704-9 - Operating disconnecting or cutout switches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Operating disconnecting or cutout switches. 77... UNDERGROUND COAL MINES Grounding § 77.704-9 Operating disconnecting or cutout switches. Disconnecting or cutout switches on energized high-voltage surface lines shall be operated only with insulated sticks...

  10. Voltage Support Study of Smart PV Inverters on a High-Photovoltaic Penetration Utility Distribution Feeder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Pratt, Annabelle; Bialek, Tom

    2016-11-21

    This paper reports on tools and methodologies developed to study the impact of adding rooftop photovoltaic (PV) systems, with and without the ability to provide voltage support, on the voltage profile of distribution feeders. Simulation results are provided from a study of a specific utility feeder. The simulation model of the utility distribution feeder was built in OpenDSS and verified by comparing the simulated voltages to field measurements. First, we set all PV systems to operate at unity power factor and analyzed the impact on feeder voltages. Then we conducted multiple simulations with voltage support activated for all the smartmore » PV inverters. These included different constant power factor settings and volt/VAR controls.« less

  11. Corona-vacuum failure mechanism test facilities

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Mueller, L. A.; Koutnik, E. A.

    1975-01-01

    A nondestructive corona-vacuum test facility for testing high-voltage power system components has been developed using commercially available hardware. The facility simulates operating temperature and vacuum while monitoring coronal discharges with residual gases. Corona threshold voltages obtained from statorette tests with various gas-solid dielectric systems and comparison with calculated data support the following conclusions: (1) air gives the highest corona threshold voltage and helium the lowest, with argon and helium-xenon mixtures intermediate; (2) corona threshold voltage increases with gas pressure; (3) corona threshold voltage for an armature winding can be accurately calculated by using Paschen curves for a uniform field; and (4) Paschen curves for argon can be used to calculate the corona threshold voltage in He-Xe mixtures, for which Paschen curves are unavailable.-

  12. Direct current ballast circuit for metal halide lamp

    NASA Technical Reports Server (NTRS)

    Lutus, P. (Inventor)

    1981-01-01

    A direct current ballast circuit for a two electrode metal halide lamp is described. Said direct current ballast circuit includes a low voltage DC input and a high frequency power amplifier and power transformer for developing a high voltage output. The output voltage is rectified by diodes and filtered by inductor and capacitor to provide a regulated DC output through commutating diodes to one terminal of the lamp at the output terminal. A feedback path from the output of the filter capacitor through the bias resistor to power the high frequency circuit which includes the power amplifier and the power transformer for sustaining circuit operations during low voltage transients on the input DC supply is described. A current sensor connected to the output of the lamp through terminal for stabilizing lamp current following breakdown of the lamp is described.

  13. Analysis of a flux-coupling type superconductor fault current limiter with pancake coils

    NASA Astrophysics Data System (ADS)

    Liu, Shizhuo; Xia, Dong; Zhang, Zhifeng; Qiu, Qingquan; Zhang, Guomin

    2017-10-01

    The characteristics of a flux-coupling type superconductor fault current limiter (SFCL) with pancake coils are investigated in this paper. The conventional double-wound non-inductive pancake coil used in AC power systems has an inevitable defect in Voltage Sourced Converter Based High Voltage DC (VSC-HVDC) power systems. Due to its special structure, flashover would occur easily during the fault in high voltage environment. Considering the shortcomings of conventional resistive SFCLs with non-inductive coils, a novel flux-coupling type SFCL with pancake coils is carried out. The module connections of pancake coils are performed. The electromagnetic field and force analysis of the module are contrasted under different parameters. To ensure proper operation of the module, the impedance of the module under representative operating conditions is calculated. Finally, the feasibility of the flux-coupling type SFCL in VSC-HVDC power systems is discussed.

  14. FAST TRACK COMMUNICATION High mobility and low operating voltage ZnGaO and ZnGaLiO transistors with spin-coated Al2O3 as gate dielectric

    NASA Astrophysics Data System (ADS)

    Xia, D. X.; Xu, J. B.

    2010-11-01

    Spin-coated alumina serving as a gate dielectric in thin film transistors shows interesting dielectric properties for low-voltage applications, despite a moderate capacitance. With Ga singly doped and Ga, Li co-doped ZnO as the active channel layers, typical mobilities of 4.7 cm2 V-1 s-1 and 2.1 cm2 V-1 s-1 are achieved, respectively. At a given gate bias, the operation current is much smaller than the previously reported values in low-voltage thin film transistors, primarily relying on the giant-capacitive dielectric. The reported devices combine advantages of high mobility, low power consumption, low cost and ease of fabrication. In addition to the transparent nature of both the dielectric and semiconducting active channels, the superior electrical properties of the devices may provide a new avenue for future transparent electronics.

  15. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content

    NASA Astrophysics Data System (ADS)

    Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun

    2018-04-01

    Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).

  16. Instrumentation and control system architecture of ECRH SST1

    NASA Astrophysics Data System (ADS)

    Patel, Harshida; Patel, Jatin; purohit, Dharmesh; Shukla, B. K.; Babu, Rajan; Mistry, Hardik

    2017-07-01

    The Electron Cyclotron Resonance Heating (ECRH) system is an important heating system for the reliable start-up of tokamak. The 42GHz and 82.6GHz Gyrotron based ECRH systems are used in tokomaks SST-1 and Aditya to carry out ECRH related experiments. The Gyrotrons are high power microwave tubes used as a source for ECRH systems. The Gyrotrons need to be handled with optimum care right from the installation to its Full parameter control operation. The Gyrotrons are associated with the subsystems like: High voltage power supplies (Beam voltage and anode voltage), dedicated crowbar system, magnet, filament and ion pump power supplies and cooling system. The other subsystems are transmission line, launcher and dummy load. A dedicated VME based data acquisition & control (DAC) system is developed to operate and control the Gyrotron and its associated sub system. For the safe operation of Gyrotron, two level interlocks with fail-safe logic are developed. Slow signals that are operated in scale of millisecond range are programmed through software and hardware interlock in scale of microsecond range are designed and developed indigenously. Water-cooling and the associated interlock are monitored and control by data logger with independent human machine interface.

  17. 47 CFR 15.611 - General technical requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... § 15.109(b). (2) Low voltage power lines. Access BPL systems that operate over low-voltage power lines, including those that operate over low-voltage lines that are connected to the in-building wiring, shall... limits—(1) Medium voltage power lines. (i) Access BPL systems that operate in the frequency range of 1...

  18. 47 CFR 15.611 - General technical requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... § 15.109(b). (2) Low voltage power lines. Access BPL systems that operate over low-voltage power lines, including those that operate over low-voltage lines that are connected to the in-building wiring, shall... limits—(1) Medium voltage power lines. (i) Access BPL systems that operate in the frequency range of 1...

  19. 47 CFR 15.611 - General technical requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... § 15.109(b). (2) Low voltage power lines. Access BPL systems that operate over low-voltage power lines, including those that operate over low-voltage lines that are connected to the in-building wiring, shall... limits—(1) Medium voltage power lines. (i) Access BPL systems that operate in the frequency range of 1...

  20. ELECTROSTATIC ACCELERATORS (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerbier, R.

    1962-04-01

    The various methods presently in use for producing the continuous high voltage necessary for the operation of electrostatic accelerators are reviewed. The methods considered are voltage multiplier units (Greinacher and Morganstern types) and electrostatic instruments (Van de Graaff and Trump machines and Felici rotnting cylinder instruments). The electrostatic accelerators used at Grenoble which give currents of several milliamperes at voltages up to 1.2 Mv are described. In this energy region electron accelerators and neutron generators offer very interesting possibilities. (auth)

  1. A new low voltage level-shifted FVF current mirror with enhanced bandwidth and output resistance

    NASA Astrophysics Data System (ADS)

    Aggarwal, Bhawna; Gupta, Maneesha; Gupta, Anil Kumar; Sangal, Ankur

    2016-10-01

    This paper proposes a new high-performance level-shifted flipped voltage follower (LSFVF) based low-voltage current mirror (CM). The proposed CM utilises the low-supply voltage and low-input resistance characteristics of a flipped voltage follower (FVF) CM. In the proposed CM, level-shifting configuration is used to obtain a wide operating current range and resistive compensation technique is employed to increase the operating bandwidth. The peaking in frequency response is reduced by using an additional large MOSFET. Moreover, a very high output resistance (in GΩ range) along with low-current transfer error is achieved through super-cascode configuration for a wide current range (0-440 µA). Small signal analysis is carried out to show the improvements achieved at each step. The proposed CM is simulated by Mentor Graphics Eldospice in TSMC 0.18 µm CMOS, BSIM3 and Level 53 technology. In the proposed CM, a bandwidth of 6.1799 GHz, 1% settling time of 0.719 ns, input and output resistances of 21.43 Ω and 1.14 GΩ, respectively, are obtained with a single supply voltage of 1 V. The layout of the proposed CM has been designed and post-layout simulation results have been shown. The post-layout simulation results for Monte Carlo and temperature analysis have also been included to show the reliability of the CM against the variations in process parameters and temperature changes.

  2. Deflection amplifier for image dissectors

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.

    1977-01-01

    Balanced symmetrical y-axis amplifier uses zener-diode level shifting to interface operational amplifiers to high voltage bipolar output stages. Nominal voltage transfer characteristic is 40 differential output volts per input volt; bandwidth, between -3-dB points, is approximately 8 kHz; loop gain is nominally 89 dB with closed loop gain of 26 dB.

  3. Circuit For Current-vs.-Voltage Tests Of Semiconductors

    NASA Technical Reports Server (NTRS)

    Huston, Steven W.

    1991-01-01

    Circuit designed for measurement of dc current-versus-voltage characteristics of semiconductor devices. Operates in conjunction with x-y pen plotter or digital storage oscilloscope, which records data. Includes large feedback resistors to prevent high currents damaging device under test. Principal virtues: low cost, simplicity, and compactness. Also used to evaluate diodes and transistors.

  4. Optical Emission Characterization of High-Power Hall Thruster Wear

    NASA Technical Reports Server (NTRS)

    WIlliams, George J.; Kamhawi, Hani

    2013-01-01

    Optical emission spectroscopy is employed to correlate BN insulator erosion with high-power operation of the NASA 300M Hall-effect thruster. Actinometry leveraging excited xenon states is used to normalize the emission spectra of ground state boron as a function of thruster operating condition. Trends in the strength of the boron signal are correlated with thruster power, discharge voltage, discharge current and magnetic field strength. The boron signals are shown to trend with discharge current and show weak dependence on discharge voltage. The trends are consistent with data previously collected on the NASA 300M and NASA 457M thrusters but are different from conventional wisdom.

  5. Advanced high frequency partial discharge measuring system

    NASA Technical Reports Server (NTRS)

    Karady, George G.

    1994-01-01

    This report explains the Advanced Partial Discharge Measuring System in ASU's High Voltage Laboratory and presents some of the results obtained using the setup. While in operation an insulation is subjected to wide ranging temperature and voltage stresses. Hence, it is necessary to study the effect of temperature on the behavior of partial discharges in an insulation. The setup described in this report can be used to test samples at temperatures ranging from -50 C to 200 C. The aim of conducting the tests described herein is to be able to predict the behavior of an insulation under different operating conditions in addition to being able to predict the possibility of failure.

  6. Very compact, high-stability electrostatic actuator featuring contact-free self-limiting displacement

    DOEpatents

    Rodgers, M. Steven; Miller, Samuel L.

    2003-01-01

    A compact electrostatic actuator is disclosed for microelectromechanical (MEM) applications. The actuator utilizes stationary and moveable electrodes, with the stationary electrodes being formed on a substrate and the moveable electrodes being supported above the substrate on a frame. The frame provides a rigid structure which allows the electrostatic actuator to be operated at high voltages (up to 190 Volts) to provide a relatively large actuation force compared to conventional electrostatic comb actuators which are much larger in size. For operation at its maximum displacement, the electrostatic actuator is relatively insensitive to the exact value of the applied voltage and provides a self-limiting displacement.

  7. High-performance silicon nanowire bipolar phototransistors

    NASA Astrophysics Data System (ADS)

    Tan, Siew Li; Zhao, Xingyan; Chen, Kaixiang; Crozier, Kenneth B.; Dan, Yaping

    2016-07-01

    Silicon nanowires (SiNWs) have emerged as sensitive absorbing materials for photodetection at wavelengths ranging from ultraviolet (UV) to the near infrared. Most of the reports on SiNW photodetectors are based on photoconductor, photodiode, or field-effect transistor device structures. These SiNW devices each have their own advantages and trade-offs in optical gain, response time, operating voltage, and dark current noise. Here, we report on the experimental realization of single SiNW bipolar phototransistors on silicon-on-insulator substrates. Our SiNW devices are based on bipolar transistor structures with an optically injected base region and are fabricated using CMOS-compatible processes. The experimentally measured optoelectronic characteristics of the SiNW phototransistors are in good agreement with simulation results. The SiNW phototransistors exhibit significantly enhanced response to UV and visible light, compared with typical Si p-i-n photodiodes. The near infrared responsivities of the SiNW phototransistors are comparable to those of Si avalanche photodiodes but are achieved at much lower operating voltages. Compared with other reported SiNW photodetectors as well as conventional bulk Si photodiodes and phototransistors, the SiNW phototransistors in this work demonstrate the combined advantages of high gain, high photoresponse, low dark current, and low operating voltage.

  8. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  9. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    PubMed

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  10. Ti-Doped GaOx Resistive Switching Memory with Self-Rectifying Behavior by Using NbOx/Pt Bilayers.

    PubMed

    Park, Ju Hyun; Jeon, Dong Su; Kim, Tae Geun

    2017-12-13

    Crossbar arrays (CBAs) with resistive random access memory (ReRAM) constitute an established architecture for high-density memory. However, sneak paths via unselected cells increase the total power consumption of these devices and limit the array size. To eliminate such sneak-path problems, we propose a Ti/GaO x /NbO x /Pt structure with a self-rectifying resistive-switching (RS) behavior. In this structure, to reduce the operating voltage, we used a Ti/GaO x stack to increase the number of trap sites in the RS GaO x layer through interfacial reactions between the Ti and GaO x layers. This increase enables easier carrier transport with reduced electric fields. We then adopted a NbO x /Pt stack to add rectifying behavior to the RS GaO x layer. This behavior is a result of the large Schottky barrier height between the NbO x and Pt layers. Finally, both the Ti/GaO x and NbO x /Pt stacks were combined to realize a self-rectifying ReRAM device, which exhibited excellent performance. Characteristics of the device include a low operating voltage range (-2.8 to 2.5 V), high on/off ratios (∼20), high selectivity (∼10 4 ), high operating speeds (200-500 ns), a very low forming voltage (∼3 V), stable operation, and excellent uniformity for high-density CBA-based ReRAM applications.

  11. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes.

    PubMed

    Zhang, Jianping; Chen, Xingjuan; Xue, Yucong; Gamper, Nikita; Zhang, Xuan

    2018-04-18

    Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca 2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca 2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P 2 , PIP 2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes. © 2018 Wiley Periodicals, Inc.

  12. High-temperature performance of MoS2 thin-film transistors: Direct current and pulse current-voltage characteristics

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Rumyantsev, S. L.; Samnakay, R.; Shur, M. S.; Balandin, A. A.

    2015-02-01

    We report on fabrication of MoS2 thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS2 devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS2 thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a "memory step," was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS2 thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS2 thin-film transistors in extreme-temperature electronics and sensors.

  13. Electron gun jitter effects on beam bunching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, M. S.; Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk; Centre for High Energy Physics, University of the Punjab, Lahore 45590

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps whichmore » eventually deteriorates both the beam performance and the injection rate to the storage ring.« less

  14. A high-voltage cardiac stimulator for field shocks of a whole heart in a bath

    NASA Astrophysics Data System (ADS)

    Mashburn, David N.; Hinkson, Stephen J.; Woods, Marcella C.; Gilligan, Jonathan M.; Holcomb, Mark R.; Wikswo, John P.

    2007-10-01

    Defibrillators are a critical tool for treating heart disease; however, the mechanisms by which they halt fibrillation are still not fully understood and are the subject of ongoing research. Clinical defibrillators do not provide the precise control of shock timing, duration, and voltage or other features needed for detailed scientific inquiry, and there are few, if any, commercially available units designed for research applications. For this reason, we have developed a high-voltage, programmable, capacitive-discharge stimulator optimized to deliver defibrillation shocks with precise timing and voltage control to an isolated animal heart, either in air or in a bath. This stimulator is capable of delivering voltages of up to 500V and energies of nearly 100J with timing accuracy of a few microseconds and with rise and fall times of 5μs or less and is controlled only by two external timing pulses and a control computer that sets the stimulation parameters via a LABVIEW interface. Most importantly, the stimulator has circuits to protect the high-voltage circuitry and the operator from programming and input-output errors. This device has been tested and used successfully in field shock experiments on rabbit hearts as well as other protocols requiring high voltage.

  15. A 32 kb 9T near-threshold SRAM with enhanced read ability at ultra-low voltage operation

    NASA Astrophysics Data System (ADS)

    Kim, Tony Tae-Hyoung; Lee, Zhao Chuan; Do, Anh Tuan

    2018-01-01

    Ultra-low voltage SRAMs are highly sought-after in energy-limited systems such as battery-powered and self-harvested SoCs. However, ultra-low voltage operation diminishes SRAM read bitline (RBL) sensing margin significantly. This paper tackles this issue by presenting a novel 9T cell with data-independent RBL leakage in combination with an RBL boosting technique for enhancing the sensing margin. The proposed technique automatically tracks process, temperature and voltage (PVT) variations for robust sensing margin enhancement. A test chip fabricated in 65 nm CMOS technology shows that the proposed scheme significantly enlarges the sensing margin compared to the conventional bitline sensing scheme. It also achieves the minimum operating voltage of 0.18 V and the minimum energy consumption of 0.92 J/access at 0.4 V. He received 2016 International Low Power Design Contest Award from ISLPED, a best paper award at 2014 and 2011 ISOCC, 2008 AMD/CICC Student Scholarship Award, 2008 Departmental Research Fellowship from Univ. of Minnesota, 2008 DAC/ISSCC Student Design Contest Award, 2008, 2001, and 1999 Samsung Humantec Thesis Award and, 2005 ETRI Journal Paper of the Year Award. He is an author/co-author of +100 journal and conference papers and has 17 US and Korean patents registered. His current research interests include low power and high performance digital, mixed- mode, and memory circuit design, ultra-low voltage circuits and systems design, variation and aging tolerant circuits and systems, and circuit techniques for 3D ICs. He serves as an associate editor of IEEE Transactions on VLSI Systems. He is an IEEE senior member and the Chair of IEEE Solid-State Circuits Society Singapore Chapter. He has served numerous conferences as a committee member.

  16. Safety management of complex research operators

    NASA Technical Reports Server (NTRS)

    Brown, W. J.

    1981-01-01

    Complex research and technology operations present varied potential hazards which are addressed in a disciplined, independent safety review and approval process. Potential hazards vary from high energy fuels to hydrocarbon fuels, high pressure systems to high voltage systems, toxic chemicals to radioactive materials and high speed rotating machinery to high powered lasers. A Safety Permit System presently covers about 600 potentially hazardous operations. The Safety Management Program described is believed to be a major factor in maintaining an excellent safety record.

  17. Electrical insulation design requirements and reliability goals

    NASA Astrophysics Data System (ADS)

    Ross, R. G., Jr.

    1983-11-01

    The solar cells in a photovoltaic module which must be electrically isolated from module exterior surfaces to satisfy a variety of safety and operating considerations are discussed. The performance and reliability of the insulation system are examined. Technical requirements involve the capability of withstanding the differential voltage from the solar cells to the module frame. The maximum system voltage includes consideration of maximum open circuit array voltages achieved under low-temperature, high-irradiance conditions, and transient overvoltages due to system feedback of lightning transients. The latter is bounded by the characteristics of incorporated voltage limiting devices such as MOVs.

  18. Improved fault ride through capability of DFIG based wind turbines using synchronous reference frame control based dynamic voltage restorer.

    PubMed

    Rini Ann Jerin, A; Kaliannan, Palanisamy; Subramaniam, Umashankar

    2017-09-01

    Fault ride through (FRT) capability in wind turbines to maintain the grid stability during faults has become mandatory with the increasing grid penetration of wind energy. Doubly fed induction generator based wind turbine (DFIG-WT) is the most popularly utilized type of generator but highly susceptible to the voltage disturbances in grid. Dynamic voltage restorer (DVR) based external FRT capability improvement is considered. Since DVR is capable of providing fast voltage sag mitigation during faults and can maintain the nominal operating conditions for DFIG-WT. The effectiveness of the DVR using Synchronous reference frame (SRF) control is investigated for FRT capability in DFIG-WT during both balanced and unbalanced fault conditions. The operation of DVR is confirmed using time-domain simulation in MATLAB/Simulink using 1.5MW DFIG-WT. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. A magnesium–sodium hybrid battery with high operating voltage

    DOE PAGES

    Dong, Hui; Li, Yifei; Liang, Yanliang; ...

    2016-06-10

    Here, we report a high performance magnesium-sodium hybrid battery utilizing a magnesium-sodium dual-salt electrolyte, a magnesium anode, and a Berlin green cathode. The cell delivers an average discharge voltage of 2.2 V and a reversible capacity of 143 mA h g –1. We also demonstrate the cell with an energy density of 135 W h kg –1 and a high power density of up to 1.67 kW kg –1.

  20. Epitaxy of Ferroelectric P(VDF-TrFE) Films via Removable PTFE Templates and Its Application in Semiconducting/Ferroelectric Blend Resistive Memory.

    PubMed

    Xia, Wei; Peter, Christian; Weng, Junhui; Zhang, Jian; Kliem, Herbert; Jiang, Yulong; Zhu, Guodong

    2017-04-05

    Ferroelectric polymer based devices exhibit great potentials in low-cost and flexible electronics. To meet the requirements of both low voltage operation and low energy consumption, thickness of ferroelectric polymer films is usually required to be less than, for example, 100 nm. However, decrease of film thickness is also accompanied by the degradation of both crystallinity and ferroelectricity and also the increase of current leakage, which surely degrades device performance. Here we report one epitaxy method based on removable poly(tetrafluoroethylene) (PTFE) templates for high-quality fabrication of ordered ferroelectric polymer thin films. Experimental results indicate that such epitaxially grown ferroelectric polymer films exhibit well improved crystallinity, reduced current leakage and good resistance to electrical breakdown, implying their applications in high-performance and low voltage operated ferroelectric devices. On the basis of this removable PTFE template method, we fabricated organic semiconducting/ferroelectric blend resistive films which presented record electrical performance with operation voltage as low as 5 V and ON/OFF ratio up to 10 5 .

  1. Operation of a voltage source converter at increased utility voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaura, V.; Blasko, V.

    1997-01-01

    The operation of a voltage source converter (VSC) with regeneration capability, controllable power factor, and low distortion of utility currents is analyzed at increased utility voltage. Increase in the utility voltage causes a VSC to saturate and enter a nonlinear mode of operation. To operate under elevated utility, two steps are taken: (1) a pulse width modulation (PWM) algorithm is implemented which extends the linear region of operation by 15% and (2) a PWM saturation regulator is used to control the reactive current at higher utility voltages. The PWM algorithm reduces the switching losses by at least 33% and themore » effect of blanking time by one-third. All analytical results are experimentally verified on a 100 kW three-phase VSC.« less

  2. DC-driven plasma gun: self-oscillatory operation mode of atmospheric-pressure helium plasma jet comprised of repetitive streamer breakdowns

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Shashurin, Alexey

    2017-02-01

    This paper presents and studies helium atmospheric pressure plasma jet comprised of a series of repetitive streamer breakdowns, which is driven by pure DC high voltage (self-oscillatory behavior). The repetition frequency of the breakdowns is governed by the geometry of discharge electrodes/surroundings and gas flow rate. Each next streamer is initiated when the electric field on the anode tip recovers after the previous breakdown and reaches the breakdown threshold value of about 2.5 kV cm-1. One type of the helium plasma gun designed using this operational principle is demonstrated. The gun operates on about 3 kV DC high voltage and is comprised of the series of the repetitive streamer breakdowns at a frequency of about 13 kHz.

  3. NASA's Evolutionary Xenon Thruster (NEXT) Component Verification Testing

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Pinero, Luis R.; Sovey, James S.

    2009-01-01

    Component testing is a critical facet of the comprehensive thruster life validation strategy devised by the NASA s Evolutionary Xenon Thruster (NEXT) program. Component testing to-date has consisted of long-duration high voltage propellant isolator and high-cycle heater life validation testing. The high voltage propellant isolator, a heritage design, will be operated under different environmental condition in the NEXT ion thruster requiring verification testing. The life test of two NEXT isolators was initiated with comparable voltage and pressure conditions with a higher temperature than measured for the NEXT prototype-model thruster. To date the NEXT isolators have accumulated 18,300 h of operation. Measurements indicate a negligible increase in leakage current over the testing duration to date. NEXT 1/2 in. heaters, whose manufacturing and control processes have heritage, were selected for verification testing based upon the change in physical dimensions resulting in a higher operating voltage as well as potential differences in thermal environment. The heater fabrication processes, developed for the International Space Station (ISS) plasma contactor hollow cathode assembly, were utilized with modification of heater dimensions to accommodate a larger cathode. Cyclic testing of five 1/22 in. diameter heaters was initiated to validate these modified fabrication processes while retaining high reliability heaters. To date two of the heaters have been cycled to 10,000 cycles and suspended to preserve hardware. Three of the heaters have been cycled to failure giving a B10 life of 12,615 cycles, approximately 6,000 more cycles than the established qualification B10 life of the ISS plasma contactor heaters.

  4. The investigation of a compact auto-connected wire-wrapped pulsed transformer

    NASA Astrophysics Data System (ADS)

    Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Zhang, Tianyang

    2012-05-01

    For the power conditioning circuit used to deliver power efficiently from flux compression generator (FCG) to the load with high impedance, an air-cored and wire-wrapped transformer convenient in coaxial connection to the other parts is investigated. To reduce the size and enhance the performance, an auto-connection is adopted. A fast and simple model is used to calculate the electrical parameters of the transformer. To evaluate the high voltage capability, the voltages across turns and the electric field distribution in the transformer are investigated. The calculated and the measured electrical parameters of the transformer show good agreements. And the safe operating voltage is predicted to exceed 500 kV. In the preliminary experiments, the transformer is tested in a power conditioning circuit with a capacitive power supply. It is demonstrated that the output voltage of the transformer reaches -342 kV under the input voltage of -81 kV.

  5. The investigation of a compact auto-connected wire-wrapped pulsed transformer.

    PubMed

    Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Zhang, Tianyang

    2012-05-01

    For the power conditioning circuit used to deliver power efficiently from flux compression generator (FCG) to the load with high impedance, an air-cored and wire-wrapped transformer convenient in coaxial connection to the other parts is investigated. To reduce the size and enhance the performance, an auto-connection is adopted. A fast and simple model is used to calculate the electrical parameters of the transformer. To evaluate the high voltage capability, the voltages across turns and the electric field distribution in the transformer are investigated. The calculated and the measured electrical parameters of the transformer show good agreements. And the safe operating voltage is predicted to exceed 500 kV. In the preliminary experiments, the transformer is tested in a power conditioning circuit with a capacitive power supply. It is demonstrated that the output voltage of the transformer reaches -342 kV under the input voltage of -81 kV.

  6. Symmetric operation of the resonant exchange qubit

    NASA Astrophysics Data System (ADS)

    Malinowski, Filip K.; Martins, Frederico; Nissen, Peter D.; Fallahi, Saeed; Gardner, Geoffrey C.; Manfra, Michael J.; Marcus, Charles M.; Kuemmeth, Ferdinand

    2017-07-01

    We operate a resonant exchange qubit in a highly symmetric triple-dot configuration using IQ-modulated rf pulses. We find that the qubit splitting is an order of magnitude less sensitive to all relevant control voltages, compared to the conventional operating point, but we observe no significant improvement in the quality of Rabi oscillations. For weak driving this is consistent with Overhauser field fluctuations modulating the qubit splitting. For strong driving we infer that effective voltage noise modulates the coupling strength between rf drive and the qubit, thereby quickening Rabi decay. Application of CPMG dynamical decoupling sequences consisting of up to 32 π pulses significantly prolongs qubit coherence, leading to marginally longer dephasing times in the symmetric configuration. This is consistent with dynamical decoupling from low frequency noise, but quantitatively cannot be explained by effective gate voltage noise and Overhauser field fluctuations alone. Our results inform recent strategies for the utilization of symmetric configurations in the operation of triple-dot qubits.

  7. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    NASA Astrophysics Data System (ADS)

    Cao, Dong

    Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or grid-connected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switched-capacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer and safety concern, two different solutions can be implemented, non-isolated or isolated PV inverter. For the non-isolated transformer-less solution, a semi-Z-source inverter for single phase photovoltaic systems has been proposed. The proposed semi-Z-source inverter utilizes only two switching devices with doubly grounded feature. The total cost have been reduced, the safety and EMI issues caused by the high frequency ground current are solved. For the transformer isolated solution, a boost half-bridge dc-ac micro-inverter has been proposed. The proposed boost half-bridge dc-dc converter utilizes only two switching devices with zero voltage switching features which is able to reduce the total system cost and power loss.

  8. Electric Discharge Sintering and Joining of Tungsten Carbide—Cobalt Composite with High-Speed Steel Substrate

    NASA Astrophysics Data System (ADS)

    Grigoryev, Evgeny G.

    2011-01-01

    Simultaneous electro discharge sintering of high strength structure of tungsten carbide—cobalt composite and connection it with high-speed steel substrate is investigated and suitable operating parameters are defined. Tungsten carbide—cobalt and high-speed steel joining was produced by the method of high voltage electrical discharge together with application of mechanical pressure to powder compact. It was found that the density and hardness of composite material reach its maximum values at certain magnitudes of applied pressure and high voltage electrical discharge parameters. We show that there is an upper level for the discharge voltage beyond which the powder of composite material disintegrates like an exploding wire. Due to our results it is possible to determine optimal parameters for simultaneous electro discharge sintering of WC-Co and bonding it with high-speed steel substrate.

  9. Stability of Li- and Mn-Rich Layered-Oxide Cathodes within the First-Charge Voltage Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iddir, Hakim; Bareño, Javier; Benedek, Roy

    Li and Mn rich layered oxides xLi 2MnO 3•(1-x)LiMO 2 enable high capacity and energy density Li-ion batteries, but undergo structural transformations during the first charge that degrade their performance, and result in Voltage Fade upon cycling. First-principles density-functional-theory simulations reveal atomic transformations that occur in the bulk during the first charge. The simulations and experiment (particularly XRD) show that the O and Mn sublattices remain intact during the early part of the voltage plateau, and significant transformations occur only well into the voltage plateau, with perhaps close to half of the Li in the Li 2MnO 3 domains removed.more » That Voltage Fade is actually observed experimentally for a first charge with only minimal activation (extending only slightly beyond the onset of the voltage plateau) may be a consequence of surface and interface instabilities. Implications for the achievement of high energy-density, low-fade battery operation are discussed.« less

  10. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain

    NASA Astrophysics Data System (ADS)

    Lee, Sungsik; Nathan, Arokia

    2016-10-01

    The quest for low power becomes highly compelling in newly emerging application areas related to wearable devices in the Internet of Things. Here, we report on a Schottky-barrier indium-gallium-zinc-oxide thin-film transistor operating in the deep subthreshold regime (i.e., near the OFF state) at low supply voltages (<1 volt) and ultralow power (<1 nanowatt). By using a Schottky-barrier at the source and drain contacts, the current-voltage characteristics of the transistor were virtually channel-length independent with an infinite output resistance. It exhibited high intrinsic gain (>400) that was both bias and geometry independent. The transistor reported here is useful for sensor interface circuits in wearable devices where high current sensitivity and ultralow power are vital for battery-less operation.

  11. Flexible low-voltage organic transistors with high thermal stability at 250 °C.

    PubMed

    Yokota, Tomoyuki; Kuribara, Kazunori; Tokuhara, Takeyoshi; Zschieschang, Ute; Klauk, Hagen; Takimiya, Kazuo; Sadamitsu, Yuji; Hamada, Masahiro; Sekitani, Tsuyoshi; Someya, Takao

    2013-07-19

    Low-operating-voltage flexible organic thin-film transistors with high thermal stability using DPh-DNTT and SAM gate dielectrics are reported. The mobility of the transistors are decreased by 23% after heating to 250 °C for 30 min. Furthermore, flexible organic pseudo-CMOS inverter circuits, which are functional after heating to 200 °C, are demonstrated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Closed-loop pulsed helium ionization detector

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  13. Broad-beam high-current dc ion source based on a two-stage glow discharge plasma.

    PubMed

    Vizir, A V; Oks, E M; Yushkov, G Yu

    2010-02-01

    We have designed, made, and demonstrated a broad-beam, dc, ion source based on a two-stage, hollow-cathode, and glow discharges plasma. The first-stage discharge (auxiliary discharge) produces electrons that are injected into the cathode cavity of a second-stage discharge (main discharge). The electron injection causes a decrease in the required operating pressure of the main discharge down to 0.05 mTorr and a decrease in required operating voltage down to about 50 V. The decrease in operating voltage of the main discharge leads to a decrease in the fraction of impurity ions in the ion beam extracted from the main gas discharge plasma to less than 0.2%. Another feature of the source is a single-grid accelerating system in which the ion accelerating voltage is applied between the plasma itself and the grid electrode. The source has produced steady-state Ar, O, and N ion beams of about 14 cm diameter and current of more than 2 A at an accelerating voltage of up to 2 kV.

  14. High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites.

    PubMed

    Chen, Luzhuo; Liu, Changhong; Liu, Ke; Meng, Chuizhou; Hu, Chunhua; Wang, Jiaping; Fan, Shoushan

    2011-03-22

    In this work, we show that embedding super-aligned carbon nanotube sheets into a polymer matrix (polydimethylsiloxane) can remarkably reduce the coefficient of thermal expansion of the polymer matrix by two orders of magnitude. Based on this unique phenomenon, we fabricated a new kind of bending actuator through a two-step method. The actuator is easily operable and can generate an exceptionally large bending actuation with controllable motion at very low driving DC voltages (<700 V/m). Furthermore, the actuator can be operated without electrolytes in the air, which is superior to conventional carbon nanotube actuators. Proposed electrothermal mechanism was discussed and confirmed by our experimental results. The exceptional bending actuation performance together with easy fabrication, low-voltage, and controllable motion demonstrates the potential ability of using this kind of actuator in various applicable areas, such as artificial muscles, microrobotics, microsensors, microtransducers, micromanipulation, microcantilever for medical applications, and so on.

  15. Precision control of multiple quantum cascade lasers for calibration systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taubman, Matthew S., E-mail: Matthew.Taubman@pnnl.gov; Myers, Tanya L.; Pratt, Richard M.

    We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1–2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby,more » and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less

  16. Understanding the structure and structural degradation mechanisms in high-voltage lithium-ion battery cathode oxides. A review of materials diagnostics

    DOE PAGES

    Mohanty, Debasish; Li, Jianlin; Nagpure, Shrikant C; ...

    2015-12-21

    Materials diagnostic techniques are the principal tools used in the development of low-cost, high-performance electrodes for next-generation lithium-based energy storage technologies. Also, this review highlights the importance of materials diagnostic techniques in unraveling the structure and the structural degradation mechanisms in high-voltage, high-capacity oxides that have the potential to be implemented in high-energy-density lithium-ion batteries for transportation that can use renewable energy and is less-polluting than today. The rise in CO 2 concentration in the earth’s atmosphere due to the use of petroleum products in vehicles and the dramatic increase in the cost of gasoline demand the replacement of currentmore » internal combustion engines in our vehicles with environmentally friendly, carbon free systems. Therefore, vehicles powered fully/partially by electricity are being introduced into today’s transportation fleet. As power requirements in all-electric vehicles become more demanding, lithium-ion battery (LiB) technology is now the potential candidate to provide higher energy density. Moreover, discovery of layered high-voltage lithium-manganese–rich (HV-LMR) oxides has provided a new direction toward developing high-energy-density LiBs because of their ability to deliver high capacity (~250 mA h/g) and to be operated at high operating voltage (~4.7 V). Unfortunately, practical use of HV-LMR electrodes is not viable because of structural changes in the host oxide during operation that can lead to fundamental and practical issues. This article provides the current understanding on the structure and structural degradation pathways in HV-LMR oxides, and manifests the importance of different materials diagnostic tools to unraveling the key mechanism(s). Furthermore, the fundamental insights reported, might become the tools to manipulate the chemical and/or structural aspects of HV-LMR oxides for low cost, high-energy-density LiB applications.« less

  17. High-intensity pulsed beam source with tunable operation mode

    NASA Astrophysics Data System (ADS)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  18. A compact nanosecond pulse generator for DBD tube characterization.

    PubMed

    Rai, S K; Dhakar, A K; Pal, U N

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  19. A compact nanosecond pulse generator for DBD tube characterization

    NASA Astrophysics Data System (ADS)

    Rai, S. K.; Dhakar, A. K.; Pal, U. N.

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  20. An operational amplifier B1404UD1A-1 in the patch-clamp current-to-voltage converter.

    PubMed

    Korzun, A M; Rozinov, S V; Abashin, G I

    1997-01-01

    The applicability of the home-made operational amplifier B1404UD1A-1 in a patch-clamp current-to-voltage converter was analyzed. Its parameters (background noise, input bias current, and gain-bandwidth product) were estimated. Schematic solutions and practical recommendations for the use of this amplifier in a current-to-voltage converter were given. Based on the background noise and frequency parameters of the converter, we found that this device can be used for measuring ion channel currents with a high sensitivity and within a broad frequency range (0.055 pA, to 1 kHz; 0.4 pA, to 10 kHz). An example of the converter application in experiments is given.

  1. Low-Voltage Solution-Processed Hybrid Light-Emitting Transistors.

    PubMed

    Chaudhry, Mujeeb Ullah; Tetzner, Kornelius; Lin, Yen-Hung; Nam, Sungho; Pearson, Christopher; Groves, Chris; Petty, Michael C; Anthopoulos, Thomas D; Bradley, Donal D C

    2018-06-06

    We report the development of low operating voltages in inorganic-organic hybrid light-emitting transistors (HLETs) based on a solution-processed ZrO x gate dielectric and a hybrid multilayer channel consisting of the heterojunction In 2 O 3 /ZnO and the organic polymer "Super Yellow" acting as n- and p-channel/emissive layers, respectively. Resulting HLETs operate at the lowest voltages reported to-date (<10 V) and combine high electron mobility (22 cm 2 /(V s)) with appreciable current on/off ratios (≈10 3 ) and an external quantum efficiency of 2 × 10 -2 % at 700 cd/m 2 . The charge injection, transport, and recombination mechanisms within this HLET architecture are discussed, and prospects for further performance enhancement are considered.

  2. Characteristics of electroluminescence phenomenon in virgin and thermally aged LDPE

    NASA Astrophysics Data System (ADS)

    Bani, N. A.; Abdul-Malek, Z.; Ahmad, H.; Muhammad-Sukki, F.; Mas'ud, A. A.

    2015-08-01

    High voltage cable requires a good insulating material such as low density polyethylene (LDPE) to be able to operate efficiently in high voltage stresses and high temperature environment. However, any polymeric material will experience degradation after prolonged application of high electrical stresses or other extreme conditions. The continuous degradation will shorten the life of a cable therefore further understanding on the behaviour of the aged high voltage cable needs to be undertaken. This may be observed through electroluminescence (EL) measurement. EL occurs when a solid-state material is subjected to a high electrical field stress and associated with the generation of charge carriers within the polymeric material and that these charges can be produced by injection, de-trapping and field-dissociation at the metal-polymer interface. The behaviour of EL emission can be affected by applied field, applied frequency, ageing time, ageing temperature and types of materials, among others. This paper focuses on the measurement of EL emission of additive-free LDPE thermally aged at different temperature subjected to varying electric stresses at 50Hz. It can be observed that EL emission increases as voltage applied is increased. However, EL emission decreases as ageing temperature is increased for varying applied voltage.

  3. Component technology for space power systems

    NASA Technical Reports Server (NTRS)

    Finke, R. C.

    1982-01-01

    Progress made by NASA toward implementation of equipment for the conversion, management, and distribution of voltage power in space applications are reviewed. Work has been carried forward on components such as bipolar transistors, deep impurity semiconductors, conductors, dielectrics, magnetic devices, and rotary power transfer. Specific programs for the high voltage systems have included research on lightweight, low-cost conductors featuring graphite fibers containing electron donor materials for wires and cables with reduced mass and the conductivity of copper. Attention has also been given p-n junction technology for high-speed, high-current, high-voltage materials and diamond-like dielectric films which are hard, have high dielectric strength, and can operate up to 300 C. A transistor has been fabricated with a voltage of 1200 V at 100 A, with a gain of 10 and a 0.5 microsec rise/fall time. A 25 kW transformer has also been built which performs at 20 kHz with an efficiency of 99.2%.

  4. Bidirectional DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Pedersen, F.

    2008-09-01

    The presented bidirectional DC/DC converter design concept is a further development of an already existing converter used for low battery voltage operation.For low battery voltage operation a high efficient low parts count DC/DC converter was developed, and used in a satellite for the battery charge and battery discharge function.The converter consists in a bidirectional, non regulating DC/DC converter connected to a discharge regulating Buck converter and a charge regulating Buck converter.The Bidirectional non regulating DC/DC converter performs with relatively high efficiency even at relatively high currents, which here means up to 35Amps.This performance was obtained through the use of power MOSFET's with on- resistances of only a few mille Ohms connected to a special transformer allowing paralleling several transistor stages on the low voltage side of the transformer. The design is patent protected. Synchronous rectification leads to high efficiency at the low battery voltages considered, which was in the range 2,7- 4,3 Volt DC.The converter performs with low switching losses as zero voltage zero current switching is implemented in all switching positions of the converter.Now, the drive power needed, to switch a relatively large number of low Ohm , hence high drive capacitance, power MOSFET's using conventional drive techniques would limit the overall conversion efficiency.Therefore a resonant drive consuming considerable less power than a conventional drive circuit was implemented in the converter.To the originally built and patent protected bidirectional non regulating DC/DC converter, is added the functionality of regulation.Hereby the need for additional converter stages in form of a Charge Buck regulator and a Discharge Buck regulator is eliminated.The bidirectional DC/DC converter can be used in connection with batteries, motors, etc, where the bidirectional feature, simple design and high performance may be useful.

  5. GaN Initiative for Grid Applications (GIGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, George

    2015-07-03

    For nearly 4 ½ years, MIT Lincoln Laboratory (MIT/LL) led a very successful, DoE-funded team effort to develop GaN-on-Si materials and devices, targeting high-voltage (>1 kV), high-power, cost-effective electronics for grid applications. This effort, called the GaN Initiative for Grid Applications (GIGA) program, was initially made up of MIT/LL, the MIT campus group of Prof. Tomas Palacios (MIT), and the industrial partner M/A Com Technology Solutions (MTS). Later in the program a 4th team member was added (IQE MA) to provide commercial-scale GaN-on-Si epitaxial materials. A basic premise of the GIGA program was that power electronics, for ubiquitous utilization -evenmore » for grid applications - should be closer in cost structure to more conventional Si-based power electronics. For a number of reasons, more established GaN-on-SiC or even SiC-based power electronics are not likely to reach theses cost structures, even in higher manufacturing volumes. An additional premise of the GIGA program was that the technical focus would be on materials and devices suitable for operating at voltages > 1 kV, even though there is also significant commercial interest in developing lower voltage (< 1 kV), cost effective GaN-on-Si devices for higher volume applications, like consumer products. Remarkable technical progress was made during the course of this program. Advances in materials included the growth of high-quality, crack-free epitaxial GaN layers on large-diameter Si substrates with thicknesses up to ~5 μm, overcoming significant challenges in lattice mismatch and thermal expansion differences between Si and GaN in the actual epitaxial growth process. Such thick epilayers are crucial for high voltage operation of lateral geometry devices such as Schottky barrier (SB) diodes and high electron mobility transistors (HEMTs). New “Normally-Off” device architectures were demonstrated – for safe operation of power electronics circuits. The trade-offs between lateral and vertical devices were explored, with the conclusion that lateral devices are superior for fundamental thermal reasons, as well as for the demonstration of future generations of monolithic power circuits. As part of the materials and device investigations breakdown mechanisms in GaN-on-Si structures were fully characterized and effective electric field engineering was recognized as critical for achieving even higher voltage operation. Improved device contact technology was demonstrated, including the first gold-free metallizations (to enable processing in CMOS foundries) while maintaining low specific contact resistance needed for high-power operation and 5-order-of magnitude improvement in device leakage currents (essential for high power operation). In addition, initial GaN-on-Si epitaxial growth was performed on 8”/200 mm Si starting substrates.« less

  6. Temperature dependence of frequency response characteristics in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lu, Xubing; Minari, Takeo; Liu, Chuan; Kumatani, Akichika; Liu, J.-M.; Tsukagoshi, Kazuhito

    2012-04-01

    The frequency response characteristics of semiconductor devices play an essential role in the high-speed operation of electronic devices. We investigated the temperature dependence of dynamic characteristics in pentacene-based organic field-effect transistors and metal-insulator-semiconductor capacitors. As the temperature decreased, the capacitance-voltage characteristics showed large frequency dispersion and a negative shift in the flat-band voltage at high frequencies. The cutoff frequency shows Arrhenius-type temperature dependence with different activation energy values for various gate voltages. These phenomena demonstrate the effects of charge trapping on the frequency response characteristics, since decreased mobility prevents a fast charge response for alternating current signals at low temperatures.

  7. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Basedmore » on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.« less

  8. Study of a High Voltage Ion Engine Power Supply

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.; Mayer, Eric

    1996-01-01

    A complete laboratory breadboard version of a ion engine power converter was built and tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of 1100 V at 1.8 kW, and 250 V at 20 mA. The high-voltage (HV) output voltage rating was revised from the original value of 1350 V at the beginning of the project. The LV output was designed to hold up during a 1-A surge current lasting up to 1 second. The prototype power converter included a internal housekeeping power supply which also operated from the line input. The power consumed in housekeeping was included in the overall energy budget presented for the ion engine converter. HV and LV output voltage setpoints were commanded through potentiometers. The HV converter itself reached its highest power efficiency of slightly over 93% at low line and maximum output. This would dip below 90% at high line. The no-load (rated output voltages, zero load current) power consumption of the entire system was less than 13 W. A careful loss breakdown shows that converter losses are predominately Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming predominant at high line. This suggests that further improvements in power efficiency could best be obtained by either developing a rectifier that was adequately protected against voltage overshoot with less snubbing, or by developing a pre-regulator to reduced the range of line voltage on the converter. The transient testing showed the converter to be fully protected against load faults, including a direct short-circuit from the HV output to the LV output terminals. Two currents sensors were used: one to directly detect any core ratcheting on the output transformer and re-initiate a soft start, and the other to directly detect a load fault and quickly shut down the converter for load protection. The finished converter has been extensively fault tested without failure. The finished converter has been packaged suitable for use as a laboratory prototype for further testing. The finished converter is readily transportable. An article on design issues for high voltage converters for ion engines is included as an attachement.

  9. SDVSRM - a new SSRM based technique featuring dynamically adjusted, scanner synchronized sample voltages for measurement of actively operated devices.

    PubMed

    Doering, Stefan; Wachowiak, Andre; Roetz, Hagen; Eckl, Stefan; Mikolajick, Thomas

    2018-06-01

    Scanning spreading resistance microscopy (SSRM) with its high spatial resolution and high dynamic signal range is a powerful tool for two-dimensional characterization of semiconductor dopant areas. However, the application of the method is limited to devices in equilibrium condition, as the investigation of actively operated devices would imply potential differences within the device, whereas SSRM relies on a constant voltage difference between sample surface and probe tip. Furthermore, the standard preparation includes short circuiting of all device components, limiting applications to devices in equilibrium condition. In this work scanning dynamic voltage spreading resistance microscopy (SDVSRM), a new SSRM based two pass atomic force microscopy (AFM) technique is introduced, overcoming these limitations. Instead of short circuiting the samples during preparation, wire bond devices are used allowing for active control of the individual device components. SDVSRM consists of two passes. In the first pass the local sample surface voltage dependent on the dc biases applied to the components of the actively driven device is measured as in scanning voltage microscopy (SVM). The local spreading resistance is measured within the second pass, in which the afore obtained local surface voltage is used to dynamically adjust the terminal voltages of the device under test. This is done in a way that the local potential difference across the nano-electrical contact matches the software set SSRM measurement voltage, and at the same time, the internal voltage differences within the device under test are maintained. In this work the proof of the concept could be demonstrated by obtaining spreading resistance data of an actively driven photodiode test device. SDVSRM adds a higher level of flexibility in general to SSRM, as occurring differences in cross section surface voltage are taken into account. These differences are immanent for actively driven devices, but can also be present at standard, short circuited samples. Therefore, SDVSRM could improve the characterization under equilibrium conditions as well. Copyright © 2018. Published by Elsevier B.V.

  10. A Consideration of Stable Operating Power Limits of HVDC System Composed of Voltage Source Converters

    NASA Astrophysics Data System (ADS)

    Konishi, Hiroo; Takahashi, Choei; Kishibe, Hideto; Sato, Hiromichi

    The stable operating power limits of a small scale HVDC system composed of voltage source converters (VSC-HVDC system) are analyzed with a simple model. The VSC-HVDC system could operate where the AC system must be somewhat larger in capacity than the VSC-HVDC system capacity. The stable operating power limits were between one and two times the SCR (short circuit ratio). When the inverter of the VSC-HVDC system was operated with lead reactive (capacitive) power control conditions, the stable operating limits were increased through AC voltage stabilization. When the inverter was a STATCOM operation, it could operate regardless of the SCR but regions within allowable AC voltage variations.

  11. Impact of Solar Array Designs on High Voltage Operations

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Ferguson, Dale; Piszczor, Mike; ONeill, Mark

    2006-01-01

    As power levels of advanced spacecraft climb above 25 kW, higher solar array operating voltages become attractive. Even in today s satellites, operating spacecraft buses at 100 V and above has led to arcing in GEO communications satellites, so the issue of spacecraft charging and solar array arcing remains a design problem. In addition, micrometeoroid impacts on all of these arrays can also lead to arcing if the spacecraft is at an elevated potential. For example, tests on space station hardware disclosed arcing at 75V on anodized A1 structures that were struck with hypervelocity particles in Low Earth Orbit (LEO) plasmas. Thus an understanding of these effects is necessary to design reliable high voltage solar arrays of the future, especially in light of the Vision for Space Exploration of NASA. In the future, large GEO communication satellites, lunar bases, solar electric propulsion missions, high power communication systems around Mars can lead to power levels well above 100 kW. As noted above, it will be essential to increase operating voltages of the solar arrays well above 80 V to keep the mass of cabling needed to carry the high currents to an acceptable level. Thus, the purpose of this paper is to discuss various solar array approaches, to discuss the results of testing them at high voltages, in the presence of simulated space plasma and under hypervelocity impact. Three different types of arrays will be considered. One will be a planar array using thin film cells, the second will use planar single or multijunction cells and the last will use the Stretched Lens Array (SLA - 8-fold concentration). Each of these has different approaches for protection from the space environment. The thin film cell based arrays have minimal covering due to their inherent radiation tolerance, conventional GaAs and multijunction cells have the traditional cerium-doped microsheet glasses (of appropriate thickness) that are usually attached with Dow Corning DC 93-500 silicone adhesive. In practice, these cover glasses and adhesive do not cover the cell edges. Finally, in the SLA, the entire cell and cell edges are fully encapsulated by a cover glass that overhangs the cell perimeter and the silicone adhesive covers the cell edges providing a sealed environment. These three types of blanket technology have been tested at GRC and Auburn. The results of these tests will be described. For example, 15 modules composed of four state-of-the-art 2x4 cm GaAs solar cells with 150 pm cover glasses connected in two-cell series strings were tested at high voltage, in plasma under hypervelocity impact. A picture of one of the modules is shown in figure 1. These were prepared by standard industry practice from a major supplier and had efficiencies above 18%. The test results and other fabrication factors that influenced the tests will be presented. In addition, results for SLA segments tested under the same conditions will be presented. Testing of thin film blankets at GRC will also be presented. Figure 1 : Typical GaAs Solar Cell Module These results will show significant differences in resistance to arcing that are directly related to array design and manufacturing procedures. Finally, the approaches for mitigating the problems uncovered by these tests will be described. These will lay the foundation for future higher voltage array operation, even including voltages above 300-600 V for direct drive SEP applications.

  12. Design and analysis of optimised class E power amplifier using shunt capacitance in the output structure

    NASA Astrophysics Data System (ADS)

    Hayati, Mohsen; Roshani, Sobhan; Zirak, Ali Reza

    2017-05-01

    In this paper, a class E power amplifier (PA) with operating frequency of 1 MHz is presented. MOSFET non-linear drain-to-source parasitic capacitance, linear external capacitance at drain-to-source port and linear shunt capacitance in the output structure are considered in design theory. One degree of freedom is added to the design of class E PA, by assuming the shunt capacitance in the output structure in the analysis. With this added design degree of freedom it is possible to achieve desired values for several parameters, such as output voltage, load resistance and operating frequency, while both zero voltage and zero derivative switching (ZVS and ZDS) conditions are satisfied. In the conventional class E PA, high value of peak switch voltage results in limitations for the design of amplifier, while in the presented structure desired specifications could be achieved with the safe margin of peak switch voltage. The results show that higher operating frequency and output voltage can also be achieved, compared to the conventional structure. PSpice software is used in order to simulate the designed circuit. The presented class E PA is designed, fabricated and measured. The measured results are in good agreement with simulation and theory results.

  13. Improved resistive switching characteristics of a Pt/HfO2/Pt resistor by controlling anode interface with forming and switching polarity

    NASA Astrophysics Data System (ADS)

    Jung, Yong Chan; Seong, Sejong; Lee, Taehoon; Kim, Seon Yong; Park, In-Sung; Ahn, Jinho

    2018-03-01

    The anode interface effects on the resistive switching characteristics of Pt/HfO2/Pt resistors are investigated by changing the forming and switching polarity. Resistive switching properties are evaluated and compared with the polarity operation procedures, such as the reset voltage (Vr), set voltage (Vs), and current levels at low and high resistance states. When the same forming and switching voltage polarity are applied to the resistor, their switching parameters are widely distributed. However, the opposite forming and switching voltage polarity procedures enhance the uniformity of the switching parameters. In particular, the Vs distribution is strongly affected by the voltage polarity variation. A model is proposed based on cone-shaped filament formation through the insulator and the cone diameter at the anode interface to explain the improved resistive switching characteristics under opposite polarity operation. The filament cone is thinner near the anode interface during the forming process; hence, the anode is altered by the application of a switching voltage with opposite polarity to the forming voltage polarity and the converted anode interface becomes the thicker part of the cone. The more uniform and stable switching behavior is attributed to control over the formation and rupture of the cone-shaped filaments at their thicker parts.

  14. The design of high dynamic range ROIC for IRFPAs

    NASA Astrophysics Data System (ADS)

    Jiang, Dazhao; Liang, Qinghua; Zhang, Qiwen; Chen, Honglei; Ding, Ruijun

    2015-10-01

    The charge packet readout integrated circuit (ROIC) technology for the IRFPAs is introduced, which can realize that every pixel achieves a very high capacity of the electrons storage, and it also improves the performance of the SNR and reduces the saturation possibility of the pixels. The ROIC for the LWIR requires ability that obtaining high capacity for storing electrons. For the conventional ROIC, the maximum charge capacity is determined by the integration capacitance and the operating voltage, it can achieve a high charge capacity through increasing the area of the integration capacitor or raising the operating voltage. And this paper would introduce a digital method of ROIC that can achieve a very high charge capacity. The circuit architecture of this approach includes the following parts, a preamplifier, a comparator, a counter, and memory arrays. And the maximum charge capacity of the pixel is determined by the counter bits. This new method can achieve a high charge capacity more than 1Ge- every pixel and output the digital signal directly, while that of conventional ROIC is less than 50Me- and output the analog signal from the pixel. In this new circuit, the comparator is a important module, as the integration voltage value need compare with threshold voltage through the comparator all the time during the integration period, and we will discuss the influence of the comparator. This work design the circuit with the CSMC 0.35um CMOS technology, and the simulation use the spectre model.

  15. Development and application of network virtual instrument for emission spectrum of pulsed high-voltage direct current discharge

    NASA Astrophysics Data System (ADS)

    Gong, X.; Wu, Q.

    2017-12-01

    Network virtual instrument (VI) is a new development direction in current automated test. Based on LabVIEW, the software and hardware system of VI used for emission spectrum of pulsed high-voltage direct current (DC) discharge is developed and applied to investigate pulsed high-voltage DC discharge of nitrogen. By doing so, various functions are realized including real time collection of emission spectrum of nitrogen, monitoring operation state of instruments and real time analysis and processing of data. By using shared variables and DataSocket technology in LabVIEW, the network VI system based on field VI is established. The system can acquire the emission spectrum of nitrogen in the test site, monitor operation states of field instruments, realize real time face-to-face interchange of two sites, and analyze data in the far-end from the network terminal. By employing the network VI system, the staff in the two sites acquired the same emission spectrum of nitrogen and conducted the real time communication. By comparing with the previous results, it can be seen that the experimental data obtained by using the system are highly precise. This implies that the system shows reliable network stability and safety and satisfies the requirements for studying the emission spectrum of pulsed high-voltage discharge in high-precision fields or network terminals. The proposed architecture system is described and the target group gets the useful enlightenment in many fields including engineering remote users, specifically in control- and automation-related tasks.

  16. Micropower RF transponder with superregenerative receiver and RF receiver with sampling mixer

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    A micropower RF transdponder employs a novel adaptation of the superregenerative receiver wherein the quench oscillator is external to the regenerative transistor. The quench oscillator applies an exponentially decaying waveform rather than the usual sinewave to achieve high sensitivity at microampere current levels. Further improvements include circuit simplifications for antenna coupling, extraction of the detected signal, and a low-voltage bias configuration that allows operation with less than a 1-volt rail voltage. The inventive transponder is expected to operate as long as the battery shelf life.

  17. Micropower RF transponder with superregenerative receiver and RF receiver with sampling mixer

    DOEpatents

    McEwan, T.E.

    1997-05-13

    A micropower RF transponder employs a novel adaptation of the superregenerative receiver wherein the quench oscillator is external to the regenerative transistor. The quench oscillator applies an exponentially decaying waveform rather than the usual sinewave to achieve high sensitivity at microampere current levels. Further improvements include circuit simplifications for antenna coupling, extraction of the detected signal, and a low-voltage bias configuration that allows operation with less than a 1-volt rail voltage. The inventive transponder is expected to operate as long as the battery shelf life. 13 figs.

  18. High Performance Complementary Circuits Based on p-SnO and n-IGZO Thin-Film Transistors.

    PubMed

    Zhang, Jiawei; Yang, Jia; Li, Yunpeng; Wilson, Joshua; Ma, Xiaochen; Xin, Qian; Song, Aimin

    2017-03-21

    Oxide semiconductors are regarded as promising materials for large-area and/or flexible electronics. In this work, a ring oscillator based on n-type indium-gallium-zinc-oxide (IGZO) and p-type tin monoxide (SnO) is presented. The IGZO thin-film transistor (TFT) shows a linear mobility of 11.9 cm²/(V∙s) and a threshold voltage of 12.2 V. The SnO TFT exhibits a mobility of 0.51 cm²/(V∙s) and a threshold voltage of 20.1 V which is suitable for use with IGZO TFTs to form complementary circuits. At a supply voltage of 40 V, the complementary inverter shows a full output voltage swing and a gain of 24 with both TFTs having the same channel length/channel width ratio. The three-stage ring oscillator based on IGZO and SnO is able to operate at 2.63 kHz and the peak-to-peak oscillation amplitude reaches 36.1 V at a supply voltage of 40 V. The oxide-based complementary circuits, after further optimization of the operation voltage, may have wide applications in practical large-area flexible electronics.

  19. High Performance Complementary Circuits Based on p-SnO and n-IGZO Thin-Film Transistors

    PubMed Central

    Zhang, Jiawei; Yang, Jia; Li, Yunpeng; Wilson, Joshua; Ma, Xiaochen; Xin, Qian; Song, Aimin

    2017-01-01

    Oxide semiconductors are regarded as promising materials for large-area and/or flexible electronics. In this work, a ring oscillator based on n-type indium-gallium-zinc-oxide (IGZO) and p-type tin monoxide (SnO) is presented. The IGZO thin-film transistor (TFT) shows a linear mobility of 11.9 cm2/(V∙s) and a threshold voltage of 12.2 V. The SnO TFT exhibits a mobility of 0.51 cm2/(V∙s) and a threshold voltage of 20.1 V which is suitable for use with IGZO TFTs to form complementary circuits. At a supply voltage of 40 V, the complementary inverter shows a full output voltage swing and a gain of 24 with both TFTs having the same channel length/channel width ratio. The three-stage ring oscillator based on IGZO and SnO is able to operate at 2.63 kHz and the peak-to-peak oscillation amplitude reaches 36.1 V at a supply voltage of 40 V. The oxide-based complementary circuits, after further optimization of the operation voltage, may have wide applications in practical large-area flexible electronics. PMID:28772679

  20. An LMS Programming Scheme and Floating-Gate Technology Enabled Trimmer-Less and Low Voltage Flame Detection Sensor.

    PubMed

    Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio

    2017-06-14

    In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 V RMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame.

  1. An LMS Programming Scheme and Floating-Gate Technology Enabled Trimmer-Less and Low Voltage Flame Detection Sensor

    PubMed Central

    Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio

    2017-01-01

    In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 VRMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame. PMID:28613250

  2. A 7.8 kV nanosecond pulse generator with a 500 Hz repetition rate

    NASA Astrophysics Data System (ADS)

    Lin, M.; Liao, H.; Liu, M.; Zhu, G.; Yang, Z.; Shi, P.; Lu, Q.; Sun, X.

    2018-04-01

    Pseudospark switches are widely used in pulsed power applications. In this paper, we present the design and performance of a 500 Hz repetition rate high-voltage pulse generator to drive TDI-series pseudospark switches. A high-voltage pulse is produced by discharging an 8 μF capacitor through a primary windings of a setup isolation transformer using a single metal-oxide-semiconductor field-effect transistor (MOSFET) as a control switch. In addition, a self-break spark gap is used to steepen the pulse front. The pulse generator can deliver a high-voltage pulse with a peak trigger voltage of 7.8 kV, a peak trigger current of 63 A, a full width at half maximum (FWHM) of ~30 ns, and a rise time of 5 ns to the trigger pin of the pseudospark switch. During burst mode operation, the generator achieved up to a 500 Hz repetition rate. Meanwhile, we also provide an AC heater power circuit for heating a H2 reservoir. This pulse generator can be used in circuits with TDI-series pseudospark switches with either a grounded cathode or with a cathode electrically floating operation. The details of the circuits and their implementation are described in the paper.

  3. Development of a Nanomaterial Anode for a Low-Voltage Proportional Counter for Neutron Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craps, Matthew Greg

    NanoTechLabs (NTL) in collaboration with the Savannah River National Laboratory (SRNL) and Clemson University have continued development of a next generation proportional counter (PC) for neutron detection utilizing robust, inexpensive nanostructured anodes while maximizing neutron capture. Neutron detectors are vital to national security as they can be used to detect illicit trafficking of radioactive materials, which could mean the presence of or planning of a dirty bomb attack. Typical PCs operate with high bias potentials that create electronic noise. Incorporating nanomaterials into the anode of PCs can theoretically operate at low voltages (eg. 10-300V) due to an increase in themore » electric field associated with a smaller diameter nano-scale anode. In addition to the lower operating voltage, typical high PC voltages (500-1200V) could be used to generate a larger electric field resulting in more electrons being collected, thus increasing the sensitivity of the PC. Other advantages of nano-PC include reduced platform size, weight, cost, and improved ruggedness. Clemson modeled the electric field around the CNT array tips. NTL grew many ordered CNT arrays as well as control samples and densified the arrays to improve the performance. The primary objective for this work is to provide evidence of a commercially viable technique for reducing the voltage of a parallel plate proportional counter using nanosized anodes. The parallel plate geometry has advantages over the typical cylindrical design based on more feasible placement of solid neutron absorbers and more geometrically practical windows for radiation capture and directional detection.« less

  4. Incorporating voltage security into the planning, operation and monitoring of restructured electric energy markets

    NASA Astrophysics Data System (ADS)

    Nair, Nirmal-Kumar

    As open access market principles are applied to power systems, significant changes are happening in their planning, operation and control. In the emerging marketplace, systems are operating under higher loading conditions as markets focus greater attention to operating costs than stability and security margins. Since operating stability is a basic requirement for any power system, there is need for newer tools to ensure stability and security margins being strictly enforced in the competitive marketplace. This dissertation investigates issues associated with incorporating voltage security into the unbundled operating environment of electricity markets. It includes addressing voltage security in the monitoring, operational and planning horizons of restructured power system. This dissertation presents a new decomposition procedure to estimate voltage security usage by transactions. The procedure follows physical law and uses an index that can be monitored knowing the state of the system. The expression derived is based on composite market coordination models that have both PoolCo and OpCo transactions, in a shared stressed transmission grid. Our procedure is able to equitably distinguish the impacts of individual transactions on voltage stability, at load buses, in a simple and fast manner. This dissertation formulates a new voltage stability constrained optimal power flow (VSCOPF) using a simple voltage security index. In modern planning, composite power system reliability analysis that encompasses both adequacy and security issues is being developed. We have illustrated the applicability of our VSCOPF into composite reliability analysis. This dissertation also delves into the various applications of voltage security index. Increasingly, FACT devices are being used in restructured markets to mitigate a variety of operational problems. Their control effects on voltage security would be demonstrated using our VSCOPF procedure. Further, this dissertation investigates the application of steady state voltage stability index to detect potential dynamic voltage collapse. Finally, this dissertation examines developments in representation, standardization, communication and exchange of power system data. Power system data is the key input to all analytical engines for system operation, monitoring and control. Data exchange and dissemination could impact voltage security evaluation and therefore needs to be critically examined.

  5. Assessment of High-Voltage Photovoltaic Technologies for the Design of a Direct Drive Hall Effect Thruster Solar Array

    NASA Technical Reports Server (NTRS)

    Mikellides, I. G.; Jongeward, G. A.; Schneider, T.; Carruth, M. R.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.

    2004-01-01

    A three-year program to develop a Direct Drive Hall-Effect Thruster system (D2HET) begun in 2001 as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system, which is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems, will employ solar arrays that operate at voltages higher than (or equal to) 300 V. The lessons learned from the development of the technology also promise to become a stepping-stone for the production of the next generation of power systems employing high voltage solar arrays. This paper summarizes the results from experiments conducted mainly at the NASA Marshal Space Flight Center with two main solar array technologies. The experiments focused on electron collection and arcing studies, when the solar cells operated at high voltages. The tests utilized small coupons representative of each solar array technology. A hollow cathode was used to emulate parts of the induced environment on the solar arrays, mostly the low-energy charge-exchange plasma (1012-1013 m-3 and 0.5-1 eV). Results and conclusions from modeling of electron collection are also summarized. The observations from the total effort are used to propose a preliminary, new solar array design for 2 kW and 30-40 kW class, deep space missions that may employ a single or a cluster of Hall- Effect thrusters.

  6. Poly-4-vinylphenol (PVP) and Poly(melamine-co-formaldehyde) (PMF)-Based Atomic Switching Device and Its Application to Logic Gate Circuits with Low Operating Voltage.

    PubMed

    Kang, Dong-Ho; Choi, Woo-Young; Woo, Hyunsuk; Jang, Sungkyu; Park, Hyung-Youl; Shim, Jaewoo; Choi, Jae-Woong; Kim, Sungho; Jeon, Sanghun; Lee, Sungjoo; Park, Jin-Hong

    2017-08-16

    In this study, we demonstrate a high-performance solid polymer electrolyte (SPE) atomic switching device with low SET/RESET voltages (0.25 and -0.5 V, respectively), high on/off-current ratio (10 5 ), excellent cyclic endurance (>10 3 ), and long retention time (>10 4 s), where poly-4-vinylphenol (PVP)/poly(melamine-co-formaldehyde) (PMF) is used as an SPE layer. To accomplish these excellent device performance parameters, we reduce the off-current level of the PVP/PMF atomic switching device by improving the electrical insulating property of the PVP/PMF electrolyte through adjustment of the number of cross-linked chains. We then apply a titanium buffer layer to the PVP/PMF switching device for further improvement of bipolar switching behavior and device stability. In addition, we first implement SPE atomic switch-based logic AND and OR circuits with low operating voltages below 2 V by integrating 5 × 5 arrays of PVP/PMF switching devices on the flexible substrate. In particular, this low operating voltage of our logic circuits was much lower than that (>5 V) of the circuits configured by polymer resistive random access memory. This research successfully presents the feasibility of PVP/PMF atomic switches for flexible integrated circuits for next-generation electronic applications.

  7. Note: A novel method for generating multichannel quasi-square-wave pulses.

    PubMed

    Mao, C; Zou, X; Wang, X

    2015-08-01

    A 21-channel quasi-square-wave nanosecond pulse generator was constructed. The generator consists of a high-voltage square-wave pulser and a channel divider. Using an electromagnetic relay as a switch and a 50-Ω polyethylene cable as a pulse forming line, the high-voltage pulser produces a 10-ns square-wave pulse of 1070 V. With a specially designed resistor-cable network, the channel divider divides the high-voltage square-wave pulse into 21 identical 10-ns quasi-square-wave pulses of 51 V, exactly equal to 1070 V/21. The generator can operate not only in a simultaneous mode but also in a delay mode if the cables in the channel divider are different in length.

  8. A study on the high temperature-dependence of the electrical properties in a solution-deposited zinc-tin-oxide thin-film transistor operated in the saturation region

    NASA Astrophysics Data System (ADS)

    Yu, Kyeong Min; Bae, Byung Seong; Jung, Myunghee; Yun, Eui-Jung

    2016-06-01

    We investigate the effects of high temperatures in the range of 292 - 393 K on the electrical properties of solution-processed amorphous zinc-tin-oxide (a-ZTO) thin-film transistors (TFTs) operated in the saturation region. The fabricated a-ZTO TFTs have a non-patterned bottom gate and top contact structure, and they use a heavily-doped Si wafer and SiO2 as a gate electrode and a gate insulator layer, respectively. In a-ZTO TFTs, the trap release energy ( E TR ) was deduced by using Maxwell-Boltzmann statistics. The decreasing E TR toward zero with increasing gate voltage (the density of trap states ( n s )) in the a-ZTO active layer can be attributed to a shift of the Fermi level toward the mobility edge with increasing gate voltage. The TFTs with low gate voltage (low n s ) exhibit multiple trap and release characteristics and show thermally-activated behavior. In TFTs with a high gate voltage (high n s ), however, we observe decreasing mobility and conductivity with increasing temperature at temperatures ranging from 303 to 363 K. This confirms that the E TR can drop to zero, indicating a shift of the Fermi level beyond the mobility edge. Hence, the mobility edge is detected at the cusp between thermally-activated transport and band transport.

  9. Negative ion-driven associated particle neutron generator

    DOE PAGES

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; ...

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 10 6 D-D n/s (equivalent to similar to 10 8 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less

  10. High current polarized electron source

    NASA Astrophysics Data System (ADS)

    Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.

    2018-05-01

    Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.

  11. Electric Propulsion Technology Development for the Jupiter Icy Moons Orbiter Project

    NASA Technical Reports Server (NTRS)

    2004-01-01

    During 2004, the Jupiter Icy Moons Orbiter project, a part of NASA's Project Prometheus, continued efforts to develop electric propulsion technologies. These technologies addressed the challenges of propelling a spacecraft to several moons of Jupiter. Specific challenges include high power, high specific impulse, long lived ion thrusters, high power/high voltage power processors, accurate feed systems, and large propellant storage systems. Critical component work included high voltage insulators and isolators as well as ensuring that the thruster materials and components could operate in the substantial Jupiter radiation environment. A review of these developments along with future plans is discussed.

  12. An analog RF gap voltage regulation system for the Advanced Photon Source storage ring.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horan, D.

    1999-04-13

    An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control andmore » permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands.« less

  13. High-power converters for space applications

    NASA Technical Reports Server (NTRS)

    Park, J. N.; Cooper, Randy

    1991-01-01

    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  14. Investigation of high voltage spacecraft system interactions with plasma environments

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Berkopec, F. D.; Purvis, C. K.; Grier, N.; Staskus, J. V.

    1978-01-01

    An experimental investigation was undertaken for insulator and conductor test surfaces biased up to + or - 1kV in a simulated low earth orbit charged particle environment. It was found that these interactions are controlled by the insulator surfaces surrounding the biased conductors. For positive applied voltages the electron current collection can be enhanced by the insulators. For negative applied voltages the insulator surface confines the voltage to the conductor region. Understanding these interactions and the technology to control their impact on system operation is essential to the design of solar cell arrays for ion drive propulsion applications that use direct drive power processing.

  15. Train surfing and other high voltage trauma: differences in injury-related mechanisms and operative outcomes after fasciotomy, amputation and soft-tissue coverage.

    PubMed

    Lumenta, David Benjamin; Vierhapper, Martin Friedrich; Kamolz, Lars-Peter; Keck, Maike; Frey, Manfred

    2011-12-01

    In the context of scarce reports on train surfers among high voltage electric injuries, we conducted a retrospective review between January 1994 and December 2008. After matching for inclusion criteria we reviewed patient records of 37 true high voltage injuries (12 train surfers [TS] and 25 other high voltage injuries [HV]). TS were significantly younger (TS 15.8 years vs. HV 33.3 years, p<0.0001), and had a greater %TBSA (TS 49.7%TBSA vs. HV 21.5%TBSA, p=0.0003) without affecting the median length-of-stay (TS 52 days vs. HV 49 days) or number of operations (TS 4 vs. HV 3). TS had different injury patterns, with a higher percentage of affected extremities (TS 72.9% vs. HV 52.0%, p=0.0468) and associated injuries (TS 58% vs. HV 20%, n.s.) than HV. Both groups demonstrated comparable fasciotomy (TS 71.4% vs. HV 55.8%) and amputation rates (TS 17.1% vs. HV 15.4%). While TS required less flaps (TS 3/12 vs. HV 18/25; p=0.0153), soft-tissue reconstruction revealed an overall low incidence of complication rates (one partial pedicled flap loss and two total free flap losses). Train surfers have proven to be a distinct group of patients among high-voltage injuries notably as a result of a younger age, a shorter electric contact duration and higher velocity-induced trauma. With a possibly declining trend of train surfing-related accidents in an aging society, it will be interesting to see if emerging economies will face comparable phenomena, for which prevention strategies remain key. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  16. The simulation on diode-clamped five-level converters common-mode voltage suppression with zero-vector PWM strategy

    NASA Astrophysics Data System (ADS)

    Zhang, Yonggao; Gao, Yanli; Long, Lizhong

    2012-04-01

    More and more researchers have great concern on the issue of Common-mode voltage (CMV) in high voltage large power converter. A novel common-mode voltage suppression scheme based on zero-vector PWM strategy (ZVPWM) is present in this paper. Taking a diode-clamped five-level converter as example, the principle of zero vector PWM common-mode voltage (ZCMVPWM) suppression method is studied in detail. ZCMVPWM suppression strategy is including four important parts, which are locating the sector of reference voltage vector, locating the small triangular sub-sector of reference voltage vector, reference vector synthesis, and calculating the operating time of vector. The principles of four important pars are illustrated in detail and the corresponding MATLAB models are established. System simulation and experimental results are provided. It gives some consultation value for the development and research of multi-level converters.

  17. Signaling complexes of voltage-gated calcium channels

    PubMed Central

    Turner, Ray W; Anderson, Dustin

    2011-01-01

    Voltage-gated calcium channels are key mediators of depolarization induced calcium entry into electrically excitable cells. There is increasing evidence that voltage-gated calcium channels, like many other types of ionic channels, do not operate in isolation, but instead form complexes with signaling molecules, G protein coupled receptors, and other types of ion channels. Furthermore, there appears to be bidirectional signaling within these protein complexes, thus allowing not only for efficient translation of calcium signals into cellular responses, but also for tight control of calcium entry per se. In this review, we will focus predominantly on signaling complexes between G protein-coupled receptors and high voltage activated calcium channels, and on complexes of voltage-gated calcium channels and members of the potassium channel superfamily. PMID:21832880

  18. Integration Testing of a Modular Discharge Supply for NASA's High Voltage Hall Accelerator Thruster

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Kamhawi, hani; Drummond, Geoff

    2010-01-01

    NASA s In-Space Propulsion Technology Program is developing a high performance Hall thruster that can fulfill the needs of future Discovery-class missions. The result of this effort is the High Voltage Hall Accelerator thruster that can operate over a power range from 0.3 to 3.5 kW and a specific impulse from 1,000 to 2,800 sec, and process 300 kg of xenon propellant. Simultaneously, a 4.0 kW discharge power supply comprised of two parallel modules was developed. These power modules use an innovative three-phase resonant topology that can efficiently supply full power to the thruster at an output voltage range of 200 to 700 V at an input voltage range of 80 to 160 V. Efficiencies as high as 95.9 percent were measured during an integration test with the NASA103M.XL thruster. The accuracy of the master/slave current sharing circuit and various thruster ignition techniques were evaluated.

  19. High Voltage, Solid-State Switch for Fusion Science Applications

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Prager, James; Miller, Kenneth E.; Slobodov, Ilia

    2017-10-01

    Eagle Harbor Technologies, Inc. is developing a series stack of solid-state switches to produce a single high voltage switch that can be operated at over 35 kV. During the Phase I program, EHT developed two high voltage switch modules: one with isolated power gate drive and a second with inductively coupled gate drive. These switches were tested at 15 kV and up to 300 A at switching frequencies up to 500 kHz for 10 ms bursts. Robust switching was demonstrated for both IGBTs and SiC MOSFETs. During the Phase II program, EHT will develop a higher voltage switch (>35 kV) that will be suitable for high pulsed and average power applications. EHT will work with LTX to utilize these switches to design, build, and test a pulsed magnetron driver that will be delivered to LTX before the completion of the program. EHT will present data from the Phase I program as well as preliminary results from the start of the Phase II program. With support of DOE SBIR.

  20. Design of high-throughput and low-power true random number generator utilizing perpendicularly magnetized voltage-controlled magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Lee, Hochul; Ebrahimi, Farbod; Amiri, Pedram Khalili; Wang, Kang L.

    2017-05-01

    A true random number generator based on perpendicularly magnetized voltage-controlled magnetic tunnel junction devices (MRNG) is presented. Unlike MTJs used in memory applications where a stable bit is needed to store information, in this work, the MTJ is intentionally designed with small perpendicular magnetic anisotropy (PMA). This allows one to take advantage of the thermally activated fluctuations of its free layer as a stochastic noise source. Furthermore, we take advantage of the voltage dependence of anisotropy to temporarily change the MTJ state into an unstable state when a voltage is applied. Since the MTJ has two energetically stable states, the final state is randomly chosen by thermal fluctuation. The voltage controlled magnetic anisotropy (VCMA) effect is used to generate the metastable state of the MTJ by lowering its energy barrier. The proposed MRNG achieves a high throughput (32 Gbps) by implementing a 64 ×64 MTJ array into CMOS circuits and executing operations in a parallel manner. Furthermore, the circuit consumes very low energy to generate a random bit (31.5 fJ/bit) due to the high energy efficiency of the voltage-controlled MTJ switching.

  1. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain.

    PubMed

    Lee, Sungsik; Nathan, Arokia

    2016-10-21

    The quest for low power becomes highly compelling in newly emerging application areas related to wearable devices in the Internet of Things. Here, we report on a Schottky-barrier indium-gallium-zinc-oxide thin-film transistor operating in the deep subthreshold regime (i.e., near the OFF state) at low supply voltages (<1 volt) and ultralow power (<1 nanowatt). By using a Schottky-barrier at the source and drain contacts, the current-voltage characteristics of the transistor were virtually channel-length independent with an infinite output resistance. It exhibited high intrinsic gain (>400) that was both bias and geometry independent. The transistor reported here is useful for sensor interface circuits in wearable devices where high current sensitivity and ultralow power are vital for battery-less operation. Copyright © 2016, American Association for the Advancement of Science.

  2. Experimental Study of Floating-Gate-Type Metal-Oxide-Semiconductor Capacitors with Nanosize Triangular Cross-Sectional Tunnel Areas for Low Operating Voltage Flash Memory Application

    NASA Astrophysics Data System (ADS)

    Liu, Yongxun; Guo, Ruofeng; Kamei, Takahiro; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Hayashida, Tetsuro; Sakamoto, Kunihiro; Ogura, Atsushi; Masahara, Meishoku

    2012-06-01

    The floating-gate (FG)-type metal-oxide-semiconductor (MOS) capacitors with planar (planar-MOS) and three-dimensional (3D) nanosize triangular cross-sectional tunnel areas (3D-MOS) have successfully been fabricated by introducing rapid thermal oxidation (RTO) and postdeposition annealing (PDA), and their electrical characteristics between the control gate (CG) and FG have been systematically compared. It was experimentally found in both planar- and 3D-MOS capacitors that the uniform and higher breakdown voltages are obtained by introducing RTO owing to the high-quality thermal oxide formation on the surface and etched edge regions of the n+ polycrystalline silicon (poly-Si) FG, and the leakage current is highly suppressed after PDA owing to the improved quality of the tetraethylorthosilicate (TEOS) silicon dioxide (SiO2) between CG and FG. Moreover, a lower breakdown voltage between CG and FG was obtained in the fabricated 3D-MOS capacitors as compared with that of planar-MOS capacitors thanks to the enhanced local electric field at the tips of triangular tunnel areas. The developed nanosize triangular cross-sectional tunnel area is useful for the fabrication of low operating voltage flash memories.

  3. Revisiting the relevance of using a constant voltage step to improve electrochemical performances of Li-rich lamellar oxides

    NASA Astrophysics Data System (ADS)

    Pradon, A.; Caldes, M. T.; Petit, P.-E.; La Fontaine, C.; Elkaim, E.; Tessier, C.; Ouvrard, G.; Dumont, E.

    2018-03-01

    A Li-rich lamellar oxide was cycled at high potential and the relevance of using a constant voltage step (CVS) at the end of the charge, needed for industrial application, was investigated by electrochemical performance, X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Electrochemical studies at 4.7 and 4.5 V with and without CVS showed that capacity and voltage fading occurred mostly when cells operated at high potential. After cycling, 3D-type defects involving transition metals trapped in lithium layer were observed by HRTEM into the electrode bulk. These defects are responsible for the voltage fading. XRD microstrain parameter was used to evaluate defects rate in aged materials subjected to a CVS, showing more 3D-type defects when cycled at 4.7 V than at 4.5 V. The time spent at high potential at the end of the charge as well as the value of the upper potential limit, are both relevant parameters to voltage decay. The use of a CVS at the end of the charge needs at the same time, a reduced upper potential window in order to minimize 3D-type defects occurrence. Unfortunately, this approach is still not sufficient to prevent voltage fading.

  4. System and method for quench protection of a superconductor

    DOEpatents

    Huang, Xianrui; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas

    2008-03-11

    A system and method for protecting a superconductor from a quench condition. A quench protection system is provided to protect the superconductor from damage due to a quench condition. The quench protection system comprises a voltage detector operable to detect voltage across the superconductor. The system also comprises a frequency filter coupled to the voltage detector. The frequency filter is operable to couple voltage signals to a control circuit that are representative of a rise in superconductor voltage caused by a quench condition and to block voltage signals that are not. The system is operable to detect whether a quench condition exists in the superconductor based on the voltage signal received via the frequency filter and to initiate a protective action in response.

  5. Evaluation of the probability of arrester failure in a high-voltage transmission line using a Q learning artificial neural network model

    NASA Astrophysics Data System (ADS)

    Ekonomou, L.; Karampelas, P.; Vita, V.; Chatzarakis, G. E.

    2011-04-01

    One of the most popular methods of protecting high voltage transmission lines against lightning strikes and internal overvoltages is the use of arresters. The installation of arresters in high voltage transmission lines can prevent or even reduce the lines' failure rate. Several studies based on simulation tools have been presented in order to estimate the critical currents that exceed the arresters' rated energy stress and to specify the arresters' installation interval. In this work artificial intelligence, and more specifically a Q-learning artificial neural network (ANN) model, is addressed for evaluating the arresters' failure probability. The aims of the paper are to describe in detail the developed Q-learning ANN model and to compare the results obtained by its application in operating 150 kV Greek transmission lines with those produced using a simulation tool. The satisfactory and accurate results of the proposed ANN model can make it a valuable tool for designers of electrical power systems seeking more effective lightning protection, reducing operational costs and better continuity of service.

  6. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, Emanuel M.

    1987-01-01

    A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  7. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, E.M.

    1984-06-05

    A high power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  8. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    PubMed

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.

  9. High voltage series resonant inverter ion engine screen supply. [SCR series resonant inverter for space applications

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.; Shank, J. H.

    1974-01-01

    A high-voltage, high-power LC series resonant inverter using SCRs has been developed for an Ion Engine Power Processor. The inverter operates within 200-400Vdc with a maximum output power of 2.5kW. The inverter control logic, the screen supply electrical and mechanical characteristics, the efficiency and losses in power components, regulation on the dual feedback principle, the SCR waveforms and the component weight are analyzed. Efficiency of 90.5% and weight density of 4.1kg/kW are obtained.

  10. High reliability megawatt transformer/rectifier

    NASA Technical Reports Server (NTRS)

    Zwass, Samuel; Ashe, Harry; Peters, John W.

    1991-01-01

    The goal of the two phase program is to develop the technology and design and fabricate ultralightweight high reliability DC to DC converters for space power applications. The converters will operate from a 5000 V dc source and deliver 1 MW of power at 100 kV dc. The power weight density goal is 0.1 kg/kW. The cycle to cycle voltage stability goals was + or - 1 percent RMS. The converter is to operate at an ambient temperature of -40 C with 16 minute power pulses and one hour off time. The uniqueness of the design in Phase 1 resided in the dc switching array which operates the converter at 20 kHz using Hollotron plasma switches along with a specially designed low loss, low leakage inductance and a light weight high voltage transformer. This approach reduced considerably the number of components in the converter thereby increasing the system reliability. To achieve an optimum transformer for this application, the design uses four 25 kV secondary windings to produce the 100 kV dc output, thus reducing the transformer leakage inductance, and the ac voltage stresses. A specially designed insulation system improves the high voltage dielectric withstanding ability and reduces the insulation path thickness thereby reducing the component weight. Tradeoff studies and tests conducted on scaled-down model circuits and using representative coil insulation paths have verified the calculated transformer wave shape parameters and the insulation system safety. In Phase 1 of the program a converter design approach was developed and a preliminary transformer design was completed. A fault control circuit was designed and a thermal profile of the converter was also developed.

  11. The investigation of an electric arc in the long cylindrical channel of the powerful high-voltage AC plasma torch

    NASA Astrophysics Data System (ADS)

    Rutberg, Ph G.; Popov, S. D.; Surov, A. V.; Serba, E. O.; Nakonechny, Gh V.; Spodobin, V. A.; Pavlov, A. V.; Surov, A. V.

    2012-12-01

    The comparison of conductivity obtained in experiments with calculated values is made in this paper. Powerful stationary plasma torches with prolonged period of continuous work are popular for modern plasmachemical applications. The maximum electrode lifetime with the minimum erosion can be reached while working on rather low currents. Meanwhile it is required to provide voltage arc drop for the high power achievement. Electric field strength in the arc column of the high-voltage plasma torch, using air as a plasma-forming gas, does not exceed 15 V/cm. It is possible to obtain the high voltage drop in the long arc stabilized in the channel by the intensive gas flow under given conditions. Models of high voltage plasma torches with rod electrodes with power up to 50 kW have been developed and investigated. The plasma torch arcs are burning in cylindrical channels. Present investigations are directed at studying the possibility of developing long arc plasma torches with higher power. The advantage of AC power supplies usage is the possibility of the loss minimization due to the reactive power compensation. The theoretical maximum of voltage arc drop for power supplies with inductive current limitations is about 50 % of the no-load voltage for a single-phase circuit and about 30 % for the three-phase circuit. Burning of intensively blown arcs in the long cylindrical channel using the AC power supply with 10 kV no-load voltage is experimentally investigated in the work. Voltage drops close to the maximum possible had been reached in the examined arcs in single-phase and three-phase modes. Operating parameters for single-phase mode were: current -30 A, voltage drop -5 kV, air flow rate 35 g/s; for three-phase mode: current (40-85) A, voltage drop (2.5-3.2) kV, air flow rate (60-100) g/s. Arc length in the installations exceeded 2 m.

  12. An non-uniformity voltage model for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Kelei; Li, Yankun; Liu, Jiawei; Guo, Ai

    2017-01-01

    The fuel cell used in transportation has environmental protection, high efficiency and no line traction power system which can greatly reduce line construction investment. That makes it a huge potential. The voltage uniformity is one of the most important factors affecting the operation life of proton exchange membrane fuel cell (PEMFC). On the basis of principle and classical model of the PEMFC, single cell voltage is calculated and the location coefficients are introduced so as to establish a non-uniformity voltage model. These coefficients are estimated with the experimental datum at stack current 50 A. The model is validated respectively with datum at 60 A and 100 A. The results show that the model reflects the basic characteristics of voltage non-uniformity and provides the beneficial reference for fuel cell control and single cell voltage detection.

  13. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2011-01-01

    Objectives of this work are: (1) Develop advanced Li -ion electrolytes that enable cell operation over a wide temperature range (i.e., -30 to +60C). (2) Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (3) Improve the high voltage stability of these candidate electrolytes systems to enable operation up to 5V with high specific energy cathode materials. (4) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (5) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  14. Performance Testing of Thermal Cutting Systems for Sweet Pepper Harvesting Robot in Greenhouse Horticulture

    NASA Astrophysics Data System (ADS)

    Bachche, Shivaji; Oka, Koichi

    2013-03-01

    This paper proposes design of end-effector and prototype of thermal cutting system for harvesting sweet peppers. The design consists of two parallel gripper bars mounted on a frame connected by specially designed notch plate and operated by servo motor. Based on voltage and current, two different types of thermal cutting system prototypes; electric arc and temperature arc respectively were developed and tested for performance. In electric arc, a special electric device was developed to obtain high voltage to perform cutting operation. At higher voltage, electrodes generate thermal arc which helps to cut stem of sweet pepper. In temperature arc, nichrome wire was mounted between two electrodes and current was provided directly to electrodes which results in generation of high temperature arc between two electrodes that help to perform cutting operation. In both prototypes, diameters of basic elements were varied and the effect of this variation on cutting operation was investigated. The temperature arc thermal system was found significantly suitable for cutting operation than electric arc thermal system. In temperature arc thermal cutting system, 0.5 mm nichrome wire shows significant results by accomplishing harvesting operation in 1.5 seconds. Also, thermal cutting system found suitable to increase shelf life of fruits by avoiding virus and fungal transformation during cutting process and sealing the fruit stem. The harvested sweet peppers by thermal cutting system can be preserved at normal room temperature for more than 15 days without any contamination.

  15. Temperature-dependent performance of all-NbN DC-SQUID magnetometers

    NASA Astrophysics Data System (ADS)

    Liu, Quansheng; Wang, Huiwu; Zhang, Qiyu; Wang, Hai; Peng, Wei; Wang, Zhen

    2017-05-01

    Integrated NbN direct current superconducting quantum interference device (DC-SQUID) magnetometers were developed based on high-quality epitaxial NbN/AlN/NbN Josephson junctions for SQUID applications operating at high temperatures. We report the current-voltage and voltage-flux characteristics and the noise performance of the NbN DC-SQUIDs for temperatures ranging from 4.2 to 9 K. The critical current and voltage swing of the DC-SQUIDs decreased by 15% and 25%, respectively, as the temperature was increased from 4.2 to 9 K. The white flux noise of the DC-SQUID magnetometer at 1 kHz increased from 3.9 μΦ0/Hz1/2 at 4.2 K to 4.8 μΦ0/Hz1/2 at 9 K with 23% increase, corresponding to the magnetic field noise of 6.6 and 8.1 fT/Hz1/2, respectively. The results show that NbN DC-SQUIDs improve the tolerance of the operating temperatures and temperature fluctuations in SQUID applications.

  16. Electronic Current Transducer (ECT) for high voltage dc lines

    NASA Astrophysics Data System (ADS)

    Houston, J. M.; Peters, P. H., Jr.; Summerayes, H. R., Jr.; Carlson, G. J.; Itani, A. M.

    1980-02-01

    The development of a bipolar electronic current transducer (ECT) for measuring the current in a high voltage dc (HVDC) power line at line potential is discussed. The design and construction of a free standing ECT for use on a 400 kV line having a nominal line current of 2000 A is described. Line current is measured by a 0.0001 ohm shunt whose voltage output is sampled by a 14 bit digital data link. The high voltage interface between line and ground is traversed by optical fibers which carry digital light signals as far as 300 m to a control room where the digital signal is converted back to an analog representation of the shunt voltage. Two redundant electronic and optical data links are used in the prototype. Power to operate digital and optical electronics and temperature controlling heaters at the line is supplied by a resistively and capacitively graded 10 stage cascade of ferrite core transformers located inside the hollow, SF6 filled, porcelain support insulator. The cascade is driven by a silicon controlled rectifier inverter which supplies about 100 W of power at 30 kHz.

  17. A DC Transformer

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Ihlefeld, Curtis M.; Starr, Stanley O.

    2013-01-01

    A component level dc transformer is described in which no alternating currents or voltages are present. It operates by combining features of a homopolar motor and a homopolar generator, both de devices, such that the output voltage of a de power supply can be stepped up (or down) with a corresponding step down (or up) in current. The basic theory for this device is developed, performance predictions are made, and the results from a small prototype are presented. Based on demonstrated technology in the literature, this de transformer should be scalable to low megawatt levels, but it is more suited to high current than high voltage applications. Significant development would be required before it could achieve the kilovolt levels needed for de power transmission.

  18. Low-Voltage InGaZnO Thin Film Transistors with Small Sub-Threshold Swing.

    PubMed

    Cheng, C H; Chou, K I; Hsu, H H

    2015-02-01

    We demonstrate a low-voltage driven, indium-gallium-zinc oxide thin-film transistor using high-κ LaAlO3 gate dielectric. A low VT of 0.42 V, very small sub-threshold swing of 68 mV/dec, field-effect mobility of 4.1 cm2/Ns and low operation voltage of 1.4 V were reached simultaneously in LaAlO3/IGZO TFT device. This low-power and small SS TFT has the potential for fast switching speed and low power applications.

  19. 11.72 sq cm SiC Wafer-scale Interconnected 64 kA PiN Diode

    DTIC Science & Technology

    2012-01-30

    drop of 10.3 V. The dissipated energy was 382 J and the calculated action exceeded 1.7 MA2 -s. Preliminary development of high voltage interconnection...scale diode action (surge current integral), a key reliability parameter, exceeded 1.7 MA2 -s. Figure 6: The wafer-scale interconnected diode...scale diode was 382 J and the calculated action exceeded 1.7 MA2 -sec. High voltage operation of PiN diodes, thyristors, and other semiconductor

  20. High voltage characteristics of the electrodynamic tether and the generation of power and propulsion

    NASA Technical Reports Server (NTRS)

    Williamson, P. R.

    1986-01-01

    The Tethered Satellite System (TSS) will deploy and retrieve a satellite from the Space Shuttle orbiter with a tether of up to 100 km in length attached between the satellite and the orbiter. The characteristics of the TSS which are related to high voltages, electrical currents, energy storage, power, and the generation of plasma waves are described. A number of specific features of the tether system of importance in assessing the operational characteristics of the electrodynamic TSS are identified.

  1. Investigation into the High Voltage Shutdown of the Oxygen Generator System in the International Space Station

    NASA Technical Reports Server (NTRS)

    Carpenter, Joyce E.; Gentry, Gregory J.; Diderich, Greg S.; Roy, Robert J.; Golden, John L.; VanKeuren, Steve; Steele, John W.; Rector, Tony J.; Varsik, Jerome D.; Montefusco, Daniel J.; hide

    2012-01-01

    The Oxygen Generation System (OGS) Hydrogen Dome Assembly Orbital Replacement Unit (ORU) serial number 00001 suffered a cell stack high-voltage shutdown on July 5, 2010. The Hydrogen Dome Assembly ORU was removed and replaced with the on-board spare ORU serial number 00002 to maintain OGS operation. The Hydrogen Dome Assembly ORU was returned from ISS on STS-133/ULF-5 in March 2011 with test, teardown and evaluation (TT&E) and failure analysis to follow.

  2. Nonferromagnetic linear variable differential transformer

    DOEpatents

    Ellis, James F.; Walstrom, Peter L.

    1977-06-14

    A nonferromagnetic linear variable differential transformer for accurately measuring mechanical displacements in the presence of high magnetic fields is provided. The device utilizes a movable primary coil inside a fixed secondary coil that consists of two series-opposed windings. Operation is such that the secondary output voltage is maintained in phase (depending on polarity) with the primary voltage. The transducer is well-suited to long cable runs and is useful for measuring small displacements in the presence of high or alternating magnetic fields.

  3. Optoelectronic Materials Center, A Collaborative Program Including University of New Mexico, Stanford University and California Institute of Technology

    DTIC Science & Technology

    1993-05-04

    a highly coherent output beam that can be focused’. MOCVD is used to fabricate the unstble resonator waveguide in these devices and to ensure a high...investigated. Single-mode VCSELs with excellent electrical characteristics were fabricated with a threshold voltage below 2V and an operating voltage of...resulting eye diagram shows that large-signal electrical modulation at 1-2 GB/s is possible. These VCSELs are therefore suitable for multi-GB/s optical

  4. Controlling Electron Backstreaming Phenomena Through the Use of a Transverse Magnetic Field

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    DEEP-SPACE mission propulsion requirements can be satisfied by the use of high specific impulse systems such as ion thrusters. For such missions. however. the ion thruster will be required to provide thrust for long periods of time. To meet the long operation time and high-propellant throughput requirements, thruster lifetime must be increased. In general, potential ion thruster failure mechanisms associated with long-duration thrusting can be grouped into four areas: (1) ion optics failure; (2) discharge cathode failure; (3) neutralizer failure; and (4) electron backstreaming caused by accelerator grid aperture enlargement brought on by accelerator grid erosion. The work presented here focuses on electron backstreaming. which occurs when the potential at the center of an accelerator grid aperture is insufficient to prevent the backflow of electrons into the ion thruster. The likelihood of this occurring depends on ion source operation time. plasma density, and grid voltages, as accelerator grid apertures enlarge as a result of erosion. Electrons that enter the gap between the high-voltage screen and accelerator grids are accelerated to the energies approximately equal to the beam voltage. This energetic electron beam (typically higher than 1 kV) can damage not only the ion source discharge cathode assembly. but also any of the discharge surfaces upstream of the ion acceleration optics that the electrons happen to impact. Indeed. past backstreaming studies have shown that near the backstreaming limit, which corresponds to the absolute value of the accelerator grid voltage below which electrons can backflow into the thruster, there is a rather sharp rise in temperature at structures such as the cathode keeper electrode. In this respect operation at accelerator grid voltages near the backstreaming limit is avoided. Generally speaking, electron backstreaming is prevented by operating the accelerator grid at a sufficiently negative voltage to ensure a sufficiently negative aperture center potential. This approach can provide the necessary margin assuming an expected aperture enlargement. Operation at very negative accelerator grid voltages, however, enhances ion charge-exchange and direct impingement erosion of the accelerator grid. The focus of the work presented here is the mitigation of electron backstreaming by the use of a magnetic field. The presence of a magnetic field oriented perpendicular to the thruster axis can significantly decrease the magnitude of the backflowing electron current by significantly reducing the electron diffusion coefficient. Negative ion sources utilize this principle to reduce the fraction of electrons in the negative ion beam. The focus of these efforts has been on the attenuation of electron current diffusing from the discharge plasma into the negative ion extraction optics by placing the transverse magnetic field upstream of the extraction electrodes. In contrast. in the case of positive ion sources such as ion thrusters, the approach taken in the work presented here is to apply the transverse field downstream of the ion extraction system so as to prevent electrons from flowing back into the source. It was found in the work presented here that the magnetic field also reduces the absolute value of the electron backstreaming limit voltage. In this respect. the applied transverse magnetic field provides two mechanisms for electron backstreaming mitigation: (1) electron current attenuation and (2) backstreaming limit voltage shift. Such a shift to less negative voltages can lead to reduced accelerator grid erosion rates.

  5. Simple-to-prepare multipoint field emitter

    NASA Astrophysics Data System (ADS)

    Sominskii, G. G.; Taradaev, E. P.; Tumareva, T. A.; Mishin, M. V.; Kornishin, S. Yu.

    2015-07-01

    We investigate multitip field emitters prepared by electroerosion treatment of the surface of molybdenum samples. Their characteristics are determined for operation with a protecting activated fullerene coating. Our experiments indicate that such cathodes are promising for high-voltage electron devices operating in technical vacuum.

  6. 77 FR 51988 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ...: Midwest Independent Transmission System Operator, Inc. Description: SA 2294 Heritage Garden-ATC GIA J060... Revenues, True-Up Period Adjustment, Retail Rate Design, & CAISO Wholesale High Voltage Transmission Access.... Docket Numbers: ER12-2455-000. Applicants: Midwest Independent Transmission System Operator, Inc., Mid...

  7. A high efficiency 3 kW switchmode battery charger

    NASA Technical Reports Server (NTRS)

    Latos, T. S.; Bosack, D. J.

    1982-01-01

    This paper discusses the design approach and status of a high-efficiency switchmode battery charger designed to charge a 108 V battery from the 115 Vac line. The charger contains a transformer isolated boost chopper operating at 20 kHz. The boost inductor current is programmed to follow the ac line voltage such that high power factor operation and low line distortion are obtained.

  8. 21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...

  9. 21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...

  10. 21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...

  11. 21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...

  12. A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Pei, Chengquan; Tian, Jinshou; Liu, Zhen; Qin, Hong; Wu, Shengli

    2017-04-01

    A novel resonant high voltage power supply (HVPS) with zero voltage switching (ZVS), to reduce the voltage stress on switching devices and improve conversion efficiency, is proposed. The proposed HVPS includes a drive circuit, a transformer, several voltage multiplying circuits, and a regulator circuit. The HVPS contains several secondary windings that can be precisely regulated. The proposed HVPS performed better than the traditional resistor voltage divider, which requires replacing matching resistors resulting in resistor dispersibility in the Micro-Channel Plate (MCP). The equivalent circuit of the proposed HVPS was established and the operational principle analyzed. The entire switching element can achieve ZVS, which was validated by a simulation and experiments. The properties of this HVPS were tested including minimum power loss (240 mW), maximum power loss (1 W) and conversion efficiency (85%). The results of this research are that the proposed HVPS was suitable for driving the micro-channel plate photomultiplier tube (MCP-PMT). It was therefore adopted to test the MCP-PMT, which will be used in Daya Bay reactor neutrino experiment II in China.

  13. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex

    2012-01-01

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.

  14. An isolated bridgeless AC-DC PFC converter using a LC resonant voltage doubler rectifier

    NASA Astrophysics Data System (ADS)

    Lee, Sin-woo; Do, Hyun-Lark

    2016-12-01

    This paper proposed an isolated bridgeless AC-DC power factor correction (PFC) converter using a LC resonant voltage doubler rectifier. The proposed converter is based on isolated conventional single-ended primary inductance converter (SEPIC) PFC converter. The conduction loss of rectification is reduced than a conventional one because the proposed converter is designed to eliminate a full-bridge rectifier at an input stage. Moreover, for zero-current switching (ZCS) operation and low voltage stresses of output diodes, the secondary of the proposed converter is designed as voltage doubler with a LC resonant tank. Additionally, an input-output electrical isolation is provided for safety standard. In conclusion, high power factor is achieved and efficiency is improved. The operational principles, steady-state analysis and design equations of the proposed converter are described in detail. Experimental results from a 60 W prototype at a constant switching frequency 100 kHz are presented to verify the performance of the proposed converter.

  15. Performance of a 100V Half-Bridge MOSFET Driver, Type MIC4103, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    The operation of a high frequency, high voltage MOSFET (metal-oxide semiconductor field-effect transistors) driver was investigated over a wide temperature regime that extended beyond its specified range. The Micrel MIC4103 is a 100V, non-inverting, dual driver that is designed to independently drive both high-side and low-side N-channel MOSFETs. It features fast propagation delay times and can drive 1000 pF load with 10ns rise times and 6 ns fall times [1]. The device consumes very little power, has supply under-voltage protection, and is rated for a -40 C to +125 C junction temperature range. The floating high-side driver of the chip can sustain boost voltages up to 100 V. Table I shows some of the device manufacturer s specification.

  16. Real-Tme Boron Nitride Erosion Measurements of the HiVHAc Thruster via Cavity Ring-Down Spectroscopy

    NASA Technical Reports Server (NTRS)

    Lee, Brian C.; Yalin, Azer P.; Gallimore, Alec; Huang, Wensheng; Kamhawi, Hani

    2013-01-01

    Cavity ring-down spectroscopy was used to make real-time erosion measurements from the NASA High Voltage Hall Accelerator thruster. The optical sensor uses 250 nm light to measure absorption of atomic boron in the plume of an operating Hall thruster. Theerosion rate of the High Voltage Hall Accelerator thruster was measured for discharge voltages ranging from 330 to 600 V and discharge powers ranging from 1 to 3 kW. Boron densities as high as 6.5 x 10(exp 15) per cubic meter were found within the channel. Using a very simple boronvelocity model, approximate volumetric erosion rates between 5.0 x 10(exp -12) and 8.2 x 10(exp -12) cubic meter per second were found.

  17. Cavallo's multiplier for in situ generation of high voltage

    NASA Astrophysics Data System (ADS)

    Clayton, S. M.; Ito, T. M.; Ramsey, J. C.; Wei, W.; Blatnik, M. A.; Filippone, B. W.; Seidel, G. M.

    2018-05-01

    A classic electrostatic induction machine, Cavallo's multiplier, is suggested for in situ production of very high voltage in cryogenic environments. The device is suitable for generating a large electrostatic field under conditions of very small load current. Operation of the Cavallo multiplier is analyzed, with quantitative description in terms of mutual capacitances between electrodes in the system. A demonstration apparatus was constructed, and measured voltages are compared to predictions based on measured capacitances in the system. The simplicity of the Cavallo multiplier makes it amenable to electrostatic analysis using finite element software, and electrode shapes can be optimized to take advantage of a high dielectric strength medium such as liquid helium. A design study is presented for a Cavallo multiplier in a large-scale, cryogenic experiment to measure the neutron electric dipole moment.

  18. Frequency stabilization in nonlinear MEMS and NEMS oscillators

    DOEpatents

    Lopez, Omar Daniel; Antonio, Dario

    2014-09-16

    An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in the oscillator.

  19. Stressed photoconductive detector for far-infrared space applications

    NASA Technical Reports Server (NTRS)

    Wang, J.-Q.; Richards, P. L.; Beeman, J. W.; Haller, E. E.

    1987-01-01

    An optimized leaf-spring apparatus for applying uniaxial stress to a Ge:Ga far-IR photoconductor has been designed and tested. This design has significant advantages for space applications which require high quantum efficiency and stable operation over long periods of time. The important features include adequate spring deflection with relatively small overall size, torque-free stress, easy measurement of applied stress, and a detector configuration with high responsivity. One-dimensional arrays of stressed photoconductors can be constructed using this design. A peak responsivity of 38 A/W is achieved in a detector with a cutoff wavelength of 200 microns, which was operated at a temperature of 2.0 K and a bias voltage equal to one-half of the breakdown voltage.

  20. Low-temperature sol-gel oxide TFT with a fluoropolymer dielectric to enhance the effective mobility at low operation voltage

    NASA Astrophysics Data System (ADS)

    Yu, Shang-Yu; Wang, Kuan-Hsun; Zan, Hsiao-Wen; Soppera, Olivier

    2017-06-01

    In this article, we propose a solution-processed high-performance amorphous indium-zinc oxide (a-IZO) thin-film transistor (TFT) gated with a fluoropolymer dielectric. Compared with a conventional IZO TFT with a silicon nitride dielectric, a fluoropolymer dielectric effectively reduces the operation voltage to less than 3 V and greatly increases the effective mobility 40-fold. We suggest that the dipole layer formed at the dielectric surface facilitates electron accumulation and induces the electric double-layer effect. The dipole-induced hysteresis effect is also investigated.

  1. Note: Repetitive operation of the capacitor bank of the low-voltage miniature plasma focus at 50 Hz.

    PubMed

    Shukla, Rohit; Shyam, Anurag

    2013-10-01

    We have already reported the low-voltage operation of a plasma focus describing the operation of plasma focus at 4.2 kV which proposes possibility of making a repetitive system using compact driving source. Another recent article describes that the same capacitor-bank can drive the plasma focus for a measured ~5 × 10(4) neutrons per shot at 5 kV and 59 kA current. In the present work, repetitive operation of the capacitor-bank of plasma focus is done and that too is being reported at a very high repetition rate of 50 Hz using very simple scheme of charging and triggering the bank. The bank is continuously discharged to burst duration of 20 s in this configuration admeasuring a thousand shots.

  2. Evaluation of high-voltage, high-power, solid-state remote power controllers for amps

    NASA Technical Reports Server (NTRS)

    Callis, Charles P.

    1987-01-01

    The Electrical Power Branch at Marshall Space Flight Center has a Power System Development Facility where various power circuit breadboards are tested and evaluated. This project relates to the evaluation of a particular remote power controller (RPC) energizing high power loads. The Facility equipment permits the thorough testing and evaluation of high-voltage, high-power solid-state remote power controllers. The purpose is to evaluate a Type E, 30 Ampere, 200 V dc remote power controller. Three phases of the RPC evaluation are presented. The RPC is evaluated within a low-voltage, low-power circuit to check its operational capability. The RPC is then evaluated while performing switch/circuit breaker functions within a 200 V dc, 30 Ampere power circuit. The final effort of the project relates to the recommended procedures for installing these RPC's into the existing Autonomously Managed Power System (AMPS) breadboard/test facility at MSFC.

  3. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  4. Radiation predictions and shielding calculations for RITS-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maenchen, John Eric; O'Malley, John; Kensek, Ronald Patrick

    2005-06-01

    The mission of Radiographic Integrated Test Stand-6 (RITS-6) facility is to provide the underlying science and technology for pulsed-power-driven flash radiographic X-ray sources for the National Nuclear Security Administration (NNSA). Flash X-ray radiography is a penetrating diagnostic to discern the internal structure in dynamic experiments. Short (~50 nanosecond (ns) duration) bursts of very high intensity Xrays from mm-scale source sizes are required at a variety of voltages to address this mission. RITS-6 was designed and is used to both develop the accelerator technology needed for these experiments and serves as the principal test stand to develop the high intensity electronmore » beam diodes that generate the required X-ray sources. RITS is currently in operation with three induction cavities (RITS-3) with a maximum voltage output of 5.5 MV and is classified as a low hazard non-nuclear facility in accordance with CPR 400.1.1, Chapter 13, Hazards Identification/Analysis and Risk Management. The facility will be expanded from three to six cavities (RITS-6) effectively doubling the operating voltage. The increase in the operating voltage to above 10 MV has resulted in RITS-6 being classified as an accelerator facility. RITS-6 will come under DOE Order 420.2B, Safety of Accelerator Facilities. The hazards of RITS are detailed in the "Safety Assessment Document for the Radiographic Integrated Test Stand Facility." The principal non-industrial hazard is prompt x-ray radiation. As the operating voltage is increased, both the penetration power and the total amount (dose) of x-rays are increased, thereby increasing the risk to local personnel. Fixed site shielding (predominantly concrete walls and a steel/lead skyshine shield) is used to attenuate these x-rays and mitigate this risk. This SAND Report details the anticipated x-ray doses, the shielding design, and the anticipated x-ray doses external to this shielding structure both in areas where administrative access control restricts occupation and in adjacent uncontrolled areas.« less

  5. Intelligent energy harvesting scheme for microbial fuel cells: Maximum power point tracking and voltage overshoot avoidance

    NASA Astrophysics Data System (ADS)

    Alaraj, Muhannad; Radenkovic, Miloje; Park, Jae-Do

    2017-02-01

    Microbial fuel cells (MFCs) are renewable and sustainable energy sources that can be used for various applications. The MFC output power depends on its biochemical conditions as well as the terminal operating points in terms of output voltage and current. There exists one operating point that gives the maximum possible power from the MFC, maximum power point (MPP), for a given operating condition. However, this MPP may vary and needs to be tracked in order to maintain the maximum power extraction from the MFC. Furthermore, MFC reactors often develop voltage overshoots that cause drastic drops in the terminal voltage, current, and the output power. When the voltage overshoot happens, an additional control measure is necessary as conventional MPPT algorithms will fail because of the change in the voltage-current relationship. In this paper, the extremum seeking (ES) algorithm was used to track the varying MPP and a voltage overshoot avoidance (VOA) algorithm is developed to manage the voltage overshoot conditions. The proposed ES-MPPT with VOA algorithm was able to extract 197.2 mJ during 10-min operation avoiding voltage overshoot, while the ES MPPT-only scheme stopped harvesting after only 18.75 mJ because of the voltage overshoot happened at 0.4 min.

  6. Flexible graphene-PZT ferroelectric nonvolatile memory.

    PubMed

    Lee, Wonho; Kahya, Orhan; Toh, Chee Tat; Ozyilmaz, Barbaros; Ahn, Jong-Hyun

    2013-11-29

    We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr0.35,Ti0.65)O3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol–gel methods, respectively. Such PZT films show a high remnant polarization (Pr) of 30 μC cm−2 and a coercive voltage (Vc) of 3.5 V under a voltage loop over ±11 V. The graphene–PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits.

  7. On electron heating in a low pressure capacitively coupled oxygen discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Snorrason, D. I.

    2017-11-01

    We use the one-dimensional object-oriented particle-in-cell Monte Carlo collision code oopd1 to explore the charged particle densities, the electronegativity, the electron energy probability function, and the electron heating mechanism in a single frequency capacitively coupled oxygen discharge, when the applied voltage amplitude is varied. We explore discharges operated at 10 mTorr, where electron heating within the plasma bulk (the electronegative core) dominates, and at 50 mTorr, where sheath heating dominates. At 10 mTorr, the discharge is operated in a combined drift-ambipolar and α-mode, and at 50 mTorr, it is operated in the pure α-mode. At 10 mTorr, the effective electron temperature is high and increases with increased driving voltage amplitude, while at 50 mTorr, the effective electron temperature is much lower, in particular, within the electronegative core, where it is roughly 0.2-0.3 eV, and varies only a little with the voltage amplitude.

  8. Extended-gate-type IGZO electric-double-layer TFT immunosensor with high sensitivity and low operation voltage

    NASA Astrophysics Data System (ADS)

    Liang, Lingyan; Zhang, Shengnan; Wu, Weihua; Zhu, Liqiang; Xiao, Hui; Liu, Yanghui; Zhang, Hongliang; Javaid, Kashif; Cao, Hongtao

    2016-10-01

    An immunosensor is proposed based on the indium-gallium-zinc-oxide (IGZO) electric-double-layer thin-film transistor (EDL TFT) with a separating extended gate. The IGZO EDL TFT has a field-effect mobility of 24.5 cm2 V-1 s-1 and an operation voltage less than 1.5 V. The sensors exhibit the linear current response to label-free target immune molecule in the concentrations ranging from 1.6 to 368 × 10-15 g/ml with a detection limit of 1.6 × 10-15 g/ml (0.01 fM) under an ultralow operation voltage of 0.5 V. The IGZO TFT component demonstrates a consecutive assay stability and recyclability due to the unique structure with the separating extended gate. With the excellent electrical properties and the potential for plug-in-card-type multifunctional sensing, extended-gate-type IGZO EDL TFTs can be promising candidates for the development of a label-free biosensor for public health applications.

  9. A Three-Stage Enhanced Reactive Power and Voltage Optimization Method for High Penetration of Solar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Xinda; Huang, Renke; Vallem, Mallikarjuna R.

    This paper presents a three-stage enhanced volt/var optimization method to stabilize voltage fluctuations in transmission networks by optimizing the usage of reactive power control devices. In contrast with existing volt/var optimization algorithms, the proposed method optimizes the voltage profiles of the system, while keeping the voltage and real power output of the generators as close to the original scheduling values as possible. This allows the method to accommodate realistic power system operation and market scenarios, in which the original generation dispatch schedule will not be affected. The proposed method was tested and validated on a modified IEEE 118-bus system withmore » photovoltaic data.« less

  10. Advanced nickel-hydrogen cell configuration study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Long-term trends in the evolution of space power technology point toward increased payload power demand which in turn translates into both higher battery system charge storage capability and higher operating voltages. State of the art nickel-hydrogen cells of the 50 to 60 Wh size, packaged in individual pressure vessels, are capable of meeting the required cycle life for a wide range of anticipated operating conditions; however, they provided several drawbacks to battery system integrated efforts. Because of size, high voltage/high power systems require integrating hundreds of cells into the operating system. Packaging related weight and volume inefficiencies degrade the energy density and specific energy of individual cells currently at 30 Wh/cudm and 40 Wh/kg respectively. In addition, the increased parts count and associated handling significantly affect the overall battery related costs. Spacecraft battery systems designers within industry and Government realize that to reduce weight, volume, and cost requires increases in the capacity of nickel-hydrogen cells.

  11. An Overview of Dynamic Contact Resistance Measurement of HV Circuit Breakers

    NASA Astrophysics Data System (ADS)

    Bhole, A. A.; Gandhare, W. Z.

    2016-06-01

    With the deregulation of the electrical power industry, utilities and service companies are operating in a changing business environment. High voltage circuit breakers are extremely important for the function of modern electric power supply systems. The need to predict the proper function of circuit breaker grew over the years as the transmission networks expanded. The maintenance of circuit breakers deserves special consideration because of their importance for routine switching and for protection of other equipments. Electric transmission system breakups and equipment destruction can occur if a circuit breaker fails to operate because of a lack of preventive maintenance. Dynamic Contact Resistance Measurement (DCRM) is known as an effective technique for assessing the condition of power circuit breakers contacts and operating mechanism. This paper gives a general review about DCRM. It discusses the practical case studies on use of DCRM for condition assessment of high voltage circuit breakers.

  12. Precision Control of Multiple Quantum Cascade Lasers for Calibration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taubman, Matthew S.; Myers, Tanya L.; Pratt, Richard M.

    We present a precision, digitally interfaced current controller for quantum cascade lasers, with demonstrated DC and modulated temperature coefficients of 1- 2 ppm/ºC and 15 ppm/ºC respectively. High linearity digital to analog converters (DACs) together with an ultra-precision voltage reference, produce highly stable, precision voltages. These are in turn selected by a low charge-injection multiplexer (MUX) chip, which are then used to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller while ensuring protection of controller and all lasersmore » during operation, standby and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less

  13. Development of high-performing semiconducting polymers for organic electrochemical transistors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nielsen, Christian

    2016-11-01

    The organic electrochemical transistor (OECT), capable of amplifying small electrical signals in an aqueous environment, is an ideal device to utilize in organic bioelectronic applications involving for example neural interfacing and diagnostics. Currently, most OECTs are fabricated with commercially available conducting poly(3,4-ethylenedioxythiophene)-based suspensions such as PEDOT:PSS and are therefore operated in depletion mode giving rise to devices that are permanently on with non-optimal operational voltage. With the aim to develop and utilize efficient accumulation mode OECT devices, we discuss here our recent results regarding the design, synthesis and performance of novel intrinsic semiconducting polymers. Covering key aspects such as ion and charge transport in the bulk semiconductor and operational voltage and stability of the materials and devices, we have elucidated important structure-property relationships. We illustrate the improvements this approach has afforded in the development of high performance accumulation mode OECT materials.

  14. Repetitive nanosecond electron accelerators type URT-1 for radiation technology

    NASA Astrophysics Data System (ADS)

    Sokovnin, S. Yu.; Balezin, M. E.

    2018-03-01

    The electron accelerator URT-1М-300 for mobile installation was created for radiation disinfecting to correct drawbacks that were found the URT-1M electron accelerator operation (the accelerating voltage up to 1 МV, repetition rate up to 300 pps, electron beam size 400 × 100 mm, the pulse width about 100 ns). Accelerator configuration was changed that allowed to reduce significantly by 20% tank volume with oil where is placed the system of formation high-voltage pulses, thus the average power of the accelerator is increased by 6 times at the expense of increase in pulses repetition rate. Was created the system of the computerized monitoring parameters (output parameters and thermal mode) and remote control of the accelerator (charge voltage, pulse repetition rate), its elements and auxiliary systems (heat of the thyratron, vacuum system), the remote control panel is connected to the installation by the fiber-optical channel, what lightens the work for service personnel. For generating an electron beam up to 400 mm wide there are used metal- ceramic] and metal-dielectric cold cathodes of several emission elements (plates) with a non-uniform distribution of the electron beam current density on the output foil ± 15%. It was found that emission drop of both type of cathodes, during the operation at the high repetition rate (100 pps) is substantial at the beginning of the process, and then proceeds rather slowly that allows for continuous operation up to 40 h. Experiments showed that linear dependence of the voltage and a signal from the pin-diode remains within the range of the charge voltage 45-65 kV. Thus, voltage increases from 690 to 950 kV, and the signal from the pin-diode - from (2,8-4,6)*104 Gy/s. It allows to select electron energy quite precisely with consideration of the radiation technology requirements.

  15. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2014-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) operated at discharge currents of 50, 70, and 100 A at xenon flow rates between 19 - 46 standard cubic centimeter per minute. The HCA was centrally mounted in the NASA-300MS Hall Thruster and was operated in the "spot" and "plume" modes with additional data taken with an applied magnetic field. Langmuir probes, retarding potential analyzers, and optical emission spectroscopy were employed to measure plasma properties near the orifice of the HCA and to assess the charge state of the near-field plasma. Electron temperatures (2-6 electron volt) and plasma potentials are consistent with probe-measured values in previous investigations. Operation with an applied-field yields higher discharge voltages, increased Xe III production, and increased signals from the 833.5 nm C I line. While operating in plume mode and with an applied field, ion energy distribution measurements yield ions with energies significantly exceeding the applied discharge voltage. These findings are correlated with high-frequency oscillations associated with each mode.

  16. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2013-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) oper-ated at discharge currents of 50, 70, and 100 A at xenon ow rates between 19 - 46 sccm.The HCA was centrally mounted in the annulus of the NASA-300MS Hall Thruster andwas operated in the spot and plume modes with additional data taken with an appliedmagnetic eld. Langmuir probes, retarding potential analyzers, and optical emission spec-troscopy were employed to measure plasma properties near the orice of the HCA and toassess the charge state of the near-eld plasma. Electron temperatures (2-6 eV) and plasmapotentials are consistent with probe-measured values in previous investigations. Operationwith an applied-eld yields higher discharge voltages, increased Xe III production, andincreased signals from the 833.5 nm C I line. While operating in plume mode and with anapplied eld, ion energy distribution measurements yield ions with energies signicantlyexceeding the applied discharge voltage. These ndings are correlated with high-frequencyoscillations associated with each mode.

  17. Silicon Carbide Emitter Turn-Off Thyristor

    DOE PAGES

    Wang, Jun; Wang, Gangyao; Li, Jun; ...

    2008-01-01

    A novel MOS-conmore » trolled SiC thyristor device, the SiC emitter turn-off thyristor (ETO) is a promising technology for future high-voltage switching applications because it integrates the excellent current conduction capability of a SiC thyristor with a simple MOS-control interface. Through unity-gain turn-off, the SiC ETO also achieves excellent Safe Operation Area (SOA) and faster switching speeds than silicon ETOs. The world's first 4.5-kV SiC ETO prototype shows a forward voltage drop of 4.26 V at 26.5  A / cm 2 current density at room and elevated temperatures. Tested in an inductive circuit with a 2.5 kV DC link voltage and a 9.56-A load current, the SiC ETO shows a fast turn-off time of 1.63 microseconds and a low 9.88 mJ turn-off energy. The low switching loss indicates that the SiC ETO could operate at about 4 kHz if 100  W / cm 2 conduction and the 100  W / cm 2 turn-off losses can be removed by the thermal management system. This frequency capability is about 4 times higher than 4.5-kV-class silicon power devices. The preliminary demonstration shows that the SiC ETO is a promising candidate for high-frequency, high-voltage power conversion applications, and additional developments to optimize the device for higher voltage (>5 kV) and higher frequency (10 kHz) are needed.« less

  18. Lithium thionyl chloride high rate discharge

    NASA Technical Reports Server (NTRS)

    Klinedinst, K. A.

    1980-01-01

    Improvements in high rate lithium thionyl chloride power technology achieved by varying the electrolyte composition, operating temperature, cathode design, and cathode composition are discussed. Discharge capacities are plotted as a function of current density, cell voltage, and temperature.

  19. Discharge runaway in high power impulse magnetron sputtering of carbon: the effect of gas pressure, composition and target peak voltage

    NASA Astrophysics Data System (ADS)

    Vitelaru, Catalin; Aijaz, Asim; Constantina Parau, Anca; Kiss, Adrian Emil; Sobetkii, Arcadie; Kubart, Tomas

    2018-04-01

    Pressure and target voltage driven discharge runaway from low to high discharge current density regimes in high power impulse magnetron sputtering of carbon is investigated. The main purpose is to provide a meaningful insight of the discharge dynamics, with the ultimate goal to establish a correlation between discharge properties and process parameters to control the film growth. This is achieved by examining a wide range of pressures (2–20 mTorr) and target voltages (700–850 V) and measuring ion saturation current density at the substrate position. We show that the minimum plasma impedance is an important parameter identifying the discharge transition as well as establishing a stable operating condition. Using the formalism of generalized recycling model, we introduce a new parameter, ‘recycling ratio’, to quantify the process gas recycling for specific process conditions. The model takes into account the ion flux to the target, the amount of gas available, and the amount of gas required for sustaining the discharge. We show that this parameter describes the relation between the gas recycling and the discharge current density. As a test case, we discuss the pressure and voltage driven transitions by changing the gas composition when adding Ne into the discharge. We propose that standard Ar HiPIMS discharges operated with significant gas recycling do not require Ne to increase the carbon ionization.

  20. Piezoelectric Vibrational and Acoustic Alert for a Personal Communication Device

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Hellbaum, Richard F. (Inventor); Daugherty, Robert H. (Inventor); Scholz, Raymond C. (Inventor); Little, Bruce D. (Inventor); Fox, Robert L. (Inventor); Denhardt, Gerald A. (Inventor); Jang, SeGon (Inventor); Balein, Rizza (Inventor)

    2001-01-01

    An alert apparatus for a personal communication device includes a mechanically prestressed piezoelectric wafer positioned within the personal communication device and an alternating voltage input line coupled at two points of the wafer where polarity is recognized. The alert apparatus also includes a variable frequency device coupled to the alternating voltage input line, operative to switch the alternating voltage on the alternating voltage input line at least between an alternating voltage having a first frequency and an alternating voltage having a second frequency. The first frequency is preferably sufficiently high so as to cause the wafer to vibrate at a resulting frequency that produces a sound perceptible by a human ear, and the second frequency is preferably sufficiently low so as to cause the wafer to vibrate at a resulting frequency that produces a vibration readily felt by a holder of the personal communication device.

  1. Stability of Triggering of the Switch with Sharply Non-Uniform Electric Field at the Electrode with Negative Potential

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Zherlitsyn, A. A.; Kumpyak, E. V.

    2017-12-01

    Results of investigations into a two-electrode high-pressure gas switch with sharply non-uniform field at the electrode with negative potential operating in the self-breakdown regime with pulsed charging of a highvoltage capacitive energy storage for 100 μs to voltage exceeding 200 kV are presented. It is demonstrated that depending on the air pressure and the gap length, the corona-streamer discharge, whose current increases with voltage, arises in the switch at a voltage of 0.2-0.3 of the self-breakdown voltage. At the moment of switch self-breakdown, the corona-streamer discharge goes over to one or several spark channels. The standard deviation of the triggering moment can be within 1.5 μs, which corresponds to the standard deviation of the self-breakdown voltage less than 2 kV. The voltage stability can be better than 1.5%.

  2. Voltage Scaling of Graphene Device on SrTiO3 Epitaxial Thin Film.

    PubMed

    Park, Jeongmin; Kang, Haeyong; Kang, Kyeong Tae; Yun, Yoojoo; Lee, Young Hee; Choi, Woo Seok; Suh, Dongseok

    2016-03-09

    Electrical transport in monolayer graphene on SrTiO3 (STO) thin film is examined in order to promote gate-voltage scaling using a high-k dielectric material. The atomically flat surface of thin STO layer epitaxially grown on Nb-doped STO single-crystal substrate offers good adhesion between the high-k film and graphene, resulting in nonhysteretic conductance as a function of gate voltage at all temperatures down to 2 K. The two-terminal conductance quantization under magnetic fields corresponding to quantum Hall states survives up to 200 K at a magnetic field of 14 T. In addition, the substantial shift of charge neutrality point in graphene seems to correlate with the temperature-dependent dielectric constant of the STO thin film, and its effective dielectric properties could be deduced from the universality of quantum phenomena in graphene. Our experimental data prove that the operating voltage reduction can be successfully realized due to the underlying high-k STO thin film, without any noticeable degradation of graphene device performance.

  3. Hypervelocity Impact Studies on Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Best, Stevie R.

    2001-01-01

    Space environmental effects have caused severe problems as satellites move toward increased power and operating voltage levels. The greatest unknown, however, is the effect of high velocity micrometeoroid impacts on high voltage arrays (>200V). Understanding such impact phenomena is necessary for the design of future reliable, high voltage solar arrays, especially for Space Solar Power applications. Therefore, the objective of this work was to study the effect of hypervelocity impacts on high voltage solar arrays. Initially, state of the art, 18% efficient GaAs solar cell strings were targeted. The maximum bias voltage on a two-cell string was -200 V while the adjacent string was held at -140 V relative to the plasma potential. A hollow cathode device provided the plasma. Soda lime glass particles 40-120 micrometers in diameter were accelerated in the Hypervelocity Impact Facility to velocities as high as 11.6 km/sec. Coordinates and velocity were obtained for each of the approximately 40 particle impact sites on each shot. Arcing did occur, and both discharging and recharging of arcs between the two strings was observed. The recharging phenomena appeared to stop at approximately 66V string differential. No arcing was observed at 400 V on concentrator cell modules for the Stretched Lens Array.

  4. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Woods, G.K.; Renak, T.W.

    1999-04-06

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 18 figs.

  5. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Woods, Gregory K.; Renak, Todd W.

    1999-01-01

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  6. Dielectric Breakdown Characteristics of Oil-pressboard Insulation System against AC/DC Superposed Voltage

    NASA Astrophysics Data System (ADS)

    Ebisawa, Yoshihito; Yamada, Shin; Mori, Shigekazu; Ikeda, Masami

    This paper describes breakdown characteristics of an oil-pressboard insulation system to a superposition voltage of AC and DC voltages. Although AC electric field is decided by the ratio of the relative permittivity of a pressboard and insulating oil, DC electric field is decided by ratio α of volume resistivities. From the measurement in this study, 13—78 and 1.8—5.7 are obtained as the volume resistivity ratios α at temperature of 30°C and 80°C, respectively. The breakdown voltages against AC, DC, and those superposition voltages are surveyed to insulation models. In normal temperature, the breakdown voltage to the superposition voltage of AC and DC is determined by AC electric field applied to the oil duct. Since the α becomes as low as 2-3 at temperature of 80°C, AC and DC voltages almost equally contribute to the electric field of the oil duct as a result. That is, it became clear that superposed DC voltage boosts the electric field across oil ducts at operating high temperature.

  7. The effect of applied control strategy on the current-voltage correlation of a solid oxide fuel cell stack during dynamic operation

    NASA Astrophysics Data System (ADS)

    Szmyd, Janusz S.; Komatsu, Yosuke; Brus, Grzegorz; Ghigliazza, Francesco; Kimijima, Shinji; Ściążko, Anna

    2014-09-01

    This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V) correlation. The current-based fuel control (CBFC) was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.

  8. Room temperature operation of electro-optical bistability in the edge-emitting tunneling-collector transistor laser

    NASA Astrophysics Data System (ADS)

    Feng, M.; Holonyak, N.; Wang, C. Y.

    2017-09-01

    Optical bistable devices are fundamental to digital photonics as building blocks of switches, logic gates, and memories in future computer systems. Here, we demonstrate both optical and electrical bistability and capability for switching in a single transistor operated at room temperature. The electro-optical hysteresis is explained by the interaction of electron-hole (e-h) generation and recombination dynamics with the cavity photon modulation in different switching paths. The switch-UP and switch-DOWN threshold voltages are determined by the rate difference of photon generation at the base quantum-well and the photon absorption via intra-cavity photon-assisted tunneling controlled by the collector voltage. Thus, the transistor laser electro-optical bistable switching is programmable with base current and collector voltage, and the basis for high speed optical logic processors.

  9. The characteristics and limitations of the MPS/MMS battery charging system

    NASA Technical Reports Server (NTRS)

    Ford, F. E.; Palandati, C. F.; Davis, J. F.; Tasevoli, C. M.

    1980-01-01

    A series of tests was conducted on two 12 ampere hour nickel cadmium batteries under a simulated cycle regime using the multiple voltage versus temperature levels designed into the modular power system (MPS). These tests included: battery recharge as a function of voltage control level; temperature imbalance between two parallel batteries; a shorted or partially shorted cell in one of the two parallel batteries; impedance imbalance of one of the parallel battery circuits; and disabling and enabling one of the batteries from the bus at various charge and discharge states. The results demonstrate that the eight commandable voltage versus temperature levels designed into the MPS provide a very flexible system that not only can accommodate a wide range of normal power system operation, but also provides a high degree of flexibility in responding to abnormal operating conditions.

  10. A 2.5 kW cascaded Schwarz converter for 20 kHz power distribution

    NASA Technical Reports Server (NTRS)

    Shetler, Russell E.; Stuart, Thomas A.

    1989-01-01

    Because it avoids the high currents in a parallel loaded capacitor, the cascaded Schwarz converter should offer better component utilization than converters with sinusoidal output voltages. The circuit is relatively easy to protect, and it provides a predictable trapezoidal voltage waveform that should be satisfactory for 20-kHz distribution systems. Analysis of the system is enhanced by plotting curves of normalized variables vs. gamma(1), where gamma(1) is proportional to the variable frequency of the first stage. Light-load operation is greatly improved by the addition of a power recycling rectifier bridge that is back biased at medium to heavy loads. Operation has been verified on a 2.5-kW circuit that uses input and output voltages in the same range as those anticipated for certain future spacecraft power systems.

  11. Large-Area High-Performance Flexible Pressure Sensor with Carbon Nanotube Active Matrix for Electronic Skin.

    PubMed

    Nela, Luca; Tang, Jianshi; Cao, Qing; Tulevski, George; Han, Shu-Jen

    2018-03-14

    Artificial "electronic skin" is of great interest for mimicking the functionality of human skin, such as tactile pressure sensing. Several important performance metrics include mechanical flexibility, operation voltage, sensitivity, and accuracy, as well as response speed. In this Letter, we demonstrate a large-area high-performance flexible pressure sensor built on an active matrix of 16 × 16 carbon nanotube thin-film transistors (CNT TFTs). Made from highly purified solution tubes, the active matrix exhibits superior flexible TFT performance with high mobility and large current density, along with a high device yield of nearly 99% over 4 inch sample area. The fully integrated flexible pressure sensor operates within a small voltage range of 3 V and shows superb performance featuring high spatial resolution of 4 mm, faster response than human skin (<30 ms), and excellent accuracy in sensing complex objects on both flat and curved surfaces. This work may pave the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions.

  12. Logarithmic circuit with wide dynamic range

    NASA Technical Reports Server (NTRS)

    Wiley, P. H.; Manus, E. A. (Inventor)

    1978-01-01

    A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.

  13. High-voltage zones within the pulmonary vein antra: Major determinants of acute pulmonary vein reconnections after atrial fibrillation ablation.

    PubMed

    Nagashima, Koichi; Watanabe, Ichiro; Okumura, Yasuo; Iso, Kazuki; Takahashi, Keiko; Watanabe, Ryuta; Arai, Masaru; Kurokawa, Sayaka; Nakai, Toshiko; Ohkubo, Kimie; Yoda, Shunichi; Hirayama, Atsushi

    2017-08-01

    Recurrence of atrial fibrillation (AF) after pulmonary vein isolation (PVI) is mainly due to PV reconnections. Patient-specific tissue characteristics that may contribute remain unidentified. This study aimed to assess the relationship between the bipolar electrogram voltage amplitudes recorded from the PV-left atrial (LA) junction and acute PV reconnection sites. Three-dimensional LA voltage maps created before an extensive encircling PVI in 47 AF patients (31 men; mean age 62 ± 11 years) were examined for an association between the EGM voltage amplitude recorded from the PV-LA junction and acute post-PVI PV reconnections (spontaneous PV reconnections and/or ATP-provoked dormant PV conduction). Acute PV reconnections were observed in 17 patients (36%) and in 24 (3%) of the 748 PV segments (16 segments per patient) and were associated with relatively high bipolar voltage amplitudes (3.26 ± 0.85 vs. 1.79 ± 1.15 mV, p < 0.0001) and a relatively low mean force-time integral (FTI) (428 ± 56 vs. 473 ± 76 gs, p = 0.0039) as well as FTI/PV-LA bipolar voltage (137 [106, 166] vs. 295 [193, 498] gs/mV, p < 0.0001). An analysis of the receiver operating characteristic curves revealed a high prognostic performance of the LA bipolar voltage and FTI/PV-LA bipolar voltage for acute PV reconnections (areas under the curve: 0.86 and 0.89, respectively); the best cutoff values were >2.12 mV and ≤183 gs/mV, respectively. The PV-LA voltage on the PV-encircling ablation line and FTI/PV-LA voltage were related to the acute post-PVI PV reconnections. A more durable ablation strategy is warranted for high-voltage zones.

  14. Suppressed oxygen extraction and degradation of LiNi xMn yCo zO 2 cathodes at high charge cut-off voltages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Yan, Pengfei; Zhang, Jiandong

    The capacity degradation mechanism in lithium nickel–manganese–cobalt oxide (NMC) cathodes (LiNi 1/3Mn 1/3Co 1/3O 2 (NMC 333) and LiNi 0.4Mn 0.4Co 0.2O 2 (NMC 442)) during high-voltage (cut-off of 4.8 V) operation has been investigated. In contrast to NMC 442, NMC 333 exhibits rapid structural changes including severe micro-crack formation and phase transformation from a layered to a disordered rock-salt structure, as well as interfacial degradation during high-voltage cycling, leading to a rapid increase of the electrode resistance and fast capacity decline. The fundamental reason behind the poor structural and interfacial stability of NMC 333 was found to be correlatedmore » to its high Co content and the significant overlap between the Co 3+/4+ t 2g and O 2- 2p bands, resulting in oxygen removal and consequent structural changes at high voltages. In addition, oxidation of the electrolyte solvents by the extracted oxygen species generates acidic species, which then attack the electrode surface and form highly resistive LiF. These findings highlight that both the structural and interfacial stability should be taken into account when tailoring cathode materials for high voltage battery systems.« less

  15. Suppressed oxygen extraction and degradation of LiNixMnyCozO2 cathodes at high charge cut-off voltages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Yan, Pengfei; Zhang, Jiandong

    The capacity degradation mechanism in lithium nickel-manganese-cobalt oxide (NMC) cathodes (LiNi1/3Mn1/3Co1/3O2 (NMC333) and LiNi0.4Mn0.4Co0.2O2 (NMC442)) during high-voltage (cut-off of 4.8 V) operation has been investigated. In contrast to NMC442, NMC333 exhibits rapid structural changes including severe micro-crack formation and phase transformation from a layered to a disordered rock-salt structure, as well as interfacial degradation during high-voltage cycling, leading to a rapid increase of the electrode resistance and fast capacity decline. The fundamental reason behind the poor structural and interfacial stability of NMC333 was found to be correlated to its high Co content and the significant overlap between the Co3+/4+ t(2g)more » and O2- 2p bands, resulting in oxygen removal and consequent structural changes at high voltages. In addition, oxidation of the electrolyte solvents by the extracted oxygen species generates acidic species, which then attack the electrode surface and form highly resistive LiF. These findings highlight that both the structural and interfacial stability should be taken into account when tailoring cathode materials for high voltage battery systems« less

  16. A rugged 650 V SOI-based high-voltage half-bridge IGBT gate driver IC for motor drive applications

    NASA Astrophysics Data System (ADS)

    Hua, Qing; Li, Zehong; Zhang, Bo; Chen, Weizhong; Huang, Xiangjun; Feng, Yuxiang

    2015-05-01

    This paper proposes a rugged high-voltage N-channel insulated gate bipolar transistor (IGBT) gate driver integrated circuit. The device integrates a high-side and a low-side output stages on a single chip, which is designed specifically for motor drive applications. High-voltage level shift technology enables the high-side stage of this device to operate up to 650 V. The logic inputs are complementary metal oxide semiconductor (CMOS)/transistor transistor logic compatible down to 3.3 V. Undervoltage protection functionality with hysteresis characteristic has also been integrated to enhance the device reliability. The device is fabricated in a 1.0 μm, 650 V high-voltage bipolar CMOS double-diffused metal oxide semiconductor (BCD) on silicon-on-insulator (SOI) process. Deep trench dielectric isolation technology is employed to provide complete electrical isolation with advantages such as reduced parasitic effects, excellent noise immunity and low leakage current. Experimental results show that the isolation voltage of this device can be up to approximately 779 V at 25°C, and the leakage current is only 5 nA at 650 V, which is 15% higher and 67% lower than the conventional ones. In addition, it delivers an excellent thermal stability and needs very low quiescent current and offers a high gate driver capability which is needed to adequately drive IGBTs that have large input capacitances.

  17. Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.

  18. Back-streaming ion beam measurements in a Self Magnetic Insulated (SMP) electron diode

    NASA Astrophysics Data System (ADS)

    Mazarakis, Michael; Johnston, Mark; Kiefer, Mark; Leckbee, Josh; Webb, Timothy; Bennett, Nichelle; Droemer, Darryl; Welch, Dale; Nielsen, Dan; Ziska, Derek; Wilkins, Frank; Advance radiography department Team

    2014-10-01

    A self-magnetic pinch diode (SMP) is presently the electron diode of choice for high energy flash x-ray radiography utilizing pulsed power drivers. The Sandia National Laboratories RITS accelerator is presently fit with an SMP diode that generates very small electron beam spots. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The diode's anode is made of high Z metal in order to produce copious and energetic flash x-rays for radiographic imaging of high areal density objects. In any high voltage inductive voltage adder (IVA) utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the anode-cathode (A-K) gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (~1 cm) and the diode region very hostile. We are currently measuring the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip. We then are evaluating the A-K gap voltage by ion time of flight measurements supplemented with filtered Rogowski coils. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE- AC04-94AL850.

  19. Theory of noise equivalent power of a high-temperature superconductor far-infrared bolometer in a photo-thermoelectrical mode of operation

    NASA Astrophysics Data System (ADS)

    Kaila, M. M.; Russell, G. J.

    2000-12-01

    We present a theory of noise equivalent power (NEP) and related parameters for a high-temperature superconductor (HTSC) bolometer in which temperature and resistance are the noise sources for open circuit operation and phonon and resistance are the noise sources for voltage-biased operation of the bolometer. The bolometer is designed to use a photo-thermoelectrical mode of operation. A mathematical formulation for the open circuit operation is first presented followed by an analysis of the heterodyne case with a bias applied in constant voltage mode. For the first time electrothermal (ET) and thermoelectrical (TE) feedback are treated in the heat balance equation simultaneously. A parallel resistance geometry consisting of thermoelectric and HTSC material legs has been chosen for the device. Computations for the ET-TE feedback show that the response time improves by three orders of magnitude and the responsivity becomes double for the same TE feedback. In the heat balance equation we have included among the heat transfer processes the temperature dependence of the thermal conductance at the bolometer-substrate interface for the dynamic state.

  20. Lightweight IMM PV Flexible Blanket Assembly

    NASA Technical Reports Server (NTRS)

    Spence, Brian

    2015-01-01

    Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.

  1. High voltage solar cell power generating system

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.

    1974-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.

  2. High-mobility low-temperature ZnO transistors with low-voltage operation

    NASA Astrophysics Data System (ADS)

    Bong, Hyojin; Lee, Wi Hyoung; Lee, Dong Yun; Kim, Beom Joon; Cho, Jeong Ho; Cho, Kilwon

    2010-05-01

    Low voltage high mobility n-type thin film transistors (TFTs) based on sol-gel processed zinc oxide (ZnO) were fabricated using a high capacitance ion gel gate dielectric. The ion gel gated solution-processed ZnO TFTs were found to exhibit excellent electrical properties. TFT carrier mobilities were 13 cm2/V s, ON/OFF current ratios were 105, regardless of the sintering temperature used for the preparation of the ZnO thin films. Ion gel gated ZnO TFTs are successfully demonstrated on plastic substrates for the large area flexible electronics.

  3. Reconfigurable ultra-thin film GDNMOS device for ESD protection in 28 nm FD-SOI technology

    NASA Astrophysics Data System (ADS)

    Athanasiou, Sotirios; Legrand, Charles-Alexandre; Cristoloveanu, Sorin; Galy, Philippe

    2017-02-01

    We propose a novel ESD protection device (GDNMOS: Gated Diode merged NMOS) fabricated with 28 nm UTBB FD-SOI high-k metal gate technology. By modifying the combination of the diode and transistor gate stacks, the robustness of the device is optimized, achieving a maximum breakdown voltage (VBR) of 4.9 V. In addition, modifications of the gate length modulate the trigger voltage (Vt1) with a minimum value of 3.5 V. Variable electrostatic doping (gate-induced) in diode and transistor body enables reconfigurable operation. A lower doping of the base enhances the bipolar gain, leading to thyristor behavior. This innovative architecture demonstrates excellent capability for high-voltage protection while maintaining a latch-up free behavior.

  4. Synergistic effects of liquid and gas phase discharges using pulsed high voltage for dyes degradation in the presence of oxygen.

    PubMed

    Yang, Bin; Zhou, Minghua; Lei, Lecheng

    2005-07-01

    The technology of combined liquid and gas phase discharges (LGD) using pulsed high voltage for dyes degradation was developed in this study. Apparent synergistic effects for Acid orange II (AO) degradation in the presence of oxygen were observed. The enhancement of AO degradation rate was around 302%. Furthermore, higher energy efficiency was obtained comparing with individual liquid phase discharge (LD) or gas phase discharge process (GD). The AO degradation in the presence of oxygen by LGD proceeded through the direct ozone oxidation and the ozone decomposition induced by LD. Important operating parameters such as electrode distance, applied voltage, pulse repetition rate, and types of dyes were further investigated.

  5. Development of Live-working Robot for Power Transmission Lines

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Liu, Xiaqing; Ren, Chengxian; Li, Jinliang; Li, Hui

    2017-07-01

    Dream-I, the first reconfigurable live-working robot for power transmission lines successfully developed in China, has the functions of autonomous walking on lines and accurately positioning. This paper firstly described operation task and object of the robot; then designed a general platform, an insulator replacement end and a drainage plate bolt fastening end of the robot, presented a control system of the robot, and performed simulation analysis on operation plan of the robot; and finally completed electrical field withstand voltage tests in a high voltage hall as well as online test and trial on actual lines. Experimental results show that by replacing ends of manipulators, the robot can fulfill operation tasks of live replacement of suspension insulators and live drainage plate bolt fastening.

  6. High-voltage plasma interactions calculations using NASCAP/LEO

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Katz, I.

    1990-01-01

    This paper reviews four previous simulations (two laboratory and two space-flight) of interactions of a high-voltage spacecraft with a plasma under low-earth orbit conditions, performed using a three-dimensional computer code NASCAP/LEO. Results show that NASCAP/LEO can perform meaningful simulations of high-voltage plasma interactions taking into account three-dimensional effects of geometry, spacecraft motion, and magnetic field. Two new calculations are presented: (1) for current collection by 1-mm pinholes in wires (showing that a pinhole in a wire can collect far more current than a similar pinhole in a flat plate); and (2) current collection by Charge-2 mother vehicle launched in December 1985. It is shown that the Charge-2 calculations predicted successfully ion collection at negative bias, the floating potential of a probe outside or inside the sheath under negative bias conditions, and magnetically limited electron collection under electron beam operation at high altitude.

  7. SEMICONDUCTOR INTEGRATED CIRCUITS: A quasi-3-dimensional simulation method for a high-voltage level-shifting circuit structure

    NASA Astrophysics Data System (ADS)

    Jizhi, Liu; Xingbi, Chen

    2009-12-01

    A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate.

  8. Evaluation of 10V Chip Polymer Tantalum Capacitors for Space Applications

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2016-01-01

    Due to low ESR and safe failure mode, new technology chip polymer tantalum capacitors (CPTC) have gained popularity in the electronics design community, first in commercial applications, and now in hi-rel and space systems. The major drawbacks of these parts are high leakage currents, degradation under environmental stresses, and a relatively narrow temperature range of operating and storage conditions. Several studies have shown that a certain amount of moisture in polymer cathodes is necessary for a normal operation of the parts. This might limit applications of CPTCs in space systems and requires analysis of long-term exposure to deep vacuum conditions on their performance and reliability. High leakage currents and limited maximum operational temperature complicate accelerated testing that is necessary to assess long-term reliability and require new screening and qualification procedures for quality assurance. A better understanding of behavior of CPTCs as compared to traditional, MnO2, capacitors is necessary to develop adequate approaches for QA system for space applications. A specific of CPTCs is that different materials and processes might be used for low-voltage (10 V and less) and high-voltage (above 10 V) capacitors, so performance and degradation processes in these groups require separate analysis. In this work, that is a part of the NASA Electronic Parts and Packaging (NEPP) program, degradation of AC and DC characteristics under environmental stresses at different temperatures and voltages have been studied in nine lots of commercial and automotive grade capacitors rated to 10 V. Results of analysis of leakage currents, high temperature storage (HTS) up to 5000 hrs in vacuum and air at different temperatures, and Highly Accelerated Life Testing (HALT) in the range from 85 C to 145 C are presented. Temperature and voltage acceleration factors were calculated based on approximation of distributions of degradation rates with a general log-linear Weibull model. Mechanisms of degradation and failures, and requirements for screening and qualification testing are discussed.

  9. Low power arcjet performance

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Sarmiento, Charles J.

    1990-01-01

    An experimental investigation was performed to evaluate arc jet operation at low power. A standard, 1 kW, constricted arc jet was run using nozzles with three different constrictor diameters. Each nozzle was run over a range of current and mass flow rates to explore stability and performance in the low power engine. A standard pulse-width modulated power processor was modified to accommodate the high operating voltages required under certain conditions. Stable, reliable operation at power levels below 0.5 kW was obtained at efficiencies between 30 and 40 percent. The operating range was found to be somewhat dependent on constrictor geometry at low mass flow rates. Quasi-periodic voltage fluctuations were observed at the low power end of the operating envelope, The nozzle insert geometry was found to have little effect on the performance of the device. The observed performance levels show that specific impulse levels above 350 seconds can be obtained at the 0.5 kW power level.

  10. Low power arcjet performance

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Sarmiento, Charles J.

    1990-01-01

    An experimental investigation was performed to evaluate arcjet operation at low power. A standard, 1 kW, constricted arcjet was run using nozzles with three different constrictor diameters. Each nozzle was run over a range of current and mass flow rates to explore stability and performance in the low power regime. A standard pulse-width modulated power processor was modified to accommodate the high operating voltages required under certain conditions. Stable, reliable operation at power levels below 0.5 kW was obtained at efficiencies between 30 and 40 percent. The operating range was found to be somewhat dependent on constrictor geometry at low mass flow rates. Quasi-periodic voltage fluctuations were observed at the low power end of the operating envelope. The nozzle insert geometry was found to have little effect on the performance of the device. The observed performance levels show that specific impulse levels above 350 seconds can be obtained at the 0.5 kW power level.

  11. Method of operating a thermoelectric generator

    DOEpatents

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  12. Development of a High-speed Electromagnetic Repulsion Mechanism for High-voltage Vacuum Circuit Breakers

    NASA Astrophysics Data System (ADS)

    Tsukima, Mitsuru; Takeuchi, Toshie; Koyama, Kenichi; Yoshiyasu, Hajimu

    This paper presents a design and testing of a new high-speed electromagnetic driving mechanism for a high-voltage vacuum circuit breaker (VCB). This mechanism is based on a high-speed electromagnetic repulsion and a permanent magnet spring (PMS). This PMS is introduced instead of the conventional disk spring due to its low spring energy and more suitable force characteristics for VCB application. The PMS has been optimally designed by the 3d non-linear finite-elements magnetic field analysis and investigated its internal friction and eddy-current effect. Furthermore, we calculated the dynamic of this mechanism coupling with the electromagnetic field and circuit analysis, in order to satisfy the operating characteristics—contact velocity, response time and so on, required for the high-speed VCB. A prototype VCB, which was built based on the above analysis shows sufficient operating performance. Finally, the short circuit interruption tests were carried out with this prototype breaker, and we have been able to verify its satisfying performance.

  13. Monolithic 3D CMOS Using Layered Semiconductors.

    PubMed

    Sachid, Angada B; Tosun, Mahmut; Desai, Sujay B; Hsu, Ching-Yi; Lien, Der-Hsien; Madhvapathy, Surabhi R; Chen, Yu-Ze; Hettick, Mark; Kang, Jeong Seuk; Zeng, Yuping; He, Jr-Hau; Chang, Edward Yi; Chueh, Yu-Lun; Javey, Ali; Hu, Chenming

    2016-04-06

    Monolithic 3D integrated circuits using transition metal dichalcogenide materials and low-temperature processing are reported. A variety of digital and analog circuits are implemented on two sequentially integrated layers of devices. Inverter circuit operation at an ultralow supply voltage of 150 mV is achieved, paving the way to high-density, ultralow-voltage, and ultralow-power applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A compact control system to achieve stable voltage and low jitter trigger for repetitive intense electron-beam accelerator based on resonant charging

    NASA Astrophysics Data System (ADS)

    Qiu, Yongfeng; Liu, Jinliang; Yang, Jianhua; Cheng, Xinbing; Yang, Xiao

    2017-08-01

    A compact control system based on Delphi and Field Programmable Gate Array(FPGA) is developed for a repetitive intense electron-beam accelerator(IEBA), whose output power is 10GW and pulse duration is 160ns. The system uses both hardware and software solutions. It comprises a host computer, a communication module and a main control unit. A device independent applications programming interface, devised using Delphi, is installed on the host computer. Stability theory of voltage in repetitive mode is analyzed and a detailed overview of the hardware and software configuration is presented. High voltage experiment showed that the control system fulfilled the requests of remote operation and data-acquisition. The control system based on a time-sequence control method is used to keep constant of the voltage of the primary capacitor in every shot, which ensured the stable and reliable operation of the electron beam accelerator in the repetitive mode during the experiment. Compared with the former control system based on Labview and PIC micro-controller developed in our laboratory, the present one is more compact, and with higher precision in the time dimension. It is particularly useful for automatic control of IEBA in the high power microwave effects research experiments where pulse-to-pulse reproducibility is required.

  15. High performance asymmetric supercapacitor based on polypyrrole/graphene composite and its derived nitrogen-doped carbon nano-sheets

    NASA Astrophysics Data System (ADS)

    Zhu, Jianbo; Feng, Tianyu; Du, Xianfeng; Wang, Jingping; Hu, Jun; Wei, LiPing

    2017-04-01

    Neutral aqueous medium is a promising electrolyte for supercapacitors because it is low-cost, environmental-friendly and can achieve rapid charging/discharging with high power density. However, the energy density of such supercapacitor is significantly limited by its narrow operational voltage window. Herein, we demonstrated an effective approach to broaden the operational voltage window by fabricating an asymmetric supercapacitor (ASC) with polypyrrole/reduced graphene oxide (PPy/rGO) composite and its derived Nitrogen-doped carbon nano-sheets (NCs) as positive and negative electrode material, respectively. The homogeneous nano-sheet and mesoporous structure of PPy/rGO and NCs can facilitate rapid charge/ion migration and provide more active sites for ions adsorption/exchange to improve their electrochemical performance. Benefiting from high capacitance and good rate performance of PPy/rGO and NCs electrodes, the as-fabricated ASCs devices in a polyvinyl alcohol/LiCl gel electrolyte can realize a wide operational voltage of 1.6 V and deliver high energy density of 15.8 wh kg-1 (1.01 mWh cm-3) at 0.14 kW kg-1 (19.3 mW cm-3), which still remains 9.5 wh kg-1as power density increases to 6.56 kW kg-1, as well as excellent long-term cycling stability with about 88.7% capacitance retention after 10000 cycles. The remarkable performances suggest that the ASCs devices are promising for future energy storage applications.

  16. Triggering regime of oil-filled trigatron dischargers

    NASA Astrophysics Data System (ADS)

    Kapishnikov, N. K.; Muratov, V. M.

    1986-11-01

    A comparative analysis made in [1, 2] of different types of regulable high-voltage dischargers with liquid insulation showed that trigatrons are currently the most promising for use in high-voltage pulse-operated devices due to their simplicity and reliability. Two basic mechanisms of discharge initiation can be realized in trigatrons — initiation by intensification of the field in the region of the control electrode [2, 3], and triggering by a spark in the ignition gap [4, 5]. The first type of trigatron has been studied sufficiently only for short voltage periods [3, 6, 7], so it is used mainly in switching the pulse-shaping lines of powerful nanosecond pulse generators with “rapid” (0.5 1.5 μsec) charging [8, 9]. Almost no use is now made of the second type of trigatron switch in high-voltage pulse technology due to its unsatisfactory time characteristics. Here we report results of a study of the time characteristics of both types of oil-filled trigatrons operating in a regime whereby they form the leading edge of rectangular voltage pulses with amplitudes up to 800 kV and durations of 1 100 μsec. The goal is to find the optimum conditions for triggering of trigatron dischargers with liquid insulation in the region of microsecond voltage discharges. Experiments were conducted on the unit in [10]. The test discharger was placed in a cylindrical chamber 45 cm in diameter and 27 cm in length. The high-voltage electrode of the discharger was in the form of a cylinder 20 cm in diameter positioned coaxially inside the chamber. The 10-mm-diameter ground electrode was positioned radially in a branch pipe 8 cm long. The control electrode was placed in a 2-cm-diameter hole in the center of the ground electrode. The chamber with the test discharge was filled with transformer oil with a breakdown voltage of about 50 kV. The oil was not replaced or cleaned during the experiment. We did not find that contamination of the oil by discharge products had any effect on the time characteristics of either type of discharger. The results were analyzed by the least squares method, with 50 measurements to a point (it was found that time lag of the discharger triggering conforms approximately to a normal distribution law for both types of discharger).

  17. Low-voltage high-performance organic thin film transistors with a thermally annealed polystyrene/hafnium oxide dielectric

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Acton, Orb; Ting, Guy; Weidner, Tobias; Ma, Hong; Castner, David G.; Jen, Alex K.-Y.

    2009-12-01

    Low-voltage pentacene-based organic thin film transistors (OTFTs) are demonstrated with polystyrene (PS)/hafnium oxide (HfOx) hybrid dielectrics. Thermal annealing of PS films on HfOx at 120 °C (PS-120) induces a flatter orientation of the phenyl groups (tilt angle 65°) at the surface compared to PS films without annealing (PS-RT) (tilt angle 31°). The flatter phenyl group orientation leads to better matching of surface energy between pentacene and PS. Pentacene deposited on PS-120 display higher quality thin films with larger grain sizes and higher crystallinity. Pentacene OTFTs with PS-120/HfOx hybrid dielectrics can operate at low-voltage (<3 V) with high field-effect mobilities (1 cm2/V s), high on/off current ratios (106), and low subthreshold slopes (100 mV/dec).

  18. High-Field Fast-Risetime Pulse Failures in 4H- and 6H-SiC pn Junction Diodes

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Fazi, Christian

    1996-01-01

    We report the observation of anomalous reverse breakdown behavior in moderately doped (2-3 x 10(exp 17 cm(exp -3)) small-area micropipe-free 4H- and 6H-SiC pn junction diodes. When measured with a curve tracer, the diodes consistently exhibited very low reverse leakage currents and sharp repeatable breakdown knees in the range of 140-150 V. However, when subjected to single-shot reverse bias pulses (200 ns pulsewidth, 1 ns risetime), the diodes failed catastrophically at pulse voltages of less than 100 V. We propose a possible mechanism for this anomalous reduction in pulsed breakdown voltage relative to dc breakdown voltage. This instability must be removed so that SiC high-field devices can operate with the same high reliability as silicon power devices.

  19. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  20. Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process

    PubMed Central

    Yun, Myeong Gu; Kim, Ye Kyun; Ahn, Cheol Hyoun; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun; Kim, Yong-Hoon

    2016-01-01

    We have demonstrated that photo-thin film transistors (photo-TFTs) fabricated via a simple defect-generating process could achieve fast recovery, a high signal to noise (S/N) ratio, and high sensitivity. The photo-TFTs are inverted-staggered bottom-gate type indium-gallium-zinc-oxide (IGZO) TFTs fabricated using atomic layer deposition (ALD)-derived Al2O3 gate insulators. The surfaces of the Al2O3 gate insulators are damaged by ion bombardment during the deposition of the IGZO channel layers by sputtering and the damage results in the hysteresis behavior of the photo-TFTs. The hysteresis loops broaden as the deposition power density increases. This implies that we can easily control the amount of the interface trap sites and/or trap sites in the gate insulator near the interface. The photo-TFTs with large hysteresis-related defects have high S/N ratio and fast recovery in spite of the low operation voltages including a drain voltage of 1 V, positive gate bias pulse voltage of 3 V, and gate voltage pulse width of 3 V (0 to 3 V). In addition, through the hysteresis-related defect-generating process, we have achieved a high responsivity since the bulk defects that can be photo-excited and eject electrons also increase with increasing deposition power density. PMID:27553518

Top