Koga, T; Hashimoto, S; Sugio, K; Yoshino, I; Nakagawa, K; Yonemitsu, Y; Sugimachi, K; Sueishi, K
2001-07-20
Although the tumor suppressor p53 protein (P53) immunoreactivity and its gene (p53) mutation were reported to be significant prognostic indicators for human lung adenocarcinomas, little is known regarding the relationship between the heterogeneous distribution of P53 and its genetic status in each tumor focus and the clinicopathological significance. To determine how P53 is heterogeneously stabilized in patients, we compared P53 expression to both the p53 allelic mutation in exon 2 approximately 9 by polymerase chain reaction-single strand conformation polymorphism using microdissected DNA fractions, and the immunohistochemical MDM2 expression. Of the 48 positive to P53 in 118 lung adenocarcinomas examined, 10 with heterogeneous P53 expression were closely examined. The higher P53 expression foci in 7 of 10 cases were less differentiated, histologically in respective cases, and were frequently associated with fibrous stroma. Two had genetic mutations in exon 7 of the p53 gene in both the high and low P53 expression foci of cancer tissue indicating no apparent correlation between heterogeneous P53 expression and the occurrence of gene mutation. Immunohistochemical expression of MDM2 was significantly lower in high P53 expression areas (p < 0.05, the mean labeling indices of high and low P53 expression areas being 4.2 +/- 5.4% and 13.6 +/- 12.2%, respectively). In addition, among all the 118 cases examined, MDM2 expression was significantly suppressed in cases of p53 gene mutation, simultaneously with P53 overexpression, as compared with cases without both the p53 mutation and expression (p < 0.001). These findings suggest that the heterogeneous stabilization of P53 in human lung adenocarcinomas could be partly due to suppressed MDM2 expression. The overexpression of non-mutated P53 may afford a protective mechanism in human lung adenocarcinomas. Copyright 2001 Wiley-Liss, Inc.
Stroescu, Cezar; Dragnea, Adrian; Ivanov, Bogdan; Pechianu, Catalin; Herlea, Vlad; Sgarbura, Olivia; Popescu, Andra; Popescu, Irinel
2008-12-01
Hepatocellular carcinoma is one of the most common malignant tumors that carry a poor prognosis. To improve the long-term outlook for HCC, an accurate prognosis is important. To study the immunohistochemical expressions of p53, Ki67, Bcl-2, VEGF and PCNA and their potential role as prognostic factors in patients with radical resection of hepatocellular carcinoma. Forty-seven formalin-fixed paraffin-embedded tumor samples from patients with HCC receiving liver resection were investigated immunohistochemically for the expression of cellular proliferation markers PCNA, Ki67, p53, Bcl-2 and VEGF and their correlation with tumor characteristics and survival time after resection. p53 was expressed in a higher percentage (85.7 vs. 42.1%) in undifferentiated histological tumor grades (Edmondson Steiner G3/G4 vs. G1/G2). Patients with p53 accumulating tumors showed a worse survival than patients with p53 non-accumulating tumors (median 9.5 vs. 16.5 months). Over-expression of VEGF was found in 38.3% of all HCCs. VEGF expression was significantly correlated with p53 expression and recurrence rates. The results showed that the labeling index of PCNA and expression of p53 are correlated. The high labeling index of PCNA or over-expression of p53 resulted in high risk of tumor recurrence, more aggressive growth and poor survival. High labeling index of PCNA, p53 nuclear accumulation and VEGF high expression are associated with poor survival in patients with HCC.
Kumar, Bhavna; Cordell, Kitrina G.; D’Silva, Nisha; Prince, Mark E.; Adams, Meredith E.; Fisher, Susan G.; Wolf, Gregory T.; Carey, Thomas E.; Bradford, Carol R.
2012-01-01
Objective To assess tumor markers in advanced laryngeal cancer. Design Marker expression and clinical outcome. Setting Laboratory. Patients Pretreatment tumor biopsies were analyzed from patients enrolled in the Department of Veterans Affairs laryngeal cancer trial. Main Outcome Measures Expression of p53 and Bcl-xL in pretreatment biopsies was assessed for correlation with chemotherapy response, laryngeal preservation, and survival. Results Higher rates of larynx preservation were observed in patients whose tumors expressed p53 versus those that did not (73% versus 53%, p = 0.0304). Higher rates of larynx preservation were also observed in patients whose tumors expressed low levels of Bcl-xL versus those that expressed high levels (90% versus 60%, p = 0.02). Patients were then categorized into 3 risk groups (low, intermediate and high risk) based on their tumor p53 and Bcl-xL expression status. We observed that patients whose tumors had the high risk biomarker profile (low p53 and high Bcl-xL) were less likely to preserve their larynx than patients whose tumors had the intermediate risk (high p53 and low or high Bcl-xL) or low risk (low p53 and low Bcl-xL) biomarker profile. The larynx preservation rates were 100%, 76% and 54% for the low, intermediate and high risk groups respectively (Fisher exact 0.039). Conclusions Tumor expression of p53 and Bcl-xL is a strong predictor of successful organ preservation in patients treated with induction chemotherapy followed by radiation in responding tumors. PMID:18427001
[Interaction between p53 and MDM2 in human lung cancer cells].
Rybárová, S; Hodorová, I; Vecanová, J; Muri, J; Mihalik, J
2014-01-01
The oncoprotein p53 protein induces cell growth arrest (apoptosis) in response to endo or exogenous stimuli. Mutation of TP53 (gene encoding the p53 protein) is common in human malignancies and alters the conformation of p53. The result is a more stable protein which accumulates in nuclei of tumor cells with loss of function. Mutant p53 is stabilized, and it is possible to detect this form very clearly by immunohistochemistry (IHC). Expression of the MDM2 protein is used as a potential marker of p53 function. P53 levels in normal cells are highly determined by the MDM2 protein (murine double minute 2) - mediated degradation of p53. MDM2 overexpression represents at least one mechanism by which p53 function can be abrogated during tumorigenesis. Lung carcinoma samples were obtained from patients, who underwent radical resection (lobectomy or pulmonectomy and lymphadectomy). Pathological dia-gnosis was based on the WHO criteria. In our study, we investigated the expression of p53 and MDM2 protein that might improve IHC as a marker for p53 status. Proteins were IHC detected in 136 samples of primary lung carcinoma. Immunostaining results of p53 positive samples were compared to IHC expression of MDM2 positive and MDM2 negative samples. Strong brown nuclear staining was visible in p53 and MDM2 positive cells. The most p53 positive cases were samples of squamocellular carcinoma (55%), then samples of large cell carcinoma (53%) and 26% adenocarcinoma samples showed the p53 immunoreactivity. No one sample of different types was p53 positive. When we compared the p53 expression and grade of tumor, we found that the p53 expression increased with the grade of tumor. For statistical evaluation, the chi square test was used. The relationship between p53 expression and type of tumor, also the p53 expression and grade of tumor was statistically significant (p = 0.000425; p = 0.00157). Regarding p53 and MDM2 expression, only nine samples (7%) were simultaneously p53 and MDM2 positive. In 46 (34%) cases, elevation of p53 was combined with MDM2 negative expression. Other tumor samples were either negative for both proteins (71/ 52%), or p53 negative and MDM2 positive in 10 (7%) tumor samples. Absence of p53 staining in most studies indicates absence of p53 mutation, and on the contrary, positive expression of p53 is a sign of p53 mutations with loss of function. In our study, 34% of cases with extensively high level of p53 without increased level of MDM2 were identified. We suppose that these are tumors with inactivating mutations that stabilize p53. On the other hand, tumors with high level of stabilized wildtype p53 protein and simultaneously with increased MDM2 staining (9 samples/7%) represent group with functional p53. In this group of patients, we could expect better prognosis with regard to function of p53 protein.
Barbareschi, M.; Caffo, O.; Doglioni, C.; Fina, P.; Marchetti, A.; Buttitta, F.; Leek, R.; Morelli, L.; Leonardi, E.; Bevilacqua, G.; Dalla Palma, P.; Harris, A. L.
1996-01-01
p21 protein (p21) inhibitor of cyclin-dependent kinases is a critical downstream effector in the p53-specific pathway of growth control. p21 can also be induced by p53-independent pathways in relation to terminal differentiation. We investigated p21 immunoreactivity in normal breast and in 91 breast carcinomas [three in situ ductal carcinomas (DCIS) with microinfiltration and 88 infiltrating carcinomas, 17 of which with an associated DCIS; 57 node negative and 34 node positive] with long-term follow-up (median = 58 months). Seven additional breast carcinomas with known p53 gene mutations were investigated. In normal breast p21 expression was seen in the nuclei of rare luminal cells of acinar structures, and in occasional myoepithelial cells. Poorly differentiated DCIS showed high p21 expression, whereas well-differentiated DCIS tumours showed few p21-reactive cells. p21 was seen in 82 (90%) infiltrating tumours; staining was heterogeneous; the percentage of reactive nuclei ranged from 1% to 35%. High p21 expression (more than 10% of reactive cells) was seen in 24 (26%) cases, and was associated with high tumour grade (P = 0.032); no associations were seen with tumour size, metastases, oestrogen receptor status, MIB1 expression and p53 expression. p21 expression in cases with p53 gene mutations was low in six cases and high in one. High p21 expression was associated with short relapse-free survival (P = 0.003). Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8688323
Knockdown of p53 suppresses Nanog expression in embryonic stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelalim, Essam Mohamed, E-mail: emohamed@qf.org.qa; Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia
2014-01-10
Highlights: •We investigate the role of p53 in ESCs in the absence of DNA damage. •p53 knockdown suppresses ESC proliferation. •p53 knockdown downregulates Nanog expression. •p53 is essential for mouse ESC self-renewal. -- Abstract: Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21more » and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.« less
Cheah, Y K; Cheng, R W; Yeap, S K; Khoo, C H; See, H S
2014-03-17
The identification of new biomarkers for early detection of highly recurrent head and neck cancer is urgently needed. MicroRNAs (miRNAs) are small and non-coding RNAs that regulate cancer-related gene expression, such as tumor protein 53 (TP53) gene expression. This study was carried out to analyze TP53 gene expression using real-time PCR and to determine changes in intracellular p53 level by flow cytometry after downregulation of miRNA-181a miRNA inhibitor in the FaDu cell line. TP53 gene expression showed a 3-fold increment and the p53 protein level was also increased in the miRNA-181a-treated cells. In conclusion, miRNA-181a binds to the TP53 gene and inhibits its expression, decreasing the synthesis of p53.
Na, Kiyong; Sung, Ji-Youn; Kim, Hyun-Soo
2017-12-01
Diffuse and strong nuclear p53 immunoreactivity and a complete lack of p53 expression are regarded as indicative of missense and nonsense mutations, respectively, of the TP53 gene. Tubo-ovarian and peritoneal high-grade serous carcinoma (HGSC) is characterized by aberrant p53 expression induced by a TP53 mutation. However, our experience with some HGSC cases with a wild-type p53 immunostaining pattern led us to comprehensively review previous cases and investigate the TP53 mutational status of the exceptional cases. We analyzed the immunophenotype of 153 cases of HGSC and performed TP53 gene sequencing analysis in those with a wild-type p53 immunostaining pattern. Immunostaining revealed that 109 (71.3%) cases displayed diffuse and strong p53 expression (missense mutation pattern), while 39 (25.5%) had no p53 expression (nonsense mutation pattern). The remaining five cases of HGSC showed a wild-type p53 immunostaining pattern. Direct sequencing analysis revealed that three of these cases harbored nonsense TP53 mutations and two had novel splice site deletions. TP53 mutation is almost invariably present in HGSC, and p53 immunostaining can be used as a surrogate marker of TP53 mutation. In cases with a wild-type p53 immunostaining pattern, direct sequencing for TP53 mutational status can be helpful to confirm the presence of a TP53 mutation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Dolićanin, Zana; Velicković, Ljubinka Janković; Djordjević, Biljana; Visnjić, Milan; Pesić, Ivana; Ristić, Ana; Marjanović, Vesna
2011-07-01
Deregulation of the normal cell cycle is common in upper urothelial carcinoma (UUC). The aim of this study was to investigate the expression of regulatory proteins of the cell cycle (p53, p16, cyclin D1, HER-2) and proliferative Ki-67 activity in UUC, and to determine their interaction and influence on the phenotypic characteristics of UUC. In 44 patients with UUC, histopathological and immunohistochemical analyses (p53, p16, cyclin D1, HER-2, and Ki-67) of tumors were done. Overexpression/altered expression of p53, p16, cyclin D1 or HER-2 was detected in 20%, 57%, 64%, and 57% of tumors, respectively. Eleven (25%) UUC had a high proliferative Ki-67 index. Forty patients (91%) had at least one marker altered, while four (9%) tumors had a wild-type status. Analysis of relationship between expressions of molecular markers showed that only high expression of p53 was significantly associated with altered p16 activity (p < 0.05). High Ki-67 index was associated with the high stage (p < 0.005), solid growth (p < 0.01), high grade (p < 0.05), and multifocality p < 0.05) of UUC, while high expression of p53 was associated with the solid growth (p < 0.05). In regression models that included all molecular markers and phenotypic characteristics, only Ki-67 correlated with the growth (p < 0.0001), stage (p < 0.01), grade (p < 0.05) and multifocality (p < 0.05) of UCC; (Ki-67 and HER-2 expression correlated with the lymphovascular invasion (p < 0.05). This investigation showed that only negative regulatory proteins of the cell cycle, p53 and p16, were significantly associated in UUC, while proliferative marker Ki-67 was in relation to the key phenotypic characteristics of UUC in the best way.
Quan, Jishu; Li, Yong; Jin, Meihua; Chen, Dunfu; Yin, Xuezhe; Jin, Ming
2017-03-01
Glioblastoma is the most malignant and invasive brain tumor with extremely poor prognosis. p53-inducible gene 3, a downstream molecule of the tumor suppressor p53, has been found involved in apoptosis and oxidative stress response. However, the functions of p53-inducible gene 3(PIG3) in cancer are far from clear including glioblastoma. In this study, we found that p53-inducible gene 3 expression was suppressed in glioblastoma tissues compared with normal tissues. And the expression of p53-inducible gene 3 was significantly associated with the World Health Organization grade. Patients with high p53-inducible gene 3 expression have a significantly longer median survival time (15 months) than those with low p53-inducible gene 3 expression (8 months). According to Cox regression analysis, p53-inducible gene 3 was an independent prognostic factor with multivariate hazard ratio of 0.578 (95% confidence interval, 0.352-0.947; p = 0.030) for overall survival. Additionally, gain and loss of function experiments showed that knockdown of p53-inducible gene 3 significantly increased the proliferation and invasion ability of glioblastoma cells while overexpression of p53-inducible gene 3 inhibited the proliferation and invasion ability. The results of in vivo glioblastoma models further confirmed that p53-inducible gene 3 suppression promoted glioblastoma progression. Altogether, our data suggest that high expression of p53-inducible gene 3 is significant for glioblastoma inhibition and p53-inducible gene 3 independently indicates good prognosis in patients, which might be a novel prognostic biomarker or potential therapeutic target in glioblastoma.
p53 mutation and expression in lymphoma.
Adamson, D. J.; Thompson, W. D.; Dawson, A. A.; Bennett, B.; Haites, N. E.
1995-01-01
Mutation and abnormal expression of p53 was studied in 38 lymphomas [five Hodgkin's disease and 33 non-Hodgkin's lymphoma (NHL)]. CM1 polyclonal antibody was used to detect overexpression of p53. Three missense mutations were characterised in three cases of NHL after screening exons 5-8 of p53 of all the tumours with single-strand conformation polymorphism (SSCP) analysis. Only two out of three tumours with a missense mutation showed abnormal expression of p53 as measured by CM1. Conversely, seven out of nine tumours with positive CM1 staining had no point mutation demonstrated. Overexpression of p53 in the cases of NHL occurred in three out of twenty four low-grade tumours and five out of nine high-grade tumours (Kiel classification). The results suggest that abnormalities of p53 are commoner in high-grade than low-grade NHL, and that positive immunocytochemistry cannot be used to determine which tumours have mutations of p53. Images Figure 1 Figure 2 PMID:7599045
Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53.
Loging, W T; Reisman, D
1999-11-01
The wild-type p53 protein is a DNA-binding transcription factor that activates genes such as p21, MDM2, GADD45, and Bax that are required for the regulation of cell cycle progression or apoptosis in response to DNA damage. Mutant forms of p53, which are transforming oncogenes and are expressed at high levels in tumor cells, generally have a reduced binding affinity for the consensus DNA sequence. Interestingly, some p53 mutants that are no longer effective at binding to the consensus DNA sequence and transactivating promoters containing this target site have acquired the ability to transform cells in culture, in part through their ability to transactivate promoters of a number of genes that are not targets of the wild-type protein. Certain p53 mutants are therefore considered to be gain-of-function mutants and appear to be promoting proliferation or transforming cells through their ability to alter the expression of novel sets of genes. Our goal is to identify genes that have altered expression in the presence of a specific mutant p53 (Arg to Trp mutation at codon 248) protein. Through examining differential gene expression in cells devoid of p53 expression and in cells that express high levels of mutant p53 protein, we have identified three ribosomal protein genes that have elevated expression in response to mutant p53. Consistent with these findings, the overexpression of a number of ribosomal protein genes in human tumors and evidence for their contribution to oncogenic transformation have been reported previously, although the mechanism leading to this overexpression has remained elusive. We show results that indicate that expression of these specific ribosomal protein genes is increased in the presence of the R248W p53 mutant, which provides a mechanism for their overexpression in human tumors.
[Expression of Ki-67 and P53 protein in oral squamous cell carcinoma and its clinical significance].
He, Wei; Xiao, Yan; Chen, Wei-min
2015-04-01
To investigate the clinical and pathological features and its relationship with the expression of Ki-67 and p53 protein in oral squamous cell carcinoma. Immunohistochemical SP staining method was used to quantify the protein expression levels of Ki-67 and p53 protein in 10 cases of normal oral mucosa, 16 cases of oral leukoplakia (OLK) tissue, and 48 cases of oral squamous cell carcinoma. The relationship of the expression of Ki-67 and p53 protein to clinical and pathological data was analyzed, and SPSS17.0 software package was used for statistical analysis. The positive expression rate of Ki-67 protein in normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma was 30%, 56.3% and 79.2%, respectively; The positive expression rate of p53 was 0%, 43.8%, and 70.8%, respectively; Ki-67 and p53 expression had significant difference among normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma (P<0.05); The expression of Ki-67 protein was significantly elevated with tumor stage, differentiation and cervical lymph node metastasis (P<0.05); The expression of p53 protein was significantly related to the degree of tumor differentiation (P<0.05); The expression of Ki-67 and p53 was positively correlated in oral squamous cell carcinoma (P<0.05). The high expression of Ki-67 and p53 protein in oral squamous cell carcinoma tissues may play an important role in the development of oral squamous cell carcinoma.
Paradiso, A; Rabinovich, M; Vallejo, C; Machiavelli, M; Romero, A; Perez, J; Lacava, J; Cuevas, M A; Rodriquez, R; Leone, B; Sapia, M G; Simone, G; De Lena, M
1996-12-20
In a series of 71 patients with advanced colorectal cancer treated with biochemically modulated 5-fluorouracil (5-FU) and methotrexate (MTX), we investigated the relationship between the proliferating-cell nuclear antigen (PCNA) (PC10) and p53 (Pab1801) primary-tumor immunohistochemical expression with respect to clinical response and long-term prognosis. Nuclear p53 expression was demonstrated in 44% of samples (any number of positive tumor cells) while all tumors showed a certain degree of PCNA immunostaining. PCNA immunostaining was correlated with histopathologic grade and p53 expression, while p53 was not correlated with any of the parameters considered. The probability of clinical response to biochemically modulated 5-FU was independent of p53 and PCNA expression. p53 expression (all cut-off values) was not associated with short- or long-term clinical prognosis, whereas patients with higher PCNA primary-tumor expression showed longer survival from treatment and survival from diagnosis, according to univariate and multivariate analysis, particularly in the sub-set of colon-cancer patients. We conclude that the clinical response of advanced-colorectal-cancer patients to biochemically modulated 5-FU and MTX cannot be predicted by PCNA and p53 primary-tumor expression, but high PCNA expression appears to be independently related to long-term prognosis.
Kravchenko, J. E.; Ilyinskaya, G. V.; Komarov, P. G.; Agapova, L. S.; Kochetkov, D. V.; Strom, E.; Frolova, E. I.; Kovriga, I.; Gudkov, A. V.; Feinstein, E.; Chumakov, P. M.
2008-01-01
Identification of unique features of cancer cells is important for defining specific and efficient therapeutic targets. Mutant p53 is present in nearly half of all cancer cases, forming a promising target for pharmacological reactivation. In addition to being defective for the tumor-suppressor function, mutant p53 contributes to malignancy by blocking a p53 family member p73. Here, we describe a small-molecule RETRA that activates a set of p53-regulated genes and specifically suppresses mutant p53-bearing tumor cells in vitro and in mouse xenografts. Although the effect is strictly limited to the cells expressing mutant p53, it is abrogated by inhibition with RNAi to p73. Treatment of mutant p53-expressing cancer cells with RETRA results in a substantial increase in the expression level of p73, and a release of p73 from the blocking complex with mutant p53, which produces tumor-suppressor effects similar to the functional reactivation of p53. RETRA is active against tumor cells expressing a variety of p53 mutants and does not affect normal cells. The results validate the mutant p53–p73 complex as a promising and highly specific potential target for cancer therapy. PMID:18424558
Zheng, Chuanming; Wang, Jiafeng; Ge, Minghua
2017-01-01
Adenoid cystic carcinoma of salivary glands is a rare adenocarcinoma and has been placed in “high-risk” category as poor long-term prognosis. The purpose of this study was to investigate p53 protein expression in adenoid cystic carcinoma of salivary glands and its correlation with clinicopathological parameters and prognosis. Literatures were searched from PubMed, Embase, Cochrane Library and Web of Science, which investigated the relationships between p53 expression and pathological type, clinical stage, local recurrence, metastasis, nerve infiltration and overall survival. A total of 1,608 patients from 36 studies were included in the analysis. The results showed that p53-postive expression rate was 49% in adenoid cystic carcinoma of salivary glands (OR=10.34, 95%CI: 4.93-21.71, P < 0.0001). The p53-postive expression was closely related to tumor types (OR=0.30, 95%CI: 0.14-0.65, P < 0.0001). The tumor with solid histological subtype had a strong positive correlation with p53 expression. The combined analysis revealed that the p53-positive expression rate among patients in T1and T2 stage was 41.4%, compared to 53.2% among those in T3 and T4 stage. However, there was no significant correlation between tumor stage and p53 expression (OR=0.47, 95% CI: 0.17-1.29, P = 0.14). Besides, compared to patients with p53-negative expression, those with p53-positive expression had a greater chance of developing metastasis, local recurrence and nerve infiltration as well as poorer 5-year overall survival (P < 0.01). In conclusion, the p53 expression is related to the survival of adenoid cystic carcinoma of salivary glands. It can be considered as the auxiliary detection index in treatment and prognosis of adenoid cystic carcinoma of salivary glands. PMID:28206977
Li, Qinglin; Huang, Ping; Zheng, Chuanming; Wang, Jiafeng; Ge, Minghua
2017-04-25
Adenoid cystic carcinoma of salivary glands is a rare adenocarcinoma and has been placed in "high-risk" category as poor long-term prognosis. The purpose of this study was to investigate p53 protein expression in adenoid cystic carcinoma of salivary glands and its correlation with clinicopathological parameters and prognosis. Literatures were searched from PubMed, Embase, Cochrane Library and Web of Science, which investigated the relationships between p53 expression and pathological type, clinical stage, local recurrence, metastasis, nerve infiltration and overall survival. A total of 1,608 patients from 36 studies were included in the analysis. The results showed that p53-postive expression rate was 49% in adenoid cystic carcinoma of salivary glands (OR=10.34, 95%CI: 4.93-21.71, P < 0.0001). The p53-postive expression was closely related to tumor types (OR=0.30, 95%CI: 0.14-0.65, P < 0.0001). The tumor with solid histological subtype had a strong positive correlation with p53 expression. The combined analysis revealed that the p53-positive expression rate among patients in T1and T2 stage was 41.4%, compared to 53.2% among those in T3 and T4 stage. However, there was no significant correlation between tumor stage and p53 expression (OR=0.47, 95% CI: 0.17-1.29, P = 0.14). Besides, compared to patients with p53-negative expression, those with p53-positive expression had a greater chance of developing metastasis, local recurrence and nerve infiltration as well as poorer 5-year overall survival (P < 0.01).In conclusion, the p53 expression is related to the survival of adenoid cystic carcinoma of salivary glands. It can be considered as the auxiliary detection index in treatment and prognosis of adenoid cystic carcinoma of salivary glands.
Ishii, Hideaki H; Gobé, Glenda C; Pan, Wenshen; Yoneyama, Juichi; Ebihara, Yoshiro
2002-09-01
Patients with gastric carcinomas have a poor prognosis and low survival rates. The aim of the present paper was to characterize cellular and molecular properties to provide insight into aspects of tumor progression in early compared with advanced gastric cancers. One hundred and nine graded gastric carcinomas (early or advanced stage, undifferentiated or differentiated type) with paired non-cancer tissue were studied to define the correlation between apoptosis (morphology, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling), cell proliferation (Ki-67 expression, morphology) and expression and localization of two proteins frequently having altered expression in cancers, namely p53 and c-myc. Overall, apoptosis was lower in early stage, differentiated and undifferentiated gastric carcinomas compared with advanced-stage cancers. Cell proliferation was comparatively high in all stages. There was a high level of p53 positivity in all stages. Only the early- and advanced-stage undifferentiated cancers that were p53 positive had a significantly higher level of apoptosis (P < 0.05). Cell proliferation was significantly greater (P < 0.05) only in the early undifferentiated cancers that had either c-myc or p53-positivity. The results indicate that low apoptosis and high cell proliferation combine to drive gastric cancer development. The molecular controls for high cell proliferation of the early stage undifferentiated gastric cancers involve overexpression of both p53 and c-myc. Overexpression of p53 may also control cancer development in that its expression is associated with higher levels of apoptosis in early and late-stage undifferentiated, cancers. Copyright 2002 Blackwell Publishing Asia Pty Ltd
Expressions of p53 and p21 in primary gastric lymphomas.
Go, J. H.; Yang, W. I.
2001-01-01
The p21 overexpression is thought to be a consequence of the p53 induced activation of the p21 gene. The immunohistochemical evaluation of p53 and p21 can be a valuable means of assessing the functional status of the p53 gene product. We examined the overexpression of p21 and p53 proteins in primary gastric lymphomas and the correlation with prognosis. A total of 32 cases of gastric lymphomas was classified into low-grade lymphomas of mucosa-associated lymphoid tissue type (n=16) and high-grade B-cell lymphomas (n=16). In low-grade lymphomas, only one case showed p53 positivity and all cases were p21-negative. In high-grade lymphomas, seven cases were p53+/p21- (44%), one case was p53+/p21+ (6%), and eight cases were p53-/p21- (50%). The p53+/p21- cases had a much lower percentage of patients sustaining a continuous complete remission state (3/7, 43%) compared with other cases (6/7, 86%). From these results, we concluded that p21 expression is rare in primary gastric lymphomas. Therefore, p53-positive lymphomas can be assumed as having p53 mutation. And combined studies of p53 and p21 may be used as a prognostic indicator in primary gastric high-grade lymphomas. PMID:11748353
p53 and PCNA Expression in Keratocystic Odontogenic Tumors Compared with Selected Odontogenic Cysts
Seyedmajidi, Maryam; Nafarzadeh, Shima; Siadati, Sepideh; Shafaee, Shahryar; Bijani, Ali; Keshmiri, Nazanin
2013-01-01
p53 and PCNA expression in keratocystic odontogenic tumors compared with selected odontogenic cysts Summary: The aim of this study was to evaluate p53 and PCNA expression in different odontogenic lesions regarding their different clinical behaviors. Slices prepared from 94 paraffin-embedded tissue blocks (25 radicular cysts (RC), 23 dentigerous cysts (DC), 23 keratocystic odontogenic tumors (KCOT) and 23 calcifying cystic odontogenic tumors (CCOT)) were stained with p53 and PCNA antibodies using immunohistochemistry procedure. The highest level of p53 expression was in the basal layer of RC, and the highest level of PCNA expression was in the suprabasal layer of KCOT. The differences of p53 expression in basal and suprabasal layers as well as PCNA expression in the suprabasal layer were significant but there was no significant difference in PCNA expression in the basal layer of these lesions. The expression of p53 in the basal layer of RC was higher than in other cysts. This may be due to intensive inflammatory infiltration. Also, the high level of PCNA expression in the suprabasal layer of KCOT may justify its neoplastic nature and tendency to recurrence. KCOT and calcifying cystic odontogenic tumors did not show similar expression of studied biomarkers. PMID:24551811
Hasanzadeh, Malihe; Sharifi, Norrie; Farazestanian, Marjaneh; Nazemian, Seyed Saman; Madani Sani, Faezeh
2016-01-01
Background Finding a tumor marker to predict the aggressive behavior of molar pregnancy in early stages has yet been a topic for studies. Objectives In this survey we planned to study patients with molar pregnancy to 1) assess the p53 and c-erbB-2 expression in trophoblastic tissue, 2) to study the relationship between their expression intensity and progression of a molar pregnancy to gestational trophoblastic neoplasia, and 3) to determine a cut off value for the amount of p53 and c-erbB-2 expression which might correlate with aggressive behavior of molar pregnancy. Patients and Methods In a prospective cross sectional study by using a high accuracy technique EnVision Tm system for immunohistochemistry staining of molar pregnancy samples, we evaluated p53 and c-erbB-2 expression in cytotrophoblast and syncytiotrophoblast and the correlation of their expression with progression of molar pregnancy to gestational trophoblastic neoplasia (GTN). Normal prostatic tissue and Breast cancer tissue were used as positive controls. Results We studied 28 patients with simple molar pregnancy (SMP) and 30 with GTN. Cytotrophobalst had significantly higher expression of p53 and c-erbB-2 and syncytiotrophoblast had greater expression of p53 in GTN group as compared to SMP group. The cut off values for percentage of p53 positive immunostained cytotrophoblast and syncytiotrophoblast were 5.5% and 2.5%. In c-erbB-2 positive membranous stained cytotrophoblast the cut off was 12.5%. Conclusions Our data suggests that over expression of p53 and c-erbB-2 is associated with malignant progression of molar pregnancy. We encountered that high expression of p53 and c-erbB-2 in trophoblastic cells could predict gestational trophoblastic neoplasia during the early stages. PMID:27703642
The p53 Isoform Δ133p53β Promotes Cancer Stem Cell Potential
Arsic, Nikola; Gadea, Gilles; Lagerqvist, E. Louise; Busson, Muriel; Cahuzac, Nathalie; Brock, Carsten; Hollande, Frederic; Gire, Veronique; Pannequin, Julie; Roux, Pierre
2015-01-01
Summary Cancer stem cells (CSC) are responsible for cancer chemoresistance and metastasis formation. Here we report that Δ133p53β, a TP53 splice variant, enhanced cancer cell stemness in MCF-7 breast cancer cells, while its depletion reduced it. Δ133p53β stimulated the expression of the key pluripotency factors SOX2, OCT3/4, and NANOG. Similarly, in highly metastatic breast cancer cells, aggressiveness was coupled with enhanced CSC potential and Δ133p53β expression. Like in MCF-7 cells, SOX2, OCT3/4, and NANOG expression were positively regulated by Δ133p53β in these cells. Finally, treatment of MCF-7 cells with etoposide, a cytotoxic anti-cancer drug, increased CSC formation and SOX2, OCT3/4, and NANOG expression via Δ133p53, thus potentially increasing the risk of cancer recurrence. Our findings show that Δ133p53β supports CSC potential. Moreover, they indicate that the TP53 gene, which is considered a major tumor suppressor gene, also acts as an oncogene via the Δ133p53β isoform. PMID:25754205
Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ming; Wang, Dan, E-mail: danwangwdd@163.com; Li, Ning
2016-04-22
The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatinmore » immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.« less
Suárez-Bonnet, Alejandro; Herráez, Pedro; Aguirre, Maria; Suárez-Bonnet, Elena; Andrada, Marisa; Rodríguez, Francisco; Espinosa de Los Monteros, Antonio
2015-07-01
The study of the expression of 14-3-3σ, p53, and vimentin proteins in canine transitional cell carcinoma (TCC) evaluating differences with normal bladder tissues, and the association with clinicopathological variables. We analyze by immunohistochemistry in 19 canine TCCs the expression of 14-3-3σ, p53, and vimentin using monoclonal antibodys. A semiquantitative scoring method was employed and statistical analysis was performed to display relationships between variables. In contrast to normal urinary bladder epithelium, which showed high levels of 14-3-3σ, its expression was decreased in 53% of the studied tumors (P = 0.0344). The 14-3-3σ protein was expressed by neoplastic emboli and by highly infiltrative neoplastic cells. The p53 protein was expressed in 26% of TCCs, but no significant association between 14-3-3σ and p53 was detected. Neoplastic epithelial cells displayed vimentin immunoreactivity in 21% of TCCs, and a positive correlation with mitotic index was observed (P = 0.042). Coexpression of vimentin and 14-3-3σ by highly infiltrative neoplastic cells was also observed. 14-3-3σ is deregulated in canine TCCs and its expression by highly infiltrative tumor cells may be related to the acquisition of aggressive behavior. Furthermore, this article reinforce the role of canine TCC as relevant model of human urothelial carcinoma and we suggest 14-3-3σ as a potential therapeutic target. Further studies are necessary to clarify the role of 14-3-3σ in canine TCC. Copyright © 2015 Elsevier Inc. All rights reserved.
Inga, Alberto; Nahari, Dorit; Velasco-Miguel, Susana; Friedberg, Errol C; Resnick, Michael A
2002-08-22
A mutation in codon 122 of the mouse p53 gene resulting in a T to L amino acid substitution (T122-->L) is frequently associated with skin cancer in UV-irradiated mice that are both homozygous mutant for the nucleotide excision repair (NER) gene Xpc (Xpc(-/-)) and hemizygous mutant for the p53 gene. We investigated the functional consequences of the mouse T122-->L mutation when expressed either in mammalian cells or in the yeast Saccharomyces cerevisiae. Similar to a non-functional allele, high expression of the T122-->L allele in p53(-/-) mouse embryo fibroblasts and human Saos-2 cells failed to suppress growth. However, the T122-->L mutant p53 showed wild-type transactivation levels with Bax and MDM2 promoters when expressed in either cell type and retained transactivation of the p21 and the c-Fos promoters in one cell line. Using a recently developed rheostatable p53 induction system in yeast we assessed the T122-->L transactivation capacity at low levels of protein expression using 12 different p53 response elements (REs). Compared to wild-type p53 the T122-->L protein manifested an unusual transactivation pattern comprising reduced and enhanced activity with specific REs. The high incidence of the T122-->L mutant allele in the Xpc(-/-) background suggests that both genetic and epigenetic conditions may facilitate the emergence of particular functional p53 mutations. Furthermore, the approach that we have taken also provides for the dissection of functions that may be retained in many p53 tumor alleles.
Dave, Kajal V; Chalishazar, Monali; Dave, Vishal R; Panja, Pritam; Singh, Manisha; Modi, Tapan G
2016-01-01
Oral squamous cell carcinoma (OSCC) is an epithelial neoplasm generally beginning as focal overgrowth of altered stem cells near the basement membrane, moving upward and laterally, replacing the normal epithelium. Histopathological grading has been used for many decades in an attempt to predict the clinical behavior of oral squamous cell carcinoma. In the present study, Forty biopsies were studied for histological grading and p53 expression. The p53 expression was studied in relation to clinical parameters such as age, sex of patient and site of tumors. Relation between histological grade of malignancy and p53 protein expression was analysed. All cases were classified according to Anneroth's histological malignancy grading system (1987). 40 cases of OSCC were assessed for clinical parameters, Anneroth's histological grading and immunohistochemically stained with p53 protien. The results obtained were analyzed using Spearman's Co-relation. The positive expression of p53 was found in 62% of carcinomas studied. Positivity of p53 showed correlation with histological grade of malignancy and with individual parameters like degree of keratinization, nuclear polymorphism, number of mitoses and lymphoplasmacytic infiltration while showed a negative correlation with pattern of invasion. Our study showed a significant correlation between parameters of tumor cell population, lymphoplasmacytic infiltration and p53 expression. A significant association between high grade of malignancy and p53 overexpression and insignificant correlation of p53 with age, sex of the patient and site of the tumor was found.
Ciepliński, Klaudiusz; Jóźwik, Maciej; Semczuk-Sikora, Anna; Gogacz, Marek; Lewkowicz, Dorota; Ignatov, Atanas; Semczuk, Andrzej
2018-02-01
The expression of p53 has been studied not only in primary human ovarian carcinomas, but also in borderline ovarian tumors, however, the results were discordant. Expression patterns of proteins involved in cell proliferation and apoptosis have been investigated in various human neoplasms, including female genital tract neoplasms. The aim of this investigation was to assess the staining pattern and immunolocalization of p53 and selected proliferative markers (Ki-67, MCM3, PCNA, and topoisomerase IIα) in borderline ovarian tumors (BOTs). The study group consisted of 42 women who underwent pelvic surgery between 2006-2015. The median patients' age was 46 years. The immunoperoxidase technique was employed using antibodies against p53, Ki-67, MCM3, PCNA, and topoisomerase IIα. For p53, nuclear expression was observed in BOTs, however, cytoplasmatic immunoreactivity was also detected. Altogether, 25 (60%) tumors demonstrated positive p53 immunostaining, including overexpression found in 6 (14%). There were no significant differences in p53 expression between subgroups of clinicopathological variables. Immunoexpression of Ki-67, MCM3, PCNA, and topoisomerase IIα was nuclear. Ki-67 expression was positive in 12 (29%) cases and there was a trend towards a relationship between patients' age and Ki-67 staining (P=0.08). Interestingly, a significantly higher Ki-67 expression was found in tumors of ≥10 cm in diameter compared to smaller tumors (P=0.008). MCM3 expression was detected in 38 (90%) tumors, and PCNA expression in 28 (67%), yet none of clinicopathological factors was related to them. Topoisomerase IIα expression was present in 14 (33%) cases and, interestingly, its significantly higher expression was observed in BOTs of ≥10 cm in diameter compared to smaller tumors (P=0.008). Moreover, Spearman's correlation revealed highly significant positive associations between Ki-67 and topoisomerase IIα (R=0.403, P=0.008) and Ki-67 and MCM3 (R=0.469, P=0.001). We report a high positive immunostaining rate for p53, suggesting a role of TP53 alterations in the development of BOTs in humans. The new finding of higher topoisomerase IIα immunostaining positivity in BOTs of ≥10 cm may be clinically relevant and requires further studies on larger patient groups.
Morten, Brianna C.; Scott, Rodney J.; Avery-Kiejda, Kelly A.
2016-01-01
p53 is expressed as multiple smaller isoforms whose functions in cancer are not well understood. The p53 isoforms demonstrate abnormal expression in different cancers, suggesting they are important in modulating the function of full-length p53 (FLp53). The quantification of relative mRNA expression has routinely been performed using real-time PCR (qPCR). However, there are serious limitations when detecting p53 isoforms using this method, particularly for formalin-fixed paraffin-embedded (FFPE) tissues. The use of FFPE tumours would be advantageous to correlate expression of p53 isoforms with important clinical features of cancer. One alternative method of RNA detection is the hybridization-based QuantiGene 2.0 Assay, which has been shown to be advantageous for the detection of RNA from FFPE tissues. In this pilot study, we compared the QuantiGene 2.0 Assay to qPCR for the detection of FLp53 and its isoform Δ40p53 in matched fresh frozen (FF) and FFPE breast tumours. FLp53 mRNA expression was detected using qPCR in FF and FFPE tissues, but Δ40p53 mRNA was only detectable in FF tissues. Similar results were obtained for the QuantiGene 2.0 Assay. FLp53 relative mRNA expression was shown to be strongly correlated between the two methods (R2 = 0.9927, p = 0.0031) in FF tissues, however Δ40p53 was not (R2 = 0.4429, p = 0.3345). When comparing the different methods for the detection of FLp53 mRNA from FFPE and FF samples, no correlation (R2 = 0.0002, p = 0.9863) was shown using the QuantiGene 2.0 Assay, and in contrast, the level of expression was highly correlated between the two tissues using qPCR (R2 = 0.8753, p = 0.0644). These results suggest that both the QuantiGene 2.0 Assay and qPCR methods are inadequate for the quantification of Δ40p53 mRNA in FFPE tissues. Therefore, alternative methods of RNA detection and quantification are required to study the relative expression of Δ40p53 in FFPE samples. PMID:27832134
Inhibition of Mdm2 Sensitizes Human Retinal Pigment Epithelial Cells to Apoptosis
Ray, Ramesh M.; Chaum, Edward; Johnson, Dianna A.; Johnson, Leonard R.
2011-01-01
Purpose. Because recent studies indicate that blocking the interaction between p53 and Mdm2 results in the nongenotoxic activation of p53, the authors sought to investigate whether the inhibition of p53-Mdm2 binding activates p53 and sensitizes human retinal epithelial cells to apoptosis. Methods. Apoptosis was evaluated by the activation of caspases and DNA fragmentation assays. The Mdm2 antagonist Nutlin-3 was used to dissociate p53 from Mdm2 and, thus, to increase p53 activity. Knockdown of p53 expression was accomplished by using p53 siRNA. Results. ARPE-19 and primary RPE cells expressed high levels of the antiapoptotic proteins Bcl-2 and Bcl-xL. Exposure of these cells to camptothecin (CPT) or TNF-α/ cycloheximide (CHX) failed to induce apoptosis. In contrast, treatment with the Mdm2 antagonist Nutlin-3 in the absence of CPT or TNF-α/CHX increased apoptosis. Activation of p53 in response to Nutlin-3 also increased levels of Noxa, p53-upregulated modulator of apoptosis (PUMA), and Siva-1, decreased expression of Bcl-2 and Bcl-xL, and simultaneously increased caspases-9 and -3 activities and DNA fragmentation. Knockdown of p53 decreased the basal expression of p21Cip1 and Bcl-2, inhibited the Nutlin-3–induced upregulation of Siva-1 and PUMA expression, and consequently inhibited caspase-3 activation. Conclusions. These results indicate that the normally available pool of intracellular p53 is predominantly engaged in the regulation of cell cycle checkpoints by p21Cip1 and does not trigger apoptosis in response to DNA-damaging agents. However, the blockage of p53 binding to Mdm2 frees a pool of p53 that is sufficient, even in the absence of DNA-damaging agents, to increase the expression of proapoptotic targets and to override the resistance of RPE cells to apoptosis. PMID:21345989
Liu, Chen; Sun, Bin; An, Ni; Tan, Weifeng; Cao, Lu; Luo, Xiangji; Yu, Yong; Feng, Feiling; Li, Bin; Wu, Mengchao; Su, Changqing; Jiang, Xiaoqing
2011-12-01
Gene therapy has become an important strategy for treatment of malignancies, but problems remains concerning the low gene transferring efficiency, poor transgene expression and limited targeting specific tumors, which have greatly hampered the clinical application of tumor gene therapy. Gallbladder cancer is characterized by rapid progress, poor prognosis, and aberrantly high expression of Survivin. In the present study, we used a human tumor-specific Survivin promoter-regulated oncolytic adenovirus vector carrying P53 gene, whose anti-cancer effect has been widely confirmed, to construct a wide spectrum, specific, safe, effective gene-viral therapy system, AdSurp-P53. Examining expression of enhanced green fluorecent protein (EGFP), E1A and the target gene P53 in the oncolytic adenovirus system validated that Survivin promoter-regulated oncolytic adenovirus had high proliferation activity and high P53 expression in Survivin-positive gallbladder cancer cells. Our in vitro cytotoxicity experiment demonstrated that AdSurp-P53 possessed a stronger cytotoxic effect against gallbladder cancer cells and hepatic cancer cells. The survival rate of EH-GB1 cells was lower than 40% after infection of AdSurp-P53 at multiplicity of infection (MOI) = 1 pfu/cell, while the rate was higher than 90% after infection of Ad-P53 at the same MOI, demonstrating that AdSurp-P53 has a potent cytotoxicity against EH-GB1 cells. The tumor growth was greatly inhibited in nude mice bearing EH-GB1 xenografts when the total dose of AdSurp-P53 was 1 × 10(9) pfu, and terminal dUTP nick end-labeling (TUNEL) revealed that the apoptotic rate of cancer cells was (33.4 ± 8.4)%. This oncolytic adenovirus system overcomes the long-standing shortcomings of gene therapy: poor transgene expression and targeting of only specific tumors, with its therapeutic effect better than the traditional Ad-P53 therapy regimen already on market; our system might be used for patients with advanced gallbladder cancer and other cancers, who are not sensitive to chemotherapy, radiotherapy, or who lost their chance for surgical treatment. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Kirla, R; Salminen, E; Huhtala, S; Nuutinen, J; Talve, L; Haapasalo, H; Kalimo, H
2000-01-01
Cumulative inactivation of tumor suppressor genes and/or amplification of oncogenes lead to progressively more malignant astrocytic tumors. We have analyzed the significance of tumor suppressor genes p53, p21, p16 and retinoblastoma protein (pRb) and proliferative activity for survival in 77 high grade astrocytic tumors. After operation, the patients--25 anaplastic astrocytomas (AA) and 52 glioblastomas (GBs)--were treated with similar radiotherapy. The expression of the suppressor genes and the proliferative activity were analyzed immunohistochemically. p53 immunopositivity was found in 44% of AAs and 46% of GBs. Tumors with aberrant p53 expression had lower proliferation indices than p53 immunonegative tumors. Neither p53 expression nor p21 immunonegativity (52% of AAs and 48% of GBs) correlated with survival. p16 immunostaining was negative in 16% of AAs and in 44% of GBs, and it correlated inversely with survival in both uni- and multivariate analyses. pRb immunostaining was negative only in 8% of both AAs and GBs and the absence of p16 and pRb were mutually exclusive. Ki-67 labelling index (LI) was significantly higher in GBs (26.8%) than in AAs (20.3%), and in multivariate analysis it was an independent prognostic factor for survival. In 48% of AAs Ki-67 LI exceeded 20% and this subset of AAs had similar prognosis as GB. In high grade astrocytic tumors p16 immunonegativity was an independent indicator of poor prognosis in addition to the previously established patient's age, histopathology and Ki-67 LI. Furthermore, there was a subset of AAs with a high proliferation rate (> 20%) in which the histopathological hallmarks of GB were lacking, but which had similarly dismal prognosis as GB.
Maeda, Tetsuyo; Nakanishi, Yoko; Hirotani, Yukari; Fuchinoue, Fumi; Enomoto, Katsuhisa; Sakurai, Kenichi; Amano, Sadao; Nemoto, Norimichi
2016-03-01
Triple negative breast cancer (TNBC) is immunohistochemically characterised by the lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor type 2 (HER2). TNBC is known for its poor prognosis and high recurrence probability. There is no effective targeted treatment for TNBC, but only adjuvant chemotherapies. There are two TNBC subtypes, basal-like and non-basal-like, which are defined based on positive cytokeratin (CK) 5/6 and/or epidermal growth factor receptor (EGFR) expression. In particular, CK5/6 expression is reported to correlate with TNBC recurrence. TNBC lacks ER-α expression, but some TNBCs are known to express the androgen receptor (AR). Moreover, although p53 accumulation is detected in various malignant tumors, its influence on adjuvant chemotherapy for patients with TNBC remains unclear. The aim of this study was to assess the combined immunohistochemical expression of CK 5/6, AR, and p53 as a potential prognostic marker of adjuvant chemotherapy for patients with TNBC. The expression of CK5/6, AR, and p53 in formalin-fixed and paraffin-embedded (FFPE) surgical sections from 52 patients with TNBC was analysed by immunohistochemistry (IHC) and the co-expression patterns in individual cells were investigated by immunofluorescent (IF) staining. Low AR expression was correlated with high clinical stage (P < 0.05) and low nuclear grade (P < 0.05). The expression of CK5/6 and p53 did not correlate with clinicopathological features. Patients who needed adjuvant chemotherapy presented the worst prognosis. In particular, when the IHC expression pattern was CK5/6 (-), AR (-), and p53 (+), the disease free survival (DFS) and overall survival (OS) were the worst. On the other hand, patients with AR (+) and p53 (-) TNBC presented a good prognosis. The analysis of the co-expression status of these three markers showed that no cells presented both AR and CK5/6 expression. Furthermore, TP53 mRNA expression was higher in patients with AR-negative TNBC (P < 0.05) and in patients with the worst prognosis (P < 0.05) than in the other patients. These results suggested that, in patients with CK5/6-negative TNBC, AR expression correlated with good prognosis, but p53 accumulation correlated with poor prognosis. The present IHC markers allowed us to predict the post-surgery prognosis of patients with TNBC. In conclusion, TNBCs are heterogeneous. Patients with the CK5/6 (-), AR (-), and p53 (+) TNBC subtype, evaluated by IHC, presented the worst prognosis. These IHC markers will be helpful to follow patients with TNBC.
Romano, Francesco Jacopo; Guadagno, Elia; Solari, Domenico; Borrelli, Giorgio; Pignatiello, Sara; Cappabianca, Paolo; Del Basso De Caro, Marialaura
2018-06-01
Glioblastoma is one of the most malignant cancers, with a distinguishing dismal prognosis: surgery followed by chemo- and radiotherapy represents the current standard of care, and chemo- and radioresistance underlie disease recurrence and short overall survival of patients suffering from this malignancy. ATM is a kinase activated by autophosphorylation upon DNA doublestrand breaks arising from errors during replication, byproducts of metabolism, chemotherapy or ionizing radiations; TP53 is one of the most popular tumor suppressor, with a preeminent role in DNA damage response and repair. To study the effects of the immunohistochemical expression of p-ATM and p53 in glioblastoma patients, 21 cases were retrospectively examined. In normal brain tissue, p-ATM was expressed only in neurons; conversely, in tumors cells, the protein showed a variable cytoplasmic expression (score: +,++,+++), with being completely undetectable in three cases. Statistical analysis revealed that high p-ATM score (++/+++) strongly correlated to shorter survival (P = 0.022). No difference in overall survival was registered between p53 normally expressed (NE) and overexpressed (OE) glioblastoma patients (P = 0.669). Survival analysis performed on the results from combined assessment of the two proteins showed that patients with NE p53 /low pATM score had longer overall survival than the NE p53/ high pATM score counterpart. Cox-regression analysis confirmed this finding (HR = 0.025; CI 95% = 0.002-0.284; P = 0.003). Our study outlined the immunohistochemical expression of p-ATM/p53 in glioblastomas and provided data on their possible prognostic/predictive of response role. A "non-oncogene addiction" to ATM for NEp53 glioblastoma could be postulated, strengthening the rationale for development of ATM inhibiting drugs. © 2018 Wiley Periodicals, Inc.
Mutant p53 expression in fallopian tube epithelium drives cell migration.
Quartuccio, Suzanne M; Karthikeyan, Subbulakshmi; Eddie, Sharon L; Lantvit, Daniel D; Ó hAinmhire, Eoghainín; Modi, Dimple A; Wei, Jian-Jun; Burdette, Joanna E
2015-10-01
Ovarian cancer is the fifth leading cause of cancer death among US women. Evidence supports the hypothesis that high-grade serous ovarian cancers (HGSC) may originate in the distal end of the fallopian tube. Although a heterogeneous disease, 96% of HGSC contain mutations in p53. In addition, the "p53 signature," or overexpression of p53 protein (usually associated with mutation), is a potential precursor lesion of fallopian tube derived HGSC suggesting an essential role for p53 mutation in early serous tumorigenesis. To further clarify p53-mutation dependent effects on cells, murine oviductal epithelial cells (MOE) were stably transfected with a construct encoding for the R273H DNA binding domain mutation in p53, the most common mutation in HGSC. Mutation in p53 was not sufficient to transform MOE cells but did significantly increase cell migration. A similar p53 mutation in murine ovarian surface epithelium (MOSE), another potential progenitor cell for serous cancer, was not sufficient to transform the cells nor change migration suggesting tissue specific effects of p53 mutation. Microarray data confirmed expression changes of pro-migratory genes in p53(R273H) MOE compared to parental cells, which could be reversed by suppressing Slug expression. Combining p53(R273H) with KRAS(G12V) activation caused transformation of MOE into high-grade sarcomatoid carcinoma when xenografted into nude mice. Elucidating the specific role of p53(R273H) in the fallopian tube will improve understanding of changes at the earliest stage of transformation. This information can help develop chemopreventative strategies to prevent the accumulation of additional mutations and reverse progression of the "p53 signature" thereby, improving survival rates. © 2015 UICC.
Pulitzer, Melissa P; Brannon, A Rose; Berger, Michael F; Louis, Peter; Scott, Sasinya N; Jungbluth, Achim A; Coit, Daniel G; Brownell, Isaac; Busam, Klaus J
2016-01-01
Cutaneous neuroendocrine (Merkel cell) carcinoma most often arises de novo in the background of a clonally integrated virus, the Merkel cell polyomavirus, and is notable for positive expression of retinoblastoma 1 (RB1) protein and low expression of p53 compared with the rare Merkel cell polyomavirus-negative Merkel cell carcinomas. Combined squamous and Merkel cell tumors are consistently negative for Merkel cell polyomavirus. Little is known about their immunophenotypic or molecular profile. Herein, we studied 10 combined cutaneous squamous cell and neuroendocrine carcinomas for immunohistochemical expression of p53, retinoblastoma 1 protein, neurofilament, p63, and cytokeratin 20 (CK20). We compared mutation profiles of five combined Merkel cell carcinomas and seven ‘pure’ Merkel cell carcinomas using targeted next-generation sequencing. Combined tumors were from the head, trunk, and leg of Caucasian males and one female aged 52–89. All cases were highly p53- and p63-positive and neurofilament-negative in the squamous component, whereas RB1-negative in both components. Eight out of 10 were p53-positive, 3/10 p63-positive, and 3/10 focally neurofilament-positive in the neuroendocrine component. Six out of 10 were CK20-positive in any part. By next-generation sequencing, combined tumors were highly mutated, with an average of 48 mutations per megabase compared with pure tumors, which showed 1.25 mutations per megabase. RB1 and p53 mutations were identified in all five combined tumors. Combined tumors represent an immunophenotypically and genetically distinct variant of primary cutaneous neuroendocrine carcinomas, notable for a highly mutated genetic profile, significant p53 expression and/or mutation, absent RB1 expression in the context of increased RB1 mutation, and minimal neurofilament expression. PMID:26022453
Pulitzer, Melissa P; Brannon, A Rose; Berger, Michael F; Louis, Peter; Scott, Sasinya N; Jungbluth, Achim A; Coit, Daniel G; Brownell, Isaac; Busam, Klaus J
2015-08-01
Cutaneous neuroendocrine (Merkel cell) carcinoma most often arises de novo in the background of a clonally integrated virus, the Merkel cell polyomavirus, and is notable for positive expression of retinoblastoma 1 (RB1) protein and low expression of p53 compared with the rare Merkel cell polyomavirus-negative Merkel cell carcinomas. Combined squamous and Merkel cell tumors are consistently negative for Merkel cell polyomavirus. Little is known about their immunophenotypic or molecular profile. Herein, we studied 10 combined cutaneous squamous cell and neuroendocrine carcinomas for immunohistochemical expression of p53, retinoblastoma 1 protein, neurofilament, p63, and cytokeratin 20 (CK20). We compared mutation profiles of five combined Merkel cell carcinomas and seven 'pure' Merkel cell carcinomas using targeted next-generation sequencing. Combined tumors were from the head, trunk, and leg of Caucasian males and one female aged 52-89. All cases were highly p53- and p63-positive and neurofilament-negative in the squamous component, whereas RB1-negative in both components. Eight out of 10 were p53-positive, 3/10 p63-positive, and 3/10 focally neurofilament-positive in the neuroendocrine component. Six out of 10 were CK20-positive in any part. By next-generation sequencing, combined tumors were highly mutated, with an average of 48 mutations per megabase compared with pure tumors, which showed 1.25 mutations per megabase. RB1 and p53 mutations were identified in all five combined tumors. Combined tumors represent an immunophenotypically and genetically distinct variant of primary cutaneous neuroendocrine carcinomas, notable for a highly mutated genetic profile, significant p53 expression and/or mutation, absent RB1 expression in the context of increased RB1 mutation, and minimal neurofilament expression.
Yadav, Manish K; Manoli, Nandini M; Madhunapantula, SubbaRao V
2016-01-01
Megaloblastic anemia (MBA), also known as macrocytic anemia, is a type of anemia characterized by decreased number of RBCs as well as the presence of unusually large, abnormal and poorly developed erythrocytes (megaloblasts), which fail to enter blood circulation due to their larger size. Lack of vitamin-B12 (VB12) and / or folate (Vitamin-B9, VB9) with elevated homocysteine is the key factor responsible for megaloblastic anemia. Prior studies have demonstrated the induction of apoptosis in these abnormal under-developed erythrocytes. However, it is not clear whether this apoptosis induction is due to elevated p53 level or due to any other mechanism. Furthermore, it is also not fully known whether decreased vitamin-B12 and / or folate are responsible for apoptosis induction mediated by p53 in pre-erythroblasts. Levels of serum VB9, VB12 and homocysteine in 50 patients suffering from MBA were compared with 50 non-megaloblastic anemia control subjects, who were referred by the clinicians for bone marrow examination for medical conditions other than MBA. Next, we have measured the p53 expression in the paraffin embedded blocks prepared from bone marrow biopsy, using immunohistochemistry, and the expression levels correlated with VB9 and VB12 levels. Out of 50 MBA patients 40 (80%) and 44 (88%) subjects had very low VB12 and VB9 levels respectively. In contrast, only 2 (4%) and 12 (24%) non-megaloblastic anemia controls, out of 50 subjects, had low VB12 and VB9 respectively. Correlating with low vitamin B9 and B12, the homocysteine levels were high in 80% cases. But, only 20% non-megaloblastic controls exhibited high homocysteine in plasma. Immunohistochemical analysis for p53 expression showed a significantly high level of expression in MBA cases and no-or very low-expression in control subjects. Our correlation studies comparing the VB12 and VB9 levels with p53 expression concludes unusually high p53 levels in patients suffering from VB12 and VB9 deficiency induced MBA compared to control subjects not suffering from MBA. Tumor protein p53 is the key protein expressed heavily in the bone marrow biopsies of patients suffering from VB12 and VB9 deficiency induced MBA but not in control subjects. Hence, p53 expression could be used as a surrogate marker for confirming the VB9 and VB12 induced MBA.
Yadav, Manish K.; Manoli, Nandini M.
2016-01-01
Background Megaloblastic anemia (MBA), also known as macrocytic anemia, is a type of anemia characterized by decreased number of RBCs as well as the presence of unusually large, abnormal and poorly developed erythrocytes (megaloblasts), which fail to enter blood circulation due to their larger size. Lack of vitamin-B12 (VB12) and / or folate (Vitamin-B9, VB9) with elevated homocysteine is the key factor responsible for megaloblastic anemia. Prior studies have demonstrated the induction of apoptosis in these abnormal under-developed erythrocytes. However, it is not clear whether this apoptosis induction is due to elevated p53 level or due to any other mechanism. Furthermore, it is also not fully known whether decreased vitamin-B12 and / or folate are responsible for apoptosis induction mediated by p53 in pre-erythroblasts. Methods Levels of serum VB9, VB12 and homocysteine in 50 patients suffering from MBA were compared with 50 non-megaloblastic anemia control subjects, who were referred by the clinicians for bone marrow examination for medical conditions other than MBA. Next, we have measured the p53 expression in the paraffin embedded blocks prepared from bone marrow biopsy, using immunohistochemistry, and the expression levels correlated with VB9 and VB12 levels. Results Out of 50 MBA patients 40 (80%) and 44 (88%) subjects had very low VB12 and VB9 levels respectively. In contrast, only 2 (4%) and 12 (24%) non-megaloblastic anemia controls, out of 50 subjects, had low VB12 and VB9 respectively. Correlating with low vitamin B9 and B12, the homocysteine levels were high in 80% cases. But, only 20% non-megaloblastic controls exhibited high homocysteine in plasma. Immunohistochemical analysis for p53 expression showed a significantly high level of expression in MBA cases and no—or very low—expression in control subjects. Our correlation studies comparing the VB12 and VB9 levels with p53 expression concludes unusually high p53 levels in patients suffering from VB12 and VB9 deficiency induced MBA compared to control subjects not suffering from MBA. Conclusion Tumor protein p53 is the key protein expressed heavily in the bone marrow biopsies of patients suffering from VB12 and VB9 deficiency induced MBA but not in control subjects. Hence, p53 expression could be used as a surrogate marker for confirming the VB9 and VB12 induced MBA. PMID:27780269
Xu-Monette, Zijun Y.; Møller, Michael B.; Tzankov, Alexander; Montes-Moreno, Santiago; Hu, Wenwei; Manyam, Ganiraju C.; Kristensen, Louise; Fan, Lei; Visco, Carlo; Dybkær, Karen; Chiu, April; Tam, Wayne; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W. L.; van Krieken, J. Han; Huang, Qin; Huh, Jooryung; Ai, Weiyun; Ponzoni, Maurilio; Ferreri, Andrés J. M.; Wu, Lin; Zhao, Xiaoying; Bueso-Ramos, Carlos E.; Wang, Sa A.; Go, Ronald S.; Li, Yong; Winter, Jane N.; Medeiros, L. Jeffrey
2013-01-01
MDM2 is a key negative regulator of the tumor suppressor p53, however, the prognostic significance of MDM2 overexpression in diffuse large B-cell lymphoma (DLBCL) has not been defined convincingly. In a p53 genetically–defined large cohort of de novo DLBCL patients treated with rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone (R-CHOP) chemotherapy, we assessed MDM2 and p53 expression by immunohistochemistry (n = 478), MDM2 gene amplification by fluorescence in situ hybridization (n = 364), and a single nucleotide polymorphism in the MDM2 promoter, SNP309, by SNP genotyping assay (n = 108). Our results show that MDM2 overexpression, unlike p53 overexpression, is not a significant prognostic factor in overall DLBCL. Both MDM2 and p53 overexpression do not predict for an adverse clinical outcome in patients with wild-type p53 but predicts for significantly poorer survival in patients with mutated p53. Variable p53 activities may ultimately determine the survival differences, as suggested by the gene expression profiling analysis. MDM2 amplification was observed in 3 of 364 (0.8%) patients with high MDM2 expression. The presence of SNP309 did not correlate with MDM2 expression and survival. This study indicates that evaluation of MDM2 and p53 expression correlating with TP53 genetic status is essential to assess their prognostic significance and is important for designing therapeutic strategies that target the MDM2-p53 interaction. PMID:23982177
Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena
2016-01-01
p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways. PMID:27124407
Yue, Hong; Wang, Liming; Jin, Jessica; Ghosh, Santosh K.; Kawsar, Hameem I.; Zender, Chad; Androphy, Elliot J.; Weinberg, Aaron; McCormick, Thomas S.; Jin, Ge
2016-01-01
Human β-defensin-3 (hBD3) is an epithelial cell-derived innate immune regulatory molecule overexpressed in oral dysplastic lesions and fosters a tumor-promoting microenvironment. Expression of hBD3 is induced by the epidermal growth factor receptor signaling pathway. Here we describe a novel pathway through which the high-risk human papillomavirus type-16 (HPV-16) oncoprotein E6 induces hBD3 expression in mucosal keratinocytes. Ablation of E6 by siRNA induces the tumor suppressor p53 and diminishes hBD3 in HPV-16 positive CaSki cervical cancer cells and UM-SCC-104 head and neck cancer cells. Malignant cells in HPV-16-associated oropharyngeal cancer overexpress hBD3. HPV-16 E6 induces hBD3 mRNA expression, peptide production and gene promoter activity in mucosal keratinocytes. Reduction of cellular levels of p53 stimulates hBD3 expression, while activation of p53 by doxorubicin inhibits its expression in primary oral keratinocytes and CaSki cells, suggesting that p53 represses hBD3 expression. A p53 binding site in the hBD3 gene promoter has been identified by using electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP). In addition, the p63 protein isoform ΔNp63α, but not TAp63, stimulated transactivation of the hBD3 gene and was co-expressed with hBD3 in head and neck cancer specimens. Therefore, high-risk HPV E6 oncoproteins may stimulate hBD3 expression in tumor cells to facilitate tumorigenesis of HPV-associated head and neck cancer. PMID:27034006
Lai, Jonathan H; Fleming, Kirsten E; Ly, Thai Yen; Pasternak, Sylvia; Godlewski, Marek; Doucette, Steve; Walsh, Noreen M
2015-09-01
Merkel cell polyomavirus is of oncogenic significance in approximately 80% of Merkel cell carcinomas. Morphological subcategories of the tumor differ in regard to viral status, the rare combined type being uniformly virus negative and the predominant pure type being mainly virus positive. Indications that different biological subsets of the tumor exist led us to explore this diversity. In an Eastern Canadian cohort of cases (75 patients; mean age, 76 years [range, 43-91]; male/female ratio, 43:32; 51 [68%] pure and 24 [34%] combined tumors), we semiquantitatively compared the immunohistochemical expression of 3 cellular proteins (p53, Bcl-2, and c-kit) in pure versus combined groups. Viral status was known in a subset of cases. The significant overexpression of p53 in the combined group (mean [SD], 153.8 [117.8] versus 121.6 [77.9]; P = .01) and the increased epidermal expression of this protein (p53 patches) in the same group lend credence to a primary etiologic role for sun damage in these cases. Expression of Bcl-2 and c-kit did not differ significantly between the 2 morphological groups. A relative increase in c-kit expression was significantly associated with a virus-negative status (median [interquartile range], 100 [60-115] versus 70 [0-100]; P = .03). Emerging data reveal divergent biological pathways in Merkel cell carcinoma, each with a characteristic immunohistochemical profile. Virus-positive tumors (all pure) exhibit high retinoblastoma protein and low p53 expression, whereas virus-negative cases (few pure and all combined) show high p53 and relatively high c-kit expression. The potential biological implications of this dichotomy call for consistent stratification of these tumors in future studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Chandel, Nirupama; Ayasolla, Kamesh; Wen, Hongxiu; Lan, Xiqian; Haque, Shabirul; Saleem, Moin A; Malhotra, Ashwani; Singhal, Pravin C
2017-02-01
Vitamin D receptor (VDR) deficient status has been shown to be associated with the activation of renin angiotensin system (RAS). We hypothesized that lack of VDR would enhance p53 expression in podocytes through down regulation of SIRT1; the former would enhance the transcription of angiotensinogen (Agt) and angiotensinogen II type 1 receptor (AT1R) leading to the activation of RAS. Renal tissues of VDR mutant (M) mice displayed increased expression of p53, Agt, renin, and AT1R. In vitro studies, VDR knockout podocytes not only displayed up regulation p53 but also displayed enhanced expression of Agt, renin and AT1R. VDR deficient podocytes also displayed an increase in mRNA expression for p53, Agt, renin, and AT1R. Interestingly, renal tissues of VDR-M as well as VDR heterozygous (h) mice displayed attenuated expression of deacetylase SIRT1. Renal tissues of VDR-M mice showed acetylation of p53 at lysine (K) 382 residues inferring that enhanced p53 expression in renal tissues could be the result of ongoing acetylation, a consequence of SIRT1 deficient state. Notably, podocytes lacking SIRT1 not only showed acetylation of p53 at lysine (K) 382 residues but also displayed enhanced p53 expression. Either silencing of SIRT1/VDR or treatment with high glucose enhanced podocyte PPAR-y expression, whereas, immunoprecipitation (IP) of their lysates with anti-retinoid X receptor (RXR) antibody revealed presence of PPAR-y. It appears that either the deficit of SIRT1 has de-repressed expression of PPAR-y or enhanced podocyte expression of PPAR-y (in the absence of VDR) has contributed to the down regulation of SIRT1. Copyright © 2017 Elsevier Inc. All rights reserved.
Lin, Ke; Sherrington, Paul D; Dennis, Michael; Matrai, Zoltan; Cawley, John C; Pettitt, Andrew R
2002-08-15
Established adverse prognostic factors in chronic lymphocytic leukemia (CLL) include CD38 expression, relative lack of IgV(H) mutation, and defects of the TP53 gene. However, disruption of the p53 pathway can occur through mechanisms other than TP53 mutation, and we have recently developed a simple screening test that detects p53 dysfunction due to mutation of the genes encoding either p53 or ATM, a kinase that regulates p53. The present study was conducted to examine the predictive value of this test and to establish the relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation. CLL cells from 71 patients were examined for IgV(H) mutation, CD38 expression, and p53 dysfunction (detected as an impaired p53/p21 response to ionizing radiation). Survival data obtained from 69 patients were analyzed according to each of these parameters. Relative lack of IgV(H) mutation (less than 5%; n = 45), CD38 positivity (antigen expressed on more than 20% of malignant cells; n = 19), and p53 dysfunction (n = 19) were independently confirmed as adverse prognostic factors. Intriguingly, all p53-dysfunctional patients and all but one of the CD38(+) patients had less [corrected] than 5% IgV(H) mutation. Moreover, patients with p53 dysfunction and/or CD38 positivity (n = 31) accounted for the short survival of the less mutated group. These findings indicate that the poor outcome associated with having less than 5% IgV(H) mutation may be due to the overrepresentation of high-risk patients with p53 dysfunction and/or CD38 positivity within this group, and that CD38(-) patients with functionally intact p53 may have a prolonged survival regardless of the extent of IgV(H) mutation.
Cereseto, A; Diella, F; Mulloy, J C; Cara, A; Michieli, P; Grassmann, R; Franchini, G; Klotman, M E
1996-09-01
Human T-cell lymphotropic/leukemia virus type I (HTLV-I) is associated with T-cell transformation both in vivo and in vitro. Although some of the mechanisms responsible for transformation remain unknown, increasing evidence supports a direct role of viral as well as dysregulated cellular proteins in transformation. We investigated the potential role of the tumor suppressor gene p53 and of the p53-regulated gene, p21waf1/cip1 (wild-type p53 activated fragment 1/cycling dependent kinases [cdks] interacting protein 1), in HTLV-I-infected T cells. We have found that the majority of HTLV-I-infected T cells have the wild-type p53 gene. However, its function in HTLV-I-transformed cells appears to be impaired, as shown by the lack of appropriate p53-mediated responses to ionizing radiation (IR). Interestingly, the expression of the p53 inducible gene, p21waf1/cip1, is elevated at the messenger ribonucleic acid and protein levels in all HTLV-I-infected T-cell lines examined as well as in Taxl-1, a human T-cell line stably expressing Tax. Additionally, Tax induces upregulation of a p21waf1/cip1 promoter-driven luciferase gene in p53 null cells, and increases p21waf1/cip1 expression in Jurkat T cells. These findings suggest that the Tax protein is at least partially responsible for the p53-independent expression of p21waf1/cip1 in HTLV-I-infected cells. Dysregulation of p53 and p21waf1/cip1 proteins regulating cell-cycle progression, may represent an important step in HTLV-I-induced T-cell transformation.
Walter, R F H; Mairinger, F D; Ting, S; Vollbrecht, C; Mairinger, T; Theegarten, D; Christoph, D C; Schmid, K W; Wohlschlaeger, J
2015-03-03
Malignant pleural mesothelioma (MPM) is a highly aggressive tumour that is first-line treated with a combination of cisplatin and pemetrexed. Until now, predictive and prognostic biomarkers are lacking, making it a non-tailored therapy regimen with unknown outcome. P53 is frequently inactivated in MPM, but mutations are extremely rare. MDM2 and P14/ARF are upstream regulators of P53 that may contribute to P53 inactivation. A total of 72 MPM patients were investigated. MDM2 immunoexpression was assessed in 65 patients. MDM2 and P14/ARF mRNA expression was analysed in 48 patients of the overall collective. The expression results were correlated to overall survival (OS) and progression-free survival (PFS). OS and PFS correlated highly significantly with MDM2 mRNA and protein expression, showing a dismal prognosis for patients with elevated MDM2 expression (for OS: Score (logrank) test: P⩽0.002, and for PFS: Score (logrank) test; P<0.007). MDM2 was identified as robust prognostic and predictive biomarker for MPM on the mRNA and protein level. P14/ARF mRNA expression reached no statistical significance, but Kaplan-Meier curves distinguished patients with low P14/ARF expression and hence shorter survival from patients with higher expression and prolonged survival. MDM2 is a prognostic and predictive marker for a platin-pemetrexed therapy of patients with MPMs. Downregulation of P14/ARF expression seems to contribute to MDM2-overexpression-mediated P53 inactivation in MPM patients.
Vaughan, Catherine; Mohanraj, Lathika; Singh, Shilpa; Dumur, Catherine I.; Ramamoorthy, Mahesh; Garrett, Carleton T.; Windle, Brad; Yeudall, W. Andrew; Deb, Sumitra
2011-01-01
The current model predicts that MDM2 is primarily overexpressed in cancers with wild-type (WT) p53 and contributes to oncogenesis by degrading p53. Following a correlated expression of MDM2 and NF-κB2 transcripts in human lung tumors, we have identified a novel transactivation function of MDM2. Here, we report that in human lung tumors, overexpression of MDM2 was found in approximately 30% of cases irrespective of their p53 status, and expression of MDM2 and NF-κB2 transcripts showed a highly significant statistical correlation in tumors with WT p53. We investigated the significance of this correlated expression in terms of mechanism and biological function. Increase in MDM2 expression from its own promoter in transgenic mice remarkably enhanced expression of NF-κB2 compared with its non-transgenic littermates. Knockdown or elimination of endogenous MDM2 expression in cultured non-transformed or lung tumor cells drastically reduced expression of NF-κB2 transcripts, suggesting a normal physiological role of MDM2 in regulating NF-κB2 transcription. MDM2 could up-regulate expression of NF-κB2 transcripts when its p53-interaction domain was blocked with Nutlin-3, indicating that the MDM2-p53 interaction is dispensable for up-regulation of NF-κB2 expression. Consistently, analysis of functional domains of MDM2 indicated that although the p53-interaction domain of MDM2 contributes to the up-regulation of the NFκB2 promoter, MDM2 does not require direct interactions with p53 for this function. Accordingly, MDM2 overexpression in non-transformed or lung cancer cells devoid of p53 also generated a significant increase in the expression of NF-κB2 transcript and its targets CXCL-1 and CXCL-10, whereas elimination of MDM2 expression had the opposite effects. MDM2-mediated increase in p100/NF-κB2 expression reduced cell death mediated by paclitaxel. Furthermore, knockdown of NF-κB2 expression retarded cell proliferation. Based on these data, we propose that MDM2-mediated NF-κB2 up-regulation is a combined effect of p53-dependent and independent mechanisms and that it confers a survival advantage to lung cancer cells. PMID:22701761
Liang, Yun; Zhang, Xiaofei; Chen, Xiaoduan; Lü, Weiguo
2015-01-01
The differential diagnosis between atypical leiomyoma and leiomyosarcoma may be hard based on morphological criterion at times. It would be helpful to find out biomarkers that can be used to distinguish them. The aim of the study was to investigate the diagnostic value of progesterone receptor (PR), p16, p53 and pHH3 expression in a series of uterine smooth muscle tumors. Immunohistochemical expression of PR, p16, p53 and pHH3 was investigated on 32 atypical leiomyomas, 15 leiomyosarcomas and 15 usual leomyomas. The difference in expression was compared between atypical leiomyoma and other groups. The expression of PR, p16, and pHH3 was found significantly different between atypical leiomyomas and leiomyosarcomas, but lack of significant difference between atypical leiomyomas and usual leiomyomas. There was no significant difference with regard to p53 distribution among these uterine smooth muscle tumors. High p16, pHH3 expression and low PR expression preferred the diagnosis of leiomyosarcoma. The panel of antibodies used in this study is a useful complementary analysis in the assessment of problematic uterine smooth muscle tumors.
Liang, Yun; Zhang, Xiaofei; Chen, Xiaoduan; Lü, Weiguo
2015-01-01
The differential diagnosis between atypical leiomyoma and leiomyosarcoma may be hard based on morphological criterion at times. It would be helpful to find out biomarkers that can be used to distinguish them. The aim of the study was to investigate the diagnostic value of progesterone receptor (PR), p16, p53 and pHH3 expression in a series of uterine smooth muscle tumors. Immunohistochemical expression of PR, p16, p53 and pHH3 was investigated on 32 atypical leiomyomas, 15 leiomyosarcomas and 15 usual leomyomas. The difference in expression was compared between atypical leiomyoma and other groups. The expression of PR, p16, and pHH3 was found significantly different between atypical leiomyomas and leiomyosarcomas, but lack of significant difference between atypical leiomyomas and usual leiomyomas. There was no significant difference with regard to p53 distribution among these uterine smooth muscle tumors. High p16, pHH3 expression and low PR expression preferred the diagnosis of leiomyosarcoma. The panel of antibodies used in this study is a useful complementary analysis in the assessment of problematic uterine smooth muscle tumors. PMID:26261614
[Expression of CD10 in tumor-associated fibroblast of cancerized or recurrent colorectal adenomas].
Zheng, Jiangjiang; Zhu, Yin; Li, Changshui; Li, Yinya; Nie, Qianqian; Zhu, Ziling; Deng, Hong
2016-05-25
Objective: To investigate the expression of CD10 in tumor-associated fibroblasts (TAF) in colorectal adenomas and its relation to cancerization and recurrence of adenoma. Methods: Tissue samples of low-grade adenoma ( n =50), high-grade adenoma ( n =50) and colorectal adenocarcinoma ( n =50) were collected, and tissue samples at the distal margin of corresponding colorectal lesions were taken as controls. The expression of CD10 in the stromal TAFs, and the expressions of β-catenin, Ki-67, p53 and CyclinD1 in tumor cells were detected by immunohistochemistry (Envision). The correlation of CD10 expression in stromal TAFs with the expressions of β-catenin, Ki-67, p53 and CyclinD1 in tumor cells was analyzed by Spearmen. One hundred samples of low-grade colorectal adenoma were collected, including 57 non-recurrent cases and 43 recurrent cases (16 cases of recurrent adenoma and 27 cases of recurrent adenocarcinoma); the expression of stromal TAF CD10 were determined and compared among groups. Results: There was no TAF in normal colorectal mucosa. The expression rates of TAF CD10 in low-grade adenoma, high-grade adenoma and colorectal adenocarcinoma were 22%, 50% and 78%, respectively (all P <0.05). The expression of Ki-67 and β-catenin in low-grade adenoma, high-grade adenoma, colorectal adenocarcinoma was on a rising trend (all P <0.01). The expression of CyclinD1 in high-grade adenoma was higher than that in colorectal adenocarcinoma and low-grade adenoma (all P >0.05). The expression of p53 in colorectal adenocarcinoma and high-grade adenoma was higher than that in low grade adenoma (all P <0.01). The expression of TAF CD10 was correlated with the expression of p53, Ki-67 and β-catenin-nucleus( r =0.264、0.307、0.320, all P <0.01),but not correlated with CyclinD1 and β-catenin-membrane ( r =0.012、-0.073, all P >0.05). The TAF CD10 level was significantly higher in low-grade adenoma with recurrence than that in those without recurrence ( P <0.05).The expression of CD10 in recurrent colorectal adenocarcinoma was higher than that in recurrent adenoma ( P <0.05). Conclusion: The expression of TAF CD10 is increased gradually in the process of adenoma-cancer, indicating that it may play an important role in the canceration of adenoma. Adenomas with high expression of CD10 TAF are likely to be recurrent and cancerized, and detection of TAF CD10 combined with p53, Ki-67 and β-catenin may be of value in predicting canceration or recurrence of colorectal adenoma.
The Prognostic Impact of p53 Expression on Sporadic Colorectal Cancer Is Dependent on p21 Status.
Kruschewski, Martin; Mueller, Kathrin; Lipka, Sybille; Budczies, Jan; Noske, Aurelia; Buhr, Heinz Johannes; Elezkurtaj, Sefer
2011-03-11
The prognostic value of p53 and p21 expression in colorectal cancer is still under debate. We hypothesize that the prognostic impact of p53 expression is dependent on p21 status. The expression of p53 and p21 was immunohistochemically investigated in a prospective cohort of 116 patients with UICC stage II and III sporadic colorectal cancer. The results were correlated with overall and recurrence-free survival. The mean observation period was 51.8 ± 2.5 months. Expression of p53 was observed in 72 tumors (63%). Overall survival was significantly better in patients with p53-positive carcinomas than in those without p53 expression (p = 0.048). No differences were found in recurrence-free survival (p = 0.161). The p53+/p21- combination was seen in 68% (n = 49), the p53+/p21+ combination in 32% (n = 23). Patients with p53+/p21- carcinomas had significantly better overall and recurrence-free survival than those with p53+/p21+ (p < 0.0001 resp. p = 0.003). Our data suggest that the prognostic impact of p53 expression on sporadic colorectal cancer is dependent on p21 status.
P53 protein in proliferation, repair and apoptosis of cells.
Wawryk-Gawda, Ewelina; Chylińska-Wrzos, Patrycja; Lis-Sochocka, Marta; Chłapek, Katarzyna; Bulak, Kamila; Jędrych, Marian; Jodłowska-Jędrych, Barbara
2014-05-01
The p53 protein is an important factor of many intra- and extracellular processes. This protein regulates the repair of cellular DNA and induces apoptosis. It is also responsible for the regulation of the senescence and the cell entering the subsequent stages of the cellular cycle. The protein p53 is also involved in inhibiting angiogenesis and the induction of oxidative shock. In our study, we examined the activity of p53 protein in the uterine epithelial cells in rats treated with cladribine. Its action is mainly based on apoptosis induction. We compared the activity of p53 protein in cells with a high apoptosis index and in cells with active repair mechanisms and high proliferation index. We observed stronger p53 protein expression in the epithelial cells of the materials taken 24 h after the last dose of 2-CdA associated with the active process of apoptosis and inhibition of proliferation. After 4 weeks from the last dose of cladribine, the stronger expression of p53 protein was associated with both the existing changes in the cell's genome, the effects of the ongoing repair mechanisms, as well as the high proliferation activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuan, Man I; O’Dowd, John M.; Fortunato, Elizabeth
Our electron microscopy study (Kuan et al., 2016) found HCMV nuclear capsid egress was significantly reduced in p53 knockout cells (p53KOs), correlating with inhibited formation of infoldings of the inner nuclear membrane (IINMs). Molecular examination of these phenomena has found p53KOs expressed UL97 and phosphorylated lamins, however the lamina failed to remodel. The nuclear egress complex (NEC) protein UL50 was expressed in almost all cells. UL50 re-localized to the inner nuclear membrane (INM) in ~90% of wt cells, but only ~35% of p53KOs. UL53 expression was significantly reduced in p53KOs, and cells lacking UL50 nuclear staining, expressed no UL53. Re-introductionmore » of p53 into p53KOs largely recovered UL53 positivity and UL50 nuclear re-localization. Nuclear rim located UL50/53 puncta, which co-localized with the major capsid protein, were largely absent in p53KOs. We believe these puncta were IINMs. In the absence of p53, UL53 expression was inhibited, disrupting formation of the NEC/IINMs, and reducing functional virion secretion. -- Highlights: •Phosphorylated nuclear lamins were inefficiently remodeled in p53KO cells. •p53KO cells expressed UL50, but it was not efficiently targeted to the nuclear rim. •UL53 was not expressed in the large majority of p53KO cells. •Cells failing to express UL53 did not localize UL50 to the nucleus. •NEC puncta/infoldings of the inner nuclear membrane were scarce in p53KO cells.« less
Attias-Geva, Zohar; Bentov, Itay; Kidron, Dvora; Amichay, Keren; Sarfstein, Rive; Fishman, Ami; Bruchim, Ilan; Werner, Haim
2012-07-01
The role of the insulin-like growth factors (IGF) in endometrial cancer has been well established. The IGF-I receptor (IGF-IR), which mediates the biological actions of IGF-I, is usually overexpressed in endometrial tumours. Uterine serous carcinoma (USC) constitutes a defined histological category among endometrial cancers. Mutation of the p53 gene appears early in the course of the disease and is considered a key event in the initiation of USC. The aim of the present study was to evaluate the potential interactions between p53 and the IGF-IR in USC. In addition, we investigated the role of p53 as a biomarker in IGF-IR targeted therapies. Immunohistochemical analysis in a collection of 35 USC specimens revealed that IGF-IR is highly expressed in primary and metastatic USC. Likewise, p53 was expressed in 85.7% of primary tumours and 100% of metastases. A significant negative correlation between p53 expression and survival was noticed. In addition, using USC-derived cell lines we provide evidence that p53 regulates IGF-IR gene expression via a mechanism that involves repression of the IGF-IR promoter. We show that the mechanism of action of p53 involves interaction with zinc finger protein Sp1, a potent transactivator of the IGF-IR gene. Finally, we demonstrate that USC tumours overexpressing p53 are more likely to benefit from anti-IGF-IR therapies. In summary, we provide evidence that p53 regulates IGF-IR gene expression in USC cells via a mechanism that involves repression of the IGF-IR promoter. The interplay between the p53 and IGF-I signalling pathways is of major basic and translational relevance. Copyright © 2011 Elsevier Ltd. All rights reserved.
BRCA1/2 and TP53 mutation status associates with PD-1 and PD-L1 expression in ovarian cancer.
Wieser, Verena; Gaugg, Inge; Fleischer, Martina; Shivalingaiah, Giridhar; Wenzel, Soeren; Sprung, Susanne; Lax, Sigurd F; Zeimet, Alain G; Fiegl, Heidelinde; Marth, Christian
2018-04-03
Checkpoint molecules such as programmed cell death protein-1 (PD-1) and its ligand PD-L1 are critically required for tumor immune escape. The objective of this study was to investigate tumoral PD-1 and PD-L1 mRNA-expression in a cohort of ovarian cancer (OC) patients in relation to tumor mutations. We analyzed mRNA expression of PD-1 , PD-L1 and IFNG by quantitative real-time PCR in tissue of 170 patients with low grade-serous (LGSOC), high-grade serous (HGSOC), endometrioid and clear cell OC compared to 28 non-diseased tissues (ovaries and fallopian tubes) in relation to tumor protein 53 ( TP53 ) and breast cancer gene 1/2 ( BRCA1/2 ) mutation status. TP53 -mutated OC strongly expressed PD-L1 compared to TP53 wild-type OC ( p = 0.028) and BRCA1/2 -mutated OC increasingly expressed PD-1 ( p = 0.024) and PD-L1 ( p = 0.012) compared to BRCA1/2 wild-type OC. For the first time in human, we noted a strong correlation between tumoral IFNG and PD-1 or PD-L1 mRNA-expression, respectively ( p < 0.001). OC tissue increasingly expressed PD-1 compared to healthy controls (vs. ovaries: p < 0.001; vs. tubes: p = 0.018). PD-1 and PD-L1 mRNA-expression increased with higher tumor grade ( p = 0.008 and p = 0.027, respectively) and younger age (< median age, p = 0.001). Finally, in the major subgroup of our cohort, FIGO stage III/IV HGSOC, high PD-1 and PD-L1 mRNA-expression was associated with reduced progression-free ( p = 0.024) and overall survival ( p = 0.049) but only in the univariate analysis. Our study suggests that in OC PD-1 / PD-L1 mRNA-expression is controlled by IFNγ and affected by TP53 and BRCA1/2 mutations. We suggest that these mutations might serve as potential predictive factors that guide anti- PD1 / PD-L1 immunotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasper, Jocelyn S.; Harvard Medical School, Boston, MA; Arai, Takehiro
CUL7 is a member of the cullin RING ligase family and forms an SCF-like complex with SKP1 and FBXW8. CUL7 is required for normal mouse embryonic development and cellular proliferation, and is highly homologous to PARC, a p53-associated, parkin-like cytoplasmic protein. We determined that CUL7, in a manner similar to PARC, can bind directly to p53 but does not affect p53 expression. We identified a discrete, co-linear domain in CUL7 that is conserved in PARC and HERC2, and is necessary and sufficient for p53-binding. The presence of p53 stabilized expression of this domain and we demonstrate that this p53-binding domainmore » of CUL7 contributes to the cytoplasmic localization of CUL7. The results support the model that p53 plays a role in regulation of CUL7 activity.« less
Alexandrova, A; Ivanov, A; Chumakov, P; Kopnin, B; Vasiliev, J
2000-11-23
Effects of p53 expression on cell morphology and motility were studied using the derivatives of p53-null 10(1) mouse fibroblasts with tetracycline-regulated expression of exogenous human p53. Induction of p53 expression was accompanied by significant decrease in extracellular matrix (fibronectin) and reduction of matrix fibrils, diminution of the number and size of focal contacts, decrease of cell areas, establishment of more elongated cell shape and alterations of actin cytoskeleton (actin bundles became thinner, their number and size decreased). Expression of His175 and Gln22/ Ser23 p53 mutants caused no such effects. To study the influence of p53 expression on cell motility we used wound technique and videomicroscopy observation of single living cells. It was found that induction of p53 expression led to increase of lamellar activity of cell edge. However, in spite of enhanced lamellar activity p53-expressing cells migrated to shorter distance and filled the narrow wound in longer time as compared with their p53-null counterparts. Possible mechanisms of the influence of p53 expression on cell morphology and motility are discussed.
Regulation of p53 Target Gene Expression by Peptidylarginine Deiminase 4 ▿ †
Li, Pingxin; Yao, Hongjie; Zhang, Zhiqiang; Li, Ming; Luo, Yuan; Thompson, Paul R.; Gilmour, David S.; Wang, Yanming
2008-01-01
Histone Arg methylation has been correlated with transcriptional activation of p53 target genes. However, whether this modification is reversed to repress the expression of p53 target genes is unclear. Here, we report that peptidylarginine deiminase 4, a histone citrullination enzyme, is involved in the repression of p53 target genes. Inhibition or depletion of PAD4 elevated the expression of a subset of p53 target genes, including p21/CIP1/WAF1, leading to cell cycle arrest and apoptosis. Moreover, the induction of p21, cell cycle arrest, and apoptosis by PAD4 depletion is p53 dependent. Protein-protein interaction studies showed an interaction between p53 and PAD4. Chromatin immunoprecipitation assays showed that PAD4 is recruited to the p21 promoter in a p53-dependent manner. RNA polymerase II (Pol II) activities and the association of PAD4 are dynamically regulated at the p21 promoter during UV irradiation. Paused RNA Pol II and high levels of PAD4 were detected before UV treatment. At early time points after UV treatment, an increase of histone Arg methylation and a decrease of citrullination were correlated with a transient activation of p21. At later times after UV irradiation, a loss of RNA Pol II and an increase of PAD4 were detected at the p21 promoter. The dynamics of RNA Pol II activities after UV treatment were further corroborated by permanganate footprinting. Together, these results suggest a role of PAD4 in the regulation of p53 target gene expression. PMID:18505818
Low dose arsenite confers resistance to UV induced apoptosis via p53-MDM2 pathway in ketatinocytes
Zhou, Y; Zeng, W; Qi, M; Duan, Y; Su, J; Zhao, S; Zhong, W; Gao, M; Li, F; He, Y; Hu, X; Xu, X; Chen, X; Peng, C; Zhang, J
2017-01-01
Chronic arsenite and ultraviolet (UV) exposure are associated with skin tumor. To investigate the details by low concentrations of arsenite and UV induced carcinogenesis in skin, hTERT-immortalized human keratinocytes were used as a cellular model with exposure to low concentrations of sodium arsenite and UV. The effect of NaAsO2 on UV treatment-induced apoptosis was measured by flow cytometry and Hoechst staining. We found that the cell apoptosis induced by UV exposure was significantly attenuated after exposure to low-dose arsenite, and knockdown of p53 could block UV-induced apoptosis indicating that this phenomenon depended on p53. Interestingly, the expression of murine double minute 2 (MDM2), including its protein and transcriptional levels, was remarkably high after exposure to low-dose arsenite. Moreover, low-dose arsenite treatment dramatically decreased the MDM2 gene promoter activity, suggesting that this effect has been mediated through transcription. In addition, treatment of PD98059 reversed low-dose arsenite-induced MDM2 expression, and the inhibition of ERK2 expression could significantly block MDM2 expression as a consequence, and p53 expression automatically was increased. To validate the role of p53 in exposure to low-dose arsenite, the expression of p53 was examined by immunohistochemistry in the skin of Sprague−Dawley rats model by chronic arsenite exposure for 6 months and in patients with arsenic keratosis, and the results showed that the expression of p53 was decreased in those samples. Taken together, our results demonstrated that low-dose arsenite-induced resistance to apoptosis through p53 mediated by MDM2 in keratinocytes. PMID:28785074
Warren, Timothy A; Broit, Natasa; Simmons, Jacinta L; Pierce, Carly J; Chawla, Sharad; Lambie, Duncan L J; Quagliotto, Gary; Brown, Ian S; Parsons, Peter G; Panizza, Benedict J; Boyle, Glen M
2016-09-26
Squamous cell carcinoma (SCC) is the second most common cancer worldwide and accounts for approximately 30% of all keratinocyte cancers. The vast majority of cutaneous SCCs of the head and neck (cSCCHN) are readily curable with surgery and/or radiotherapy unless high-risk features are present. Perineural invasion (PNI) is recognized as one of these high-risk features. The molecular changes during clinical PNI in cSCCHN have not been previously investigated. In this study, we assessed the global gene expression differences between cSCCHN with or without incidental or clinical PNI. The results of the analysis showed signatures of gene expression representative of activation of p53 in tumors with PNI compared to tumors without, amongst other alterations. Immunohistochemical staining of p53 showed cSCCHN with clinical PNI to be more likely to exhibit a diffuse over-expression pattern, with no tumors showing normal p53 staining. DNA sequencing of cSCCHN samples with clinical PNI showed no difference in mutation number or position with samples without PNI, however a significant difference was observed in regulators of p53 degradation, stability and activity. Our results therefore suggest that cSCCHN with clinical PNI may be more likely to contain alterations in the p53 pathway, compared to cSCCHN without PNI.
Choi, Jung Hye; Song, Young Soo; Yoon, Jin Sun; Song, Kang Won; Lee, Young Yiul
2010-03-01
The enhancer of zeste homolog 2 (EZH2), a member of the polycomb group of proteins, plays an important role in cell proliferation and cell cycle regulation. EZH2 is overexpressed in aggressive forms of prostate, breast, bladder, and endometrial cancers. However, the role of EZH2 expression in gastric cancer has not been fully determined. This study was conducted to investigate the correlation between EZH2 and cell cycle-related molecules, and the clinical value of EZH2 expression in gastric cancer. We analyzed EZH2 expression using Western blotting in AGS, MKN-28, SNU-16, SNU-484, SNU-601, and SNU-638 gastric cancer cell lines. After transfection of EZH2 siRNA into MKN-28 cells, the change in cell cycle-related molecules was assessed by Western blot analysis. Expression of EZH2, Ki-67, and p53 was determined by immunohistochemical staining of tissue microarrays from specimens of 137 cases of resected gastric cancer. We found high expressions of EZH2 in all of the tested gastric cancer cell lines. RNA interference of EZH2 induced upregulation of p53 and HDAC1 and downregulation of cyclin D1 and cyclin E. High EZH2 expression was observed in 60.6% of gastric cancers and in 6.7% of non-neoplastic gastric tissues (p < 0.01); 40.1% were positive for p53 in gastric cancers. High EZH2 expression was correlated with Ki-67 and p53 expressions and was significantly associated with distant metastases and non-signet ring cells. Our results suggest that high EZH2 expression is associated with tumor cell proliferation and metastasis in gastric cancer.
Immunohistochemical analysis of P53 protein in odontogenic cysts
Gaballah, Essam Taher M.A.; Tawfik, Mohamed A.
2010-01-01
The p53 is a well-known tumor suppressor gene, the mutations of which are closely related to the decreased differentiation of cells. Findings of studies on immunohistochemical P53 expression in odontogenic cysts are controversial. The present study was carried-out to investigate the immunohistochemical expression of P53 protein in odontogenic cysts. Thirty paraffin blocks of diagnosed odontogenic cysts were processed to determine the immunohistochemical expression of P53 protein. Nine of the 11 odontogenic keratocysts (81.8%) expressed P53, one of three dentigerous cyst cases expressed P53, while none of the 16 radicular cysts expressed P53 protein. The findings of the present work supported the reclassification of OKC as keratocystic odontogenic tumor. PMID:23960493
p73 coordinates with Δ133p53 to promote DNA double-strand break repair.
Gong, Hongjian; Zhang, Yuxi; Jiang, Kunpeng; Ye, Shengfan; Chen, Shuming; Zhang, Qinghe; Peng, Jinrong; Chen, Jun
2018-03-06
Tumour repressor p53 isoform Δ133p53 is a target gene of p53 and an antagonist of p53-mediated apoptotic activity. We recently demonstrated that Δ133p53 promotes DNA double-strand break (DSB) repair by upregulating transcription of the repair genes RAD51, LIG4 and RAD52 in a p53-independent manner. However, Δ133p53 lacks the transactivation domain of full-length p53, and the mechanism by which it exerts transcriptional activity independently of full-length p53 remains unclear. In this report, we describe the accumulation of high levels of both Δ133p53 and p73 (a p53 family member) at 24 h post γ-irradiation (hpi). Δ133p53 can form a complex with p73 upon γ-irradiation. The co-expression of Δ133p53 and p73, but not either protein alone, can significantly promote DNA DSB repair mechanisms, including homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA). p73 and Δ133p53 act synergistically to promote the expression of RAD51, LIG4 and RAD52 by joining together to bind to region containing a Δ133p53-responsive element (RE) and a p73-RE in the promoters of all three repair genes. In addition to its accumulation at 24 hpi, p73 protein expression also peaks at 4 hpi. The depletion of p73 not only reduces early-stage apoptotic frequency (4-6 hpi), but also significantly increases later-stage DNA DSB accumulation (48 hpi), leading to cell cycle arrest in the G2 phase and, ultimately, cell senescence. In summary, the apoptotic regulator p73 also coordinates with Δ133p53 to promote DNA DSB repair, and the loss of function of p73 in DNA DSB repair may underlie spontaneous and carcinogen-induced tumorigenesis in p73 knockout mice.
Role of the ARF Tumor Suppressor in Prostate Cancer
2005-10-01
found that ARF expression is absence from highly proliferative prostate adenocarcinomas and this correlates with the increased expression of the p53...prostate is unknown. The preliminary data for my orginal proposal indicated that prostate adenocarcinomas typically maintain wild type p53 (97%), but...independent mechanisms to regulate prostate cell proliferation. Table 1. Protein Expression in Prostate Adenocarcinomas Human prostate tissue samples
CDC25B and p53 are independently implicated in radiation sensitivity for human esophageal cancers.
Miyata, H; Doki, Y; Shiozaki, H; Inoue, M; Yano, M; Fujiwara, Y; Yamamoto, H; Nishioka, K; Kishi, K; Monden, M
2000-12-01
Ionized radiation leads to G1 arrest and apoptosis by a p53-dependent pathway and G2-M arrest through a p53-independent pathway. In this study, we evaluated the role of cell cycle-regulating molecules in the sensitivity of cancer cells for radiation therapy. Forty-seven patients with squamous cell carcinomas of the esophagus had undergone radiation therapy, followed by surgical resection. They were classified as sensitive to radiation (SR, 14 cases) with no residual tumor in the surgical specimen or as resistant to radiation (RR, 33 cases) with viable residual tumors. Their preradiation biopsy samples were immunohistochemically investigated for the expressions of cell cycle-related molecules, including p53, CDC25A, CDC25B, cyclin D1, cyclin B1, and Ki-67. p53 expression was negative in 71% (10 of 14) of SR and positive in 91% (30 of 33) of RR. The association was strong between high radiation sensitivity and negative p53 expression (P < 0.0001). CDC25B, which is not expressed in normal epithelium but is in the cytoplasm of esophageal cancers, was strongly expressed (2+) in 46% (6 of 14) of SR and in 6% (2 of 23) of RR. Thus, the sensitivity for radiation therapy was significantly correlated with CDC25B overexpression. With respect to CDC25A, cyclin D1, cyclin B1, and Ki-67, no statistically significant differences were found in their expressions between SR and RR tumors. p53 and CDC25B expressions showed no significant associations, and multivariate analysis revealed that both p53 and CDC25B are significant independent markers for predicting radiation sensitivity. CDC25B was revealed to be a novel predictor of radiation sensitivity in esophageal cancers. Because CDC25B is an oncogene, which affects G2-M progression, these results suggest the importance of a p53-independent G2-M checkpoint in radiation therapy.
Gene Expression in Mammalian Cells After Exposure to 95 MeV Argon Ions
NASA Astrophysics Data System (ADS)
Arenz, A.; Hellweg, C. E.; Baumstark-Khan, C.
Cell response to genotoxic agents is complex and involves the participation of different classes of genes (DNA repair, cell cycle control, signal transduction, apoptosis and oncogenesis). The unique feature of the space radiation environment is the dominance of high-energy charged particles (HZE or high LET radiation) which present a significant hazard to space flight crews, and accelerator-based experiments are underway to quantify the health risks due to unavoidable radiation exposure. High linear energy transfer (LET) radiation has an increased relative biological effectiveness (RBE) as compared to X-rays for cell death induction, gene mutation, genomic instability, and carcinogenesis. The tumour suppressor gene p53 plays a crucial role in maintaining the integrity of the genome. The p53 protein acts as a transcription factor that mediates cell cycle arrest and apoptosis by binding to DNA and activating transcription of specific genes. It is also though to be involved in damage repair by transcriptional activation of the newly identified p53 dependent ribonuclease subunit R2 (p53R2) that is directly involved in the p53 cell cycle checkpoint for repair of damaged DNA. In that case it is responsible for nucleotide delivery for DNA repair synthesis. DNA damages of cultured human cells (e.g. MCF-7, AGS, A549) exposed to accelerated argon ions at the French heavy ion facility GANIL were analysed for expression levels of certain damage- and apoptosis-relevant genes. RNA was extracted from cells exposed to different particle fluences after various recovery times. A real-time QRT-PCR assay was applied, which employs both relative and absolute quantification of a candidate mRNA biomarker. The expressions of different DNA damage inducible genes (e.g. p53R2, GADD45, p21) were analysed. A reproducible up-regulation representing a twofold to fourfold change in p53R2 gene expression level was confirmed for X-irradiated and Ar-ion exposed cells dependent on dose. Kinetics of p53R2 gene expression modulations shows a response lasting up to 24 hours after irradiation.
Carlson, J A; Amin, S; Malfetano, J; Tien, A T; Selkin, B; Hou, J; Goncharuk, V; Wilson, V L; Rohwedder, A; Ambros, R; Ross, J S
2001-06-01
To determine if carcinogenic events in vulvar skin precede the onset of morphologic atypia, the authors investigated for derangements in DNA content, cell proliferation, and cell death in vulvar carcinomas and surrounding skin in 140 samples of tumor and surrounding skin collected from 35 consecutive vulvectomy specimen for squamous cell carcinoma (SCC) or vulvar intraepithelial neoplasia (VIN) 3. Vulvar non-cancer excisions were used as controls. Investigations consisted of histologic classification and measurement of 9 variables--epidermal thickness (acanthosis and rete ridge length), immunolabeling index (LI) for 3 proteins (p53 protein, Ki-67, and mdm-2), pattern of p53 expression (dispersed vs. compact), DNA content index, and presence of aneuploidy by image analysis and apoptotic rate by Apotag labeling. Significant positive correlations were found for all nine variables studied versus increasing histologic severity in two proposed histologic stepwise models of vulvar carcinogenesis (lichen sclerosus (LS) and VIN 3 undifferentiated associated SCC groups). High p53 LI (>25) and the compact pattern of p53 expression (suspected oncoprotein) significantly correlated with LS and its associated vulvar samples compared with samples not associated with LS (P < or = 0.001). Furthermore, p53 LI, mdm-2 LI, and pattern of p53 expression were concordant between patient matched samples of LS and SCC. In addition, mdm-2 LI significantly correlated with dispersed pattern p53 LI suggesting a response to wild-type p53 protein accumulation. These findings support the hypothesis that neoplastic transformation occurs in sequential steps and compromises proteins involved in the cell cycle control. Concordance of p53 and mdm-2 protein expression in LS and adjacent SCC provides evidence that LS can act as a precursor lesion in the absence of morphologic atypia. Overexpression of mdm-2 with stabilization and inactivation of p53 protein may provide an alternate pathway for vulvar carcinogenesis.
Manna, Sugata; Mukherjee, Sudeshna; Roy, Anup; Das, Sukta; Panda, Chinmay Kr
2009-05-01
The modulatory influence of tea polyphenols (epigallocatechin gallate, epicatechin gallate and theaflavin) on benzo[a]pyrene (B[a]P)-induced lung carcinogenesis in mice was analyzed using histopathological and molecular parameters. Progression of lung lesions was restricted at the hyperplastic stage by tea polyphenols. A significant reduction in cellular proliferative index and an increase in apoptotic index were noted in the restricted lung lesions. High expression of H-ras, c-myc, cyclin D1 and p53 genes was seen at the inflammatory stage (9th week) and in subsequent premalignant lesions, but down-regulation of H-ras at the hyperplastic stage (17th week). Expression of bcl-2 was high in hyperplastic lesions, whereas the expression of mdm2 and bcl-xl increased only at the moderately dysplastic stage (36th week). The tea polyphenols inhibited inflammatory response in the lung lesions on the 9th week, when decreased expression of H-ras and c-myc and increased expression of bax were noted. Prolonged treatment (>9th week) with tea polyphenols resulted in changes in the expression of some additional genes, such as reduced expression of cyclin D1 (from the 17th week), bcl-2 (from the 26th week; mild dysplasia) and p21 (on the 36th week), and high expression of p53 (from the 17th week) and p27 (on the 36th week). These observations indicate that the tea polyphenols can restrict B[a]P-induced lung carcinogenesis by differential modulation of the expression of p53 and its associated genes such as bax, bcl-2, mdm2, p21 and p27, along with H-ras, c-myc and cyclin D1, at different time points.
SLUG expression is an indicator of tumour recurrence in high-grade endometrial carcinomas.
Kihara, Atsushi; Wakana, Kimio; Kubota, Toshiro; Kitagawa, Masanobu
2016-09-01
To investigate how SNAIL and SLUG were involved in the nature of high-grade endometrial carcinomas (grade 3 endometrioid carcinoma, serous carcinoma and clear cell carcinoma), we analysed the correlation of their expression status with clinicopathological characteristics and evaluated their prognostic significance. We performed immunohistochemical staining in 52 high-grade endometrial carcinomas. Expression status of SNAIL and SLUG was classified into a high expression (positive in more than 50% of the tumour cells) and a low expression. Thirteen cases (25%) showed a high expression of SLUG, whereas all 52 cases showed a low expression of SNAIL. High expression of SLUG was correlated significantly with tumour recurrence (P = 0.0203) and aberrant p53 expression (P = 0.000559). Overall survival was worse in patients with high SLUG expression at all stages (P = 0.0327) and in those who underwent adjuvant therapy (P = 0.00963). Among the patients with complete tumour resection, high SLUG expression was associated with worse recurrence-free survival (RFS) in the patients at all stages (P = 0.00264), at stages III/IV (P = 0.0146), and who underwent adjuvant therapy (P = 0.000743). SLUG expression was identified as an independent factor of RFS by multivariate analysis (hazard ratio 5.938, 95% confidence interval 1.251-28.18, P = 0.025). SLUG expression could be correlated with TP53 mutational status and could be involved in therapeutic resistance resulting in tumour recurrence. A high expression level of SLUG can be an indicator of recurrence and a therapeutic target for long-term remission in high-grade endometrial carcinomas. © 2016 John Wiley & Sons Ltd.
Warenius, H M; Jones, M; Gorman, T; McLeish, R; Seabra, L; Barraclough, R; Rudland, P
2000-01-01
The tumour suppressor gene, p53, and genes coding for positive signal transduction factors can influence transit through cell-cycle checkpoints and modulate radiosensitivity. Here we examine the effects of RAF1 protein on the rate of exit from a G2/M block induced by γ-irradiation in relation to intrinsic cellular radiosensitivity in human cell lines expressing wild-type p53 (wtp53) protein as compared to mutant p53 (mutp53) protein. Cell lines which expressed mutp53 protein were all relatively radioresistant and exhibited no relationship between RAF1 protein and cellular radiosensitivity. Cell lines expressing wtp53 protein, however, showed a strong relationship between RAF1 protein levels and the radiosensitivity parameter SF2. In addition, when post-irradiation perturbation of G2/M transit was compared using the parameter T50 (time after the peak of G2/M delay at which 50% of the cells had exited from a block induced by 2 Gy of irradiation), RAF1 was related to T50 in wtp53, but not mutp53, cell lines. Cell lines which expressed wtp53 protein and high levels of RAF1 had shorter T50s and were also more radiosensitive. These results suggest a cooperative role for wtp53 and RAF1 protein in determining cellular radiosensitivity in human cells, which involves control of the G2/M checkpoint. © 2000 Cancer Research Campaign PMID:10993658
Sur, Monalisa; Sur, Ranjan K; Cooper, Kum; Bizos, Damon
2003-02-01
Pre-brachytherapy biopsies and post-brachytherapy oesophagectomy specimens of 10 patients with early squamous cell carcinoma of the middle third of the oesophagus were examined for the expression of p53, bcl-2 and apoptosis using immunohistochemical markers. There was no expression of p53 in one patient in both pre- and post-brachytherapy specimens. In 8 patients, p53 staining was strongly positive (3+) with approximately 50% or more cells, and with diffuse and no specific pattern in the pre-brachytherapy biopsies. The tumour areas of the post-brachytherapy specimens of this group showed strong 3+ positivity with p53 (10-50% positive cell count), with the pattern being focal and peripheral in the tumour islands. The centre of the tumour islands showed necrosis and/or keratinisation. In one patient, the pre-brachytherapy biopsy showed expression of p53 while the post-brachytherapy specimen was negative. bcl-2 expression in both pre- and post-brachytherapy was equivocal and inconclusive in both the pre- and post-brachytherapy specimens. Apoptosis was negative in all the pre- and post-brachytherapy tissue sections in the presence of positive controls. Brachytherapy does not cause cell death by apoptosis but by necrosis and maturation of the cells into better differentiated cells, which is caused by OH free radical, and induction of the keratin gene respectively. It is possible that brachytherapy may cause destruction of cells containing wild-type p53, while mutant p53 in cells located at the tumour periphery escape the effect of brachytherapy. This may be responsible for the high incidence of local recurrence and distant metastasis in oesophageal cancer treated with radiotherapy. There is no effect of brachytherapy on bcl-2 expression in oesophageal cancer.
Polato, Federica; Rusconi, Paolo; Zangrossi, Stefano; Morelli, Federica; Boeri, Mattia; Musi, Alberto; Marchini, Sergio; Castiglioni, Vittoria; Scanziani, Eugenio; Torri, Valter; Broggini, Massimo
2014-04-01
p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53(-/-) and 107 p53(+/-) mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan-Meier curves and the Mantel-Haenszel test. All statistical tests were two-sided. We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO(-/-) mice are viable without macroscopic alterations. However, in p53(-/-) or p53(+/-) mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53(-/-) or p53(+/-) mice bearing wild-type DRAGO alleles (p53(-/-), DRAGO(-/-) mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53(+/-), DRAGO(-/-) mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO(+/+) counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional-through p53 (and p73) and methylation-dependent control-and post-transcriptional levels by miRNAs. DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions.
Polato, Federica; Rusconi, Paolo
2014-01-01
Background p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. Methods DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53−/− and 107 p53+/− mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan–Meier curves and the Mantel–Haenszel test. All statistical tests were two-sided. Results We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO−/− mice are viable without macroscopic alterations. However, in p53−/− or p53+/− mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53−/− or p53+/− mice bearing wild-type DRAGO alleles (p53−/−, DRAGO−/− mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53+/−, DRAGO−/− mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO+/+ counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional—through p53 (and p73) and methylation-dependent control—and post-transcriptional levels by miRNAs. Conclusions DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions. PMID:24652652
Yan, Wenjun; Wei, Jianchao; Deng, Xufang; Shi, Zixue; Zhu, Zixiang; Shao, Donghua; Li, Beibei; Wang, Shaohui; Tong, Guangzhi; Ma, Zhiyong
2015-08-18
p53 is a tumor suppressor that contributes to the host immune response against viral infections in addition to its well-established protective role against cancer development. In response to influenza A virus (IAV) infection, p53 is activated and plays an essential role in inhibiting IAV replication. As a transcription factor, p53 regulates the expression of a range of downstream responsive genes either directly or indirectly in response to viral infection. We compared the expression profiles of immune-related genes between IAV-infected wild-type p53 (p53WT) and p53-deficient (p53KO) mice to gain an insight into the basis of p53-mediated antiviral response. p53KO and p53WT mice were infected with influenza A/Puerto Rico/8/1934 (PR8) strain. Clinical symptoms and body weight changes were monitored daily. Lung specimens of IAV-infected mice were collected for analysis of virus titers and gene expression profiles. The difference in immune-related gene expression levels between IAV-infected p53KO and p53WT mice was comparatively determined using microarray analysis and confirmed by quantitative real-time reverse transcription polymerase chain reaction. p53KO mice showed an increased susceptibility to IAV infection compared to p53WT mice. Microarray analysis of gene expression profiles in the lungs of IAV-infected mice indicated that the increased susceptibility was associated with significantly changed expression levels in a range of immune-related genes in IAV-infected p53KO mice. A significantly attenuated expression of Ifng (encoding interferon (IFN)-gamma), Irf7 (encoding IFN regulator factor 7), and antiviral genes, such as Mx2 and Eif2ak2 (encoding PKR), were observed in IAV-infected p53KO mice, suggesting an impaired IFN-mediated immune response against IAV infection in the absence of p53. In addition, dysregulated expression levels of proinflammatory cytokines and chemokines, such as Ccl2 (encoding MCP-1), Cxcl9, Cxcl10 (encoding IP-10), and Tnf, were detected in IAV-infected p53KO mice during early IAV infection, reflecting an aberrant inflammatory response. Lack of p53 resulted in the impaired expression of genes involved in IFN signaling and the dysregulated expression of cytokine and chemokine genes in IAV-infected mice, suggesting an essential role of p53 in the regulation of antiviral and inflammatory responses during IAV infection.
Kim, Ji-Yeon; Lee, Eunjin; Park, Kyunghee; Park, Woong-Yang; Jung, Hae Hyun; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee
2017-04-25
Breast cancer (BC) has been genetically profiled through large-scale genome analyses. However, the role and clinical implications of genetic alterations in metastatic BC (MBC) have not been evaluated. Therefore, we conducted whole-exome sequencing (WES) and RNA-Seq of 37 MBC samples and targeted deep sequencing of another 29 MBCs. We evaluated somatic mutations from WES and targeted sequencing and assessed gene expression and performed pathway analysis from RNA-Seq. In this analysis, PIK3CA was the most commonly mutated gene in estrogen receptor (ER)-positive BC, while in ER-negative BC, TP53 was the most commonly mutated gene (p = 0.018 and p < 0.001, respectively). TP53 stopgain/loss and frameshift mutation was related to low expression of TP53 in contrast nonsynonymous mutation was related to high expression. The impact of TP53 mutation on clinical outcome varied with regard to ER status. In ER-positive BCs, wild type TP53 had a better prognosis than mutated TP53 (median overall survival (OS) (wild type vs. mutated): 88.5 ± 54.4 vs. 32.6 ± 10.7 (months), p = 0.002). In contrast, mutated TP53 had a protective effect in ER-negative BCs (median OS: 0.10 vs. 32.6 ± 8.2, p = 0.026). However, PIK3CA mutation did not affect patient survival. In gene expression analysis, CALM1, a potential regulator of AKT, was highly expressed in PIK3CA-mutated BCs. In conclusion, mutation of TP53 was associated with expression status and affect clinical outcome according to ER status in MBC. Although mutation of PIK3CA was not related to survival in this study, mutation of PIK3CA altered the expression of other genes and pathways including CALM1 and may be a potential predictive marker of PI3K inhibitor effectiveness.
Yoshida, Midori; Katsuda, Shin-ichi; Maekawa, Akihiko
2012-01-01
Involvements of estrogen receptor (ER)α, proliferating cell nuclear antigen (PCNA) and p53 in the uterine carcinogenesis process in Donryu rats, a high yield strain of the uterine cancer were investigated immunohistochemically. ERα was expressed in atypical endometrial hyperplasia, accepted as a precancerous lesion of the uterine tumors, as well as well- and in moderately-differentiated endometrial adenocarcinomas, and the intensities of expression were similar to those in the luminal epithelial cells of the atrophic uterus at 15 months of age. The expression, however, was negative in the tumor cells of poorly differentiated type. Good growth of implanted grafts of the poorly-differentiated adenocarcinomas in both sexes with or without gonadectomy supported the estrogen independency of tumor progression to malignancy. PCNA labeling indices were increased with tumor development from atypical hyperplasia to adenocarcinoma. The tumor cells in poorly-differentiated adenocarcinomas were positive for p53 positive but negative for p21 expression, suggesting accumulation of mutated p53. These results indicate that the consistent ERα expression is involved in initiation and promotion steps of uterine carcinogenesis, but not progression. In addition, PCNA is related to tumor development and the expression of mutated p53 might be a late event during endometrial carcinogenesis. PMID:23345926
Neskey, David M.; Osman, Abdullah A.; Ow, Thomas J.; Katsonis, Panagiotis; McDonald, Thomas; Hicks, Stephanie C.; Hsu, Teng-Kuei; Pickering, Curtis R.; Ward, Alexandra; Patel, Ameeta; Yordy, John S.; Skinner, Heath D.; Giri, Uma; Sano, Daisuke; Story, Michael D.; Beadle, Beth M.; El-Naggar, Adel K.; Kies, Merrill S.; William, William N.; Caulin, Carlos; Frederick, Mitchell; Kimmel, Marek; Myers, Jeffrey N.; Lichtarge, Olivier
2015-01-01
TP53 is the most frequently altered gene in head and neck squamous cell carcinoma (HNSCC) with mutations occurring in over two third of cases, but the prognostic significance of these mutations remains elusive. In the current study, we evaluated a novel computational approach termed Evolutionary Action (EAp53) to stratify patients with tumors harboring TP53 mutations as high or low risk, and validated this system in both in vivo and in vitro models. Patients with high risk TP53 mutations had the poorest survival outcomes and the shortest time to the development of distant metastases. Tumor cells expressing high risk TP53 mutations were more invasive and tumorigenic and they exhibited a higher incidence of lung metastases. We also documented an association between the presence of high risk mutations and decreased expression of TP53 target genes, highlighting key cellular pathways that are likely to be dysregulated by this subset of p53 mutations which confer particularly aggressive tumor behavior. Overall, our work validated EAp53 as a novel computational tool that may be useful in clinical prognosis of tumors harboring p53 mutations. PMID:25634208
Xu, Yimiao; Diao, Ying; Qi, Shimei; Pan, Xiaolong; Wang, Qi; Xin, Yinqiang; Cao, Xiang; Ruan, Jie; Zhao, Zhihui; Luo, Lan; Liu, Chang; Yin, Zhimin
2013-05-01
DNA damage activates p53 and its downstream target genes, which further leads to apoptosis or survival either by the cell cycle arrest or by DNA repair. In many tumors, the heat shock protein 27 (Hsp27) is expressed at high levels to provide protection against anticancer drugs. However, the roles of Hsp27 in p53-mediated cellular responses to DNA damage are controversial. Here, we investigated the interplay between the phosphorylation status of Hsp27 and p53 in kidney 293A (HEK293A) cells and found that over-expressing phosphorylated Hsp27 mimics (Hsp27-3D) activated p53/p21 in an ATM-dependent manner. In addition, incubation with doxorubicin (Dox), an anticancer drug, induced Hsp27 phosphorylation in human adenocarcinoma cells (MCF-7). In contrast, inhibition of Hsp27 phosphorylation retarded both p53 induction and p21 accumulation, and led to cell apoptosis. Furthermore, phosphorylated Hsp27 increased p53 nuclear importing and its downstream target gene expression such as p21 and MDM2, while de-phosphorylated Hsp27 impeded this procession. Taken together, our data suggest that Hsp27, in its phosphorylated or de-phosphorylated status, plays different roles in regulating p53 pathway and cell survival. Copyright © 2013 Elsevier Inc. All rights reserved.
Acin, Sergio; Li, Zhongyou; Mejia, Olga; Roop, Dennis R; El-Naggar, Adel K; Caulin, Carlos
2015-01-01
Mutations in p53 occur in over 50% of the human head and neck squamous cell carcinomas (SCCHN). The majority of these mutations result in the expression of mutant forms of p53, rather than deletions in the p53 gene. Some p53 mutants are associated with poor prognosis in SCCHN patients. However, the molecular mechanisms that determine the poor outcome of cancers carrying p53 mutations are unknown. Here, we generated a mouse model for SCCHN and found that activation of the endogenous p53 gain-of-function mutation p53R172H, but not deletion of p53, cooperates with oncogenic K-ras during SCCHN initiation, accelerates oral tumour growth, and promotes progression to carcinoma. Mechanistically, expression profiling of the tumours that developed in these mice and studies using cell lines derived from these tumours determined that mutant p53 induces the expression of genes involved in mitosis, including cyclin B1 and cyclin A, and accelerates entry in mitosis. Additionally, we discovered that this oncogenic function of mutant p53 was dependent on K-ras because the expression of cyclin B1 and cyclin A decreased, and entry in mitosis was delayed, after suppressing K-ras expression in oral tumour cells that express p53R172H. The presence of double-strand breaks in the tumours suggests that oncogene-dependent DNA damage resulting from K-ras activation promotes the oncogenic function of mutant p53. Accordingly, DNA damage induced by doxorubicin also induced increased expression of cyclin B1 and cyclin A in cells that express p53R172H. These findings represent strong in vivo evidence for an oncogenic function of endogenous p53 gain-of-function mutations in SCCHN and provide a mechanistic explanation for the genetic interaction between oncogenic K-ras and mutant p53. PMID:21952947
Rojas, Isolde G; Boza, Yadira V; Spencer, Maria Loreto; Flores, Maritza; Martínez, Alejandra
2012-01-01
Actinic cheilitis (AC) is characterized by epithelial and connective tissue alterations caused by ultraviolet sunlight overexposure known as photodamage. Fibroblasts have been linked to photodamage and tumor progression during skin carcinogenesis; however, their role in early lip carcinogenesis remains unknown. The aim of this study was to assess the density of fibroblasts in AC and normal lip (NL) samples and determine their association with markers of lip photodamage. Fibroblasts, mast cells, p53, COX-2, and elastin were detected in NL (n = 20) and AC (n = 28) biopsies using immunohistochemistry/histochemistry. Mast cell and fibroblast density and epithelial p53 and COX-2 expression scores were then obtained. Elastosis was scored 1-4 according to elastin fiber density and tortuosity. Fibroblasts, mast cells, p53, COX-2, and elastosis were increased in AC as compared to NL (P < 0.001). Multivariate analysis showed an association between fibroblast and mast cell density at the papillary and reticular areas of AC and NL (P < 0.05). Papillary fibroblast density was also associated with epithelial p53 and COX-2 expression (P < 0.05). Increased fibroblast density, both papillary and reticular, was found in the high elastosis group (scores 3-4) as compared to the low elastosis group (scores 1-2) (P < 0.01). Increased reticular mast cell density was detected only in the high elastosis group (P < 0.01). Fibroblasts are increased in AC, and they are associated with mast cell density, epithelial p53 and COX-2 expression, and actinic elastosis. Therefore, fibroblasts may contribute to lip photodamage and could be considered useful markers of early lip carcinogenesis. © 2011 John Wiley & Sons A/S.
Development of an adenoviral vector with robust expression driven by p53
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajgelman, Marcio C.; Biotechnology Program, Biomedical Sciences Institute, University of Sao Paulo; Millennium Institute-Gene Therapy Network, Ministry of Science and Technology
2008-02-05
Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx{beta}, containing a p53-responsive element, a minimal promoter and the first intron of the rabbit {beta}-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG servedmore » as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities.« less
Regulation of p53 expression and apoptosis by vault RNA2-1-5p in cervical cancer cells.
Kong, Lu; Hao, Qi; Wang, Ying; Zhou, Ping; Zou, Binbin; Zhang, Yu-xiang
2015-09-29
nc886 or VRNA2-1 has recently been identified as a noncoding RNA instead of a vault RNA or a pre-microRNA. Several studies have reported that pre-miR-886 plays a tumor-suppressive role in a wide range of cancer cells through its activity as a cellular protein kinase RNA-activated (PKR) ligand and repressor. However, by sequencing stem-PCR products, we found that a microRNA originating from this precursor, vault RNA2-1-5p (VTRNA2-1-5p), occurs in cervical cancer cells. The expression levels of the predicted targets of VTRNA2-1-5p are negatively correlated with VTRNA2-1-5p levels by quantitative reversion transcription PCR (qRT-PCR). Previous results have shown that VTRNA2-1-5p is overexpressed in human cervical squamous cell carcinomas (CSCCs) compared with adjacent healthy tissues. Inhibition of VTRNA2-1-5p increases Bax protein expression and apoptotic cell death in cervical cancer cells. Our findings suggest that VTRNA2-1-5p has oncogenic activity related to the progression of cervical cancer. Here, we report that VTRNA2-1-5p directly targeted p53 expression and functioned as an oncomir in cervical cancer. VTRNA2-1-5p inhibition decreased cervical cancer cell invasion, proliferation, and tumorigenicity while increasing apoptosis and p53 expression. Interestingly, VTRNA2-1-5p inhibition also increased cisplatin-induced apoptosis of HeLa and SiHa cells. In human clinical cervical cancer specimens, low p53 expression and high VTRNA2-1-5p expression were positively associated.In addition, VTRNA2-1-5p was found to directly target the 5' and 3' untranslated regions (UTRs) of p53. We propose that VTRNA2-1-5p is a direct regulator of p53 and suggest that it plays an essential role in the apoptosis and proliferation of cervical cancer cells.
Neskey, David M; Osman, Abdullah A; Ow, Thomas J; Katsonis, Panagiotis; McDonald, Thomas; Hicks, Stephanie C; Hsu, Teng-Kuei; Pickering, Curtis R; Ward, Alexandra; Patel, Ameeta; Yordy, John S; Skinner, Heath D; Giri, Uma; Sano, Daisuke; Story, Michael D; Beadle, Beth M; El-Naggar, Adel K; Kies, Merrill S; William, William N; Caulin, Carlos; Frederick, Mitchell; Kimmel, Marek; Myers, Jeffrey N; Lichtarge, Olivier
2015-04-01
TP53 is the most frequently altered gene in head and neck squamous cell carcinoma, with mutations occurring in over two-thirds of cases, but the prognostic significance of these mutations remains elusive. In the current study, we evaluated a novel computational approach termed evolutionary action (EAp53) to stratify patients with tumors harboring TP53 mutations as high or low risk, and validated this system in both in vivo and in vitro models. Patients with high-risk TP53 mutations had the poorest survival outcomes and the shortest time to the development of distant metastases. Tumor cells expressing high-risk TP53 mutations were more invasive and tumorigenic and they exhibited a higher incidence of lung metastases. We also documented an association between the presence of high-risk mutations and decreased expression of TP53 target genes, highlighting key cellular pathways that are likely to be dysregulated by this subset of p53 mutations that confer particularly aggressive tumor behavior. Overall, our work validated EAp53 as a novel computational tool that may be useful in clinical prognosis of tumors harboring p53 mutations. ©2015 American Association for Cancer Research.
The Transcription Factor p53 Influences Microglial Activation Phenotype
Jayadev, Suman; Nesser, Nicole K.; Hopkins, Stephanie; Myers, Scott J.; Case, Amanda; Lee, Rona J.; Seaburg, Luke A.; Uo, Takuma; Murphy, Sean P.; Morrison, Richard S.; Garden, Gwenn A.
2011-01-01
Several neurodegenerative diseases are influenced by the innate immune response in the central nervous system (CNS). Microglia, have pro-inflammatory and subsequently neurotoxic actions as well as anti-inflammatory functions that promote recovery and repair. Very little is known about the transcriptional control of these specific microglial behaviors. We have previously shown that in HIV associated neurocognitive disorders (HAND), the transcription factor p53 accumulates in microglia and that microglial p53 expression is required for the in vitro neurotoxicity of the HIV coat glycoprotein gp120. These findings suggested a novel function for p53 in regulating microglial activation. Here we report that in the absence of p53, microglia demonstrate a blunted response to interferon-γ, failing to increase expression of genes associated with classical macrophage activation or secrete pro-inflammatory cytokines. Microarray analysis of global gene expression profiles revealed increased expression of genes associated with anti-inflammatory functions, phagocytosis and tissue repair in p53 knockout (p53−/−) microglia compared with those cultured from strain matched p53 expressing (p53+/+) mice. We further observed that p53−/− microglia demonstrate increased phagocytic activity in vitro and expression of markers for alternative macrophage activation both in vitro and in vivo. In HAND brain tissue, the alternative activation marker CD163 was expressed in a separate subset of microglia than those demonstrating p53 accumulation. These data suggest that p53 influences microglial behavior, supporting the adoption of a pro-inflammatory phenotype, while p53 deficiency promotes phagocytosis and gene expression associated with alternative activation and anti-inflammatory functions. PMID:21598312
MYCN acts as a direct co-regulator of p53 in MYCN amplified neuroblastoma.
Agarwal, Saurabh; Milazzo, Giorgio; Rajapakshe, Kimal; Bernardi, Ronald; Chen, Zaowen; Barberi, Eveline; Koster, Jan; Perini, Giovanni; Coarfa, Cristian; Shohet, Jason M
2018-04-17
The MYC oncogenes and p53 have opposing yet interrelated roles in normal development and tumorigenesis. How MYCN expression alters the biology and clinical responsiveness of pediatric neuroblastoma remains poorly defined. Neuroblastoma is p53 wild type at diagnosis and repression of p53 signaling is required for tumorigenesis. Here, we tested the hypothesis that MYCN amplification alters p53 transcriptional activity in neuroblastoma. Interestingly, we found that MYCN directly binds to the tetrameric form of p53 at its C-terminal domain, and this interaction is independent of MYCN/MAX heterodimer formation. Chromatin analysis of MYCN and p53 targets reveals dramatic changes in binding, as well as co-localization of the MYCN-p53 complex at p53-REs and E-boxes of genes critical to DNA damage responses and cell cycle progression. RNA sequencing studies show that MYCN-p53 co-localization significantly modulated the expression of p53 target genes. Furthermore, MYCN-p53 interaction leads to regulation of alternative p53 targets not regulated in the presence of low MYCN levels. These novel targets include a number of genes involved in lipid metabolism, DNA repair, and apoptosis. Taken together, our findings demonstrate a novel oncogenic role of MYCN as a transcriptional co-regulator of p53 in high-risk MYCN amplified neuroblastoma. Targeting this novel oncogenic function of MYCN may enhance p53-mediated responses and sensitize MYCN amplified tumors to chemotherapy.
Soares, Joana; Raimundo, Liliana; Pereira, Nuno A.L.; Monteiro, Ângelo; Gomes, Sara; Bessa, Cláudia; Pereira, Clara; Queiroz, Glória; Bisio, Alessandra; Fernandes, João; Gomes, Célia; Reis, Flávio; Gonçalves, Jorge; Inga, Alberto; Santos, Maria M.M.; Saraiva, Lucília
2016-01-01
Restoration of the p53 pathway, namely by reactivation of mutant (mut) p53, represents a valuable anticancer strategy. Herein, we report the identification of the enantiopure tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a novel reactivator of wild-type (wt) and mut p53, using a yeast-based screening strategy. SLMP53-1 has a p53-dependent anti-proliferative activity in human wt and mut p53R280K-expressing tumor cells. Additionally, SLMP53-1 enhances p53 transcriptional activity and restores wt-like DNA binding ability to mut p53R280K. In wt/mut p53-expressing tumor cells, SLMP53-1 triggers p53 transcription-dependent and mitochondrial apoptotic pathways involving BAX, and wt/mut p53 mitochondrial translocation. SLMP53-1 inhibits the migration of wt/mut p53-expressing tumor cells, and it shows promising p53-dependent synergistic effects with conventional chemotherapeutics. In xenograft mice models, SLMP53-1 inhibits the growth of wt/mut p53-expressing tumors, but not of p53-null tumors, without apparent toxicity. Collectively, besides the potential use of SLMP53-1 as anticancer drug, the tryptophanol-derived oxazoloisoindolinone scaffold represents a promissing starting point for the development of effective p53-reactivating drugs. PMID:26735173
Benatti, Paolo; Basile, Valentina; Dolfini, Diletta; Belluti, Silvia; Tomei, Margherita; Imbriano, Carol
2016-07-19
The expression of the high risk HPV18 E6 and E7 oncogenic proteins induces the transformation of epithelial cells, through the disruption of p53 and Rb function. The binding of cellular transcription factors to cis-regulatory elements in the viral Upstream Regulatory Region (URR) stimulates E6/E7 transcription. Here, we demonstrate that the CCAAT-transcription factor NF-Y binds to a non-canonical motif within the URR and activates viral gene expression. In addition, NF-Y indirectly up-regulates HPV18 transcription through the transactivation of multiple cellular transcription factors. NF-YA depletion inhibits the expression of E6 and E7 genes and re-establishes functional p53. The activation of p53 target genes in turn leads to apoptotic cell death. Finally, we show that NF-YA loss sensitizes HPV18-positive cells toward the DNA damaging agent Doxorubicin, via p53-mediated transcriptional response.
Noda, Takeshi
2011-12-01
I isolated a Ciona intestinalis homolog of p53, Ci-p53/p73-a, in a microarray screen of rapidly degraded maternal mRNA by comparing the transcriptomes of unfertilized eggs and 32-cell stage embryos. Higher expression of the gene in eggs and lower expression in later embryonic stages were confirmed by whole-mount in situ hybridization (WISH) and quantitative reverse transcription-PCR (qRT-PCR); expression was ubiquitous in eggs and early embryos. Knockdown of Ci-p53/p73-a by injection of antisense morpholino oligonucleotides (MOs) severely perturbed gastrulation cell movements and expression of notochord marker genes. A key regulator of notochord differentiation in Ciona embryos is Brachyury (Ci-Bra), which is directly activated by a zic-like gene (Ci-ZicL). The expression of Ci-ZicL and Ci-Bra in A-line notochord precursors was downregulated in Ci-p53/p73-a knockdown embryos. Maternal expression of Ci-p53/p73-b, a homolog of Ci-p53/p73-a, was also detected. In Ci-p53/p73-b knockdown embryos, gastrulation cell movements, expression of Ci-ZicL and Ci-Bra in A-line notochord precursors, and expression of notochord marker gene at later stages were perturbed. The upstream region of Ci-ZicL contains putative p53-binding sites. Cis-regulatory analysis of Ci-ZicL showed that these sites are involved in expression of Ci-ZicL in A-line notochord precursors at the 32-cell and early gastrula stages. These results suggest that p53 genes are maternal factors that play a crucial role in A-line notochord differentiation in C. intestinalis embryos by regulating Ci-ZicL expression. Copyright © 2011 Elsevier Inc. All rights reserved.
Liu, Huawei; Li, Zhiyong; Wang, Chao; Feng, Lin; Huang, Haitao; Liu, Changkui; Li, Fengxia
2016-01-01
As a long noncoding RNA, HOX transcript antisense intergenic RNA (HOTAIR) is highly expressed in many types of tumors. However, its expression and function in oral squamous cell carcinoma (OSCC) cells and tissues remains largely unknown. We herein studied the biological functions of HOTAIR in OSCC Tca8113 cells. Real-time quantitative PCR showed that HOTAIR, p21 and p53 mRNA expressions in doxorubicin (DOX)-treated or γ-ray-irradiated Tca8113 cells were up-regulated. Knockdown of p53 expression inhibited DOX-induced HOTAIR up-regulation, suggesting that DNA damage-induced HOTAIR expression may be associated with p53. Transfection and CCK-8 assays showed that compared with the control group, overexpression of HOTAIR promoted the proliferation of Tca8113 cells, while interfering with its expression played an opposite role. Flow cytometry exhibited that HOTAIR overexpression decreased the rate of DOX-induced apoptosis. When HOTAIR expression was inhibited by siRNA, the proportions of cells in G2/M and S phases increased and decreased respectively. Meanwhile, the rate of DOX-induced apoptosis rose. DNA damage-induced HOTAIR expression facilitated the proliferation of Tca8113 cells and decreased their apoptosis. However, whether the up-regulation depends on p53 still needs in-depth studies. PMID:27904675
Schmoeckel, Elisa; Odai-Afotey, Ashley A.; Schleiβheimer, Michael; Rottmann, Miriam; Flesken-Nikitin, Andrea; Ellenson, Lora H.; Kirchner, Thomas; Mayr, Doris; Nikitin, Alexander Yu.
2017-01-01
Recently it has been reported that serous tubal intraepithelial carcinoma (STIC), the likely precursor of ovarian/extra-uterine high-grade serous carcinoma, are frequently located in the vicinity of tubal-peritoneal junctions, consistent with the cancer-prone features of many epithelial transitional regions. To test if p53 (aka TP53)-signatures and secretory cell outgrowths (SCOUTs) also localize to tubal-peritoneal junctions, we examined these lesions in the fallopian tubes of patients undergoing salpingo-oophorectomy for sporadic high-grade serous carcinomas or as a prophylactic procedure for carriers of familial BRCA1 or 2 mutations. STICs were located closest to the tubal-peritoneal junctions with an average distance of 1.31 mm, while SCOUTs were not detected in the fimbriated end of the fallopian tube. Since many epithelial transitional regions contain stem cells, we also determined the expression of stem cell markers in the normal fallopian tube, tubal intraepithelial lesions and high-grade serous carcinomas. Of those, LEF1 was consistently expressed in the tubal-peritoneal junctions and all lesions, independent of p53 status. All SCOUTs demonstrated strong nuclear expression of β-catenin consistent with the LEF1 participation in the canonical WNT pathway. However, β-catenin was preferentially located in the cytoplasm of cells comprising STICs and p53 signatures, suggesting WNT-independent function of LEF1 in those lesions. Both frequency of LEF1 expression and β-catenin nuclear expression correlated with the worst 5 year patient survival, supporting important role of both proteins in high-grade serous carcinoma. Taken together, our findings suggest the existence of stem cell niche within the tubal-peritoneal junctions. Furthermore, they support the notion that the pathogenesis of SCOUTs is distinct from that of STICs and p53 signatures. The location and discrete patterns of LEF1 and β-catenin expression may serve as highly sensitive and reliable ancillary markers for the detection and differential diagnosis of tubal intraepithelial lesions. PMID:28664938
Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis.
Arjonen, Antti; Kaukonen, Riina; Mattila, Elina; Rouhi, Pegah; Högnäs, Gunilla; Sihto, Harri; Miller, Bryan W; Morton, Jennifer P; Bucher, Elmar; Taimen, Pekka; Virtakoivu, Reetta; Cao, Yihai; Sansom, Owen J; Joensuu, Heikki; Ivaska, Johanna
2014-03-01
Mutations of the tumor suppressor TP53 are present in many forms of human cancer and are associated with increased tumor cell invasion and metastasis. Several mechanisms have been identified for promoting dissemination of cancer cells with TP53 mutations, including increased targeting of integrins to the plasma membrane. Here, we demonstrate a role for the filopodia-inducing motor protein Myosin-X (Myo10) in mutant p53-driven cancer invasion. Analysis of gene expression profiles from 2 breast cancer data sets revealed that MYO10 was highly expressed in aggressive cancer subtypes. Myo10 was required for breast cancer cell invasion and dissemination in multiple cancer cell lines and murine models of cancer metastasis. Evaluation of a Myo10 mutant without the integrin-binding domain revealed that the ability of Myo10 to transport β₁ integrins to the filopodia tip is required for invasion. Introduction of mutant p53 promoted Myo10 expression in cancer cells and pancreatic ductal adenocarcinoma in mice, whereas suppression of endogenous mutant p53 attenuated Myo10 levels and cell invasion. In clinical breast carcinomas, Myo10 was predominantly expressed at the invasive edges and correlated with the presence of TP53 mutations and poor prognosis. These data indicate that Myo10 upregulation in mutant p53-driven cancers is necessary for invasion and that plasma-membrane protrusions, such as filopodia, may serve as specialized metastatic engines.
Ogino, S; Kawasaki, T; Kirkner, G J; Ogawa, A; Dorfman, I; Loda, M; Fuchs, C S
2006-10-01
p21 (CDKN1A/CIP1/WAF1), one of the cyclin-dependent kinase inhibitors, plays a key role in regulating the cell cycle and is transcriptionally regulated by p53. Down-regulation of p21 is caused by TP53 mutations in colorectal cancer. CpG island methylator phenotype (CIMP) appears to be a distinct subtype of colorectal cancer with concordant methylation of multiple gene promoters and is associated with a high degree of microsatellite instability (MSI-H) and BRAF mutations. However, no study to date has evaluated the relationship between p21 expression and CIMP in colorectal cancer. The purpose of this study was to examine the inter-relationships between p21, p53, CIMP, MSI and KRAS/BRAF status in colorectal cancer. We utilized 737 relatively unbiased samples of colorectal cancers from two large prospective cohort studies. Using quantitative real-time PCR (MethyLight), we measured DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16/INK4A), CRABP1, MLH1 and NEUROG1]. CIMP-high (>or=4/5 methylated promoters) was diagnosed in 118 (16%) of the 737 tumours. We also assessed expression of p21 and p53 by immunohistochemistry. Among the 737 tumours, 371 (50%) showed p21 loss. Both p21 loss and p53 positivity were inversely associated with CIMP-high, MSI-H and BRAF mutations. The associations of p21 with these molecular features were still present after tumours were stratified by p53 status. In contrast, the associations of p53 positivity with the molecular features were no longer present after tumours were stratified by p21 status. When CIMP-high and non-CIMP-high tumours were stratified by MSI or KRAS/BRAF status, CIMP-high and MSI-H (but not BRAF mutations) were still inversely associated with p21 loss. In conclusion, down-regulation of p21 is inversely correlated with CIMP-high and MSI-H in colorectal cancer, independent of TP53 and BRAF status.
Gao, Li; Ji, Yue; Lu, Yan; Qiu, Ming; Shen, Yejiao; Wang, Yaqing; Kong, Xiangqing; Shao, Yongfeng; Sheng, Yanhui; Sun, Wei
2018-03-09
The most frequently used oral anti-coagulant warfarin has been implicated in inducing calcification of aortic valve interstitial cells (AVICs), whereas the mechanism is not fully understood. The low-level activation of p53 is found to be involved in osteogenic transdifferentiation and calcification of AVICs. Whether p53 participates in warfarin-induced AVIC calcification remains unknown. In this study, we investigated the role of low-level p53 overexpression in warfarin-induced porcine AVIC (pAVIC) calcification. Immunostaining, quantitative PCR, and Western blotting revealed that p53 was expressed in human and pAVICs and that p53 expression was slightly increased in calcific human aortic valves compared with non-calcific valves. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining indicated that apoptosis slightly increased in calcific aortic valves than in non-calcific valves. Warfarin treatment led to a low-level increase of p53 mRNA and protein in both pAVICs and mouse aortic valves. Low-level overexpression of p53 in pAVICs via an adenovirus vector did not affect pAVIC apoptosis but promoted warfarin-induced calcium deposition and expression of osteogenic markers. shRNA-mediated p53 knockdown attenuated the pAVIC calcium deposition and osteogenic marker expression. Moreover, ChIP and luciferase assays showed that p53 was recruited to the slug promoter and activated slug expression in calcific pAVICs. Of note, overexpression of Slug increased osteogenic marker Runx2 expression, but not pAVIC calcium deposition, and Slug knockdown attenuated pAVIC calcification and p53-mediated pAVIC calcium deposition and expression of osteogenic markers. In conclusion, we found that p53 plays an important role in warfarin induced pAVIC calcification, and increased slug transcription by p53 is required for p53-mediated pAVIC calcification. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Basal p53 expression is indispensable for mesenchymal stem cell integrity.
Boregowda, Siddaraju V; Krishnappa, Veena; Strivelli, Jacqueline; Haga, Christopher L; Booker, Cori N; Phinney, Donald G
2018-03-01
Marrow-resident mesenchymal stem cells (MSCs) serve as a functional component of the perivascular niche that regulates hematopoiesis. They also represent the main source of bone formed in adult bone marrow, and their bifurcation to osteoblast and adipocyte lineages plays a key role in skeletal homeostasis and aging. Although the tumor suppressor p53 also functions in bone organogenesis, homeostasis, and neoplasia, its role in MSCs remains poorly described. Herein, we examined the normal physiological role of p53 in primary MSCs cultured under physiologic oxygen levels. Using knockout mice and gene silencing we show that p53 inactivation downregulates expression of TWIST2, which normally restrains cellular differentiation to maintain wild-type MSCs in a multipotent state, depletes mitochondrial reactive oxygen species (ROS) levels, and suppresses ROS generation and PPARG gene and protein induction in response to adipogenic stimuli. Mechanistically, this loss of adipogenic potential skews MSCs toward an osteogenic fate, which is further potentiated by TWIST2 downregulation, resulting in highly augmented osteogenic differentiation. We also show that p53 - /- MSCs are defective in supporting hematopoiesis as measured in standard colony assays because of decreased secretion of various cytokines including CXCL12 and CSF1. Lastly, we show that transient exposure of wild-type MSCs to 21% oxygen upregulates p53 protein expression, resulting in increased mitochondrial ROS production and enhanced adipogenic differentiation at the expense of osteogenesis, and that treatment of cells with FGF2 mitigates these effects by inducing TWIST2. Together, these findings indicate that basal p53 levels are necessary to maintain MSC bi-potency, and oxygen-induced increases in p53 expression modulate cell fate and survival decisions. Because of the critical function of basal p53 in MSCs, our findings question the use of p53 null cell lines as MSC surrogates, and also implicate dysfunctional MSC responses in the pathophysiology of p53-related skeletal disorders.
Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction.
Broaddus, W C; Liu, Y; Steele, L L; Gillies, G T; Lin, P S; Loudon, W G; Valerie, K; Schmidt-Ullrich, R K; Fillmore, H L
1999-12-01
The goal of this study was to determine whether adenoviral vector-mediated expression of human wildtype p53 can enhance the radiosensitivity of malignant glioma cells that express native wild-type p53. The p53 gene is thought to function abnormally in the majority of malignant gliomas, although it has been demonstrated to be mutated in only approximately 30%. This has led to studies in which adenoviral transduction with wild-type human p53 has been investigated in an attempt to slow tumor cell growth. Recent studies suggest that reconstitution of wild-type p53 can render cells more susceptible to radiation-mediated death, primarily by p53-mediated apoptosis. Rat RT2 glioma cells were analyzed for native p53 status by reverse transcriptase-polymerase chain reaction and sequence analysis and for p53 expression by Western blot analysis. Clonogenic survival and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay were used to characterize RT2 cell radiosensitivity and apoptosis, respectively, with and without prior transduction with p53-containing and control adenoviral vectors. Animal survival length was monitored after intracerebral implantation with transduced and nontransduced RT2 cells, with and without cranial radiation. The RT2 cells were demonstrated to express native rat wild-type p53 and to markedly overexpress human p53 following adenoviral p53 transduction. The combination of p53 transduction followed by radiation resulted in marked decreases in RT2 cell survival and increases in apoptosis at radiation doses from 2 to 6 Gy. Animals receiving cranial radiation after intracerebral implantation with RT2 cells previously transduced with p53 survived significantly longer than control animals (p<0.01). The ability to enhance the radiosensitivity of malignant glioma cells that express wild-type p53 by using adenoviral transduction to induce overexpression of p53 offers hope for this approach as a therapeutic strategy, not only in human gliomas that express mutant p53, but also in those that express wild-type p53.
Brighenti, E; Calabrese, C; Liguori, G; Giannone, F A; Trerè, D; Montanaro, L; Derenzini, M
2014-01-01
Chronic inflammation is an established risk factor for the onset of cancer, and the inflammatory cytokine IL-6 has a role in tumorigenesis by enhancing proliferation and hindering apoptosis. As factors stimulating proliferation also downregulate p53 expression by enhancing ribosome biogenesis, we hypothesized that IL-6 may cause similar changes in inflamed tissues, thus activating a mechanism that favors neoplastic transformation. Here, we showed that IL-6 downregulated the expression and activity of p53 in transformed and untransformed human cell lines. This was the consequence of IL-6-dependent stimulation of c-MYC mRNA translation, which was responsible for the upregulation of rRNA transcription. The enhanced rRNA transcription stimulated the MDM2-mediated proteasomal degradation of p53, by reducing the availability of ribosome proteins for MDM2 binding. The p53 downregulation induced the acquisition of cellular phenotypic changes characteristic of epithelial–mesenchymal transition, such as a reduced level of E-cadherin expression, increased cell invasiveness and a decreased response to cytotoxic stresses. We found that these changes also occurred in colon epithelial cells of patients with ulcerative colitis, a very representative example of chronic inflammation at high risk for tumor development. Histochemical and immunohistochemical analysis of colon biopsy samples showed an upregulation of ribosome biogenesis, a reduced expression of p53, together with a focal reduction or absence of E-cadherin expression in chronic colitis in comparison with normal mucosa samples. These changes disappeared after treatment with anti-inflammatory drugs. Taken together, the present results highlight a new mechanism that may link chronic inflammation to cancer, based on p53 downregulation, which is activated by the enhancement of rRNA transcription upon IL-6 exposure. PMID:24531714
Walline, Heather M; Carey, Thomas E; Goudsmit, Christine M; Bellile, Emily L; D'Souza, Gypsyamber; Peterson, Lisa A; McHugh, Jonathan B; Pai, Sara I; Lee, J Jack; Shin, Dong M; Ferris, Robert L
2017-02-01
In this study, high-risk HPV (hrHPV) incidence, prognostic biomarkers, and outcome were assessed in HIV-positive (case) and HIV-negative (control) patients with head and neck squamous cell cancer (HNSCC). HIV-positive cases were matched to controls by tumor site, sex, and age at cancer diagnosis. A tissue microarray (TMA) was constructed and DNA isolated from tumor tissue. MultiPlex-PCR MassArray, L1-PCR, and in situ hybridization were used to assess hrHPV. TMA sections were stained for p16ink4a, TP53, RB, CCND1, EGFR, and scored for intensity and proportion of positive tumor cells. The HNSCC cohort included 41 HIV-positive cases and 41 HIV-negative controls. Tumors from 11 of 40 (28%) cases, and 10 of 41 (24%) controls contained hrHPV. p16 expression, indicative of E7 oncogene activity, was present in 10 of 11 HPV-positive cases and 7 of 10 HPV-positive controls. Low p16 and high TP53 expression in some HPV-positive tumors suggested HPV-independent tumorigenesis. Survival did not differ in cases and controls. RB expression was significantly associated with poor survival (P = 0.01). High TP53 expression exhibited a trend for poorer survival (P = 0.12), but among cases, association with poor survival reached statistical significance (P = 0.04). The proportion of HPV-positive tumors was similar, but the heterogeneity of HPV types was higher in the HIV-positive cases than in HIV-negative controls. High RB expression predicted poor survival, and high TP53 expression was associated with poorer survival in the HIV-positive cases but not HIV-negative controls. HIV infection did not increase risk of death from HNSCC, and HPV-positive tumors continued to be associated with a significantly improved survival, independent of HIV status. Mol Cancer Res; 15(2); 179-88. ©2016 AACR. ©2016 American Association for Cancer Research.
Kastelein, Florine; Biermann, Katharina; Steyerberg, Ewout W; Verheij, Joanne; Kalisvaart, Marit; Looijenga, Leendert H J; Stoop, Hans A; Walter, Laurens; Kuipers, Ernst J; Spaander, Manon C W; Bruno, Marco J
2013-12-01
The value of surveillance for patients with Barrett's oesophagus (BO) is under discussion given the overall low incidence of neoplastic progression and lack of discriminative tests for risk stratification. Histological diagnosis of low-grade dysplasia (LGD) is the only accepted predictor for progression to date, but has a low predictive value. The aim of this study was therefore to evaluate the value of p53 immunohistochemistry for predicting neoplastic progression in patients with BO. We conducted a case-control study within a prospective cohort of 720 patients with BO. Patients who developed high-grade dysplasia (HGD) or oesophageal adenocarcinoma (OAC) were classified as cases and patients without neoplastic progression were classified as controls. P53 protein expression was determined by immunohistochemistry in more than 12 000 biopsies from 635 patients and was scored independently by two expert pathologists who were blinded to long-term outcome. During follow-up, 49 (8%) patients developed HGD or OAC. P53 overexpression was associated with an increased risk of neoplastic progression in patients with BO after adjusting for age, gender, Barrett length and oesophagitis (adjusted relative risks (RR(a)) 5.6; 95% CI 3.1 to 10.3), but the risk was even higher with loss of p53 expression (RR(a) 14.0; 95% CI 5.3 to 37.2). The positive predictive value for neoplastic progression increased from 15% with histological diagnosis of LGD to 33% with LGD and concurrent aberrant p53 expression. Aberrant p53 protein expression is associated with an increased risk of neoplastic progression in patients with BO and appears to be a more powerful predictor of neoplastic progression than histological diagnosis of LGD.
Marcel, V; Fernandes, K; Terrier, O; Lane, D P; Bourdon, J-C
2014-01-01
In addition to the tumor suppressor p53 protein, also termed p53α, the TP53 gene produces p53β and p53γ through alternative splicing of exons 9β and 9γ located within TP53 intron 9. Here we report that both TG003, a specific inhibitor of Cdc2-like kinases (Clk) that regulates the alternative splicing pre-mRNA pathway, and knockdown of SFRS1 increase expression of endogenous p53β and p53γ at mRNA and protein levels. Development of a TP53 intron 9 minigene shows that TG003 treatment and knockdown of SFRS1 promote inclusion of TP53 exons 9β/9γ. In a series of 85 primary breast tumors, a significant association was observed between expression of SFRS1 and α variant, supporting our experimental data. Using siRNA specifically targeting exons 9β/9γ, we demonstrate that cell growth can be driven by modulating p53β and p53γ expression in an opposite manner, depending on the cellular context. In MCF7 cells, p53β and p53γ promote apoptosis, thus inhibiting cell growth. By transient transfection, we show that p53β enhanced p53α transcriptional activity on the p21 and Bax promoters, while p53γ increased p53α transcriptional activity on the Bax promoter only. Moreover, p53β and p53γ co-immunoprecipitate with p53α only in the presence of p53-responsive promoter. Interestingly, although p53β and p53γ promote apoptosis in MCF7 cells, p53β and p53γ maintain cell growth in response to TG003 in a p53α-dependent manner. The dual activities of p53β and p53γ isoforms observed in non-treated and TG003-treated cells may result from the impact of TG003 on both expression and activities of p53 isoforms. Overall, our data suggest that p53β and p53γ regulate cellular response to modulation of alternative splicing pre-mRNA pathway by a small drug inhibitor. The development of novel drugs targeting alternative splicing process could be used as a novel therapeutic approach in human cancers. PMID:24926616
Regulation of apoptosis by somatostatin and substance P in peritoneal macrophages.
Kang, B N; Jeong, K S; Park, S J; Kim, S J; Kim, T H; Kim, H J; Ryu, S Y
2001-09-15
Recent studies have shown that somatostatin (SOM) inhibits interleukin 6 (IL-6) and interferon gamma (IFNgamma) production by lymphocytes and peritoneal macrophages, whereas substance P (SP) enhances these cytokines production. To define the mechanism of the cytokine production enhancements and inhibitions by SOM and SP, we examined the expression of apoptosis modulator, p53, Bcl-2, Bax, inducible nitric oxide synthase (iNOS), Fas, caspase-8 and nitric oxide (NO) in thioglycolate-elicited peritoneal macrophages. SOM caused up-regulation of p53, Bcl-2, Fas and caspase-8 activities, and down-regulation of iNOS expression and NO production. On the other hand, SP slightly induces p53 and highly induces Bcl-2, iNOS expression and NO production. These data suggest that apoptosis by SOM may occur by a Bax- and NO-independent p53 accumulation, and through Fas and caspase-8 activation pathways, and that the inducible expression of Bcl-2 and NO production by SP may contribute to prevent the signals of apoptosis by Bax, and via Fas and caspase-8 activation.
Manachai, Nawin; Saito, Yusuke; Nakahata, Shingo; Bahirvani, Avinash Govind; Osato, Motomi; Morishita, Kazuhiro
2017-01-22
The presence of a BCR-ABL1 fusion gene is necessary for the pathogenesis of chronic myeloid leukemia (CML) through t(9;22)(q34;q11) translocation. Imatinib, an ABL tyrosine kinase inhibitor, is dramatically effective in CML patients; however, 30% of CML patients will need further treatment due to progression of CML to blast crisis (BC). Aberrant high expression of ecotropic viral integration site 1 (EVI1) is frequently observed in CML during myeloid-BC as a potent driver with a CML stem cell signature; however, the precise molecular mechanism of EVI1 transcriptional regulation during CML progression is poorly defined. Here, we demonstrate the transcriptional activity of EVI1 is dependent on activation of lymphoid enhancer-binding factor 1 (LEF1)/β-catenin complex by BCR-ABL with loss of p53 function during CML-BC. The activation of β-catenin is partly dependent on BCR-ABL expression through enhanced GSK3β phosphorylation, and EVI1 expression is directly enhanced by the LEF1/β-catenin complex bound to the EVI1 promoter region. Moreover, the loss of p53 expression is inversely correlated with high expression of EVI1 in CML leukemia cells with an aggressive phase of CML, and a portion of the activation mechanism of EVI1 expression is dependent on β-catenin activation through GSK3β phosphorylation by loss of p53. Therefore, we found that the EVI1 activation in CML-BC is dependent on LEF1/β-catenin activation by BCR-ABL expression with loss of p53 function, representing a novel selective therapeutic approach targeting myeloid blast crisis progression. Copyright © 2016 Elsevier Inc. All rights reserved.
Tumor Suppressor p53 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1.
Wang, Qianli; Lingel, Amy; Geiser, Vicki; Kwapnoski, Zachary; Zhang, Luwen
2017-10-15
Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers. IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and DNA damage-mediated cellular stresses. This seems to be the first report that p53 activates a viral oncogene; therefore, the discovery would be interesting to a broad readership from the fields of oncology to virology. Copyright © 2017 American Society for Microbiology.
Carrasco, V; Canfrán, S; Rodríguez-Franco, F; Benito, A; Sáinz, A; Rodríguez-Bertos, A
2011-01-01
Immunohistochemical staining for cell cycle proteins and heat shock proteins was performed on 17 canine gastric carcinomas. The immunoexpression of p53, p21, p16, Hsp27, and Hsp70 was investigated. A study was conducted to determine the histological type and parameters related to tumor malignancy. Possible associations and trends were assessed between the immunoexpression of each protein and tumor type as well as specific parameters of malignancy. High intratumor frequency of cellular p53 immunostaining was observed (61.96% average), but lower frequencies of p21 and p16 expression were present (34.65% and 10.41%, respectively). The p53 overexpression was associated with tumor infiltration (P = .0258). Expression of p21 was lower in undifferentiated carcinomas, and the loss of expression was associated with histopathological parameters characteristic of a poor prognosis such as lymphatic vessel invasion (P = .0258). The lack of p16 immunoreactivity was related to histopathological characteristics of malignancy such as the presence of evident and multiple nucleoli (P = .0475). In contrast, deep tumor infiltration was observed in those carcinomas with a high p16 index (P = .0475). Hsp70 appeared to be overexpressed in all gastric neoplasms included in this study. This is in contrast to Hsp27, because a group of tumors showed complete lack of Hsp27 immunoexpression, whereas the others displayed extensive Hsp27 immunostaining. The differences in Hsp27 did not correlate with any of the histopathological parameters, but Hsp27 immunoexpression was higher in the undifferentiated carcinoma. No significant differences in the expression of the proteins were found in canine gastric carcinomas according to their histological type. These findings may be useful for establishing a prognosis for canine gastric carcinoma.
Troyano, Nuria; Nogal, María Del; Mora, Inés; Diaz-Naves, Manuel; Lopez-Carrillo, Natalia; Sosa, Patricia; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruiz-Torres, María P
2015-12-01
Aging is conditioned by genetic and environmental factors. Hyperphosphatemia is related to some pathologies, affecting to vascular cells behavior. This work analyze whether high concentration of extracellular phosphate induces vascular smooth muscle cells senescence, exploring the intracellular mechanisms and highlighting the in vivo relevance of this phenomenon. Human aortic smooth muscle cells treated with β-Glycerophosphate (BGP, 10mM) suffered cellular senescence by increasing p53, p21 and p16 expression and the senescence associated β-galactosidase activity. In parallel, BGP induced ILK overexpression, dependent on the IGF-1 receptor activation, and oxidative stress. Down-regulating ILK expression prevented BGP-induced senescence and oxidative stress. Aortic rings from young rats treated with 10mM BGP for 48h, showed increased p53, p16 and ILK expression and SA-β-gal activity. Seven/eight nephrectomized rats feeding a hyperphosphatemic diet and fifteenth- month old mice showed hyperphosphatemia and aortic ILK, p53 and p16 expression. In conclusion, we demonstrated that high extracellular concentration of phosphate induced senescence in cultured smooth muscle through the activation of IGF-1 receptor and ILK overexpression and provided solid evidences for the in vivo relevance of these results since aged animals showed high levels of serum phosphate linked to increased expression of ILK and senescence genes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Lu, Xiaohong; Yu, Yuanjie; Tan, Shiyun
2017-10-25
Tumor suppressor gene p53 expression has been reported in patients with ulcerative colitis (UC). However, the correlation between p53 expression and UC remains controversial. The aim of this meta-analysis was to investigate the association between p53 expression and different pathological types of UC. Publications were searched in the PubMed, Embase, EBSCO, Wangfang, and CNKI databases. The overall odds ratios (ORs) and their corresponding 95% confidence intervals (95% CIs) were summarized in this study. Final 19 papers were identified in this meta-analysis, including 1068 patients with UC and 130 normal tissue samples. Immunohistochemical p53 expression was significantly higher in UC without dysplasia and carcinoma (UC group) compared to normal tissue samples (OR = 3.14, P = 0.001), higher in UC with dysplasia than in UC group (OR = 10.76, P < 0.001), and higher in UC with colorectal cancer (CRC) than in UC with dysplasia (OR = 1.69, P = 0.035). Subgroup analysis of ethnicity (UC group vs. normal tissues) showed that p53 expression was correlated with UC in Asians, but not in Caucasians. When UC with dysplasia was compared to UC group, p53 expression was linked to UC with dysplasia among both Asians and Caucasians. When UC-CRC was compared to UC with dysplasia, p53 expression was not associated with UC-CRC in both Caucasians and Asians. p53 expression was closely associated with UC-CRC development. p53 expression showed different ethnic characteristics among different pathological types of UC.
Burns, J. E.; Baird, M. C.; Clark, L. J.; Burns, P. A.; Edington, K.; Chapman, C.; Mitchell, R.; Robertson, G.; Soutar, D.; Parkinson, E. K.
1993-01-01
Using immunocytochemical and Western blotting techniques we have demonstrated the presence of abnormally high levels of p53 protein in 8/24 (33%) of human squamous cell carcinomas (SCC) and 9/18 (50%) of SCC cell lines. There was a correlation between the immunocytochemical results obtained with eight SCC samples and their corresponding cell lines. Direct sequencing of PCR-amplified, reverse transcribed, p53 mRNA confirmed the expression of point mutations in six of the positive cell lines and detected in-frame deletions in two others. We also detected two stop mutations and three out-of-frame deletions in five lines which did not express elevated levels of p53 protein. Several of the mutations found in SCC of the tongue (3/7) were in a region (codons 144-166) previously identified as being a p53 mutational hot spot in non-small cell lung tumours (Mitsudomi et al., 1992). In 11/13 cases only the mutant alleles were expressed suggesting loss or reduced expression of the wild type alleles in these cases. Six of the mutations were also detected in the SCCs from which the lines were derived, strongly suggesting that the mutations occurred, and were selected, in vivo. The 12th mutation GTG-->GGG (valine-->glycine) at codon 216 was expressed in line SCC-12 clone B along with an apparently normal p53 allele and is to our knowledge a novel mutation. Line BICR-19 also expressed a normal p53 allele in addition to one where exon 10 was deleted. Additionally 15 of the SCC lines (including all of those which did not show elevated p53 protein levels) were screened for the presence of human papillomavirus types 16 and 18 and were found to be negative. These results are discussed in relation to the pathogenesis of SCC and the immortalisation of human keratinocytes in vitro. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8390283
Salih, Barik A; Gucin, Zuhal; Bayyurt, Nizamettin
2013-09-16
Helicobacter pylori cause damage to gastric epithelial cells and alterations in the p53 gene that lead to cancer development. This study aimed to determine the correlation of p53 expression with H. pylori using immunohistochemistry, RFLP-PCR, and histopathology. Gastric biopsy samples from gastric cancer (GC) (n = 54) and gastritis (n = 31) patients were examined for histopathological changes and expression of p53 protein by immunohistochemistry. Immunohistochemical analysis of p53 protein expression in H. pylori-positive GC sections showed an average of 44.3% positive cells in tumors and 6.9% in normal tissues, as compared to 16.4% and 4.4% in H. pylori-negative sections. P53 expression showed significant association with H. pylori (P = 0.005), invasion depth (P = 0.029) and inflammation reaction (P = 0.008). In gastritis sections, no difference in the average p53 staining in H. pylori-positive or -negative sections was seen. PCR-RFLP results also showed no difference in genotype frequencies of p53 in H. pylori-positive or -negative gastritis sections. Histopathology study of H. pylori-positive GC sections showed that 97.2% were the intestinal type and 2.8% the diffuse type, while in H. pylori-negative sections 35.2% were the intestinal type and 64.8% the diffuse type. Biopsy sections from H. pylori-positive gastritis patients revealed more severe inflammation than those of H. pylori-negative patients. Our results show that H. pylori infection affects p53 expression in GC. The average p53 expression was significantly higher in tumor than in normal tissues. In gastritis sections p53 expression was significantly associated with H. pylori.
Tomasini, Richard; Seux, Mylène; Nowak, Jonathan; Bontemps, Caroline; Carrier, Alice; Dagorn, Jean-Charles; Pébusque, Marie-Josèphe; Iovanna, Juan L; Dusetti, Nelson J
2005-12-08
TP53INP1 is an alternatively spliced gene encoding two nuclear protein isoforms (TP53INP1alpha and TP53INP1beta), whose transcription is activated by p53. When overexpressed, both isoforms induce cell cycle arrest in G1 and enhance p53-mediated apoptosis. TP53INP1s also interact with the p53 gene and regulate p53 transcriptional activity. We report here that TP53INP1 expression is induced during experimental acute pancreatitis in p53-/- mice and in cisplatin-treated p53-/- mouse embryo fibroblasts (MEFs). We demonstrate that ectopic expression of p73, a p53 homologue, leads to TP53INP1 induction in p53-deficient cells. In turn, TP53INP1s alters the transactivation capacity of p73 on several p53-target genes, including TP53INP1 itself, demonstrating a functional association between p73 and TP53INP1s. Also, when overexpressed in p53-deficient cells, TP53INP1s inhibit cell growth and promote cell death as assessed by cell cycle analysis and colony formation assays. Finally, we show that TP53INP1s potentiate the capacity of p73 to inhibit cell growth, that effect being prevented when the p53 mutant R175H is expressed or when p73 expression is blocked by a siRNA. These results suggest that TP53INP1s are functionally associated with p73 to regulate cell cycle progression and apoptosis, independently from p53.
Kraljević Pavelić, Sandra; Marjanović, Marko; Poznić, Miroslav; Kralj, Marijeta
2009-12-01
p53 gene plays a crucial role in the response to therapy. Since it is inactivated in the majority of human cancers, it is strongly believed that the p53 mutations confer resistance to therapeutics. In this paper we analyzed the influence of two mechanistically diverse antitumor agents--cisplatin and methotrexate on the proliferation and cell cycle of two head and neck squamous cancer cell lines HEp-2 (wild type p53 gene, but HPV 18/E6-inactivated protein) and CAL 27 (mutated p53 gene), along with the influence of adenovirally mediated p53 overexpression in modulation of cisplatin and methoterexate effects, whereby subtoxic vector/compound concentrations were employed. p53 gene was introduced into tumor cells using adenoviral vector (AdCMV-p53). The cell cycle perturbations were measured by two parameter flow cytometry. The expression of p53, p21(WAF1/CIP1) and cyclin B1 proteins was examined using immunocytochemistry and western blot methods. In CAL 27 cells overexpression of p53 completely abrogated high S phase content observed in methotrexate-treated cells into a G1 and slight G2 arrest, while it sustained G2 arrest of the cells treated with cisplatin, along with the reduction of DNA synthesis and cyclin B1 expression. On the other hand, in HEp-2 cell line p53 overexpression slightly slowed down the progression through S phase in cells treated with methotrexate, decreased the cyclin B1 expression only after 24 h, and failed to sustain the G2 arrest after treatment with cisplatin alone. Instead, it increased the population of S phase cells that were not actively synthesizing DNA, sustained cyclin B1 expression and allowed the G2 cells to progress through mitosis. This study demonstrates that adenovirally mediated p53 overexpression at sub-cytotoxic levels enhanced the activity of low doses of cisplatin and methotrexate in HEp-2 and CAL 27 cells through changes in the cell cycle. However, the mechanisms of these effects differ depending on the genetic context and on the chemotherapeutics' modality of action.
Shan, Xiu; Fu, Yuan-Shan; Aziz, Faisal; Wang, Xiao-Qi; Yan, Qiu; Liu, Ji-Wei
2014-01-01
Malignant melanoma is an aggressive and deadly form of skin cancer, and despite recent advances in available therapies, is still lacking in completely effective treatments. Rg3, a monomer extracted from ginseng roots, has been attempted for the treatment of many cancers. It is reported that the expressions of histone deacetylase 3 (HDAC3) and p53 acetylation correlate with tumor cell growth. However, the antitumor effect of Rg3 on melanoma and the mechanism by which it regulates HDAC3 expression and p53 acetylation remain unknown. We found high expression of HDAC3 in human melanoma tissues to be significantly correlated to lymph node metastasis and clinical stage of disease (p<0.05). In melanoma cells, Rg3 inhibited cell proliferation and induced G0/G1 cell cycle arrest. Rg3 also decreased the expression of HDAC3 and increased the acetylation of p53 on lysine (k373/k382). Moreover, suppression of HDAC3 by either siRNA or a potent HDAC3 inhibitor (MS-275) inhibited cell proliferation, increased p53 acetylation and transcription activity. In A375 melanoma xenograft studies, we demonstrated that Rg3 and HDAC3 short hairpin RNA (shHDAC3) inhibited the growth of xenograft tumors with down-regulation of HDAC3 expression and up-regulation of p53 acetylation. In conclusion, Rg3 has antiproliferative activity against melanoma by decreasing HDAC3 and increasing acetylation of p53 both in vitro and in vivo. Thus, Rg3 serves as a potential therapeutic agent for the treatment of melanoma. PMID:25521755
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Lei; Pre-Doctoral Chinese Fellowship Student, Second West China Hospital, Sichuan University, Sichuan; Ling, Xiang
2012-05-04
Highlights: Black-Right-Pointing-Pointer Survivin inhibits the expression of p21 protein, mRNA and promoter activity. Black-Right-Pointing-Pointer Survivin neutralizes p53-induced p21 expression and promoter activity. Black-Right-Pointing-Pointer Survivin physically interacts with p53 in cancer cells. Black-Right-Pointing-Pointer Genetic silencing of endogenous survivin upregulates p21 in p53 wild type cancer cells. Black-Right-Pointing-Pointer Both p53 and survivin interacts on the two p53-binding sites in the p21 promoter. -- Abstract: Growing evidence suggests a role for the antiapoptotic protein survivin in promotion of cancer cell G1/S transition and proliferation. However, the underlying mechanism is unclear. Further, although upregulation of p21{sup WAF1/CIP1} by p53 plays an important role inmore » p53-mediated cell G1 arrests in response to various distresses, it is unknown whether survivin plays a role in the regulation of p21{sup WAF1/CIP1} expression. Here, we report that exogenous expression of survivin in p53-wild type MCF-7 breast cancer cells inhibits the expression of p21{sup WAF1/CIP1} protein, mRNA and promoter activity, while the survivin C84A mutant and antisense failed to do so. Cotransfection experiments in the p53 mutant H1650 lung cancer cell line showed that survivin neutralizes p53-induced p21{sup WAF1/CIP1} expression and promoter activity. Importantly, genetically silencing of endogenous survivin using lentiviral survivin shRNA also enhances endogenous p21 in p53 wild type cancer cells, suggesting the physiological relevance of the fining. We further demonstrated that both p53 and survivin interacts on the two p53-binding sites in the p21{sup WAF1/CIP1} promoter (-2313 to -2212; -1452 to -1310), and survivin physically interacts with p53 in cancer cells. Together, we propose that survivin may act as a transcription factor or cofactor to interact with p53 on the p21{sup WAF1/CIP1} promoter leading to the inhibition of p21{sup WAF1/CIP1} expression at least in part by neutralizing p53-mediated transcriptional activation of the p21 gene.« less
Biological effects of induced MYCN hyper-expression in MYCN-amplified neuroblastomas.
Torres, Jaime; Regan, Paul L; Edo, Robby; Leonhardt, Payton; Jeng, Eric I; Rappaport, Eric F; Ikegaki, Naohiko; Tang, Xao X
2010-10-01
Neuroblastoma is a childhood malignancy of the sympathetic nervous system. The tumor exhibits two different phenotypes: favorable and unfavorable. MYCN amplification is associated with rapid tumor progression and the worst neuroblastoma disease outcome. We have previously reported that inhibitors of histone deacetylase (HDAC) and proteasome enhance favorable neuroblastoma gene expression in neuroblastoma cell lines and inhibit growth of these cells. In this study, we investigated the effect of trichostatin A or TSA (an HDAC inhibitor), and epoxomycin (a proteasome inhibitor) on MYCN and p53 expression in MYCN-amplified neuroblastoma cells. It was found that TSA down-regulated MYCN expression, but Epoxomycin and the TSA/Epoxomycin combination led to MYCN hyper-expression in MYCN-amplified neuroblastoma cell lines. Despite their contrasting effects on MYCN expression, TSA and Epoxomycin caused growth suppression and cell death of the MYCN-amplified cell lines examined. Consistent with these data, forced hyper-expression of MYCN in MYCN-amplified IMR5 cells via transfection resulted in growth suppression and the increased expression of several genes known to suppress growth or induce cell death. Furthermore, Epoxomycin as a single agent and its combination with TSA enhance p53 expression in the MYCN-amplified neuroblastoma cell lines. Unexpectedly, co-transfection of TP53 and MYCN in IMR5 cells resulted in high p53 expression but a reduction of MYCN expression. Together our data suggest that either down regulation or hyper-expression of MYCN results in growth inhibition and/or apoptosis of MYCN-amplified neuroblastoma cells. In addition, elevated p53 expression has a suppressive effect on MYCN expression in these cells.
Accumulation of p53 in infectious mononucleosis tissues.
Ehsan, A; Fan, H; Eagan, P A; Siddiqui, H A; Gulley, M L
2000-11-01
Epstein-Barr virus (EBV) infects lymphocytes, where it persists indefinitely for the life of the host; whether the virus interacts with p53 to maintain itself in these cells is unknown. Lymphoid biopsy samples from 10 patients with infectious mononucleosis (IM) were examined for expression of p53 by immunohistochemistry. Accumulation of p53 was detected in all 10 cases, primarily in large lymphocytes of the expanded paracortex. The presence of EBV was confirmed in all 10 cases by EBER1 (EBV-encoded RNA) in situ hybridization, whereas 11 non-IM control samples lacked significant EBER1 and did not express p53 in paracortical lymphocytes. Interestingly, EBV infection alone does not cause accumulation of intracellular p53, because many more cells expressed EBER1 than p53 in the IM tissues. To determine whether p53 was confined to the subset of infected cells in which viral replication was occurring, BZLF1 immunostains were performed. Viral BZLF1 was detected in 8 of 10 IM tissues; however, the paucity and small size of the BZLF1-expressing lymphocytes suggests that they are not the same cells overexpressing p53. To further examine the relationship between p53 and EBV gene expression, the tissues were studied for latent membrane protein 1 (LMP1) expression by immunohistochemistry. Viral LMP1 was observed in the large paracortical lymphocytes of all 10 cases of IM, indicating co-localization of p53 and LMP1 in these cells. Our findings confirm that p53 overexpression is not specific for nodal malignancy and that p53 accumulation is characteristic of IM. Because p53 was not coexpressed in the same cells as BZLF1, it appears that BZLF1 is not directly responsible for p53 accumulation. Nevertheless, co-localization of p53 and LMP1 in activated-appearing lymphocytes suggests that EBV infection is responsible for p53 accumulation. HUM PATHOL 31:1397-1403. Copyright 2000 by W.B. Saunders Company
Dunphy, C H; Dunphy, F R; Boyd, J H; Varvares, M A; Kim, H J; Lowe, V; Dunleavy, T L; Rodriguez, J; McDonough, E M; Minster, J
1997-11-01
The expression of p53 protein has been reported to be in the range of 35% to 67% in head and neck squamous cell carcinoma (HNSCC). Mutations of the gene for p53 protein have been associated with rapidly proliferating tumors, and p53 protein expression has been shown to be a significant predictor of worse survival in surgically resected HNSCC. To determine whether p53 protein expression in advanced (stages III and IV) HNSCC has any impact on tumor response to 2 to 3 courses of paclitaxel (Taxol) and carboplatin, we prospectively studied prechemotherapy specimens from patients with previously untreated, advanced-stage HNSCC. We also attempted to study residual tumors after chemotherapy to determine if the p53 status of the tumor changed. The expression of p53 protein was evaluated by immunohistochemical analysis (clone BP53-12-1; Bio-Genex, San Ramon, Calif). Tertiary university medical center. Two to 3 courses of chemotherapy with paclitaxel and carboplatin. Pathologic complete remission or residual tumor. The results of p53 immunostaining were positive in 24 (67%) of 36 HNSCC specimens before chemotherapy. After chemotherapy, 8 patients achieved pathologic complete remission. Before chemotherapy, the tumor was p53 negative in 2 patients and positive in 6 patients. No correlation of p53 protein expression with response to chemotherapy was noted. The expression of p53 protein converted from positive to negative in 5 (42%) of 12 specimens from patients with residual tumor after chemotherapy, with no impact on clinical outcome.
Lee, Se Kyung; Bae, Soo Youn; Lee, Jun Ho; Lee, Hyun-Chul; Yi, Hawoo; Kil, Won Ho; Lee, Jeong Eon; Kim, Seok Won; Nam, Seok Jin
2015-01-01
Overexpression of p53 is the most frequent genetic alteration in breast cancer. Recently, many studies have shown that the expression of mutant p53 differs for each subtype of breast cancer and is associated with different prognoses. In this study, we aimed to determine the suitable cut-off value to predict the clinical outcome of p53 overexpression and its usefulness as a prognostic factor in each subtype of breast cancer, especially in luminal A breast cancer. Approval was granted by the Institutional Review Board of Samsung Medical Center. We analyzed a total of 7,739 patients who were surgically treated for invasive breast cancer at Samsung Medical Center between Dec 1995 and Apr 2013. Luminal A subtype was defined as ER&PR + and HER2- and was further subclassified according to Ki-67 and p53 expression as follows: luminal A (Ki-67-,p53-), luminal A (Ki-67+, p53-), luminal A (Ki-67 -, p53+) and luminal A (Ki-67+, p53+). Low-risk luminal A subtype was defined as negative for both Ki-67 and p53 (luminal A [ki-67-, p53-]), and others subtypes were considered to be high-risk luminal A breast cancer. A cut-off value of 10% for p53 was a good predictor of clinical outcome in all patients and luminal A breast cancer patients. The prognostic role of p53 overexpression for OS and DFS was only significant in luminal A subtype. The combination of p53 and Ki-67 has been shown to have the best predictive power as calculated by the area under curve (AUC), especially for long-term overall survival. In this study, we have shown that overexpression of p53 and Ki-67 could be used to discriminate low-risk luminal A subtype in breast cancer. Therefore, using the combination of p53 and Ki-67 expression in discriminating low-risk luminal A breast cancer may improve the prognostic power and provide the greatest clinical utility. PMID:26241661
Lee, Se Kyung; Bae, Soo Youn; Lee, Jun Ho; Lee, Hyun-Chul; Yi, Hawoo; Kil, Won Ho; Lee, Jeong Eon; Kim, Seok Won; Nam, Seok Jin
2015-01-01
Overexpression of p53 is the most frequent genetic alteration in breast cancer. Recently, many studies have shown that the expression of mutant p53 differs for each subtype of breast cancer and is associated with different prognoses. In this study, we aimed to determine the suitable cut-off value to predict the clinical outcome of p53 overexpression and its usefulness as a prognostic factor in each subtype of breast cancer, especially in luminal A breast cancer. Approval was granted by the Institutional Review Board of Samsung Medical Center. We analyzed a total of 7,739 patients who were surgically treated for invasive breast cancer at Samsung Medical Center between Dec 1995 and Apr 2013. Luminal A subtype was defined as ER&PR + and HER2- and was further subclassified according to Ki-67 and p53 expression as follows: luminal A (Ki-67-,p53-), luminal A (Ki-67+, p53-), luminal A (Ki-67 -, p53+) and luminal A (Ki-67+, p53+). Low-risk luminal A subtype was defined as negative for both Ki-67 and p53 (luminal A [ki-67-, p53-]), and others subtypes were considered to be high-risk luminal A breast cancer. A cut-off value of 10% for p53 was a good predictor of clinical outcome in all patients and luminal A breast cancer patients. The prognostic role of p53 overexpression for OS and DFS was only significant in luminal A subtype. The combination of p53 and Ki-67 has been shown to have the best predictive power as calculated by the area under curve (AUC), especially for long-term overall survival. In this study, we have shown that overexpression of p53 and Ki-67 could be used to discriminate low-risk luminal A subtype in breast cancer. Therefore, using the combination of p53 and Ki-67 expression in discriminating low-risk luminal A breast cancer may improve the prognostic power and provide the greatest clinical utility.
2012-09-01
for the treatment of prostate tumor-bearing mice using a clinical MRgHIFU device. We performed animal studies for quantitative measurement of the...by measuring the protein expression level of MDM2, p53 and p21 using immunohistochemical staining and west blotting techniques. We also performed...therapy) in implanted prostate tumors in mice in vivo by measuring the protein expression level of MDM, p53 and p21 with time points after treatment
Wu, Weizhong; Liu, Sanguang; Liang, Yunfei; Zhou, Zegao; Bian, Wei; Liu, Xueqing
2017-12-01
The pathogenesis of hepatocellular carcinoma (HC) is unclear. It is suggested that psychological stress associates with the pathogenesis of liver cancer. Bcl2-like protein 12 (Bcl2L12) suppresses p53 protein. This study tests a hypothesis that the major stress hormone, cortisol, inhibits the expression of p53 in HC cells (HCC) via up regulating the expression of Bcl2L12. Peripheral blood samples were collected from patients with HC to be analyzed for the levels of cortisol. HCC were cultured to assess the role of cortisol in the regulation of the expression of Bcl2L12 and p53 in HCC. We observed that the serum cortisol levels were higher in HC patients. Expression of Bcl2L12 in HCC was correlated with serum cortisol. Cortisol enhanced the Bcl2L12 expression in HCC. Bcl2L12 binding to the TP53 promoter was correlated with p53 expression in HCC. Cortisol increased the Bcl2L12 expression in HCC to inhibit p53 expression. Stress hormone cortisol suppresses p53 in HCC via enhancing Bcl2L12 expression in HCC. The results suggest that cortisol may be a therapeutic target for the treatment of HC.
Hannemann, Holger; Rosenke, Kyle; O'Dowd, John M; Fortunato, Elizabeth A
2009-05-01
Human cytomegalovirus (HCMV) is a common cause of morbidity and mortality in immunocompromised and immunosuppressed individuals. During infection, HCMV is known to employ host transcription factors to facilitate viral gene expression. To further understand the previously observed delay in viral replication and protein expression in p53 knockout cells, we conducted microarray analyses of p53(+/+) and p53(-/-) immortalized fibroblast cell lines. At a multiplicity of infection (MOI) of 1 at 24 h postinfection (p.i.), the expression of 22 viral genes was affected by the absence of p53. Eleven of these 22 genes (group 1) were examined by real-time reverse transcriptase, or quantitative, PCR (q-PCR). Additionally, five genes previously determined to have p53 bound to their nearest p53-responsive elements (group 2) and three control genes without p53 binding sites in their upstream sequences (group 3) were also examined. At an MOI of 1, >3-fold regulation was found for five group 1 genes. The expression of group 2 and 3 genes was not changed. At an MOI of 5, all genes from group 1 and four of five genes from group 2 were found to be regulated. The expression of control genes from group 3 remained unchanged. A q-PCR time course of four genes revealed that p53 influences viral gene expression most at immediate-early and early times p.i., suggesting a mechanism for the reduced and delayed production of virions in p53(-/-) cells.
Evolution of p53 transactivation specificity through the lens of a yeast-based functional assay.
Lion, Mattia; Raimondi, Ivan; Donati, Stefano; Jousson, Olivier; Ciribilli, Yari; Inga, Alberto
2015-01-01
Co-evolution of transcription factors (TFs) with their respective cis-regulatory network enhances functional diversity in the course of evolution. We present a new approach to investigate transactivation capacity of sequence-specific TFs in evolutionary studies. Saccharomyces cerevisiae was used as an in vivo test tube and p53 proteins derived from human and five commonly used animal models were chosen as proof of concept. p53 is a highly conserved master regulator of environmental stress responses. Previous reports indicated conserved p53 DNA binding specificity in vitro, even for evolutionary distant species. We used isogenic yeast strains where p53-dependent transactivation was measured towards chromosomally integrated p53 response elements (REs). Ten REs were chosen to sample a wide range of DNA binding affinity and transactivation capacity for human p53 and proteins were expressed at two levels using an inducible expression system. We showed that the assay is amenable to study thermo-sensitivity of frog p53, and that chimeric constructs containing an ectopic transactivation domain could be rapidly developed to enhance the activity of proteins, such as fruit fly p53, that are poorly effective in engaging the yeast transcriptional machinery. Changes in the profile of relative transactivation towards the ten REs were measured for each p53 protein and compared to the profile obtained with human p53. These results, which are largely independent from relative p53 protein levels, revealed widespread evolutionary divergence of p53 transactivation specificity, even between human and mouse p53. Fruit fly and human p53 exhibited the largest discrimination among REs while zebrafish p53 was the least selective.
Evolution of p53 Transactivation Specificity through the Lens of a Yeast-Based Functional Assay
Lion, Mattia; Raimondi, Ivan; Donati, Stefano; Jousson, Olivier; Ciribilli, Yari; Inga, Alberto
2015-01-01
Co-evolution of transcription factors (TFs) with their respective cis-regulatory network enhances functional diversity in the course of evolution. We present a new approach to investigate transactivation capacity of sequence-specific TFs in evolutionary studies. Saccharomyces cerevisiae was used as an in vivo test tube and p53 proteins derived from human and five commonly used animal models were chosen as proof of concept. p53 is a highly conserved master regulator of environmental stress responses. Previous reports indicated conserved p53 DNA binding specificity in vitro, even for evolutionary distant species. We used isogenic yeast strains where p53-dependent transactivation was measured towards chromosomally integrated p53 response elements (REs). Ten REs were chosen to sample a wide range of DNA binding affinity and transactivation capacity for human p53 and proteins were expressed at two levels using an inducible expression system. We showed that the assay is amenable to study thermo-sensitivity of frog p53, and that chimeric constructs containing an ectopic transactivation domain could be rapidly developed to enhance the activity of proteins, such as fruit fly p53, that are poorly effective in engaging the yeast transcriptional machinery. Changes in the profile of relative transactivation towards the ten REs were measured for each p53 protein and compared to the profile obtained with human p53. These results, which are largely independent from relative p53 protein levels, revealed widespread evolutionary divergence of p53 transactivation specificity, even between human and mouse p53. Fruit fly and human p53 exhibited the largest discrimination among REs while zebrafish p53 was the least selective. PMID:25668429
Gong, Lu; Gong, Hongjian; Pan, Xiao; Chang, Changqing; Ou, Zhao; Ye, Shengfan; Yin, Le; Yang, Lina; Tao, Ting; Zhang, Zhenhai; Liu, Cong; Lane, David P; Peng, Jinrong; Chen, Jun
2015-03-01
The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.
Waggoner, S E; Baunoch, D A; Anderson, S A; Leigh, F; Zagaja, V G
1998-09-01
Clear cell adenocarcinomas (CCAs) of the vagina and cervix are rare tumors that often overexpress wild-type p53. In vitro, expression of protooncogene bcl-2 can block p53-mediated apoptosis. The objective of this study was to determine if bcl-2 is expressed in CCAs and whether this expression is associated with inhibition of apoptosis. Twenty-one paraffin-embedded clear cell adenocarcinomas were immunohistochemically stained for bcl-2 (antibody M 887, Dako, Carpinteria, CA) and DNA fragmentation (ApopTag, Oncor, Gaithersburg, MD), a marker for apoptosis. Fifteen tumors were associated with in utero exposure to diethylstilbestrol (DES). Prior p53 gene analysis had indicated the presence of wild-type p53 in each tumor. Human lymphoid tissue containing bcl-2-expressing lymphocytes and DNase I-exposed CCA tissue sections were used as positive controls for the bcl-2 and apoptosis assays, respectively. Expression of bcl-2 and DNA fragmentation was classified (0 to 3+) according to percentage of positive cells and intensity of staining. Expression of bcl-2 was identified in each CCA examined, and was strongly positive (2+ to 3+) in 18 of 21 samples. Despite the presence of wild-type p53, only 4 of 21 tumors showed evidence of apoptosis as assessed through DNA fragmentation. DNA damage leads to increased intracellular p53 levels. Overexpression of p53 induces apoptosis as a means of protecting organisms from the development of malignancy. CCAs of the vagina and cervix, which contain wild-type p53 genes and often overexpress p53 protein, presumably have evolved mechanisms to avoid p53-induced apoptosis. Our observations are consistent with the hypothesis that overexpression of bcl-2 can inhibit p53-mediated apoptosis and suggest a mechanism by which these rare tumors can arise without mutation of the p53 gene.
[Effect of tagalsin on p53 and Bcl-2 expression in hepatoma H(22) tumor-bearing mice].
Song, Xiu-qi; Guo, Yun-liang; Wang, Bing-gao; Sun, Shao-jie; Yao, Ru-yong
2011-07-01
To explore the effect and mechanism of tagalsin on hepatoma cells. The animal models were established by transplanting H(22) mouse hepatoma cells to mouse liver, and ten days later the mice were randomly divided into five groups: blank group, carmofur positive group and tagalsin groups, including low-dose, middle-dose and high-dose groups. Then medicine or oil was given to the mice by gastric gavage in consecutive 5 days with a 2-days interval as a course of treatment, two courses in all. All mice were killed at 24 hours after medication, and the survival period, ascites conditions, aggressive conditions intra- or extra-liver, weight changes, tumor volume and spleen index of the tumor-bearing mice were observed. Pathological changes of the tumors were examined. Apoptotic factors p53 and Bcl-2 protien and mRNA were detected by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). tagalsin inhibited the hepatoma growth effectively without influencing spleen index to some extent. The tumor inhibition rate of tagalsin low, middle and high dose groups were 17.9%, 63.1% and 71.8%, respectively. Immunohistochemical results showed that the p53 and Bcl-2 protein positive cell counts of the positive control and experimental groups were significantly lower than those of the blank group (P < 0.01). RT-PCR results showed that the p53 mRNA expression was significantly enhanced and Bcl-2 mRNA expression was decreased in the positive control groups and tagalsin treatment groups, especially in the high dose group, compared with those of the blank group (P < 0.05). tagalsin can inhibit the growth of mouse hepatoma cells significantly. The mechanism of its anti-tumor effect may work via up-regulating the wild type p53 gene expression and down-regulating Bcl-2 gene expression and thus regulating tumor cell apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng
Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild typemore » of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells. • Overexpression of the Del-1 gene potentiates proliferation and invasion of lung carcinoma cells. • Del-1 may be used as a diagnostic or prognostic marker for lung cancer progression.« less
Osman, Abdullah A.; Monroe, Marcus M.; Ortega Alves, Marcus V.; Patel, Ameeta A.; Katsonis, Panagiotis; Fitzgerald, Alison L.; Neskey, David M.; Frederick, Mitchell J.; Woo, Sang Hyeok; Caulin, Carlos; Hsu, Teng-Kuei; McDonald, Thomas O.; Kimmel, Marek; Meyn, Raymond E.; Lichtarge, Olivier; Myers, Jeffrey N.
2015-01-01
Although cisplatin has played a role in “standard-of-care” multimodality therapy for patients with advanced squamous cell carcinoma of the head and neck (HNSCC), the rate of treatment failure remains particularly high for patients receiving cisplatin whose tumors have mutations in the TP53 gene. We found that cisplatin treatment of HNSCC cells with mutant TP53 leads to arrest of cells in the G2 phase of the cell cycle, leading us to hypothesize that the wee-1 kinase inhibitor MK-1775 would abrogate the cisplatin-induced G2 block and thereby sensitize isogenic HNSCC cells with mutant TP53 or lacking p53 expression to cisplatin. We tested this hypothesis using clonogenic survival assays, flow cytometry, and in vivo tumor growth delay experiments with an orthotopic nude mouse model of oral tongue cancer. We also used a novel TP53 mutation classification scheme to identify which TP53 mutations are associated with limited tumor responses to cisplatin treatment. Clonogenic survival analyses indicate that nanomolar concentration of MK-1775 sensitizes HNSCC cells with high-risk mutant p53 to cisplatin. Consistent with its ability to chemosensitize, MK-1775 abrogated the cisplatin-induced G2 block in p53-defective cells leading to mitotic arrest associated with a senescence-like phenotype. Furthermore, MK-1775 enhanced the efficacy of cisplatin in vivo in tumors harboring TP53 mutations. These results indicate that HNSCC cells expressing high-risk p53 mutations are significantly sensitized to cisplatin therapy by the selective wee-1 kinase inhibitor, supporting the clinical evaluation of MK-1775 in combination with cisplatin for the treatment of patients with TP53 mutant HNSCC. PMID:25504633
Michaelis, M; Rothweiler, F; Agha, B; Barth, S; Voges, Y; Löschmann, N; von Deimling, A; Breitling, R; Wilhelm Doerr, H; Rödel, F; Speidel, D; Cinatl, J
2012-01-01
Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3, also disrupts the p53/Mdm2 interaction. All of the 11 UKF-NB-3 sub-lines adapted to RITA that we established retained functional wild-type p53 although RITA induced a substantial p53 response. Moreover, all RITA-adapted cell lines remained sensitive to nutlin-3, whereas only five out of 10 nutlin-3-adapted cell lines retained their sensitivity to RITA. In addition, repeated adaptation of the RITA-adapted sub-line UKF-NB-3rRITA10 μM to nutlin-3 resulted in p53 mutations. The RITA-adapted UKF-NB-3 sub-lines displayed no or less pronounced resistance to vincristine, cisplatin, and irradiation than nutlin-3-adapted UKF-NB-3 sub-lines. Furthermore, adaptation to RITA was associated with fewer changes at the expression level of antiapoptotic factors than observed with adaptation to nutlin-3. Transcriptomic analyses indicated the RITA-adapted sub-lines to be more similar at the gene expression level to the parental UKF-NB-3 cells than nutlin-3-adapted UKF-NB-3 sub-lines, which correlates with the observed chemotherapy and irradiation sensitivity phenotypes. In conclusion, RITA-adapted cells retain functional p53, remain sensitive to nutlin-3, and display a less pronounced resistance phenotype than nutlin-3-adapted cells. PMID:22476102
Michaelis, M; Rothweiler, F; Agha, B; Barth, S; Voges, Y; Löschmann, N; von Deimling, A; Breitling, R; Doerr, H Wilhelm; Rödel, F; Speidel, D; Cinatl, J
2012-04-05
Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3, also disrupts the p53/Mdm2 interaction. All of the 11 UKF-NB-3 sub-lines adapted to RITA that we established retained functional wild-type p53 although RITA induced a substantial p53 response. Moreover, all RITA-adapted cell lines remained sensitive to nutlin-3, whereas only five out of 10 nutlin-3-adapted cell lines retained their sensitivity to RITA. In addition, repeated adaptation of the RITA-adapted sub-line UKF-NB-3(r)RITA(10 μM) to nutlin-3 resulted in p53 mutations. The RITA-adapted UKF-NB-3 sub-lines displayed no or less pronounced resistance to vincristine, cisplatin, and irradiation than nutlin-3-adapted UKF-NB-3 sub-lines. Furthermore, adaptation to RITA was associated with fewer changes at the expression level of antiapoptotic factors than observed with adaptation to nutlin-3. Transcriptomic analyses indicated the RITA-adapted sub-lines to be more similar at the gene expression level to the parental UKF-NB-3 cells than nutlin-3-adapted UKF-NB-3 sub-lines, which correlates with the observed chemotherapy and irradiation sensitivity phenotypes. In conclusion, RITA-adapted cells retain functional p53, remain sensitive to nutlin-3, and display a less pronounced resistance phenotype than nutlin-3-adapted cells.
Zhu, Hongda; Duran, Daniel; Hua, Lingyang; Tang, Hailiang; Chen, Hong; Zhong, Ping; Zheng, Kang; Wang, Yongfei; Che, Xiaoming; Bao, Weimin; Wang, Yin; Xie, Qing; Gong, Ye
2016-06-01
Hemangiopericytoma (HPC) is a rare mesenchymal tumor that tends to affect the central nervous system and is associated with distant metastasis and a high recurrence rate. The purpose of this study was to analyze the prognostic factors in patients with primary HPC who received surgical treatment. This retrospective study reviewed all adult patients with primary HPC of the central nervous system treated from 2001 to 2009 at our institution. Clinical information, adjuvant radiation, and expression levels of Ki-67 and p53 were correlated with patient outcomes. The final analysis included 103 patients. The mean follow-up period was 75.9 months ± 36.5 (range, 1-165 months). There was a significant difference in progression-free survival (PFS) (P < 0.001) and overall survival (P = 0.014) between patients who underwent gross total resection versus subtotal resection. Expression of p53 was found in 48.5% of patients and showed utility as an independent unfavorable prognostic factor for PFS (P = 0.006). Multivariate analysis revealed that only extent of tumor resection (P = 0.004) and p53 expression (P = 0.024) were independent prognostic factors for PFS. Adjuvant radiation was found to extend PFS only in the p53-negative expression group (P = 0.044). Gross total resection significantly improves the outcome of patients with primary HPCs, whereas adjuvant radiation contributes significantly to PFS only in patients with negative p53 expression and in patients with incomplete resections. Extent of resection and p53 expression may serve as prognostic markers for the outcome of patients with primary HPC. Copyright © 2016 Elsevier Inc. All rights reserved.
Regulation of PI 3-K, PTEN, p53, and mTOR in Malignant and Benign Tumors Deficient in Tuberin
Yadav, Anamika; Mahimainathan, Lenin; Valente, Anthony J.
2011-01-01
The tuberous sclerosis complex (TSC) is caused by mutation in either of 2 tumor suppressor genes, TSC-1 (encodes hamartin) and TSC-2 (encodes tuberin). In humans, deficiency in TSC1/2 is associated with benign tumors in many organs, including renal angiomyolipoma (AML) but rarely renal cell carcinoma (RCC). In contrast, deficiency of TSC function in the Eker rat is associated with RCC. Here, we have investigated the activity of PI 3-K and the expression of PTEN, p53, tuberin, p-mTOR, and p-p70S6K in both Eker rat RCC and human renal AML. Compared to normal tissue, increased PI 3-K activity was detected in RCC of Eker rats but not in human AML tissue. In contrast, PTEN was highly expressed in AML but significantly reduced in the renal tumors of Eker rats. Phosphorylation on Ser2448 of mTOR and Thr389 of p70S6K were significantly increased in both RCC and AML compared to matching control tissue. Total tuberin was significantly decreased in AML while completely lost in RCC of Eker rats. Our data also show that while p53 protein expression is lost in rat RCC, it was highly elevated in AML. These novel data provide evidence that loss of TSC-2, PTEN, and p53 as well as activation of PI 3-K and mTOR is associated with kidney cancer in the Eker rat, while sustained expression of TSC-2, PTEN, and p53 may prevent progression of kidney cancer in TSC patients. PMID:22737271
TRIM65 negatively regulates p53 through ubiquitination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Ma, Chengyuan; Zhou, Tong
2016-04-22
Tripartite-motif protein family member 65 (TRIM65) is an important protein involved in white matter lesion. However, the role of TRIM65 in human cancer remains less understood. Through the Cancer Genome Atlas (TCGA) gene alteration database, we found that TRIM65 is upregulated in a significant portion of non-small cell lung carcinoma (NSCLC) patients. Our cell growth assay revealed that TRIM65 overexpression promotes cell proliferation, while knockdown of TRIM65 displays opposite effect. Mechanistically, TRIM65 binds to p53, one of the most critical tumor suppressors, and serves as an E3 ligase toward p53. Consequently, TRIM65 inactivates p53 through facilitating p53 poly-ubiquitination and proteasome-mediatedmore » degradation. Notably, chemotherapeutic reagent cisplatin induction of p53 is markedly attenuated in response to ectopic expression of TRIM65. Cell growth inhibition by TRIM65 knockdown is more significant in p53 positive H460 than p53 negative H1299 cells, and knockdown of p53 in H460 cells also shows compromised cell growth inhibition by TRIM65 knockdown, indicating that p53 is required, at least in part, for TRIM65 function. Our findings demonstrate TRIM65 as a potential oncogenic protein, highly likely through p53 inactivation, and provide insight into development of novel approaches targeting TRIM65 for NSCLC treatment, and also overcoming chemotherapy resistance. - Highlights: • TRIM65 expression is elevated in NSCLC. • TRIM65 inactivates p53 through mediating p53 ubiquitination and degradation. • TRIM65 attenuates the response of NSCLC cells to cisplatin.« less
Jessen-Eller, Kathryn; Kreiling, Jill A; Begley, Gail S; Steele, Marjorie E; Walker, Charles W; Stephens, Raymond E; Reinisch, Carol L
2002-01-01
The cell-cycle checkpoint protein p53 both directs terminal differentiation and protects embryos from DNA damage. To study invertebrate p53 during early development, we identified three differentially expressed p53 family members (p53, p97, p120) in the surf clam, Spisula solidissima. In these mollusks, p53 and p97 occur in both embryonic and adult tissue, whereas p120 is exclusively embryonic. We sequenced, cloned, and characterized p120 cDNA. The predicted protein, p120, resembles p53 across all evolutionarily conserved regions and contains a C-terminal extension with a sterile alpha motif (SAM) as in p63 and p73. These vertebrate forms of p53 are required for normal inflammatory, epithelial, and neuronal development. Unlike clam p53 and p97, p120 mRNA and protein levels are temporally expressed in embryos, with mRNA levels decreasing with increasing p120 protein (R(2) = 0.97). Highest surf clam p120 mRNA levels coincide with the onset of neuronal growth. In earlier work we have shown that neuronal development is altered by exposure to polychlorinated biphenyls (PCBs), a neurotoxic environmental contaminant. In this study we show that PCBs differentially affect expression of the three surf clam p53 family members. p120 mRNA and protein are reduced the most and earliest in development, p97 protein shows a smaller and later reduction, and p53 protein levels do not change. For the first time we report that unlike p53 and p97, p120 is specifically embryonic and expressed in a time-dependent manner. Furthermore, p120 responds to PCBs by 48 hr when PCB-induced suppression of the serotonergic nervous system occurs. PMID:11940455
Pérez-Pérez, Antonio; Toro, Ayelén R; Vilarino-Garcia, Teresa; Guadix, Pilar; Maymó, Julieta L; Dueñas, José L; Varone, Cecilia L; Sánchez-Margalet, Víctor
2016-06-01
Maternal fever is common during pregnancy and has for many years been suspected to harm the developing fetus. Whether increased maternal temperature produces exaggerated apoptosis in trophoblast cells remains unclear. Since p53 is a critical regulator of apoptosis we hypothesized that increased temperature in placenta produces abnormal expression of proteins in the p53 pathway and finally caspase-3 activation. Moreover, leptin, produced by placenta, is known to promote the proliferation and survival of trophoblastic cells. Thus, we aimed to study the possible role of leptin preventing apoptosis triggered by high temperature, as well as the molecular mechanisms underlying this effect. Fresh placental tissue was collected from normal pregnancies. Explants of placental villi were exposed to 37 °C, 40 °C and 42 °C during 3 h in the presence or absence of 10 nM leptin in DMEM-F12 medium. Western blotting and qRT-PCR was performed to analyze the expression of p53 and downstream effector, P53AIP1, Mdm2, p21, BAX and BCL-2 as well as the activated cleaved form of caspase-3 and the fragment of cytokeratin-18 (CK-18) cleaved at Asp396 (neoepitope M30). Phosphorylation of the Ser 46 residue on p53, the expression of P53AIP1, Mdm2, p21, as well as caspase-3 and CK-18 were significantly increased in explants at 40 °C and 42 °C. Conversely, these effects were significantly attenuated by leptin 10 nM at both 40 °C and 42 °C. The BCL2/BAX ratio was also significantly decreased in explants at 40 °C and 42 °C compared with explants incubated at 37 °C, which was prevented by leptin stimulation. These data illustrate the potential role of leptin for reducing apoptosis in trophoblast explants, including trophoblastic cells, triggered by high temperature, by preventing the activation of p53 signaling. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shi-Wei; Wu, Chun-Ying; Wang, Yen-Ting
Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53more » status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.« less
Park, Yon Jung; Wen, Jing; Bang, Seungmin; Park, Seung Woo
2006-01-01
[6]-Gingerol, a major phenolic compound derived from ginger, has anti-bacterial, anti-inflammatory and anti-tumor activities. While several molecular mechanisms have been described to underlie its effects on cells in vitro and in vivo, the underlying mechanisms by which [6]-gingerol exerts anti-tumorigenic effects are largely unknown. The purpose of this study was to investigate the action of [6]-gingerol on two human pancreatic cancer cell lines, HPAC expressing wild-type (wt) p53 and BxPC-3 expressing mutated p53. We found that [6]-gingerol inhibited the cell growth through cell cycle arrest at G1 phase in both cell lines. Western blot analyses indicated that [6]-gingerol decreased both Cyclin A and Cyclin-dependent kinase (Cdk) expression. These events led to reduction in Rb phosphorylation followed by blocking of S phase entry. p53 expression was decreased by [6]-gingerol treatment in both cell lines suggesting that the induction of Cyclin-dependent kinase inhibitor, p21cip1, was p53-independent. [6]-Gingerol induced mostly apoptotic death in the mutant p53-expressing cells, while no signs of early apoptosis were detected in wild type p53-expressing cells and this was related to the increased phosphorylation of AKT. These results suggest that [6]-gingerol can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing apoptotic cell death while it exerts cytostatic effect on wild type p53-expressing cells by inducing temporal growth arrest. PMID:17066513
The p53 breast cancer tissue biomarker in Indian women
Patil, Vinayak W; Tayade, Mukund B; Pingale, Sangeeta A; Dalvi, Shubhangi M; Rajekar, Rajesh B; Deshmukh, Hemkant M; Patil, Shital D; Singhai, Rajeev
2011-01-01
Background Combination chemotherapy is highly effective in locally advanced breast cancer. A negative expression of biomarker p53 indicates a higher chance of responding to this regimen. Patients’ p53 status may be used as a biological cancer marker to identify those who would benefit from more aggressive treatments. Aims The role of p53 in modulating apoptosis has suggested that it may affect the efficacy of anticancer agents. p53 alterations in 80 patients with locally advanced breast cancer IIIB undergoing neoadjuvant chemotherapy were prospectively evaluated. Materials and methods Patients received three cycles of paclitaxel (175 mg/m2) and doxorubicin (60 mg/m2) every 21 days. Tumor sections were analyzed before treatment for altered patterns of p53 expression, using immunohistochemistry and DNA sequencing. Results An overall response rate of 83.5% was obtained, including 15.1% complete pathological responses. The regimen was well tolerated with 17.7% grade 2/3 nausea and 12.8% grade 3/4 leukopenia. There was a statistically significant correlation between response and expression of p53. Of 25 patients who obtained a complete clinical response, only two were classified as p53-positive (P = 0.004, χ2). Of 11 patients who obtained a complete pathological remission, one was positive (P = 0.099, χ2). Conclusion Immunohistochemical (IHC) analysis has been shown to be a prognostic factor for patients with breast cancer in India. Paclitaxel is one of the most promising anticancer agents for the therapy of breast cancer, where it has also shown activity in tumors resistant to doxorubicin. PMID:24367177
Ogino, Shuji; Brahmandam, Mohan; Kawasaki, Takako; Kirkner, Gregory J; Loda, Massimo; Fuchs, Charles S
2006-01-01
Abstract Cyclooxygenase-2 (COX-2) overexpression and mutations of p53 (a known COX-2 regulator) are inversely associated with microsatellite instability—high (MSI-H) and CpG island methylator phenotype (CIMP), characterized by extensive promoter methylation, is associated with MSI-H. However, no studies have comprehensively examined interrelations between COX-2, p53, MSI, and CIMP. Using MethyLight, we measured DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16/INK4A), CRABP1, MLH1, and NEUROG1] in relatively unbiased samples of 751 colorectal cancer cases obtained from two large prospective cohorts; 115 (15%) tumors were CIMP-high (≥ 4 of 5 methylated promoters), 251 (33%) were CIMP-low (1 to 3 methylated promoters), and the remaining 385 (51%) were CIMP-0 (no methylated promoters). CIMP-high tumors were much less frequent in COX-2+/p53+ tumors (4.6%) than in COX-2+/p53- tumors (19%; P < .0001), COX-2-/p53+ tumors (17%; P= .04), and COX-2-/p53- tumors (28%; P < .0001). In addition, COX-2+/p53+ tumors were significantly less common in MSI-H CIMP-high tumors (9.7%) than in non-MSI-H CIMP-low/CIMP-0 tumors (44–47%; P< .0001). In conclusion, COX-2 and p53 alterations were synergistically inversely correlated with both MSI-H and CIMP-high. Our data suggest that a combined analysis of COX-2 and p53 may be more useful for the molecular classification of colorectal cancer than either COX-2 or p53 analysis alone. PMID:16820091
Bcl-2/Bax protein ratio predicts 5-fluorouracil sensitivity independently of p53 status
Mirjolet, J-F; Barberi-Heyob, M; Didelot, C; Peyrat, J-P; Abecassis, J; Millon, R; Merlin, J-L
2000-01-01
p53 tumour-suppressor gene is involved in cell growth control, arrest and apoptosis. Nevertheless cell cycle arrest and apoptosis induction can be observed in p53-defective cells after exposure to DNA-damaging agents such as 5-fluorouracil (5-FU) suggesting the importance of alternative pathways via p53-independent mechanisms. In order to establish relationship between p53 status, cell cycle arrest, Bcl-2/Bax regulation and 5-FU sensitivity, we examined p53 mRNA and protein expression and p53 protein functionality in wild-type (wt) and mutant (mt) p53 cell lines. p53 mRNA and p53 protein expression were determined before and after exposure to equitoxic 5-FU concentration in six human carcinoma cell lines differing in p53 status and displaying marked differences in 5-FU sensitivity, with IC 50 values ranging from 0.2–22.6 mM. 5-FU induced a rise in p53 mRNA expression in mt p53 cell lines and in human papilloma virus positive wt p53 cell line, whereas significant decrease in p53 mRNA expression was found in wt p53 cell line. Whatever p53 status, 5-FU altered p53 transcriptional and translational regulation leading to up-regulation of p53 protein. In relation with p53 functionality, but independently of p53 mutational status, after exposure to 5-FU equitoxic concentration, all cell lines were able to arrest in G1. No relationship was evidenced between G1 accumulation ability and 5-FU sensitivity. Moreover, after 5-FU exposure, Bax and Bcl-2 proteins regulation was under p53 protein control and a statistically significant relationship (r= 0.880,P= 0.0097) was observed between Bcl-2/Bax ratio and 5-FU sensitivity. In conclusion, whatever p53 status, Bcl-2 or Bax induction and Bcl-2/Bax protein ratio were correlated to 5-FU sensitivity. © 2000 Cancer Research Campaign PMID:11044365
Yousefi, Bahman; Rahmati, Mohammad; Ahmadi, Yasin
2014-03-18
Although the deregulated expression of p53R2, a p53-inducible protein and homologue of the R2 subunit of ribonucleotide reductase, has been detected in several human cancers, p53R2 roles in cancer progression and malignancy still remains controversial. In this article, we present a viable hypothesis about the roles of p53R2 in cancer progression and therapy resistance based on the roles of cytoplasmic p21 and mutant p53. Since p53R2 can up-regulate p21 and p21, it in turn has a dual role in cell cycle. Hence, p53R2 can play a dual role in cell cycle progression. In addition, because p53 is the main regulator of p53R2, the mutant p53 may induce the expression of p53R2 in some cancer cells based on the "keep of function" phenomenon. Therefore, depending on the locations of p21 and the new abilities of mutant p53, p53R2 has dual role in cell cycle progression. Since the DNA damaging therapies induce p53R2 expression through the induction of p53, p53R2 can be the main therapy resistance mediator in cancers with cytoplasmic p21. Copyright © 2014 Elsevier Inc. All rights reserved.
The Isoforms of the p53 Protein
Khoury, Marie P.; Bourdon, Jean-Christophe
2010-01-01
p53 is a transcription factor with a key role in the maintenance of genetic stability and therefore preventing cancer formation. It belongs to a family of genes composed of p53, p63, and p73. The p63 and p73 genes have a dual gene structure with an internal promoter in intron-3 and together with alternative splicing, can express 6 and 29 mRNA variants, respectively. Such a complex expression pattern had not been previously described for the p53 gene, which was not consistent with our understanding of the evolution of the p53 gene family. Consequently, we revisited the human p53 gene structure and established that it encodes nine different p53 protein isoforms because of alternative splicing, alternative promoter usage, and alternative initiation sites of translation. Therefore, the human p53 gene family (p53, p63, and p73) has a dual gene structure. We determined that the dual gene structure is conserved in Drosophila and in zebrafish p53 genes. The conservation through evolution of the dual gene structure suggests that the p53 isoforms play an important role in p53 tumor-suppressor activity. We and others have established that the p53 isoforms can regulate cell-fate outcome in response to stress, by modulating p53 transcriptional activity in a promoter and stress-dependent manner. We have also shown that the p53 isoforms are abnormally expressed in several types of human cancers, suggesting that they play an important role in cancer formation. The determination of p53 isoforms' expression may help to link clinical outcome to p53 status and to improve cancer patient treatment. PMID:20300206
Sham, C L; To, K F; Chan, Paul K S; Lee, Dennis L Y; Tong, Michael C F; van Hasselt, C Andrew
2012-04-01
The purpose of this study of human papillomavirus (HPV), Epstein-Barr virus (EBV), p21, and p53 in sinonasal inverted papilloma (IP) was to help elucidate its pathogenesis. Seventy-three IPs, 48 nasal polyps, and 85 hypertrophied turbinates were subjected to HPV polymerase chain reaction (PCR) study. Seventy-three IPs, 30 nasal polyps, and 32 hypertrophied turbinates were subjected to EBV in situ hybridization (ISH), p21, and p53 immunohistochemical (IHC) studies. HPV was positive in 3 of 73 IPs (4.1%). All specimens were EBV negative. In all, 99% of IPs showed strong and diffuse p21 nuclear reactivity. Most nasal polyps and hypertrophied turbinates showed weak to moderate immunoreactivity of the basal and parabasal cells. Only focal p53 immunoreactivity of the basal and parabasal cells was found in 19% of IPs and 40% of nasal polyps. HPV prevalence of our IP is low. EBV is not present in IP. High p21 and low p53 expression in IP suggests a non-p53-dependent regulation pathway. Copyright © 2011 Wiley Periodicals, Inc.
Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Hao, E-mail: hao.hu1@uqconnect.edu.au; Yu, Ting, E-mail: t.yu2@uq.edu.au; Arpiainen, Satu, E-mail: Satu.Juhila@orion.fi
2015-11-15
Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3 kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5′-Luc constructs – down to − 160 bp from the TSS – showed p53 responsivenessmore » in p53 overexpressed C3A cells. However, a further deletion from − 160 to − 74 bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene – a well-known p53 activator – increased the expression of the p53 responsive positive control and the CYP2A6-5′-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5′-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. - Highlights: • CYP2A6 is an immediate target gene of p53. • Six putative p53REs located on 3 kb proximate CYP2A6 promoter region. • The region − 160 bp from TSS is highly homologous with the p53 consensus sequence. • P53 specifically bind to the p53RE on the − 160 bp region. • HNF4α may interact with p53 in regulating CYP2A6 expression.« less
Godfrey, Jack D; Morton, Jennifer P; Wilczynska, Ania; Sansom, Owen J; Bushell, Martin D
2018-05-29
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive disease with poor prognostic implications. This is partly due to a large proportion of PDACs carrying mutations in TP53, which impart gain-of-function characteristics that promote metastasis. There is evidence that microRNAs (miRNAs) may play a role in both gain-of-function TP53 mutations and metastasis, but this has not been fully explored in PDAC. Here we set out to identify miRNAs which are specifically dysregulated in metastatic PDAC. To achieve this, we utilised established mouse models of PDAC to profile miRNA expression in primary tumours expressing the metastasis-inducing mutant p53 R172H and compared these to two control models carrying mutations, which promote tumour progression but do not induce metastasis. We show that a subset of miRNAs are dysregulated in mouse PDAC tumour tissues expressing mutant p53 R172H , primary cell lines derived from mice with the same mutations and in TP53 null cells with ectopic expression of the orthologous human mutation, p53 R175H . Specifically, miR-142-3p is downregulated in all of these experimental models. We found that DNA methyltransferase 1 (Dnmt1) is upregulated in tumour tissue and cell lines, which express p53 R172H . Inhibition or depletion of Dnmt1 restores miR-142-3p expression. Overexpression of miR-142-3p attenuates the invasive capacity of p53 R172H -expressing tumour cells. MiR-142-3p dysregulation is known to be associated with cancer progression, metastasis and the miRNA is downregulated in patients with PDAC. Here we link TP53 gain-of-function mutations to Dnmt1 expression and in turn miR-142-3p expression. Additionally, we show a correlation between expression of these genes and patient survival, suggesting that they may have potential to be therapeutic targets.
Tan, B S; Tiong, K H; Choo, H L; Chung, F Fei-Lei; Hii, L-W; Tan, S H; Yap, I K S; Pani, S; Khor, N T W; Wong, S F; Rosli, R; Cheong, S-K; Leong, C-O
2015-07-16
p53 is the most frequently mutated tumor-suppressor gene in human cancers. Unlike other tumor-suppressor genes, p53 mutations mainly occur as missense mutations within the DNA-binding domain, leading to the expression of full-length mutant p53 protein. Mutant p53 proteins not only lose their tumor-suppressor function, but may also gain new oncogenic functions and promote tumorigenesis. Here, we showed that silencing of endogenous p53-R273H contact mutant, but not p53-R175H conformational mutant, reduced AKT phosphorylation, induced BCL2-modifying factor (BMF) expression, sensitized BIM dissociation from BCL-XL and induced mitochondria-dependent apoptosis in cancer cells. Importantly, cancer cells harboring endogenous p53-R273H mutant were also found to be inherently resistant to anoikis and lack BMF induction following culture in suspension. Underlying these activities is the ability of p53-R273H mutant to suppress BMF expression that is dependent on constitutively active PI3K/AKT signaling. Collectively, these findings suggest that p53-R273H can specifically drive AKT signaling and suppress BMF expression, resulting in enhanced cell survivability and anoikis resistance. These findings open the possibility that blocking of PI3K/AKT will have therapeutic benefit in mutant p53-R273H expressing cancers.
Sankpal, NV; Willman, MW; Fleming, TP; Mayfield, J; Gillanders, WE
2014-01-01
p53 is a tumor suppressor gene with well-characterized roles in cell cycle regulation, apoptosis and the maintenance of genome stability. Recent evidence suggests that p53 may also contribute to the regulation of migration and invasion. Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein that is overexpressed in the majority of human epithelial carcinomas, including breast and colorectal carcinomas. We demonstrate by chromatin immunoprecipitation assays that p53 interacts with a candidate p53 binding site within the EpCAM gene. p53-mediated transcriptional repression of EpCAM was confirmed in gain-of-function, and loss-of-function experimental systems. Induction of wildtype p53 was associated with a significant dose-dependent decrease in EpCAM expression; conversely, specific ablation of p53 was associated with a significant increase in EpCAM expression. At the functional level, specific ablation of p53 expression is associated with increased breast cancer invasion, and this effect is abrogated by concomitant specific ablation of EpCAM expression. Taken together, these biochemical and functional data are the first demonstration that (1) wildtype p53 protein binds to a response element within the EpCAM gene and negatively regulates EpCAM expression, and (2) transcriptional repression of EpCAM contributes to p53 control of breast cancer invasion. PMID:19141643
Oh, Eun-Taex; Park, Moon-Taek; Choi, Bo-Hwa; Ro, Seonggu; Choi, Eun-Kyung; Jeong, Seong-Yun; Park, Heon Joo
2012-04-01
Histone deacetylase (HDAC) plays an important role in cancer onset and progression. Therefore, inhibition of HDAC offers potential as an effective cancer treatment regimen. CG200745, (E)-N(1)-(3-(dimethylamino)propyl)-N(8)-hydroxy-2-((naphthalene-1-loxy)methyl)oct-2-enediamide, is a novel HDAC inhibitor presently undergoing a phase I clinical trial. Enhancement of p53 acetylation by HDAC inhibitors induces cell cycle arrest, differentiation, and apoptosis in cancer cells. The purpose of the present study was to investigate the role of p53 acetylation in the cancer cell death caused by CG200745. CG200745-induced clonogenic cell death was 2-fold greater in RKO cells expressing wild-type p53 than in p53-deficient RC10.1 cells. CG200745 treatment was also cytotoxic to PC-3 human prostate cancer cells, which express wild-type p53. CG200745 increased acetylation of p53 lysine residues K320, K373, and K382. CG200745 induced the accumulation of p53, promoted p53-dependent transactivation, and enhanced the expression of MDM2 and p21(Waf1/Cip1) proteins, which are encoded by p53 target genes. An examination of CG200745 effects on p53 acetylation using cells transfected with various p53 mutants showed that cells expressing p53 K382R mutants were significantly resistant to CG200745-induced clonogenic cell death compared with wild-type p53 cells. Moreover, p53 transactivation in response to CG200745 was suppressed in all cells carrying mutant forms of p53, especially K382R. Taken together, these results suggest that acetylation of p53 at K382 plays an important role in CG200745-induced p53 transactivation and clonogenic cell death.
El Husseini, Nazem; Schlisser, Ava E.; Hales, Barbara F.
2016-01-01
Hydroxyurea, an anticancer agent and potent teratogen, induces oxidative stress and activates a DNA damage response pathway in the gestation day (GD) 9 mouse embryo. To delineate the stress response pathways activated by this drug, we investigated the effect of hydroxyurea exposure on the transcriptome of GD 9 embryos. Timed pregnant CD-1 mice were treated with saline or hydroxyurea (400 mg/kg or 600 mg/kg) on GD 9; embryonic gene and protein expression were examined 3 h later. Microarray analysis revealed that the expression of 1346 probe sets changed significantly in embryos exposed to hydroxyurea compared with controls; the P53 signaling pathway was highly affected. In addition, P53 related family members, P63 and P73, were predicted to be activated and had common and unique downstream targets. Western blot analysis revealed that active phospho-P53 was significantly increased in drug-exposed embryos; confocal microscopy showed that the translocation of phospho-P53 to the nucleus was widespread in the embryo. Furthermore, qRT-PCR showed that the expression of P53-regulated genes (Cdkn1A, Fas, and Trp53inp1) was significantly upregulated in hydroxyurea-exposed embryos; the concentration of the redox sensitive P53INP1 protein was also increased in a hydroxyurea dose-dependent fashion. Thus, hydroxyurea elicits a significant effect on the transcriptome of the organogenesis stage murine embryo, activating several key developmental signaling pathways related to DNA damage and oxidative stress. We propose that the P53 pathway plays a central role in the embryonic stress response and the developmental outcome after teratogen exposure. PMID:27208086
Fiedler, Nicola; Quant, Ellen; Fink, Ludger; Sun, Jianguang; Schuster, Ralph; Gerlich, Wolfram H; Schaefer, Stephan
2006-01-01
AIM: Hepatitis B virus protein X (HBx) has been shown to be weakly oncogenic in vitro. The transforming activities of HBx have been linked with the inhibition of several functions of the tumor suppressor p53. We have studied whether HBx may have different effects on p53 depending on the cell type. METHODS: We used the human hepatoma cell line HepG2 and the immortalized murine hepatocyte line AML12 and analyzed stably transfected clones which expressed physiological amounts of HBx. P53 was induced by UV irradiation. RESULTS: The p53 induction by UV irradiation was unaffected by stable expression of HBx. However, the expression of the cyclin kinase inhibitor p21waf/cip/sdi which gets activated by p53 was affected in the HBx transformed cell line AML12-HBx9, but not in HepG2. In AML-HBx9 cells, p21waf/cip/sdi-protein expression and p21waf/cip/sdi transcription were deregulated. Furthermore, the process of apoptosis was affected in opposite ways in the two cell lines investigated. While stable expression of HBx enhanced apoptosis induced by UV irradiation in HepG2-cells, apoptosis was decreased in HBx transformed AML12-HBx9. P53 repressed transcription from the HBV enhancer I, when expressed from expression vectors or after induction of endogenous p53 by UV irradiation. Repression by endogenous p53 was partially reversible by stably expressed HBx in both cell lines. CONCLUSION: Stable expression of HBx leads to deregulation of apoptosis induced by UV irradiation depending on the cell line used. In an immortalized hepatocyte line HBx acted anti-apoptotic whereas expression in a carcinoma derived hepatocyte line HBx enhanced apoptosis. PMID:16937438
Gagnon, David; Archambault, Jacques
2015-01-01
A subset of human papillomaviruses (HPVs), known as the high-risk types, are the causative agents of cervical cancer and other malignancies of the anogenital region and oral mucosa. The capacity of these viruses to induce cancer and to immortalize cells in culture relies in part on a critical function of their E6 oncoprotein, that of promoting the poly-ubiquitination of the cellular tumor suppressor protein p53 and its subsequent degradation by the proteasome. Here, we describe a cellular assay to measure the p53-degradation activity of E6 from different HPV types. This assay is based on a translational fusion of p53 to Renilla luciferase (Rluc-p53) that remains sensitive to degradation by high-risk E6 and whose steady-state levels can be accurately measured in standard luciferase assays. The p53-degradation activity of any E6 protein can be tested and quantified in transiently transfected cells by determining the amount of E6-expression vector required to reduce by half the levels of RLuc-p53 luciferase activity (50 % effective concentration [EC50]). The high-throughput and quantitative nature of this assay makes it particularly useful to compare the p53-degradation activities of E6 from several HPV types in parallel.
Macé, K; Aguilar, F; Wang, J S; Vautravers, P; Gómez-Lechón, M; Gonzalez, F J; Groopman, J; Harris, C C; Pfeifer, A M
1997-07-01
Epidemiological evidence has been supporting a relationship between dietary aflatoxin B1 (AFB1) exposure, development of human primary hepatocellular carcinoma (HCC) and mutations in the p53 tumor suppressor gene. However, the correlation between the observed p53 mutations, the AFB1 DNA adducts and their activation pathways has not been elucidated. Development of relevant cellular in vitro models, taking into account species and tissue specificity, could significantly contribute to the knowledge of cytotoxicity and genotoxicity mechanisms of chemical procarcinogens, such as AFB1, in humans. For this purpose a non-tumorigenic SV40-immortalized human liver epithelial cell line (THLE cells) which retained most of the phase II enzymes, but had markedly reduced phase I activities was used for stable expression of the human CYP1A2, CYP2A6, CYP2B6 and CYP3A4 cDNA. The four genetically engineered cell lines (T5-1A2, T5-2A6, T5-2B6 and T5-3A4) produced high levels of the specific CYP450 proteins and showed comparable or higher catalytic activities related to the CYP450 expression when compared to human hepatocytes. The T5-1A2, T5-2A6, T5-2B6 and T5-3A4 cell lines exhibited a very high sensitivity to the cytotoxic effects of AFB1 and were approximately 125-, 2-, 2- and 15-fold, respectively, more sensitive than the control T5-neo cells, transfected with an expressing vector which does not contain CYP450 cDNA. In the CYP450-expressing cells, nanomolar doses of AFB1-induced DNA adduct formation including AFB1-N7-guanine, -pyrimidyl and -diol adducts. In addition, the T5-1A2 cells showed AFM1-DNA adducts. At similar levels of total DNA adducts, both the T5-1A2 and T5-3A4 cells showed, at codon 249 of the p53 gene, AGG to AGT transversions at a relative frequency of 15x10(-6). In contrast, only the T5-3A4 cells showed CCC to ACC transversion at codon 250 at a high frequency, whereas the second most frequent mutations found in the T5-1A2 cells were C to T transitions at the first and second position of the codon 250. No significant AFB1-induced p53 mutations could be detected in the T5-2A6 cells. Therefore, the differential expression of specific CYP450 genes in human hepatocytes can modulate the cytotoxicity, DNA adduct levels and frequency of p53 mutations produced by AFB1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manachai, Nawin; Saito, Yusuke; Nakahata, Shingo
The presence of a BCR-ABL1 fusion gene is necessary for the pathogenesis of chronic myeloid leukemia (CML) through t(9;22)(q34;q11) translocation. Imatinib, an ABL tyrosine kinase inhibitor, is dramatically effective in CML patients; however, 30% of CML patients will need further treatment due to progression of CML to blast crisis (BC). Aberrant high expression of ecotropic viral integration site 1 (EVI1) is frequently observed in CML during myeloid-BC as a potent driver with a CML stem cell signature; however, the precise molecular mechanism of EVI1 transcriptional regulation during CML progression is poorly defined. Here, we demonstrate the transcriptional activity of EVI1more » is dependent on activation of lymphoid enhancer-binding factor 1 (LEF1)/β-catenin complex by BCR-ABL with loss of p53 function during CML-BC. The activation of β-catenin is partly dependent on BCR-ABL expression through enhanced GSK3β phosphorylation, and EVI1 expression is directly enhanced by the LEF1/β-catenin complex bound to the EVI1 promoter region. Moreover, the loss of p53 expression is inversely correlated with high expression of EVI1 in CML leukemia cells with an aggressive phase of CML, and a portion of the activation mechanism of EVI1 expression is dependent on β-catenin activation through GSK3β phosphorylation by loss of p53. Therefore, we found that the EVI1 activation in CML-BC is dependent on LEF1/β-catenin activation by BCR-ABL expression with loss of p53 function, representing a novel selective therapeutic approach targeting myeloid blast crisis progression. - Highlights: • Transcriptional regulation of EVI1 in CML-BC is proposed. • EVI1 transcription is directly regulated by LEF1/β-catenin complex in CML-BC. • Loss of p53 function as a key regulator for β-catenin-EVI1 in CML myeloid-BC. • The LEF1/β-catenin binding site on the EVI1 promoter is a new target for CML-BC.« less
MDM4 overexpression contributes to synoviocyte proliferation in patients with rheumatoid arthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Nanwei; Wang, Yuji, E-mail: yujiwang@sohu.com; State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433
Research highlights: {yields} Elevated MDM4 mRNA and protein levels in FLS from patients with RA and OA. {yields} Strong MDM4 staining in synovial cells of inflammatory synovium. {yields} MDM4 knockdown increased p53 and p21 levels, and inhibited the proliferation of RA FLS. {yields} MDM4 overexpression increased p53 while decreased p21 levels, and promoted the growth of RA FLS. -- Abstract: Rheumatoid arthritis (RA) is a chronic autoimmune disease with features of inflammatory cell infiltration, synovial cell invasive proliferation, and ultimately, irreversible joint destruction. It has been reported that the p53 pathway is involved in RA pathogenesis. MDM4/MDMX is a majormore » negative regulator of p53. To determine whether MDM4 contributes to RA pathogenesis, MDM4 mRNA and protein expression were assessed in fibroblast-like synoviocytes (FLS) by real-time PCR, western blotting, and in synovial tissues by immunohistochemistry. Furthermore, MDM4 was knocked down and overexpressed by lentivirus-mediated expression, and the proliferative capacity of FLS was determined by MTS assay. We found that cultured FLS from RA and osteoarthritis (OA) patients exhibited higher levels of MDM4 mRNA and protein expression than those from trauma controls. MDM4 protein was highly expressed in the synovial lining and sublining cells from both types of arthritis. Finally, MDM4 knockdown inhibited the proliferation of RA FLS by enhancing functional p53 levels while MDM4 overexpression promoted the growth of RA FLS by inhibiting p53 effects. Taken together, our results suggest that the abundant expression of MDM4 in FLS may contribute to the hyperplasia phenotype of RA synovial tissues.« less
Sánchez-Aguilera, Abel; Sánchez-Beato, Margarita; García, Juan F; Prieto, Ignacio; Pollan, Marina; Piris, Miguel A
2002-02-15
p14(ARF), the alternative product from the human INK4a/ARF locus, antagonizes Hdm2 and mediates p53 activation in response to oncogenic stimuli. An immunohistochemical study of p14(ARF) expression in 74 samples of aggressive B-cell lymphomas was performed, demonstrating an array of different abnormalities. A distinct nucleolar expression pattern was detected in nontumoral tissue and a subset of lymphomas (50/74). In contrast, a group of cases (8/74) showed absence of p14(ARF) expression, dependent either on promoter hypermethylation or gene loss. Additionally, 16 out of 74 cases displayed an abnormal nuclear p14(ARF) overexpression not confined to the nucleoli, as confirmed by confocal microscopy, and that was associated with high levels of p53 and Hdm2. A genetic study of these cases failed to show any alteration in the p14(ARF) gene, but revealed the presence of p53 mutations in over 50% of these cases. An increased growth fraction and a more aggressive clinical course, with a shortened survival time, also characterized the group of tumors with p14(ARF) nuclear overexpression. Moreover, this p14(ARF) expression pattern was more frequent in tumors displaying accumulated alterations in the p53, p16(INK4a), and p27(KIP1) tumor supressors. These observations, together with the consideration of the central role of p14(ARF) in cell cycle control, suggest that p14(ARF) abnormal nuclear overexpression is a sensor of malfunction of the major cell cycle regulatory pathways, and consequently a marker of a high tumor aggressivity.
Friend or Foe: MicroRNAs in the p53 network.
Luo, Zhenghua; Cui, Ri; Tili, Esmerina; Croce, Carlo
2018-04-10
The critical tumor suppressor gene TP53 is either lost or mutated in more than half of human cancers. As an important transcriptional regulator, p53 modulates the expression of many microRNAs. While wild-type p53 uses microRNAs to suppress cancer development, microRNAs that are activated by gain-of-function mutant p53 confer oncogenic properties. On the other hand, the expression of p53 is tightly controlled by a fine-tune machinery including microRNAs. MicroRNAs can target the TP53 gene directly or other factors in the p53 network so that expression and function of either the wild-type or the mutant forms of p53 is downregulated. Therefore, depending on the wild-type or mutant p53 context, microRNAs contribute substantially to suppress or exacerbate tumor development. Copyright © 2018. Published by Elsevier B.V.
AAVPG: A vigilant vector where transgene expression is induced by p53
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajgelman, Marcio C.; Medrano, Ruan F.V.; Carvalho, Anna Carolina P.V.
2013-12-15
Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl{sub 2}, p<0.001) and biomechanical stress (2.53±0.4 foldmore » increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×10{sup 5}±0.43×10{sup 5} photons/s; post-treatment, 6.6×10{sup 5}±2.1×10{sup 5} photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress.« less
Dynamics of Delayed p53 Mutations in Mice Given Whole-Body Irradiation at 8 Weeks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okazaki, Ryuji, E-mail: ryuji-o@med.uoeh-u.ac.j; Ootsuyama, Akira; Kakihara, Hiroyo
2011-01-01
Purpose: Ionizing irradiation might induce delayed genotoxic effects in a p53-dependent manner. However, a few reports have shown a p53 mutation as a delayed effect of radiation. In this study, we investigated the p53 gene mutation by the translocation frequency in chromosome 11, loss of p53 alleles, p53 gene methylation, p53 nucleotide sequence, and p53 protein expression/phosphorylation in p53{sup +/+} and p53{sup +/-} mice after irradiation at a young age. Methods and Materials: p53{sup +/+} and p53{sup +/-} mice were exposed to 3 Gy of whole-body irradiation at 8 weeks of age. Chromosome instability was evaluated by fluorescence in situmore » hybridization analysis. p53 allele loss was evaluated by polymerase chain reaction, and p53 methylation was evaluated by methylation-specific polymerase chain reaction. p53 sequence analysis was performed. p53 protein expression was evaluated by Western blotting. Results: The translocation frequency in chromosome 11 showed a delayed increase after irradiation. In old irradiated mice, the number of mice that showed p53 allele loss and p53 methylation increased compared to these numbers in old non-irradiated mice. In two old irradiated p53{sup +/-} mice, the p53 sequence showed heteromutation. In old irradiated mice, the p53 and phospho-p53 protein expressions decreased compared to old non-irradiated mice. Conclusion: We concluded that irradiation at a young age induced delayed p53 mutations and p53 protein suppression.« less
EMT and induction of miR-21 mediate metastasis development in Trp53-deficient tumours
Bornachea, Olga; Santos, Mirentxu; Martínez-Cruz, Ana Belén; García-Escudero, Ramón; Dueñas, Marta; Costa, Clotilde; Segrelles, Carmen; Lorz, Corina; Buitrago, Agueda; Saiz-Ladera, Cristina; Agirre, Xabier; Grande, Teresa; Paradela, Beatriz; Maraver, Antonio; Ariza, José M.; Prosper, Felipe; Serrano, Manuel; Sánchez-Céspedes, Montse; Paramio, Jesús M.
2012-01-01
Missense mutations in TP53 gene promote metastasis in human tumours. However, little is known about the complete loss of function of p53 in tumour metastasis. Here we show that squamous cell carcinomas generated by the specific ablation of Trp53 gene in mouse epidermis are highly metastatic. Biochemical and genome-wide mRNA and miRNA analyses demonstrated that metastases are associated with the early induction of epithelial-mesenchymal transition (EMT) and deregulated miRNA expression in primary tumours. Increased expression of miR-21 was observed in undifferentiated, prometastatic mouse tumours and in human tumours characterized by p53 mutations and distant metastasis. The augmented expression of miR-21, mediated by active mTOR and Stat3 signalling, conferred increased invasive properties to mouse keratinocytes in vitro and in vivo, whereas blockade of miR-21 in a metastatic spindle cell line inhibits metastasis development. Collectively these data identify novel molecular mechanisms leading to metastasis in vivo originated by p53 loss in epithelia. PMID:22666537
Tonnessen-Murray, Crystal; Ungerleider, Nathan A; Rao, Sonia G; Wasylishen, Amanda R; Frey, Wesley D; Jackson, James G
2018-05-28
p53 is a transcription factor that regulates expression of genes involved in cell cycle arrest, senescence, and apoptosis. TP53 harbors mutations that inactivate its transcriptional activity in roughly 30% of breast cancers, and these tumors are much more likely to undergo a pathological complete response to chemotherapy. Thus, the gene expression program activated by wild-type p53 contributes to a poor response. We used an in vivo genetic model system to comprehensively define the p53- and p21-dependent genes and pathways modulated in tumors following doxorubicin treatment. We identified genes differentially expressed in spontaneous mammary tumors harvested from treated MMTV-Wnt1 mice that respond poorly (Trp53+/+) or favorably (Trp53-null) and those that lack the critical senescence/arrest p53 target gene Cdkn1a. Trp53 wild-type tumors differentially expressed nearly 10-fold more genes than Trp53-null tumors after treatment. Pathway analyses showed that genes involved in cell cycle, senescence, and inflammation were enriched in treated Trp53 wild-type tumors; however, no genes/pathways were identified that adequately explain the superior cell death/tumor regression observed in Trp53-null tumors. Cdkn1a-null tumors that retained arrest capacity (responded poorly) and those that proliferated (responded well) after treatment had remarkably different gene regulation. For instance, Cdkn1a-null tumors that arrested upregulated Cdkn2a (p16), suggesting an alternative, p21-independent route to arrest. Live animal imaging of longitudinal gene expression of a senescence/inflammation gene reporter in Trp53+/+ tumors showed induction during and after chemotherapy treatment, while tumors were arrested, but expression rapidly diminished immediately upon relapse. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Zhang, Ling; Zhu, Shengtao; Shi, Xuesen; Sha, Weihong
2015-01-01
Colon cancer is the second most common cause of cancer-related death, indicating that some of its cancer cells are not eradicated by current therapies. The previous studies demonstrated that p66(Shc) protein, a member of Shc family, is highly expressed in colon cancer cells, but the role of p66(Shc) in the progress of colon cancer still unknown. In this study, we found that p66(Shc) highly expressed in colon cancer tissue and colon cancer cell line SW620 cells, HCT8 cells, HCT116 cells and CaCO2 cells. The silence of p66(Shc) in HCT8 cells reduced the proliferation and accelerated the apoptosis, in addition, the expression of pro-apoptotic proteins caspase-3, caspase-9, Bax was enhanced and the expression of anti-apoptotic protein Bcl-2 was declined. Moreover, the cell cycle arrest in G0/G1 phase after HCT8 cells treated with p66(Shc) siRNA. Furthermore, after HCT8 cells treated with p66(Shc) siRNA, the phosphorylation of PI3K and AKT was significantly suppressed, and the expression of Mdm-2, a downstream of AKT, was obviously prohibited, while the expression of p53 was enhanced. These results indicate that the silence of p66(Shc) in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway, it may provide a promising approach to prevent the progress of colon cancer cell.
The silence of p66Shc in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway
Zhang, Ling; Zhu, Shengtao; Shi, Xuesen; Sha, Weihong
2015-01-01
Colon cancer is the second most common cause of cancer-related death, indicating that some of its cancer cells are not eradicated by current therapies. The previous studies demonstrated that p66Shc protein, a member of Shc family, is highly expressed in colon cancer cells, but the role of p66Shc in the progress of colon cancer still unknown. In this study, we found that p66Shc highly expressed in colon cancer tissue and colon cancer cell line SW620 cells, HCT8 cells, HCT116 cells and CaCO2 cells. The silence of p66Shc in HCT8 cells reduced the proliferation and accelerated the apoptosis, in addition, the expression of pro-apoptotic proteins caspase-3, caspase-9, Bax was enhanced and the expression of anti-apoptotic protein Bcl-2 was declined. Moreover, the cell cycle arrest in G0/G1 phase after HCT8 cells treated with p66Shc siRNA. Furthermore, after HCT8 cells treated with p66Shc siRNA, the phosphorylation of PI3K and AKT was significantly suppressed, and the expression of Mdm-2, a downstream of AKT, was obviously prohibited, while the expression of p53 was enhanced. These results indicate that the silence of p66Shc in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway, it may provide a promising approach to prevent the progress of colon cancer cell. PMID:26464652
TP53 mutations, expression and interaction networks in human cancers
Wang, Xiaosheng; Sun, Qingrong
2017-01-01
Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers. PMID:27880943
TP53 mutations, expression and interaction networks in human cancers.
Wang, Xiaosheng; Sun, Qingrong
2017-01-03
Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers.
Jahchan, Nadine S; Ouyang, Gaoliang; Luo, Kunxin
2013-01-01
SnoN is a negative regulator of TGF-β signaling and also an activator of the tumor suppressor p53 in response to cellular stress. Its role in human cancer is complex and controversial with both pro-oncogenic and anti-oncogenic activities reported. To clarify its role in human cancer and provide clinical relevance to its signaling activities, we examined SnoN expression in normal and cancerous human esophageal, ovarian, pancreatic and breast tissues. In normal tissues, SnoN is expressed in both the epithelium and the surrounding stroma at a moderate level and is predominantly cytoplasmic. SnoN levels in all tumor epithelia examined are lower than or similar to that in the matched normal samples, consistent with its anti-tumorigenic activity in epithelial cells. In contrast, SnoN expression in the stroma is highly upregulated in the infiltrating inflammatory cells in high-grade esophageal and ovarian tumor samples, suggesting that SnoN may potentially promote malignant progression through modulating the tumor microenvironment in these tumor types. The overall levels of SnoN expression in these cancer tissues do not correlate with the p53 status. However, in human cancer cell lines with amplification of the snoN gene, a strong correlation between increased SnoN copy number and inactivation of p53 was detected, suggesting that the tumor suppressor SnoN-p53 pathway must be inactivated, either through downregulation of SnoN or inactivation of p53, in order to allow cancer cell to proliferate and survive. These data strongly suggest that SnoN can function as a tumor suppressor at early stages of tumorigenesis in human cancer tissues.
Tang, Yaxiong; Simoneau, Anne R.; Xie, Jun; Shahandeh, Babbak; Zi, Xiaolin
2010-01-01
Flavokawain A is the predominant chalcone from kava extract. We have assessed the mechanisms of flavokawain A's action on cell cycle regulation. In a p53 wild-type, low-grade, and papillary bladder cancer cell line (RT4), flavokawain A increased p21/WAF1 and p27/KIP1, which resulted in a decrease in cyclin-dependent kinase-2 (CDK2) kinase activity and subsequent G1 arrest. The increase of p21/WAF1 protein corresponded to an increased mRNA level, whereas p27/KIP1 accumulation was associated with the down-regulation of SKP2 and then increased the stability of the p27/KIP1 protein. The accumulation of p21/WAF1 and p27/KIP1 was independent of cell cycle position and thus not a result of the cell cycle arrest. In contrast, flavokawain A induced a G2-M arrest in six p53 mutant-type, high-grade bladder cancer cell lines (T24, UMUC3, TCCSUP, 5637, HT1376, and HT1197). Flavokawain A significantly reduced the expression of CDK1-inhibitory kinases, Myt1 and Wee1, and caused cyclin B1 protein accumulation leading to CDK1 activation in T24 cells. Suppression of p53 expression by small interfering RNA in RT4 cells restored Cdc25C expression and down-regulated p21/WAF1 expression, which allowed Cdc25C and CDK1 activation and then led to a G2-M arrest and an enhanced growth-inhibitory effect by flavokawain A. Consistently, flavokawain A also caused a pronounced CDK1 activation and G2-M arrest in p53 knockout but not in p53 wild-type HCT116 cells. This selectivity of flavokawain A for inducing a G2-M arrest in p53-defective cells deserves further investigation as a new mechanism for the prevention and treatment of bladder cancer. PMID:19138991
Vetterlein, Malte W; Roschinski, Julia; Gild, Philipp; Marks, Phillip; Soave, Armin; Doh, Ousman; Isbarn, Hendrik; Höppner, Wolfgang; Wagner, Walter; Shariat, Shahrokh F; Brausi, Maurizio; Büscheck, Franziska; Sauter, Guido; Fisch, Margit; Rink, Michael
2017-12-01
The identification of protein biomarkers to guide treatment decisions regarding adjuvant therapies for high-risk non-muscle-invasive bladder cancer (NMIBC) has been of increasing interest. Evidence of the impact of tumor suppressor gene product p53 and cell proliferation marker Ki-67 on oncologic outcomes in bladder cancer patients at highest risk of recurrence and progression is partially contradictory. We sought to mirror contemporary expression patterns of p53 and Ki-67 in a select cohort of patients with pT1 bladder cancer. Patients from four Northern German institutions with a primary diagnosis of pT1 bladder cancer between 2009 and 2016 and complete data regarding p53 or Ki-67 expression status were included for final analyses. Baseline patient characteristics (age, gender, age-adjusted Charlson comorbidity index) and tumor characteristics [diagnostic sequence, tumor focality, concomitant carcinoma in situ, 1973 World Health Organization (WHO) grading, lymphovascular invasion, adjuvant instillation therapy] were abstracted by retrospective chart review. Immunohistochemistry for detection of p53 and Ki-67 expression was performed according to standardized protocols. Microscopic analyses were performed by central pathologic review. First, we compared patients with positive vs. negative p53 expression and Ki-67 labeling index [>40% vs. ≤40%; cutoffs based on best discriminative ability in univariable Cox regression analysis with disease-free survival (DFS) as endpoint] with regard to baseline and tumor characteristics. Second, we evaluated the effect of biomarker positivity on DFS by plotting univariable Kaplan-Meier curves and performing uni- and multivariable Cox regression analyses. Of 102 patients with complete information on p53 status, 44 (43.1%) were p53 positive, and they more often harbored concomitant carcinoma in situ (50.0% vs. 27.6%; P=0.032) and 1973 WHO grade 3 (97.7% vs. 69.0%; P=0.001) compared to their p53 negative counterparts. Of 79 patients with complete information on Ki-67 expression status, 30 (38.0%) had a labeling index >40%. Mean Ki-67 labeling index was higher in WHO grade 3 vs. grade 2 tumors (45.8 vs. 29.7; P=0.004). At a median follow-up of 51.0 months, 31/91 patients with complete follow-up information (34.1%) suffered from disease recurrence or progression. In univariable Kaplan-Meier analyses, no difference regarding DFS was found in p53 positive vs. negative (P=0.8) or Ki-67 labeling index >40% vs. ≤40% (P=0.078) patients. In multivariable analyses, Ki-67 labeling index >40% remained an independent predictor of DFS [hazard ratio (HR), 2.66; 95% confidence interval (CI), 1.02-6.95; P=0.046], after adjusting for p53 expression and lymphovascular invasion. However, p53 status was not associated with our endpoint (P=0.8). While we found an association of a Ki-67 labeling index >40% and shorter DFS in pT1 bladder cancer patients, this did not hold true for p53 positivity. Future research is needed to identify additional microscopic and molecular risk factors and biomarker panels to improve risk stratification and guide adjuvant therapies in those patients.
Ogino, Shuji; Kawasaki, Takako; Kirkner, Gregory J; Yamaji, Taiki; Loda, Massimo; Fuchs, Charles S
2007-01-01
Downregulation of p27 (cyclin-dependent kinase inhibitor-1B, CDKN1B or KIP1) is caused by increased ubiquitin-mediated proteasomal degradation in colorectal cancer, and has been associated with poor prognosis. CpG island methylator phenotype (CIMP) is a phenotype of colorectal cancer with extensive promoter methylation, and associated with high degree of microsatellite instability (MSI-H) and BRAF mutations. We have recently shown that both CIMP and MSI-H are inversely associated with downregulation of p21 (CDKN1A or CIP1), another cyclin-dependent kinase inhibitor. However, no study to date has examined relationship between p27 and CIMP status in colorectal cancer. Using MethyLight assays, we measured DNA methylation in five CIMP-specific gene promoters {CACNA1G, CDKN2A (p16), CRABP1, MLH1 and NEUROG1} in 706 colorectal cancer samples obtained from two large prospective cohorts. Among the 706 tumors, 112 (16%) were CIMP-high tumors with >or=4/5 methylated promoters. We assessed p27 and p53 expressions by immunohistochemistry. Loss of nuclear p27 expression {observed in 231 tumors (33%)} was significantly associated with CIMP-high, MSI-H and BRAF mutations, and these associations were much more pronounced among p53-negative tumors than p53-positive tumors. When CIMP-high and non-CIMP-high tumors were stratified by MSI status (or KRAS and BRAF status), CIMP-high and MSI-H (but not BRAF mutations) were still significantly associated with nuclear p27 loss. Nuclear p27 loss did not appear to be directly related to CDKN2A (p16) methylation. We conclude that downregulation of nuclear p27 is associated with CIMP-high and MSI-H in colorectal cancer. These associations are stronger among p53 wild-type tumors, implying important interplay of p27 and p53 functions (or dysfunctions) in the development of various molecular subtypes of colorectal cancer.
Barzon, Luisa; Cappellesso, Rocco; Peta, Elektra; Militello, Valentina; Sinigaglia, Alessandro; Fassan, Matteo; Simonato, Francesca; Guzzardo, Vincenza; Ventura, Laura; Blandamura, Stella; Gardiman, Marina; Palù, Giorgio; Fassina, Ambrogio
2014-12-01
Penile squamous cell carcinoma (PSCC) is a rare tumor associated with high-risk human papillomavirus (HR-HPV) infection in 30% to 60% of cases. Altered expression of miRNAs has been reported in HPV-related cervical and head and neck cancers, but such data have not been available for PSCC. We analyzed a series of 59 PSCCs and 8 condylomata for presence of HPV infection, for p16(INK4a), Ki-67, and p53 immunohistochemical expression, and for expression of a panel of cellular miRNAs (let-7c, miR-23b, miR-34a, miR-145, miR-146a, miR-196a, and miR-218) involved in HPV-related cancer. HR-HPV DNA (HPV16 in most cases) was detected in 17/59 (29%) PSCCs; all penile condylomata (8/8) were positive for low-risk HPV6 or HPV11. HR-HPV(+) PSCCs overexpressed p16(INK4a) in 88% cases and p53 in 35% of cases, whereas HR-HPV(-) PSCCs were positive for p16(INK4a) and p53 immunostaining in 9% and 44% of cases, respectively. Among the miRNAs investigated, expression of miR-218 was lower in PSCCs with HR-HPV infection and in p53(-) cancers. Hypermethylation of the promoter of the SLIT2 gene, which contains miR-218-1 in its intronic region, was frequently observed in PSCCs, mainly in those with low miR-218 expression. Epigenetic silencing of miR-218 is a common feature in HR-HPV(+) PSCCs and in HR-HPV(-) PSCCs without immunohistochemical detection of p53. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Paradiso, A; Simone, G; Petroni, S; Leone, B; Vallejo, C; Lacava, J; Romero, A; Machiavelli, M; De Lena, M; Allegra, C J; Johnston, P G
2000-02-01
The purpose of this work was to analyse the ability of p53 and thymidilate synthase (TS) primary tumour expression to retrospectively predict clinical response to chemotherapy and long-term prognosis in patients with advanced colorectal cancers homogeneously treated by methotrexate (MTX)-modulated-5-fluorouracil (5-FU-FA). A total of 108 advanced colorectal cancer patients entered the present retrospective study. Immunohistochemical p53 (pAb 1801 mAb) and TS (TS106 mAb) expression on formalin-fixed paraffin-embedded primary tumour specimens was related to probability of clinical response to chemotherapy, time to progression and overall survival. p53 was expressed in 53/108 (49%) tumours, while 54/108 (50%) showed TS immunostaining. No relationship was demonstrated between p53 positivity and clinical response to chemotherapy (objective response (OR): 20% vs 23%, in p53+ and p53- cases respectively) or overall survival. Percent of OR was significantly higher in TS-negative with respect to TS-positive tumours (30% vs 15% respectively; P < 0.04); simultaneous analysis of TS and p53 indicated 7% OR for p53-positive/TS-positive tumours vs 46% for p53-positive/TS-negative tumours (P < 0.03). Logistic regression analysis confirmed a significant association between TS tumour status and clinical response to chemotherapy (hazard ratio (HR): 2.91; 95% confidence interval (CI) 8.34-1.01; two-sided P < 0.05). A multivariate analysis of overall survival showed that only a small number of metastatic sites was statistically relevant (HR 1.89; 95% CI 2.85-1.26; two-sided P < 0.03). Our study suggests that immunohistochemical expression of p53 and TS could assist the clinician in predicting response of colorectal cancer patients to modulated MTX-5-FU therapy.
Mao, Jiahui; Liang, Zhaofeng; Zhang, Bin; Yang, Huan; Li, Xia; Fu, Hailong; Zhang, Xu; Yan, Yongmin; Xu, Wenrong; Qian, Hui
2017-11-01
The deficiency or mutation of p53 has been linked to several types of cancers. The mesenchymal stem cell (MSC) is an important component in the tumor microenvironment, and exosomes secreted by MSCs can transfer bioactive molecules, including proteins and nucleic acid, to other cells in the tumor microenvironment to influence the progress of a tumor. However, whether the state of p53 in MSCs can impact the bioactive molecule secretion of exosomes to promote cancer progression and the regulatory mechanism remains elusive. Our study aimed to investigate the regulation of ubiquitin protein ligase E3 component n-recognin 2 (UBR2) enriched in exosomes secreted by p53 deficient mouse bone marrow MSC (p53 -/- mBMMSC) in gastric cancer progression in vivo and in vitro. We found that the concentration of exosome was significantly higher in p53 -/- mBMMSC than that in p53 wild-type mBMMSC (p53 +/+ mBMMSC). In particular, UBR2 was highly expressed in p53 -/- mBMMSC cells and exosomes. P53 -/- mBMMSC exosomes enriched UBR2 could be internalized into p53 +/+ mBMMSC and murine foregastric carcinoma (MFC) cells and induce the overexpression of UBR2 in these cells which elevated cell proliferation, migration, and the expression of stemness-related genes. Mechanistically, the downregulation of UBR2 in p53 -/- mBMMSC exosomes could reverse these actions. Moreover, a majority of Wnt family members, β-catenin, and its downstream genes (CD44, CyclinD1, CyclinD3, and C-myc) were significantly decreased in MFC knockdown UBR2 and β-catenin depletion, an additional depletion of UBR2 had no significant difference in the expression of Nanog, OCT4, Vimentin, and E-cadherin. Taken together, our findings indicated that p53 -/- mBMMSC exosomes could deliver UBR2 to target cells and promote gastric cancer growth and metastasis by regulating Wnt/β-catenin pathway. Stem Cells 2017;35:2267-2279. © 2017 AlphaMed Press.
2016-01-01
Glioblastoma (GBM) can be classified into molecular subgroups, on the basis of biomarker expression. Here, we classified our cohort of 163 adult GBMs into molecular subgroups according to the expression of proteins encoded by genes of alpha thalassemia/mental retardation syndrome X-linked (ATRX), isocitrate dehydrogenase (IDH) and TP53. We focused on the survival rate of molecular subgroups, depending on each and various combination of these biomarkers. ATRX, IDH1 and p53 protein expression were evaluated immunohistochemically and Kaplan-Meier analysis were carried out in each group. A total of 15.3% of enrolled GBMs demonstrated loss of ATRX expression (ATRX-), 10.4% expressed an aberrant IDH1 R132H protein (IDH1+), and 48.4% exhibited p53 overexpression (p53+). Survival differences were statistically significant when single protein expression or different combinations of expression of these proteins were analyzed. In conclusion, in the case of single protein expression, the patients with each IDH1+, or ATRX-, or p53- GBMs showed better survival than patients with counterparts protein expressed GBMs. In the case of double protein pairs, the patients with ATRX-/p53-, ATRX-/IDH1+, and IDH1+/p53- GBMs revealed better survival than the patients with GBMs with the remained pairs. In the case of triple protein combinations, the patients with ATRX-/p53-/IDH+ showed statistically significant survival gain than the patients with remained combination of proteins-expression status. Therefore, these three biomarkers, individually and as a combination, can stratify GBMs into prognostically relevant subgroups and have strong prognostic values in adult GBMs. PMID:27478330
Katoch, Aanchal; George, Biju; Iyyappan, Amrutha; Khan, Debjit
2017-01-01
Abstract p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3′UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3′UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3′UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3′UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3′UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3′UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3′UTR can play pivotal role in fine tuning the expression of the two p53 isoforms. PMID:28973454
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simoes, Maria L.; Hockley, Sarah L.; Schwerdtle, Tanja
Aristolochic acid (AA) is the causative agent of urothelial tumours associated with aristolochic acid nephropathy. These tumours contain TP53 mutations and over-express TP53. We compared transcriptional and translational responses of two isogenic HCT116 cell lines, one expressing TP53 (p53-WT) and the other with this gene knocked out (p53-null), to treatment with aristolochic acid I (AAI) (50-100 {mu}M) for 6-48 h. Modulation of 118 genes was observed in p53-WT cells and 123 genes in p53-null cells. Some genes, including INSIG1, EGR1, CAV1, LCN2 and CCNG1, were differentially expressed in the two cell lines. CDKN1A was selectively up-regulated in p53-WT cells, leadingmore » to accumulation of TP53 and CDKN1A. Apoptotic signalling, measured by caspase-3 and -7 activity, was TP53-dependent. Both cell types accumulated in S phase, suggesting that AAI-DNA adducts interfere with DNA replication, independently of TP53 status. The oncogene MYC, frequently over-expressed in urothelial tumours, was up-regulated by AAI, whereas FOS was down-regulated. Observed modulation of genes involved in endocytosis, e.g. RAB5A, may be relevant to the known inhibition of receptor-mediated endocytosis, an early sign of AA-mediated proximal tubule injury. AAI-DNA adduct formation was significantly greater in p53-WT cells than in p53-null cells. Collectively, phenotypic anchoring of the AAI-induced expression profiles to DNA adduct formation, cell-cycle parameters, TP53 expression and apoptosis identified several genes linked to these biological outcomes, some of which are TP53-dependent. These results strengthen the importance of TP53 in AA-induced cancer, and indicate that other alterations, e.g. to MYC oncogenic pathways, may also contribute.« less
Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy
Tovar, Christian; Rosinski, James; Filipovic, Zoran; Higgins, Brian; Kolinsky, Kenneth; Hilton, Holly; Zhao, Xiaolan; Vu, Binh T.; Qing, Weiguo; Packman, Kathryn; Myklebost, Ola; Heimbrook, David C.; Vassilev, Lyubomir T.
2006-01-01
The p53 tumor suppressor retains its wild-type conformation and transcriptional activity in half of all human tumors, and its activation may offer a therapeutic benefit. However, p53 function could be compromised by defective signaling in the p53 pathway. Using a small-molecule MDM2 antagonist, nutlin-3, to probe downstream p53 signaling we find that the cell-cycle arrest function of the p53 pathway is preserved in multiple tumor-derived cell lines expressing wild-type p53, but many have a reduced ability to undergo p53-dependent apoptosis. Gene array analysis revealed attenuated expression of multiple apoptosis-related genes. Cancer cells with mdm2 gene amplification were most sensitive to nutlin-3 in vitro and in vivo, suggesting that MDM2 overexpression may be the only abnormality in the p53 pathway of these cells. Nutlin-3 also showed good efficacy against tumors with normal MDM2 expression, suggesting that many of the patients with wild-type p53 tumors may benefit from antagonists of the p53–MDM2 interaction. PMID:16443686
Shimizu, Akira; Kaira, Kyoichi; Yasuda, Masahito; Asao, Takayuki; Ishikawa, Osamu
2017-01-01
Glucose-regulated protein of 78 kD (GRP78) also referred to as immunoglobulin heavy chain binding protein (BiP/GRP78) plays an important role in the endoplasmic reticulum (ER) stress. The level of BiP/GRP78 is highly elevated in various human cancers. The purpose of this study is to examine the prognostic significance of BiP/GRP78 expression in patients with malignant melanoma. A total of 133 malignant melanoma patients were analyzed, and tumor specimens were stained by immunohistochemistry for BiP/GRP78, PKR-like endoplasmic reticulum kinase (PERK), Ki-67, p53 and microvessel density (MVD) determined by CD34. BiP/GRP78 and PERK were highly expressed in 40 % (53/133) and 78 % (104/133), respectively. BiP/GRP78 disclosed a significant relationship with PERK expression, thickness, T factor, N factor, disease staging, cell proliferation (Ki-67) and MVD (CD34). By multivariate analysis, the high expression of BiP/GRP78 was identified as an independent prognostic factor for predicting poor survival against malignant melanoma. The increased BiP/GRP78 expression was clarified as an independent prognostic marker for predicting worse outcome. ER stress marker, BiP/GRP78 could be a powerful molecular target for the treatment of malignant melanoma.
Soares, Joana; Raimundo, Liliana; Pereira, Nuno A L; dos Santos, Daniel J V A; Pérez, Maria; Queiroz, Glória; Leão, Mariana; Santos, Maria M M; Saraiva, Lucília
2015-01-01
Inactivation of the p53 tumor suppressor protein by interaction with murine double minute (MDM) proteins, MDM2 and MDMX, is a common event in human tumors expressing wild-type p53. In these tumors, the simultaneous inhibition of these interactions with MDMs, for a full p53 reactivation, represents a promising anticancer strategy. Herein, we report the identification of a dual inhibitor of the p53 interaction with MDM2 and MDMX, the (S)-tryptophanol derivative OXAZ-1, from the screening of a small library of enantiopure tryptophanol-derived oxazolopiperidone lactams, using a yeast-based assay. With human colon adenocarcinoma HCT116 cell lines expressing wild-type p53 (HCT116 p53(+/+)) and its p53-null isogenic derivative (HCT116 p53(-/-)), it was shown that OXAZ-1 induced a p53-dependent tumor growth-inhibitory effect. In fact, OXAZ-1 induced p53 stabilization, up-regulated p53 transcription targets, such as MDM2, MDMX, p21, Puma and Bax, and led to PARP cleavage, in p53(+/+), but not in p53(-/-), HCT116 cells. In addition, similar tumor cytotoxic effects were observed for OXAZ-1 against MDMX-overexpressing breast adenocarcinoma MCF-7 tumor cells, commonly described as highly resistant to MDM2-only inhibitors. In HCT116 p53(+/+) cells, the disruption of the p53 interaction with MDMs by OXAZ-1 was further confirmed by co-immunoprecipitation. It was also shown that OXAZ-1 potently triggered a p53-dependent mitochondria-mediated apoptosis, characterized by reactive oxygen species generation, mitochondrial membrane potential dissipation, Bax translocation to mitochondria, and cytochrome c release, and exhibited a p53-dependent synergistic effect with conventional chemotherapeutic drugs. Collectively, in this work, a novel selective activator of the p53 pathway is reported with promising antitumor properties to be explored either alone or combined with conventional chemotherapeutic drugs. Moreover, OXAZ-1 may represent a promising starting scaffold to search for new dual inhibitors of the p53-MDMs interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.
He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang
2010-08-27
P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.
He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang
2010-01-01
P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy. PMID:20957096
Apostolidis, Pani A.; Lindsey, Stephan; Miller, William M.
2012-01-01
During endomitosis, megakaryocytes undergo several rounds of DNA synthesis without division leading to polyploidization. In primary megakaryocytes and in the megakaryocytic cell line CHRF, loss or knock-down of p53 enhances cell cycling and inhibits apoptosis, leading to increased polyploidization. To support the hypothesis that p53 suppresses megakaryocytic polyploidization, we show that stable expression of wild-type p53 in K562 cells (a p53-null cell line) attenuates the cells' ability to undergo polyploidization during megakaryocytic differentiation due to diminished DNA synthesis and greater apoptosis. This suggested that p53's effects during megakaryopoiesis are mediated through cell cycle- and apoptosis-related target genes, possibly by arresting DNA synthesis and promoting apoptosis. To identify candidate genes through which p53 mediates these effects, gene expression was compared between p53 knock-down (p53-KD) and control CHRF cells induced to undergo terminal megakaryocytic differentiation using microarray analysis. Among substantially downregulated p53 targets in p53-KD megakaryocytes were cell cycle regulators CDKN1A (p21) and PLK2, proapoptotic FAS, TNFRSF10B, CASP8, NOTCH1, TP53INP1, TP53I3, DRAM1, ZMAT3 and PHLDA3, DNA-damage-related RRM2B and SESN1, and actin component ACTA2, while antiapoptotic CKS1B, BCL2, GTSE1, and p53 family member TP63 were upregulated in p53-KD cells. Additionally, a number of cell cycle-related, proapoptotic, and cytoskeleton-related genes with known functions in megakaryocytes but not known to carry p53-responsive elements were differentially expressed between p53-KD and control CHRF cells. Our data support a model whereby p53 expression during megakaryopoiesis serves to control polyploidization and the transition from endomitosis to apoptosis by impeding cell cycling and promoting apoptosis. Furthermore, we identify a putative p53 regulon that is proposed to orchestrate these effects. PMID:22548738
Nayak, G; Cooper, G M
2012-10-11
The phosphatidylinositol (PI) 3-kinase/Akt signaling pathway has a prominent role in cell survival and proliferation, in part, by regulating gene expression at the transcriptional level. Previous work using global expression profiling identified FOXOs and the E-box-binding transcription factors MITF and USF1 as key targets of PI 3-kinase signaling that lead to the induction of proapoptotic and cell cycle arrest genes in response to inhibition of PI 3-kinase. In this study, we investigated the role of p53 downstream of PI 3-kinase signaling by analyzing the effects of inhibition of PI 3-kinase in Rat-1 cells, which have wild-type p53, compared with Rat-1 cells expressing a dominant-negative p53 mutant. Expression of dominant-negative p53 conferred partial resistance to apoptosis induced by inhibition of PI 3-kinase. Global gene expression profiling combined with computational and experimental analysis of transcription factor binding sites demonstrated that p53, along with FOXO, MITF and USF1, contributed to gene induction in response to PI 3-kinase inhibition. Activation of p53 was mediated by phosphorylation of the histone acetyltransferase Tip60 by glycogen synthase kinase (GSK) 3, leading to activation of p53 by acetylation. Many of the genes targeted by p53 were also targeted by FOXO and E-box-binding transcription factors, indicating that p53 functions coordinately with these factors to regulate gene expression downstream of PI 3-kinase/Akt/GSK3 signaling.
Enhanced p53 gene transfer to human ovarian cancer cells using the cationic nonviral vector, DDC.
Kim, Chong-Kook; Choi, Eun-Jeong; Choi, Sung-Hee; Park, Jeong-Sook; Haider, Khawaja Hasnain; Ahn, Woong Shick
2003-08-01
Previously we have formulated a new cationic liposome, DDC, composed of dioleoyltrimethylamino propane (DOTAP), 1,2-dioeoyl-3-phosphophatidylethanolamine (DOPE), and cholesterol (Chol), and it efficiently delivered plasmid DNA into ovarian cancer cells. Mutations in the p53 tumor suppressor gene are the most common molecular genetic abnormalities to be described in ovarian cancer. However, there has been so far no report of nonviral vector-mediated p53 gene deliveries in ovarian cancer. In this study, wild-type p53 DNA was transfected into the ovarian cancer cells, using the DDC as a nonviral vector and the expression and activity of p53 gene were evaluated both in vitro and in vivo. DDC liposomes were prepared by mixing DOTAP:DOPE:Chol in a 1:0.7:0.3 molar ratio using the extrusion method. Plasmid DNA (pp53-EGFP) and DDC complexes were transfected into ovarian carcinoma cells (OVCAR-3 cells) and gene expression was determined by reverse transcription-polymerase chain reaction and Western blot analysis. The cellular growth inhibition and apoptosis of DDC-mediated p53 transfection were assessed by trypan blue exclusion assay and annexin-V staining, respectively. The OVCAR-3 cells treated with DDC/pp53-EGFP complexes were inoculated into female balb/c nude mice and tumor growth was observed. The transfection of liposome-complexed p53 gene resulted in a high level of wild-type p53 mRNA and protein expressions in OVCAR-3 cells. In vitro cell growth assay showed growth inhibition of cancer cells transfected with DDC/pp53-EGFP complexes compared with the control cells. The reestablishment of wild-type p53 function in ovarian cancer cells restored the apoptotic pathway. Following the inoculation of DDC/pp53-EGFP complexes, the volumes of tumors in nude mice were significantly reduced more than 60% compared to the control group. The DDC-mediated p53 DNA delivery may have the potential for clinical application as nonviral vector-mediated ovarian cancer therapy due to its effective induction of apoptosis and tumor growth inhibition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gestl, Erin E., E-mail: egestl@wcupa.edu; Anne Boettger, S., E-mail: aboettger@wcupa.edu
2012-06-29
Highlights: Black-Right-Pointing-Pointer Eight human colorectal cell lines were evaluated for p53 and mortalin localization. Black-Right-Pointing-Pointer Six cell lines displayed cytoplasmic sequestration of the tumor suppressor p53. Black-Right-Pointing-Pointer Direct interaction between mortalin and p53 was shown in five cell lines. Black-Right-Pointing-Pointer Cell lines positive for p53 sequestration yielded elevated p53 expression levels. Black-Right-Pointing-Pointer This study yields the first evidence of cytoplasmic sequestration p53 by mortalin. -- Abstract: While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms responsible for this retention have not been positively identified. Since heatshock proteins like mortalin have been associated withmore » p53 inactivation in other tumors, the current study sought to characterize this potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear p53 was only observed in HCT-116 40-16, LS123, and HT-29 cell lines. Mortalin was only localized in the cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40-16 and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo, implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm. Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines with cytoplasmic sequestration of p53, however, also displayed elevated p53 gene expression levels compared to cell lines without p53 sequestration. Our data reveal the characteristic cytoplasmic sequestration of p53 by the heat shock protein mortalin in human colorectal adenocarcinoma cell lines, as is the case for other cancers, such as glioblastomas and hepatocellular carcinomas.« less
Jmjd5 functions as a regulator of p53 signaling during mouse embryogenesis.
Ishimura, Akihiko; Terashima, Minoru; Tange, Shoichiro; Suzuki, Takeshi
2016-03-01
Genetic studies have shown that aberrant activation of p53 signaling leads to embryonic lethality. Maintenance of a fine balance of the p53 protein level is critical for normal development. Previously, we have reported that Jmjd5, a member of the Jumonji C (JmjC) family, regulates embryonic cell proliferation through the control of Cdkn1a expression. Since Cdkn1a is the representative p53-regulated gene, we have examined whether the expression of other p53 target genes is coincidentally upregulated with Cdkn1a in Jmjd5-deficient embryos. The expression of a subset of p53-regulated genes was increased in both Jmjd5 hypomorphic mouse embryonic fibroblasts (MEFs) and Jmjd5-deficient embryos at embryonic day 8.25 without the induced expression of Trp53. Intercrossing of Jmjd5-deficient mice with Trp53 knockout mice showed that the growth defect of Jmjd5 mutant cells was significantly recovered under a Trp53 null genetic background. Chromatin immunoprecipitation analysis in Jmjd5 hypomorphic MEFs indicated the increased recruitment of p53 at several p53 target gene loci, such as Cdkn1a, Pmaip1, and Mdm2. These results suggest that Jmjd5 is involved in the transcriptional regulation of a subset of p53-regulated genes, possibly through the control of p53 recruitment at the gene loci. In Jmjd5-deficient embryos, the enhanced recruitment of p53 might result in the abnormal activation of p53 signaling leading to embryonic lethality.
Improving survival by exploiting tumor dependence on stabilized mutant p53 for treatment
Alexandrova, EM; Yallowitz, AR; Li, D; Xu, S; Schulz, R; Proia, DA; Lozano, G; Dobbelstein, M; Moll, UM
2015-01-01
SUMMARY Missense mutations in p53 generate aberrant proteins with abrogated tumor suppressor functions that can also acquire oncogenic gain-of-functions (GOF) that promote malignant progression, invasion, metastasis and chemoresistance1–5. Mutant p53 (mutp53) proteins undergo massive constitutive stabilization specifically in tumors, which is the key requisite for GOF6–8. Although currently 11 million patients worldwide live with tumors expressing highly stabilized mutp53, it is unknown whether mutp53 is a therapeutic target in vivo. Here we use a novel mutp53 mouse model expressing an inactivatible R248Q hotspot mutation (floxQ) to show that tumors depend on sustained mutp53 expression. Upon Tamoxifen-induced mutp53 ablation, allo-transplanted and autochthonous tumors curb their growth, thus extending animal survival by 37%, and advanced tumors undergo apoptosis and tumor regression or stagnation. The HSP90/HDAC6 chaperone machinery, which is significantly upregulated in cancer compared to normal tissues, is a major determinant of mutp53 stabilization9–12. We show that long-term HSP90 inhibition significantly extends the survival of mutp53 Q/−2 and H/H (R172H allele3) mice by 59% and 48%, respectively, but not their respective p53−/− littermates. This mutp53-dependent drug effect occurs in H/H mice treated with 17DMAG+SAHA and in H/H and Q/− mice treated with the potent Hsp90 inhibitor ganetespib. Notably, drug activity correlates with induction of mutp53 degradation, tumor apoptosis and prevention of T-lymphomagenesis. These proof-of-principle data identify mutp53 as an actionable cancer-specific drug target. PMID:26009011
Zhang, Yu; Zhu, Chenyang; Sun, Bangyao; Lv, Jiawei; Liu, Zhonghua; Liu, Shengwang; Li, Hai
2017-01-01
p53 dysfunction is frequently observed in lung cancer. Although restoring the tumour suppressor function of p53 is recently approved as a putative strategy for combating cancers, the lack of understanding of the molecular mechanism underlying p53-mediated lung cancer suppression has limited the application of p53-based therapies in lung cancer. Using RNA sequencing, we determined the transcriptional profile of human non-small cell lung carcinoma A549 cells after treatment with two p53-activating chemical compounds, nutlin and RITA, which could induce A549 cell cycle arrest and apoptosis, respectively. Bioinformatics analysis of genome-wide gene expression data showed that distinct transcription profiles were induced by nutlin and RITA and 66 pathways were differentially regulated by these two compounds. However, only two of these pathways, 'Adherens junction' and 'Axon guidance', were found to be synthetic lethal with p53 re-activation, as determined via integrated analysis of genome-wide gene expression profile and short hairpin RNA (shRNA) screening. Further functional protein association analysis of significantly regulated genes associated with these two synthetic lethal pathways indicated that GSK3 played a key role in p53-mediated A549 cell apoptosis, and then gene function study was performed, which revealed that GSK3 inhibition promoted p53-mediated A549 cell apoptosis in a p53 post-translational activity-dependent manner. Our findings provide us with new insights regarding the mechanism by which p53 mediates A549 apoptosis and may cast light on the development of more efficient p53-based strategies for treating lung cancer. © 201 The Author(s). Published by S. Karger AG, Basel.
Wu, Chueh-Wei; Peng, Mei-Ling; Yeh, Ken-Tu; Tsai, Yi-Yu; Chiang, Chun-Chi; Cheng, Ya-Wen
2016-05-01
Loss of p53 function has been linked to progression of pterygium. MiR-200a is known to be controlled by p53. Here, we hypothesize that expression of miR-200a and downstream ZEB1/ZEB2 genes are regulated epithelial-mesenchymal transition (EMT) involved in the pathogenesis and recurrence of pterygium. For this study, 120 primary pterygial samples were collected. Immunohistochemistry and real-time RT-PCR were performed to determine the expression of p53, p53 down-stream EMT associated protein and miR-200a. The molecular correlation of p53, miR-200a and downstream genes were confirmed using primary pterygium cells (PECs). Expression of miR-200a in pterygium tissues was significantly lower than in conjunctiva controls (p = 0.015). Up-regulated miR-200a levels were positively correlated with and p53 protein expression (p < 0.001). The miR-200a downstream ZEB1/ZEB1 protein expression were negative correlated with miR-200a expression. Cell model studies demonstrated that miR-200a controlled the EMT of PECs through up-regulated ZEB1, ZEB2 and Snail gene expression. Our study demonstrated that inactivation of p53 in pterygium may influence miR-200a, resulting in ZEB1/ZEB2 up-regulation and EMT processing of pterygium. Therefore, we suggest that expression of miR-200a play an important role in EMT processing and recurrence of pterygium. Copyright © 2016 Elsevier Ltd. All rights reserved.
A mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis
Subramanian, M; Francis, P; Bilke, S; Li, XL; Hara, T; Lu, X; Jones, MF; Walker, RL; Zhu, Y; Pineda, M; Lee, C; Varanasi, L; Yang, Y; Martinez, LA; Luo, J; Ambs, S; Sharma, S; Wakefield, LM; Meltzer, PS; Lal, A
2015-01-01
Most p53 mutations in human cancers are missense mutations resulting in a full-length mutant p53 protein. Besides losing tumor suppressor activity, some hotspot p53 mutants gain oncogenic functions. This effect is mediated in part, through gene expression changes due to inhibition of p63 and p73 by mutant p53 at their target gene promoters. Here, we report that the tumor suppressor microRNA let-7i is downregulated by mutant p53 in multiple cell lines expressing endogenous mutant p53. In breast cancer patients, significantly decreased let-7i levels were associated with missense mutations in p53. Chromatin immunoprecipitation and promoter luciferase assays established let-7i as a transcriptional target of mutant p53 through p63. Introduction of let-7i to mutant p53 cells significantly inhibited migration, invasion and metastasis by repressing a network of oncogenes including E2F5, LIN28B, MYC and NRAS. Our findings demonstrate that repression of let-7i expression by mutant p53 has a key role in enhancing migration, invasion and metastasis. PMID:24662829
Gibson, A A; Harwood, F G; Tillman, D M; Houghton, J A
1998-01-01
Drug-induced cytotoxicity or apoptosis may be influenced by the expression of the p53 tumor suppressor gene and by the specific oncogene expressed, which may dictate the threshold at which a cytotoxic response may by induced. The objective of the study was to elucidate how DNA-damaging agents with different mechanisms of action were sensitized in the context of expression of the Pax3/FKHR fusion protein, a transformation event unique to alveolar rhabdomyosarcomas (ARMSs), and wild-type p53 (wtp53). A wtp53 cDNA was subcloned into the pGRE5-2/EBV vector with dexamethasone-inducible overexpression and transfected into Rh30 ARMS cells that express Pax3/FKHR and a mutant p53 phenotype. Following dexamethasone induction of wtp53 overexpression in a derived clone (Cl.#27), growth was slowed, and cells accumulated in G1. Functional wtp53 activity was demonstrated by selective transactivation of p50-2, a wtp53 chloramphenicol acetyltransferase reporter construct, and by up-regulated expression of endogenous p21Waf1. Data demonstrated p53-dependent sensitization (> or = 4-fold) to bleomycin, actinomycin D, and 5-fluorouracil and considerably less p53-dependence (< or = 2-fold) for doxorubicin, topotecan, etoposide, and cisplatin in Cl.#27 compared to an equivalent clone containing the pGRE5-EBV vector alone (VC#3). Data demonstrate that ARMS cells show a selective sensitization to DNA-damaging agents when wtp53 is overexpressed. The cytotoxic activity of agents that are not potentiated substantially must, therefore, depend upon p53-independent factors that relate to the mechanism of drug action.
Super p53 for Treatment of Ovarian Cancer
2017-09-01
System 3, Clontech) containing wt-p53, p53-CC, and ZsGreen (control) were made. Ad-ZsGreen was tested in ID8 cells, which showed very high expression...views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army...MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neboori, Hanmanth J.R.; Haffty, Bruce G., E-mail: hafftybg@umdnj.edu; Wu Hao
2012-08-01
Purpose: To investigate whether the expression of p53 binding protein 1 (53BP1) has prognostic significance in a cohort of early-stage breast cancer patients treated with breast-conserving surgery and radiotherapy (BCS+RT). Methods and Materials: A tissue microarray of early-stage breast cancer treated with BCS+RT from a cohort of 514 women was assayed for 53BP1, estrogen receptor, progesterone receptor, and HER2 expression by immunohistochemistry. Through log-rank tests and univariate and multivariate models, the staining profile of each tumor was correlated with clinical endpoints, including ipsilateral breast recurrence-free survival (IBRFS), distant metastasis-free survival (DMFS), cause-specific survival (CSS), recurrence-free survival (RFS), and overall survivalmore » (OS). Results: Of the 477 (93%) evaluable tumors, 63 (13%) were scored as low. Low expression of 53BP1 was associated with worse outcomes for all endpoints studied, including 10-year IBRFS (76.8% vs. 90.5%; P=.01), OS (66.4% vs. 81.7%; P=.02), CSS (66.0% vs. 87.4%; P<.01), DMFS (55.9% vs. 87.0%; P<.01), and RFS (45.2% vs. 80.6%; P<.01). Multivariate analysis incorporating various clinico-pathologic markers and 53BP1 expression found that 53BP1 expression was again an independent predictor of all endpoints (IBRFS: P=.0254; OS: P=.0094; CSS: P=.0033; DMFS: P=.0006; RFS: P=.0002). Low 53BP1 expression was also found to correlate with triple-negative (TN) phenotype (P<.01). Furthermore, in subset analysis of all TN breast cancer, negative 53BP1 expression trended for lower IBRFS (72.3% vs. 93.9%; P=.0361) and was significant for worse DMFS (48.2% vs. 86.8%; P=.0035) and RFS (37.8% vs. 83.7%; P=.0014). Conclusion: Our data indicate that low 53BP1 expression is an independent prognostic indicator for local relapse among other endpoints in early-stage breast cancer and TN breast cancer patients treated with BCS+RT. These results should be verified in larger cohorts of patients to validate their clinical significance.« less
Chen, Bo; Simpson, Dennis A.; Zhou, Yingchun; Mitra, Amritava; Mitchell, David L.; Cordeiro-Stone, Marila; Kaufmann, William K.
2015-01-01
After treatment with ultraviolet radiation (UV), human fibroblasts that express the HPV type 16 E6 oncoprotein display defects in repair of cyclobutane pyrimidine dimers, hypersensitivity to inactivation of clonogenic survival and an inability to sustain DNA replication. To determine whether these effects are specific to depletion of p53 or inactivation of its function, fibroblast lines were constructed with ectopic expression of a dominant-negative p53 allele (p53-H179Q) to inactivate function or a short-hairpin RNA (p53-RNAi) to deplete expression of p53. Only the expression of HPV16E6 sensitized fibroblasts to UV or the chemical carcinogen, benzo[a]pyrene diolepoxide I (BPDE). Carcinogen-treated cells expressing p53-H179Q or p53-RNAi were resistant to inactivation of colony formation and did not suffer replication arrest. CHK1 is a key checkpoint kinase in the response to carcinogen-induced DNA damage. Control and p53-RNAi-expressing fibroblasts displayed phosphorylation of Ser345 on CHK1 45–120 min after carcinogen treatment with a return to near baseline phosphorylation by 6 h after treatment. HPV16E6-expressing fibroblasts displayed enhanced and sustained phosphorylation of CHK1. This was associated with enhanced phosphorylation of Thr68 on CHK2 and Ser139 on H2AX, both markers of severe replication stress and DNA double strand breaks. Incubation with the phosphatase inhibitor okadaic acid produced more phosphorylation of CHK1 in UV-treated HPV16E6-expressing cells than in p53-H179Q-expressing cells suggesting that HPV16E6 may interfere with the recovery of coupled DNA replication at replication forks that are stalled at [6-4]pyrimidine-pyrimidone photoproducts and BPDE-DNA adducts. The results indicate that HPV16E6 targets a protein or proteins other than p53 to deregulate the activity of CHK1 in carcinogen-damaged cells. PMID:19411857
Magliocco, Anthony; Zhang, Qiang; Wang, Dian; Klimowicz, Alex; Harris, Jonathan; Simko, Jeff; DeLaney, Thomas; Kraybill, William; Kirsch, David G.
2018-01-01
Background Sarcoma mortality remains high despite adjuvant chemotherapy. Biomarker predictors of treatment response and outcome could improve treatment selection. Methods Tissue microarrays (TMAs) were created using pre- and posttreatment tumor from two prospective trials (MGH pilot and RTOG 9514) of neoadjuvant/adjuvant MAID chemotherapy and preoperative radiation. Biomarkers were measured using automated computerized imaging (AQUA or ACIS). Expression was correlated with disease-free survival (DFS), distant disease-free survival (DDFS), and overall survival (OS). Results Specimens from 60 patients included 23 pretreatment (PRE), 40 posttreatment (POST), and 12 matched pairs (MPs). In the MP set, CAIX, GLUT1, and PARP1 expression significantly decreased following neoadjuvant therapy, but p53 nuclear/cytoplasmic (N/C) ratio increased. In the PRE set, no biomarker expression was associated with DFS, DDFS, or OS. In the POST set, increased p53 N/C ratio was associated with a significantly decreased DFS and DDFS (HR 4.13, p=0.017; HR 4.16, p=0.016), while increased ERCC1 and XPF expression were associated with an improved DFS and DDFS. No POST biomarkers were associated with OS. Conclusions PRE biomarker expression did not predict survival outcomes. Expression pattern changes after neoadjuvant chemoradiation supports the concepts of tumor reoxygenation, altered HIF-1α signaling, and a p53 nuclear accumulation DNA damage response. Clinical Trial Registration NRG Oncology RTOG 9514 is registered with ClinicalTrials.gov. The ClinicalTrials.gov Identifier is NCT00002791. PMID:29681762
Tachibana, Masatsugu; Shinagawa, Yasuhiro; Kawamata, Hitoshi; Omotehara, Fumie; Horiuchi, Hideki; Ohkura, Yasuo; Kubota, Keiichi; Imai, Yutaka; Fujibayashi, Takashi; Fujimori, Takahiro
2003-01-01
We present a new approach towards the detection of the mRNAs in formalin-fixed, paraffin-embedded samples using a reverse transcriptase (RT)-polymerase chain reaction (PCR). The total RNAs were extracted from 10-micron-thick sections and were reverse-transcribed, then the RT-products were subjected to PCR amplification of GAPDH mRNA for screening the mRNA degradation. Next, nested PCR was performed for examining the expression of p53-related genes, p21WAF1, MDM2, p33ING1 and p14ARF. GAPDH mRNA expression was detectable in 12 out of 21 oral squamous cell carcinoma (SCC) samples. p21WAF1 mRNA expression was detectable in 5 out of 12 SCC samples, MDM2 mRNA expression was detectable in 5 our of 12 SCC samples and p33ING1 mRNA expression was detectable in 6 out of 12 SCC samples. However, the expression of p14ARF mRNA was not detectable in any of the samples. Seven out of 12 oral SCC samples showed abnormal nuclear accumulation of p53 protein by immunohistochemical staining, whereas 5 out of 12 oral SCCs showed negative staining for p53 protein. Of of p33ING1 mRNA. One of these was a verrucous carcinoma in which the p53 gene products might be inactivated by the oncoprotein E6 of human papilloma virus. Thus, the p53 tumor suppressor pathway was disrupted in most oral SCCs at the cellular levels, due to either an abnormality in p53 itself or loss of expression of p53 regulatory factors. This method would assist in making diagnosis, determining therapeutic strategy and predicting the prognosis of various cancers including oral SCCs.
Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas.
Fan, Wang; Caiyan, Li; Ling, Zhu; Jiayun, Zhao
2017-09-29
In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.
Ikeguchi, M; Cai, J; Fukuda, K; Oka, S; Katano, K; Tsujitani, S; Maeta, M; Kaibara, N
2001-06-01
The aim of this study was to investigate whether angiogenic factors influence the occurrence of spontaneous apoptosis in advanced gastric cancer. The apoptotic indices (AIs) of 97 tumors from 97 patients with advanced gastric cancer (pT3, pN0, pM0, Stage II) were analyzed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end labeling (TUNEL) method. Intratumoral microvessel densities (IMVDs) of tumors stained with anti-CD34 monoclonal antibody were quantified under x 200 magnification using computer-assisted image analysis. The expressions of angiogenic factors, such as vascular endothelial growth factor (VEGF), thymidine phosphorylase (dThdPase), transforming growth factor-alpha (TGF-alpha), and p53 were analyzed immunohistochemically and compared with IMVDs and AIs. The mean IMVD of the 97 tumors was 365/mm2 (range 147-990/mm2). The mean AI of tumors was 2.1% (range 0-11.3%). A significant inverse correlation between the AIs and the IMVDs was shown (p = -0.278, P = 0.0064). The mean IMVDs of tumors with high expressions of dThdPase, TGF-alpha, or p53 were significantly higher than those of tumors with low expressions of these factors. The mean AI of tumors with high expressions of dThdPase was significantly lower than that of tumors with low expressions of dThdPase (P = 0.023). However, no significant correlations were detected between AIs and the expression levels of VEGF, TGF-alpha, or p53. In gastric cancer, dThdPase may play an important role in tumor progression by increasing microvessels and by suppressing apoptosis of cancer cells.
Ma, Xian-Yong; Wang, Jian-Hui; Wang, Jing-Lan; Ma, Charles X; Wang, Xiao-Chun; Liu, Feng-Song
2015-09-03
The metastasis-associated lung adenocarcinoma transcription 1 (Malat1) is a highly conserved long non-coding RNA (lncRNA) gene. Previous studies showed that Malat1 is abundantly expressed in many tissues and involves in promoting tumor growth and metastasis by modulating gene expression and target protein activities. However, little is known about the biological function and regulation mechanism of Malat1 in normal cell proliferation. In this study we conformed that Malat1 is highly conserved across vast evolutionary distances amongst 20 species of mammals in terms of sequence, and found that mouse Malat1 expresses in tissues of liver, kidney, lung, heart, testis, spleen and brain, but not in skeletal muscle. After treating erythroid myeloid lymphoid (EML) cells with All-trans Retinoic Acid (ATRA), we investigated the expression and regulation of Malat1 during hematopoietic differentiation, the results showed that ATRA significantly down regulates Malat1 expression during the differentiation of EML cells. Mouse LRH (Lin-Rhodamine(low) Hoechst(low)) cells that represent the early-stage progenitor cells show a high level of Malat1 expression, while LRB (Lin - Hoechst(Low) Rhodamine(Bright)) cells that represent the late-stage progenitor cells had no detectable expression of Malat1. Knockdown experiment showed that depletion of Malat1 inhibits the EML cell proliferation. Along with the down regulation of Malat1, the tumor suppressor gene p53 was up regulated during the differentiation. Interestingly, we found two p53 binding motifs with help of bioinformatic tools, and the following chromatin immunoprecipitation (ChIP) test conformed that p53 acts as a transcription repressor that binds to Malat1's promoter. Furthermore, we testified that p53 over expression in EML cells causes down regulation of Malat1. In summary, this study indicates Malat1 plays a critical role in maintaining the proliferation potential of early-stage hematopoietic cells. In addition to its biological function, the study also uncovers the regulation pattern of Malat1 expression mediated by p53 in hematopoietic differentiation. Our research shed a light on exploring the Malat1 biological role including therapeutic significance to inhibit the proliferation potential of malignant cells.
Correlation between cell cycle proteins and hMSH2 in actinic cheilitis and lip cancer.
Lopes, Maria Luiza Diniz de Sousa; de Oliveira, Denise Hélen Imaculada Pereira; Sarmento, Dmitry José de Santana; Queiroz, Lélia Maria Guedes; Miguel, Márcia Cristina da Costa; da Silveira, Éricka Janine Dantas
2016-04-01
This study aims to evaluate and verify the relationship between the immunoexpression of hMSH2, p53 and p21 in actinic cheilitis (AC) and lower lip squamous cell carcinoma (SCC) cases. Forty AC and 40 SCC cases were submitted to immunoperoxidase method and quantitatively analyzed. Expression was compared by Mann-Whitney test, Student t test or one-way ANOVA. To correlate the variables, Pearson's correlation coefficient was calculated. The expression of p53 and p21 showed no significant differences between histopathological grades of AC or lower lip SCC (p > 0.05). Immunoexpression of p53 was higher in SCC than in AC (p < 0.001), while p21 expression was more observed in AC when compared to SCC group (p = 0.006). The AC group revealed an inverse correlation between p53 and hMSH2 expression (r = -0.30, p = 0.006). Alterations in p53 and p21 expression suggest that these proteins are involved in lower lip carcinogenesis. Moreover, p53 and hMSH2 seem to be interrelated in early events of this process.
Katoch, Aanchal; George, Biju; Iyyappan, Amrutha; Khan, Debjit; Das, Saumitra
2017-09-29
p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3'UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3'UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3'UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3'UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3'UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3'UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3'UTR can play pivotal role in fine tuning the expression of the two p53 isoforms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Boidot, Romain; Végran, Frédérique; Meulle, Aline; Le Breton, Aude; Dessy, Chantal; Sonveaux, Pierre; Lizard-Nacol, Sarab; Feron, Olivier
2012-02-15
The monocarboxylate transporter (MCT) family member MCT1 can transport lactate into and out of tumor cells. Whereas most oxidative cancer cells import lactate through MCT1 to fuel mitochondrial respiration, the role of MCT1 in glycolysis-derived lactate efflux remains less clear. In this study, we identified a direct link between p53 function and MCT1 expression. Under hypoxic conditions, p53 loss promoted MCT1 expression and lactate export produced by elevated glycolytic flux, both in vitro and in vivo. p53 interacted directly with the MCT1 gene promoter and altered MCT1 mRNA stabilization. In hypoxic p53(-/-) tumor cells, NF-κB further supported expression of MCT1 to elevate its levels. Following glucose deprivation, upregulated MCT1 in p53(-/-) cells promoted lactate import and favored cell proliferation by fuelling mitochondrial respiration. We also found that MCT1 expression was increased in human breast tumors harboring p53 mutations and coincident features of hypoxia, with higher MCT1 levels associated with poorer clinical outcomes. Together, our findings identify MCT1 as a target for p53 repression and they suggest that MCT1 elevation in p53-deficient tumors allows them to adapt to metabolic needs by facilitating lactate export or import depending on the glucose availability.
High-intensity focused ultrasound ablation induced apoptosis in human hepatocellular carcinoma.
Yi, Jiang; Wu, Liguo; Liu, Zhou; Zou, Haibo; Li, Ning; Chen, Heping; Liu, Jinheng; Li, Tao; Zhang, Gang
2014-01-01
To evaluate the effect of high-intensity ultrasound (HIFU) ablation on human hepatocellular carcinoma tissues and apoptotic proteins (bcl-2 and p-53). Patients with hepatocellular carcinoma at stage B were treated with HIFU ablation. Levels of bcl-2 and p53 protein and the apoptosis rate were evaluated both in the pre-treatment and post-treatment tissue specimens using immunochemistry and TUNEL methods, respectively. After HIFU ablation, p53 protein levels were significantly increased around the coagulation necrosis area, whereas, the level of bcl-2 was significantly decreased. More apoptosis cells were found post ablation compared with those in the pretreatment tissues. Additionally, no significant correlation was found between p53/bcl-2 levels and apoptotic index. HIFU ablation may exert promote the apoptosis of hepatocellular carcinoma cells and the effect has a closely association with the change of p53 and bcl-2 expression.
Miyake, Hideaki; Yamanaka, Kazuki; Muramaki, Mototsugu; Hara, Isao; Gleave, Martin E
2005-01-01
Abstract To establish a more effective therapeutic strategy against advanced bladder cancer, we investigated the effects of combined treatment with antisense (AS) oligodeoxynucleotide (ODN) targeting the antiapoptotic gene clusterin and adenoviral-mediated p53 gene transfer (Ad5CMV-p53) using the human bladder cancer KoTCC-1 model. Clusterin expression in KoTCC-1 cells was highly upregulated by Ad5CMV-p53 treatment; however, AS clusterin ODN treatment further suppressed clusterin expression in KoTCC-1 cells after Ad5CMV-p53 treatment. AS clusterin ODN treatment synergistically enhanced the cytotoxic effect of Ad5CMV-p53, and DNA fragmentation characteristic of apoptosis was observed only after combined treatment with AS clusterin ODN and Ad5CMV-p53, but not after treatment with either agent alone. Administration of AS clusterin ODN and Ad5CMV-p53 into nude mice resulted in a significant inhibition of KoTCC-1 tumor growth as well as lymph node metastases compared to administration of either agent alone. Furthermore, combined treatment with AS clusterin ODN, Ad5CMV-p53, and cisplatin completely eradicated KoTCC-1 tumors and lymph node metastases in 60% and 100% of mice, respectively. These findings suggest that combined treatment with AS clusterin ODN and Ad5CMV-p53 could be a novel strategy to inhibit bladder cancer progression, and that further additional use of a chemotherapeutic agent may substantially enhance the efficacy of this combined regimen. PMID:15802022
Hekmat-Scafe, Daria S; Brownell, Sara E; Seawell, Patricia Chandler; Malladi, Shyamala; Imam, Jamie F Conklin; Singla, Veena; Bradon, Nicole; Cyert, Martha S; Stearns, Tim
2017-03-04
The opportunity to engage in scientific research is an important, but often neglected, component of undergraduate training in biology. We describe the curriculum for an innovative, course-based undergraduate research experience (CURE) appropriate for a large, introductory cell and molecular biology laboratory class that leverages students' high level of interest in cancer. The course is highly collaborative and emphasizes the analysis and interpretation of original scientific data. During the course, students work in teams to characterize a collection of mutations in the human p53 tumor suppressor gene via expression and analysis in yeast. Initially, student pairs use both qualitative and quantitative assays to assess the ability of their p53 mutant to activate expression of reporter genes, and they localize their mutation within the p53 structure. Through facilitated discussion, students suggest possible molecular explanations for the transactivation defects displayed by their p53 mutants and propose experiments to test these hypotheses that they execute during the second part of the course. They use a western blot to determine whether mutant p53 levels are reduced, a DNA-binding assay to test whether recognition of any of three p53 target sequences is compromised, and fluorescence microscopy to assay nuclear localization. Students studying the same p53 mutant periodically convene to discuss and interpret their combined data. The course culminates in a poster session during which students present their findings to peers, instructors, and the greater biosciences community. Based on our experience, we provide recommendations for the development of similar large introductory lab courses. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):161-178, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.
Brownell, Sara E.; Seawell, Patricia Chandler; Malladi, Shyamala; Imam, Jamie F. Conklin; Singla, Veena; Bradon, Nicole; Cyert, Martha S.; Stearns, Tim
2016-01-01
Abstract The opportunity to engage in scientific research is an important, but often neglected, component of undergraduate training in biology. We describe the curriculum for an innovative, course‐based undergraduate research experience (CURE) appropriate for a large, introductory cell and molecular biology laboratory class that leverages students′ high level of interest in cancer. The course is highly collaborative and emphasizes the analysis and interpretation of original scientific data. During the course, students work in teams to characterize a collection of mutations in the human p53 tumor suppressor gene via expression and analysis in yeast. Initially, student pairs use both qualitative and quantitative assays to assess the ability of their p53 mutant to activate expression of reporter genes, and they localize their mutation within the p53 structure. Through facilitated discussion, students suggest possible molecular explanations for the transactivation defects displayed by their p53 mutants and propose experiments to test these hypotheses that they execute during the second part of the course. They use a western blot to determine whether mutant p53 levels are reduced, a DNA‐binding assay to test whether recognition of any of three p53 target sequences is compromised, and fluorescence microscopy to assay nuclear localization. Students studying the same p53 mutant periodically convene to discuss and interpret their combined data. The course culminates in a poster session during which students present their findings to peers, instructors, and the greater biosciences community. Based on our experience, we provide recommendations for the development of similar large introductory lab courses. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):161–178, 2017. PMID:27873457
Combined radiation and p53 gene therapy of malignant glioma cells.
Badie, B; Goh, C S; Klaver, J; Herweijer, H; Boothman, D A
1999-01-01
More than half of malignant gliomas reportedly have alterations in the p53 tumor suppressor gene. Because p53 plays a key role in the cellular response to DNA-damaging agents, we investigated the role of p53 gene therapy before ionizing radiation in cultured human glioma cells containing normal or mutated p53. Three established human glioma cell lines expressing the wild-type (U87 MG, p53wt) or mutant (A172 and U373 MG, p53mut) p53 gene were transduced by recombinant adenoviral vectors bearing human p53 (Adp53) and Escherichia coli beta-galactosidase genes (AdLacZ, control virus) before radiation (0-20 Gy). Changes in p53, p21, and Bax expression were studied by Western immunoblotting, whereas cell cycle alterations and apoptosis were investigated by flow cytometry and nuclear staining. Survival was assessed by clonogenic assays. Within 48 hours of Adp53 exposure, all three cell lines demonstrated p53 expression at a viral multiplicity of infection of 100. p21, which is a p53-inducible downstream effector gene, was overexpressed, and cells were arrested in the G1 phase. Bax expression, which is thought to play a role in p53-induced apoptosis, did not change with either radiation or Adp53. Apoptosis and survival after p53 gene therapy varied. U87 MG (p53wt) cells showed minimal apoptosis after Adp53, irradiation, or combined treatments. U373 MG (p53mut) cells underwent massive apoptosis and died within 48 hours of Adp53 treatment, independent of irradiation. Surprisingly, A172 (p53mut) cells demonstrated minimal apoptosis after Adp53 exposure; however, unlike U373 MG cells, apoptosis increased with radiation dose. Survival of all three cell lines was reduced dramatically after >10 Gy. Although Adp53 transduction significantly reduced the survival of U373 MG cells and inhibited A172 growth, it had no effect on the U87 MG cell line. Transduction with AdLacZ did not affect apoptosis or cell cycle progression and only minimally affected survival in all cell lines. We conclude that responses to p53 gene therapy are variable among gliomas and most likely depend upon both cellular p53 status and as yet ill-defined downstream pathways involving activation of cell cycle regulatory and apoptotic genes.
p53-dependent cell death/apoptosis is required for a productive adenovirus infection.
Hall, A R; Dix, B R; O'Carroll, S J; Braithwaite, A W
1998-09-01
The p53 tumor suppressor protein binds to both cellular and viral proteins, which influence its biological activity. One such protein is the large E1b tumor antigen (E1b58kDa) from adenoviruses (Ads), which abrogates the ability of p53 to transactivate various promoters. This inactivation of p53 function is believed to be the mechanism by which E1b58kDa contributes to the cell transformation process. Although the p53-E1b58kDa complex occurs during infection and is conserved among different serotypes, there are limited data demonstrating that it has a role in virus replication. However, loss of p53 expression occurs after adenovirus infection of human cells and an E1b58kDa deletion mutant (Onyx-015, also called dl 1520) selectively replicates in p53-defective cells. These (and other) data indicate a plausible hypothesis is that loss of p53 function may be conducive to efficient adenovirus replication. However, wild-type (wt) Ad5 grows more efficiently in cells expressing a wt p53 protein. These studies indicate that the hypothesis may be an oversimplification. Here, we show that cells expressing wt p53, as well as p53-defective cells, allow adenovirus replication, but only cells expressing wt p53 show evidence of virus-induced cytopathic effect. This correlates with the ability of adenovirus to induce cell death. Our data indicate that p53 plays a necessary part in mediating cellular destruction to allow a productive adenovirus infection. In contrast, p53-deficient cells are less sensitive to the cytolytic effects of adenovirus and as such raise questions about the use of E1b58kDa-deficient adenoviruses in tumor therapy.
Bhattacharya, Sujoy; Chaum, Edward; Johnson, Dianna A.; Johnson, Leonard R.
2012-01-01
Purpose. Relatively little is known about the contribution of p53/Mdm2 pathway in apoptosis of retinal pigment epithelial (RPE) cells or its possible link to dysfunction of aging RPE or to related blinding disorders such as age-related macular degeneration (AMD). Methods. Age-associated changes in p53 activation were evaluated in primary RPE cultures from human donor eyes of various ages. Apoptosis was evaluated by activation of caspases and DNA fragmentation. Gene-specific small interfering RNA was used to knock down expression of p53. Results. We observed that the basal rate of p53-dependent apoptosis increased in an age-dependent manner in human RPE. The age-dependent increase in apoptosis was linked to alterations in several aspects of the p53 pathway. p53 phosphorylation Ser15 was increased through the stimulation of ATM-Ser1981. p53 acetylation Lys379 was increased through the inhibition of SIRT1/2. These two posttranslational modifications of p53 blocked the sequestration of p53 by Mdm2, thus resulting in an increase in free p53 and of p53 stimulation of apoptosis through increased expression of PUMA (p53 upregulated modulator of apoptosis) and activation of caspase-3. Aged RPE also had reduced expression of antiapoptotic Bcl-2, which contributed to the increase in apoptosis. Of particular interest in these studies was that pharmacologic treatments to block p53 phosphorylation, acetylation, or expression were able to protect RPE cells from apoptosis. Conclusions. Our studies suggest that aging in the RPE leads to alterations of specific checkpoints in the apoptotic pathway, which may represent important molecular targets for the treatment of RPE-related aging disorders such as AMD. PMID:23139272
Hattori, Hiroyoshi; Janky, Rekin's; Nietfeld, Wilfried; Aerts, Stein; Madan Babu, M; Venkitaraman, Ashok R
2014-01-01
The human DNA damage response (DDR) triggers profound changes in gene expression, whose nature and regulation remain uncertain. Although certain micro-(mi)RNA species including miR34, miR-18, miR-16 and miR-143 have been implicated in the DDR, there is as yet no comprehensive description of genome-wide changes in the expression of miRNAs triggered by DNA breakage in human cells. We have used next-generation sequencing (NGS), combined with rigorous integrative computational analyses, to describe genome-wide changes in the expression of miRNAs during the human DDR. The changes affect 150 of 1523 miRNAs known in miRBase v18 from 4-24 h after the induction of DNA breakage, in cell-type dependent patterns. The regulatory regions of the most-highly regulated miRNA species are enriched in conserved binding sites for p53. Indeed, genome-wide changes in miRNA expression during the DDR are markedly altered in TP53-/- cells compared to otherwise isogenic controls. The expression levels of certain damage-induced, p53-regulated miRNAs in cancer samples correlate with patient survival. Our work reveals genome-wide and cell type-specific alterations in miRNA expression during the human DDR, which are regulated by the tumor suppressor protein p53. These findings provide a genomic resource to identify new molecules and mechanisms involved in the DDR, and to examine their role in tumor suppression and the clinical outcome of cancer patients.
Andrographolide induces degradation of mutant p53 via activation of Hsp70.
Sato, Hirofumi; Hiraki, Masatsugu; Namba, Takushi; Egawa, Noriyuki; Baba, Koichi; Tanaka, Tomokazu; Noshiro, Hirokazu
2018-05-22
The tumor suppressor gene p53 encodes a transcription factor that regulates various cellular functions, including DNA repair, apoptosis and cell cycle progression. Approximately half of all human cancers carry mutations in p53 that lead to loss of tumor suppressor function or gain of functions that promote the cancer phenotype. Thus, targeting mutant p53 as an anticancer therapy has attracted considerable attention. In the current study, a small-molecule screen identified andrographlide (ANDRO) as a mutant p53 suppressor. The effects of ANDRO, a small molecule isolated from the Chinese herb Andrographis paniculata, on tumor cells carrying wild-type or mutant p53 were examined. ANDRO suppressed expression of mutant p53, induced expression of the cyclin-dependent kinase inhibitor p21 and pro-apoptotic proteins genes, and inhibited the growth of cancer cells harboring mutant p53. ANDRO also induced expression of the heat-shock protein (Hsp70) and increased binding between Hsp70 and mutant p53 protein, thus promoting proteasomal degradation of p53. These results provide novel insights into the mechanisms regulating the function of mutant p53 and suggest that activation of Hsp70 may be a new strategy for the treatment of cancers harboring mutant p53.
Transactivation domain of p53 regulates DNA repair and integrity in human iPS cells.
Kannappan, Ramaswamy; Mattapally, Saidulu; Wagle, Pooja A; Zhang, Jianyi
2018-05-18
The role of p53 transactivation domain (p53-TAD), a multifunctional and dynamic domain, on DNA repair and retaining DNA integrity in human iPS cells has never been studied. p53-TAD was knocked out in iPS cells using CRISPR/Cas9 and was confirmed by DNA sequencing. p53-TAD KO cells were characterized by: accelerated proliferation, decreased population doubling time, and unaltered Bcl2, BBC3, IGF1R, Bax and altered Mdm2, p21, and PIDD transcripts expression. In p53-TAD KO cells p53 regulated DNA repair proteins XPA, DNA polH and DDB2 expression were found to be reduced compared to p53-WT cells. Exposure to low dose of doxorubicin (Doxo) induced similar DNA damage and DNA damage response (DDR) measured by RAD50 and MRE11 expression, Checkpoint kinase 2 activation and γH2A.X recruitment at DNA strand breaks in both the cell groups indicating silencing p53-TAD do not affect DDR mechanism upstream of p53. Following removal of Doxo p53-WT hiPS cells underwent DNA repair, corrected their damaged DNA and restored DNA integrity. Conversely, p53-TAD KO hiPS cells did not undergo complete DNA repair and failed to restore DNA integrity. More importantly continuous culture of p53-TAD KO hiPS cells underwent G2/M cell cycle arrest and expressed cellular senescent marker p16 INK4a . Our data clearly shows that silencing transactivation domain of p53 did not affect DDR but affected the DNA repair process implying the crucial role of p53 transactivation domain in maintaining DNA integrity. Therefore, activating p53-TAD domain using small molecules may promote DNA repair and integrity of cells and prevent senescence.
Loss of p53-inducible long non-coding RNA LINC01021 increases chemosensitivity
Kaller, Markus; Götz, Ursula; Hermeking, Heiko
2017-01-01
We have previously identified the long non-coding RNA LINC01021 as a direct p53 target (Hünten et al. Mol Cell Proteomics. 2015; 14:2609-2629). Here, we show that LINC01021 is up-regulated in colorectal cancer (CRC) cell lines upon various p53-activating treatments. The LINC01021 promoter and the p53 binding site lie within a MER61C LTR, which originated from insertion of endogenous retrovirus 1 (ERV1) sequences. Deletion of this MER61C element by a CRISPR/Cas9 approach, as well as siRNA-mediated knockdown of LINC01021 RNA significantly enhanced the sensitivity of the CRC cell line HCT116 towards the chemotherapeutic drugs doxorubicin and 5-FU, suggesting that LINC01021 is an integral part of the p53-mediated response to DNA damage. Inactivation of LINC01021 and also its ectopic expression did not affect p53 protein expression and transcriptional activity, implying that LINC01021 does not feedback to p53. Furthermore, in CRC patient samples LINC01021 expression positively correlated with a wild-type p53-associated gene expression signature. LINC01021 expression was increased in primary colorectal tumors and displayed a bimodal distribution that was particularly pronounced in the mesenchymal CMS4 consensus molecular subtype of CRCs. CMS4 tumors with low LINC01021 expression were associated with poor patient survival. Our results suggest that the genomic redistribution of ERV1-derived p53 response elements and generation of novel p53-inducible lncRNA-encoding genes was selected for during primate evolution as integral part of the cellular response to various forms of genotoxic stress. PMID:29262524
Immunohistochemical expression of protein p53 in neoplasms of the mammary gland in bitches.
Rodo, A; Malicka, E
2008-01-01
The aim of the study was to investigate the presence of protein p53 in correlation with other tumor traits: histological type, tumor grade and proliferative activity. Material for the investigation comprised mammary gland tumours collected from dogs, the patients of veterinary clinics, during surgical procedures, and archival samples. Alltogether 21 adenomas, 31 complex carcinomas, 35 simple carcinomas and 12 solid carcinomas were qualified for further investigation. No protein p53 expression was found in adenomas. Cancers show positive reaction in 32.5%. The highest percent of p53 positive neoplasms was observed in solid carcinomas and neoplasms with the highest degree of histological malignancy. The smallest number showing this expression was observed in adenomas and the highest was characteristic for solid carcinomas. Considering the tumour grading, it was found that an increase in neoplasm malignancy was positively correlated with the number of the cells showing the expression of protein p53. The differences were statistically significant. Statistically significant positive correlations were observed between the proliferative activity and protein p53 expression. Higher accumulation of protein p53 in more malignant neoplasms suggests that mutations of protein p53 can be responsible for higher proliferation in neoplasms with advanced progression of malignancy.
Zhang, S-R; Li, D-B; Xue, J-W
2018-03-01
Given the important functions of TP53 pathway in various biological processes, this study aimed to investigate the expression of TP53 pathway-related proteins in ovarian carcinoma transplanted subcutaneously in nude mice with and without the presence of p53 inhibitor and to explore possible roles of p53 in the development of ovarian cancer. Thirty BALB/c-nu female nude mice were randomly divided into model group, control group and p53 inhibitor group (Pftα group). There were 10 rats in each group. The nude mice were subcutaneously inoculated with human ovarian cancer cell line SKOV3, and the tumor growth was observed. Morphological changes of tumor tissue were observed by hematoxylin and eosin (HE) staining. The mRNA and protein levels of TP53 pathway related factors-p53, p21 and mouse double minute 2 homolog (MDM2) were detected by RT-PCR and Western blot. p53 inhibitor can increase the growth rate of subcutaneously transplanted tumor in nude mice. p53 inhibitor could decrease the expression of p53 and p21 at both mRNA and protein levels and increase the expression of MDM2 at both mRNA and protein levels in ovarian carcinoma transplanted subcutaneously in nude mice. TP53 pathway may play pivotal roles in the development of ovarian cancer and TP53 pathway may be a new target for the treatment of ovarian cancer.
Preeclampsia Is Associated with Alterations in the p53-Pathway in Villous Trophoblast
Sharp, Andrew N.; Heazell, Alexander E. P.; Baczyk, Dora; Dunk, Caroline E.; Lacey, Helen A.; Jones, Carolyn J. P.; Perkins, Jonathan E.; Kingdom, John C. P.; Baker, Philip N.; Crocker, Ian P.
2014-01-01
Background Preeclampsia (PE) is characterized by exaggerated apoptosis of the villous trophoblast of placental villi. Since p53 is a critical regulator of apoptosis we hypothesized that excessive apoptosis in PE is mediated by abnormal expression of proteins participating in the p53 pathway and that modulation of the p53 pathway alters trophoblast apoptosis in vitro. Methods Fresh placental villous tissue was collected from normal pregnancies and pregnancies complicated by PE; Western blotting and real-time PCR were performed on tissue lysate for protein and mRNA expression of p53 and downstream effector proteins, p21, Bax and caspases 3 and 8. To further assess the ability of p53 to modulate apoptosis within trophoblast, BeWo cells and placental villous tissue were exposed to the p53-activator, Nutlin-3, alone or in combination with the p53-inhibitor, Pifithrin-α (PFT- α). Equally, Mdm2 was knocked-down with siRNA. Results Protein expression of p53, p21 and Bax was significantly increased in pregnancies complicated by PE. Conversely, Mdm2 protein levels were significantly depleted in PE; immunohistochemistry showed these changes to be confined to trophoblast. Reduction in the negative feedback of p53 by Mdm2, using siRNA and Nutlin-3, caused an imbalance between p53 and Mdm2 that triggered apoptosis in term villous explants. In the case of Nutlin, this was attenuated by Pifithrin-α. Conclusions These data illustrate the potential for an imbalance in p53 and Mdm2 expression to promote excessive apoptosis in villous trophoblast. The upstream regulation of p53 and Mdm2, with regard to exaggerated apoptosis and autophagy in PE, merits further investigation. PMID:24498154
Preeclampsia is associated with alterations in the p53-pathway in villous trophoblast.
Sharp, Andrew N; Heazell, Alexander E P; Baczyk, Dora; Dunk, Caroline E; Lacey, Helen A; Jones, Carolyn J P; Perkins, Jonathan E; Kingdom, John C P; Baker, Philip N; Crocker, Ian P
2014-01-01
Preeclampsia (PE) is characterized by exaggerated apoptosis of the villous trophoblast of placental villi. Since p53 is a critical regulator of apoptosis we hypothesized that excessive apoptosis in PE is mediated by abnormal expression of proteins participating in the p53 pathway and that modulation of the p53 pathway alters trophoblast apoptosis in vitro. Fresh placental villous tissue was collected from normal pregnancies and pregnancies complicated by PE; Western blotting and real-time PCR were performed on tissue lysate for protein and mRNA expression of p53 and downstream effector proteins, p21, Bax and caspases 3 and 8. To further assess the ability of p53 to modulate apoptosis within trophoblast, BeWo cells and placental villous tissue were exposed to the p53-activator, Nutlin-3, alone or in combination with the p53-inhibitor, Pifithrin-α (PFT-α). Equally, Mdm2 was knocked-down with siRNA. Protein expression of p53, p21 and Bax was significantly increased in pregnancies complicated by PE. Conversely, Mdm2 protein levels were significantly depleted in PE; immunohistochemistry showed these changes to be confined to trophoblast. Reduction in the negative feedback of p53 by Mdm2, using siRNA and Nutlin-3, caused an imbalance between p53 and Mdm2 that triggered apoptosis in term villous explants. In the case of Nutlin, this was attenuated by Pifithrin-α. These data illustrate the potential for an imbalance in p53 and Mdm2 expression to promote excessive apoptosis in villous trophoblast. The upstream regulation of p53 and Mdm2, with regard to exaggerated apoptosis and autophagy in PE, merits further investigation.
Paradiso, A; Simone, G; Petroni, S; Leone, B; Vallejo, C; Lacava, J; Romero, A; Machiavelli, M; Lena, M De; Allegra, C J; Johnston, P G
2000-01-01
The purpose of this work was to analyse the ability of p53 and thymidilate synthase (TS) primary tumour expression to retrospectively predict clinical response to chemotherapy and long-term prognosis in patients with advanced colorectal cancers homogeneously treated by methotrexate (MTX)-modulated–5-fluorouracil (5-FU-FA). A total of 108 advanced colorectal cancer patients entered the present retrospective study. Immunohistochemical p53 (pAb 1801 mAb) and TS (TS106 mAb) expression on formalin-fixed paraffin-embedded primary tumour specimens was related to probability of clinical response to chemotherapy, time to progression and overall survival. p53 was expressed in 53/108 (49%) tumours, while 54/108 (50%) showed TS immunostaining. No relationship was demonstrated between p53 positivity and clinical response to chemotherapy (objective response (OR): 20% vs 23%, in p53+ and p53– cases respectively) or overall survival. Percent of OR was significantly higher in TS-negative with respect to TS-positive tumours (30% vs 15% respectively;P< 0.04); simultaneous analysis of TS and p53 indicated 7% OR for p53-positive/TS-positive tumours vs 46% for p53-positive/TS-negative tumours (P< 0.03). Logistic regression analysis confirmed a significant association between TS tumour status and clinical response to chemotherapy (hazard ratio (HR): 2.91; 95% confidence interval (CI) 8.34–1.01; two-sided P< 0.05). A multivariate analysis of overall survival showed that only a small number of metastatic sites was statistically relevant (HR 1.89; 95% CI 2.85–1.26; two-sided P< 0.03). Our study suggests that immunohistochemical expression of p53 and TS could assist the clinician in predicting response of colorectal cancer patients to modulated MTX-5-FU therapy. © 2000 Cancer Research Campaign PMID:10682666
Nutlin-3 induces HO-1 expression by activating JNK in a transcription-independent manner of p53.
Choe, Yun-Jeong; Lee, Sun-Young; Ko, Kyung Won; Shin, Seok Joon; Kim, Ho-Shik
2014-03-01
A recent study reported that p53 can induce HO-1 by directly binding to the putative p53 responsive element in the HO-1 promoter. In this study, we report that nutlin-3, a small molecule antagonist of HDM2, induces the transcription of HO-1 in a transcription-independent manner of p53. Nutlin-3 induced HO-1 expression at the level of transcription in human cancer cells such as U2OS and RKO cells. This induction of HO-1 did not occur in SAOS cells in which p53 was mutated and was prevented by knocking down the p53 protein using p53 siRNA transfection, but not by PFT-α, an inhibitor of the transcriptional activity of p53. Accompanying HO-1 expression, nutlin-3 stimulated the accumulation of ROS and the phosphorylation of MAPKs such as JNK, p38 MAPK and ERK1/2. Nutlin-3-induced HO-1 expression was suppressed by TEMPO, a ROS scavenger, and chemical inhibitors of JNK and p38 MAPK but not ERK1/2. In addition, nutlin‑3-induced phosphorylation of JNK but not p38 MAPK was inhibited by TEMPO. Notably, the levels of nutlin-3-induced ROS were correlated with the mitochondrial translocation of p53 and this induction was prevented by PFT-μ, an inhibitor of the mitochondrial translocation of p53. Consistent with the effect of the ROS scavenger and MAPK inhibitors, PFT-μ reduced HO-1 expression and the phosphorylation of JNK induced by nutlin-3. In the experiments of analyzing cell death, the knockdown of HO-1 augmented nutlin-3-induced apoptosis. Collectively, these results suggest that nutlin-3 induces HO-1 expression via the activation of both JNK which is dependent on ROS generated by p53 translocated to the mitochondria and p38 MAPK which appears to be stimulated by a ROS-independent mechanism, and this HO-1 induction may inhibit nutlin-3-induced apoptosis, constituting a negative feedback loop of p53-induced apoptosis.
Lung cancer pathogenesis associated with wood smoke exposure.
Delgado, Javier; Martinez, Luis M; Sánchez, Therasa T; Ramirez, Alejandra; Iturria, Cecilia; González-Avila, Georgina
2005-07-01
Tobacco is considered the most important cause of lung cancer, but other factors could also be involved in its pathogenesis. The aim of the present work was to establish an association between wood smoke exposure and lung cancer pathogenesis, and to analyze the effects of wood smoke on p53 and murine double minute 2 (MDM2) protein expression. Blood samples were obtained from 62 lung cancer patients, 9 COPD patients, and 9 control subjects. Of the 62 lung cancer patients, 23 were tobacco smokers (lung cancer associated with tobacco [LCT] group), 24 were exposed to wood smoke (lung cancer associated with wood smoke [LCW] group), and 15 could not be included in these groups. Western blot assays were performed to identify the presence of p53, phospho-p53, and murine double minute 2 (MDM2) isoforms in plasma samples. Densitometric analysis was used to determine the intensity of p53, phospho-p53, and MDM2 bands. Approximately 38.7% of the lung cancer patients examined had an association with wood smoke exposure, most of them women living in rural areas. Adenocarcinoma was present in 46.7% of these patients. The p53 and phospho-p53 proteins were significantly increased in LCW samples (56,536.8 +/- 4,629 densitometry units [DU] and 58,244.8 +/- 7,492 DU, respectively [+/- SD]), in comparison with the other groups. The 57-kD MDM2 isoform plasma concentration was very high in LCW and LCT samples (75,696.4 +/- 11,979 DU and 78,551.7 +/- 11,548 DU, respectively). MDM2-p53 complexes were present in a high concentration in control and COPD subjects. This allows p53 degradation and explains the low concentrations of p53 found in these groups. MDM2-phospho-p53 complexes were observed in COPD but not in the other samples. This correlates with the low concentration of p53 observed in the COPD group (13,657 +/- 2,012 DU), and could explain the different clinic evolution of this smoker population in comparison with the LCT subjects. This study suggests that there is a possible association of lung cancer with wood smoke exposure. Likewise, our findings demonstrate that wood smoke could produce similar effects on p53, phospho-p53, and MDM2 protein expression as tobacco.
El Husseini, Nazem; Schlisser, Ava E; Hales, Barbara F
2016-08-01
Hydroxyurea, an anticancer agent and potent teratogen, induces oxidative stress and activates a DNA damage response pathway in the gestation day (GD) 9 mouse embryo. To delineate the stress response pathways activated by this drug, we investigated the effect of hydroxyurea exposure on the transcriptome of GD 9 embryos. Timed pregnant CD-1 mice were treated with saline or hydroxyurea (400 mg/kg or 600 mg/kg) on GD 9; embryonic gene and protein expression were examined 3 h later. Microarray analysis revealed that the expression of 1346 probe sets changed significantly in embryos exposed to hydroxyurea compared with controls; the P53 signaling pathway was highly affected. In addition, P53 related family members, P63 and P73, were predicted to be activated and had common and unique downstream targets. Western blot analysis revealed that active phospho-P53 was significantly increased in drug-exposed embryos; confocal microscopy showed that the translocation of phospho-P53 to the nucleus was widespread in the embryo. Furthermore, qRT-PCR showed that the expression of P53-regulated genes (Cdkn1A, Fas, and Trp53inp1) was significantly upregulated in hydroxyurea-exposed embryos; the concentration of the redox sensitive P53INP1 protein was also increased in a hydroxyurea dose-dependent fashion. Thus, hydroxyurea elicits a significant effect on the transcriptome of the organogenesis stage murine embryo, activating several key developmental signaling pathways related to DNA damage and oxidative stress. We propose that the P53 pathway plays a central role in the embryonic stress response and the developmental outcome after teratogen exposure. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Burmakin, Mikhail; Shi, Yao; Hedström, Elisabeth; Kogner, Per; Selivanova, Galina
2013-09-15
Restoration of the p53 function in tumors is a promising therapeutic strategy due to the high potential of p53 as tumor suppressor and the fact that established tumors depend on p53 inactivation for their survival. Here, we addressed the question whether small molecule RITA can reactivate p53 in neuroblastoma and suppress the growth of neuroblastoma cells in vitro and in vivo. The ability of RITA to inhibit growth and to induce apoptosis was shown in seven neuroblastoma cell lines. Mechanistic studies were carried out to determine the p53 dependence and the molecular mechanism of RITA-induced apoptosis in neuroblastoma, using cell viability assays, RNAi silencing, co-immunoprecipitation, qPCR, and Western blotting analysis. In vivo experiments were conducted to study the effect of RITA on human neuroblastoma xenografts in mice. RITA induced p53-dependent apoptosis in a set of seven neuroblastoma cell lines, carrying wild-type or mutant p53; it activated p53 and triggered the expression of proapoptotic p53 target genes. Importantly, p53 activated by RITA inhibited several key oncogenes that are high-priority targets for pharmacologic anticancer strategies in neuroblastoma, including N-Myc, Aurora kinase, Mcl-1, Bcl-2, Wip-1, MDM2, and MDMX. Moreover, RITA had a strong antitumor effect in vivo. Reactivation of wild-type and mutant p53 resulting in the induction of proapoptotic factors along with ablation of key oncogenes by compounds such as RITA may be a highly effective strategy to treat neuroblastoma. ©2013 AACR.
Lai, R; el Dabbagh, L; Mourad, W A
1996-06-01
Neoplastic transformation can be associated with mutations of the p53 gene. This leads to stabilization of its protein product and to its accumulation, which allows immunohistochemical detection. Mutant p53 expression has been seen in many neoplasms, including renal cell carcinoma (RCC). We recently described putative precursor lesions of RCC. The lesions were defined as intratubular epithelial dysplasia (IED) of kidney tubules adjacent to RCC. They were seen in one-third of the cases studied. The findings were based only on light microscopic analysis. We hypothesized that neoplastic transformation would be manifested by mutant p53 expression in the kidney tubules adjacent to RCC and not in nonneoplastic kidneys. Immunohistochemical staining for p53 in 24 cases of RCC with adjacent kidneys was performed. We used the DO-7 monoclonal antibody reactive for the N-terminal of the p53 protein on formalin-fixed paraffin-embedded tissue. Sections from 14 kidneys resected for nonneoplastic conditions were used as controls. Twenty-one (87%) of the 24 cases of RCC had nuclear p53 expression in the tumor cells. This included 14 cases (58%) with intense reactivity and 7 cases (29%) with weaker p53 immunoreactivity. Of the 24 cases of RCC, IED was identified in 13 cases (54%). Immunoreactivity for p53 was focally seen in tubules of all the lesions, as well as in the nonlesional areas. Six of the lesions exhibited intense nuclear staining. The kidneys adjacent to the RCC, with no evidence of IED, showed focally intense positive p53 nuclear staining in four cases. None of the control specimens showed p53 expression. Our findings provide supportive evidence that previously described IED in kidneys adjacent to RCC are most likely precursor lesions of the neoplasm. Aberrant expression of p53 in areas without evidence of IED may suggest that neoplastic transformation manifested by p53 mutation in kidney tubules may be seen before the development of the morphologic features of dysplasia and malignancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakatsuki, Masaru; Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba; Ohno, Tatsuya
2008-03-15
Purpose: p73 belongs to the p53 tumor suppressor family of genes and can inhibit cell growth in a p53-like manner by inducing apoptosis or cell cycle arrest. Here, we investigated whether p73 could compensate for impaired p53 function in apoptosis induced by radiation therapy (RT) for cervical cancer. Methods and Materials: Sixty-eight patients with squamous cell carcinoma of the cervix who received definitive RT combined with (n = 37) or without (n = 31) cisplatin were investigated. Biopsy specimens were excised from the cervical tumor before RT and after 9 Gy. Results: Mean apoptosis index (AI) was 0.93% before RTmore » and 1.97% after 9 Gy with a significant increase (p < 0.001). For all patients, there was a significant correlation between p73 expression positivity after 9 Gy and AI ratio (AI after 9 Gy/AI before RT) (p = 0.021). Forty-one patients were regarded as the p53-responding group according to the expression of p53 after 9 Gy, whereas the remaining 27 patients were regarded as the p53-nonresponding group. A significant correlation between p73 expression after 9 Gy and AI ratio was observed in the p53-non-responding group (p < 0.001) but not in the p53-responding group (p = 0.940). Conclusion: Our results suggest that p73 plays an important role in compensating for the lack of p53 function in radiation-induced apoptosis of cervical cancer.« less
Li, Congying; Cao, Lu; Xu, Cong; Liu, Fang; Xiang, Guomin; Liu, Xiaozhen; Jiao, Jiao; Niu, Yun
2018-05-01
Previous studies have investigated the role of histone deacetylase 6 (HDAC6) in the regulation of androgen receptor (AR) in prostate cancer; however, the role of HDAC6 has not yet been clearly identified in breast cancer. The aim of this study was to examine the expression of HDAC6 and AR, determine the correlation between HDAC6 and AR, and assess the prognostic value of HDAC6 and AR in breast cancer. A total of 228 cases of invasive breast cancer were randomly selected. The expression of HDAC6 and AR was analyzed by immunohistochemistry. χ 2 Tests were performed to determine the association between conventional clinicopathological factors and HDAC6, AR, and HDAC6/AR co-expression. Spearman correlation methods were performed to determine the correlation between HDAC6 and AR, and Kaplan-Meier analyses were performed to determine the prognostic impact of HDAC6, AR and HDAC6/AR co-expression; 58.8% (134/228) patients exhibited high expression of HDAC6. High HDAC6 expression was significantly associated with high histologic grade (G3) (P<.001) and p53 overexpression (P=.002). HDAC6 and AR expression levels were significantly associated (r=0.382, P<.01). In estrogen receptor (ER)-negative samples, high expression of HDAC6 was more common in the AR+ groups (P<.001) and correlated with high histologic grade (G3) (P=.009), as well as higher HER2 (P=.006) and p53 levels (P=.012). Higher expression of AR and HDAC6 and HDAC6/AR co-expression had a worse clinical prognosis. The expression levels of HDAC6 and AR are correlated in breast cancer; moreover, HDAC6 and AR have prognostic value in predicting the overall survival (OS) of ER-negative breast cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Fujino, Takayuki; Muhib, Sharifi; Sato, Nobuyuki; Hasebe, Naoyuki
2013-12-01
p53, a pivotal protein in the apoptotic pathway, has been identified as a mediator of transcriptional responses to ischemia-reperfusion (IR) injury. The characteristics and functional significance of the p53 response in vivo are largely unknown in IR-induced kidney injury. Therapeutic opportunities of delivering small interfering RNA (siRNA) via venous injection have gained recognition; however, systemic adverse effects of siRNA therapy should be considered. To prevent IR-induced kidney injury, we tested the efficacy of transarterial administration of siRNA targeting p53 (p53 siRNA). Female C57BL/6 mice underwent unilateral renal artery ischemia for 30 min, followed by reperfusion. siRNA experiments utilized short hairpin (sh) RNA plasmid-based approaches. Transfection of shRNA was performed using cationic polymer transfection reagent. Injection of synthetic p53 shRNA into the left renal artery just after ischemia improved tubular injury, apoptosis, and the swelling of mitochondria in cells of the thick ascending limb of Henle (mTALH) at the outer medullary regions. Staining of upregulated p53 was colocalized with the inducible expression of glycogen synthase kinase-3β (GSK-3β) at mTALH after IR injury. p53 shRNA inhibited GSK-3β expression and restored β-catenin expression at mTALH. For IR-induced kidney injury, transarterial delivery of p53 siRNA is an effective pharmacological intervention. Targeting siRNA to p53 leads to an attenuation of apoptosis and mitochondrial damage through the downregulation of GSK-3β expression and upregulation of β-catenin. Local delivery of vectors such as p53 siRNA through a transaortic catheter is clinically useful in reducing the adverse effect of siRNA-related therapy.
Radiation-Induced Salivary Gland Dysfunction Results From p53-Dependent Apoptosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avila, Jennifer L.; Grundmann, Oliver; Burd, Randy
2009-02-01
Purpose: Radiotherapy for head-and-neck cancer causes adverse secondary side effects in the salivary glands and results in diminished quality of life for the patient. A previous in vivo study in parotid salivary glands demonstrated that targeted head-and-neck irradiation resulted in marked increases in phosphorylated p53 (serine{sup 18}) and apoptosis, which was suppressed in transgenic mice expressing a constitutively active mutant of Akt1 (myr-Akt1). Methods and Materials: Transgenic and knockout mouse models were exposed to irradiation, and p53-mediated transcription, apoptosis, and salivary gland dysfunction were analyzed. Results: The proapoptotic p53 target genes PUMA and Bax were induced in parotid salivary glandsmore » of mice at early time points after therapeutic radiation. This dose-dependent induction requires expression of p53 because no radiation-induced expression of PUMA and Bax was observed in p53-/- mice. Radiation also induced apoptosis in the parotid gland in a dose-dependent manner, which was p53 dependent. Furthermore, expression of p53 was required for the acute and chronic loss of salivary function after irradiation. In contrast, apoptosis was not induced in p53-/- mice, and their salivary function was preserved after radiation exposure. Conclusions: Apoptosis in the salivary glands after therapeutic head-and-neck irradiation is mediated by p53 and corresponds to salivary gland dysfunction in vivo.« less
Expression of C-terminal deleted p53 isoforms in neuroblastoma
Goldschneider, David; Horvilleur, Emilie; Plassa, Louis-François; Guillaud-Bataille, Marine; Million, Karine; Wittmer-Dupret, Evelyne; Danglot, Gisèle; de Thé, Hughes; Bénard, Jean; May, Evelyne; Douc-Rasy, Sétha
2006-01-01
The tumor suppressor gene, p53, is rarely mutated in neuroblastomas (NB) at the time of diagnosis, but its dysfunction could result from a nonfunctional conformation or cytoplasmic sequestration of the wild-type p53 protein. However, p53 mutation, when it occurs, is found in NB tumors with drug resistance acquired over the course of chemotherapy. As yet, no study has been devoted to the function of the specific p53 mutants identified in NB cells. This study includes characterization and functional analysis of p53 expressed in eight cell lines: three wild-type cell lines and five cell lines harboring mutations. We identified two transcription-inactive p53 variants truncated in the C-terminus, one of which corresponded to the p53β isoform recently identified in normal tissue by Bourdon et al. [J. C. Bourdon, K. Fernandes, F. Murray-Zmijewski, G. Liu, A. Diot, D. P. Xirodimas, M. K. Saville and D. P. Lane (2005) Genes Dev., 19, 2122–2137]. Our results show, for the first time, that the p53β isoform is the only p53 species to be endogenously expressed in the human NB cell line SK-N-AS, suggesting that the C-terminus truncated p53 isoforms may play an important role in NB tumor development. PMID:17028100
Bonanno, Laura; Costa, Carlota; Majem, Margarita; Sanchez, Jose Javier; Gimenez-Capitan, Ana; Rodriguez, Ignacio; Vergenegre, Alain; Massuti, Bartomeu; Favaretto, Adolfo; Rugge, Massimo; Pallares, Cinta; Taron, Miquel; Rosell, Rafael
2013-01-01
Platinum-based chemotherapy is the standard first-line treatment for non-oncogene-addicted non-small cell lung cancers (NSCLCs) and the analysis of multiple DNA repair genes could improve current models for predicting chemosensitivity. We investigated the potential predictive role of components of the 53BP1 pathway in conjunction with BRCA1. The mRNA expression of BRCA1, MDC1, CASPASE3, UBC13, RNF8, 53BP1, PIAS4, UBC9 and MMSET was analyzed by real-time PCR in 115 advanced NSCLC patients treated with first-line platinum-based chemotherapy. Patients expressing low levels of both BRCA1 and 53BP1 obtained a median progression-free survival of 10.3 months and overall survival of 19.3 months, while among those with low BRCA1 and high 53BP1 progression-free survival was 5.9 months (P <0.0001) and overall survival was 8.2 months (P=0.001). The expression of 53BP1 refines BRCA1-based predictive modeling to identify patients most likely to benefit from platinum-based chemotherapy. PMID:24197907
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Sora; Jeon, Ji-Sook; Ahn, Curie
Rapamycin, a specific inhibitor of mTOR used extensively as an immunosuppressant, has been expanded recently to cancer therapy, because the mTOR signal is known to be up-regulated in various cancer cells including hepatocellular carcinoma (HCC) cells. In spite of extensive efforts to employ mTOR inhibitors as anti-HCC therapy, they have not yet been approved by the FDA. Because of the heterogeneity and complexity of molecular signaling in HCC, suitable biomarkers should be identified or discovered to improve clinical efficacy of mTOR-specific inhibitors to HCC cells. In this study, the effect of rapamycin was investigated on two different HCC cell lines,more » Huh7 cells and HepG2 cells. Rapamycin was found to inhibit the proliferation of Huh7 cells but not of HepG2 cells. Moreover, it was found that rapamycin can up-regulate p53 at the protein level, but not affect its transcript. To understand the critical role of p53 in the rapamycin effect, knock-down experiments were performed using small-interfering RNAs (siRNAs). The anti-proliferative effect of rapamycin on Huh7 cells clearly disappeared after blocking p53 production with siRNA, which indicates that p53 is a critical factor in the anti-proliferative effect of rapamycin in HCC cells. The over-expression system of p53 was also employed to mimic the effect of rapamycin and found that cell proliferation was clearly down-regulated by p53 over-expression. Finally, we found that the extracellular signal-regulated kinase 1/2 (ERK1/2) signal was regulated by p53 whose expression was induced by rapamycin. Overall, this study demonstrates that rapamycin inhibited the proliferation of Huh7 cells by up-regulating the expression of p53 and down-regulating the ERK1/2 signal, indicating that p53 is a useful biomarker for anti-cancer therapy using the specific inhibitor of mTOR signal, rapamycin, against hepatocellular carcinoma cells. - Highlights: • Rapamycin inhibits the proliferation of hepatocellular carcinoma cells depending on the expression of p53. • Rapamycin up-regulates p53 at the protein level, but not affect its transcript. • The up-regulation of p53 expression by rapamycin inhibits ERK signal.« less
Cisplatin fails to induce puma mediated apoptosis in mucosal melanomas
Fritsche, Marie Kristin; Metzler, Veronika; Becker, Karen; Plettenberg, Christian; Heiser, Clemens; Hofauer, Benedikt; Knopf, Andreas
2015-01-01
Objectives Mucosal melanomas (MM) are aggressive subtypes of common melanomas. It remains unclear whether limitations in their resectability or their distinctive molecular mechanisms are responsible for the aggressive phenotype. Methods In total, 112 patients with cutaneous melanomas (CM) and 27 patients with MM were included. Clinical parameters were analysed using Chi square, Fisher exact and student's t-test. Survival rates were calculated by Kaplan–Meier. Analysis of p53, p21, Mdm2, Hipk2, Gadd45, Puma, Bax, Casp9 and Cdk1 via quantitative PCR and immunohistochemistry (IHC) was performed. TP53 induction after cisplatin treatment was analysed in 10 cell lines (melanocytes, four MM and five CM) using western blot (WB) and qPCR. Results The overall/recurrence-free survival differed significantly between MM (40 months and 30 months) and CM (90 months and 107 months; p < 0.001). IHC and WB confirmed high p53 expression in all melanomas. Hipk2 and Gadd45 showed significantly higher expressions in CM (p < 0.005; p = 0.004). QPCR and WB of wild-type cell lines demonstrated no differences for p53, p21, Mdm2, Bax and Casp9. WB failed to detect Puma in MM, while Cdk1 regulation occurred exclusively in MM. Conclusions The aggressive phenotype of MM did not appear to be due to differential expressions of p53, p21, Mdm2, Bax or Casp9. A non-functional apoptosis in MM may have further clinical implications. PMID:25831048
Jang, Sang-Min; Kang, Eun-Jin; Kim, Jung-Woong; Kim, Chul-Hong; An, Joo-Hee; Choi, Kyung-Hee
2013-08-23
PUMA is a crucial regulator of apoptotic cell death mediated by p53-dependent and p53-independent mechanisms. In many cancer cells, PUMA expression is induced in response to DNA-damaging reagent in a p53-dependent manner. However, few studies have investigated transcription factors that lead to the induction of PUMA expression via p53-independent apoptotic signaling. In this study, we found that the transcription factor Sox4 increased PUMA expression in response to trichostatin A (TSA), a histone deacetylase inhibitor in the p53-null human lung cancer cell line H1299. Ectopic expression of Sox4 led to the induction of PUMA expression at the mRNA and protein levels, and TSA-mediated up-regulation of PUMA transcription was repressed by the knockdown of Sox4. Using luciferase assays and chromatin immunoprecipitation, we also determined that Sox4 recruits p300 on the PUMA promoter region and increases PUMA gene expression in response to TSA treatment. Taken together, these results suggest that Sox4 is required for p53-independent apoptotic cell death mediated by PUMA induction via TSA treatment. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Zhao, Carolyn Ying; Szekely, Laszlo; Bao, Wenjie; Selivanova, Galina
2010-04-15
Proteasomal degradation of p53 by human papilloma virus (HPV) E6 oncoprotein plays a pivotal role in the survival of cervical carcinoma cells. Abrogation of HPV-E6-dependent p53 destruction can therefore be a good strategy to combat cervical carcinomas. Here, we show that a small-molecule reactivation of p53 and induction of tumor cell apoptosis (RITA) is able to induce the accumulation of p53 and rescue its tumor suppressor function in cells containing high-risk HPV16 and HPV18 by inhibiting HPV-E6-mediated proteasomal degradation. RITA blocks p53 ubiquitination by preventing p53 interaction with E6-associated protein, required for HPV-E6-mediated degradation. RITA activates the transcription of proapoptotic p53 targets Noxa, PUMA, and BAX, and repressed the expression of pro-proliferative factors CyclinB1, CDC2, and CDC25C, resulting in p53-dependent apoptosis and cell cycle arrest. Importantly, RITA showed substantial suppression of cervical carcinoma xenografts in vivo. These results provide a proof of principle for the treatment of cervical cancer in a p53-dependent manner by using small molecules that target p53. (c)2010 AACR.
Rigor of cell fate decision by variable p53 pulses and roles of cooperative gene expression by p53
Murakami, Yohei; Takada, Shoji
2012-01-01
Upon DNA damage, the cell fate decision between survival and apoptosis is largely regulated by p53-related networks. Recent experiments found a series of discrete p53 pulses in individual cells, which led to the hypothesis that the cell fate decision upon DNA damage is controlled by counting the number of p53 pulses. Under this hypothesis, Sun et al. (2009) modeled the Bax activation switch in the apoptosis signal transduction pathway that can rigorously “count” the number of uniform p53 pulses. Based on experimental evidence, here we use variable p53 pulses with Sun et al.’s model to investigate how the variability in p53 pulses affects the rigor of the cell fate decision by the pulse number. Our calculations showed that the experimentally anticipated variability in the pulse sizes reduces the rigor of the cell fate decision. In addition, we tested the roles of the cooperativity in PUMA expression by p53, finding that lower cooperativity is plausible for more rigorous cell fate decision. This is because the variability in the p53 pulse height is more amplified in PUMA expressions with more cooperative cases. PMID:27857606
Hirasawa, Hideyuki; Tanaka, Shinya; Sakai, Akinori; Tsutsui, Masato; Shimokawa, Hiroaki; Miyata, Hironori; Moriwaki, Sawako; Niida, Shumpei; Ito, Masako; Nakamura, Toshitaka
2007-07-01
Osteoblast apoptosis increased in the tibias of apoE(-/-) mice fed with a high-fat diet, decreasing bone formation. The expression of p53 mRNA in marrow adherent cells increased. LDL or oxidized LDL increased apoptosis in the calvarial cells of apoE(-/-) mice. The increase in p53-mediated apoptosis is apparently related to a high-fat diet-induced osteopenia in apoE(-/-) mice. The effects of high-fat loading and the apolipoprotein E (apoE) gene on bones have not been elucidated. We hypothesized that apoE gene deficiency (apoE(-/-)) modulates the effects of high-fat loading on bones. We assessed this hypothesis using wildtype (WT) and apoE(-/-) mice fed a standard (WTS and ApoES groups) or a high-fat diet (WTHf and ApoEHf groups). The concentration of serum lipid levels and bone chemical markers were measured. Histomorphometry of the femurs was performed using microCT and a microscope. Bone marrow adherent cells from the femurs were used for colony-forming unit (CFU)-fibroblastic (CFU-f) assay and mRNA expressions analysis. The apoptotic cells in the tibias were counted. TUNEL fluorescein assay and Western analysis were performed in cultures of calvarial cells by the addition of low-density lipoprotein (LDL) or oxidized LDL. In the ApoEHf group, the values of cortical bone volume and trabecular and endocortical bone formation of the femurs decreased, and urinary deoxypyridinoline increased. Subsequent analysis revealed that the number of apoptotic cells in the tibias of the ApoES group increased, and more so in the ApoEHf group. The ratio of alkaline phosphatase-positive CFU-f to total CFU-f was decreased in the ApoEHf group. p53 mRNA expression in adherent cells of the apoE(-/-) mice increased and had a significantly strong positive correlation with serum LDL. TUNEL fluorescein assay of osteoblastic cells revealed an increase of apoptotic cells in the apoE(-/-) mice. The number of apoptotic cells in the apoE(-/-) mice increased with the addition of 100 microg/ml LDL or oxidized LDL. The p53 protein expression in apoE(-/-) cells exposed to 100 microg/ml LDL or oxidized LDL increased. We concluded that apoE gene deficiency enhances the reduction of bone formation induced by a high-fat diet through the stimulation of p53-mediated apoptosis in osteoblastic cells.
p53 predictive value for pT1-2 N0 disease at radical cystectomy.
Shariat, Shahrokh F; Lotan, Yair; Karakiewicz, Pierre I; Ashfaq, Raheela; Isbarn, Hendrik; Fradet, Yves; Bastian, Patrick J; Nielsen, Matthew E; Capitanio, Umberto; Jeldres, Claudio; Montorsi, Francesco; Müller, Stefan C; Karam, Jose A; Heukamp, Lukas C; Netto, George; Lerner, Seth P; Sagalowsky, Arthur I; Cote, Richard J
2009-09-01
Approximately 15% to 30% of patients with pT1-2N0M0 urothelial carcinoma of the bladder experience disease progression despite radical cystectomy with curative intent. We determined whether p53 expression would improve the prediction of disease progression after radical cystectomy for pT1-2N0M0 UCB. In a multi-institutional retrospective cohort we identified 324 patients with pT1-2N0M0 urothelial carcinoma of the bladder who underwent radical cystectomy. Analysis focused on a testing cohort of 272 patients and an external validation of 52. Competing risks regression models were used to test the association of variables with cancer specific mortality after accounting for nonbladder cancer caused mortality. In the testing cohort 91 patients (33.5%) had altered p53 expression (p53alt). On multivariate competing risks regression analysis altered p53 achieved independent status for predicting disease recurrence and cancer specific mortality (each p <0.001). Adding p53 increased the accuracy of multivariate competing risks regression models predicting recurrence and cancer specific mortality by 5.7% (62.0% vs 67.7%) and 5.4% (61.6% vs 67.0%), respectively. Alterations in p53 represent a highly promising marker of disease recurrence and cancer specific mortality after radical cystectomy for urothelial carcinoma of the bladder. Analysis confirmed previous findings and showed that considering p53 can result in substantial accuracy gains relative to the use of standard predictors. The value and the level of the current evidence clearly exceed previous proof of the independent predictor status of p53 for predicting recurrence and cancer specific mortality.
Dimitrova, Nadya; Zamudio, Jesse R.; Jong, Robyn M.; Soukup, Dylan; Resnick, Rebecca; Sarma, Kavitha; Ward, Amanda J.; Raj, Arjun; Lee, Jeannie; Sharp, Phillip A.; Jacks, Tyler
2014-01-01
SUMMARY The p53-regulated long non-coding RNA lincRNA-p21 has been proposed to act in trans via several mechanisms ranging from repressing genes in the p53 transcriptional network to regulating mRNA translation and protein stability. To further examine lincRNA-p21 function we generated a conditional knockout mouse model. We find that lincRNA-p21 predominantly functions in cis to activate expression of its neighboring gene, p21. Mechanistically, we show that lincRNA-p21 acts in concert with hnRNP-K as a co-activator for p53-dependent p21 transcription. Additional phenotypes of lincRNA-p21 deficiency could be attributed to diminished p21 levels, including deregulated expression and altered chromatin state of some Polycomb target genes, defective G1/S checkpoint, increased proliferation rates, and enhanced reprogramming efficiency. These findings indicate that lincRNA-p21 affects global gene expression and influences the p53 tumor suppressor pathway by acting in cis as a locus-restricted co-activator for p53-mediated p21 expression. PMID:24857549
Ching, L Y; Yeung, Bonnie H Y; Wong, Chris K C
2012-06-01
Human stanniocalcin 1 (STC1) has recently been identified as a putative protein factor involved in cellular apoptosis. The use of histone deacetylase inhibitor (i.e. trichostatin A (TSA)) and doxorubicin (Dox) is one of the common treatment methods to induce apoptosis in human cancer cells. A study on TSA and Dox-mediated apoptosis may shed light on the regulation and function of STC1 in cancer treatment. In this study, TSA and Dox cotreatment in human nasopharyngeal carcinoma cells (CNE2) elicited synergistic effects on STC1 gene expression and cellular apoptosis. An activation of p53 (TP53) transcriptional activity in Dox- or Dox+TSA-treated cells was revealed by the increased expression levels of p53 mRNA/protein as well as p53-driven luciferase activities. To elucidate the possible involvement of p53 in STC1 gene transcription, a vector expressing wild-type or dominant negative (DN) p53 was transiently transfected into the cells. Both STC1 promoter luciferase constructs and chromatin immunoprecipitation assays did not support the direct role of p53 in STC1 gene transactivation. However, the synergistic effects of p53 on the induction of NF-κB phosphorylation and the recruitment of acetylated histone H3 in STC1 promoter were observed in TSA-cotreated cells. The overexpression of exogenous STC1 sensitized apoptosis in Dox-treated cells. Taken together, this study provides data to show the cross talk of NF-κB, p53, and histone protein in the regulation of STC1 expression and function.
Mao, Jia-Ding; Wu, Pei; Yang, Ying-Lin; Wu, Jian; Huang, He
2008-05-14
To explore the correlation between the mRNAs and protein expression of gastrin (GAS), somatostatin (SS) and apoptosis index (AI), apoptosis regulation gene Fas/FasL and caspases in large intestinal carcinoma (LIC). Expression of GAS and SS mRNAs were detected by nested RT-PCR in 79 cases of LIC. Cell apoptosis was detected by molecular biology in situ apoptosis detecting methods (TUNEL). Immunohistochemical staining for GAS, SS, Fas/FasL, caspase-3 and caspase-8 was performed according to the standard streptavidin-biotin-peroxidase (S-P) method. There was a significant positive correlation between mRNA and protein expression of GAS and SS (GASrs = 0.99, P < 0.01; SSrs = 0.98, P < 0.01). There was significant difference in positive expression rates of GAS, SS mRNAs and protein among different histological differentiation, histological types and Dukes' stage of LIC. The AI in GAS high and moderate expression groups was significantly lower than that in low expression groups (3.75 +/- 2.38 vs 7.82 +/- 2.38, P < 0.01; 5.51 +/- 2.66 vs 7.82 +/- 2.38, P < 0.01), and the AI in SS high and moderate expression groups was significantly higher than that in low expression groups (9.03 +/- 1.76 vs 5.35 +/- 3.00, P < 0.01; 7.44 +/- 2.67 vs 5.35 +/- 3.00, P < 0.01). There was a significant negative correlation between the integral ratio of GAS to SS and the AI (r(s) = -0.41, P < 0.01). The positive expression rate of FasL in GAS high and moderate expression groups was higher than that in low expression group (90.9% and 81.0% vs 53.2%, P < 0.05). The positive expression rates of Fas, caspase-8 and caspase-3 in SS high (90.0%, 90.0% and 100%) and moderate (80.0%, 70.0%, 75.0%) expression groups were higher than that in low expression group (53.1%, 42.9%, 49.0%) (90.0% and 80.0% vs 53.1%, P < 0.05; 90.0% and 70.0% vs 42.9%, P < 0.05; 100.0% and 75.0% vs 49.0%, P < 0.05). There was a significant positive correlation between the integral ratio of GAS to SS and the semiquantitative integral of FasL (rs = 0.32, P < 0.01). GAS and SS play important roles in the regulation and control of cell apoptosis in LIC, and the mechanism may be directly related to the aberrant expression of Fas/FasL. The GAS and SS will be valuable targets of the biological behavior of LIC.
Mao, Jia-Ding; Wu, Pei; Yang, Ying-Lin; Wu, Jian; Huang, He
2008-01-01
AIM: To explore the correlation between the mRNAs and protein expression of gastrin (GAS), somatostatin (SS) and apoptosis index (AI), apoptosis regulation gene Fas/FasL and caspases in large intestinal carcinoma (LIC). METHODS: Expression of GAS and SS mRNAs were detected by nested RT-PCR in 79 cases of LIC. Cell apoptosis was detected by molecular biology in situ apoptosis detecting methods (TUNEL). Immunohistochemical staining for GAS, SS, Fas/FasL, caspase-3 and caspase-8 was performed according to the standard streptavidin-biotin-peroxidase (S-P) method. RESULTS: There was a significant positive correlation between mRNA and protein expression of GAS and SS (GASrs=0.99, P < 0.01; SSrs = 0.98, P < 0.01). There was significant difference in positive expression rates of GAS, SS mRNAs and protein among different histological differentiation, histological types and Dukes’ stage of LIC. The AI in GAS high and moderate expression groups was significantly lower than that in low expression groups (3.75 ± 2.38 vs 7.82 ± 2.38, P < 0.01; 5.51 ± 2.66 vs 7.82 ± 2.38, P < 0.01), and the AI in SS high and moderate expression groups was significantly higher than that in low expression groups (9.03 ± 1.76 vs 5.35 ± 3.00, P < 0.01; 7.44 ± 2.67 vs 5.35 ± 3.00, P < 0.01). There was a significant negative correlation between the integral ratio of GAS to SS and the AI (rs = -0.41, P < 0.01). The positive expression rate of FasL in GAS high and moderate expression groups was higher than that in low expression group (90.9% and 81.0% vs 53.2%, P < 0.05). The positive expression rates of Fas, caspase-8 and caspase-3 in SS high (90.0%, 90.0% and 100%) and moderate (80.0%, 70.0%, 75.0%) expression groups were higher than that in low expression group (53.1%, 42.9%, 49.0%) (90.0% and 80.0% vs 53.1%, P < 0.05; 90.0% and 70.0% vs 42.9%, P < 0.05; 100.0% and 75.0% vs 49.0%, P < 0.05). There was a significant positive correlation between the integral ratio of GAS to SS and the semiquantitative integral of FasL (rs = 0.32, P < 0.01). CONCLUSION: GAS and SS play important roles in the regulation and control of cell apoptosis in LIC, and the mechanism may be directly related to the aberrant expression of Fas/FasL. The GAS and SS will be valuable targets of the biological behavior of LIC. PMID:18473402
Suzuki, Maiko; Ikeda, Atsushi; Bartlett, John D
2018-03-01
Low-dose fluoride is an effective caries prophylactic, but high-dose fluoride is an environmental health hazard that causes skeletal and dental fluorosis. Treatments to prevent fluorosis and the molecular pathways responsive to fluoride exposure remain to be elucidated. Previously we showed that fluoride activates SIRT1 as an adaptive response to protect cells. Here, we demonstrate that fluoride induced p53 acetylation (Ac-p53) [Lys379], which is a SIRT1 deacetylation target, in ameloblast-derived LS8 cells in vitro and in enamel organ in vivo. Here we assessed SIRT1 function on fluoride-induced Ac-p53 formation using CRISPR/Cas9-mediated Sirt1 knockout (LS8 Sirt/KO ) cells or CRISPR/dCas9/SAM-mediated Sirt1 overexpressing (LS8 Sirt1/over ) cells. NaF (5 mM) induced Ac-p53 formation and increased cell cycle arrest via Cdkn1a/p21 expression in Wild-type (WT) cells. However, fluoride-induced Ac-p53 was suppressed by the SIRT1 activator resveratrol (50 µM). Without fluoride, Ac-p53 persisted in LS8 Sirt/KO cells, whereas it decreased in LS8 Sirt1/over . Fluoride-induced Ac-p53 formation was also suppressed in LS8 Sirt1/over cells. Compared to WT cells, fluoride-induced Cdkn1a/p21 expression was elevated in LS8 Sirt/KO and these cells were more susceptible to fluoride-induced growth inhibition. In contrast, LS8 Sirt1/over cells were significantly more resistant. In addition, fluoride-induced cytochrome-c release and caspase-3 activation were suppressed in LS8 Sirt1/over cells. Fluoride induced expression of the DNA double strand break marker γH2AX in WT cells and this was augmented in LS8 Sirt1/KO cells, but was attenuated in LS8 Sirt1/over cells. Our results suggest that SIRT1 deacetylates Ac-p53 to mitigate fluoride-induced cell growth inhibition, mitochondrial damage, DNA damage and apoptosis. This is the first report implicating Ac-p53 in fluoride toxicity.
Overexpression of p53 mRNA in colorectal cancer and its relationship to p53 gene mutation.
el-Mahdani, N.; Vaillant, J. C.; Guiguet, M.; Prévot, S.; Bertrand, V.; Bernard, C.; Parc, R.; Béréziat, G.; Hermelin, B.
1997-01-01
We analysed the frequency of p53 mRNA overexpression in a series of 109 primary colorectal carcinomas and its association with p53 gene mutation, which has been correlated with short survival. Sixty-nine of the 109 cases (63%) demonstrated p53 mRNA overexpression, without any correlation with stage or site of disease. Comparison with p53 gene mutation indicated that, besides cases in which p53 gene mutation and p53 mRNA overexpression were either both present (40 cases) or both absent (36 cases), there were also cases in which p53 mRNA was overexpressed in the absence of any mutation (29 cases) and those with a mutant gene in which the mRNA was not overexpressed (four cases). Moreover, the mutant p53 tumours exhibited an increase of p53 mRNA expression, which was significantly higher in tumours expressing the mutated allele alone than in tumours expressing both wild- and mutated-type alleles. These data (1) show that p53 mRNA overexpression is a frequent event in colorectal tumours and is not predictive of the status of the gene, i.e. whether or not a mutation is present; (2) provide further evidence that p53 protein overexpression does not only result from an increase in the half-life of mutated p53 and suggest that inactivation of the p53 function in colorectal cancers involves at least two distinct mechanisms, including p53 overexpression and/or mutation; and (3) suggest that p53 mRNA overexpression is an early event, since it is not correlated with Dukes stage. PMID:9052405
Differential senescence capacities in meibomian gland carcinoma and basal cell carcinoma.
Zhang, Leilei; Huang, Xiaolin; Zhu, Xiaowei; Ge, Shengfang; Gilson, Eric; Jia, Renbing; Ye, Jing; Fan, Xianqun
2016-03-15
Meibomian gland carcinoma (MGC) and basal cell carcinoma (BCC) are common eyelid carcinomas that exhibit highly dissimilar degrees of proliferation and prognoses. We address here the question of the differential mechanisms between these two eyelid cancers that explain their different outcome. A total of 102 confirmed MGC and 175 diagnosed BCC cases were analyzed. Twenty confirmed MGC and twenty diagnosed BCC cases were collected to determine the telomere length, the presence of senescent cells, and the expression levels of the telomere capping shelterin complex, P53, and the E3 ubiquitin ligase Siah1. Decreased protein levels of the shelterin subunits, shortened telomere length, over-expressed Ki-67, and Bcl2 as well as mutations in P53 were detected both in MGC and BCC. It suggests that the decreased protein levels of the shelterin complex and the shortened telomere length contribute to the tumorigenesis of MGC and BCC. However, several parameters distinguish MGC from BCC samples: (i) the mRNA level of the shelterin subunits decreased in MGC but it increased in BCC; (ii) P53 was more highly mutated in MGC; (iii) Siah1 mRNA was over-expressed in BCC; (iv) BCC samples contain a higher level of senescent cells; (v) Ki-67 and Bcl2 expression were lower in BCC. These results support a model where a preserved P53 checkpoint in BCC leads to cellular senescence and reduced tumor proliferation as compared to MGC. © 2015 UICC.
Sifford, Jeffrey M.; Stahl, James A.; Salinas, Eduardo
2015-01-01
ABSTRACT Tumor suppressor p53 is activated in response to numerous cellular stresses, including viral infection. However, whether murine gammaherpesvirus 68 (MHV68) provokes p53 during the lytic replication cycle has not been extensively evaluated. Here, we demonstrate that MHV68 lytic infection induces p53 phosphorylation and stabilization in a manner that is dependent on the DNA damage response (DDR) kinase ataxia telangiectasia mutated (ATM). The induction of p53 during MHV68 infection occurred in multiple cell types, including splenocytes of infected mice. ATM and p53 activation required early viral gene expression but occurred independently of viral DNA replication. At early time points during infection, p53-responsive cellular genes were induced, coinciding with p53 stabilization and phosphorylation. However, p53-related gene expression subsided as infection progressed, even though p53 remained stable and phosphorylated. Infected cells also failed to initiate p53-dependent gene expression and undergo apoptosis in response to treatment with exogenous p53 agonists. The inhibition of p53 responses during infection required the expression of the MHV68 homologs of the shutoff and exonuclease protein (muSOX) and latency-associated nuclear antigen (mLANA). Interestingly, mLANA, but not muSOX, was necessary to prevent p53-mediated death in MHV68-infected cells under the conditions tested. This suggests that muSOX and mLANA are differentially required for inhibiting p53 in specific settings. These data reveal that DDR responses triggered by MHV68 infection promote p53 activation. However, MHV68 encodes at least two proteins capable of limiting the potential consequences of p53 function. IMPORTANCE Gammaherpesviruses are oncogenic herpesviruses that establish lifelong chronic infections. Defining how gammaherpesviruses overcome host responses to infection is important for understanding how these viruses infect and cause disease. Here, we establish that murine gammaherpesvirus 68 induces the activation of tumor suppressor p53. p53 activation was dependent on the DNA damage response kinase ataxia telangiectasia mutated. Although active early after infection, p53 became dominantly inhibited as the infection cycle progressed. Viral inhibition of p53 was mediated by the murine gammaherpesvirus 68 homologs of muSOX and mLANA. The inhibition of the p53 pathway enabled infected cells to evade p53-mediated cell death responses. These data demonstrate that a gammaherpesvirus encodes multiple proteins to limit p53-mediated responses to productive viral infection, which likely benefits acute viral replication and the establishment of chronic infection. PMID:26676792
Mydlo, J H; Kral, J G; Volpe, M; Axotis, C; Macchia, R J; Pertschuk, L P
1998-01-01
To investigate relationships between microvessel density (MVD), androgen receptors (AR), mutant p53 and HER-2/neu expression and Gleason score (GS) to further understand the tumor biology of prostate cancer (CAP). Slides of CAP from patients who underwent radical prostatectomy or channel transurethral resection of the prostate (TURP) were tested for androgen receptors by immunocytochemical assay and MVD was analyzed by staining with antibodies to the endothelial cell membrane molecule PECAM-1/CD-31. The p53 monoclonal antibody D07 and HER-2 9G6 mouse monoclonal antibody were used to assess p53 and HER-2/neu expression, respectively. The results were correlated with GS and clinical stage by multivariate analysis. We found a fourfold greater expression of MVD in prostate cancer specimens compared to neighboring normal prostate tissue. We observed a greater concentration of MVD in the higher Gleason scores (r = 0.40, p = 0. 06), and a correlation of Gleason score with mutant p53 expression (r = 0.57, p <0.05). We did not observe any associations between AR or HER-2/neu to Gleason score. More than half of the patients with specimens with 50% or greater expression of mutant p53 were in stage D2 (T4NxM1b) at the time of biopsy. We observed a correlation between mutant p53 and GS, and a greater concentration of MVD in the higher GS. Since the neovascularity of prostate tumors can be attenuated by radiation and hormones, while mutant p53 may confer resistance to such treatment, it appears that p53 expression may also play an important role in addition to angiogenesis in the virulence of prostate cancer. These data may aid in allocating patients to different treatment modalities.
Wang, Chunmei; Qi, Runzi; Li, Nan; Wang, Zhengxin; An, Huazhang; Zhang, Qinghua; Yu, Yizhi; Cao, Xuetao
2009-01-01
Notch signaling plays a critical role in regulating cell proliferation, differentiation, and apoptosis. Our previous study showed that overexpression of Notch1 could inhibit human hepatocellular carcinoma (HCC) cell growth by arresting the cell cycle and inducing apoptosis. HCC cells are resistant to apoptotic induction by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), so new therapeutic approaches have been explored to sensitize HCC cells to TRAIL-induced apoptosis. We are wondering whether and how Notch1 signaling can enhance the sensitivity of HCC cells to TRAIL-induced apoptosis. In this study, we found that overexpression of ICN, the constitutive activated form of Notch1, up-regulated p53 protein expression in HCC cells by inhibiting proteasome degradation. p53 up-regulation was further observed in human primary hepatocellular carcinoma cells after activation of Notch signaling. Inhibition of the Akt/Hdm2 pathway by Notch1 signaling was responsible for the suppression of p53 proteasomal degradation, thus contributing to the Notch1 signaling-mediated up-regulation of p53 expression. Accordingly, Notch1 signaling could make HCC cells more sensitive to TRAIL-induced apoptosis, whereas Notch1 signaling lost the synergistic promotion of TRAIL-induced apoptosis in p53-silenced HepG2 HCC cells and p53-defective Hep3B HCC cells. The data suggest that enhancement of TRAIL-induced apoptosis by Notch1 signaling is dependent upon p53 up-regulation. Furthermore, Notch1 signaling could enhance DR5 expression in a p53-dependent manner. Taken together, Notch1 signaling sensitizes TRAIL-induced apoptosis in HCC cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. Thus, our results suggest that activation of Notch1 signaling may be a promising approach to improve the therapeutic efficacy of TRAIL-resistant HCC. PMID:19376776
[Antitumor effect of baicalin on rat brain glioma].
Hu, Yong-zhen; Wang, Dian-hong; Luan, Yu; Gong, Hai-dong
2013-01-01
To investigate the therapeutic mechanism of baicalin on rat brain glioma. Deep brain glioma models were established by injection of glioma cell line C6 cells into the brain of Wistar rats. The rats at 7 days after modeling were randomly divided into tumor control group (0.9% NaCl solution 30 mg×kg(-1)×d(-1) gavage)and experimental groups. The experimental rats was divided into 3 groups: low dose group (50 mg×kg(-1)×d(-1)), middle dose group (100 mg×kg(-1)×d(-1)) and high dose group (200 mg×kg(-1)×d(-1)), given the baicalin by gavage. Pathological and electron microscopic changes were observed. The expressions of p53 and Bcl-2 were determined by immunohistochemistry, and the changes of MRI, the average survival time and body weight of the rats in each group after treatments were analyzed. Compared with the control group, the tumor diameter and volume of high dose group rats before sacrifice were significantly reduced (P < 0.01), and the survival time was significantly prolonged (P < 0.01). Immunohistochemistry revealed strong positive expression rate of mutant p53 (84.47 ± 3.74)% and moderately positive rate (47.28 ± 2.38)% in the control group, significantly higher than that in the negative group (12.91 ± 1.07)% (P < 0.01). The positive rate of mutant p53 of the high dose group was (46.42 ± 2.19)%, significantly lower than that of the control group (84.47 ± 3.74)% (P < 0.01). The expression rate of Bcl-2 in the control group was strongly positive (86.51 ± 4.17)% and moderate positive (48.19 ± 2.11)%, significantly higher than that of the negative group (10.36 ± 1.43)% (P < 0.01). Electron microscopy revealed that baicalin caused damages of the cell nuclei and organelles in the gliomas. Baicalin has significant inhibitory effect on glioma in vivo, and its mechanism may be related to cell apoptosis induced by down-regulated expression of mutant p53, but not related with Bcl-2 expression.
Qiu, Mingning; Ke, Longzhi; Zhang, Sai; Zeng, Xin; Fang, Zesong; Liu, Jianjun
2017-08-01
Doxorubicin, a highly effective and widely used anthracycline antibiotic in multiple chemotherapy regimens, has been limited by its cardiotoxicity. The aim of this study is to investigate the effect of nitric oxide donor prodrug JS-K on proliferation and apoptosis in renal carcinoma cells and cardiac myocytes toxicity induced by Doxorubicin and to explore possible p53-related mechanism in renal carcinoma cells. The effect of JS-K on anti-cancer activity of Doxorubicin was investigated in renal carcinoma cells via detecting cell proliferation, cytotoxicity, cell death and apoptosis and expressions of apoptotic-related proteins. Effect of p53 on the combination of JS-K and Doxorubicin was determined using p53 inhibitor Pifithrin-α and p53 activator III. Furthermore, the effect of JS-K on cardiac myocytes toxicity of Doxorubicin was investigated in H9c2 (2-1) cardiac myocytes via measuring cell growth, cell death and apoptosis, expressions of proteins involved in apoptosis and intracellular reactive oxygen species. We demonstrated that JS-K could increase Doxorubicin-induced renal carcinoma cell growth suppression and apoptosis and could increase expressions of proteins that are involved in apoptosis. Additionally, Pifithrin-α reversed the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis; conversely, the p53 activator III exacerbated the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis. Furthermore, JS-K protected H9c2 (2-1) cardiac myocytes against Doxorubicin-induced toxicity and decreased Doxorubicin-induced reactive oxygen species production. JS-K enhances the anti-cancer activity of Doxorubicin in renal carcinoma cells by upregulating p53 expression and prevents cardiac myocytes toxicity of Doxorubicin by decreasing oxidative stress.
Vuong, Linda; Brobst, Daniel E.; Saadi, Anisse; Ivanovic, Ivana; Al-Ubaidi, Muayyad R.
2012-01-01
Purpose. Because of its role in cell cycle regulation and apoptosis, p53 may be involved in maintaining the post-mitotic state of the adult eye. To shed light on the role of p53 in retinal development and maintenance, this study investigated the pattern of expression of p53, its family members, and its regulators during the development of the mouse eye. Methods. Relative quantitative real-time PCR (qRT-PCR) was used to determine the steady-state levels of target transcripts in RNA extracted from wild-type mouse whole eyes or retinas between embryonic day (E) 15 and post-natal day (P) 30. Immunoblotting was used to compare the steady-state levels of the protein to that of the transcript. Results. Transcript and protein levels for p53 in the eye were highest at E17 and E18, respectively. However, both p53 transcript and protein levels dropped precipitously thereafter, and no protein was detected on immunoblots after P3. Expression patterns of p63, p73, Mdm2, Mdm4, and Yy1 did not follow that of p53. Immunohistochemistry analysis of the developing eye showed that both p53 and Mdm2 are abundantly expressed at E18 in all layers of the retinal neuroblast. Conclusions. Downregulation of p53 in the post-mitotic retina suggests that, although p53 may be involved in ocular and retinal development, it may play a minimal role in healthy adult retinal function. PMID:22714890
2010-01-01
Background Reactivation of p53 by either gene transfer or pharmacologic approaches may compensate for loss of p19Arf or excess mdm2 expression, common events in melanoma and glioma. In our previous work, we constructed the pCLPG retroviral vector where transgene expression is controlled by p53 through a p53-responsive promoter. The use of this vector to introduce p19Arf into tumor cells that harbor p53wt should yield viral expression of p19Arf which, in turn, would activate the endogenous p53 and result in enhanced vector expression and tumor suppression. Since nutlin-3 can activate p53 by blocking its interaction with mdm2, we explored the possibility that the combination of p19Arf gene transfer and nutlin-3 drug treatment may provide an additive benefit in stimulating p53 function. Methods B16 (mouse melanoma) and C6 (rat glioma) cell lines, which harbor p53wt, were transduced with pCLPGp19 and these were additionally treated with nutlin-3 or the DNA damaging agent, doxorubicin. Viral expression was confirmed by Western, Northern and immunofluorescence assays. p53 function was assessed by reporter gene activity provided by a p53-responsive construct. Alterations in proliferation and viability were measured by colony formation, growth curve, cell cycle and MTT assays. In an animal model, B16 cells were treated with the pCLPGp19 virus and/or drugs before subcutaneous injection in C57BL/6 mice, observation of tumor progression and histopathologic analyses. Results Here we show that the functional activation of endogenous p53wt in B16 was particularly challenging, but accomplished when combined gene transfer and drug treatments were applied, resulting in increased transactivation by p53, marked cell cycle alteration and reduced viability in culture. In an animal model, B16 cells treated with both p19Arf and nutlin-3 yielded increased necrosis and decreased BrdU marking. In comparison, C6 cells were quite susceptible to either treatment, yet p53 was further activated by the combination of p19Arf and nutlin-3. Conclusions To the best of our knowledge, this is the first study to apply both p19Arf and nutlin-3 for the stimulation of p53 activity. These results support the notion that a p53 responsive vector may prove to be an interesting gene transfer tool, especially when combined with p53-activating agents, for the treatment of tumors that retain wild-type p53. PMID:20569441
Yang, Zhikuan; Ge, Jian; Yin, Wei; Shen, Huangxuan; Liu, Haiquan; Guo, Yan
2004-12-01
To investigate the expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with Vitamin B1 and (or) elevated pressure. The retinal neuron of postnatal SD rats were cultured in vivo, the elevated pressure was produced after 7 days, and the total RNA was extracted after another 2 days, expression of p53, MDM2 and Ref1 gene were analyzed with RT-PCR. The expression level of p53 and MDM2 gene were increased in elevated pressure group, normal with Ref1 gene expression. But the expression of p53 and MDM2 gene were decreased significantly in elevated pressure group treated with vitamine B1 compare to the elevated group. Apoptosis seem to be a mechanism of cell death in retinal neurons of SD rats with elevated pressure.Vitamine B1 have protect effects against elevated pressure.
Effect of age on the sensitivity of the rat thyroid gland to ionizing radiation
Matsuu-Matsuyama, Mutsumi; Shichijo, Kazuko; Okaichi, Kumio; Kurashige, Tomomi; Kondo, Hisayoshi; Miura, Shiro; Nakashima, Masahiro
2015-01-01
Exposure to ionizing radiation during childhood is a well-known risk factor for thyroid cancer. Our study evaluated the effect of age on the radiosensitivity of rat thyroid glands. Four-week-old (4W), 7 -week-old (7W), and 8-month-old (8M) male Wistar rats were exposed to 8 Gy of whole-body X-ray irradiation. Thyroids were removed 3–72 h after irradiation, and non-irradiated thyroids served as controls. Ki67-positivity and p53 binding protein 1 (53BP1) focus formation (a DNA damage response) were evaluated via immunohistochemistry. Amounts of proteins involved in DNA damage response (p53, p53 phosphorylated at serine 15, p21), apoptosis (cleaved caspase-3), and autophagy (LC3, p62) were determined via western blotting. mRNA levels of 84 key autophagy-related genes were quantified using polymerase chain reaction arrays. Ki67-positive cells in 4W (with high proliferative activity) and 7W thyroids significantly decreased in number post-irradiation. The number of 53BP1 foci and amount of p53 phosphorylated at serine 15 increased 3 h after irradiation, regardless of age. No increase in apoptosis or in the levels of p53, p21 or cleaved caspase-3 was detected for any ages. Levels of LC3-II and p62 increased in irradiated 4W but not 8M thyroids, whereas expression of several autophagy-related genes was higher in 4W than 8M irradiated thyroids. Irradiation increased the expression of genes encoding pro-apoptotic proteins in both 4W and 8M thyroids. In summary, no apoptosis or p53 accumulation was noted, despite the expression of some pro-apoptotic genes in immature and adult thyroids. Irradiation induced autophagy in immature, but not in adult, rat thyroids. PMID:25691451
Xu, Yujin; Wang, Liancong; Zheng, Xiao; Liu, Guan; Wang, Yuezhen; Lai, Xiaojing; Li, Jianqiang
2013-05-01
The incidence of lung cancer is one of the leading causes of mortality. This study aimed to investigate the prognostic and predictive importance of p53, c-erbB2 and multidrug resistance proteins (MRP) expression and its correlation with clinicopathological characteristics of patients with non-small cell lung cancer (NSCLC). Expression of p53, c-erbB2 and MRP proteins in 152 tumor samples from resected primary NSCLCs was detected by immunohistochemical staining. The correlation of proteins, survival and clinicopathological characteristics was investigated in 152 patients undergoing potentially curative surgery. The positive rates of p53, c-erbB2 and MRP expression were 53.9 (82/152), 44.1 (67/152) and 43.4% (66/152), respectively. Overall survival rates of patients were markedly correlated with the overexpression of p53, c-erbB2 and MRP proteins. One, 2- and 3-year survival rates of patients exhibiting a positive expression of these proteins were 72.6, 54.8 and 32.2%, respectively. These rates were lower compared with those of patients with a negative expression of these proteins (92.1, 78.5 and 63.4%) (P=0.02, 0.01 or 0.00, respectively). Results of Cox's regression analysis showed that c-erbB2 expression and cell differentiation were independent prognostic factors in patients with NSCLC. These findings suggest that the positive expression of p53, c-erbB2 and MRP proteins is correlated with the survival rates of NSCLC patients. Detection of positive p53, c-erbB2 and MRP expression may be a useful predictive indicator of prognosis. Positive c-erbB2 expression is an independent prognostic factor, with a potential to be used as a predictive indicator of chemotherapy efficacy in NSCLC patients.
Nariai, Y; Mishima, K; Yoshimura, Y; Sekine, J
2011-04-01
This study was designed to investigate the feasibility of using Fas-associated phosphatase-1 (FAP-1), nuclear factor kappa B (NF-κB) and p53 as markers for chemo-radio sensitivity in oral squamous cell carcinoma (OSCC). FAP-1 plays a role as an anti-apoptotic factor through Fas-dependent apoptosis after chemo-radiotherapy. NF-κB and p53 might be involved in modulation of FAP-1 expression. FAP-1, NF-κB and p53 expression were immunohistochemically examined using biopsy specimens in 50 OSCC patients treated with chemotherapy and/or radiotherapy. FAP-1 was expressed in 52%, NF-κB in 52% and p53 in 46% of patients. There was no significant difference in FAP-1, p53 or NF-κB expression according to the clinicopathological features. No correlation was found among FAP-1, p53 or NF-κB expression. FAP-1-positive cases showed a poorer survival rate than FAP-1-negative cases (P = 0.0409) and NF-κB-positive cases showed a poorer survival rate than NF-κB-negative cases (P = 0.0018). Multivariate analysis showed that FAP-1 expression, NF-κB expression, clinical stage and age were significant independent variables for survival (clinical stage: P = 0.0016; age: P = 0.0016; NF-κB: P = 0.0314; FAP-1: P = 0.0366). These results suggest that FAP-1 and NF-κB might play a role as chemo-radioresistant factor during chemo-radiotherapy, and FAP-1 and NF-κB expression in OSCC would be feasible markers for chemo-radio sensitivity and prognosis. Copyright © 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Sajeevan, Thara Purath; Saraswathi, Tillai Rajasekaran; Ranganathan, Kannan; Joshua, Elizabeth; Rao, Uma Devi K
2014-07-01
p53 protein is a product of p53 gene, which is now classified as a tumor suppressor gene. The gene is a frequent target for mutation, being seen as a common step in the pathogenesis of many human cancers. Proliferating cell nuclear antigen (PCNA) is an auxiliary protein of DNA polymerase delta and plays a critical role in initiation of cell proliferation. The aim of this study is to assess and compare the expression of p53 and PCNA in lining epithelium of odontogenic keratocyst (OKC) and periapical cyst (PA). A total of 20 cases comprising 10 OKC and 10 PA were included in retrospective study. Three paraffin section of 4 μm were cut, one was used for routine hematoxylin and eosin stain, while the other two were used for immunohistochemistry. Statistical analysis was performed using Chi-square test. The level of staining and intensity were assessed in all these cases. OKC showed PCNA expression in all cases (100%), whereas in perapical cyst only 60% of cases exhibited PCNA staining. (1) OKC showed p53 expression in 6 cases (60%) whereas in PA only 10% of the cases exhibited p53 staining. Chi-square test showed PCNA staining intensity was more significant than p53 in OKC. (2) The staining intensity of PA using p53, PCNA revealed that PCNA stating intensity was more significant than p53. OKC shows significant proliferative activity than PA using PCNA and p53. PCNA staining was more intense when compared with p53 in both OKC and PA.
Expression of p53, p21 and cyclin D1 in penile cancer: p53 predicts poor prognosis.
Gunia, Sven; Kakies, Christoph; Erbersdobler, Andreas; Hakenberg, Oliver W; Koch, Stefan; May, Matthias
2012-03-01
To evaluate the role of p53, p21 and cyclin D1 expression in patients with penile cancer (PC). Paraffin-embedded tissues from PC specimens from six pathology departments were subjected to a central histopathological review performed by one pathologist. The tissue microarray technique was used for immunostaining which was evaluated by two independent pathologists and correlated with cancer-specific survival (CSS). κ-statistics were used to assess interobserver variability. Uni- and multivariable Cox proportional hazards analysis was applied to assess the independent effects of several prognostic factors on CSS over a median of 32 months (IQR 6-66 months). Specimens and clinical data from 110 men treated surgically for primary PC were collected. p53 staining was positive in 30 and negative in 62 specimens. κ-statistics showed substantial interobserver reproducibility of p53 staining evaluation (κ=0.73; p<0.001). The 5-year CSS rate for the entire study cohort was 74%. Five-year CSS was 84% in p53-negative and 51% in p53-positive PC patients (p=0.003). Multivariable analysis showed p53 (HR=3.20; p=0.041) and pT-stage (HR=4.29; p<0.001) as independent significant prognostic factors for CSS. Cyclin D1 and p21 expression were not correlated with survival. However, incorporating p21 into a multivariable Cox model did contribute to improved model quality for predicting CSS. In patients with PC, the expression of p53 in the primary tumour specimen can be reproducibly assessed and is negatively associated with cancer specific survival.
Hyperosmolarity induced by high glucose promotes senescence in human glomerular mesangial cells.
del Nogal, Maria; Troyano, Nuria; Calleros, Laura; Griera, Mercedes; Rodriguez-Puyol, Manuel; Rodriguez-Puyol, Diego; Ruiz-Torres, María P
2014-09-01
Hyperglycemia is involved in the diabetic complication of different organs and can elevate serum osmolarity. Here, we tested whether hyperosmolarity promoted by high glucose levels induces cellular senescence in renal cells. We treated Wistar rats with streptozotocin to induce diabetes or with consecutive daily injections of mannitol to increase serum osmolarity and analyzed p53 and p16 genes in renal cortex by immunohistochemistry. Both diabetic and mannitol treated rats showed a significant increase in serum osmolarity, without significant signs of renal dysfunction, but associated with increased staining for p53 and p16 in the renal cortex. An increase in p53 and p16 expression was also found in renal cortex slices and glomeruli isolated from healthy rats, which were later treated with 30 mM glucose or mannitol. Intracellular mechanisms involved were analyzed in cultured human glomerular mesangial cells treated with 30 mM glucose or mannitol. After treatments, cells showed increased p53, p21 and p16 expression and elevated senescence-associated β-galactosidase activity. Senescence was prevented when myo-inositol was added before treatment. High glucose or mannitol induced constitutive activation of Ras and ERK pathways which, in turn, were activated by oxidative stress. In summary, hyperosmolarity induced renal senescence, particularly in glomerular mesangial cells, increasing oxidative stress, which constitutively activated Ras-ERK 1/2 pathway. Cellular senescence could contribute to the organ dysfunction associated with diabetes. Copyright © 2014 Elsevier Ltd. All rights reserved.
2010-01-01
Objective Workers chronically exposed to hexavalent chromium have elevated risk of lung cancer. Our study investigates the incidence of lung cancer types, age at onset of the disease, and survival time among chromium exposed workers with respect to the expression of anti-apoptotic p53 and pro-apoptotic survivin proteins. Materials and methods 67 chromium exposed workers and 104 male controls diagnosed with lung cancer were analyzed. The mean exposure time among workers was 16.7 ± 10.0(SD) years (range 1- 41 years). To investigate the possible regulation of survivin by p53 we examined the expression of both proteins using immohistochemical visualization. Results Chromium exposure significantly decreases the age of onset of the disease by 3.5 years (62.2 ± 9.1 in the exposed group vs. 65.7 ± 10.5 years in controls; P = 0.018). Small cell lung carcinoma (SCLC) amounted for 25.4% of all cases in chromium exposed workers and for 16.3% in non-exposed individuals. The mean survival time in the exposed group was 9.0 ± 12.7 vs. 12.1 ± 21.9 months in controls, but this difference was not significant. Survivin was predominantly expressed in both cell nucleus and cytoplasm, whereas p53 was expressed in the nucleus. There was a negative correlation between survivin and p53 expression. A decreased intensity of expression and fewer cells positive for survivin was detected in SCLC compared with other types of lung cancer. P53 was expressed in 94.1% and survivin in 79.6% of the samples analyzed. Conclusion The study calls attention to decreased expression of survivin, as opposed to p53, in small cell lung carcinoma. PMID:21147621
Paulmurugan, Ramasamy; Afjei, Rayhaneh; Sekar, Thillai V.; Babikir, Husam A.; Massoud, Tarik F.
2018-01-01
Misfolding mutations in the DNA-binding domain of p53 alter its conformation, affecting the efficiency with which it binds to chromatin to regulate target gene expression and cell cycle checkpoint functions in many cancers, including glioblastoma. Small molecule drugs that recover misfolded p53 structure and function may improve chemotherapy by activating p53-mediated senescence. We constructed and optimized a split Renilla luciferase (RLUC) complementation molecular biosensor (NRLUC-p53-CRLUC) to determine small molecule-meditated folding changes in p53 protein. After initial evaluation of the biosensor in three different cells lines, we engineered endogenously p53P98L mutant (i.e. not affecting the DNA-binding domain) Ln229 glioblastoma cells, to express the biosensor containing one of four different p53 proteins: p53wt, p53Y220C, p53G245S and p53R282W. We evaluated the consequent phenotypic changes in these four variant cells as well as the parental cells after exposure to PhiKan083 and SCH529074, drugs previously reported to activate mutant p53 folding. Specifically, we measured induced RLUC complementation and consequent therapeutic response. Upon stable transduction with the p53 biosensors, we demonstrated that these originally p53P98L Ln229 cells had acquired p53 cellular phenotypes representative of each p53 protein expressed within the biosensor fusion protein. In these engineered variants we found a differential drug response when treated with doxorubicin and temozolomide, either independently or in combination with PhiKan083 or SCH529074. We thus developed a molecular imaging complementation biosensor that mimics endogenous p53 function for use in future applications to screen novel or repurposed drugs that counter the effects of misfolding mutations responsible for oncogenic structural changes in p53. PMID:29765555
Cathcart, Jillian M; Banach, Anna; Liu, Alice; Chen, Jun; Goligorsky, Michael; Cao, Jian
2016-09-20
Matrix metalloproteinases (MMPs) play critical roles in cancer invasion and metastasis by digesting basement membrane and extracellular matrix (ECM). Much attention has focused on the enzymatic activities of MMPs; however, the regulatory mechanism of MMP expression remains elusive. By employing bioinformatics analysis, we identified a potential p53 response element within the MMP-14 promoter. Experimentally, we found that p53 can repress MMP-14 promoter activity, whereas deletion of this p53 response element abrogated this effect. Furthermore, we found that p53 expression decreases MMP-14 mRNA and protein levels and attenuates MMP-14-mediated cellular functions. Additional promoter analysis and chromatin immunoprecipitation studies identified a mechanism of regulation of MMP-14 expression by which p53 and transcription factor Sp1 competitively bind to the promoter. As the correlation between inflammation and cancer aggressiveness is well described, we next sought to evaluate if inflammatory cytokines could differentially affect p53 and MMP-14 levels. We demonstrate that interleukin-6 (IL-6) down-regulates p53 protein levels and thus results in a concomitant increase in MMP-14 expression, leading to enhanced cancer cell invasion and metastasis. Our data collectively indicate a novel mechanism of regulation of MMP-14 by a cascade of IL-6 and p53, demonstrating that the tumor microenvironment directly stimulates molecular changes in cancer cells to drive an invasive phenotype.
A minimally invasive assay for individual assessment of the ATM/CHEK2/p53 pathway activity.
Kabacik, Sylwia; Ortega-Molina, Ana; Efeyan, Alejo; Finnon, Paul; Bouffler, Simon; Serrano, Manuel; Badie, Christophe
2011-04-01
Ionizing radiation induces DNA Double-Strand Breaks (DSBs) which activate the ATM/CHEK2/p53 pathway leading to cell cycle arrest and apoptosis through transcription of genes including CDKN1A (p21) and BBC3 (PUMA). This pathway prevents genomic instability and tumorigenesis as demonstrated in heritable syndromes [e.g. Ataxia Telangiectasia (AT); Li-Fraumeni syndrome (LFS)]. Here, a simple assay based on gene expression in peripheral blood to measure accurately ATM/CHEK2/p53 pathway activity is described. The expression of p21, Puma and Sesn2 was determined in blood from mice with different gene copy numbers of Atm, Trp53 (p53), Chek2 or Arf and in human blood and mitogen stimulated T-lymphocyte (MSTL) cultures from AT, AT carriers, LFS patients, and controls, both before and after ex vivo ionizing irradiation. Mouse Atm/Chek2/p53 activity was highly dependent on the copy number of each gene except Arf. In human MSTL, an AT case, AT carriers and LFS patients showed responses distinct from healthy donors. The relationship between gene copy number and transcriptional induction upon radiation was linear for p21 and Puma and correlated well with cancer incidence in p53 variant mice. This reliable blood test provides an assay to determine ATM/CHEK2/p53 pathway activity and demonstrates the feasibility of assessing the activity of this essential cancer protection pathway in simple assays. These findings may have implications for the individualized prediction of cancer susceptibility.
Langner, Cord; von Wasielewski, Reinhard; Ratschek, Manfred; Rehak, Peter; Zigeuner, Richard
2004-09-01
To analyze p27 and S-phase kinase-associated protein 2 (Skp2) expression in upper urinary tract transitional cell carcinoma (TCC) with respect to biologic significance. p27 (p27/kip1) is involved in cell cycle control, and loss of p27 protein expression may result in tumor development and/or progression. The association of p27 with the ubiquitin ligase subunit Skp2 targets p27 for degradation. A total of 53 upper urinary tract TCC specimens were investigated immunohistochemically using a tissue microarray technique. The immunoreactivity of p27 and Skp2 was analyzed with respect to associations with pT stage, grade, and prognosis. Non-neoplastic renal tissue showed p27 immunoreactivity in tubule epithelium and pelvic urothelium, but lacked immunoreactivity for Skp2. In the TCC specimens, p27 immunoreactivity was noted in 47 (89%) of 53 cases. High p27 expression (50% or greater of tumor cell nuclei) tended to decrease with rising tumor stage (14 [45%] of 31 with pT1-pT2 versus 4 [18%] of 22 with pT3; P = 0.076), but was independent of tumor grade (11 [39%] of 28 grade 2 versus 7 [28%] of 25 grade 3-4; P = 0.56). Skp2 immunoreactivity was noted in 32 (60%) of 53 tumors. Skp2 expression increased with rising tumor stage (9 [41%] of 22 pT1 versus 23 [74%] of 31 pT2-pT3; P = 0.023) and tumor grade (12 [43%] of 28 grade 2 versus 20 [80%] of 25 grade 3; P = 0.043) and was associated with angioinvasion (P = 0.017). In multivariate analysis, tumor stage proved to be the only independent prognostic factor regarding disease-free survival. p27 and Skp2 are additional biomarkers in urogenital pathologic findings. The statistically significant association of Skp2 expression with high-grade TCC, as well as the lack of expression in non-neoplastic tissue, suggests that Skp2 could be a promising target for future cancer therapy strategies.
A common carcinogen benzo[a]pyrene causes p53 overexpression in mouse cervix via DNA damage.
Gao, Meili; Li, Yongfei; Sun, Ying; Long, Jiangang; Kong, Yu; Yang, Shuiyun; Wang, Yili
2011-09-18
Benzo[a]pyrene (BaP) is cytotoxic and/or genotoxic to lung, stomach and skin tissue in the body. However, the effect of BaP on cervical tissue remains unclear. The present study detected DNA damage and the expression of the p53 gene in BaP-induced cervical tissue in female mice. Animals were intraperitoneally injected and orally gavaged with BaP at the doses of 2.5, 5, and 10mg/kg twice a week for 14 weeks. The single-cell gel electrophoresis (SCGE) assay was used to detect the DNA damage. Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to detect the expression of p53 protein and p53 mRNA, respectively. The results showed that BaP induced a significant and dose-dependent increase of the number of cells with DNA damaged and the tail length as well as Comet tail moment in cervical tissue. The expression level of p53 protein and mRNA was increased. The results demonstrate that BaP may show toxic effect on the cervix by increasing DNA damage and the expression of the p53 gene. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Yunyun; Ji, Feng; Jiang, Yuzhi; Zhao, Ting; Xu, Chongfu
2018-01-01
To explore the correlation of the expression levels of phosphate and tension homology deleted on chromosome ten (PTEN) and p53 of glioblastoma multiforme (GBM) with the value obtained by magnetic resonance spectroscopy (MRS) and apparent diffusion coefficient (ADC) in the tumor and the tumor-adjacent area in magnetic resonance imaging (MRI). A total of 38 patients were operated for GBM. All the patients had received diffusion-weighted imaging (DWI) and MRS prior to surgery. ADC of water molecules and values of metabolite indexes of MRS, including n-acetyl aspartate (NAA), choline (Cho) and creatine (Cr), were recorded, and the ratios of Cho/NAA, Cho/Cr and NAA/Cr were calculated. Hematoxylin-eosin (H&E) staining was done to examine the morphology of tumor and of tumor-adjacent tissues; immunohistochemistry (IHC) was performed to examine the expressions of PTEN and p53 in the tumor and the tumor-adjacent area. Finally, the correlations of the expressions of PTEN and p53 with ADC, Cho/NAA, Cho/Cr and NAA/Cr of the tumor and the tumor-adjacent area were analyzed. H&E staining showed that GBM tissues had disordered morphology, different sizes of cells, large cell nuclei and significant cell heterogeneity. IHC indicated that the expression level of p53 protein in the tumor was significantly higher than in the tumor-adjacent tissues (p<0.05). The expression level of PTEN protein was high in the tumor-adjacent tissues, but significantly deficient in the tumor. DWI showed that the signal of DWI in the tumor was significantly increased, but ADC was decreased compared with the tumor-adjacent area. MRS indicated that the wave band of Cho in the tumor was significantly increased, NAA was significantly lowered, and Cr section was decreased compared with the tumor-adjacent area, while NAA/Cr in the tumor was significantly decreased compared with the tumoradjacent area (p<0.05). Correlation analysis indicated that PTEN levels in the tumor and the tumor-adjacent area were positively correlated with ADC in the corresponding area, while p53 in the tumor and the tumor-adjacent area was negatively correlated with ADC in the corresponding area. Cho/NAA and Cho/Cr in the tumor were positively correlated with p53 in the tumor, but negatively correlated with PTEN in the tumor. However, NAA/Cr of the tumor was irrelevant to the levels of PTEN and p53. The test results of DWI and MRS of patients with GBM can accurately reflect the inactivation or mutation of PTEN and p53.
p53 AND MDM2 PROTEIN EXPRESSION IN ACTINIC CHEILITIS
de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida
2008-01-01
Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia. PMID:19082401
p53 and MDM2 protein expression in actinic cheilitis.
de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida
2008-01-01
Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia.
Montazeri, Maryam; Pilehvar-Soltanahmadi, Younes; Mohaghegh, Mina; Panahi, Alireza; Khodi, Samaneh; Zarghami, Nosratollah; Sadeghizadeh, Majid
2017-01-01
The aim of this paper is to investigate the effect of dendrosomal curcumin (DNC) on the expression of p53 in both p53 mutant cell lines SKBR3/SW480 and p53 wild-type MCF7/HCT116 in both RNA and protein levels. Curcumin, derived from Curcumin longa, is recently considered in cancer related researches for its cell growth inhibition properties. p53 is a common tumor-suppressor gene involved in cancers and its mutation not only inhibits tumor suppressor activity but also promotes oncogenic activity. Here, p53 mutant/Wild-type cells were employed to study the toxicity of DNC using MTT assay, Flow cytometry and Annexin-V, Real-time PCR and Western blot were used to analyze p53, BAX, Bcl-2, p21 and Noxa changes after treatment. During the time, DNC increased the SubG1 cells and decreased G1, S and G2/M cells, early apoptosis also indicated the inhibition of cell growth in early phase. Real-Time PCR assay showed an increased mRNA of BAX, Noxa and p21 during the time with decreased Bcl-2. The expression of p53 mutant decreased in SKBR3/SW480, and the expression of p53 wild-type increased in MCF7/HCT116. Consequently, p53 plays an important role in mediating the survival by DNC, which can prevent tumor cell growth by modulating the expression of genes involved in apoptosis and proliferation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Yao, Pei-Li; Chen, Liping; Dobrzański, Tomasz P; Zhu, Bokai; Kang, Boo-Hyon; Müller, Rolf; Gonzalez, Frank J; Peters, Jeffrey M
2017-05-01
Neuroblastoma is a common childhood cancer typically treated by inducing differentiation with retinoic acid (RA). Peroxisome proliferator-activated receptor-β/δ, (PPARβ/δ) is known to promote terminal differentiation of many cell types. In the present study, PPARβ/δ was over-expressed in three human neuroblastoma cell lines, NGP, SK-N-BE(2), and IMR-32, that exhibit high, medium, and low sensitivity, respectively, to retinoic acid-induced differentiation to determine if PPARβ/δ and retinoic acid receptors (RARs) could be jointly targeted to increase the efficacy of treatment. All-trans-RA (atRA) decreased expression of SRY (sex determining region Y)-box 2 (SOX2), a stem cell regulator and marker of de-differentiation, in NGP and SK-N-BE(2) cells with inactive or mutant tumor suppressor p53, respectively. However, atRA did not suppress SOX2 expression in IMR-32 cells carrying wild-type p53. Over-expression and/or ligand activation of PPARβ/δ reduced the average volume and weight of ectopic tumor xenografts from NGP, SK-N-BE(2), or IMR-32 cells compared to controls. Compared with that found with atRA, PPARβ/δ suppressed SOX2 expression in NGP and SK-N-BE(2) cells and ectopic xenografts, and was also effective in suppressing SOX2 expression in IMR-32 cells that exhibit higher p53 expression compared to the former cell lines. Combined, these observations demonstrate that activating or over-expressing PPARβ/δ induces cell differentiation through p53- and SOX2-dependent signaling pathways in neuroblastoma cells and tumors. This suggests that combinatorial activation of both RARα and PPARβ/δ may be suitable as an alternative therapeutic approach for RA-resistant neuroblastoma patients. Published [2016]. This article is a U.S. Government work and is in the public domain in the USA.
Effects of p53 on aldosterone-induced mesangial cell apoptosis in vivo and in vitro.
Shi, Huimin; Zhang, Aiqing; He, Yanfang; Yang, Min; Gan, Weihua
2016-06-01
Aldosterone (ALD) is a well‑known hormone, which may initiate renal injury by inducing mesangial cell (MC) injury in chronic kidney disease (CKD); however, the molecular mechanism remains unknown. The aim of the present study was to investigate the effects of p53 on ALD‑induced MC apoptosis and elucidate the underlying molecular mechanism. For the in vivo studies, rats were randomly assigned to receive normal saline or ALD for 4 weeks. The ratio of MC apoptosis was analysed by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. In addition, the expression level and localisation of p53, a well-known cell apoptosis-associated key protein, were detected by immunofluorescence. For the in vitro studies, rat MCs were incubated in medium containing either buffer (control) or ALD (10‑6 M) for 24 h. The cell apoptosis ratio was assessed by flow cytometry, and the expression level of p53 was assessed by reverse transcription quantitative polymerase chain reaction and western blotting. In order to confirm the role of p53 in ALD‑regulated cell apoptosis, a rescue experiment was performed using targeted small interfering (si)RNA to downregulate the expression of p53. The ALD‑treated rats exhibited greater numbers of TUNEL‑positive MCs and higher expression levels of p53 when compared with the control group. Furthermore, the ratio of MC apoptosis and the p53 expression level were significantly increased following ALD exposure, compared with the control group. Additionally, in the rescue experiment, the effects of ALD on MC were blocked by downregulating the expression level of p53 in MCs. The present study hypothesized that ALD may directly contribute to the occurrence of MC apoptosis via p53, which may participate in ALD-induced renal injury.
Watanabe, Hirotaka; Ishibashi, Kojiro; Mano, Hiroki; Kitamoto, Sho; Sato, Nanami; Hoshiba, Kazuya; Kato, Mugihiko; Matsuzawa, Fumihiko; Takeuchi, Yasuto; Shirai, Takanobu; Ishikawa, Susumu; Morioka, Yuka; Imagawa, Toshiaki; Sakaguchi, Kazuyasu; Yonezawa, Suguru; Kon, Shunsuke; Fujita, Yasuyuki
2018-06-26
p53 is a tumor suppressor protein, and its missense mutations are frequently found in human cancers. During the multi-step progression of cancer, p53 mutations generally accumulate at the mid or late stage, but not in the early stage, and the underlying mechanism is still unclear. In this study, using mammalian cell culture and mouse ex vivo systems, we demonstrate that when p53R273H- or p53R175H-expressing cells are surrounded by normal epithelial cells, mutant p53 cells undergo necroptosis and are basally extruded from the epithelial monolayer. When mutant p53 cells alone are present, cell death does not occur, indicating that necroptosis results from cell competition with the surrounding normal cells. Furthermore, when p53R273H mutation occurs within RasV12-transformed epithelia, cell death is strongly suppressed and most of the p53R273H-expressing cells remain intact. These results suggest that the order of oncogenic mutations in cancer development could be dictated by cell competition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Li, Jiming; Zeng, Jingjing; Wu, Lianpin; Tao, Luyuan; Liao, Zhiyong; Chu, Maoping; Li, Lei
2018-06-22
The tumor suppressor p53 is recognized as the guardian of the genome in cell cycle and cell death. P53 expression increases as cardiac hypertrophy worsens to heart failure, suggesting that p53 may play important role in cardiac remodeling. In the present study, deletion of p53 in the mice heart would ameliorate cardiac hypertrophy induced by pressure overload. The role of p53 on heart was investigated using in vivo models. Cardiac hypertrophy in mice was induced by transverse aortic banding surgery. The extent of cardiac hypertrophy was examined by echocardiography, as well as pathological and molecular analyses of heart tissue. Global knockout of p53 in the mice reduced the hypertrophic response and markedly reduced cardiac apoptosis, and fibrosis. Ejection fraction of heart was also improved in hearts without p53 in response to pressure overload. Protein determination further suggested loss of p53 expression markedly increased Hypoxia-inducible factor 1-alpha (HIF1α) and vascular endothelial growth factor (VEGF) expression. The study indicated p53 deteriorated cardiac functions and cardiac hypertrophy, apoptosis, and fibrosis by partially inhibition of HIF1α and VEGF. Copyright © 2018 Elsevier Inc. All rights reserved.
Yin, Jie; Zhang, Yi-An; Liu, Tao-Tao; Zhu, Ji-Min; Shen, Xi-Zhong
2014-01-01
Pre-mRNA processing factor 19 (Prp19) activates pre-mRNA spliceosome and also mediates DNA damage response. Prp19 overexpression in cells with functional p53 leads to decreased apoptosis and increases cell survival after DNA damage. Here we showed that in hepatocellular carcinoma (HCC) cells with inactive p53 or functional p53, Prp19 was down-regulated due to the impaired stability under chemotherapeutic drug treatment. Silencing Prp19 expression enhanced apoptosis of HCC cells with or without chemotherapeutic drug treatment. Furthermore high level of Prp19 may inhibit chemotherapeutic drugs induced apoptosis in hepatocellular carcinoma cells through modulating myeloid leukemia cell differentiation 1 expression. These results indicated that targeting Prp19 may potentiate pro-apoptotic effect of chemotherapeutic agents on HCC.
Gewandter, Jennifer S; Bambara, Robert A
2011-01-01
DNA damage, stalled replication forks, errors in mRNA splicing and availability of nutrients activate specific phosphatidylinositiol-3-kinase-like kinases (PIKKs) that in turn phosphorylate downstream targets such as p53 on serine 15. While the PIKK proteins ATM and ATR respond to specific DNA lesions, SMG1 responds to errors in mRNA splicing and when cells are exposed to genotoxic stress. Yet, whether genotoxic stress activates SMG1 through specific types of DNA lesions or RNA damage remains poorly understood. Here, we demonstrate that siRNA oligonucleotides targeting the mRNA surveillance proteins SMG1, Upf1, Upf2 or the PIKK protein ATM attenuated p53 (ser15) phosphorylation in cells damaged by high oxygen (hyperoxia), a model of persistent oxidative stress that damages nucleotides. In contrast, loss of SMG1 or ATM, but not Upf1 or Upf2 reduced p53 (ser15) phosphorylation in response to DNA double strand breaks produced by expression of the endonuclease I-PpoI. To determine whether SMG1-dependent activation of p53 was in response to oxidative mRNA damage, mRNA encoding green fluorescence protein (GFP) transcribed in vitro was oxidized by Fenton chemistry and transfected into cells. Although oxidation of GFP mRNA resulted in dose-dependent fragmentation of the mRNA and reduced expression of GFP, it did not stimulate p53 or the p53-target gene p21. These findings establish SMG1 activates p53 in response to DNA double strand breaks independent of the RNA surveillance proteins Upf1 or Upf2; however, these proteins can stimulate p53 in response to oxidative stress but not necessarily oxidized RNA. PMID:21701263
MicroRNA-520g Confers Drug Resistance by Regulating p21 Expression in Colorectal Cancer*
Zhang, Yang; Geng, Liying; Talmon, Geoffrey; Wang, Jing
2015-01-01
Development of drug resistance is one of the major causes of colorectal cancer recurrence, yet mechanistic understanding and therapeutic options remain limited. Here, we show that expression of microRNA (miR)-520g is correlated with drug resistance of colon cancer cells. Ectopic expression of miR-520g conferred resistance to 5-fluorouracil (5-FU)- or oxaliplatin-induced apoptosis in vitro and reduced the effectiveness of 5-FU in the inhibition of tumor growth in a mouse xenograft model in vivo. Further studies indicated that miR-520g mediated drug resistance through down-regulation of p21 expression. Moreover, p53 suppressed miR-520g expression, and deletion of p53 up-regulated miR-520g expression. Inhibition of miR-520g in p53−/− cells increased their sensitivity to 5-FU treatment. Importantly, studies of patient samples indicated that expression of miR-520g correlated with chemoresistance in colorectal cancer. These findings indicate that the p53/miR-520g/p21 signaling axis plays an important role in the response of colorectal cancer to chemotherapy. A major implication of our studies is that inhibition of miR-520g or restoration of p21 expression may have considerable therapeutic potential to overcome drug resistance in colorectal cancer patients, especially in those with mutant p53. PMID:25616665
Stankiewicz, Elzbieta; Kudahetti, Sakunthala C; Prowse, David M; Ktori, Elena; Cuzick, Jack; Ambroisine, Laurence; Zhang, Xiaoxi; Watkin, Nicholas; Corbishley, Catherine; Berney, Daniel M
2009-09-01
Penile verrucous carcinoma is a rare disease and little is known of its aetiology or pathogenesis. In this study we examined cell-cycle proteins expression and correlation with human papillomavirus infection in a series of 15 pure penile verrucous carcinomas from a single centre. Of 148 penile tumours, 15 (10%) were diagnosed as pure verrucous carcinomas. The expression of the cell-cycle-associated proteins p53, p21, RB, p16(INK4A) and Ki67 were examined by immunohistochemistry. Human papillomavirus infection was determined by polymerase chain reaction to identify a wide range of virus types. The expression of p16(INK4A) and Ki67 was significantly lower in verrucous carcinoma than in usual type squamous cell carcinoma, whereas the expression of p53, p21 and RB was not significantly different. p53 showed basal expression in contrast to usual type squamous cell carcinoma. Human papillomavirus infection was present in only 3 out of 13 verrucous carcinomas. Unique low-risk, high-risk and mixed viral infections were observed in each of the three cases. In conclusion, lower levels of p16(INK4A) and Ki67 expressions differentiate penile verrucous carcinoma from usual type squamous cell carcinoma. The low Ki67 index reflects the slow-growing nature of verrucous tumours. The low level of p16(INK4A) expression and human papillomavirus detection suggests that penile verrucous carcinoma pathogenesis is unrelated to human papillomavirus infection and the oncogenes and tumour suppressor genes classically altered by virus infection.
Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma.
Köbel, Martin; Piskorz, Anna M; Lee, Sandra; Lui, Shuhong; LePage, Cecile; Marass, Francesco; Rosenfeld, Nitzan; Mes Masson, Anne-Marie; Brenton, James D
2016-10-01
TP53 mutations are ubiquitous in high-grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low-grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged-amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain-of-function (GOF or nonsynonymous), loss-of-function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low-grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of mutation to 96%.
The double life of MULE in preeclamptic and IUGR placentae.
Rolfo, A; Garcia, J; Todros, T; Post, M; Caniggia, I
2012-05-03
The E3 ubiquitin ligase MULE (Mcl-1 Ubiquitin Ligases E3) targets myeloid cell leukemia factor 1 (Mcl-1) and tumor suppressor p53 for proteasomal degradation. Although Mcl-1 and p53 have been implicated in trophoblast cell death in preeclampsia (PE) and intrauterine growth restriction (IUGR), the mechanisms regulating their expression in the human placenta remains elusive. Herein, we investigated MULE's involvement in regulating Mcl-1 and p53 degradation during normal and abnormal (PE, IUGR) placental development. MULE expression peaked at 5-7 weeks of gestation, when oxygen tension is low and inversely correlated with that of Mcl-1 and p53. MULE efficiently bound to Mcl-1 and p53 and regulated their ubiquitination during placental development. Exposure of first trimester villous explants to 3% O(2) resulted in elevated MULE expression compared with 20% O(2). Low-oxygen-induced MULE expression in JEG3 choriocarcinoma cells was abolished by hypoxia-inducible factor (HIF)-1α siRNA. MULE was overexpressed in both PE and IUGR placentae. In PE, MULE preferentially targeted p53 for degradation, allowing accumulation of pro-apoptotic Mcl-1 isoforms. In IUGR, however, MULE targeted pro-survival Mcl-1, allowing p53 to accumulate and exert its apoptotic function. These data demonstrate that oxygen regulates Mcl-1 and p53 stability during placentation via HIF-1-controlled MULE expression. The different preferential targets of MULE in PE and IUGR placentae classify early-onset PE and IUGR as distinct molecular pathologies.
PRL-3 promotes breast cancer progression by downregulating p14ARF-mediated p53 expression.
Xie, Hua; Wang, Hao
2018-03-01
Prior studies have demonstrated that phosphatase of regenerating liver-3 (PRL-3) serves avital function in cell proliferation and metastasis in breast cancer. However, the molecular mechanisms underlying the function of PRL-3 in breast cancer remain unknown. PRL-3 expression was analyzed in 24 pairs of breast cancer and normal tissues using the reverse transcription-quantitative polymerase chain reaction assay. The results of the present study identified that the expression of PLR-3 in breast cancer tissues was increased 4.2-fold, compared with normal tissues. Notably, overexpression of PRL-3 significantly promoted the proliferation of cancer cells and inhibited endogenous p53 expression by downregulating the expression level of p14 alternate reading frame (p14 ARF ). In addition, decreased expression levels of PRL-3 resulted in decreased breast cancer cell proliferation and increased expression level of p14 ARF . These results suggested that PRL-3 enhances cell proliferation by downregulating p14 ARF expression, which results in decreased levels ofp53. The results of the present study demonstrated that PRL-3 promotes tumor proliferation by affecting the p14 ARF -p53 axis, and that it may serve as a prognostic marker for patients with breast cancer.
Albitar, Maher; Sudarsanam, Sucha; Ma, Wanlong; Jiang, Shiping; Chen, Wayne; Funari, Vincent; Blocker, Forrest; Agersborg, Sally
2018-01-01
Background The role of MET amplification in lung cancer, particularly in relation to checkpoint inhibition and EGFR WT, has not been fully explored. In this study, we correlated PD-L1 expression with MET amplification and EGFR, KRAS, or TP53 mutation in primary lung cancer. Methods In this retrospective study, tissue collected from 471 various tumors, including 397 lung cancers, was tested for MET amplification by FISH with a MET/centromere probe. PD-L1 expression was evaluated using clone SP142 and standard immunohistochemistry, and TP53, KRAS, and EGFR mutations were tested using next generation sequencing. Results Our results revealed that PD-L1 expression in non-small cell lung cancer is inversely correlated with EGFR mutation (P=0.0003), and positively correlated with TP53 mutation (P=0.0001) and MET amplification (P=0.004). Patients with TP53 mutations had significantly higher MET amplification (P=0.007), and were more likely (P=0.0002) to be EGFR wild type. There was no correlation between KRAS mutation and overall PD-L1 expression, but significant positive correlation between PD-L1 expression and KRAS with TP53 co-mutation (P=0.0002). A cut-off for the ratio of MET: centromere signal was determined as 1.5%, and 4% of lung cancer patients were identified as MET amplified. Conclusions This data suggests that in lung cancer both MET and TP53 play direct roles in regulating PD-L1 opposing EGFR. Moreover, KRAS and TP53 co-mutation may cooperate to drive PD-L1 expression in lung cancer. Adding MET or TP53 inhibitors to checkpoint inhibitors may be an attractive combination therapy in patients with lung cancer and MET amplification. PMID:29568386
Kwak, Juri; Choi, Jung-Hye; Jang, Kyung Lib
2017-01-01
All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to induce p14 expression via promoter hypomethylation to activate the p14-MDM2-p53 pathway, which leads to activation of the p53-dependent apoptotic pathway and subsequent induction of apoptosis in human hepatoma cells. In the present study, we found that hepatitis C virus (HCV) Core derived from ectopic expression or HCV infection overcomes ATRA-induced apoptosis in p53-positive hepatoma cells. For this effect, HCV Core upregulated both protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b and thereby repressed p14 expression via promoter hypermethylation, resulting in inactivation of the pathway leading to p53 accumulation in the presence of ATRA. As a result, HCV Core prevented ATRA from activating several apoptosis-related molecules, including Bax, p53 upregulated modulator of apoptosis, caspase-9, caspase-3, and poly (ADP-ribose) polymerase. In addition, complementation of p14 in the Core-expressing cells by either ectopic expression or treatment with 5-Aza-2′dC almost completely abolished the potential of HCV Core to suppress ATRA-induced apoptosis. Based on these observations, we conclude that HCV Core executes its oncogenic potential by suppressing the p53-dependent apoptosis induced by ATRA in human hepatoma cells. PMID:29156743
Monti, Stefano; Chapuy, Bjoern; Takeyama, Kunihiko; Rodig, Scott J; Hao, Yangsheng; Yeda, Kelly T.; Inguilizian, Haig; Mermel, Craig; Curie, Treeve; Dogan, Ahmed; Kutok, Jeffery L; Beroukim, Rameen; Neuberg, Donna; Habermann, Thomas; Getz, Gad; Kung, Andrew L; Golub, Todd R; Shipp, Margaret A
2013-01-01
Summary Diffuse large B-cell lymphoma (DLBCL) is a clinically and biologically heterogeneous disease with a high proliferation rate. By integrating copy number data with transcriptional profiles and performing pathway analysis in primary DLBCLs, we identified a comprehensive set of copy number alterations (CNAs) that decreased p53 activity and perturbed cell cycle regulation. Primary tumors either had multiple complementary alterations of p53 and cell cycle components or largely lacked these lesions. DLBCLs with p53 and cell cycle pathway CNAs had decreased abundance of p53 target transcripts and increased expression of E2F target genes and the Ki67 proliferation marker. CNAs of the CDKN2A-TP53-RB-E2F axis provide a structural basis for increased proliferation in DLBCL, predict outcome with current therapy and suggest targeted treatment approaches. PMID:22975378
p53 expression and mutation analysis of odontogenic cysts with and without dysplasia.
Cox, Darren P
2012-01-01
Overexpression of p53 protein is well described in odontogenic cystic lesions (OCLs), including those with epithelial dysplasia; however, most p53 antibodies stain both wild-type and mutated p53 protein and may not reflect genotype. Direct sequencing of the p53 gene has not identified mutations in OCLs with dysplasia. The purpose of this study was to determine the molecular basis of p53 expression in several types of OCLs with and without dysplasia. The study material comprised 13 OCLs: odontogenic keratocyst (n = 5), orthokeratinized odontogenic cyst (n = 5), dentigerous cyst (n = 2), lateral periodontal cyst (n = 1), and unspecified developmental odontogenic cyst (UDOC) (n = 1). Five of these had features of mild or moderate epithelial dysplasia. One intraosseous squamous cell carcinoma (SCC) that was believed to have arisen from an antecedent dysplastic orthokeratinized OC was also included. Immunohistochemistry was performed using the DO7 monoclonal antibody that recognizes wild-type and mutated p53. DNA was extracted from microdissected tissue for all samples and exons 4 to 8 of the p53 gene direct sequenced. In 4 of 5 OCLs with dysplasia there was strong nuclear staining of basal and suprabasal cells. In all cases without dysplasia, nuclear expression in basal cells was either negative or weak and was absent in suprabasal cell nuclei. A mutation in exon 6 of the p53 gene (E224D) was identified in both the dysplastic orthokeratinized OC and the subsequent intraosseous SCC. OCLs with features of dysplasia show increased expression of p53 protein that does not reflect p53 mutational status. One dysplastic OC shared the same p53 mutation with a subsequent intraosseous SCC, indicating that p53 mutation may be associated with malignant transformation in this case. Copyright © 2012 Elsevier Inc. All rights reserved.
Regulators of apoptosis in cholangiocarcinoma.
Jhala, Nirag C; Vickers, Selwyn M; Argani, Pedram; McDonald, Jay M
2005-04-01
Dysregulation of mediators of apoptosis is associated with carcinogenesis. For biliary duct cancers, p53 gene mutation is an important contributor to carcinogenesis. Mutations in the p53 gene affect transcription of the Fas gene, resulting in lack of Fas expression on cell membrane. It has been previously shown that cloned Fas-negative but not Fas-positive human cholangiocarcinoma cells are resistant to anti-Fas-mediated apoptosis and develop tumors in nude mice. In addition, interferon gamma induces Fas expression in Fas-negative cholangiocarcinoma cells and makes them susceptible to apoptosis. Therefore, it becomes important to characterize immunophenotypic expression of p53 and Fas in normal and neoplastic human tissues of the biliary tract to further understand the pathogenesis of the disease. To date, human studies to characterize differences in immunophenotypic expression of the Fas protein between intrahepatic and extrahepatic biliary duct cancers and in their precursor lesions have not been performed. To report the immunophenotypic expression of p53 and Fas expression in various stages in the development of bile duct cancers (intrahepatic and extrahepatic tumor location) and their association with tumor differentiation. Thirty bile duct cancer samples (13 intrahepatic and 17 extrahepatic) from 18 men and 12 women who ranged in age from 44 to 77 years (mean age, 65.6 years) were retrieved from the surgical pathology files. Hematoxylin-eosin-stained slides were evaluated for the type and grade of tumor and dysplastic changes in the biliary tract epithelium. Additional slides were immunohistochemically stained with p53 and anti-Fas mouse monoclonal antibody. The pattern of Fas distribution and percentage of cells positive for p53 and Fas expression were determined. The percentage of Fas-expressing cells is significantly (P = .01) more frequently noted in extrahepatic tumors compared with intrahepatic tumors. Furthermore, Fas expression decreased from dysplastic epithelium to cholangiocarcinoma (P = .01), and this decreasing trend continued from well to poorly differentiated tumors. Nuclear p53 expression was not identified in normal and dysplastic epithelium but was noted in 30% of carcinomas (P = .02). Fas expression is an early event in pathogenesis of bile duct cancers. Immunophenotypic expression of Fas is associated with well to moderately differentiated tumors but not with poor tumor differentiation.
Human T-Cell Leukemia Virus I Tax Protein Sensitizes p53-Mutant Cells to DNA Damage
Mihaylova, Valia T.; Green, Allison M.; Khurgel, Moshe; Semmes, Oliver J.; Kupfer, Gary M.
2018-01-01
Mutations in p53 are a common cause of resistance of cancers to standard chemotherapy and, thus, treatment failure. Reports have shown that Tax, a human T-cell leukemia virus type I encoded protein that has been associated with genomic instability and perturbation of transcription and cell cycle, sensitizes HeLa cells to UV treatment. The extent to which Tax can sensitize cells and the mechanism by which it exerts its effect are unknown. In this study, we show that Tax sensitizes p53-mutant cells to a broad range of DNA-damaging agents, including mitomycin C, a bifunctional alkylator, etoposide, a topoisomerase II drug, and UV light, but not ionizing radiation, a double-strand break agent, or vinblastine, a tubulin poison. Tax caused hypersensitivity in all p53-deleted cell lines and several, but not all, mutant-expressed p53–containing cell lines, while unexpectedly being protective in p53 wild-type (wt) cells. The effect observed in p53-deleted lines could be reversed for this by transfection of wt p53. We also show that Tax activates a p53-independent proapoptotic program through decreased expression of the retinoblastoma protein and subsequent increased E2F1 expression. The expression of several proapoptotic proteins was also induced by Tax, including Puma and Noxa, culminating in a substantial increase in Bax dimerization. Our results show that Tax can sensitize p53-mutant cells to DNA damage while protecting p53 wt cells, a side benefit that might result in reduced toxicity in normal cells. Such studies hold the promise of a novel adjunctive therapy that could make cancer chemotherapy more effective. PMID:18559532
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djuzenova, Cholpon S., E-mail: djuzenova_t@ukw.de; Fiedler, Vanessa; Memmel, Simon
Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut),more » U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed.« less
Liang, Yayun; Mafuvadze, Benford; Besch-Williford, Cynthia; Hyder, Salman M
2018-01-01
Background Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53) lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood vessels, which serve as the major route for tumor metastasis, in tumor xenografts compared with either agent alone. Conclusion Based on our findings, we contend that breast tumor growth might effectively be controlled by simultaneous targeting of mtp53 protein and tumor blood vessels in mtp53-expressing cancers. PMID:29606888
Suppression of HPV E6 and E7 expression by BAF53 depletion in cervical cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kiwon; Lee, Ah-Young; Kwon, Yunhee Kim
Highlights: {yields} Integration of HPV into host genome critical for activation of E6 and E7 oncogenes. {yields} BAF53 is essential for higher-order chromatin structure. {yields} BAF53 knockdown suppresses E6 and E7 from HPV integrants, but not from episomal HPVs. {yields} BAF53 knockdown decreases H3K9Ac and H4K12Ac on P105 promoter of integrated HPV 18. {yields} BAF53 knockdown restores the p53-dependent signaling pathway in HeLa and SiHa cells. -- Abstract: Deregulation of the expression of human papillomavirus (HPV) oncogenes E6 and E7 plays a pivotal role in cervical carcinogenesis because the E6 and E7 proteins neutralize p53 and Rb tumor suppressor pathways,more » respectively. In approximately 90% of all cervical carcinomas, HPVs are found to be integrated into the host genome. Following integration, the core-enhancer element and P105 promoter that control expression of E6 and E7 adopt a chromatin structure that is different from that of episomal HPV, and this has been proposed to contribute to activation of E6 and E7 expression. However, the molecular basis underlying this chromatin structural change remains unknown. Previously, BAF53 has been shown to be essential for the integrity of higher-order chromatin structure and interchromosomal interactions. Here, we examined whether BAF53 is required for activated expression of E6 and E7 genes. We found that BAF53 knockdown led to suppression of expression of E6 and E7 genes from HPV integrants in cervical carcinoma cell lines HeLa and SiHa. Conversely, expression of transiently transfected HPV18-LCR-Luciferase was not suppressed by BAF53 knockdown. The level of the active histone marks H3K9Ac and H4K12Ac on the P105 promoter of integrated HPV 18 was decreased in BAF53 knockdown cells. BAF53 knockdown restored the p53-dependent signaling pathway in HeLa and SiHa cells. These results suggest that activated expression of the E6 and E7 genes of integrated HPV is dependent on BAF53-dependent higher-order chromatin structure or nuclear motor activity.« less
Constant p53 Pathway Inactivation in a Large Series of Soft Tissue Sarcomas with Complex Genetics
Pérot, Gaëlle; Chibon, Frédéric; Montero, Audrey; Lagarde, Pauline; de Thé, Hugues; Terrier, Philippe; Guillou, Louis; Ranchère, Dominique; Coindre, Jean-Michel; Aurias, Alain
2010-01-01
Alterations of the p53 pathway are among the most frequent aberrations observed in human cancers. We have performed an exhaustive analysis of TP53, p14, p15, and p16 status in a large series of 143 soft tissue sarcomas, rare tumors accounting for around 1% of all adult cancers, with complex genetics. For this purpose, we performed genomic studies, combining sequencing, copy number assessment, and expression analyses. TP53 mutations and deletions are more frequent in leiomyosarcomas than in undifferentiated pleomorphic sarcomas. Moreover, 50% of leiomyosarcomas present TP53 biallelic inactivation, whereas most undifferentiated pleomorphic sarcomas retain one wild-type TP53 allele (87.2%). The spectrum of mutations between these two groups of sarcomas is different, particularly with a higher rate of complex mutations in undifferentiated pleomorphic sarcomas. Most tumors without TP53 alteration exhibit a deletion of p14 and/or lack of mRNA expression, suggesting that p14 loss could be an alternative genotype for direct TP53 inactivation. Nevertheless, the fact that even in tumors altered for TP53, we could not detect p14 protein suggests that other p14 functions, independent of p53, could be implicated in sarcoma oncogenesis. In addition, both p15 and p16 are frequently codeleted or transcriptionally co-inhibited with p14, essentially in tumors with two wild-type TP53 alleles. Conversely, in TP53-altered tumors, p15 and p16 are well expressed, a feature not incompatible with an oncogenic process. PMID:20884963
EBNA3C regulates p53 through induction of Aurora kinase B
Jha, Hem C.; Yang, Karren; El-Naccache, Darine W.; Sun, Zhiguo; Robertson, Erle S.
2015-01-01
In multicellular organisms p53 maintains genomic integrity through activation of DNA repair, and apoptosis. EBNA3C can down regulate p53 transcriptional activity. Aurora kinase (AK) B phosphorylates p53, which leads to degradation of p53. Aberrant expression of AK-B is a hallmark of numerous human cancers. Therefore changes in the activities of p53 due to AK-B and EBNA3C expression is important for understanding EBV-mediated cell transformation. Here we show that the activities of p53 and its homolog p73 are dysregulated in EBV infected primary cells which can contribute to increased cell transformation. Further, we showed that the ETS-1 binding site is crucial for EBNA3C-mediated up-regulation of AK-B transcription. Further, we determined the Ser 215 residue of p53 is critical for functional regulation by AK-B and EBNA3C and that the kinase domain of AK-B which includes amino acid residues 106, 111 and 205 was important for p53 regulation. AK-B with a mutation at residue 207 was functionally similar to wild type AK-B in terms of its kinase activities and knockdown of AK-B led to enhanced p73 expression independent of p53. This study explores an additional mechanism by which p53 is regulated by AK-B and EBNA3C contributing to EBV-induced B-cell transformation. PMID:25691063
Cathcart, Jillian M.; Banach, Anna; Liu, Alice; Chen, Jun; Goligorsky, Michael; Cao, Jian
2016-01-01
Matrix metalloproteinases (MMPs) play critical roles in cancer invasion and metastasis by digesting basement membrane and extracellular matrix (ECM). Much attention has focused on the enzymatic activities of MMPs; however, the regulatory mechanism of MMP expression remains elusive. By employing bioinformatics analysis, we identified a potential p53 response element within the MMP-14 promoter. Experimentally, we found that p53 can repress MMP-14 promoter activity, whereas deletion of this p53 response element abrogated this effect. Furthermore, we found that p53 expression decreases MMP-14 mRNA and protein levels and attenuates MMP-14-mediated cellular functions. Additional promoter analysis and chromatin immunoprecipitation studies identified a mechanism of regulation of MMP-14 expression by which p53 and transcription factor Sp1 competitively bind to the promoter. As the correlation between inflammation and cancer aggressiveness is well described, we next sought to evaluate if inflammatory cytokines could differentially affect p53 and MMP-14 levels. We demonstrate that interleukin-6 (IL-6) down-regulates p53 protein levels and thus results in a concomitant increase in MMP-14 expression, leading to enhanced cancer cell invasion and metastasis. Our data collectively indicate a novel mechanism of regulation of MMP-14 by a cascade of IL-6 and p53, demonstrating that the tumor microenvironment directly stimulates molecular changes in cancer cells to drive an invasive phenotype. PMID:27531896
MicroRNA-125b is a novel negative regulator of p53.
Le, Minh T N; Teh, Cathleen; Shyh-Chang, Ng; Xie, Huangming; Zhou, Beiyan; Korzh, Vladimir; Lodish, Harvey F; Lim, Bing
2009-04-01
The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3' untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with gamma-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response.
MicroRNA-125b is a novel negative regulator of p53
Le, Minh T.N.; Teh, Cathleen; Shyh-Chang, Ng; Xie, Huangming; Zhou, Beiyan; Korzh, Vladimir; Lodish, Harvey F.; Lim, Bing
2009-01-01
The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3′ untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with γ-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response. PMID:19293287
Khabir, A; Sellami, A; Sakka, M; Ghorbel, A M; Daoud, J; Frikha, M; Drira, M M; Busson, P; Jlidi, R
2000-10-01
EBV-associated nasopharyngeal carcinomas (NPCs) from Southeast Asia and North Africa have many common clinical and biological characteristics. However, they differ with regard to their age distribution. In Asia, NPC mainly affects patients in the 4th or 5th decade of their life, whereas in North Africa an additional peak of incidence is found between the ages of 10 and 20. The p53 gene is rarely mutated in NPC. However, several groups have reported a consistent accumulation of p53 in Asian NPCs. To determine whether p53 was also accumulated in North African NPCs, we investigated its expression, by immunohistochemistry, in a series of 90 Tunisian biopsies. Bc12 and CD95, two proteins involved in the regulation of cell survival and apoptosis, were investigated in the same study. We found accumulation of p53 in 81% of the cases for patients over 30 years of age, but in only 38% of specimens for younger patients (P = 0.00013). There was a trend toward a higher frequency of Bc12 detection in patients over 30, but it was not statistically significant. CD95 expression was detected in all biopsies, generally at a high level, even at advanced stages of the disease. The changing frequency of p53 accumulation, below and over 30, suggests that NPC cells often achieve malignant transformation through different pathways in both age groups.
Zhan, Renya; Xu, Kangli; Pan, Jianwei; Xu, Qingsheng; Xu, Shengjie; Shen, Jian
2017-08-26
This study aimed to explore the mechanism of lncRNA MEG3 on angiogenesis after cerebral infarction (CI). The rat brain microvascular endothelial cells (RBMVECs) isolated from rat was used to establish CI model, which were treated with oxygen-glucose deprivation/reoxygenation (OGD/R). The genes mRNA and protein expression levels in RBMVECs were determined by the quantitative real-time polymerase chain reaction (RT-qPCR) and western blot, respectively. The flow cytometry was used to measured cell apoptosis and intracellular reactive oxygen species (ROS) generation. The RBMVECs activities was detected by MTT method. The RNA-immunoprecipitation (RIP) assay was used to detect the interaction between MEG3 and p53, and the relationship between p53 and NOX4 was proved by chromatin co-immunoprecipitation (chip) assay. The results showed that OGD or OGD/R increased MEG3 and NOX4 expression, and there was positive correlation between MEG3 and NOX4 expression in RBMVECs. Next, knockdown of MEG3 indicated that inhibition of MEG3 was conducive to protect RBMVECs against OGD/R-induced apoptosis, with decreased NOX4 and p53 expression, further enhanced pro-angiogenic factors (HIF-1α and VEGF) expression, and reduced intracellular ROS generation. And then the RIP and CHIP assay demonstrated that MEG3 could interacted with p53 and regulated its expression, and p53 exerted significant binding in the promoters for NOX4, suggesting that MEG3 regulated NOX4 expression via p53. At last, knockdown of NOX4 indicated that inhibition of NOX4 protected RBMVECs against OGD/R-induced apoptosis, with increased cell viability and pro-angiogenic factors expression, and reduced ROS generation. LncRNA MEG3 was an important regulator in OGD/R induced-RBMVECs apoptosis and the mechanism of MEG3 on angiogenesis after CI was reduced ROS by p53/NOX4 axis. Copyright © 2017 Elsevier Inc. All rights reserved.
Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA.
Zhao, Carolyn Y; Grinkevich, Vera V; Nikulenkov, Fedor; Bao, Wenjie; Selivanova, Galina
2010-05-01
Expression of mutant p53 correlates with poor prognosis in many tumors, therefore strategies aimed at reactivation of mutant p53 are likely to provide important benefits for treatment of tumors that are resistant to chemotherapy and radiotherapy. We have previously identified and characterized a small molecule RITA which binds p53 and induces a conformational change which prevents the binding of p53 to several inhibitors, including its own destructor MDM2. In this way, RITA rescues the tumor suppression function of wild type p53. Here, we demonstrate that RITA suppressed the growth and induced apoptosis in human tumor cell lines of a diverse origin carrying mutant p53 proteins. RITA restored transcriptional transactivation and transrepression function of several hot spot p53 mutants. The ability of RITA to rescue the activity of different p53 mutants suggests its generic mechanism of action. Thus, RITA is a promising lead for the development of anti-cancer drugs that reactivate the tumor suppressor function of p53 in cancer cells irrespective whether they express mutant or wild type p53.
Training Performed Above Lactate Threshold Decreases p53 and Shelterin Expression in Mice.
de Carvalho Cunha, Verusca Najara; Dos Santos Rosa, Thiago; Sales, Marcelo Magalhães; Sousa, Caio Victor; da Silva Aguiar, Samuel; Deus, Lysleine Alves; Simoes, Herbert Gustavo; de Andrade, Rosangela Vieira
2018-06-26
Telomere shortening is associated to sarcopenia leading to functional impairment during aging. There are mechanisms associated with telomere attrition, as well to its protection and repair. Physical training is a factor that attenuates telomere shortening, but little is known about the effects of different exercise intensities on telomere biology. Thus, we evaluated the effects of exercise intensity (moderate vs. high-intensity domain) on gene expression of senescence markers Checkpoint kinase 2 and tumor suppressor ( Chk2 and p53 , respectively), shelterin telomere repeat binding 1 and 2 ( Trf1 / Trf2 ), DNA repair ( Xrcc5 ), telomerase reverse transcriptase ( mTERT ) and telomere length in middle aged mice. Three groups were studied: a control group (CTL) and two groups submitted to swimming at intensities below the lactate threshold (LI group) and above the lactate threshold (HI group) for 40 and 20 min respectively, for 12 weeks. After training, the HI group showed reduction in p53 expression in the muscle, and decreased shelterin complex expression when compared to LI group. No differences were observed between groups for mTERT expression and telomere length. Thus, exercise training in high-intensity domain was more effective on reducing markers of senescence and apoptosis. The higher intensity exercise training also diminished shelterin expression, with no differences in telomere length and mTERT expression. Such results possibly indicate a more effective DNA protection for the higher-intensity exercise training. © Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Youn-hee; Kim, Donghern; Dai, Jin
Occupational and environmental exposure to arsenic (III) and chromium VI (Cr(VI)) have been confirmed to cause lung cancer. Mechanisms of these metals carcinogenesis are still under investigation. Selection of cell lines to be used is essential for the studies. Human bronchial epithelial BEAS-2B cells are the cells to be utilized by most of scientists. However, due to p53 missense mutation (CCG → TCG) at codon 47 and the codon 72 polymorphism (CGC → CCC) in BEAS-2B cells, its usage has frequently been questioned. The present study has examined activity and expression of 53 and its downstream target protein p21 uponmore » acute or chronic exposure of BEAS-2B cells to arsenic and Cr(VI). The results show that short-term exposure of BEAS-2B cells to arsenic or Cr(VI) was able to activate both p53 and p21. Chronic exposure of BEAS-2B cells to these two metals caused malignant cell transformation and tumorigenesis. In arsenic-transformed BEAS-2B cells reductions in p53 promoter activity, mRNA expression, and phosphorylation of p53 at Ser392 were observed, while the total p53 protein level remained the same compared to those in passage-matched parent ones. p21 promoter activity and expression were decreased in arsenic-transformed cells. Cr(VI)-transformed cells exhibit elevated p53 promoter activity, mRNA expression, and phosphorylation at Ser15, but reduced phosphorylation at Ser392 and total p53 protein level compared to passage-matched parent ones. p21 promoter activity and expression were elevated in Cr(VI)-transformed cells. These results demonstrate that p53 is able to respond to exposure of arsenic or Cr(VI), suggesting that BEAS-2B cells are an appropriate in vitro model to investigate arsenic or Cr(VI) induced lung cancer. - Highlights: • Short-term exposure of BEAS-2B cells to arsenic or Cr(VI) activates p53 and p21. • Chronic exposure of BEAS-2B cells to arsenic or Cr(VI) causes cell transformation and tumorigenesis. • Arsenic-transformed cells exhibit reduced activities of p53 and p21. • Cr(VI)-transformed cells exhibit increased activities of p53 and p21.« less
Castellano, Joan J; Navarro, Alfons; Viñolas, Nuria; Marrades, Ramon M; Moises, Jorge; Cordeiro, Anna; Saco, Adela; Muñoz, Carmen; Fuster, Dolors; Molins, Laureano; Ramirez, Josep; Monzo, Mariano
2016-12-01
Long intergenic noncoding RNA-p21 (lincRNA-p21) is a long noncoding RNA transcriptionally activated by tumor protein p53 (TP53) and hypoxia inducible factor 1 alpha subunit (HIF1A). It is involved in the regulation of TP53-dependent apoptosis and the Warburg effect. We have investigated the role of lincRNA-p21 in NSCLC. LincRNA-p21 expression was assessed in tumor and normal tissue from 128 patients with NSCLC and correlated with time to relapse and cancer-specific survival (CSS). H23, H1299, and HCC-44 cell lines were cultured in hypoxic conditions after silencing of lincRNA-p21. The TaqMan human angiogenesis array was used to explore angiogenesis-related gene expression. Levels of the protein vascular endothelial growth factor A were measured by enzyme-linked immunosorbent assay in the cell supernatants. Angiogenic capability was measured by human umbilical vein endothelial cell tube formation assay. Microvascular density in tumor samples was analyzed by immunohistochemistry. LincRNA-p21 was down-regulated in tumor tissue, but no association was observed with TP53 mutational status. High lincRNA-p21 levels were associated with poor CSS in all patients (p = 0.032). When patients were classified according to histological subtypes, the impact of lincRNA-p21 was confined to patients with adenocarcinoma in both time to relapse (p = 0.006) and CSS (p < 0.001). To explain the poor outcome of patients with high lincRNA-p21 expression, we studied the role of lincRNA-p21 in angiogenesis in vitro and observed a global downregulation in the expression of angiogenesis-related genes when lincRNA-p21 was inhibited. Moreover, supernatants from lincRNA-p21-inhibited cells were significantly less angiogenic and had lower levels of secreted vascular endothelial growth factor A than controls did. Finally, tumor samples with high lincRNA-p21 levels had higher microvascular density. Our findings suggest that lincRNA-p21 affects outcome in patients with NSCLC adenocarcinoma through the regulation of angiogenesis. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Long, Fei; Liu, Ying; Liu, Zhenzhen; Li, Song; Yang, Xuejun; Sun, Deguang; Wang, Haibo; Liu, Qinlong; Liang, Rui; Li, Yan; Gao, Zhenming; Shao, Shujuan; Miao, Qing Robert; Wang, Liming
2016-01-01
Nogo-B receptor (NgBR), a type I single transmembrane domain receptor is the specific receptor for Nogo-B. Our previous work demonstrated that NgBR is highly expressed in breast cancer cells, where it promotes epithelial mesenchymal transition (EMT), an important step in metastasis. Here, we show that both in vitro and in vivo increased expression of NgBR contributes to the increased chemoresistance of Bel7402/5FU cells, a stable 5-FU (5-Fluorouracil) resistant cell line related Bel7402 cells. NgBR knockdown abrogates S-phase arrest in Bel7402/5FU cells, which correlates with a reduction in G1/S phase checkpoint proteins p53 and p21. In addition, NgBR suppresses p53 protein levels through activation of the PI3K/Akt/MDM2 pathway, which promotes p53 degradation via the ubiquitin proteasome pathway and thus increases the resistance of human hepatocellular cancer cells to 5-FU. Furthermore, we found that NgBR expression is associated with a poor prognosis of human hepatocellular carcinoma (HCC) patients. These results suggest that targeting NgBR in combination with chemotherapeutic drugs, such as 5-FU, could improve the efficacy of current anticancer treatments. PMID:26840457
Chaperone-mediated autophagy degrades mutant p53
Vakifahmetoglu-Norberg, Helin; Kim, Minsu; Xia, Hong-guang; Iwanicki, Marcin P.; Ofengeim, Dimitry; Coloff, Jonathan L.; Pan, Lifeng; Ince, Tan A.; Kroemer, Guido; Brugge, Joan S.; Yuan, Junying
2013-01-01
Missense mutations in the gene TP53, which encodes p53, one of the most important tumor suppressors, are common in human cancers. Accumulated mutant p53 proteins are known to actively contribute to tumor development and metastasis. Thus, promoting the removal of mutant p53 proteins in cancer cells may have therapeutic significance. Here we investigated the mechanisms that govern the turnover of mutant p53 in nonproliferating tumor cells using a combination of pharmacological and genetic approaches. We show that suppression of macroautophagy by multiple means promotes the degradation of mutant p53 through chaperone-mediated autophagy in a lysosome-dependent fashion. In addition, depletion of mutant p53 expression due to macroautophagy inhibition sensitizes the death of dormant cancer cells under nonproliferating conditions. Taken together, our results delineate a novel strategy for killing tumor cells that depend on mutant p53 expression by the activation of chaperone-mediated autophagy and potential pharmacological means to reduce the levels of accumulated mutant p53 without the restriction of mutant p53 conformation in quiescent tumor cells. PMID:23913924
Suppression of Familial Adenomatous Polyposis by CP-31398, a TP53 modulator, in APCmin/+ Mice1
Rao, Chinthalapally V.; Swamy, Malisetty V.; Patlolla, Jagan M.R.; Kopelovich, Levy
2008-01-01
p53 mutations occur in a large number of human malignancies. Mutant p53 is unable to affect downstream genes necessary for DNA repair, cell cycle regulation, and apoptosis. The styrylquinazoline CP-31398 can rescue destabilized mutant p53 expression and promote activity of wild-type p53. The present study examines chemopreventive effects of CP-31398 on intestinal adenoma development in an animal model of familial adenomatous polyposis (FAP). Effects were examined at both early and late stages of adenoma formation. Effects of CP-31398 on early-stage adenomas were determined by feeding 7-week-old female C57B/6J-APCmin (heterozygous) and wild-type C57BL/6J mice with American Institute of Nutrition (AIN)-76A diets containing 0, 100, or 200 ppm CP-31398 for 75 days. To examine activity toward late-stage adenomas, CP31398 administration was delayed until 15 weeks of age and continued for 50 days. During early-stage intervention, dietary CP-31398 suppressed development of intestinal tumors by 36% (p < 0.001) and 75% (p < 0.0001), at low and high dose, respectively. During late-stage intervention, CP-31398 also significantly suppressed intestinal polyp formation, albeit to a lesser extent than observed with early intervention. Adenomas in treated mice showed increased apoptotic cell death and decreased proliferation in conjunction with increased expression of p53, p21WAF1/CIP, cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase (PARP). These observations demonstrate for the first time that the p53-modulating agent CP-31398 possesses significant chemopreventive activity in vivo against intestinal neoplastic lesions in genetically-predisposed APCmin/+ mice. Chemopreventive activity of other agents that restore tumor suppressor functions of mutant p53 in tumor cells is currently under investigation. PMID:18794156
Jeannon, J-P; Soames, J V; Aston, V; Stafford, F W; Wilson, J A
2004-12-01
Premalignant conditions affect the larynx. Dysplasia can progress in severity resulting in cancer depending on many clinical, pathological and molecular factors. The purpose of this study was to examine the expression of the p21 and p27 cyclin-dependent kinase inhibitors and p53 tumour suppressor gene in dysplasia of the larynx. A total of 114 cases of untreated dysplasia were selected from the archives of the University of Newcastle. p21, p27 and p53 immunohistochemistry was performed and the cases followed up. Twenty-eight dysplasias (24%) subsequently developed into cancers. Expression of the molecular factors studied was not associated with cancer progression. p53 expression was associated with smoking (P = 0.005). In contrast, grade of dysplasia was significantly associated with cancer risk (odds ratio 6.7; P = 0.0001). The majority (75%) of cancers were detected within 12 months of dysplasia being diagnosed.
Ribeiro, Daniel A; Nascimento, Fabio D; Fracalossi, Ana Carolina C; Gomes, Thiago S; Oshima, Celina T F; Franco, Marcello F
2010-01-01
The aim of this study was to investigate the expressions of cell cycle regulatory proteins such as p53, p16, p21, and Rb in squamous cell carcinoma of the oropharynx and their relation to histological differentiation, staging of disease, and prognosis. Paraffin blocks from 21 primary tumors were obtained from archives of the Department of Pathology, Paulista Medical School, Federal University of Sao Paulo, UNIFESP/EPM. Immunohistochemistry was used to detect the expression of p53, p16, p21, and Rb by means of tissue microarrays. Expression of p53, p21, p16 and Rb was not correlated with the stage of disease, histopathological grading or recurrence in squamous cell carcinoma of the oropharynx. Taken together, our results suggest that p53, p16, p21 and Rb are not reliable biomarkers for prognosis of the tumor severity or recurrence in squamous cell carcinoma of the oropharynx as depicted by tissue microarrays and immunohistochemistry.
Zhang, M; Zhou, Y-F; Gong, J-Y; Gao, C-B; Li, S-L
2016-07-01
Dysfunction of autophagy has been implicated in development and progression of diverse human cancers. However, the exact role and mechanism of autophagy have not been fully understood in human cancers, especially in retinoblastoma (Rb). We determined the autophagy activity in human Rb tissues by assessing the autophagy markers microtubule-associated protein light chain 3B (LC3) and p62 (SQSTM1) in formalin fixed and paraffin embedded human tissue by immunohistochemistry and then associated their expression with patient clinicopathological features. We further explored the correlation between the expression of LC3B and p62 and the expression of cytoplasmic p53, a newly identified autophagy suppressor, in Rb tissues. Our data revealed that the expression of LC3B and p62, was significantly associated with disease progression and tumor invasion of Rb. Furthermore, we also revealed that cytoplasmic expression of p53 was inversely associated with the behavior of tumor invasion. Finally, Spearman correlation analysis demonstrated that cytoplasmic expression of p53 was significantly and inversely correlated to the expression of both LC3B and p62. Autophagy might play an important role in human Rb progression, and LC3B and p62 may be useful predictors of disease progression in patients with Rb.
Downregulation of VRK1 by p53 in Response to DNA Damage Is Mediated by the Autophagic Pathway
Valbuena, Alberto; Castro-Obregón, Susana; Lazo, Pedro A.
2011-01-01
Human VRK1 induces a stabilization and accumulation of p53 by specific phosphorylation in Thr18. This p53 accumulation is reversed by its downregulation mediated by Hdm2, requiring a dephosphorylated p53 and therefore also needs the removal of VRK1 as stabilizer. This process requires export of VRK1 to the cytosol and is inhibited by leptomycin B. We have identified that downregulation of VRK1 protein levels requires DRAM expression, a p53-induced gene. DRAM is located in the endosomal-lysosomal compartment. Induction of DNA damage by UV, IR, etoposide and doxorubicin stabilizes p53 and induces DRAM expression, followed by VRK1 downregulation and a reduction in p53 Thr18 phosphorylation. DRAM expression is induced by wild-type p53, but not by common human p53 mutants, R175H, R248W and R273H. Overexpression of DRAM induces VRK1 downregulation and the opposite effect was observed by its knockdown. LC3 and p62 were also downregulated, like VRK1, in response to UV-induced DNA damage. The implication of the autophagic pathway was confirmed by its requirement for Beclin1. We propose a model with a double regulatory loop in response to DNA damage, the accumulated p53 is removed by induction of Hdm2 and degradation in the proteasome, and the p53-stabilizer VRK1 is eliminated by the induction of DRAM that leads to its lysosomal degradation in the autophagic pathway, and thus permitting p53 degradation by Hdm2. This VRK1 downregulation is necessary to modulate the block in cell cycle progression induced by p53 as part of its DNA damage response. PMID:21386980
Mannweiler, Sebastian; Sygulla, Stephan; Winter, Elke; Regauer, Sigrid
2013-07-01
Penile squamous cell carcinomas (SCC) arise either through transforming infections with human papillomavirus (HPV) or independent of HPV, often in the background of lichen sclerosus (LS) and lichen planus (LP). Despite impact on therapy and prognosis, etiologic stratifications are missing in most histological diagnoses and publications about penile cancers/precursors. Classification of penile lesions into HPV-induced or HPV-negative via immunohistochemical demonstration of p16(ink4a) overexpression, a surrogate marker for transforming HPV-high-risk infections, and p53 expression in the absence of p16(ink4a) overexpression. Archival formalin-fixed material of 123 invasive penile cancers and 43 pre-invasive lesions was evaluated for the presence of LS, LP, 28 HPV genotypes, and expression of p53 and p16(ink4a). Seventy-two of 123 SCCs and 33 of 43 pre-invasive lesions showed p16(ink4a) overexpression independent of HPV-HR genotypes involved; 66 of 72 SCCs and 29 of 43 precursor lesions revealed a single HPV-high-risk-genotype (HPV-HR16 in 76% followed by HPV33, HPV31, HPV45, HPV18, HPV56); 5 of 72 SCCs and 4 of 43 precursor lesions revealed multiple HPV-HR-genotypes. One SCC revealed HPV-LR and HR-DNA. Fifty-one of 123 SCCs and 10 precursor lesions were p16(ink4a) negative, but showed nuclear p53 expression in tumor cells and basal keratinocytes. Forty-nine of 51 SCCs and 10 of 10 precursor lesions lacked HPV DNA. Two of 51 SCCs contained HPV18 and HPV45 DNA, respectively, but p16(ink4a) negativity classified them as non-HPV-induced. Twenty-seven of 51 SCCs showed peritumoral LS, 13 of 51 SCCs showed peritumoral LP, and 11 SCCs revealed no peritumoral tissue. Histologically, HPV-negative precursors showed hyperkeratotic, verrucous, atrophic, and basaloid differentiation. This was a retrospective study. p16(ink4a) overexpression identifies HPV-HR-induced penile carcinogenesis independent of HPV-HR genotype. p53 expression along with p16(ink4a) negativity identifies HPV-negative cancers. Correct etiologic classification of penile lesions during diagnostic work-up allows optimal therapy decisions. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Yan, S Y; Chen, M M; Fan, J G; Wang, Y Q; Du, Y Q; Hu, Y; Xu, L M
2014-11-01
This study aimed to investigate the therapeutic mechanism of treating SMMC-7721 liver cancer cells with magnetic fluid hyperthermia (MFH) using Fe₂O₃ nanoparticles. Hepatocarcinoma SMMC-7721 cells cultured in vitro were treated with ferrofluid containing Fe₂O₃ nanoparticles and irradiated with an alternating radio frequency magnetic field. The influence of the treatment on the cells was examined by inverted microscopy, MTT and flow cytometry. To study the therapeutic mechanism of the Fe₂O₃ MFH, Hsp70, Bax, Bcl-2 and p53 were detected by immunocytochemistry and reverse transcription polymerase chain reaction (RT-PCR). It was shown that Fe₂O₃ MFH could cause cellular necrosis, induce cellular apoptosis, and significantly inhibit cellular growth, all of which appeared to be dependent on the concentration of the Fe₂O₃nanoparticles. Immunocytochemistry results showed that MFH could induce high expression of Hsp70 and Bax, decrease the expression of mutant p53, and had little effect on Bcl-2. RT-PCR indicated that Hsp70 expression was high in the early stage of MFH (<24 h) and became low or absent after 24 h of MFH treatment. It can be concluded that Fe₂O₃MFH significantly inhibited the proliferation of in vitro cultured liver cancer cells (SMMC-7721), induced cell apoptosis and arrested the cell cycle at the G₂/M phase. Fe₂O₃ MFH can induce high Hsp70 expression at an early stage, enhance the expression of Bax, and decrease the expression of mutant p53, which promotes the apoptosis of tumor cells.
Influence of a highly purified senna extract on colonic epithelium.
van Gorkom, B A; Karrenbeld, A; van Der Sluis, T; Koudstaal, J; de Vries, E G; Kleibeuker, J H
2000-01-01
Chronic use of sennoside laxatives often causes pseudomelanosis coli. A recent study suggested that pseudomelanosis coli is associated with an increased colorectal cancer risk. A single high dose of highly purified senna extract increased proliferation rate and reduced crypt length in the sigmoid colon compared to historical controls. To evaluate in a controlled study the effects of highly purified senna extract on cell proliferation and crypt length in the entire colon and on p53 and bcl-2 expression. Addition of a senna extract to colonic lavage was studied in 184 consecutive outpatients. From 32 randomised patients, 15 with sennosides (Sen), 17 without (NSen), biopsies were taken. Proliferative activity was studied in 4 areas of the colon, using 5-bromo-2'-deoxyuridine labelling and immunohistochemistry (labelling index, LI). Expression of p53 and bcl-2 in the sigmoid colon was determined immunohistochemically. Crypts were shorter in Sen than in NSen in the transverse and sigmoid colon. LI was higher in Sen than in NSen in the entire colon. No difference in p53 expression was seen. Bcl-2 expression was higher in both groups when crypts were shorter and/or proliferation was increased. Sennosides induce acute massive cell loss probably by apoptosis, causing shorter crypts, and increased cell proliferation and inhibition of apoptosis to restore cellularity. These effects may reflect the mechanism for the suggested cancer-promoting effect of chronic sennoside use. Copyright 2000 S. Karger AG, Basel
p53 downregulates the Fanconi anaemia DNA repair pathway
Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck
2016-01-01
Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53Δ31, a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53Δ31/Δ31 fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53Δ31/Δ31 fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop. PMID:27033104
p53 downregulates the Fanconi anaemia DNA repair pathway.
Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck
2016-04-01
Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53(Δ31), a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53(Δ31/Δ31) fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53(Δ31/Δ31) fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop.
2010-01-01
Introduction Women with ductal hyperplasia including usual ductal hyperplasia (UDH) and atypical ductal hyperplasia (ADH) have an increased risk of developing invasive ductal carcinoma (IDC) of breast. The importance of several molecular markers in breast cancer has been of considerable interest during recent years such as p53 and estrogen receptor alpha (ERα). However, p53 nuclear accumulation and ERα expression have not been assessed in ductal hyperplasia co-existing with ductal carcinoma in situ (DCIS) or IDC versus pure ductal hyperplasia without DCIS or IDC. Materials and methods We investigated p53 nuclear accumulation and ERα expression in breast ductal hyperplasia in a cohort of 215 Chinese women by immunohistochemistry (IHC), which included 129 cases of pure ductal hyperplasia, 86 cases of ductal hyperplasia co-existing with DCIS (41 cases) or IDC (45 cases). Results Nuclear p53 accumulation was identified in 22.8% of ADH (31/136), 41.5% of DCIS (17/41) and 42.2% of IDC (19/45), and no case of UDH (0/79). No difference in nuclear p53 accumulation was observed between pure ADH and ADH co-existing with DCIS (ADH/DCIS) or IDC (ADH/IDC) (P > 0.05). The positive rate of ERα expression was lower in ADH (118/136, 86.8%) than that in UDH (79/79, 100%) (P < 0.001), but higher than that in DCIS (28/41, 68.3%) or IDC (26/45, 57.8%) respectively (P < 0.001). The frequency of ERα expression was lower in ADH/DCIS (23/29, 79.31%) and ADH/IDC (23/30, 76.67%) than that in pure ADH (72/77, 93.51%) respectively (P < 0.05). There was a negative weak correlation between p53 nuclear accumulation and ERα expression as for ADH (coefficient correlation -0.51; P < 0.001). Conclusions Different pathological types of ductal hyperplasia of breast are accompanied by diversity in patterns of nuclear p53 accumulation and ERα expression. At least some pure ADH is molecularly distinct from ADH/CIS or ADH/IDC which indicated the two types of ADH are molecularly distinct entities although they have the same morphological appearance. PMID:20712900
Differential expression of microRNA501-5p affects the aggressiveness of clear cell renal carcinoma
Mangolini, Alessandra; Bonon, Anna; Volinia, Stefano; Lanza, Giovanni; Gambari, Roberto; Pinton, Paolo; Russo, Gian Rosario; del Senno, Laura; Dell’Atti, Lucio; Aguiari, Gianluca
2014-01-01
Renal cell carcinoma is a common neoplasia of the adult kidney that accounts for about 3% of adult malignancies. Clear cell renal carcinoma is the most frequent subtype of kidney cancer and 20–40% of patients develop metastases. The absence of appropriate biomarkers complicates diagnosis and prognosis of this disease. In this regard, small noncoding RNAs (microRNAs), which are mutated in several neoplastic diseases including kidney carcinoma, may be optimal candidates as biomarkers for diagnosis and prognosis of this kind of cancer. Here we show that patients with clear cell kidney carcinoma that express low levels of miR501-5p exhibited a good prognosis compared with patients with unchanged or high levels of this microRNA. Consistently, in kidney carcinoma cells the downregulation of miR501-5p induced an increased caspase-3 activity, p53 expression as well as decreased mTOR activation, leading to stimulation of the apoptotic pathway. Conversely, miR501-5p upregulation enhanced the activity of mTOR and promoted both cell proliferation and survival. These biological processes occurred through p53 inactivation by proteasome degradation in a mechanism involving MDM2-mediated p53 ubiquitination. Our results support a role for miR501-5p in balancing apoptosis and cell survival in clear cell renal carcinoma. In particular, the downregulation of microRNA501-5p promotes a good prognosis, while its upregulation contributes to a poor prognosis, in particular, if associated with p53 and MDM2 overexpression and mTOR activation. Thus, the expression of miR501-5p is a possible biomarker for the prognosis of clear cell renal carcinoma. PMID:25426415
Vered, Marilena; Allon, Irit; Dayan, Dan
2009-03-01
The pattern of changes in the expression of mammary serine protease inhibitor (maspin) tumor suppressor protein in tongue epithelial lesions [hyperplasia (HP), mild dysplasia (MD), moderate-to-severe dysplasia (MSD) and squamous cell carcinoma (SCC)] was investigated and correlated to the expression of maspin-regulating factors p53 and p63, and the proliferation marker Ki-67. Cases of HP (n = 16), MD (n = 12), MSD (n = 11), and SCC (n = 22) were immunostained for maspin, p53, p63, and Ki-67. Maspin expression was scored separately for the basal, middle, and upper thirds of the epithelial width, and as the total sum of all 'thirds' (maspin-total). p53, p63, and Ki-67 were immuno-morphometrically assessed for the entire epithelial width. Maspin expression was differential and progressive extending to higher epithelial layers as dysplastic changes aggravated and culminated in carcinoma. Strong expression was related to MSD in the middle third and to carcinoma in the upper third. It was frequently lost at the invasion front, where the tumor was less differentiated. The changes in mean scores of maspin-total in the different study groups were positively correlated to the mean scores of p63 (r = 0.5, P < 0.001), p53 (r = 0.4, P = 0.004), and Ki-67 (r = 0.5, P < 0.001). Strong expression of maspin in the middle third of the epithelium may be considered a diagnostic sign of mild-to-moderate dysplasia and an indication of carcinoma in the upper third. The correlations between maspin and controlling factors (e.g. p63 and p53) may be events with key roles in the development of tongue carcinoma.
McGowan, Eileen M.; Tran, Nham; Alling, Nikki; Yagoub, Daniel; Sedger, Lisa M.; Martiniello-Wilks, Rosetta
2012-01-01
As part of a cell’s inherent protection against carcinogenesis, p14ARF is upregulated in response to hyperproliferative signalling to induce cell cycle arrest. This property makes p14ARF a leading candidate for cancer therapy. This study explores the consequences of reactivating p14ARF in breast cancer and the potential of targeting p14ARF in breast cancer treatment. Our results show that activation of the p14ARF-p53-p21-Rb pathway in the estrogen sensitive MCF-7 breast cancer cells induces many hallmarks of senescence including a large flat cell morphology, multinucleation, senescence-associated-β-gal staining, and rapid G1 and G2/M phase cell cycle arrest. P14ARF also induces the expression of the proto-oncogene cyclin D1, which is most often associated with a transition from G1-S phase and is highly expressed in breast cancers with poor clinical prognosis. In this study, siRNA knockdown of cyclin D1, p21 and p53 show p21 plays a pivotal role in the maintenance of high cyclin D1 expression, cell cycle and growth arrest post-p14ARF induction. High p53 and p14ARF expression and low p21/cyclin D1 did not cause cell-cycle arrest. Knockdown of cyclin D1 stops proliferation but does not reverse senescence-associated cell growth. Furthermore, cyclin D1 accumulation in the nucleus post-p14ARF activation correlated with a rapid loss of nucleolar Ki-67 protein and inhibition of DNA synthesis. Latent effects of the p14ARF-induced cellular processes resulting from high nuclear cyclin D1 accumulation included a redistribution of Ki-67 into the nucleoli, aberrant nuclear growth (multinucleation), and cell proliferation. Lastly, downregulation of cyclin D1 through inhibition of ER abrogated latent recurrence. The mediation of these latent effects by continuous expression of p14ARF further suggests a novel mechanism whereby dysregulation of cyclin D1 could have a double-edged effect. Our results suggest that p14ARF induced-senescence is related to late-onset breast cancer in estrogen responsive breast cancers and/or the recurrence of more aggressive breast cancer post-therapy. PMID:22860097
Harajly, Mohamad; Zalzali, Hasan; Nawaz, Zafar; Ghayad, Sandra E.; Ghamloush, Farah; Basma, Hussein; Zainedin, Samiha; Rabeh, Wissam; Jabbour, Mark; Tawil, Ayman; Badro, Danielle A.; Evan, Gerard I.
2015-01-01
The restoration of p53 has been suggested as a therapeutic approach in tumors. However, the timing of p53 restoration in relation to its efficacy during tumor progression still is unclear. We now show that the restoration of p53 in murine premalignant proliferating pineal lesions resulted in cellular senescence, while p53 restoration in invasive pineal tumors did not. The effectiveness of p53 restoration was not dependent on p19Arf expression but showed an inverse correlation with Mdm2 expression. In tumor cells, p53 restoration became effective when paired with either DNA-damaging therapy or with nutlin, an inhibitor of p53-Mdm2 interaction. Interestingly, the inactivation of p53 after senescence resulted in reentry into the cell cycle and rapid tumor progression. The evaluation of a panel of human supratentorial primitive neuroectodermal tumors (sPNET) showed low activity of the p53 pathway. Together, these data suggest that the restoration of the p53 pathway has different effects in premalignant versus invasive pineal tumors, and that p53 activation needs to be continually sustained, as reversion from senescence occurs rapidly with aggressive tumor growth when p53 is lost again. Finally, p53 restoration approaches may be worth exploring in sPNET, where the p53 gene is intact but the pathway is inactive in the majority of examined tumors. PMID:26598601
Song, Juhyun; Lee, Byeori; Kang, Somang; Oh, Yumi; Kim, Eosu; Kim, Chul-Hoon; Song, Ho-Taek; Lee, Jong Eun
2016-02-01
Neuronal senescence caused by diabetic neuropathy is considered a common complication of diabetes mellitus. Neuronal senescence leads to the secretion of pro-inflammatory cytokines, the production of reactive oxygen species, and the alteration of cellular homeostasis. Agmatine, which is biosynthesized by arginine decarboxylation, has been reported in previous in vitro to exert a protective effect against various stresses. In present study, agmatine attenuated the cell death and the expression of pro-inflammatory cytokines such as IL-6, TNF-alpha and CCL2 in high glucose in vitro conditions. Moreover, the senescence associated-β-galatosidase's activity in high glucose exposed neuronal cells was reduced by agmatine. Increased p21 and reduced p53 in high glucose conditioned cells were changed by agmatine. Ultimately, agmatine inhibits the neuronal cell senescence through the activation of p53 and the inhibition of p21. Here, we propose that agmatine may ameliorate neuronal cell senescence in hyperglycemia.
p53 elevation in human cells halt SV40 infection by inhibiting T-ag expression
Drayman, Nir; Ben-nun-Shaul, Orly; Butin-Israeli, Veronika; Srivastava, Rohit; Rubinstein, Ariel M.; Mock, Caroline S.; Elyada, Ela; Ben-Neriah, Yinon; Lahav, Galit; Oppenheim, Ariella
2016-01-01
SV40 large T-antigen (T-ag) has been known for decades to inactivate the tumor suppressor p53 by sequestration and additional mechanisms. Our present study revealed that the struggle between p53 and T-ag begins very early in the infection cycle. We found that p53 is activated early after SV40 infection and defends the host against the infection. Using live cell imaging and single cell analyses we found that p53 dynamics are variable among individual cells, with only a subset of cells activating p53 immediately after SV40 infection. This cell-to-cell variabilty had clear consequences on the outcome of the infection. None of the cells with elevated p53 at the beginning of the infection proceeded to express T-ag, suggesting a p53-dependent decision between abortive and productive infection. In addition, we show that artificial elevation of p53 levels prior to the infection reduces infection efficiency, supporting a role for p53 in defending against SV40. We further found that the p53-mediated host defense mechanism against SV40 is not facilitated by apoptosis nor via interferon-stimulated genes. Instead p53 binds to the viral DNA at the T-ag promoter region, prevents its transcriptional activation by Sp1, and halts the progress of the infection. These findings shed new light on the long studied struggle between SV40 T-ag and p53, as developed during virus-host coevolution. Our studies indicate that the fate of SV40 infection is determined as soon as the viral DNA enters the nucleus, before the onset of viral gene expression. PMID:27462916
Classification of TP53 Mutations and HPV Predict Survival in Advanced Larynx Cancer
Scheel, Adam; Bellile, Emily; McHugh, Jonathan B.; Walline, Heather M.; Prince, Mark E.; Urba, Susan; Wolf, Gregory T.; Eisbruch, Avraham; Worden, Francis; Carey, Thomas E.; Bradford, Carol
2016-01-01
OBJECTIVE Assess TP53 functional mutations in the context of other biomarkers in advanced larynx cancer. STUDY DESIGN Prospective analysis of pretreatment tumor TP53, HPV, Bcl-xL and cyclin D1 status in stage III and IV larynx cancer patients in a clinical trial. METHODS TP53 exons 4-9 from 58 tumors were sequenced. Mutations were grouped using three classifications based on their expected function. Each functional group was analyzed for response to induction chemotherapy, time to surgery, survival, HPV status, p16INK4a, Bcl-xl and cyclin D1 expression. RESULTS TP53 Mutations were found in 22/58 (37.9%) patients with advanced larynx cancer, including missense mutations in 13/58 (22.4%) patients, nonsense mutations in 4/58 (6.9%), and deletions in 5/58 (8.6%). High risk HPV was found in 20/52 (38.5%) tumors. A classification based on crystal Evolutionary Action score of p53 (EAp53) distinguished missense mutations with high risk for decreased survival from low risk mutations (p=0.0315). A model including this TP53 classification, HPV status, cyclin D1 and Bcl-xL staining significantly predicts survival (p=0.0017). CONCLUSION EAp53 functional classification of TP53 mutants and biomarkers predict survival in advanced larynx cancer. PMID:27345657
[Apoptosis of human lung carcinoma cell line GLC-82 induced by high power electromagnetic pulse].
Cao, Xiao-zhe; Zhao, Mei-lan; Wang, De-wen; Dong, Bo
2002-09-01
Electromagnetic pulse (EMP) could be used for sterilization of food and the efficiency is higher than 2450 MHz continuous microwave done. This study was designed to evaluate the effect of electromagnetic pulse (EMP) on apoptosis of human lung carcinoma cell line GLC-82, so that to explore and develop therapeutic means for cancer. The injury changes in GLC-82 cells after irradiated with EMP (electric field intensity was 60 kV/m, 5 pulses/2 min) were analyzed by cytometry, MTT chronometry, and flow cytometry. The immunohistochemical SP staining was used to determine the expressions of bcl-2 protein and p53 protein. The stained positive cells were analyzed by CMIAS-II image analysis system at a magnification 400. All data were analyzed by SPSS8.0 software. EMP could obviously inhibited proliferation and activity of lung carcinoma cell line GLC-82. The absorbance value (A570) of MTT decreased immediately, at 0 h, 1 h, and 6 h after the GLC-82 cells irradiated by EMP as compared with control group. The highest apoptosis rate was found to reach 13.38% by flow cytometry at 6 h after EMP irradiation. Down-regulation of bcl-2 expression and up-regulation of p53 expression were induced by EMP. EMP promotes apoptosis of GLC-82 cells. At same time, EMP can down-regulate bcl-2 expression and up-regulate p53 expression in GLC-82 cells. The bcl-2 and the p53 protein may involve the apoptotic process.
Crescenzi, Elvira; Raia, Zelinda; Pacifico, Francesco; Mellone, Stefano; Moscato, Fortunato; Palumbo, Giuseppe; Leonardi, Antonio
2013-01-01
Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser15 and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser15 phosphorylation is associated with enhanced phosphorylation at Ser46, increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype. PMID:23612976
Metformin Restores Parkin-Mediated Mitophagy, Suppressed by Cytosolic p53
Song, Young Mi; Lee, Woo Kyung; Lee, Yong-ho; Kang, Eun Seok; Cha, Bong-Soo; Lee, Byung-Wan
2016-01-01
Metformin is known to alleviate hepatosteatosis by inducing 5’ adenosine monophosphate (AMP)-kinase-independent, sirtuin 1 (SIRT1)-mediated autophagy. Dysfunctional mitophagy in response to glucolipotoxicities might play an important role in hepatosteatosis. Here, we investigated the mechanism by which metformin induces mitophagy through restoration of the suppressed Parkin-mediated mitophagy. To this end, our ob/ob mice were divided into three groups: (1) ad libitum feeding of a standard chow diet; (2) intraperitoneal injections of metformin 300 mg/kg; and (3) 3 g/day caloric restriction (CR). HepG2 cells were treated with palmitate (PA) plus high glucose in the absence or presence of metformin. We detected enhanced mitophagy in ob/ob mice treated with metformin or CR, whereas mitochondrial spheroids were observed in mice fed ad libitum. Metabolically stressed ob/ob mice and PA-treated HepG2 cells showed an increase in expression of endoplasmic reticulum (ER) stress markers and cytosolic p53. Cytosolic p53 inhibited mitophagy by disturbing the mitochondrial translocation of Parkin, as demonstrated by immunoprecipitation. However, metformin decreased ER stress and p53 expression, resulting in induction of Parkin-mediated mitophagy. Furthermore, pifithrin-α, a specific inhibitor of p53, increased mitochondrial incorporation into autophagosomes. Taken together, these results indicate that metformin treatment facilitates Parkin-mediated mitophagy rather than mitochondrial spheroid formation by decreasing the inhibitory interaction with cytosolic p53 and increasing degradation of mitofusins. PMID:26784190
Ghazi, Terisha; Nagiah, Savania; Tiloke, Charlette; Sheik Abdul, Naeem; Chuturgoon, Anil A
2017-11-01
Fusaric acid (FA), a common fungal contaminant of maize, is known to mediate toxicity in plants and animals; however, its mechanism of action is unclear. p53 is a tumor suppressor protein that is activated in response to cellular stress. The function of p53 is regulated by post-translational modifications-ubiquitination, phosphorylation, and acetylation. This study investigated a possible mechanism of FA induced toxicity in the human hepatocellular carcinoma (HepG 2 ) cell line. The effect of FA on DNA integrity and post-translational modifications of p53 were investigated. Methods included: (a) culture and treatment of HepG 2 cells with FA (IC 50 : 580.32 μM, 24 h); (b) comet assay (DNA damage); (c) Western blots (protein expression of p53, MDM2, p-Ser-15-p53, a-K382-p53, a-CBP (K1535)/p300 (K1499), HDAC1 and p-Ser-47-Sirt1); and (d) Hoechst 33342 assay (apoptosis analysis). FA caused DNA damage in HepG 2 cells relative to the control (P < 0.0001). FA decreased the protein expression of p53 (0.24-fold, P = 0.0004) and increased the expression of p-Ser-15-p53 (12.74-fold, P = 0.0126) and a-K382-p53 (2.24-fold, P = 0.0096). This occurred despite the significant decrease in the histone acetyltransferase, a-CBP (K1535)/p300 (K1499) (0.42-fold, P = 0.0023) and increase in the histone deacetylase, p-Ser-47-Sirt1 (1.22-fold, P = 0.0020). The expression of MDM2, a negative regulator of p53, was elevated in the FA treatment compared to the control (1.83-fold, P < 0.0001). FA also inhibited cell proliferation and induced apoptosis in HepG 2 cells as evidenced by the Hoechst assay. Together, these results indicate that FA is genotoxic and post-translationally modified p53 leading to HepG 2 cell death. J. Cell. Biochem. 118: 3866-3874, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Basheer, Shaini; Shameena, PM; Sudha, S; Varma, Sujatha; Vidyanath, S; Varekar, Aniruddha
2017-01-01
Context: The malignant transformation potential of oral lichen planus (OLP) and related lesions is a subject of great controversy. Aim: The aim of this study was to compare the expression of proteins related to apoptosis and tumour suppressor gene processes in OLP, oral lichenoid reaction (OLR) and oral lichenoid dysplasia (OLD). Materials and Methods The immunohistochemical study was carried out to investigate the expressions of survivin and p53 in a total of 30 lesional biopsy specimens - 10 cases each of OLP, OLR and OLD. The expression rates were further compared with 10 control specimens of normal oral mucosa (NORM). Results: Immunoreactivity for p53 was seen in 7 cases (70%) of OLD, 4 cases (40%) of OLP and 2 cases (20%) of OLR and none of NORM. We obtained a significant difference (P = 0.01) in mean p53 expression between the different entities. The positive staining rate of survivin was found to be significantly different between OLD (50%), OLP (10%), OLR (0%), and normal mucosa (0%) (P = 0.004). There was a positive correlation between p53 and survivin expression in OLP and OLD using Pearson's correlation coefficient. Conclusion: Lichenoid dysplasia has shown p53 and survivin expression in the range of not OLP, but leukoplakia. On the other hand, OLR seems to be an innocuous lesion. The study results with OLP are inconclusive but points toward a small but important malignant potential in OLP. This kind of comparative study highlights the importance of biopsying OLP and related lesions for proper diagnosis and appropriate management. PMID:29391729
Cho, Il Je; Kim, Sang Chan; Kwon, Taeg Kyu
2014-01-01
The PI3K/Akt and mTOR signaling pathways are important for cell survival and growth, and they are highly activated in cancer cells compared with normal cells. Therefore, these signaling pathways are targets for inducing cancer cell death. The dual PI3K/Akt and mTOR inhibitor NVP-BEZ235 completely inhibited both signaling pathways. However, NVP-BEZ235 had no effect on cell death in human renal carcinoma Caki cells. We tested whether combined treatment with natural compounds and NVP-BEZ235 could induce cell death. Among several chemopreventive agents, curcumin, a natural biologically active compound that is extracted from the rhizomes of Curcuma species, markedly induced apoptosis in NVP-BEZ235-treated cells. Co-treatment with curcumin and NVP-BEZ235 led to the down-regulation of Mcl-1 protein expression but not mRNA expression. Ectopic expression of Mcl-1 completely inhibited curcumin plus NVP-NEZ235-induced apoptosis. Furthermore, the down-regulation of Bcl-2 was involved in curcumin plus NVP-BEZ235-induced apoptosis. Curcumin or NVP-BEZ235 alone did not change Bcl-2 mRNA or protein expression, but co-treatment reduced Bcl-2 mRNA and protein expression. Combined treatment with NVP-BEZ235 and curcumin reduced Bcl-2 expression in wild-type p53 HCT116 human colon carcinoma cells but not p53-null HCT116 cells. Moreover, Bcl-2 expression was completely reversed by treatment with pifithrin-α, a p53-specific inhibitor. Ectopic expression of Bcl-2 also inhibited apoptosis in NVP-BE235 plus curcumin-treated cells. In contrast, NVP-BEZ235 combined with curcumin did not have a synergistic effect on normal human skin fibroblasts and normal human mesangial cells. Taken together, combined treatment with NVP-BEZ235 and curcumin induces apoptosis through p53-dependent Bcl-2 mRNA down-regulation at the transcriptional level and Mcl-1 protein down-regulation at the post-transcriptional level. PMID:24743574
p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase.
Teodoro, Jose G; Parker, Albert E; Zhu, Xiaochun; Green, Michael R
2006-08-18
Recent evidence suggests that antiangiogenic therapy is sensitive to p53 status in tumors, implicating a role for p53 in the regulation of angiogenesis. Here we show that p53 transcriptionally activates the alpha(II) collagen prolyl-4-hydroxylase [alpha(II)PH] gene, resulting in the extracellular release of antiangiogenic fragments of collagen type 4 and 18. Conditioned media from cells ectopically expressing either p53 or alpha(II)PH selectively inhibited growth of primary human endothelial cells. When expressed intracellularly or exogenously delivered, alpha(II)PH significantly inhibited tumor growth in mice. Our results reveal a genetic and biochemical linkage between the p53 tumor suppressor pathway and the synthesis of antiangiogenic collagen fragments.
Alterations of mitochondrial biogenesis in chronic lymphocytic leukemia cells with loss of p53
Ogasawara, Marcia A.; Liu, Jinyun; Pelicano, Helene; Hammoudi, Naima; Croce, Carlo M.; Keating, Michael J.; Huang, Peng
2016-01-01
Deletion of chromosome 17p with a loss of p53 is an unfavorable cytogenetic change in chronic lymphocytic leukemia (CLL) with poor clinical outcome. Since p53 affects mitochondrial function and integrity, we examined possible mitochondrial changes in CLL mice with TCL1-Tg/p53−/− and TCL1-Tg/p53+/+ genotypes and in primary leukemia cells from CLL patients with or without 17p-deletion. Although the expression of mitochondrial COX1, ND2, and ND6 decreased in p53−/−CLL cells, there was an increase in mitochondrial biogenesis as evidenced by higher mitochondrial mass and mtDNA copy number associated with an elevated expression of TFAM and PGC-1α. Surprisingly, the overall mitochondrial respiratory activity and maximum reserved capacity increased in p53−/− CLL cells. Our study suggests that leukemia cells lacking p53 seem able to maintain respiratory function by compensatory increase in mitochondrial biogenesis. PMID:27650502
Targeting the p53 signaling pathway in cancer therapy - The promises, challenges, and perils
Stegh, Alexander H.
2012-01-01
Introduction Research over the past three decades has identified p53 as a multifunctional transcription factor, which regulates the expression of >2,500 target genes. p53 impacts myriad, highly diverse cellular processes, including the maintenance of genomic stability and fidelity, metabolism, longevity, and represents one of the most important and extensively studied tumor suppressors. Activated by various stresses, foremost genotoxic damage, hypoxia, heat shock and oncogenic assault, p53 blocks cancer progression by provoking transient or permanent growth arrest, by enabling DNA repair or by advancing cellular death programs. This potent and versatile anti-cancer activity profile, together with genomic and mutational analyses documenting inactivation of p53 in more than 50% of human cancers, motivated drug development efforts to (re-) activate p53 in established tumors. Areas covered In this review the complexities of p53 signaling in cancer are summarized. Current strategies and challenges to restore p53’s tumor suppressive function in established tumors, i.e. adenoviral gene transfer and small molecules to activate p53, to inactivate p53 inhibitors and to restore wild type function of p53 mutant proteins are discussed. Expert opinion It is indubitable that p53 represents an attractive target for the development of anti-cancer therapies. Whether p53 is ‘druggable’, however, remains an area of active research and discussion, as p53 has pro-survival functions and chronic p53 activation accelerates aging, which may compromise the long-term homeostasis of an organism. Thus, the complex biology and dual functions of p53 in cancer prevention and age-related cellular responses pose significant challenges on the development of p53-targeting cancer therapies. PMID:22239435
The antagonism between MCT-1 and p53 affects the tumorigenic outcomes
2010-01-01
Background MCT-1 oncoprotein accelerates p53 protein degradation via a proteosome pathway. Synergistic promotion of the xenograft tumorigenicity has been demonstrated in circumstance of p53 loss alongside MCT-1 overexpression. However, the molecular regulation between MCT-1 and p53 in tumor development remains ambiguous. We speculate that MCT-1 may counteract p53 through the diverse mechanisms that determine the tumorigenic outcomes. Results MCT-1 has now identified as a novel target gene of p53 transcriptional regulation. MCT-1 promoter region contains the response elements reactive with wild-type p53 but not mutant p53. Functional p53 suppresses MCT-1 promoter activity and MCT-1 mRNA stability. In a negative feedback regulation, constitutively expressed MCT-1 decreases p53 promoter function and p53 mRNA stability. The apoptotic events are also significantly prevented by oncogenic MCT-1 in a p53-dependent or a p53-independent fashion, according to the genotoxic mechanism. Moreover, oncogenic MCT-1 promotes the tumorigenicity in mice xenografts of p53-null and p53-positive lung cancer cells. In support of the tumor growth are irrepressible by p53 reactivation in vivo, the inhibitors of p53 (MDM2, Pirh2, and Cop1) are constantly stimulated by MCT-1 oncoprotein. Conclusions The oppositions between MCT-1 and p53 are firstly confirmed at multistage processes that include transcription control, mRNA metabolism, and protein expression. MCT-1 oncogenicity can overcome p53 function that persistently advances the tumor development. PMID:21138557
Shi, Ming; Du, Libin; Liu, Dan; Qian, Lu; Hu, Meiru; Yu, Ming; Yang, Zhengyan; Zhao, Mingzhen; Chen, Changguo; Guo, Liang; Wang, Lina; Song, Lun; Ma, Yuanfang; Guo, Ning
2012-10-01
Glucocorticoids are stress-responsive neuroendocrine mediators and play an important role in malignant progression, especially in solid tumours. We demonstrate a novel mechanism by which glucocorticoids modulate p53-dependent miR-145 expression in HPV-positive cervical cancer cells through induction of E6 proteins. We found that expression of miR-145 was reduced in cervical cancer tissues. Cortisol induced HPV-E6 expression and suppressed p53 and miR-145 in cervical cancer cells. MiR-145 expression in cervical cancer cells was wild-type p53-dependent, and cortisol-induced down-regulation of miR-145 expression prevented chemotherapy-induced apoptosis, whereas over-expression of miR-145 enhanced sensitivity to mitomycin and reversed the chemoresistance induced by glucocorticoids. We also show that miR-145 augments the effects of p53 by suppressing the inhibitors of p53 in cervical cancer cells, suggesting that miR-145 plays a role in p53 tumour suppression. Finally, we demonstrate that miR-145 inhibits both the motility and invasion of cervical cancer cells. Our findings identify a novel pathway through which the neuroendocrine macroenvironment affects cervical tumour growth, invasion and therapy resistance and show that miR-145 may serve as a target for cervical cancer therapy. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Mechanism of p53-Dependent Apoptosis and its Role in Breast Cancer Therapy
1999-07-01
inducibly express p53 as previously described (Chen et a!., 1996). ( a ) Levels of p53, p21, and actin in p53-3, and p53(A62-91)-l, -5, and -6 cells...1994) was used as template, ( a ) Levels of p53, p21 and actin in p53-3 and p53(gln22-ser23/A62-91)-2 and -14 cells were assayed by Western blot...CGG TAC CCC TGT CAT CTT CTG TC; and reverse primer C393 as used for generating p53(A62-91). ( a ) Levels of p53, p21, and actin in p53-3, and p53(A74
MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer
Suh, Seong O.; Chen, Yi; Zaman, Mohd Saif; Hirata, Hiroshi; Yamamura, Soichiro; Shahryari, Varahram; Liu, Jan; Tabatabai, Z.Laura; Kakar, Sanjay; Deng, Guoren; Tanaka, Yuichiro; Dahiya, Rajvir
2011-01-01
MiR-145 is downregulated in various cancers including prostate cancer. However, the underlying mechanisms of miR-145 downregulation are not fully understood. Here, we reported that miR-145 was silenced through DNA hypermethylation and p53 mutation status in laser capture microdissected (LCM) prostate cancer and matched adjacent normal tissues. In 22 of 27 (81%) prostate tissues, miR-145 was significantly downregulated in the cancer compared with the normal tissues. Further studies on miR-145 downregulation mechanism showed that miR-145 is methylated at the promoter region in both prostate cancer tissues and 50 different types of cancer cell lines. In seven cancer cell lines with miR-145 hypermethylation, 5-aza-2′-deoxycytidine treatment dramatically induced miR-145 expression. Interestingly, we also found a significant correlation between miR-145 expression and the status of p53 gene in both LCM prostate tissues and 47 cancer cell lines. In 29 cell lines with mutant p53, miR-145 levels were downregulated in 28 lines (97%), whereas in 18 cell lines with wild-type p53 (WT p53), miR-145 levels were downregulated in only 6 lines (33%, P < 0.001). Electrophoretic mobility shift assay showed that p53 binds to the p53 response element upstream of miR-145, but the binding was inhibited by hypermethylation. To further confirm that p53 binding to miR-145 could regulate miR-145 expression, we transfected WT p53 and MUT p53 into PC-3 cells and found that miR-145 is upregulated by WT p53 but not with MUTp53. The apoptotic cells are increased after WT p53 transfection. In summary, this is the first report documenting that downregulation of miR-145 is through DNA methylation and p53 mutation pathways in prostate cancer. PMID:21349819
Takeda, Yohei; Yashima, Kazuo; Hayashi, Akihiro; Sasaki, Shuji; Kawaguchi, Koichiro; Harada, Kenichi; Murawaki, Yoshikazu; Ito, Hisao
2012-01-01
AIM: To analyze the expression of the tumor-related proteins in differentiated-type early gastric carcinoma (DEGC) samples. METHODS: Tumor specimens were obtained from 102 patients (75 males and 27 females) who had received an endoscopic tumor resection at Tottori University Hospital between 2007 and 2009. Ninety-one cancer samples corresponded to noninvasive or intramucosal carcinoma according to the Vienna classification system, and 11 samples were submucosal invasive carcinomas. All of the EGCs were histologically differentiated carcinomas. All patients were classified as having Helicobacter pylori (H. pylori) infections by endoscopic atrophic changes or by testing seropositive for H. pylori IgG. All of the samples were histopathologically classified as either tubular or papillary adenocarcinoma according to their structure. The immunohistochemical staining was performed in a blinded manner with respect to the clinical information. Two independent observers evaluated protein expression. All data were statistically analyzed then. RESULTS: The rates of aberrant activation-induced cytidine deaminase (AID) expression and P53 overexpression were both 34.3% in DEGCs. The expression of Mlh1 was lost in 18.6% of DEGCs. Aberrant AID expression was not significantly associated with P53 overexpression in DEGCs. However, AID expression was associated with the severity of mononuclear cell activity in the non-cancerous mucosa adjacent to the tumor (P = 0.064). The rate of P53 expression was significantly greater in flat or depressed tumors than in elevated tumors. The frequency of Mlh1 loss was significantly increased in distal tumors, elevated gross-type tumors, papillary histological-type tumors, and tumors with a severe degree of endoscopic atrophic gastritis (P < 0.05). CONCLUSION: Aberrant AID expression, P53 overexpression, and the loss of Mlh1 were all associated with clinicopathological features and gastric mucosal alterations in DEGCs. The aberrant expression of AID protein may partly contribute to the induction of nuclear P53 expression. PMID:22737274
Song, Shanshan; Xing, Guichun; Yuan, Lin; Wang, Jian; Wang, Shan; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang
2012-01-01
Alkylating agents induce genome-wide base damage, which is repaired mainly by N-methylpurine DNA glycosylase (MPG). An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks. However, the determinant of drug sensitivity or insensitivity still remains unclear. Here, we report that the p53 status coordinates with MPG to play a pivotal role in such process. MPG expression is positive in breast, lung and colon cancers (38.7%, 43.4% and 25.3%, respectively) but negative in all adjacent normal tissues. MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells. The overexpression of MPG reduced, whereas depletion of MPG increased, the expression levels of pro-arrest gene downstream of p53 including p21, 14-3-3σ and Gadd45 but not proapoptotic ones. The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53. Upon DNA alkylation stress, in p53 wild-type tumor cells, p53 dissociated from MPG and induced cell growth arrest. Then, AP sites were repaired efficiently, which led to insensitivity to alkylating agents. By contrast, in p53-mutated cells, the AP sites were repaired with low efficacy. To our knowledge, this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53, and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy. PMID:22801474
Song, Shanshan; Xing, Guichun; Yuan, Lin; Wang, Jian; Wang, Shan; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang
2012-08-01
Alkylating agents induce genome-wide base damage, which is repaired mainly by N-methylpurine DNA glycosylase (MPG). An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks. However, the determinant of drug sensitivity or insensitivity still remains unclear. Here, we report that the p53 status coordinates with MPG to play a pivotal role in such process. MPG expression is positive in breast, lung and colon cancers (38.7%, 43.4% and 25.3%, respectively) but negative in all adjacent normal tissues. MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells. The overexpression of MPG reduced, whereas depletion of MPG increased, the expression levels of pro-arrest gene downstream of p53 including p21, 14-3-3σ and Gadd45 but not proapoptotic ones. The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53. Upon DNA alkylation stress, in p53 wild-type tumor cells, p53 dissociated from MPG and induced cell growth arrest. Then, AP sites were repaired efficiently, which led to insensitivity to alkylating agents. By contrast, in p53-mutated cells, the AP sites were repaired with low efficacy. To our knowledge, this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53, and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy.
Negative feedback regulation of wild-type p53 biosynthesis.
Mosner, J; Mummenbrauer, T; Bauer, C; Sczakiel, G; Grosse, F; Deppert, W
1995-01-01
When growth-arrested mouse fibroblasts re-entered the cell-cycle, the rise in tumour suppressor p53 mRNA level markedly preceded the rise in expression of the p53 protein. Furthermore, gamma-irradiation of such cells led to a rapid increase in p53 protein biosynthesis even in the presence of the transcription inhibitor actinomycin D. Both findings strongly suggest that p53 biosynthesis in these cells is regulated at the translational level. We present evidence for an autoregulatory control of p53 expression by a negative feed-back loop: p53 mRNA has a predicted tendency to form a stable stem-loop structure that involves the 5'-untranslated region (5'-UTR) plus some 280 nucleotides of the coding sequence. p53 binds tightly to the 5'-UTR region and inhibits the translation of its own mRNA, most likely mediated by the p53-intrinsic RNA re-annealing activity. The inhibition of p53 biosynthesis requires wild-type p53, as it is not observed with MethA mutant p53, p53-catalysed translational inhibition is selective; it might be restricted to p53 mRNA and a few other mRNAs that are able to form extensive stem-loop structures. Release from negative feed-back regulation of p53 biosynthesis, e.g. after damage-induced nuclear transport of p53, might provide a means for rapidly increasing p53 protein levels when p53 is required to act as a cell-cycle checkpoint determinant after DNA damage. Images PMID:7556087
Fatemeh, Mashhadiabbas; Sepideh, Arab; Sara, Bagheri Seyedeh; Nazanin, Mahdavi
2017-01-01
Objectives An odontogenic keratocyst (OKC) is a developmental odontogenic cyst with aggressive clinical behavior. This cyst shows a different growth mechanism from the more common dentigerous cyst and now has been renamed as a keratocystic odontogenic tumor (KCOT). Inflammation can assist tumor growth via different mechanisms including dysregulation of the p53 gene. This study aims to assess and compare the expression of tumor suppressor gene p53 in inflamed and non-inflamed types of OKC and dentigerous cyst. Methods Immunohistochemical expression of p53 was assessed in 14 cases of dental follicle, 34 cases of OKC (including 18 inflamed OKCs), and 31 cases of dentigerous cyst (including 16 inflamed cysts). Results The mean percentage of p53 positive cells was 0.7% in dental follicles, 5.4% in non-inflamed OKCs, 17.3% in inflamed OKCs, 1.2% in non-inflamed dentigerous cysts, and 2.2% in inflamed dentigerous cysts. The differences between the groups were statistically significant (p < 0.050) except for the difference between inflamed and non-inflamed dentigerous cysts, and between dental follicle and non-inflamed dentigerous cyst. Conclusions The difference in p53 expression in OKC and dentigerous cyst can explain their different growth mechanism and clinical behavior. Inflammation is responsible for the change in behavior of neoplastic epithelium of OKC via p53 overexpression. PMID:28584604
Fatemeh, Mashhadiabbas; Sepideh, Arab; Sara, Bagheri Seyedeh; Nazanin, Mahdavi
2017-05-01
An odontogenic keratocyst (OKC) is a developmental odontogenic cyst with aggressive clinical behavior. This cyst shows a different growth mechanism from the more common dentigerous cyst and now has been renamed as a keratocystic odontogenic tumor (KCOT). Inflammation can assist tumor growth via different mechanisms including dysregulation of the p53 gene. This study aims to assess and compare the expression of tumor suppressor gene p53 in inflamed and non-inflamed types of OKC and dentigerous cyst. Immunohistochemical expression of p53 was assessed in 14 cases of dental follicle, 34 cases of OKC (including 18 inflamed OKCs), and 31 cases of dentigerous cyst (including 16 inflamed cysts). The mean percentage of p53 positive cells was 0.7% in dental follicles, 5.4% in non-inflamed OKCs, 17.3% in inflamed OKCs, 1.2% in non-inflamed dentigerous cysts, and 2.2% in inflamed dentigerous cysts. The differences between the groups were statistically significant ( p < 0.050) except for the difference between inflamed and non-inflamed dentigerous cysts, and between dental follicle and non-inflamed dentigerous cyst. The difference in p53 expression in OKC and dentigerous cyst can explain their different growth mechanism and clinical behavior. Inflammation is responsible for the change in behavior of neoplastic epithelium of OKC via p53 overexpression.
Wt-p53 action in human leukaemia cell lines corresponding to different stages of differentiation.
Rizzo, M G; Zepparoni, A; Cristofanelli, B; Scardigli, R; Crescenzi, M; Blandino, G; Giuliacci, S; Ferrari, S; Soddu, S; Sacchi, A
1998-05-01
Recent studies support the potential application of the wt-p53 gene in cancer therapy. Expression of exogenous wt-p53 suppresses a variety of leukaemia phenotypes by acting on cell survival, proliferation and/or differentiation. As for tumour gene therapy, the final fate of the neoplastic cells is one of the most relevant points. We examined the effects of exogenous wt-p53 gene expression in several leukaemia cell lines to identify p53-responsive leukaemia. The temperature-sensitive p53Val135 mutant or the human wt-p53 cDNA was transduced in leukaemia cell lines representative of different acute leukaemia FAB subtypes, including M1 (KG1), M2 (HL-60), M3 (NB4), M5 (U937) and M6 (HEL 92.1.7), as well as blast crisis of chronic myelogenous leukaemia (BC-CML: K562, BV173) showing diverse differentiation features. By morphological, molecular and biochemical analyses, we have shown that exogenous wt-p53 gene expression induces apoptosis only in cells corresponding to M1, M2 and M3 of the FAB classification and in BC-CML showing morphological and cytochemical features of undifferentiated blast cells. In contrast, it promotes differentiation in the others. Interestingly, cell responsiveness was independent of the vector used and the status of the endogenous p53 gene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhanam, U.; Ray, A.; Sehgal, P.B.
1991-09-01
The aberrant overexpression of interleukin 6 (IL-6) is implicated as an autocrine mechanism in the enhanced proliferation of the neoplastic cell elements in various B- and T-cell malignancies and in some carcinomas and sarcomas; many of these neoplasms have been shown to be associated with a mutated p53 gene. The possibility that wild-type (wt) p53, a nuclear tumor-suppressor protein, but not its transforming mutants might serve to repress IL-6 gene expression was investigated in HeLa cells. The authors transiently cotransfected these cells with constitutive cytomegalovirus (CMV) enhancer/promoter expression plasmids overproducing wt or mutant human or murine p53 and with appropriatemore » chloramphenicol acetyltransferase (CAT) reporter plasmids containing the promoter elements of human IL-6, c-fos, or {beta}-actin genes or of porcine major histocompatibility complex (MHC) class I gene in pN-38 to evaluate the effect of the various p53 species on these promoters. These observations identify transcriptional repression as a property of p53 and suggest that p53 and RB may be involved as transcriptional repressors in modulating IL-6 gene expression during cellular differentiation and oncogenesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Amitabh, E-mail: amitabhdas.kn@gmail.com; Chai, Jin Choul, E-mail: jincchai@gmail.com; Jung, Kyoung Hwa, E-mail: khjung2@gmail.com
JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuationmore » significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup −/−} NE4C cells. • Finding JMJD2A-based molecular targets and crucial pathways in p53{sup −/−} NE4C cells.« less
Deyhimi, Parviz; Hashemzadeh, Zahra
2014-04-01
Odontogenic keratocyst (OKC) is an aggressive cyst, and its recurrence rate is higher than that of other odontogenic cysts. Orthokeratinized odontogenic cyst (OOC) is less aggressive than OKC, but bears the probability of carcinomatous changes. In this study, we evaluated the expression and intensity of P53 and TGF-alpha in order to compare the biologic behavior or probable carcinomatous changes of these two cysts. In this cross-sectional study, 15 OKC and 15 OOC were stained immunohistochemically for P53 and TGF-alpha using the Novolink polymer method. Then, all slides were examined by an optical microscope with 400× magnification, and the stained cells in the basal and parabasal layers were counted. Finally, the results were analyzed by the Mann-Whitney and Wilcoxon tests (P-value<0.05). The difference between the expression of P53 and TGF alpha in the basal layer of OKC and OOC was not statistically significant (P-value>0.05), but the expression of P53 and TGF-alpha in the parabasal layer in OKC was statistically higher compared to OOC (P<0.05). Considering the known role of P53 and TGF-alpha in malignant changes and the higher expression of P53 and TGF-alpha in OKC compared to those in OOC, the probability of carcinomatous changes was higher in OKC than in OOC. Copyright © 2013 Elsevier GmbH. All rights reserved.
HPV-18 E6 mutants reveal p53 modulation of viral DNA amplification in organotypic cultures
Kho, Eun-Young; Wang, Hsu-Kun; Banerjee, N. Sanjib; Broker, Thomas R.; Chow, Louise T.
2013-01-01
Human papillomaviruses (HPVs) amplify in differentiated strata of a squamous epithelium. The HPV E7 protein destabilizes the p130/retinoblastoma susceptibility protein family of tumor suppressors and reactivates S-phase reentry, thereby facilitating viral DNA amplification. The high-risk HPV E6 protein destabilizes the p53 tumor suppressor and many other host proteins. However, the critical E6 targets relevant to viral DNA amplification have not been identified, because functionally significant E6 mutants are not stably maintained in transfected cells. Using Cre-loxP recombination, which efficiently generates HPV genomic plasmids in transfected primary human keratinocytes, we have recapitulated a highly productive infection of HPV-18 in organotypic epithelial cultures. By using this system, we now report the characterization of four HPV-18 E6 mutations. An E6 null mutant accumulated high levels of p53 and amplified very poorly. p53 siRNA or ectopic WT E6 partially restored amplification, whereas three missense E6 mutations that did not effectively destabilize p53 complemented the null mutant poorly. Unexpectedly, in cis, two of the missense mutants amplified, albeit to a lower extent than the WT and only in cells with undetectable p53. These observations and others implicate p53 and additional host proteins in regulating viral DNA amplification and also suggest an inhibitory effect of E6 overexpression. We show that high levels of viral DNA amplification are critical for late protein expression and report several previously undescribed viral RNAs, including bicistronic transcripts predicted to encode E5 and L2 or an alternative form of E1^E4 and L1. PMID:23572574
p53 targets chromatin structure alteration to repress alpha-fetoprotein gene expression.
Ogden, S K; Lee, K C; Wernke-Dollries, K; Stratton, S A; Aronow, B; Barton, M C
2001-11-09
Many of the functions ascribed to p53 tumor suppressor protein are mediated through transcription regulation. We have shown that p53 represses hepatic-specific alpha-fetoprotein (AFP) gene expression by direct interaction with a composite HNF-3/p53 DNA binding element. Using solid-phase, chromatin-assembled AFP DNA templates and analysis of chromatin structure and transcription in vitro, we find that p53 binds DNA and alters chromatin structure at the AFP core promoter to regulate transcription. Chromatin assembled in the presence of hepatoma extracts is activated for AFP transcription with an open, accessible core promoter structure. Distal (-850) binding of p53 during chromatin assembly, but not post-assembly, reverses transcription activation concomitant with promoter inaccessibility to restriction enzyme digestion. Inhibition of histone deacetylase activity by trichostatin-A (TSA) addition, prior to and during chromatin assembly, activated chromatin transcription in parallel with increased core promoter accessibility. Chromatin immunoprecipitation analyses showed increased H3 and H4 acetylated histones at the core promoter in the presence of TSA, while histone acetylation remained unchanged at the site of distal p53 binding. Our data reveal that p53 targets chromatin structure alteration at the core promoter, independently of effects on histone acetylation, to establish repressed AFP gene expression.
Qiu, Weihua; Zhou, Bingsen; Darwish, Dana; Shao, Jimin; Yen, Yun
2006-02-10
Ribonucleotide reductase (RR) is a highly regulated enzyme in the deoxyribonucleotide synthesis pathway. RR is responsible for the de novo conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates, which are essential for DNA synthesis and repair. Besides two subunits, hRRM1 and hRRM2, p53R2 is a newly identified member of RR family that is induced by ultraviolet light in a p53-dependent manner. To understand the molecular interaction of RR subunits, we employed a eukaryotic expression system to express and purify all three subunits. After in vitro reconstitution, the results of [(3)H]CDP reduction assay showed that both eukaryotic recombinant hRRM2 and p53R2 proteins could interact with hRRM1 to form functional RR holoenzyme. The reconstituted RR activity was time-dependent and the reaction rate reached the plateau phase after 40min incubation. No matter the concentration, RR holoenzyme reconstituted from p53R2 and hRRM1 could only achieve about 40-75% kinetic activity of that from hRRM2 and hRRM1. The synthetic C-terminal heptapeptide competition assays confirmed that hRRM2 and p53R2 share the same binding site on hRRM1, but the binding site on hRRM1 demonstrated higher affinity for hRRM2 than for p53R2. In allosteric regulation assay, the effect of activation or inhibition of hRRM1 with ATP or dATP suggested that these effectors could regulate RR activity independent of different RR small subunits. Taken together, the eukaryotic expression system RR holoenzyme will provide a very useful tool to understand the molecular mechanisms of RR activity and the interactions of its subunits.
Robertson, Keith D.; Jones, Peter A.
1998-01-01
The INK4a/ARF locus encodes two proteins involved in tumor suppression in a manner virtually unique in mammalian cells. Distinct first exons, driven from separate promoters, splice onto a common exon 2 and 3 but utilize different reading frames to produce two completely distinct proteins, both of which play roles in cell cycle control. INK4a, a critical element of the retinoblastoma gene pathway, binds to and inhibits the activities of CDK4 and CDK6, while ARF, a critical element of the p53 pathway, increases the level of functional p53 via interaction with MDM2. Here we clone and characterize the promoter of the human ARF gene and show that it is a CpG island characteristic of a housekeeping gene which contains numerous Sp1 sites. Both ARF and INK4a are coordinately expressed in cells except when their promoter regions become de novo methylated. In one of these situations, ARF transcription could be reactivated by treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine, and the reactivation kinetics of ARF and INK4a were found to differ slightly in a cell line in which both genes were silenced by methylation. The ARF promoter was also found to be highly responsive to E2F1 expression, in keeping with previous results at the RNA level. Lastly, transcription from the ARF promoter was down-regulated by wild-type p53 expression, and the magnitude of the effect correlated with the status of the endogenous p53 gene. This finding points to the existence of an autoregulatory feedback loop between p53, MDM2, and ARF, aimed at keeping p53 levels in check. PMID:9774662
p53 regulates the mevalonate pathway in human glioblastoma multiforme
Laezza, C; D'Alessandro, A; Di Croce, L; Picardi, P; Ciaglia, E; Pisanti, S; Malfitano, A M; Comegna, M; Faraonio, R; Gazzerro, P; Bifulco, M
2015-01-01
The mevalonate (MVA) pathway is an important metabolic pathway implicated in multiple aspects of tumorigenesis. In this study, we provided evidence that p53 induces the expression of a group of enzymes of the MVA pathway including 3′-hydroxy-3′-methylglutaryl-coenzyme A reductase, MVA kinase, farnesyl diphosphate synthase and farnesyl diphosphate farnesyl transferase 1, in the human glioblastoma multiforme cell line, U343 cells, and in normal human astrocytes, NHAs. Genetic and pharmacologic perturbation of p53 directly influences the expression of these genes. Furthermore, p53 is recruited to the gene promoters in designated p53-responsive elements, thereby increasing their transcription. Such effect was abolished by site-directed mutagenesis in the p53-responsive element of promoter of the genes. These findings highlight another aspect of p53 functions unrelated to tumor suppression and suggest p53 as a novel regulator of the MVA pathway providing insight into the role of this pathway in cancer progression. PMID:26469958
Yamamoto, Toshiyuki; Nishioka, Kiyoshi
2005-05-01
Systemic sclerosis (SSc) is a connective tissue disorder characterized by excessive deposition of extracellular matrix in the affected skin as well as various internal organs, vascular injury and immune abnormality; however, the etiology of SSc remains still unknown. We previously established an experimental mouse model for scleroderma by repeated local injections of bleomycin, a DNA damaging agent. In this study, we examined the induction of apoptosis and the expression of p53, p21 (Waf1/Cip1), and proliferating cell nuclear antigen (PCNA) in the lesional skin following bleomycin exposure in this model. Dermal sclerosis was induced by alternate day's injections of bleomycin for 4 weeks. TUNEL assay showed that apoptotic cells began to appear at 1 week after bleomycin exposure, and were prominently detected at 3-4 weeks. Immunohistochemical examination showed increased expression of p53 and p21 mainly in the infiltrating mononuclear cells at 2 weeks after bleomycin treatment. Bleomycin treatment markedly enhanced PCNA expression at 1-2 weeks, mainly in mesenchyme, as compared with control phosphate buffered saline treatment. Reverse transcriptase-polymerase chain reaction analysis showed that the expression of p53 and p21 mRNA was concurrently upregulated at 1-2 weeks after bleomycin treatment. Taken together, coordinate increased levels of p53 and p21 preceded the maximal induction of apoptosis and dermal sclerosis. Our findings suggest that apoptotic processes are involved in the pathophysiology of bleomycin-induced scleroderma, which may be mediated, in part, by the upregulation of p53 and p21.
SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbert, Katharine J.; Cook, Anthony L., E-mail: Anthony.Cook@utas.edu.au; Snow, Elizabeth T., E-mail: elizabeth.snow@utas.edu.au
2014-06-15
Mutations to the p53 gene are common in UV-exposed keratinocytes and contribute to apoptotic resistance in skin cancer. P53-dependent activity is modulated, in part, by a complex, self-limiting feedback loop imposed by miR-34a-mediated regulation of the lysine deacetylase, SIRT1. Expression of numerous microRNAs is dysregulated in squamous and basal cell carcinomas; however the contribution of specific microRNAs to the pathogenesis of skin cancer remains untested. Through use of RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors, this study explored the influence of p53 mutational status, SIRT1 activity and miR-34a levels on apoptotic sensitivity in primary (NHEK) and p53-mutatedmore » (HaCaT) keratinocyte cell lines. SIRT1 and p53 are overexpressed in p53-mutated keratinocytes, whilst miR-34a levels are 90% less in HaCaT cells. HaCaTs have impaired responses to p53/SIRT1/miR-34a axis manipulation which enhanced survival during exposure to the chemotherapeutic agent, camptothecin. Inhibition of SIRT1 activity in this cell line increased p53 acetylation and doubled camptothecin-induced cell death. Our results demonstrate that p53 mutations increase apoptotic resistance in keratinocytes by interfering with miR-34a-mediated regulation of SIRT1 expression. Thus, SIRT1 inhibitors may have a therapeutic potential for overcoming apoptotic resistance during skin cancer treatment. - Highlights: • Impaired microRNA biogenesis promotes apoptotic resistance in HaCaT keratinocytes. • TP53 mutations suppress miR-34a-mediated regulation of SIRT1 expression. • SIRT1 inhibition increases p53 acetylation in HaCaTs, restoring apoptosis.« less
Witt, Kristine L; Hsieh, Jui-Hua; Smith-Roe, Stephanie L; Xia, Menghang; Huang, Ruili; Zhao, Jinghua; Auerbach, Scott S; Hur, Junguk; Tice, Raymond R
2017-08-01
Genotoxicity potential is a critical component of any comprehensive toxicological profile. Compounds that induce DNA or chromosomal damage often activate p53, a transcription factor essential to cell cycle regulation. Thus, within the US Tox21 Program, we screened a library of ∼10,000 (∼8,300 unique) environmental compounds and drugs for activation of the p53-signaling pathway using a quantitative high-throughput screening assay employing HCT-116 cells (p53 +/+ ) containing a stably integrated β-lactamase reporter gene under control of the p53 response element (p53RE). Cells were exposed (-S9) for 16 hr at 15 concentrations (generally 1.2 nM to 92 μM) three times, independently. Excluding compounds that failed analytical chemistry analysis or were suspected of inducing assay interference, 365 (4.7%) of 7,849 unique compounds were concluded to activate p53. As part of an in-depth characterization of our results, we first compared them with results from traditional in vitro genotoxicity assays (bacterial mutation, chromosomal aberration); ∼15% of known, direct-acting genotoxicants in our library activated the p53RE. Mining the Comparative Toxicogenomics Database revealed that these p53 actives were significantly associated with increased expression of p53 downstream genes involved in DNA damage responses. Furthermore, 53 chemical substructures associated with genotoxicity were enriched in certain classes of p53 actives, for example, anthracyclines (antineoplastics) and vinca alkaloids (tubulin disruptors). Interestingly, the tubulin disruptors manifested unusual nonmonotonic concentration response curves suggesting activity through a unique p53 regulatory mechanism. Through the analysis of our results, we aim to define a role for this assay as one component of a comprehensive toxicological characterization of large compound libraries. Environ. Mol. Mutagen. 58:494-507, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ferrandiz-Pulido, Carla; Masferrer, Emili; Toll, Agustin; Hernandez-Losa, Javier; Mojal, Sergio; Pujol, Ramon M; Ramon y Cajal, Santiago; de Torres, Ines; Garcia-Patos, Vicente
2013-12-01
Penile squamous cell carcinoma is a rare neoplasm associated with a high risk of metastasis and morbidity. There are limited data on the role of the mTOR signaling pathway in penile squamous cell carcinoma carcinogenesis and tumor maintenance. We assessed a possible role for mTOR signaling pathway activation as a potential predictive biomarker of outcome and a therapeutic target for penile cancer. A cohort of 67 patients diagnosed with invasive penile squamous cell carcinoma from 1987 to 2010 who had known HPV status were selected for study. Tissue microarrays were constructed with 67 primary penile squamous cell carcinomas, matched normal tissues and 8 lymph node metastases. Immunohistochemical staining was performed for p53, pmTOR, pERK, p4E-BP1, eIF4E and peIF4E. Expression was evaluated using a semiquantitative H-score on a scale of 0 to 300. Expression of pmTOR, p4E-BP1, eIF4E and peIF4E was increased in penile tumors compared with matched adjacent normal tissues, indicating activation of the mTOR signaling pathway in penile tumorigenesis. Over expression of pmTOR, peIF4E and p53 was significantly associated with lymph node disease. peIF4E and p53 also correlated with a poor outcome, including recurrence, metastasis or disease specific death. In contrast, pERK and p4E-BP1 were associated with lower pT stages. pmTOR and intense p53 expression was associated with HPV negative tumors. Activation of mTOR signaling may contribute to penile squamous cell carcinoma progression and aggressive behavior. Targeting mTOR or its downstream signaling targets, such as peIF4E, may be a valid therapeutic strategy. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Watson, Jane L; Hill, Richard; Yaffe, Paul B; Greenshields, Anna; Walsh, Mark; Lee, Patrick W; Giacomantonio, Carman A; Hoskin, David W
2010-11-01
Curcumin from the rhizome of theCurcuma longa plant has chemopreventative activity and inhibits the growth of neoplastic cells. Since p53 has been suggested to be important for anticancer activity by curcumin, we investigated curcumin-induced cytotoxicity in cultures of p53(+/+) and p53(-/-) HCT-116 colon cancer cells, as well as mutant p53 HT-29 colon cancer cells. Curcumin killed wild-type p53 HCT-116 cells and mutant p53 HT-29 cells in a dose- and time-dependent manner. In addition, curcumin-treated p53(+/+) HCT-116 cells and mutant p53 HT-29 cells showed upregulation of total and activated p53, as well as increased expression of p53-regulated p21, PUMA (p53 upregulated modulator of apoptosis), and Bax; however, an equivalent cytotoxic effect by curcumin was observed in p53(+/+) and p53(-/-) HCT-116 cells, demonstrating that curcumin-induced cytotoxicity was independent of p53 status. Similar results were obtained when the cytotoxic effect of curcumin was assessed in wild-type p53 HCT-116 cells after siRNA-mediated p53 knockdown. Chromatin condensation, poly (ADP-ribose) polymerase-1 cleavage and reduced pro-caspase-3 levels in curcumin-treated p53(+/+) and p53(-/-) HCT-116 cells suggested that curcumin caused apoptosis. In addition, exposure to curcumin resulted in superoxide anion production and phosphorylation of oxidative stress proteins in p53(+/+) and p53(-/-) HCT-116 cells. Collectively, our results indicate that, despite p53 upregulation and activation, curcumin-induced apoptosis in colon cancer cells was independent of p53 status and involved oxidative stress. Curcumin may therefore have therapeutic potential in the management of colon cancer, especially in tumorsthatare resistant to conventional chemotherapydue todefects inp53 expression or function. 2010 Elsevier Ireland Ltd. All rights reserved.
Expression of P53 protein after exposure to ionizing radiation
NASA Astrophysics Data System (ADS)
Salazar, A. M.; Salvador, C.; Ruiz-Trejo, C.; Ostrosky, P.; Brandan, M. E.
2001-10-01
One of the most important tumor suppressor genes is p53 gene, which is involved in apoptotic cell death, cell differentiation and cell cycle arrest. The expression of p53 gene can be evaluated by determining the presence of P53 protein in cells using Western Blot assay with a chemiluminescent method. This technique has shown variabilities that are due to biological factors. Film developing process can influence the quality of the p53 bands obtained. We irradiated tumor cell lines and human peripheral lymphocytes with 137Cs and 60Co gamma rays to standardize irradiation conditions, to compare ionizing radiation with actinomycin D and to reduce the observed variability of P53 protein induction levels. We found that increasing radiation doses increase P53 protein induction while it decreases viability. We also conclude that ionizing radiation could serve as a positive control for Western Blot analysis of protein P53. In addition, our results show that the developing process may play an important role in the quality of P53 protein bands and data interpretation.
Classification of TP53 mutations and HPV predict survival in advanced larynx cancer.
Scheel, Adam; Bellile, Emily; McHugh, Jonathan B; Walline, Heather M; Prince, Mark E; Urba, Susan; Wolf, Gregory T; Eisbruch, Avraham; Worden, Francis; Carey, Thomas E; Bradford, Carol
2016-09-01
Assess tumor suppressor p53 (TP53) functional mutations in the context of other biomarkers in advanced larynx cancer. Prospective analysis of pretreatment tumor TP53, human papillomavirus (HPV), Bcl-xL, and cyclin D1 status in stage III and IV larynx cancer patients in a clinical trial. TP53 exons 4 through 9 from 58 tumors were sequenced. Mutations were grouped using three classifications based on their expected function. Each functional group was analyzed for response to induction chemotherapy, time to surgery, survival, HPV status, p16INK4a, Bcl-xl, and cyclin D1 expression. TP53 mutations were found in 22 of 58 (37.9%) patients with advanced larynx cancer, including missense mutations in 13 of 58 (22.4%) patients, nonsense mutations in four of 58 (6.9%), and deletions in five of 58 (8.6%). High-risk HPV was found in 20 of 52 (38.5%) tumors. A classification based on Evolutionary Action score of p53 (EAp53) distinguished missense mutations with high risk for decreased survival from low-risk mutations (P = 0.0315). A model including this TP53 classification, HPV status, cyclin D1, and Bcl-xL staining significantly predicts survival (P = 0.0017). EAp53 functional classification of TP53 mutants and biomarkers predict survival in advanced larynx cancer. NA. Laryngoscope, 126:E292-E299, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Jabbur, James R; Tabor, Amy D; Cheng, Xiaodong; Wang, Hua; Uesugi, Motonari; Lozano, Guillermina; Zhang, Wei
2002-10-10
Analyses of five wild-type p53 containing cell lines revealed lineage specific differences in phosphorylation of Thr18 after treatment with ionizing (IR) or ultraviolet (UV) radiation. Importantly, Thr18 phosphorylation correlated with induction of the p53 downstream targets p21(Waf1/Cip1) (p21) and Mdm-2, suggesting a transactivation enhancing role. Thr18 phosphorylation has been shown to abolish side-chain hydrogen bonding between Thr18 and Asp21, an interaction necessary for stabilizing alpha-helical conformation within the transactivation domain. Mutagenesis-derived hydrogen bond disruption attenuated the interaction of p53 with the transactivation repressor Mdm-2 but had no direct effect on the interaction of p53 with the basal transcription factor TAF(II)31. However, prior incubation of p53 mutants with Mdm-2 modulated TAF(II)31 interaction with p53, suggesting Mdm-2 blocks the accessibility of p53 to TAF(II)31. Consistently, p53-null cells transfected with hydrogen bond disrupting p53 mutants demonstrated enhanced endogenous p21 expression, whereas p53/Mdm-2-double null cells exhibited no discernible differences in p21 expression. We conclude disruption of intramolecular hydrogen bonding between Thr18 and Asp21 enhances p53 transactivation by modulating Mdm-2 binding, facilitating TAF(II)31 recruitment.
Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma
Köbel, Martin; Piskorz, Anna M; Lee, Sandra; Lui, Shuhong; LePage, Cecile; Marass, Francesco; Rosenfeld, Nitzan; Mes Masson, Anne‐Marie
2016-01-01
Abstract TP53 mutations are ubiquitous in high‐grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low‐grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged‐amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain‐of‐function (GOF or nonsynonymous), loss‐of‐function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low‐grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of mutation to 96%. PMID:27840695
Diaz-Rodriguez, Esther; Garcia-Rendueles, Angela R; Ibáñez-Costa, Alejandro; Gutierrez-Pascual, Ester; Garcia-Lavandeira, Montserrat; Leal, Alfonso; Japon, Miguel A; Soto, Alfonso; Venegas, Eva; Tinahones, Francisco J; Garcia-Arnes, Juan A; Benito, Pedro; Angeles Galvez, Maria; Jimenez-Reina, Luis; Bernabeu, Ignacio; Dieguez, Carlos; Luque, Raul M; Castaño, Justo P; Alvarez, Clara V
2014-11-01
Acromegaly is caused by somatotroph cell adenomas (somatotropinomas [ACROs]), which secrete GH. Human and rodent somatotroph cells express the RET receptor. In rodents, when normal somatotrophs are deprived of the RET ligand, GDNF (Glial Cell Derived Neurotrophic Factor), RET is processed intracellularly to induce overexpression of Pit1 [Transcription factor (gene : POUF1) essential for transcription of Pituitary hormones GH, PRL and TSHb], which in turn leads to p19Arf/p53-dependent apoptosis. Our purpose was to ascertain whether human ACROs maintain the RET/Pit1/p14ARF/p53/apoptosis pathway, relative to nonfunctioning pituitary adenomas (NFPAs). Apoptosis in the absence and presence of GDNF was studied in primary cultures of 8 ACROs and 3 NFPAs. Parallel protein extracts were analyzed for expression of RET, Pit1, p19Arf, p53, and phospho-Akt. When GDNF deprived, ACRO cells, but not NFPAs, presented marked level of apoptosis that was prevented in the presence of GDNF. Apoptosis was accompanied by RET processing, Pit1 accumulation, and p14ARF and p53 induction. GDNF prevented all these effects via activation of phospho-AKT. Overexpression of human Pit1 (hPit1) directly induced p19Arf/p53 and apoptosis in a pituitary cell line. Using in silico studies, 2 CCAAT/enhancer binding protein alpha (cEBPα) consensus-binding sites were found to be 100% conserved in mouse, rat, and hPit1 promoters. Deletion of 1 cEBPα site prevented the RET-induced increase in hPit1 promoter expression. TaqMan qRT-PCR (real time RT-PCR) for RET, Pit1, Arf, TP53, GDNF, steroidogenic factor 1, and GH was performed in RNA from whole ACRO and NFPA tumors. ACRO but not NFPA adenomas express RET and Pit1. GDNF expression in the tumors was positively correlated with RET and negatively correlated with p53. In conclusion, ACROs maintain an active RET/Pit1/p14Arf/p53/apoptosis pathway that is inhibited by GDNF. Disruption of GDNF's survival function might constitute a new therapeutic route in acromegaly.
Tan, Xuemei; Ye, Hua; Yang, Kai; Chen, Dan; Tang, Hong
2015-07-01
To investigate the expression and circadian rhythm variation of biological clock gene Per1 and cell cycle genes p53, CyclinD1, cyclin-dependent kinases (CDK1), CyclinB1 in different stages of carcinogenesis in buccal mucosa and its relationship with the development of buccal mucosa carcinoma. Ninety golden hamsters were housed under 12 hours light-12 hours dark cycles, and the model of buccal squamous cell carcinoma was established by using the dimethylbenzanthracene (DMBA) to smear the golden hamster buccal mucosa. Before the DMBA was used and after DMBA was used 6 weeks and 14 weeks respectively, the golden hamsters were sacrificed at 6 different time points (5 rats per time point) within 24 hour, including 4, 8, 12, 16, 20 and 24 hour after lights onset (HALO), and the normal buccal mucosa, precancerous lesions and cancer tissue were obtained, respectively. HE stained sections were prepared to observe the canceration of each tissue. Real time RT-PCR was used to detect the mRNA expression of Per1, p53, CyclinD1, CDK1 and CyclinB1, and a cosine analysis method was applied to determine the circadian rhythm variation of Per1, p53, CyclinD1, CDK1 and CyclinB1 mRNA expression, which were characterized by median, amplitude and acrophase. The expression of Per1, p53, CDK1 and CyclinD1 mRNA in 6 different time points within 24 hours in the tissues of three different stages of carcinogenesis had circadian rhythm, respectively. However, the CyclinB1 mRNA was expressed with circadian rhythm just in normal and cancer tissue (P < 0.05), while in precancerous lesions the circadian rhythm was in disorder (P > 0.05). As the development of carcinoma, the median of Per1 and p53 mRNA expression were significantly decreased (P < 0.05), yet the median of CDK1, CyclinB1 and CyclinD1 mRNA expression were significantly increased (P < 0.05). The amplitude of Per1, p53 and CyclinD1 mRNA expression was significantly decreased as the development of carcinoma (P < 0.05), however the amplitude of CDK1 mRNA expression was significantly increased (P < 0.05). In addition, there was no significant difference in the amplitude of CyclinB1 mRNA expression. The time that the peak expression value of Per1 and CDK1 mRNA appeared (Acrophase) in precancerous lesions was remarkably earlier than that in normal tissues, but the acrophase of p53 and CyclinD1 mRNA expression was remarkably delayed. Moreover, the acrophase of CDK1 and CyclinB1 mRNA expression in cancer tissues was obviously earlier than that in normal tissues, yet there was no significant variation in acrophase of Per1, p53, CyclinD1 mRNA expression between normal tissues and cancer tissues. The circadian rhythm of clock gene Per1 and cell cycle genes p53, CyclinD1, CDK1, CyclinB1 expression remarkably varied with the occurrence and development of carcinoma. Further research into the interaction between circadian and cell cycle of two cycle activity and relationship with the carcinogenesis may providenew ideas and methods of individual treatment and the mechanism of carcinogenesis.
Wip1 and p53 contribute to HTLV-1 Tax-induced tumorigenesis
2012-01-01
Background Human T-cell Leukemia Virus type 1 (HTLV-1) infects 20 million individuals world-wide and causes Adult T-cell Leukemia/Lymphoma (ATLL), a highly aggressive T-cell cancer. ATLL is refractory to treatment with conventional chemotherapy and fewer than 10% of afflicted individuals survive more than 5 years after diagnosis. HTLV-1 encodes a viral oncoprotein, Tax, that functions in transforming virus-infected T-cells into leukemic cells. All ATLL cases are believed to have reduced p53 activity although only a minority of ATLLs have genetic mutations in their p53 gene. It has been suggested that p53 function is inactivated by the Tax protein. Results Using genetically altered mice, we report here that Tax expression does not achieve a functional equivalence of p53 inactivation as that seen with genetic mutation of p53 (i.e. a p53−/− genotype). Thus, we find statistically significant differences in tumorigenesis between Tax+p53+/+versus Tax+p53−/− mice. We also find a role contributed by the cellular Wip1 phosphatase protein in tumor formation in Tax transgenic mice. Notably, Tax+Wip1−/− mice show statistically significant reduced prevalence of tumorigenesis compared to Tax+Wip1+/+ counterparts. Conclusions Our findings provide new insights into contributions by p53 and Wip1 in the in vivo oncogenesis of Tax-induced tumors in mice. PMID:23256545
Actual Proliferating Index and p53 protein expression as prognostic marker in odontogenic cysts.
Gadbail, A R; Chaudhary, M; Patil, S; Gawande, M
2009-10-01
The purpose of this study was to evaluate the biological aggressiveness of odontogenic keratocyst/keratocystic odontogenic tumour (KCOT), radicular cyst (RC) and dentigerous cyst (DC) by observing the actual proliferative activity of epithelium, and p53 protein expression. The actual proliferative activity was measured by Ki-67 Labelling Index and argyrophilic nucleolar organizing regions (AgNOR) count per nucleus. The p53 protein expression was also evaluated. Ki-67 positive cells were observed higher in suprabasal cell layers of KCOT with uniform distribution, a few of them were predominantly observed in basal cell layer in RC and DC. The AgNOR count was significantly higher in suprabasal cell layers of KCOT. The actual proliferative activity was noted to be higher in suprabasal cell layers of KCOT. The p53 immunolabelling was dense and scattered in basal and suprabasal cell layers in KCOT. The weakly stained p53 positive cells were observed diffusely distributed in KCOT, whereas they were mainly seen in basal cell layer of RC and DC. The quantitative and qualitative differences of the proliferative activity and the p53 protein expression in sporadic KCOT may be associated with intrinsic growth potential that could play a role in its development and explain locally aggressive biological behaviour. AgNOR count and p53 protein detection in odontogenic lesions can be of great consequence to predict the biological behaviour and prognosis.
Akram, Khondoker M; Lomas, Nicola J; Forsyth, Nicholas R; Spiteri, Monica A
2014-01-01
Idiopathic pulmonary fibrosis (IPF) is a progressive, debilitating, and fatal lung disease of unknown aetiology with no current cure. The pathogenesis of IPF remains unclear but repeated alveolar epithelial cell (AEC) injuries and subsequent apoptosis are believed to be among the initiating/ongoing triggers. However, the precise mechanism of apoptotic induction is hitherto elusive. In this study, we investigated expression of a panel of pro-apoptotic and cell cycle regulatory proteins in 21 IPF and 19 control lung tissue samples. We reveal significant upregulation of the apoptosis-inducing ligand TRAIL and its cognate receptors DR4 and DR5 in AEC within active lesions of IPF lungs. This upregulation was accompanied by pro-apoptotic protein p53 overexpression. In contrast, myofibroblasts within the fibroblastic foci of IPF lungs exhibited high TRAIL, DR4 and DR5 expression but negligible p53 expression. Similarly, p53 expression was absent or negligible in IPF and control alveolar macrophages and lymphocytes. No significant differences in TRAIL expression were noted in these cell types between IPF and control lungs. However, DR4 and DR5 upregulation was detected in IPF alveolar macrophages and lymphocytes. The marker of cellular senescence p21(WAF1) was upregulated within affected AEC in IPF lungs. Cell cycle regulatory proteins Cyclin D1 and SOCS3 were significantly enhanced in AEC within the remodelled fibrotic areas of IPF lungs but expression was negligible in myofibroblasts. Taken together these findings suggest that, within the remodelled fibrotic areas of IPF, AEC can display markers associated with proliferation, senescence, and apoptotosis, where TRAIL could drive the apoptotic response. Clear understanding of disease processes and identification of therapeutic targets will direct us to develop effective therapies for IPF.
Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication
Singh, Shilpa; Vaughan, Catherine A.; Frum, Rebecca A.; Grossman, Steven R.; Deb, Sumitra
2017-01-01
Gain-of-function (GOF) p53 mutations are observed frequently in most intractable human cancers and establish dependency for tumor maintenance and progression. While some of the genes induced by GOF p53 have been implicated in more rapid cell proliferation compared with p53-null cancer cells, the mechanism for dependency of tumor growth on mutant p53 is unknown. This report reveals a therapeutically targetable mechanism for GOF p53 dependency. We have shown that GOF p53 increases DNA replication origin firing, stabilizes replication forks, and promotes micronuclei formation, thus facilitating the proliferation of cells with genomic abnormalities. In contrast, absence or depletion of GOF p53 leads to decreased origin firing and a higher frequency of fork collapse in isogenic cells, explaining their poorer proliferation rate. Following genome-wide analyses utilizing ChIP-Seq and RNA-Seq, GOF p53–induced origin firing, micronuclei formation, and fork protection were traced to the ability of GOF p53 to transactivate cyclin A and CHK1. Highlighting the therapeutic potential of CHK1’s role in GOF p53 dependency, experiments in cell culture and mouse xenografts demonstrated that inhibition of CHK1 selectively blocked proliferation of cells and tumors expressing GOF p53. Our data suggest the possibility that checkpoint inhibitors could efficiently and selectively target cancers expressing GOF p53 alleles. PMID:28394262
DOE Office of Scientific and Technical Information (OSTI.GOV)
So, Keum-Young; Oh, Seon-Hee
Heme oxygenase-1 (HO-1) is a stress-inducible cytoprotective enzyme. It is often overexpressed in different types of cancers and promotes cell survival. However, the role of HO-1 and the underlying molecular mechanism of cadmium (Cd)-induced oxidative stress in cancer cells remain undefined. Here we show that the role of HO-1 under Cd-induced oxidative stress is dependent upon autophagy, which is sensitized by the tumor suppressor p53. The sensitivity to Cd was 3.5- and 14-fold higher in p53-expressing YD8 and H460 cells than in p53-null YD10B and H1299 cells, respectively. The levels of p53 in YD8 and H460 cells decreased in a Cd concentration-dependent manner,more » which was inhibited by pretreatment with N-acetylcysteine. In both cell lines, Cd exposure resulted in caspase-3-mediated PARP-1 cleavage and the induction of CHOP, LC3-II, and HO-1, which were limited in YD10B and H1299 cells exposed to high concentrations of Cd. Cd exposure to p53-overexpressing YD10B cells enhanced Cd-induced HO-1 and LC3-II levels, whereas genetic knockdown of p53 in YD8 cells resulted in the suppression of Cd-induced levels of HO-1 and LC3-II, indicating that p53 is required in the sensing of HO-1 and induction of autophagy. The inhibition of autophagy using small interfering RNA (siRNA) for the autophagy-related gene atg5 enhanced HO-1, CHOP, and PARP-1 cleavage induced by Cd. However, transfection with HO-1 siRNA increased Cd-induced LC3-II, and suppressed the expression of CHOP and cleavage of PARP-1. Collectively, the role of HO-1 in apoptosis could be modulated by autophagy, which is sensitized by p53 expression in human cancer cell lines. - Highlights: • Cadmium exposure decreased p53 level, and induced HO-1, apoptosis, and autophagy. • p53 sensitized Cadmium-induced HO-1 and autophagy induction. • Cadmium induced HO-1 under autophagy impairment and increased apoptosis. • Cadmium-induced autophagy was enhanced under HO-1 impaired conditions. • The role of HO-1 in Cadmium-induced apoptosis is modulated by autophagy.« less
Protein expression patterns of cell cycle regulators in operable breast cancer.
Zagouri, Flora; Kotoula, Vassiliki; Kouvatseas, George; Sotiropoulou, Maria; Koletsa, Triantafyllia; Gavressea, Theofani; Valavanis, Christos; Trihia, Helen; Bobos, Mattheos; Lazaridis, Georgios; Koutras, Angelos; Pentheroudakis, George; Skarlos, Pantelis; Bafaloukos, Dimitrios; Arnogiannaki, Niki; Chrisafi, Sofia; Christodoulou, Christos; Papakostas, Pavlos; Aravantinos, Gerasimos; Kosmidis, Paris; Karanikiotis, Charisios; Zografos, George; Papadimitriou, Christos; Fountzilas, George
2017-01-01
To evaluate the prognostic role of elaborate molecular clusters encompassing cyclin D1, cyclin E1, p21, p27 and p53 in the context of various breast cancer subtypes. Cyclin E1, cyclin D1, p53, p21 and p27 were evaluated with immunohistochemistry in 1077 formalin-fixed paraffin-embedded tissues from breast cancer patients who had been treated within clinical trials. Jaccard distances were computed for the markers and the resulted matrix was used for conducting unsupervised hierarchical clustering, in order to identify distinct groups correlating with prognosis. Luminal B and triple-negative (TNBC) tumors presented with the highest and lowest levels of cyclin D1 expression, respectively. By contrast, TNBC frequently expressed Cyclin E1, whereas ER-positive tumors did not. Absence of Cyclin D1 predicted for worse OS, while absence of Cyclin E1 for poorer DFS. The expression patterns of all examined proteins yielded 3 distinct clusters; (1) Cyclin D1 and/or E1 positive with moderate p21 expression; (2) Cyclin D1 and/or E1, and p27 positive, p53 protein negative; and, (3) Cyclin D1 or E1 positive, p53 positive, p21 and p27 negative or moderately positive. The 5-year DFS rates for clusters 1, 2 and 3 were 70.0%, 79.1%, 67.4% and OS 88.4%, 90.4%, 78.9%, respectively. It seems that the expression of cell cycle regulators in the absence of p53 protein is associated with favorable prognosis in operable breast cancer.
Sanaat, Zohreh; Halimi, Monireh; Ghojezadeh, Morteza; Pirovi, Amir Hossein; Gharamaleki, Jalil Vaez; Ziae, Ali Esfahani Jamal Eivazi; Kermani, Iraj Aswadi
2013-01-01
Introduction Gastric cancer remains the second most common cause of cancer-related deaths worldwide. In many malignancies like, lung and breast, multiple prognostic factors are known, such as mutations in Ki-67, HER-2/neu, p53. In this study, we evaluated immunohistochemical protein expression patterns of cell-cycle-regulators p53, proliferation marker Ki-67, surface expression of CD44, HER-2/neu oncogene proposed as useful prognostic factors. Methods In this descriptive-analytic study, we evaluate 100 patients with gastric cancer who were referred to Shahid Ghazi Hospital or other oncology clinics of Tabriz University of Medical Sciences in 2005-2010. Patients with pathologic confirmation of gastric cancer were selected. Expression of p53, ki-67, CD-44, HER-2/neu were detected by immunohistochemical staining. Results In this study, 100 patients with gastric cancer participated. 76(76%) were men and 24(24%) were women with mean age of 64.02(8.05) years. Seventy two samples were intestinal type and 28 were diffuse type. CD44 was positive in 27(27%) patients. P53 was positive in 35(35%) patients. Ki-67 was positive in 53(53%) patients. HER-2/neu was positive in 51(51%) patients. Conclusion The frequency of positive p53, Ki-67, CD44 and HER-2/neu varied in different studies. Positive Ki-67 and HER-2/neu were not associated with changes in survival but positive p53 and CD44 were significantly associated with improved survival. PMID:24505530
Zargar-Shoshtari, Kamran; Spiess, Philippe E; Berglund, Anders E; Sharma, Pranav; Powsang, Julio M; Giuliano, Anna; Magliocco, Anthony M; Dhillon, Jasreman
2016-08-01
Because of the low incidence of penile carcinoma (PC), the value of p16(ink4a), p53, and human papilloma virus (HPV) infection status in clinical practice remains unclear. Herein, we report our experience with potential clinical utility of these markers in men with PC treated at our institution. Tissue microarrays of 57 cases of invasive penile squamous cell carcinomas were immunohistochemically stained for p16 and p53. HPV in situ hybridization (ISH) for high-risk subtypes was also performed. Association between marker status, nodal disease, overall (OS) and cancer-specific survival (CSS) were assessed. p16 and HPV ISH were positive in 23 (40%) and 24 (42%) of the cohort, respectively. The proportion of warty, basaloid, or mixed warty basaloid tumor subtypes were significantly greater in the p16-positive patients (48% vs. 3%; P < .01). p53 expression was negative in 31 (54%) cases. Only in p16-negative patients, positive p53 status was associated with pN+ disease (odds ratio, 4.4 [95% confidence interval (CI), 1.04-18.6]). In Kaplan-Meier analysis, the unadjusted estimated OS was insignificantly longer in p16-positive patients (median OS, 75 vs. 27 months; P = .27) and median CSS was not reached (P = .16). In a multivariable Cox proportional hazard model, when controlling for pathological nodal status and adjuvant chemotherapy, p16 status was a significant predictor for improved CSS (hazard ratio, 0.36 [95% CI, 0.13-0.99]). The worst CSS was seen in pN+ patients with double negative p16 and p53 expression (8 vs. 34 months; P = .01). In this current cohort, p53 and p16 status showed clinical utility in predicting nodal disease as well as survival. Copyright © 2015 Elsevier Inc. All rights reserved.
Modulation of p53 cellular function and cell death by African swine fever virus.
Granja, Aitor G; Nogal, María L; Hurtado, Carolina; Salas, José; Salas, María L; Carrascosa, Angel L; Revilla, Yolanda
2004-07-01
Modulation of the activity of tumor suppressor p53 is a key event in the replication of many viruses. We have studied the function of p53 in African swine fever virus (ASFV) infection by determining the expression and activity of this transcription factor in infected cells. p53 levels are increased at early times of infection and are maintained throughout the infectious cycle. The protein is transcriptionally active, stabilized by phosphorylation, and localized in the nucleus. p53 induces the expression of p21 and Mdm2. Strikingly, these two proteins are located at the cytoplasmic virus factories. The retention of Mdm2 at the factory may represent a viral mechanism to prevent p53 inactivation by the protein. The expression of apoptotic proteins, such as Bax or active caspase-3, is also increased following ASFV infection, although the increase in caspase-3 does not appear to be, at least exclusively, p53 dependent. Bax probably plays a role in the induction of apoptosis in the infected cells, as suggested by the release of cytochrome c from the mitochondria. The significance of p21 induction and localization is discussed in relation to the shutoff of cellular DNA synthesis that is observed in ASFV-infected cells.
Modulation of p53 Cellular Function and Cell Death by African Swine Fever Virus
Granja, Aitor G.; Nogal, María L.; Hurtado, Carolina; Salas, José; Salas, María L.; Carrascosa, Angel L.; Revilla, Yolanda
2004-01-01
Modulation of the activity of tumor suppressor p53 is a key event in the replication of many viruses. We have studied the function of p53 in African swine fever virus (ASFV) infection by determining the expression and activity of this transcription factor in infected cells. p53 levels are increased at early times of infection and are maintained throughout the infectious cycle. The protein is transcriptionally active, stabilized by phosphorylation, and localized in the nucleus. p53 induces the expression of p21 and Mdm2. Strikingly, these two proteins are located at the cytoplasmic virus factories. The retention of Mdm2 at the factory may represent a viral mechanism to prevent p53 inactivation by the protein. The expression of apoptotic proteins, such as Bax or active caspase-3, is also increased following ASFV infection, although the increase in caspase-3 does not appear to be, at least exclusively, p53 dependent. Bax probably plays a role in the induction of apoptosis in the infected cells, as suggested by the release of cytochrome c from the mitochondria. The significance of p21 induction and localization is discussed in relation to the shutoff of cellular DNA synthesis that is observed in ASFV-infected cells. PMID:15194793
The influence of SV40 immortalization of human fibroblasts on p53-dependent radiation responses
NASA Technical Reports Server (NTRS)
Kohli, M.; Jorgensen, T. J.
1999-01-01
The simian virus 40 large tumor antigen (SV40 Tag) has been ascribed many functions critical to viral propagation, including binding to the mammalian tumor suppressor p53. Recent studies have demonstrated that SV40-transformed murine cells have functional p53. The status of p53 in SV40-immortalized human cells, however, has not been characterized. We have found that in response to ionizing radiation, p53-dependent p21 transactivation activity is present, albeit reduced, in SV40-immortalized cells and that this activity can be further reduced with either dominant negative p53 expression or higher SV40 Tag expression. Furthermore, overexpression of p53 in SV40-immortalized ataxia-telangiectasia (A-T) cells restores p53-dependent p21 induction to typical A-T levels. All SV40-immortalized cell lines exhibited an absence of G1 arrest. Moreover, all SV40-immortalized cell lines exhibited increased apoptosis relative to primary cells in response to ionizing radiation, suggesting that SV40 immortalization results in a unique phenotype with regard to DNA damage responses. Copyright 1999 Academic Press.
Asefa, Benyam; Dermott, Jonathan M; Kaldis, Philipp; Stefanisko, Karen; Garfinkel, David J; Keller, Jonathan R
2006-02-20
p205 is a member of the interferon-inducible p200 family of proteins that regulate cell proliferation. Over-expression of p205 inhibits cell growth, although its mechanism of action is currently unknown. Therefore, we evaluated the effect of p205 on the p53 and Rb-dependent pathways of cell cycle regulation. p205 expression results in elevated levels of p21, and activates the p21 promoter in vitro in a p53-dependent manner. In addition, p205 induces increased expression of Rb, and binds directly to Rb and p53. Interestingly, p205 also induces growth inhibition independent of p53 and Rb by delaying G2/M progression in proliferating cells, and is a substrate for Cdk2 kinase activity. Finally, we have identified other binding partners of p205 by a yeast two-hybrid screen, including the paired homeodomain protein HoxB2. Taken together, our results indicate that p205 induces growth arrest by interaction with multiple transcription factors that regulate the cell cycle, including but not entirely dependent on the Rb- and p53-mediated pathways of growth inhibition.
CDIP, a novel pro-apoptotic gene, regulates TNFalpha-mediated apoptosis in a p53-dependent manner.
Brown, Lauren; Ongusaha, Pat P; Kim, Hyung-Gu; Nuti, Shanthy; Mandinova, Anna; Lee, Ji Won; Khosravi-Far, Roya; Aaronson, Stuart A; Lee, Sam W
2007-07-25
We have identified a novel pro-apoptotic p53 target gene named CDIP (Cell Death Involved p53-target). Inhibition of CDIP abrogates p53-mediated apoptotic responses, demonstrating that CDIP is an important p53 apoptotic effector. CDIP itself potently induces apoptosis that is associated with caspase-8 cleavage, implicating the extrinsic cell death pathway in apoptosis mediated by CDIP. siRNA-directed knockdown of caspase-8 results in a severe impairment of CDIP-dependent cell death. In investigating the potential involvement of extrinsic cell death pathway in CDIP-mediated apoptosis, we found that TNF-alpha expression tightly correlates with CDIP expression, and that inhibition of TNF-alpha signaling attenuates CDIP-dependent apoptosis. We also demonstrate that TNF-alpha is upregulated in response to p53 and p53 inducing genotoxic stress, in a CDIP-dependent manner. Consistently, knockdown of TNF-alpha impairs p53-mediated stress-induced apoptosis. Together, these findings support a novel p53 --> CDIP --> TNF-alpha apoptotic pathway that directs apoptosis after exposure of cells to genotoxic stress. Thus, CDIP provides a new link between p53-mediated intrinsic and death receptor-mediated extrinsic apoptotic signaling, providing a novel target for cancer therapeutics aimed at maximizing the p53 apoptotic response of cancer cells to drug therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Dehua; Fan, Wufang; Liu, Guohong
2006-04-01
HeLaHF is a non-transformed revertant of HeLa cells, likely resulting from the activation of a putative tumor suppressor(s). p53 protein was stabilized in this revertant and reactivated for certain transactivation functions. Although p53 stabilization has not conclusively been linked to the reversion, it is clear that the genes in p53 pathway are involved. The present study confirms the direct role of p53 in HeLaHF reversion by demonstrating that RNAi-mediated p53 silencing partially restores anchorage-independent growth potential of the revertant through the suppression of anoikis. In addition, we identified a novel gene, named PHTS, with putative tumor suppressor properties, and showedmore » that this gene is also involved in HeLaHF reversion independently of the p53 pathway. Expression profiling revealed that PHTS is one of the genes that is up-regulated in HeLaHF but not in HeLa. It encodes a putative protein with CD59-like domains. RNAi-mediated PHTS silencing resulted in the partial restoration of transformation (anchorage-independent growth) in HeLaHF cells, similar to that of p53 gene silencing, implying its tumor suppressor effect. However, the observed increased transformation potential by PHTS silencing appears to be due to an increased anchorage-independent proliferation rate rather than suppression of anoikis, unlike the effect of p53 silencing. p53 silencing did not affect PHTS gene expression, and vice versa, suggesting PHTS may function in a new and p53-independent tumor suppressor pathway. Furthermore, over-expression of PHTS in different cancer cell lines, in addition to HeLa, reduces cell growth likely via induced apoptosis, confirming the broad PHTS tumor suppressor properties.« less
Hernández-Acosta, N Carolina; Cabrera-Socorro, Alfredo; Morlans, Mercedes Pueyo; Delgado, Francisco J González; Suárez-Solá, M Luisa; Sottocornola, Roberta; Lu, Xin; González-Gómez, Miriam; Meyer, Gundela
2011-02-04
p63 and p73, family members of the tumor suppressor p53, are critically involved in the life and death of mammalian cells. They display high homology and may act in concert. The p73 gene is relevant for brain development, and p73-deficient mice display important malformations of the telencephalon. In turn, p63 is essential for the development of stratified epithelia and may also play a part in neuronal survival and aging. We show here that p63 and p73 are dynamically expressed in the embryonic and adult mouse and human telencephalon. During embryonic stages, Cajal-Retzius cells derived from the cortical hem co-express p73 and p63. Comparison of the brain phenotypes of p63- and p73- deficient mice shows that only the loss of p73 function leads to the loss of Cajal-Retzius cells, whereas p63 is apparently not essential for brain development and Cajal-Retzius cell formation. In postnatal mice, p53, p63, and p73 are present in cells of the subventricular zone (SVZ) of the lateral ventricle, a site of continued neurogenesis. The neurogenetic niche is reduced in size in p73-deficient mice, and the numbers of young neurons near the ventricular wall, marked with doublecortin, Tbr1 and calretinin, are dramatically decreased, suggesting that p73 is important for SVZ proliferation. In contrast to their restricted expression during brain development, p73 and p63 are widely detected in pyramidal neurons of the adult human cortex and hippocampus at protein and mRNA levels, pointing to a role of both genes in neuronal maintenance in adulthood. Copyright © 2010 Elsevier B.V. All rights reserved.
Expression of p53/HGF/c-met/STAT3 signal in fetuses with neural tube defects.
Trovato, Maria; D'Armiento, Maria; Lavra, Luca; Ulivieri, Alessandra; Dominici, Roberto; Vitarelli, Enrica; Grosso, Maddalena; Vecchione, Raffaella; Barresi, Gaetano; Sciacchitano, Salvatore
2007-02-01
Neural tube defects (NTD) are morphogenetic alterations due to a defective closure of neural tube. Hepatocyte growth factor (HGF)/c-met system plays a role in morphogenesis of nervous system, lung, and kidney. HGF/c-met morphogenetic effects are mediated by signal transducers and activators of transcription (STAT)3 and both HGF and c-met genes are regulated from p53. The aim of our study was to analyze mRNA and protein expressions of p53, HGF, c-met, and STAT3 in fetuses with NTD. By reverse transcriptase-polymerase chain reaction and immunohistochemistry, we analyzed neural tissues from four NTD fetuses and the corresponding non-malformed lungs, kidneys and placentas. We found a reduced mRNA expression of HGF/c-met/STAT3 pathway, in the malformed nervous systems and placentas. The reduced expression of this pathway correlated with the absence of p53 in all these samples. On the contrary, detectable expression levels of p53, HGF, c-met, and STAT3 were observed in non-malformed lungs and kidneys obtained from the same fetuses. Comparable results were obtained by immunohistochemistry, with the exception of p53, which was undetected in all fetal tissues. In conclusion, in NTD fetuses, both the defective neural tube tissue and the placenta have a reduction in all components of the p53/HGF/c-met/STAT3 cascade. This raises the possibility of using the suppression of these genes for early diagnosis of NTD especially on chorionic villus sampling.
p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation
Terzian, Tamara; Torchia, Enrique C.; Dai, Daisy; Robinson, Steven E.; Murao, Kazutoshi; Stiegmann, Regan A.; Gonzalez, Victoria; Boyle, Glen M.; Powell, Marianne B.; Pollock, Pamela M.; Lozano, Guillermina; Robinson, William A.; Roop, Dennis R.; Box, Neil F.
2011-01-01
p53 is the central member of a critical tumor suppressor pathway in virtually all tumor types, where it is silenced mainly by missense mutations. In melanoma, p53 predominantly remains wild type, thus its role has been neglected. To study the effect of p53 on melanocyte function and melanomagenesis, we crossed the ‘high-p53’ Mdm4+/− mouse to the well-established TP-ras0/+ murine melanoma progression model. After treatment with the carcinogen dimethylbenzanthracene (DMBA), TP-ras0/+ mice on the Mdm4+/− background developed fewer tumors with a delay in the age of onset of melanomas compared to TP-ras0/+ mice. Furthermore, we observed a dramatic decrease in tumor growth, lack of metastasis with increased survival of TP-ras0/+: Mdm4+/− mice. Thus, p53 effectively prevented the conversion of small benign tumors to malignant and metastatic melanoma. p53 activation in cultured primary melanocyte and melanoma cell lines using Nutlin-3, a specific Mdm2 antagonist, supported these findings. Moreover, global gene expression and network analysis of Nutlin-3-treated primary human melanocytes indicated that cell cycle regulation through the p21WAF1/CIP1 signaling network may be the key anti-melanomagenic activity of p53. PMID:20849464
Kapur, Arvinder; Felder, Mildred; Fass, Lucas; Kaur, Justanjot; Czarnecki, Austin; Rathi, Kavya; Zeng, San; Osowski, Kathryn Kalady; Howell, Colin; Xiong, May P; Whelan, Rebecca J; Patankar, Manish S
2016-06-08
The monoterpenoid, citral, when delivered through PEG-b-PCL nanoparticles inhibits in vivo growth of 4T1 breast tumors. Here, we show that citral inhibits proliferation of multiple human cancer cell lines. In p53 expressing ECC-1 and OVCAR-3 but not in p53-deficient SKOV-3 cells, citral induces G1/S cell cycle arrest and apoptosis as determined by Annexin V staining and increased cleaved caspase3 and Bax and decreased Bcl-2. In SKOV-3 cells, citral induces the ER stress markers CHOP, GADD45, EDEM, ATF4, Hsp90, ATG5, and phospho-eIF2α. The molecular chaperone 4-phenylbutyric acid attenuates citral activity in SKOV-3 but not in ECC-1 and OVCAR-3 cells. In p53-expressing cells, citral increases phosphorylation of serine-15 of p53. Activation of p53 increases Bax, PUMA, and NOXA expression. Inhibition of p53 by pifithrin-α, attenuates citral-mediated apoptosis. Citral increases intracellular oxygen radicals and this leads to activation of p53. Inhibition of glutathione synthesis by L-buthionine sulfoxamine increases potency of citral. Pretreatment with N-acetylcysteine decreases phosphorylation of p53 in citral-treated ECC-1 and OVCAR-3. These results define a p53-dependent, and in the absence of p53, ER stress-dependent mode of action of citral. This study indicates that citral in PEG-b-PCL nanoparticle formulation should be considered for treatment of breast and other tumors.
Kapur, Arvinder; Felder, Mildred; Fass, Lucas; Kaur, Justanjot; Czarnecki, Austin; Rathi, Kavya; Zeng, San; Osowski, Kathryn Kalady; Howell, Colin; Xiong, May P.; Whelan, Rebecca J.; Patankar, Manish S.
2016-01-01
The monoterpenoid, citral, when delivered through PEG-b-PCL nanoparticles inhibits in vivo growth of 4T1 breast tumors. Here, we show that citral inhibits proliferation of multiple human cancer cell lines. In p53 expressing ECC-1 and OVCAR-3 but not in p53-deficient SKOV-3 cells, citral induces G1/S cell cycle arrest and apoptosis as determined by Annexin V staining and increased cleaved caspase3 and Bax and decreased Bcl-2. In SKOV-3 cells, citral induces the ER stress markers CHOP, GADD45, EDEM, ATF4, Hsp90, ATG5, and phospho-eIF2α. The molecular chaperone 4-phenylbutyric acid attenuates citral activity in SKOV-3 but not in ECC-1 and OVCAR-3 cells. In p53-expressing cells, citral increases phosphorylation of serine-15 of p53. Activation of p53 increases Bax, PUMA, and NOXA expression. Inhibition of p53 by pifithrin-α, attenuates citral-mediated apoptosis. Citral increases intracellular oxygen radicals and this leads to activation of p53. Inhibition of glutathione synthesis by L-buthionine sulfoxamine increases potency of citral. Pretreatment with N-acetylcysteine decreases phosphorylation of p53 in citral-treated ECC-1 and OVCAR-3. These results define a p53-dependent, and in the absence of p53, ER stress-dependent mode of action of citral. This study indicates that citral in PEG-b-PCL nanoparticle formulation should be considered for treatment of breast and other tumors. PMID:27270209
Regulation of IAP (Inhibitor of Apoptosis) Gene Expression by the p53 Tumor Suppressor Protein
2005-05-01
adenovirus, gene therapy, polymorphism, 31 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20...averaged results of three inde- pendent experiments, with standard error. Right panel: Level of p53 in infected cells using the antibody Ab-6 (Calbiochem...with highly purified mitochondria as described in (2). The arrow marks oligomerized BAK. The right _ -. panel depicts the purity of BMH CrosIinked Mito
Ishida, M; Gomyo, Y; Ohfuji, S; Ikeda, M; Kawasaki, H; Ito, H
1997-05-01
To examine in vivo the validity of the results of experiments in vitro, we analyzed the relationship between p53 gene status and apoptotic cell death of human gastric intestinal-type adenocarcinomas. Surgical specimens were classified into two categories: 18 gastric cancers with nuclear p53 protein (A), and 17 gastric cancers without nuclear p53 protein (B). Polymerase chain reaction-single strand conformation polymorphism disclosed a shifted band that corresponded to a mutation in the p53 gene in 13 cases (72%) in category A and 3 cases (18%) in category B, the frequency being significantly higher in the former (P < 0.05). Apoptotic cells were identified from routinely stained sections and by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL). The TUNEL index [TI; (the number of TUNEL-positive apoptotic cells/the total number of tumor cells) x 100] was 3.8 +/- 1.4% in category A and 4.9 +/- 1.2% in category B, the value being significantly lower in the former (P < 0.05). The proliferating cell nuclear antigen index, defined similarly to the TI, was 56.4 +/- 16.3% in category A, and it was significantly higher than that in category B (P < 0.05). The immunohistochemically detected expression of p21CIP1/WAP1 did not differ between the two categories, while Bax-positive tumor cells were more frequently detected in category A. These results indicate that (1) expression of a mutated p53 gene attenuates apoptotic cell death of gastric cancer, in accordance with the previous in vitro finding that p53 gene mutation provides a possible selective advantage for tumor cell proliferation, and (2) apoptosis is related not only to expression of p53 and the stage of the cell cycle, but also to p53-independent and cell cycle-independent events.
Han, Jia; Li, Jie; Tang, Kaijie; Zhang, Huahua; Guo, Bo; Hou, Ni; Huang, Chen
2017-11-15
Evidence demonstrate that p53 mutations and microRNAs (miRs) are important components of 5-FU resistance in colorectal cancer (CRC). miR-338-3p has been reported associated with cancer prognosis. However whether or not it influences chemotherapy sensitivity and the underlying mechanisms have not been elucidated. Here, three types of human colon cancer cell lines, HT29 (mutant p53), HCT116 (wild-type p53), and HCT116 p53 -/- (deficient p53), were treated with 5-FU. We showed that expression of miR-338-3p was correlated with apoptosis and 5-FU resistance in colon cancer cells. Ectopic expression of miR-338-3p conferred resistance to 5-FU in HCT116 cells. Further experiments indicated that miR-338-3p mediated 5-FU resistance through down-regulation of mTOR expression. Moreover, inhibition of miR-338-3p in HT29 and HCT116 p53 -/- cells increased their sensitivity to 5-FU treatment. Furthermore, we detected autophagy changes in our experiment because mTOR was known prominently regulating autophagy and the competition between autophagy and apoptosis in response to 5-FU was a mechanism influencing 5-FU sensitivity. Our results reveal a critical and novel role of miR-338-3p in the correlation of 5-FU resistance with p53 status. Moreover, the miR-338-3p inhibitor has the potential to overcome 5-FU resistance in p53 mutant colon cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Ming-Xue; Zhang, Jie; Zhang, Hong; Tang, Hua
2016-01-01
MicroRNA (miRNA) may function as an oncogene or a tumor suppressor in tumorigenesis. However, the mechanism of miRNAs in adenoid cystic carcinoma (ACC) is unclear. Here, we provide evidence that miR-24-3p was downreglated and functions as a tumor suppressor in human lacrimal adenoid cystic carcinoma by suppressing proliferation and migration/invasion while promoting apoptosis. miR-24-3p down-regulated protein kinase C eta (PRKCH) by binding to its untranslated region (3'UTR). PRKCH increased the of the cell growth and migration/invasion in ACC cells and suppressed the expression of p53 and p21 in both mRNA and protein level. The overexpression of miR-24-3p decreased its malignant phenotype. Ectopic expression of PRKCH counteracted the suppression of malignancy induced by miR-24-3p, as well as ectopic expression of miR-24-3p rescued the suppression of PRKCH in the p53/p21 pathway. These results suggest that miR-24-3p promotes the p53/p21 pathway by down-regulating PRKCH expression in lacrimal adenoid cystic carcinoma cells.
Gato, Worlanyo Eric; McGee, Stacey R.; Hales, Dale B.; Means, Jay C.
2014-01-01
Background/Objective: The modulation of the toxic effects of 2-aminoanthracene (2AA) on the liver by apoptosis was investigated. Fisher-344 (F344) rats were exposed to various concentrations of 2AA for 14 and 28 days. The arylamine 2AA is an aromatic hydrocarbon employed in manufacturing chemicals, dyes, inks, and it is also a curing agent in epoxy resins and polyurethanes. 2AA has been detected in tobacco smoke and cooked foods. Methods: Analysis of total messenger ribonucleic acid (mRNA) extracts from liver for apoptosis-related gene expression changes in apoptosis enhancing nuclease (AEN), Bcl2-associated X protein (BAX), CASP3, Jun proto-oncogene (JUN), murine double minute-2 p53 binding protein homolog (MDM2), tumor protein p53 (p53), and GAPDH genes by quantitative real-time polymerase chain reaction (qRT-PCR) was coupled with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and caspase-3 (Casp3) activity assays. Results: Specific apoptosis staining result does not seem to show significant difference between control and treated animals. This may be due to freeze-thaw artifacts observed in the liver samples. However, there appears to be a greater level of apoptosis in medium- and high-dose (MD and HD) 2AA treated animals. Analyses of apoptosis-related genes seem to show AEN and BAX as the main targets in the induction of apoptosis in response to 2AA exposure, though p53, MDM2, and JUN may play supporting roles. Conclusion: Dose-dependent increases in mRNA expression were observed in all genes except Casp3. BAX was very highly expressed in the HD rats belonging to the 2-week exposure group. This trend was not observed in the animals treated for 4 weeks. Instead, AEN was rather very highly expressed in the liver of the MD animals that were treated with 2AA for 28 days. PMID:24748736
Chan, Shu-Ting; Yang, Nae-Cherng; Huang, Chin-Shiu; Liao, Jiunn-Wang; Yeh, Shu-Lan
2013-01-01
This study investigated the effects of quercetin on the anti-tumor effect of trichostatin A (TSA), a novel anticancer drug, in vitro and in vivo and the possible mechanisms of these effects in human lung cancer cells. We first showed that quercetin (5 µM) significantly increased the growth arrest and apoptosis in A549 cells (expressing wild-type p53) induced by 25 ng/mL of (82.5 nM) TSA at 48 h by about 25% and 101%, respectively. However, such enhancing effects of quercetin (5 µM) were not significant in TSA-exposed H1299 cells (a p53 null mutant) or were much lower than in A549 cells. In addition, quercetin significantly increased TSA-induced p53 expression in A549 cells. Transfection of p53 siRNA into A549 cells significantly but not completely diminished the enhancing effects of quercetin on TSA-induced apoptosis. Furthermore, we demonstrated that quercetin enhanced TSA-induced apoptosis through the mitochondrial pathway. Transfection of p53 siRNA abolished such enhancing effects of quercetin. However, quercetin increased the acetylation of histones H3 and H4 induced by TSA in A549 cells, even with p53 siRNA transfection as well as in H1299 cells. In a xenograft mouse model of lung cancer, quercetin enhanced the antitumor effect of TSA. Tumors from mice treated with TSA in combination with quercetin had higher p53 and apoptosis levels than did those from control and TSA-treated mice. These data indicate that regulation of the expression of p53 by quercetin plays an important role in enhancing TSA-induced apoptosis in A549 cells. However, p53-independent mechanisms may also contribute to the enhancing effect of quercetin. PMID:23342112
Difference of protein 53 expression based on radiation therapy response in cervical cancer
NASA Astrophysics Data System (ADS)
Pasaribu, H. P.; Lubis, L. I.; Dina, S.; Simanjuntak, R. Y.; Siregar, H. S.; Rivany, R.
2018-03-01
Cervical cancer is one of most common gynecological cancer in women and the leading cause of death in developing countries. An analytic study with the case-control design was conducted to determine the difference of p53 expression based on radiation therapy response in cervical cancer. The study was performed in Obstetric and Gynecology Department and Pathology Department of Adam Malik General Hospital Medan from January to February 2017. 15 paraffin blocks of acervical cancer patient with incomplete response were obtained as study samples, and 15 paraffin blocks of acervical cancer patient with complete response were obtained as control samples, The samples were collected by consecutive sampling, andan immunohistochemical assessment of p53 expression was done to assessapoptosis count and radiation response. Data were analyzed using Kruskal-Wallis with confidence interval 83.5% and p<0.05 was considered statistically significant. The study found that an increase of p53 expressionin samples with abundant apoptosis (≥5 apoptosis cells/5 HPF), p=0.033, and in incomplete response group, p=0.046. It means that p53 expression before radiation therapy can be used as an early marker for radiation therapy response in cervical cancer.
Borges, Juliano; Araújo, Luciana; de Oliveira, Rodrigo P B; Manela-Azulay, Monica
2018-04-16
Expression of p53 by keratinocytes may be important in the pathogenesis of skin cancer induced by ultraviolet light. We used side-by-side nonablative and ablative erbium fractional laser resurfacing to assess the effects on expression of p53 by facial keratinocytes. Ten female patients (age range, 50-63 years) with Fitzpatrick skin Types I-IV and clinical signs of photoaging underwent erbium fractional laser resurfacing (nonablative, 1,540-nm; ablative, 2,940-nm) on opposite sides of the face. Skin biopsies were obtained before treatment and 3 months after treatment for comparison with control biopsies of face and inner arm, quantifying p53 in immunostained tissue sections. Only ablative (2,940-nm) treatments produced a statistically significant reduction in p53 scoring after 3 months. The histologic appearance of skin after ablative resurfacing more closely resembled inner arm skin (rather than facial skin) of control subjects. Epidermal repopulation with p53-negative keratinocytes through ablative erbium fractional laser resurfacing may diminish the risk of eventual malignancy in photoaged skin.
RB loss contributes to aggressive tumor phenotypes in MYC-driven triple negative breast cancer
Knudsen, Erik S; McClendon, A Kathleen; Franco, Jorge; Ertel, Adam; Fortina, Paolo; Witkiewicz, Agnieszka K
2015-01-01
Triple negative breast cancer (TNBC) is characterized by multiple genetic events occurring in concert to drive pathogenic features of the disease. Here we interrogated the coordinate impact of p53, RB, and MYC in a genetic model of TNBC, in parallel with the analysis of clinical specimens. Primary mouse mammary epithelial cells (mMEC) with defined genetic features were used to delineate the combined action of RB and/or p53 in the genesis of TNBC. In this context, the deletion of either RB or p53 alone and in combination increased the proliferation of mMEC; however, the cells did not have the capacity to invade in matrigel. Gene expression profiling revealed that loss of each tumor suppressor has effects related to proliferation, but RB loss in particular leads to alterations in gene expression associated with the epithelial-to-mesenchymal transition. The overexpression of MYC in combination with p53 loss or combined RB/p53 loss drove rapid cell growth. While the effects of MYC overexpression had a dominant impact on gene expression, loss of RB further enhanced the deregulation of a gene expression signature associated with invasion. Specific RB loss lead to enhanced invasion in boyden chambers assays and gave rise to tumors with minimal epithelial characteristics relative to RB-proficient models. Therapeutic screening revealed that RB-deficient cells were particularly resistant to agents targeting PI3K and MEK pathway. Consistent with the aggressive behavior of the preclinical models of MYC overexpression and RB loss, human TNBC tumors that express high levels of MYC and are devoid of RB have a particularly poor outcome. Together these results underscore the potency of tumor suppressor pathways in specifying the biology of breast cancer. Further, they demonstrate that MYC overexpression in concert with RB can promote a particularly aggressive form of TNBC. PMID:25602521
Macías, David; Oya, Ricardo; Saniger, Luisa; Martín, Francisco; Luque, Francisco
2009-11-01
Despite the efficient HIV-1 replication blockage achieved with current highly active antiretroviral therapy (HAART) therapies, HIV-1 persists in the body and survives in a latent state that can last for the entire life of the patient. A long-lived reservoir of latently infected CD4(+) memory T cells represents the most important sanctuary for the virus and the greatest obstacle for viral eradication. In this work, we present an initial step toward a gene therapy approach aimed at the activation of latent provirus to induce the death of latently infected T cells. Latent HIV-1 infection is characterized by the failure of viral gene expression as a consequence of uninitiated or aborted transcription. We have constructed an HIV-1-based lentiviral vector (p5p53RTAT3) that expresses the viral trans-activating protein Tat in a drug-regulated manner and p53 in a Rev-dependent manner. We have demonstrated that the Tat-expressed protein from p5p53RTAT3 vector reactivates latent HIV-1 proviruses in J1.1 and ACH-2 cell lines and promotes p53-induced apoptosis in the presence of Rev. Our system was able to trigger the trans-activation of the provirus 5' long terminal repeat (LTR), stimulate the expression of the Rev protein from a tat-defective provirus, and provoke apoptosis selectively in the cells transfected with a tat-defective HIV-1 provirus in contrast to those with no HIV-1 provirus. However, the Rev-dependent p53 killing of latently infected cells was not effective enough for complete elimination of the awakened HIV-1 viruses. In summary, we have developed a vector system that is efficient in activating latent HIV-1 proviruses but that needs further improvement to kill infected cells.
The rapid destabilization of p53 mRNA in immortal chicken embryo fibroblast cells.
Kim, H; You, S; Foster, L K; Farris, J; Foster, D N
2001-08-23
The steady-state levels of p53 mRNA were dramatically lower in immortal chicken embryo fibroblast (CEF) cell lines compared to primary CEF cells. In the presence of cycloheximide (CHX), the steady-state levels of p53 mRNA markedly increased in immortal CEF cell lines, similar to levels found in primary cells. The de novo synthetic rates of p53 mRNA were relatively similar in primary and immortal cells grown in the presence or absence of CHX. Destabilization of p53 mRNA was observed in the nuclei of immortal, but not primary, CEF cells. The half-life of p53 mRNA in primary cells was found to be a relatively long 23 h compared to only 3 h in immortal cells. The expression of transfected p53 cDNA was inhibited in immortal cells, but restored upon CHX treatment. The 5'-region of the p53 mRNA was shown to be involved in the rapid p53 mRNA destabilization in immortal cells by expression analysis of 5'- and 3'-deleted p53 cDNAs as well as fusion mRNA constructs of N-terminal p53 and N-terminal deleted LacZ genes. Together, it is suggestive that the downregulation of p53 mRNA in immortal CEF cells occurs through a post-transcriptional destabilizing mechanism.
CP-31398 inhibits the growth of p53-mutated liver cancer cells in vitro and in vivo.
He, Xing-Xing; Zhang, Yu-Nan; Yan, Jun-Wei; Yan, Jing-Jun; Wu, Qian; Song, Yu-Hu
2016-01-01
The tumor suppressor p53 is one of the most frequently mutated genes in hepatocellular carcinoma (HCC). Previous studies demonstrated that CP-31398 restored the native conformation of mutant p53 and trans-activated p53 downstream genes in tumor cells. However, the research on the application of CP-31398 to liver cancer has not been reported. Here, we investigated the effects of CP-31398 on the phenotype of HCC cells carrying p53 mutation. The effects of CP-31398 on the characteristic of p53-mutated HCC cells were evaluated through analyzing cell cycle, cell apoptosis, cell proliferation, and the expression of p53 downstream genes. In tumor xenografts developed by PLC/PRF/5 cells, the inhibition of tumor growth by CP-31398 was analyzed through gross morphology, growth curve, and the expression of p53-related genes. Firstly, we demonstrated that CP-31398 inhibited the growth of p53-mutated liver cancer cells in a dose-dependent and p53-dependent manner. Then, further study showed that CP-31398 re-activated wild-type p53 function in p53-mutated HCC cells, which resulted in inhibitive response of cell proliferation and an induction of cell-cycle arrest and apoptosis. Finally, in vivo data confirmed that CP-31398 blocked the growth of xenografts tumors through transactivation of p53-responsive downstream molecules. Our results demonstrated that CP-31398 induced desired phenotypic change of p53-mutated HCC cells in vitro and in vivo, which revealed that CP-31398 would be developed as a therapeutic candidate for HCC carrying p53 mutation.
Huang, Ai; Yao, Jing; Liu, Tao; Lin, Zhenyu; Zhang, Sheng; Zhang, Tao; Ma, Hong
2018-04-01
This study aimed to investigate the influence of the expression of P53-binding protein 1 (53BP1), a key component in DNA damage repair pathways, on the radiosensitizing effect of icotinib hydrochloride in colorectal cancer and to elucidate the mechanisms underlying this influence. Real-time RT-PCR and Western blotting were performed to verify the gene-knockout effect of 53BP1 small hairpin RNA (ShRNA), and colony formation assay was employed to investigate the influence of 53BP1 downregulation on the radiosensitizing effect of icotinib hydrochloride in HCT116 cells. Cell apoptosis, cell cycle distributions, and histone H2AX (γ-H2AX) fluorescence foci after 53BP1 knockdown were evaluated. Relative protein expression in the ataxia telangiectasia mutated kinase (ATM)-checkpoint kinase-2 (CHK2)-P53 pathway was measured by Western blot analysis to unravel the molecular mechanisms linking the pathway to the above phenomena. Icotinib hydrochloride increased the radiosensitivity of HCT116 cells; however, this effect was suppressed by the downregulation of 53BP1 expression, a change that inhibited cell apoptosis, increased the percentage of HCT116 cells arrested in S-phase and inhibited the protein expression of key molecules in the ATM-CHK2-P53 apoptotic pathway. Our studies confirmed that the loss of 53BP1 serves as a negative regulator of the radiosensitizing effect of icotinib in part by suppressing the ATM-CHK2-P53 apoptotic pathway.
Lai, Chin-Yu; Tsai, An-Chi; Chen, Mei-Chuan; Chang, Li-Hsun; Sun, Hui-Lung; Chang, Ya-Ling; Chen, Chien-Chih
2012-01-01
Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (−/−) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity. PMID:22912688
Najjar, Imen; Schischmanoff, Pierre Olivier; Baran-Marszak, Fanny; Deglesne, Pierre-Antoine; Youlyouz-Marfak, Ibtissam; Pampin, Mathieu; Feuillard, Jean; Bornkamm, Georg W; Chelbi-Alix, Mounira K; Fagard, Remi
2008-12-01
Alternate splicing of STAT1 produces two isoforms: alpha, known as the active form, and beta, previously shown to act as a dominant-negative factor. Most studies have dealt with STAT1alpha, showing its involvement in cell growth control and cell death. To examine the specific function of either isoform in cell death, a naturally STAT1-deficient human B cell line was transfected to express STAT1alpha or STAT1beta. STAT1alpha, expressed alone, enhanced cell death, potentiated the fludarabine-induced apoptosis, and enhanced the nuclear location, the phosphorylation, and the transcriptional activity of p53. Unexpectedly, STAT1beta, expressed alone, induced cell death through a mechanism that was independent of the nuclear function of p53. Indeed, in STAT1beta-expressing B cells, p53 was strictly cytoplasmic where it formed clusters, and there was no induction of the transcriptional activity of p53. These data reveal a novel role of STAT1beta in programmed cell death, which is independent of p53.
Colorectal tumor molecular phenotype and miRNA: expression profiles and prognosis.
Slattery, Martha L; Herrick, Jennifer S; Mullany, Lila E; Wolff, Erica; Hoffman, Michael D; Pellatt, Daniel F; Stevens, John R; Wolff, Roger K
2016-08-01
MiRNAs regulate gene expression by post-transcriptionally suppressing mRNA translation or by causing mRNA degradation. It has been proposed that unique miRNAs influence specific tumor molecular phenotype. In this paper, we test the hypotheses that miRNA expression differs by tumor molecular phenotype and that those differences may influence prognosis. Data come from population-based studies of colorectal cancer conducted in Utah and the Northern California Kaiser Permanente Medical Care Program. A total of 1893 carcinoma samples were run on the Agilent Human miRNA Microarray V19.0 containing 2006 miRNAs. We assessed differences in miRNA expression between TP53-mutated and non-mutated, KRAS-mutated and non-mutated, BRAF-mutated and non-mutated, CpG island methylator phenotype (CIMP) high and CIMP low, and microsatellite instability (MSI) and microsatellite stable (MSS) colon and rectal tumors. Using a Cox proportional hazard model we evaluated if those miRNAs differentially expressed by tumor phenotype influenced survival after adjusting for age, sex, and AJCC stage. There were 22 differentially expressed miRNAs for TP53-mutated colon tumors and 5 for TP53-mutated rectal tumors with a fold change of >1.49 (or <0.67). Additionally, 13 miRNAS were differentially expressed for KRAS-mutated rectal tumors, 8 differentially expressed miRNAs for colon CIMP high tumors, and 2 differentially expressed miRNAs for BRAF-mutated colon tumors. The majority of differentially expressed miRNAS were observed between MSI and MSS tumors (94 differentially expressed miRNAs for colon; 41 differentially expressed miRNAs for rectal tumors). Of these miRNAs differentially expressed between MSI and MSS tumors, the majority were downregulated. Ten of the differentially expressed miRNAs were associated with survival; after adjustment for MSI status, five miRNAS, miR-196b-5p, miR-31-5p, miR-99b-5p, miR-636, and miR-192-3p, were significantly associated with survival. In summary, it appears that the majority of miRNAs that are differentially expressed by tumor molecular phenotype are MSI tumors. However, these miRNAs appear to have minimal effect on prognosis.
Damasdi, Miklos; Kovacs, Krisztina; Farkas, Nelli; Jakab, Ferenc; Kovacs, Gyula
2017-10-01
Development of penile cancers is attributed to HPV-related carcinogenesis. Our aim was to analyze HPV positivity and TLR4, p16 ink4a and p53 expression. HPV presence was assessed with virus-specific TaqMan PCR and HPV Genotyping Test in 31 penile cancers. Immunohistochemistry was carried out on tissue microarray. TLR4 expression was detected in 4 of the 16 HPV positive and 13 of the 15 HPV negative tumors. We found a significant inverse correlation between HPV positivity and TLR4 expression (p=0.0006). Ten of the 16 HPV-positive but none of the 15 HPV-negative tumors expressed p16INK4a. A significant correlation was seen between p53 expression and lack of HPV DNA (p=0.0191) as well as between TLR4 and p53 expression (p=0.0198) in penile cancers. Our findings suggest a protective role of TLR4 expression against HPV DNA integration and the viral and non-viral carcinogenesis of penile cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Ensemble-based virtual screening reveals dual-inhibitors for the p53-MDM2/MDMX interactions.
Barakat, Khaled; Mane, Jonathan; Friesen, Douglas; Tuszynski, Jack
2010-02-26
The p53 protein, a guardian of the genome, is inactivated by mutations or deletions in approximately half of human tumors. While in the rest of human tumors, p53 is expressed in wild-type form, yet it is inhibited by over-expression of its cellular regulators MDM2 and MDMX proteins. Although the p53-binding sites within the MDMX and MDM2 proteins are closely related, known MDM2 small-molecule inhibitors have been shown experimentally not to bind to its homolog, MDMX. As a result, the activity of these inhibitors including Nutlin3 is compromised in tumor cells over-expressing MDMX, preventing these compounds from fully activating the p53 protein. Here, we applied the relaxed complex scheme (RCS) to allow for the full receptor flexibility in screening for dual-inhibitors that can mutually antagonize the two p53-regulator proteins. First, we filtered the NCI diversity set, DrugBank compounds and a derivative library for MDM2-inhibitors against 28 dominant MDM2-conformations. Then, we screened the MDM2 top hits against the binding site of p53 within the MDMX target. Results described herein identify a set of compounds that have been computationally predicted to ultimately activate the p53 pathway in tumor cells retaining the wild-type protein. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.
Rhee, Jae-Sung; Kim, Bo-Mi; Kim, Ryeo-Ok; Seo, Jung Soo; Kim, Il-Chan; Lee, Young-Mi; Lee, Jae-Seong
2013-09-15
To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4Gy of radiation, and biochemical and molecular damage became substantial from 8Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae. Copyright © 2013 Elsevier B.V. All rights reserved.
Uchimaru, K; Endo, K; Fujinuma, H; Zukerberg, L; Arnold, A; Motokura, T
1996-05-01
Cyclin D1 is one of the key regulators in G1 progression in the cell cycle and is also a candidate oncogene (termed PRAD1 or bcl-1) in several types of human tumors. We report a collaboration of the cyclin D1 gene with ras and a mutated form of p53 (p53-mt) in neoplastic transformation. Transfection of cyclin D1 alone or in combination with ras or with p53-mt was not sufficient for focus formation of rat embryonic fibroblasts. However, focus formation induced by co-transfection of ras and p53-mt was enhanced in the presence of the cyclin D1-expression plasmid. Co-transfection of ras- and p53-mt-transformants with the cyclin D1-expression plasmid resulted in reduced serum dependency in vitro. Furthermore, the transformants expressing exogenous cyclin D1 grew faster than those without the cyclin D1 plasmid when injected into nude mice. These observations strengthen the significance of cyclin D1 overexpression through gene rearrangement or gene amplification observed in human tumors as a step in multistep oncogenesis; deregulated expression of cyclin D1 may reduce the requirement for growth factors and may stimulate in vivo growth.
de Freitas e Silva, Rafael; Gonçalves dos Santos, Neyliane Frassinetti; Pereira, Valéria Rěgo Alves; Amaral, Ademir
2014-01-01
P53 protein has an intrinsic role in modulating the cellular response against DNA radioinduced damages and has been pointed out as an indirect indicator of individual radiosensitivity. The rate of cell proliferation is also a parameter that has been related to tissue sensitivity to radiation. However, this feature is yet understudied. In this context, the aim of this work was to employ Flow Cytometry (FC) for simultaneously assessing of p53 protein expression levels together with cellular proliferation rate of irradiated human lymphocytes. From in vitro irradiated human blood samples, mononuclear cells were isolated and labeled with Carboxylfluorescein Diacetate Succinimidyl Ester (CFSE) prior to phytohaemagglutinin (PHA) stimulation in culture for 96 hours. Cells were also labeled with anti-p53 monoclonal antibody PE-conjugated in order to analyze either proliferation rate or p53 expression levels by FC. It was verified a reduction in the proliferation rate of irradiated lymphocytes and, in parallel, a rise in the p53 expression levels, similar for quiescent and proliferating lymphocytes. The results emphasize the importance of the use of CFSE-stained lymphocytes in assays associated to proliferation rate and the use of this methodology in several studies, such as for evaluating individual radiosensitivity. PMID:24659936
Wei, Zhao; Guo, Haiyang; Liu, Zhaojian; Zhang, Xiyu; Liu, Qiao; Qian, Yanyan; Gong, Yaoqin; Shao, Changshun
2015-02-01
Tumor suppressor p53 is known to regulate the level of intracellular reactive oxygen species (ROS). It can either alleviate oxidative stress under physiological and mildly stressed conditions or exacerbate oxidative stress under highly stressed conditions. We here report that a p53-ROS positive feedback loop drives a senescence program in normal human fibroblasts (NHFs) and this senescence-driving loop is negatively regulated by CUL4B. CUL4B, which can assemble various ubiquitin E3 ligases, was found to be downregulated in stress-induced senescent cells, but not in replicative senescent cells. We observed that p53-dependent ROS production was significantly augmented and stress-induced senescence was greatly enhanced when CUL4B was absent or depleted. Ectopic expression of CUL4B, on the other hand, blunted p53 activation, reduced ROS production, and attenuated cellular senescence in cells treated with H2O2. CUL4B was shown to promote p53 ubiquitination and proteosomal degradation in NHFs exposed to oxidative stress, thus dampening the p53-dependent cellular senescence. Together, our results established a critical role of CUL4B in negatively regulating the p53-ROS positive feedback loop that drives cellular senescence. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Mingzhao; Yu, Meng; Liu, Chao; Zhu, Haijing; Hua, Jinlian
2013-06-01
Reproduction is required for the survival of all mammalian animals. Spermatogenesis is an essential and complex developmental process that ultimately results in production of haploid spermatozoa. Recent studies demonstrated that Boule and stimulated by retinoic acid 8 (Stra8) played important roles in initiation meiosis in male germ cells. miR-34c is indispensable in the late steps of spermatogenesis; remarkably, the main function of miR-34c is to reduce cell proliferation potentiality and promote cellular apoptosis. The objectives of this study were to investigate the expression patterns of Boule, Stra8, P53 and miR-34c in dairy goat testis and their relationship in male germ line stem cells (mGSCs). The results first revealed the expression patterns of Boule, Stra8, P53 and miR-34c in 30 dpp, 90 dpp and adult testes of dairy goats. The expression levels of Boule, Stra8, P53 and miR-34c in adult dairy goat testes were significantly higher than that of 30 dpp. Overexpression of Boule and Stra8 promoted the expression of miR-34c in dairy goat mGSCs. In our previous study, we showed that miR-34c was P53 dependent in mGSCs. These results have shown that the up-regulation of miR-34c was not due to P53 protein activation but which might be caused by the up-regulation of Boule and Stra8 promoting the advance of meiosis. In addition, we found retinoic acid would decrease the expression of P53 and miR-34c, however, did not change the expression of c-Myc greatly. It suggested that the function of driving differentiation of dairy goat mGSCs by retinoic acid might not be caused by P53. Copyright © 2013 John Wiley & Sons, Ltd.
Djelloul, Siham; Tarunina, Marina; Barnouin, Karin; Mackay, Alan; Jat, Parmjit S
2002-02-07
P53 activity plays a key role in mammalian cells when they undergo replicative senescence at their Hayflick limit. To determine whether p63 proteins, members of the family of p53-related genes, are also involved in this process, we examined their expression in serially passaged rat embryo fibroblasts. Upon senescence, two truncated DeltaNp63 proteins decreased in abundance whereas two TAp63 isoforms accumulated. 2-D gel analysis showed that the DeltaNp63 proteins underwent post-translational modifications in both proliferating and senescent cells. Direct binding of DeltaNp63 proteins to a p53 consensus motif was greater in proliferating cells than senescent cells. In contrast p63alpha isoforms bound to DNA in a p53 dependent manner and this was higher in senescent cells than proliferating cells. An interaction of p63alpha proteins with SV40 large tumour antigen was also detected and ectopic expression of DeltaNp63alpha can extend the lifespan of rat embryo fibroblasts. Taken together the results indicate that p63 proteins may play a role in replicative senescence either by competition for p53 DNA binding sites or by direct interaction with p53 protein bound to DNA.
[Mucoepidermoid carcinoma of salivary glands: the prognostic value of tumoral markers].
Hoyek-Gebeily, J; Nehmé, E; Aftimos, G; Sader-Ghorra, C; Sargi, Z; Haddad, A
2007-12-01
Mucoepidermoid carcinoma is one of the most frequent malignant lesions of salivary glands. The treatment is based on clinical, paraclinical and histological data. Several studies on the prognostic value of molecular markers for these cancers were made with contradictory results. The aim of this retrospective study was to analyze the prognostic value of molecular markers of salivary gland mucoepidermoid carcinoma. Sixteen patients were treated for mucoepidermoid carcinoma of principal and/or accessory salivary glands between 1994 and 2003. An immunohistochemical study of archive specimen was performed. Nine markers were specifically studied: 4 proteins/oncoproteins (p53, bcl2, c-erb-B2 and cd117), 2 markers of proliferation (PCNA and Ki67), 1 growing factor receptor (EGFR), 1 epithelial adhesion molecule (E-cadherin), and 1 angiogenic cytokine (PDGF). Nine men and 7 women were included, with a mean age of 43.7 years (14-80). The mean diameter of tumors was 3.1 mm (1-14), and the parotid gland was the most frequent location. The mean global survival rate was 57.3 months with a median of 55 months. The 2 to 5 years survival expectation rate were 82.5% and 46.4% respectively. The mean survival rate for women was superior to that of men (P=0.043). The expression of p53 and the high expression rate of EFGR were bad prognostic factors (respectively P=0.049 and P=0.012). The expression of PCNA was linked to the location (mainly the salivary gland) and to the diameter of the tumor (respectively P=0.037 and P=0.029). The degree of EFGR positivity and the histological grade were linked (P=0.027). The strong expression of EGFR was statistically linked to the histological tumor grade. The degree of PCNA positivity seemed to be associated to the preferential location in the main salivary glands and to the diameter of the tumor. The strong expression of p53 and EGFR were bad prognostic factors. These retrospective results need to be confirmed by prospective randomized and larger studies. EGFR and p53 were significant negative prognostic factors. EGFR was highly correlated to the histological grade, making it an interesting target for further investigation.
Shirakawa, T; Gotoh, A; Gardner, T A; Kao, C; Zhang, Z J; Matsubara, S; Wada, Y; Hinata, N; Fujisawa, M; Hanioka, K; Matsuo, M; Kamidono, S
2000-01-01
Benign prostatic hyperplasia (BPH) is the most common proliferative disease affecting men. Numerous minimally invasive technologies are being developed or are currently in use to obviate the need for transurethral surgery. The goal of the present study was to develop a novel molecular based approach for the treatment of BPH using recombinant p53 adenoviral vector. The over-expression of wt-p53 can cause cell apoptosis or cell growth arrest, thus preventing the uncontrolled cell proliferation underlying BPH pathophysiology. Ad-CMV-p53, a replication-deficient recombinant adenovirus containing cytomegalovirus promoter driving p53 gene, was used. Human prostate stromal (PS) cells were evaluated for apoptosis (TUNEL assay), mRNA levels of key cell cycle regulators influencing apoptosis (p-53, Bax and Bcl-2) using quantitative RT-PCR and cytotoxicity after Ad-CMV-p53. Ad-CMV-p53 was unilaterally injected into rat ventral prostates and growth inhibition was measured by prostate weight 3 weeks after injection. In vitro exposure to Ad-CMV-p53 significantly inhibited the proliferation of PS cells, induced mRNA over-expression of both wt-p53 and Bax, and increased the proportion of apoptotic cells. A 30% decrease in average prostate weight was demonstrated in rodents after Ad-CMV-p53 injection. The results suggest that further investigation of molecular gene therapy with recombinant wt-p53 adenovirus for the treatment of BPH is warranted.
Tan, Zhi-Hui; Zhang, Yu; Tian, Yan; Tan, Wei; Li, Ying-Hua
2016-11-20
Cervical cancer is the second most common cancer of woman in the world, and human papillomavirus (HPV) infection plays an important role in the development of most of the cases. IκB kinase β (IKKβ) is a kinase-mediating nuclear factor kappa B (NF-κB) activation by phosphorylating the inhibitor of NF-κB (IκB) and is related by some diseases caused by virus infection. However, there is little known about the correlation between IKKβ and HPV infection in cervical cancer. This study aimed to investigate the expression of IKKβ protein in cervical cancer tissues and effects of inflammation on HPV positive or negative cervical cancer cells through detecting the expression of IKKβ, IκBα, p53, and p21 proteins after treated with lipopolysaccharide (LPS) to mimic bacterial infection. We also examined the effects of LPS on cervical cancer cells after blocking IKKβ with pharmacological inhibitor. Thirty-six matched specimens of cervical cancer and adjacent normal tissues were collected and analyzed in the study. The expression of IKKβ in the tissue specimens was determined by immunohistochemical staining. In addition, Western blot was used to detect the expression level changes of IKKβ, IκBα, p53, and p21 after LPS stimulated in the HPV16+ (SiHa) and HPV16- (C33A) cervical cancer cell lines. Furthermore, the effects of IKKβ inhibitor SC-514 on LPS-induced expression change of these proteins were investigated. The expression of IKKβ was higher in cervical cancer than adjacent normal tissues, and there was no significant difference between tumor differentiation, size, and invasive depth with IKKβ expression. The LPS, which increased the expression level of IKKβ protein but decreased in the IκBα, p53 and p21 proteins, was illustrated in HPV16+ (SiHa) but not in HPV16- (C33A) cells. Moreover, IKKβ inhibitor SC-514 totally reversed the upregulation of IKKβ and downregulation of p53 and p21 by LPS in SiHa cells. IKKβ may mediate the downregulation of p53 and p21 by LPS in HPV16+ cervical cancer cells.
Loss of Parkin reduces inflammatory arthritis by inhibiting p53 degradation.
Jung, Yu Yeon; Son, Dong Ju; Lee, Hye Lim; Kim, Dae Hwan; Song, Min Jong; Ham, Young Wan; Kim, Youngsoo; Han, Sang Bae; Park, Mi Hee; Hong, Jin Tae
2017-08-01
Parkin is associated with various inflammatory diseases, including Parkinson's disease (PD) and rheumatoid arthritis (RA). However, the precise role of Parkin in RA is unclear. The present study addressed this issue by comparing the development of RA between non-transgenic (non-Tg) mice and PARK2 knockout (KO) mice. We found that cyclooxygenase-2 and inducible nitric oxide synthase expression and nuclear factor-κB activity were reduced but p53 activation was increased in PARK2 KO as compared to non-Tg mice. These effects were associated with reduced p53 degradation. Parkin was found to interact with p53; however, this was abolished in Parkin KO mice, which prevented p53 degradation. Treatment of PARK2 KO mice with p53 inhibitor increased Parkin expression as well as inflammation and RA development while decreasing nuclear p53 translocation, demonstrating that PARK2 deficiency inhibits inflammation in RA via suppression of p53 degradation. These results suggest that RA development may be reduced in PD patients. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Attallah, A M; El-Far, M; Abdelrazek, M A; Omran, M M; Attallah, A A; Elkhouly, A A; Elkenawy, H M; Farid, K
2017-10-01
Hepatocellular carcinoma (HCC) is a multistage process resulting from various genetic changes. We aimed to determine nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 expression and to evaluate their importance in HCC diagnosis. One hundred and twenty chronic hepatitis C (CHC) patients (60 non-HCC CHC patients and 60 HCC patients who had a single small (<5 cm) tumour) were recruited. The gene products of c-Myc and p53 were identified in liver tissues and serum samples using immunostaining, western blot and ELISA. Immunohistochemical detection of c-Myc and p53 with monospecific antibodies revealed intense and diffuse cytoplasmic staining patterns. Accumulated mutant proteins, released from tumour cells into the extracellular serum, were detected at 62 KDa, for c-Myc, and 53 KDa, for p53, using western blotting. In contrast to alpha feto-protein, there was a significant increase (p < 0.0001) in the positivity rate of c-Myc (86.7% vs. 6.7%) and p53 (78.3% vs. 8.3%) in the malignant vs. non-malignant patients. The parallel combination of c-Myc and p53 reach the absolute sensitivity (100%), for more accurate and reliable HCC detection (specificity was 87%). c-Myc and p53 are potential HCC diagnostic biomarkers, and convenient combinations of them could improve diagnostic accuracy of HCC.
Kuball, Jürgen; Wen, Shu Fen; Leissner, Joachim; Atkins, Derek; Meinhardt, Patricia; Quijano, Erlinda; Engler, Heidrun; Hutchins, Beth; Maneval, Daniel C; Grace, Michael J; Fritz, Mary Ann; Störkel, Stefan; Thüroff, Joachim W; Huber, Christoph; Schuler, Martin
2002-02-15
To study safety, feasibility, and biologic activity of adenovirus-mediated p53 gene transfer in patients with bladder cancer. Twelve patients with histologically confirmed bladder cancer scheduled for cystectomy were treated on day 1 with a single intratumoral injection of SCH 58500 (rAd/p53) at cystoscopy at one dose level (7.5 x 10(11) particles) or a single intravesical instillation of SCH 58500 with a transduction-enhancing agent (Big CHAP) at three dose levels (7.5 x 10(11) to 7.5 x 10(13) particles). Cystectomies were performed in 11 patients on day 3, and transgene expression, vector distribution, and biologic markers of transgene activity were assessed by molecular and immunohistochemical methods in tumors and normal bladder samples. Specific transgene expression was detected in tissues from seven of eight assessable patients treated with intravesical instillation of SCH 58500 but in none of three assessable patients treated with intratumoral injection of SCH 58500. Induction of RNA and protein expression of the p53 target gene p21/WAF1 was demonstrated in samples from patients treated with SCH 58500 instillation at higher dose levels. Distribution studies after intravesical instillation of SCH 58500 revealed both high transduction efficacy and vector penetration throughout the whole urothelium and into submucosal tumor cells. No dose-limiting toxicity was observed, and side effects were local and of transient nature. Intravesical instillation of SCH 58500 combined with a transduction-enhancing agent is safe, feasible, and biologically active in patients with bladder cancer. Studies to evaluate the clinical efficacy of this treatment in patients with localized high-risk bladder cancer are warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Duanmin; Su, Cunjin; Jiang, Min
There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs,more » siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.« less
Family matters: sibling rivalry and bonding between p53 and p63 in cancer.
Romano, Rose-Anne; Sinha, Satrajit
2014-04-01
The p53 family (p53, p63 and p73) is intimately linked with an overwhelming number of cellular processes during normal physiological as well as pathological conditions including cancer. The fact that these proteins are expressed in myriad isoforms, each with unique biochemical properties and distinct effects on tumorigenesis, complicates their study. A case in point is Squamous Cell Carcinoma (SCC) where p53 is often mutated and the ΔNp63 isoform is overexpressed. Given that p53 and p63 can hetero-dimerize, bind to quite similar DNA elements and share common co-factors, any alterations in their individual expression levels, activity and/or mutation can severely disrupt the family equilibrium. The burgeoning genomics data sets and new additions to the experimental toolbox are offering crucial insights into the complex role of the p53 family in SCC, but more mechanistic studies are needed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Ok Ran; Lim, In Kyoung, E-mail: iklim@ajou.ac.kr
2011-04-08
Highlights: {yields} Reduced p21 expression in senescent cells treated with DNA damaging agents. {yields} Increase of [{sup 3}H]thymidine and BrdU incorporations in DNA damaged-senescent cells. {yields} Upregulation of miR-93 expression in senescent cells in response to DSB. {yields} Failure of p53 binding to p21 promoter in senescent cells in response to DSB. {yields} Molecular mechanism of increased cancer development in aged than young individuals. -- Abstract: To answer what is a critical event for higher incidence of tumor development in old than young individuals, primary culture of human diploid fibroblasts were employed and DNA damage was induced by doxorubicin ormore » X-ray irradiation. Response to the damage was different between young and old cells; loss of p21{sup sdi1} expression in spite of p53{sup S15} activation in old cells along with [{sup 3}H]thymidine and BrdU incorporation, but not in young cells. The phenomenon was confirmed by other tissue fibroblasts obtained from different donor ages. Induction of miR-93 expression and reduced p53 binding to p21 gene promoter account for loss of p21{sup sdi1} expression in senescent cells after DNA damage, suggesting a mechanism of in vivo carcinogenesis in aged tissue without repair arrest.« less
p53 Involvement in the Control of Murine Hair Follicle Regression
Botchkarev, Vladimir A.; Komarova, Elena A.; Siebenhaar, Frank; Botchkareva, Natalia V.; Sharov, Andrei A.; Komarov, Pavel G.; Maurer, Marcus; Gudkov, Andrei V.; Gilchrest, Barbara A.
2001-01-01
p53 is a transcription factor mediating a variety of biological responses including apoptotic cell death. p53 was recently shown to control apoptosis in the hair follicle induced by ionizing radiation and chemotherapy, but its role in the apoptosis-driven physiological hair follicle regression (catagen) remains to be elucidated. Here, we show that p53 protein is strongly expressed and co-localized with apoptotic markers in the regressing hair follicle compartments during catagen. In contrast to wild-type mice, p53 knockout mice show significant retardation of catagen accompanied by significant decrease in the number of apoptotic cells in the hair matrix. Furthermore, p53 null hair follicles are characterized by alterations in the expression of markers that are encoded by p53 target genes and are implicated in the control of catagen (Bax, Bcl-2, insulin-like growth factor binding protein-3). These data suggest that p53 is involved in the control of apoptosis in the hair follicle during physiological regression and imply that p53 antagonists may be useful for the management of hair growth disorders characterized by premature entry into catagen, such as androgenetic alopecia, alopecia areata, and telogen effluvium. PMID:11395365
Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships.
Mantovani, Fiamma; Zannini, Alessandro; Rustighi, Alessandra; Del Sal, Giannino
2015-10-01
The p53 protein family, comprising p53, p63 and p73, is primarily involved in preserving genome integrity and preventing tumor onset, and also affects a range of physiological processes. Signal-dependent modifications of its members and of other pathway components provide cells with a sophisticated code to transduce a variety of stress signaling into appropriate responses. TP53 mutations are highly frequent in cancer and lead to the expression of mutant p53 proteins that are endowed with oncogenic activities and sensitive to stress signaling. p53 family proteins have unique structural and functional plasticity, and here we discuss the relevance of prolyl-isomerization to actively shape these features. The anti-proliferative functions of the p53 family are carefully activated upon severe stress and this involves the interaction with prolyl-isomerases. In particular, stress-induced stabilization of p53, activation of its transcriptional control over arrest- and cell death-related target genes and of its mitochondrial apoptotic function, as well as certain p63 and p73 functions, all require phosphorylation of specific S/T-P motifs and their subsequent isomerization by the prolyl-isomerase Pin1. While these functions of p53 counteract tumorigenesis, under some circumstances their activation by prolyl-isomerases may have negative repercussions (e.g. tissue damage induced by anticancer therapies and ischemia-reperfusion, neurodegeneration). Moreover, elevated Pin1 levels in tumor cells may transduce deregulated phosphorylation signaling into activation of mutant p53 oncogenic functions. The complex repertoire of biological outcomes induced by p53 finds mechanistic explanations, at least in part, in the association between prolyl-isomerases and the p53 pathway. This article is part of a Special Issue entitled Proline-directed foldases: Cell signaling catalysts and drug targets. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leão, Mariana; Gomes, Sara; Bessa, Cláudia
In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either permore » se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73.« less
Park, Sung Mi; Zhu, Lihua J.; Debily, Marie-anne; Kittler, Ellen L. W.; Zapp, Maria L.; Lapointe, David; Gobeil, Stephane; Virbasius, Ching-Man; Green, Michael R.
2012-01-01
Numerous genetic and epigenetic alterations render cancer cells selectively dependent on specific genes and regulatory pathways, and represent potential vulnerabilities that can be therapeutically exploited. Here we describe an RNA interference (RNAi)–based synthetic interaction screen to identify genes preferentially required for proliferation of p53-deficient (p53−) human cancer cells. We find that compared to p53-competent (p53+) human cancer cell lines, diverse p53− human cancer cell lines are preferentially sensitive to loss of the transcription factor ETV1 and the DNA damage kinase ATR. In p53− cells, RNAi–mediated knockdown of ETV1 or ATR results in decreased expression of the telomerase catalytic subunit TERT leading to growth arrest, which can be reversed by ectopic TERT expression. Chromatin immunoprecipitation analysis reveals that ETV1 binds to a region downstream of the TERT transcriptional start-site in p53− but not p53+ cells. We find that the role of ATR is to phosphorylate and thereby stabilize ETV1. Our collective results identify a regulatory pathway involving ETV1, ATR, and TERT that is preferentially important for proliferation of diverse p53− cancer cells. PMID:23284306
Involvement of p53 and Bcl-2 in sensory cell degeneration in aging rat cochleae.
Xu, Yang; Yang, Wei Ping; Hu, Bo Hua; Yang, Shiming; Henderson, Donald
2017-06-01
p53 and Bcl-2 (B-cell lymphoma 2) are involved in the process of sensory cell degeneration in aging cochleae. To determine molecular players in age-related hair cell degeneration, this study examined the changes in p53 and Bcl-2 expression at different stages of apoptotic and necrotic death of hair cells in aging rat cochleae. Young (3-4 months) and aging (23-24 months) Fisher 344/NHsd rats were used. The thresholds of the auditory brainstem response (ABR) were measured to determine the auditory function. Immunolabeling was performed to determine the expression of p53 and Bcl-2 proteins in the sensory epithelium. Propidium iodide staining was performed to determine the morphologic changes in hair cell nuclei. Aging rats exhibited a significant elevation in ABR thresholds at all tested frequencies (p < 0.001). The p53 and Bcl-2 immunoreactivity was increased in aging hair cells showing the early signs of apoptotic changes in their nuclei. The Bcl-2 expression increase was also observed in hair cells displaying early signs of necrosis. As the hair cell degenerative process advanced, p53 and Bcl-2 immunoreactivity became reduced or absent. In the areas where no detectable nuclear staining was present, p53 and Bcl-2 immunoreactivity was absent.
Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively.
Porta, Chiara; Hadj-Slimane, Reda; Nejmeddine, Mohamed; Pampin, Mathieu; Tovey, Michael G; Espert, Lucile; Alvarez, Sandra; Chelbi-Alix, Mounira K
2005-01-20
Type I interferon (IFN) enhances the transcription of the tumor suppressor gene p53. To elucidate the molecular mechanism mediating IFN-induced apoptosis, we analysed programmed cell death in response to type I (IFNalpha) or type II (IFNgamma) treatment in relation to p53 status. In two cell lines (MCF-7, SKNSH), IFNalpha, but not IFNgamma, enhanced apoptosis in a p53-dependent manner. Furthermore, only IFNalpha upregulated p53 as well as p53 target genes (Noxa, Mdm2 and CD95). The apoptotic response to IFNalpha decreased in the presence of ZB4, an anti-CD95 antibody, suggesting that CD95 is involved in this process. When p53 was inactivated by the E6 viral protein or the expression of a p53 mutant, IFNalpha-induced apoptosis and p53 target genes upregulation were abrogated. Altogether these results demonstrate that p53 plays a pivotal role in the IFNalpha-induced apoptotic response. IFNalpha-induced PML was unable to recruit p53 into nuclear bodies and its downregulation by siRNA did not alter CD95 expression. In contrast, IFNgamma-induced apoptosis is p53-independent. CD95 and IFN-regulatory factor 1 (IRF1) are directly upregulated by this cytokine. Apoptotic response to IFNgamma is decreased in the presence of ZB4 and strongly diminished by IRF1 siRNA, implicating both CD95 and IRF1 in IFNgamma-induced apoptotic response. Taken together, these results show that in two different cell lines, IFNalpha and IFNgamma, induce p53-dependent -independent apoptosis, respectively.
Orue, Andrea; Chavez, Valery; Strasberg-Rieber, Mary; Rieber, Manuel
2016-11-18
The metabolic inhibitor 3-bromopyruvate (3-BrPA) is a promising anti-cancer alkylating agent, shown to inhibit growth of some colorectal carcinoma with KRAS mutation. Recently, we demonstrated increased resistance to 3-BrPA in wt p53 tumor cells compared to those with p53 silencing or mutation. Since hypoxic microenvironments select for tumor cells with diminished therapeutic response, we investigated whether hypoxia unequally increases resistance to 3-BrPA in wt p53 MelJuso melanoma harbouring (Q61L)-mutant NRAS and wt BRAF, C8161 melanoma with (G12D)-mutant KRAS (G464E)-mutant BRAF, and A549 lung carcinoma with a KRAS (G12S)-mutation. Since hypoxia increases the toxicity of the p53 activator, Prima-1 against breast cancer cells irrespective of their p53 status, we also investigated whether Prima-1 reversed hypoxic resistance to 3-BrPA. In contrast to the high susceptibility of hypoxic mutant NRAS MelJuso cells to 3-BrPA or Prima-1, KRAS mutant C8161 and A549 cells revealed hypoxic resistance to 3-BrPA counteracted by Prima-1. In A549 cells, Prima-1 increased p21CDKN1mRNA, and reciprocally inhibited mRNA expression of the SLC2A1-GLUT1 glucose transporter-1 and ALDH1A1, gene linked to detoxification and stem cell properties. 3-BrPA lowered CAIX and VEGF mRNA expression. Death from joint Prima-1 and 3-BrPA treatment in KRAS mutant A549 and C8161 cells seemed mediated by potentiating oxidative stress, since it was antagonized by the anti-oxidant and glutathione precursor N-acetylcysteine. This report is the first to show that Prima-1 kills hypoxic wt p53 KRAS-mutant cells resistant to 3-BrPA, partly by decreasing GLUT-1 expression and exacerbating pro-oxidant stress.
Valentin-Vega, Yasmine A.; Box, Neil; Terzian, Tamara; Lozano, Guillermina
2014-01-01
Mdm4 is a critical inhibitor of the p53 tumor suppressor. Mdm4 null mice die early during embryogenesis due to increased p53 activity. In this study, we explore the role that Mdm4 plays in the intestinal epithelium by crossing mice carrying the Mdm4 floxed allele to mice with the Villin Cre transgene. Our data show that loss of Mdm4 (Mdm4intΔ) in this tissue resulted in viable animals with no obvious morphological abnormalities. However, these mutants displayed increased p53 levels and apoptosis exclusively in the proliferative compartment of the intestinal epithelium. This phenotype was completely rescued in a p53 null background. Notably, the observed compartmentalized apoptosis in proliferative intestinal epithelial cells was not due to restricted Mdm4 expression in this region. Thus, in this specific cellular context, p53 is negatively regulated by Mdm4 exclusively in highly proliferative cells. PMID:19371999
Huang, Chun; Li, Runqin; Zhang, Yinglin; Gong, Jianping
2017-10-01
Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells.
Li, Runqin; Zhang, Yinglin
2016-01-01
Background and Objective: Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. Materials and Methods: The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. Results: The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. Conclusion: The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells. PMID:27402632
Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.
Huang, Shi-Wei; Chang, Shu-Hao; Mu, Szu-Wei; Jiang, Hsin-Yi; Wang, Sin-Ting; Kao, Jun-Kai; Huang, Jau-Ling; Wu, Chun-Ying; Chen, Yi-Ju; Shieh, Jeng-Jer
2016-03-01
The tumor suppressor p53 controls DNA repair, cell cycle, apoptosis, autophagy and numerous other cellular processes. Imiquimod (IMQ), a synthetic toll-like receptor (TLR) 7 ligand for the treatment of superficial basal cell carcinoma (BCC), eliminates cancer cells by activating cell-mediated immunity and directly inducing apoptosis and autophagy in cancer cells. To evaluate the role of p53 in IMQ-induced cell death in skin cancer cells. The expression, phosphorylation and subcellular localization of p53 were detected by real-time PCR, luciferase reporter assay, cycloheximide chase analysis, immunoblotting and immunocytochemistry. Using BCC/KMC1 cell line as a model, the upstream signaling of p53 activation was dissected by over-expression of TLR7/8, the addition of ROS scavenger, ATM/ATR inhibitors and pan-caspase inhibitor. The role of p53 in IMQ-induced apoptosis and autophagy was assessed by genetically silencing p53 and evaluated by a DNA content assay, immunoblotting, LC3 puncta detection and acridine orange staining. IMQ induced p53 mRNA expression and protein accumulation, increased Ser15 phosphorylation, promoted nuclear translocation and up-regulated its target genes in skin cancer cells in a TLR7/8-independent manner. In BCC/KMC1 cells, the induction of p53 by IMQ was achieved through increased ROS production to stimulate the ATM/ATR-Chk1/Chk2 axis but was not mediated by inducing DNA damage. The pharmacological inhibition of ATM/ATR significantly suppressed IMQ-induced p53 activation and apoptosis. Silencing of p53 significantly decreased the IMQ-induced caspase cascade activation and apoptosis but enhanced autophagy. Mutant p53 skin cancer cell lines were more resistant to IMQ-induced apoptosis than wildtype p53 skin cancer cell lines. IMQ induced ROS production to stimulate ATM/ATR pathways and contributed to p53-dependent apoptosis in a skin basal cell carcinoma cell line BCC/KMC1. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Agra, Rosa María; Fernández-Trasancos, Ángel; Sierra, Juan; González-Juanatey, José Ramón; Eiras, Sonia
2014-10-01
S100A9 (calgranulin B) has inflammatory and oxidative stress properties and was found to be associated with atherosclerosis and obesity. One of the proteins that can regulate S100A9 transcription is p53, which is involved in cell cycle, apoptosis and adipogenesis. Thus, it triggers adipocyte enlargement and finally obesity. Because epicardial adipose tissue (EAT) volume and thickness is related to coronary artery disease (CAD), we studied the gene expression of this pathway in patients with cardiovascular disease and its association with obesity. Adipocytes and stromal cells from EAT and subcutaneous adipose tissue (SAT) from 48 patients who underwent coronary artery bypass graft and/or valve replacement were obtained after collagenase digestion and differential centrifugation. The expression levels of the involved genes on adipogenesis and cell cycle like fatty acid-binding protein (FABP) 4, retinol-binding protein (RBP)4, p53 and S100A9 were determined by real-time polymerase chain reaction (PCR). Adipocyte diameter was measured by optical microscopy. We found that epicardial adipocytes expressed significantly lower levels of adipogenic genes (FABP4 and RBP4) and cell cycle-related genes (S100A9 and p53) than subcutaneous adipocytes. However, in obese patients, upregulation of adipogenic and cell cycle-related genes in subcutaneous and epicardial adipocytes, respectively, was observed. The enlargement of adipocyte size was related to FABP4, S100A9 and p53 expression levels in stromal cells. But only the p53 association was maintained in epicardial stromal cells from obese patients (p=0.003). The expression of p53, but not S100A9, in epicardial stromal cells is related to adipocyte enlargement in obese patients with cardiovascular disease. These findings suggest new mechanisms for understanding the relationship between epicardial fat thickness, obesity and cardiovascular disease.
Herriott, Ashleigh; Tudhope, Susan J.; Junge, Gesa; Rodrigues, Natalie; Patterson, Miranda J.; Woodhouse, Laura; Lunec, John; Hunter, Jill E.; Mulligan, Evan A.; Cole, Michael; Allinson, Lisa M.; Wallis, Jonathan P.; Marshall, Scott; Wang, Evelyn; Curtin, Nicola J.; Willmore, Elaine
2015-01-01
In chronic lymphocytic leukemia (CLL), mutation and loss of p53 and ATM abrogate DNA damage signalling and predict poorer response and shorter survival. We hypothesised that poly (ADP-ribose) polymerase (PARP) activity, which is crucial for repair of DNA breaks induced by oxidative stress or chemotherapy, may be an additional predictive biomarker and a target for therapy with PARP inhibitors. We measured PARP activity in 109 patient-derived CLL samples, which varied widely (192 – 190052 pmol PAR/106 cells) compared to that seen in healthy volunteer lymphocytes (2451 – 7519 pmol PAR/106 cells). PARP activity was associated with PARP1 protein expression and endogenous PAR levels. PARP activity was not associated with p53 or ATM loss, Binet stage, IGHV mutational status or survival, but correlated with Bcl-2 and Rel A (an NF-kB subunit). Levels of 8-hydroxy-2′-deoxyguanosine in DNA (a marker of oxidative damage) were not associated with PAR levels or PARP activity. The potent PARP inhibitor, talazoparib (BMN 673), inhibited CD40L-stimulated proliferation of CLL cells at nM concentrations, independently of Binet stage or p53/ATM function. PARP activity is highly variable in CLL and correlates with stress-induced proteins. Proliferating CLL cells (including those with p53 or ATM loss) are highly sensitive to the PARP inhibitor talazoparib. PMID:26539646
Pannone, G; Santoro, A; Carinci, F; Bufo, P; Papagerakis, S M; Rubini, C; Campisi, G; Giovannelli, L; Contaldo, M; Serpico, R; Mazzotta, M; Lo Muzio, L
2011-01-01
Oncogenic HPVs are necessarily involved in cervical cancer but their role in oral carcinogenesis is debated. To detect HPV in oral cancer, 38 cases of formalin fixed-paraffin embedded OSCC were studied by both DNA genotyping (MY09/11 L1 consensus primers in combination with GP5-GP6 primer pair followed by sequencing) and immunohistochemistry (monoclonal Abs against capsid protein and HPV-E7 protein, K1H8 DAKO and clone 8C9 INVITROGEN, respectively). HPV-16 tonsil cancer was used as positive control. The overall prevalence of HPV infection in OSCCs was 10.5%. Amplification of DNA samples showed single HPV DNA infection in 3 cases (HPV16; HPV53; HPV70) and double infection in one case of cheek cancer (HPV31/HPV44). The overall HR-HPV prevalence was 7.5%. E-7 antigen was immunohistochemically detected in all HPV-positive cases. HPV+ OSCC cases showed an overall better outcome than HPV negative oral cancers, as evaluated by Kaplan-Meier curves. HPVs exert their oncogenic role after DNA integration, gene expression of E5, E6 and E7 loci and p53/pRb host proteins suppression. This study showed that HPV-E7 protein inactivating pRb is expressed in oral cancer cells infected by oncogenic HPV other than classical HR-HPV-16/18. Interestingly HPV-70, considered a low risk virus with no definite collocation in oncogenic type category, gives rise to the expression of HPV-E7 protein and inactivate pRb in oral cancer. HPV-70, as proved in current literature, is able to inactivates also p53 protein, promoting cell immortalization. HPV-53, classified as a possible high risk virus, expresses E7 protein in OSCC, contributing to oral carcinogenesis. We have identified among OSCCs, a subgroup characterized by HPV infection (10.5%). Finally, we have proved the oncogenic potential of some HPV virus types, not well known in literature.
Distinct tumor protein p53 mutants in breast cancer subgroups.
Dumay, Anne; Feugeas, Jean-Paul; Wittmer, Evelyne; Lehmann-Che, Jacqueline; Bertheau, Philippe; Espié, Marc; Plassa, Louis-François; Cottu, Paul; Marty, Michel; André, Fabrice; Sotiriou, Christos; Pusztai, Lajos; de Thé, Hugues
2013-03-01
Tumor protein p53 (TP53) is mutated in approximately 30% of breast cancers, but this frequency fluctuates widely between subclasses. We investigated the p53 mutation status in 572 breast tumors, classified into luminal, basal and molecular apocrine subgroups. As expected, the lowest mutation frequency was observed in luminal (26%), and the highest in basal (88%) tumors. Luminal tumors showed significantly higher frequency of substitutions (82 vs. 65%), notably A/T to G/C transitions (31 vs. 15%), whereas molecular apocrine and basal tumors presented much higher frequencies of complex mutations (deletions/insertions) (36 and 33%, respectively, vs. 18%). Accordingly, missense mutations were significantly more frequent in luminal tumors (75 vs. 54%), whereas basal tumors displayed significantly increased rates of TP53 truncations (43 vs. 25%), resulting in loss of function and/or expression. Interestingly, as basal tumors, molecular apocrine tumors presented with a high rate of complex mutations, but paradoxically, these were not associated with increased frequency of p53 truncation. As in luminal tumors, this could reflect a selective pressure for p53 gain of function, possibly through P63/P73 inactivation. Collectively, these observations point not only to different mechanisms of TP53 alterations, but also to different functional consequences in the different breast cancer subtypes. Copyright © 2012 UICC.
Yin, Dong; Xie, Dong; Hofmann, Wolf-Karsten; Miller, Carl W; Black, Keith L; Koeffler, H Phillip
2002-11-28
Methylation status of the p15(INK4B), p16(INK4A), p14(ARF) and retinoblastoma (RB) genes was studied using methylation specific polymerase chain reaction (MSP) in 85 human brain tumors of various subtypes and four normal brain samples. These genes play an important role in the control of the cell cycle. Twenty-four out of 85 cases (28%) had at least one of these genes methylated. The frequency of p14(ARF) methylation was 15 out of 85 (18%) cases, and the expression of p14(ARF) in methylated gliomas was significantly lower than in unmethylated gliomas. The incidence of methylation of p15(INK4B), p16(INK4A) and RB gene was 4%, 7%, and 4%, respectively. Samples with p14(ARF) methylation did not have p16(INK4A) methylation even though both genes physically overlap. None of the target genes was methylated in the normal brain samples. In addition, the p53 gene was mutated in 19 out of 85 (22%) samples as determined by single strand conformation polymorphism (SSCP) analysis and DNA sequencing. Thirty out of 85 (35%) brain tumors had either a p53 mutation or methylation of p14(ARF). Also, the p14(ARF) expression in p53 wild-type gliomas was lower than levels in p53 mutated gliomas. This finding is consistent with wild-type p53 being able to autoregulate its levels by down-regulating expression of p14(ARF). In summary, inactivation of the apoptosis pathway that included the p14(ARF) and p53 genes by hypermethylation and mutation, respectively, occurred frequently in human brain tumors. Down-regulation of p14(ARF) in gliomas was associated with hypermethylation of its promoter and the presence of a wild-type p53 in these samples.
p53-independent p21 induction by MELK inhibition.
Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun
2017-08-29
MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated.
p53-independent p21 induction by MELK inhibition
Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun
2017-01-01
MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated. PMID:28938528
CDIP, a novel pro-apoptotic gene, regulates TNFα-mediated apoptosis in a p53-dependent manner
Brown, Lauren; Ongusaha, Pat P; Kim, Hyung-Gu; Nuti, Shanthy; Mandinova, Anna; Lee, Ji Won; Khosravi-Far, Roya; Aaronson, Stuart A; Lee, Sam W
2007-01-01
We have identified a novel pro-apoptotic p53 target gene named CDIP (Cell Death Involved p53-target). Inhibition of CDIP abrogates p53-mediated apoptotic responses, demonstrating that CDIP is an important p53 apoptotic effector. CDIP itself potently induces apoptosis that is associated with caspase-8 cleavage, implicating the extrinsic cell death pathway in apoptosis mediated by CDIP. siRNA-directed knockdown of caspase-8 results in a severe impairment of CDIP-dependent cell death. In investigating the potential involvement of extrinsic cell death pathway in CDIP-mediated apoptosis, we found that TNF-α expression tightly correlates with CDIP expression, and that inhibition of TNF-α signaling attenuates CDIP-dependent apoptosis. We also demonstrate that TNF-α is upregulated in response to p53 and p53 inducing genotoxic stress, in a CDIP-dependent manner. Consistently, knockdown of TNF-α impairs p53-mediated stress-induced apoptosis. Together, these findings support a novel p53 → CDIP → TNF-α apoptotic pathway that directs apoptosis after exposure of cells to genotoxic stress. Thus, CDIP provides a new link between p53-mediated intrinsic and death receptor-mediated extrinsic apoptotic signaling, providing a novel target for cancer therapeutics aimed at maximizing the p53 apoptotic response of cancer cells to drug therapy. PMID:17599062
Zhao, Xiao-Dong; Zhang, Yi
2006-12-01
Drug selection, the key for chemotherapy, is one of the most difficult decision-making in clinic for the treatment of malignant tumors. How to choose is undetermined. Here a new strategy--predictive molecule-targeted chemotherapy (PMTC)--is put forward to choose relatively sensitive chemotherapeutic drugs and to avoid relatively resistant traditional drugs according to the expression of predictive molecules in individual tumor tissue. For example, paclitaxel is regarded as a relatively sensitive drug and may be chosen for the tumors with high expression of p53, while it is predicted as relatively resistant drug and should be avoided for the tumors with high expression of P-glycoprotein (P-gp). Here, we reviewed the predictive values of a variety of molecules, such as p53, P-gp, topoisomerase-1, topoisomerase-2, MSI, BRCA-1, ERCC1, FANC, hMHL1/2, XPD, Bcl-2, ErbB-2, MGMT, dihydropyridine dehydrogenase (DPD), thymidylate synthetase (TS), deoxycytidine kinase (dCK), Ras, Bax, Cyclin A, tubulin proteins, and so on, for the efficacy of some traditional chemotherapeutic drugs, such as platinum, oxaliplatin, cyclophosphamide, ifosfamide, dacarbazine, methotrexate, 5-flurouracil, gemcitabine, vincristine, vinorelbine, paclitaxel, etoposide, irinotecan, topotecan, and so on.
Kashofer, Karl; Regauer, Sigrid
2017-08-01
This study evaluates the frequency and type of TP53 gene mutations and HPV status in 72 consecutively diagnosed primary invasive vulvar squamous cell carcinomas (SCC) during the past 5years. DNA of formalin-fixed and paraffin embedded tumour tissue was analysed for 32 HPV subtypes and the full coding sequence of the TP53 gene, and correlated with results of p53 immunohistochemistry. 13/72 (18%) cancers were HPV-induced squamous cell carcinomas, of which 1/13 (8%) carcinoma harboured a somatic TP53 mutation. Among the 59/72 (82%) HPV-negative cancers, 59/72 (82%) SCC were HPV-negative with wild-type gene in 14/59 (24%) SCC and somatic TP53 mutations in 45/59 (76%) SCC. 28/45 (62%) SCC carried one (n=20) or two (n=8) missense mutations. 11/45 (24%) carcinomas showed a single disruptive mutation (3× frame shift, 7× stop codon, 1× deletion), 3/45 SCC a splice site mutation. 3/45 (7%) carcinomas had 2 or 3 different mutations. 18 different "hot spot" mutations were observed in 22/45 cancers (49%; 5× R273, 3× R282; 2× each Y220, R278, R248). Immunohistochemical p53 over expression was identified in most SCC with missense mutations, but not in SCC with disruptive TP53 mutations or TP53 wild-type. 14/45 (31%) patients with TP53 mutated SCC died of disease within 12months (range 2-24months) versus 0/13 patients with HPV-induced carcinomas and 0/14 patients with HPV-negative, TP53 wild-type carcinomas. 80% of primary invasive vulvar SCC were HPV-negative carcinomas with a high frequency of disruptive mutations and "hot spot" TP53 gene mutations, which have been linked to chemo- and radioresistance. The death rate of patients with p53 mutated vulvar cancers was 31%. Immunohistochemical p53 over expression could not reliably identify SCC with TP53 gene mutation. Pharmacological therapies targeting mutant p53 will be promising strategies for personalized therapy in patients with TP53 mutated vulvar cancers. Copyright © 2017. Published by Elsevier Inc.
Influence of P53 on the radiotherapy response of hepatocellular carcinoma
Gomes, Ana R.; Abrantes, Ana M.; Brito, Ana F.; Laranjo, Mafalda; Casalta-Lopes, João E.; Gonçalves, Ana C.; Sarmento-Ribeiro, Ana B.; Tralhão, José G.
2015-01-01
Background/Aims Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and it has a poor prognosis and few therapeutic options. Radiotherapy is one of the most effective forms of cancer treatment, and P53 protein is one of the key molecules determining how a cell responds to radiotherapy. The aim of this study was to determine the therapeutic efficacy of iodine-131 in three human HCC cell lines. Methods Western blotting was used to measure P53 expression. The effects of radiotherapy with iodine-131 were assessed by using the clonogenic assay to evaluate cell survival. Flow cytometry was carried out to examine the effects of iodine-131 on cell death, oxidative stress, reduced intracellular glutathione expression, the mitochondrial membrane potential, and the cell cycle. Results The P53 protein was not expressed in Hep3B2.1-7 cells, was expressed at normal levels in HepG2 cells, and was overexpressed in HuH7 cells. P53 expression in the HuH7 and HepG2 cell lines increased after internal and external irradiation with iodine-131. Irradiation induced a decrease in cell survival and led to a decrease in cell viability in all of the cell lines studied, accompanied by cell death via late apoptosis/necrosis and necrosis. Irradiation with 131-iodine induced mostly cell-cycle arrest in the G0/G1 phase. Conclusions These results suggest that P53 plays a key role in the radiotherapy response of HCC. PMID:26527121
The prognostic value of p53 positive in colorectal cancer: A retrospective cohort study.
Wang, Peng; Liang, Jianwei; Wang, Zheng; Hou, Huirong; Shi, Lei; Zhou, Zhixiang
2017-05-01
This retrospective cohort study aimed to discuss the prognostic value of p53 positive in colorectal cancer. A total of 124 consecutive patients diagnosed with colorectal cancer were evaluated at the National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College from 1 January 2009 to 31 December 2010. The expression of p53 in colorectal cancer was examined by immunohistochemistry. Based on the expression levels of p53, the 124 patients were divided into a p53 positive group and a p53 negative group. In this study, 72 patients were in the p53 positive group and 52 in the p53 negative group. The two groups were well balanced in gender, age, body mass index, American Society of Anesthesiologists scores, and number of lymph nodes harvested. p53 positive was associated with carcinoembryonic antigen ≥5 ng/mL ( p = 0.036), gross type ( p = 0.037), degree of tumor differentiation ( p = 0.026), pathological tumor stage ( p = 0.019), pathological node stage ( p = 0.004), pathological tumor-node-metastasis stage ( p = 0.017), nerve invasion ( p = 0.008), and vessel invasion ( p = 0.018). Tumor site, tumor size, and pathological pattern were not significantly different between these two groups. Disease-free survival and overall survival in the p53 positive group were significantly shorter than the p53 negative group ( p = 0.021 and 0.025, respectively). Colorectal cancer patients with p53 positive tended to be related to a higher degree of malignancy, advanced tumor-node-metastasis stage, and shorter disease-free survival and overall survival. p53 positive was independently an unfavorable prognostic marker for colorectal cancer patients.
Lehmann-Che, Jacqueline; André, Fabrice; Desmedt, Christine; Mazouni, Chafika; Giacchetti, Sylvie; Turpin, Elisabeth; Espié, Marc; Plassa, Louis-François; Marty, Michel; Bertheau, Philippe; Sotiriou, Christos; Piccart, Martine; Symmans, W Fraser; Pusztai, Lajos; de Thé, Hugues
2010-01-01
The predictive value of p53 for the efficacy of front-line anthracycline-based chemotherapy regimens has been a matter of significant controversy. Anthracyclines are usually combined with widely different doses of alkylating agents, which may significantly modulate tumor response to these combinations. We analyzed three series of de novo stage II-III breast cancer patients treated front line with anthracycline-based regimens of various cyclophosphamide dose intensities: 65 patients with estrogen receptor (ER)(-) tumors treated with anthracyclines alone (Institut Jules Bordet, Brussels), 51 unselected breast cancer patients treated with intermediate doses of cyclophosphamide (MD Anderson Cancer Center, Houston, TX), and 128 others treated with a dose-dense anthracycline-cyclophosphamide combination (St. Louis, Paris). After chemotherapy and surgery, pathologic complete response (pCR) was evaluated. p53 status was determined by a yeast functional assay on the pretreatment tumor sample. In a multivariate analysis of the pooled results, a lack of ER expression and high-dose cyclophosphamide administration were associated with a higher likelihood of pCR. A sharp statistical interaction was detected between p53 status and cyclophosphamide dose intensity. Indeed, when restricting our analysis to patients with ER(-) tumors, we confirmed that a mutant p53 status was associated with anthracycline resistance, but found that p53 inactivation was required for response to the dose-intense alkylating regimen. The latter allowed very high levels of pCR in triple-negative tumors. Thus, our data strongly suggest that cyclophosphamide dose intensification in ER(-) p53-mutated breast cancer patients could significantly improve their response.
Hoang, Kimson; Ankney, John A.; Nguyen, Stephanie T.; Rushing, Amanda W.; Polakowski, Nicholas; Miotto, Benoit; Lemasson, Isabelle
2016-01-01
Adult T-cell leukemia (ATL) is an often fatal malignancy caused by infection with the complex retrovirus, human T-cell Leukemia Virus, type 1 (HTLV-1). In ATL patient samples, the tumor suppressor, p53, is infrequently mutated; however, it has been shown to be inactivated by the viral protein, Tax. Here, we show that another HTLV-1 protein, HBZ, represses p53 activity. In HCT116 p53+/+ cells treated with the DNA-damaging agent, etoposide, HBZ reduced p53-mediated activation of p21/CDKN1A and GADD45A expression, which was associated with a delay in G2 phase-arrest. These effects were attributed to direct inhibition of the histone acetyltransferase (HAT) activity of p300/CBP by HBZ, causing a reduction in p53 acetylation, which has be linked to decreased p53 activity. In addition, HBZ bound to, and inhibited the HAT activity of HBO1. Although HBO1 did not acetylate p53, it acted as a coactivator for p53 at the p21/CDKN1A promoter. Therefore, through interactions with two separate HAT proteins, HBZ impairs the ability of p53 to activate transcription. This mechanism may explain how p53 activity is restricted in ATL cells that do not express Tax due to modifications of the HTLV-1 provirus, which accounts for a majority of patient samples. PMID:26625199
Nuclear YB-1 expression as a negative prognostic marker in nonsmall cell lung cancer.
Gessner, C; Woischwill, C; Schumacher, A; Liebers, U; Kuhn, H; Stiehl, P; Jürchott, K; Royer, H D; Witt, C; Wolff, G
2004-01-01
The human Y-box binding protein, YB-1, is a multifunctional protein that regulates gene expression. Nuclear expression of YB-1 has been associated with chemoresistance and poor prognosis of tumour patients. Representative samples from autopsied material of primary tumours from 77 patients with NSCLC were investigated by immunohistochemistry for subcellular distribution of YB-1 and p53, in order to evaluate the prognostic role of nuclear expression of YB-1. Cytoplasmic YB-1 expression was found in all tumour samples, whereas nuclear expression was only observed in 48%. There was no correlation with histological classification, clinical parameters or tumour size, stage and metastasis status. However, patients with positive nuclear YB-1 expression in tumours showed reduced survival times when compared with patients without nuclear expression. Including information about the histology and mutational status for p53 increased the prognostic value of nuclear YB-1. Patients with nuclear YB-1 expression and p53 mutations had the worst prognosis (median survival 3 months), while best outcome was found in patients with no nuclear YB-1 and wildtype p53 (median survival 15 months). This suggests that the combined analysis of both markers allows a better identification of subgroups with varying prognosis. Nuclear expression of Y-box binding protien seems to be an independent prognostic marker.
Blegen, H.; Einhorn, N.; Sjövall, K.; Roschke, A.; Ghadimi, B. M.; McShane, L. M.; Nilsson, B.; Shah, K.; Ried, T.; Auer, G.
2000-11-01
Disturbed cell cycle-regulating checkpoints and impairment of genomic stability are key events during the genesis and progression of malignant tumors. We analyzed 80 epithelial ovarian tumors of benign (n = 10) and borderline type (n = 18) in addition to carcinomas of early (n = 26) and advanced (n = 26) stages for the expression of Ki67, cyclin A and cyclin E, p21WAF-1, p27KIP-1 and p53 and correlated the results with the clinical course. Genomic instability was assessed by DNA ploidy measurements and, in 35 cases, by comparative genomic hybridization. Overexpression of cyclin A and cyclin E was observed in the majority of invasive carcinomas, only rarely in borderline tumors and in none of the benign tumors. Similarly, high expression of p53 together with undetectable p21 or loss of chromosome arm 17p were frequent events only in adenocarcinomas. Both borderline tumors and adenocarcinomas revealed a high number of chromosomal gains and losses. However, regional chromosomal amplifications were found to occur 13 times more frequently in the adenocarcinomas than in the borderline tumors. The expression pattern of low p27 together with high Ki67 was found to be an independent predictor of poor outcome in invasive carcinomas. The results provide a link between disturbed cell cycle regulatory proteins, chromosomal aberrations and survival in ovarian carcinomas.
The Role of JMY in p53 Regulation.
Adighibe, Omanma; Pezzella, Francesco
2018-05-31
Following the event of DNA damage, the level of tumour suppressor protein p53 increases inducing either cell cycle arrest or apoptosis. Junctional Mediating and Regulating Y protein (JMY) is a transcription co-factor involved in p53 regulation. In event of DNA damage, JMY levels also upregulate in the nucleus where JMY forms a co-activator complex with p300/CREB-binding protein (p300/CBP), Apoptosis-stimulating protein of p53 (ASPP) and Stress responsive activator of p53 (Strap). This co-activator complex then binds to and increases the ability of p53 to induce transcription of proteins triggering apoptosis but not cell cycle arrest. This then suggests that the increase of JMY levels due to DNA damage putatively "directs" p53 activity toward triggering apoptosis. JMY expression is also linked to increased cell motility as it: (1) downregulates the expression of adhesion molecules of the Cadherin family and (2) induces actin nucleation, making cells less adhesive and more mobile, favouring metastasis. All these characteristics taken together imply that JMY possesses both tumour suppressive and tumour metastasis promoting capabilities.
Zhang, Jin; Chen, Xiangling; Kent, Michael S.; Rodriguez, Carlos O.; Chen, Xinbin
2009-01-01
Spontaneous tumors in the dog offer a unique opportunity as models to study human cancer etiology and therapy. p53, the most commonly mutated gene in human cancers, is found to be altered in dog cancers. However, little is known about the role of p53 in dog tumorigenesis. Here, we found that upon exposure to DNA damage agents or Mdm2 inhibitor nutlin-3, canine p53 is accumulated and capable of inducing its target genes, MDM2 and p21. We also found that upon DNA damage, canine p53 is accumulated in the nucleus, followed by MDM2 nuclear translocation and increased 53BP1 foci formation. In addition, we found that canine p63 and p73 are up-regulated by DNA damage agents. Furthermore, colony formation assay showed that canine tumor cells are sensitive to DNA damage agents and nutlin-3 in a p53-dependent manner. Surprisingly, canine p21 is expressed as two isoforms. Thus, we generated multiple canine p21 mutants and found that aa 129 to 142 is required, whereas aa 139 is one of the key determinants, for two p21 isoform expression. Finally, we showed that although the full-length human p21 cDNA expresses one polypeptide, aa 139 appears to play a similar role as that in canine p21 for various migration patterns. Taken together, our results indicate that canine p53 family proteins have biological activities similar to human counterparts. These similarities make the dog as an excellent out-bred spontaneous tumor model and the dog can serve as a translation model from bench-top to cage-side and then to bed-side. PMID:19147538
PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage
Huang, B H; Zhuo, J L; Leung, C H W; Lu, G D; Liu, J J; Yap, C T; Hooi, S C
2012-01-01
p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments. PMID:23235459
PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage.
Huang, B H; Zhuo, J L; Leung, C H W; Lu, G D; Liu, J J; Yap, C T; Hooi, S C
2012-12-13
p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments.
McCluggage, W Glenn; McBride, Hilary A
2012-05-01
Uterine serous carcinoma (USC) is an aggressive variant of Type 2 endometrial carcinoma, which in most cases exhibits, at least focally, a papillary architecture. Occasionally, especially in small biopsy specimens, it may be difficult to distinguish between USC and a variety of metaplastic or reactive processes. In particular, papillary syncytial metaplasia (PSM), as a result of endometrial breakdown, may be confused with USC or its precursor serous endometrial intraepithelial carcinoma. In such cases, immunohistochemistry is often undertaken, the panel of markers usually including estrogen receptor (ER), p53, p16, and MIB1. The expected immunoprofile of USC is ER negative, p53 and p16 positive, and a high MIB1 proliferation index, although studies have shown that significant numbers of cases deviate from this immunophenotype. With regard to the aforementioned markers, PSM has not been studied extensively, but intuitively, the expected immunophenotype would be ER positive, p53 and p16 negative, and a low MIB1 proliferation index. After 2 index cases in which breaking down menstrual endometrium with florid PSM was misdiagnosed on an endometrial biopsy as USC or suspected USC, in part due to the observed immunophenotype, we studied the expression of ER, p53, p16, MIB1, and HMGA2 (a recently described useful marker of USC) in 10 further cases of PSM associated with endometrial breakdown. We illustrate that compared with a nonbreaking down endometrium, PSM is characterized by a decreased expression of ER and an increased expression of p53 (although still wild-type staining) and p16, the latter marker typically being diffusely positive. HMGA2 is negative, and there is a low MIB1 proliferation index. In cases of PSM, which are morphologically problematic, the immunophenotype may further heighten the suspicion of serous malignancy and potentially result in a misdiagnosis.
Payandeh, Mehrdad; Sadeghi, Masoud; Sadeghi, Edris; Madani, Seyed-Hamid
2016-01-01
In breast cancer (BC), it has been suggested that nuclear overexpression of p53 protein might be an indicator of poor prognosis. The aim of the current study was to evaluate the expression of p53 BC in Kurdish women from the West of Iran and its correlation with other clinicopathology figures. In the present retrospective study, 231 patients were investigated for estrogen receptor (ER) and progesterone receptor (PR) positivity, defined as ≥10% positive tumor cells with nuclear staining. A binary logistic regression model was selected using Akaike Information Criteria (AIC) in stepwise selection for determination of important factors. ER, PR, the human epidermal growth factor receptor 2 (HER2) and p53 were positive in 58.4%, 55.4%, 59.7% and 45% of cases, respectively. Ki67 index was divided into two groups: 54.5% had Ki67<20% and 45.5% had Ki67 ≥20%. Of 214 patients, 137(64%) had lymph node metastasis and of 186 patients, 122(65.6%) had vascular invasion. Binary logistic regression analysis showed that there was inverse significant correlation between lymph node metastasis (P=0.008, OR 0.120 and 95%CI 0.025-0.574), ER status (P=0.006, OR 0.080, 95%CI 0.014-0.477) and a direct correlation between HER2 (P=005, OR 3.047, 95%CI 1.407-6.599) with the expression of p53. As in a number of studies, expression of p53 had a inverse correlation with lymph node metastasis and ER status and also a direct correlation with HER2 status. Also, p53-positivity is more likely in triple negative BC compared to other subtypes.
Thakur, Vijay S; Amin, A.R.M. Ruhul; Paul, Rajib K; Gupta, Kalpana; Hastak, Kedar; Agarwal, Mukesh K; Jackson, Mark W; Wald, David N; Mukhtar, Hasan; Agarwal, Munna L
2010-01-01
The tumor suppressor protein p53 plays a key role in regulation of negative cellular growth in response to EGCG. To further explore the role of p53 signaling and elucidate the molecular mechanism, we employed colon cancer HCT116 cell line and its derivatives in which a specific transcriptional target of p53 is knocked down by homologous recombination. Cells expressing p53 and p21 accumulate in G1 upon treatment with EGCG. In contrast, same cells lacking p21 traverse through the cell cycle and eventually undergo apoptosis as revealed by TUNEL staining. Treatment with EGCG leads to induction of p53, p21 and PUMA in p21 wild-type, and p53 and PUMA in p21−/− cells. Ablation of p53 by RNAi protects p21−/− cells, thus indicating a p53-dependent apoptosis by EGCG. Furthermore, analysis of cells lacking PUMA or Bax with or without p21 but with p53 reveals that all the cells expressing p53 and p21 survived after EGCG treatment. More interestingly, cells lacking both PUMA and p21 survived ECGC treatment whereas those lacking p21 and Bax did not. Taken together, our results present a novel concept wherein p21-dependent growth arrest pre-empts and protects cells from otherwise, in its absence, apoptosis which is mediated by activation of pro-apoptotic protein PUMA. Furthermore, we find that p53-dependent activation of PUMA in response to EGCG directly leads to apoptosis with out requiring Bax as is the case in response to agents that induce DNA damage. p21, thus can be used as a molecular switch for therapeutic intervention of colon cancer. PMID:20444544
Zauberman, Ayelet; Flashner, Yehuda; Levy, Yinon; Vagima, Yaron; Tidhar, Avital; Cohen, Ofer; Bar-Haim, Erez; Gur, David; Aftalion, Moshe; Halperin, Gideon; Shafferman, Avigdor; Mamroud, Emanuelle
2013-01-01
Plague, initiated by Yersinia pestis infection, is a rapidly progressing disease with a high mortality rate if not quickly treated. The existence of antibiotic-resistant Y. pestis strains emphasizes the need for the development of novel countermeasures against plague. We previously reported the generation of a recombinant Y. pestis strain (Kim53ΔJ+P) that over-expresses Y. enterocolitica YopP. When this strain was administered subcutaneously to mice, it elicited a fast and effective protective immune response in models of bubonic, pneumonic and septicemic plague. In the present study, we further characterized the immune response induced by the Kim53ΔJ+P recombinant strain. Using a panel of mouse strains defective in specific immune functions, we observed the induction of a prompt protective innate immune response that was interferon-γ dependent. Moreover, inoculation of mice with Y. pestis Kim53ΔJ+P elicited a rapid protective response against secondary infection by other bacterial pathogens, including the enteropathogen Y. enterocolitica and the respiratory pathogen Francisella tularensis. Thus, the development of new therapies to enhance the innate immune response may provide an initial critical delay in disease progression following the exposure to highly virulent bacterial pathogens, extending the time window for successful treatment.
Chen, Hongyu; Zhang, Wei; Cheng, Xiang; Guo, Liang; Xie, Shuai; Ma, Yuanfang; Guo, Ning; Shi, Ming
2017-07-01
It has been suggested that β2-adrenergic receptor (β2-AR)-mediated signaling induced by catecholamines regulates the degradation of p53. However, the underlying molecular mechanisms were not known. In the present study, we demonstrated that catecholamines upregulated the expression of silent information regulator 1 (Sirt1) through activating β2-AR-mediated signaling pathway, since selective β2-AR antagonist ICI 118, 551 and non-selective β-blocker proprenolol effectively repressed isoproterenol (ISO)-induced Sirt1 expression. Catecholamines inhibited doxorubicin (DOX)-induced p53 acetylation and transcription-activation activities by inducing the expression of Sirt1. Knockdown of the Sirt1 expression by the specific siRNA remarkably blocked the inhibitory effects of ISO on DOX-induced p53 acetylation. In addition, we demonstrated that catecholamines induced resistance of cervical cancer cells to chemotherapeutics both in vitro and in vivo and that β2-AR was overexpressed in cervical cancer tissues. Our data suggest that the p53-dependent, chemotherapeutics-induced cytotoxicity in cervical cancer cells may be compromised by catecholamines-induced upregulation of the Sirt1 expression through activating the β2-AR signaling. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
An Efficient Method for Generation of Knockout Human Embryonic Stem Cells Using CRISPR/Cas9 System.
Bohaciakova, Dasa; Renzova, Tereza; Fedorova, Veronika; Barak, Martin; Kunova Bosakova, Michaela; Hampl, Ales; Cajanek, Lukas
2017-11-01
Human embryonic stem cells (hESCs) represent a promising tool to study functions of genes during development, to model diseases, and to even develop therapies when combined with gene editing techniques such as CRISPR/CRISPR-associated protein-9 nuclease (Cas9) system. However, the process of disruption of gene expression by generation of null alleles is often inefficient and tedious. To circumvent these limitations, we developed a simple and efficient protocol to permanently downregulate expression of a gene of interest in hESCs using CRISPR/Cas9. We selected p53 for our proof of concept experiments. The methodology is based on series of hESC transfection, which leads to efficient downregulation of p53 expression even in polyclonal population (p53 Low cells), here proven by a loss of regulation of the expression of p53 target gene, microRNA miR-34a. We demonstrate that our approach achieves over 80% efficiency in generating hESC clonal sublines that do not express p53 protein. Importantly, we document by a set of functional experiments that such genetically modified hESCs do retain typical stem cells characteristics. In summary, we provide a simple and robust protocol to efficiently target expression of gene of interest in hESCs that can be useful for laboratories aiming to employ gene editing in their hESC applications/protocols.
Clinical and pathologic relevance of p53 index in canine osseous tumors.
Loukopoulos, P; Thornton, J R; Robinson, W F
2003-05-01
The clinicopathologic value of the immunohistochemical (IHC) expression of p53 protein was evaluated in 167 canine osseous tumors. p53 staining frequency and intensity in tumor cells was expressed as a p53 index. p53 index was significantly higher in osteosarcomas than in other sarcomas, chondrosarcoma, multilobular tumor of bone, and tumors initially misdiagnosed as osteosarcomas as well as in appendicular versus axial and in distal versus proximal osteosarcomas. A strong correlation is demonstrated between the p53 index and a range of clinicopathologic parameters in osteosarcoma, including the tumor site, histologic grade and score, mitotic index, degree of tumor necrosis, and pleomorphism. Chondroblastic osteosarcomas had significantly higher and telangiectatic osteosarcomas significantly lower p53 index than did osteosarcomas belonging to other histopathologic subtypes, a fact that tends to reinforce the perception of these osteosarcomas as distinct clinicopathologic entities. Entire males had higher p53 index than did neutered males. p53 index was higher in Rottweilers than in Great Danes and Terriers, confirming breed susceptibilities to osteosarcoma. p53 index showed no association with age, primary or secondary site status, or the presence of metastases or other tumor types. Biopsy samples had a higher p53 index than did postmortem samples, either because of differences in sample processing or the possibility that p53 overexpression is more evident at the earlier stages of osteosarcoma pathogenesis, presumably represented by the biopsy material. IHC examination for p53 and the derived index has the potential to be used as an additional diagnostic tool and prognostic indicator for osseous tumors.
Spinnler, C; Hedström, E; Li, H; de Lange, J; Nikulenkov, F; Teunisse, A F A S; Verlaan-de Vries, M; Grinkevich, V; Jochemsen, A G; Selivanova, G
2011-01-01
Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 – HdmX and Wip1, leading to efficient elimination of tumour cells. PMID:21546907
Spinnler, C; Hedström, E; Li, H; de Lange, J; Nikulenkov, F; Teunisse, A F A S; Verlaan-de Vries, M; Grinkevich, V; Jochemsen, A G; Selivanova, G
2011-11-01
Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 - HdmX and Wip1, leading to efficient elimination of tumour cells.
Abnormal expression and mutation of p53 in cervical cancer--a study at protein, RNA and DNA levels.
Ngan, H Y; Tsao, S W; Liu, S S; Stanley, M
1997-02-01
The objectives of this study are to document the status of p53 expression and mutation in cervical cancer at protein, RNA and DNA levels and to relate this to the presence of HPV. Biopsy specimens from one hundred and three squamous cell carcinoma of the cervix and histologically normal ectocervix were analysed. Fresh tissues were extracted for protein, RNA and DNA and flash frozen tissue cryostat sectioned for immunohistochemical staining. HPV DNA status was determined by PCR using L1 consensus primers and typed for HPV 16 and 18 with E6 specific primers. p53 expression was determined at the protein level by Western blotting on protein extracts and at RNA level by Northern blotting. There was no p53 overexpression or mutation detectable in the protein extracts. Three of 65 (4.6%) of the carcinomas were positive for p53 by immunostaining with the polyclonal antibody CM1. Overexpression at the RNA level was detected in 2 of 32 (6.3%) carcinomas. p53 mutation was screened for by PCR/SSCP (single strand conformation polymorphism) followed by sequencing to define the site of mutation. Two of the cervical cancers (2.0%) showed mutation in p53 in exons 7 or 8. The mutation rate in HPV positive tumours was 1.2% (1/81) and in HPV negative tumours was 5.2% (1/19). p53 overexpression or mutation does not seem to play a significant role in cervical carcinomas.
Huarte-Bonnet, Carla; Kumar, Suresh; Saparrat, Mario C N; Girotti, Juan R; Santana, Marianela; Hallsworth, John E; Pedrini, Nicolás
2018-03-01
Several filamentous fungi are able to concomitantly assimilate both aliphatic and polycyclic aromatic hydrocarbons that are the biogenic by-products of some industrial processes. Cytochrome P450 monooxygenases catalyze the first oxidation reaction for both types of substrate. Among the cytochrome P450 (CYP) genes, the family CYP52 is implicated in the first hydroxylation step in alkane-assimilation processes, while genes belonging to the family CYP53 have been linked with oxidation of aromatic hydrocarbons. Here, we perform a comparative analysis of CYP genes belonging to clans CYP52 and CYP53 in Aspergillus niger, Beauveria bassiana, Metarhizium robertsii (formerly M. anisopliae var. anisopliae), and Penicillium chrysogenum. These species were able to assimilate n-hexadecane, n-octacosane, and phenanthrene, exhibiting a species-dependent modification in pH of the nutrient medium during this process. Modeling of the molecular docking of the hydrocarbons to the cytochrome P450 active site revealed that both phenanthrene and n-octacosane are energetically favored as substrates for the enzymes codified by genes belonging to both CYP52 and CYP53 clans, and thus appear to be involved in this oxidation step. Analyses of gene expression revealed that CYP53 members were significantly induced by phenanthrene in all species studied, but only CYP52X1 and CYP53A11 from B. bassiana were highly induced with n-alkanes. These findings suggest that the set of P450 enzymes involved in hydrocarbon assimilation by fungi is dependent on phylogeny and reveal distinct substrate and expression specificities.
de Queiroz, Rafaela Muniz; Madan, Rashna; Chien, Jeremy; Dias, Wagner Barbosa; Slawson, Chad
2016-01-01
O-GlcNAcylation is a dynamic post-translational modification consisting of the addition of a single N-acetylglucosamine sugar to serine and threonine residues in proteins by the enzyme O-linked β-N-acetylglucosamine transferase (OGT), whereas the enzyme O-GlcNAcase (OGA) removes the modification. In cancer, tumor samples present with altered O-GlcNAcylation; however, changes in O-GlcNAcylation are not consistent between tumor types. Interestingly, the tumor suppressor p53 is modified by O-GlcNAc, and most solid tumors contain mutations in p53 leading to the loss of p53 function. Because ovarian cancer has a high frequency of p53 mutation rates, we decided to investigate the relationship between O-GlcNAcylation and p53 function in ovarian cancer. We measured a significant decrease in O-GlcNAcylation of tumor tissue in an ovarian tumor microarray. Furthermore, O-GlcNAcylation was increased, and OGA protein and mRNA levels were decreased in ovarian tumor cell lines not expressing the protein p53. Treatment with the OGA inhibitor Thiamet-G (TMG), silencing of OGA, or overexpression of OGA and OGT led to p53 stabilization, increased nuclear localization, and increased protein and mRNA levels of p53 target genes. These data suggest that changes in O-GlcNAc homeostasis activate the p53 pathway. Combination treatment of the chemotherapeutic cisplatin with TMG decreased tumor cell growth and enhanced cell cycle arrest without impairing cytotoxicity. The effects of TMG on tumor cell growth were partially dependent on wild type p53 activation. In conclusion, changes in O-GlcNAc homeostasis activate the wild type p53 pathway in ovarian cancer cells, and OGA inhibition has the potential as an adjuvant treatment for ovarian carcinoma. PMID:27402830
Zuffa, Elisa; Mancini, Manuela; Brusa, Gianluca; Pagnotta, Eleonora; Hattinger, Claudia Maria; Serra, Massimo; Remondini, Daniel; Castellani, Gastone; Corrado, Patrizia; Barbieri, Enza; Santucci, Maria Alessandra
2008-07-01
To investigate the impact of TP53 (tumor protein 53, p53) on genomic stability of osteosarcoma (OS). In first instance, we expressed in OS cell line SAOS-2 (lacking p53) a wild type (wt) p53 construct, whose protein undergoes nuclear import and activation in response to ionizing radiations (IR). Thereafter, we investigated genomic imbalances (amplifications and deletions at genes or DNA regions most frequently altered in human cancers) associated with radio-resistance relative to p53 expression by mean of an array-based comparative genomic hybridization (aCGH) strategy. Finally we investigated a putative marker of radio-induced oxidative stress, a 4,977 bp deletion at mitochondrial (mt) DNA usually referred to as 'common' deletion, by mean of a polimerase chain reaction (PCR) strategy. In radio-resistant subclones generated from wt p53-transfected SAOS-2 cells DNA deletions were remarkably reduced and the accumulation of 'common' deletion at mtDNA (that may let the persistence of oxidative damage by precluding detoxification from reactive oxygen species [ROS]) completely abrogated. The results of our study confirm that wt p53 has a role in protection of OS cell DNA integrity. Multiple mechanisms involved in p53 safeguard of genomic integrity and prevention of deletion outcome are discussed.
Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Erica M.; Niu, MengMeng; Bergholz, Johann
The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification.more » In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.« less
Kim, Ji-Hyun; Jung, Ji Hoon; Kim, Sung-Hoon; Jeong, Soo-Jin
2014-02-01
The peptidyl-prolyl cis/trans isomerase Pin1 is overexpressed in a wide variety of cancer cells and thus considered as an important target molecule for cancer therapy. This study demonstrates that decursin, a bioactive compound from Angelica gigas, exert the anti-cancer effect against breast cancer cells via regulation of Pin1 and its related signaling molecules. We observed that decursin induced G1 arrest with decrease in cyclin D1 level in Pin1-expressing breast cancer cells MDA-MB-231, but not Pin1-non-expressing breast cancer cells MDA-MB-157. In addition, decursin significantly reduced protein expression and enzymatic activity of Pin1 in MDA-MB-231 cells. Further, we found that decursin treatment enhanced the p53 expression level and failed to down-regulate Pin1 in the cells transfected with p53 siRNA, indicating the importance of p53 in the decursin-mediated Pin1 inhibition in MDA-MB-231 cells. Decursin stimulated association between Pin1 to p53. Moreover, decursin facilitated p53 transcription in MDA-MB-231 cells. Overall, our current study suggests the potential of decursin as an attractive cancer therapeutic agent for breast cancer by targeting Pin1 protein. Copyright © 2013 John Wiley & Sons, Ltd.
Chala, Bayissa; Choi, Min-Ho; Moon, Kyung Chul; Kim, Hyung Suk; Kwak, Cheol; Hong, Sung-Tae
2017-01-01
Schistosoma haematobium is a biocarcinogen of human urinary bladder (UB). The present study investigated developing UB cancer mouse model by injecting S. haematobium eggs into the bladder wall and introduction of chemical carcinogens. Histopathological findings showed mild hyperplasia to epithelial vacuolar change, and high grade dysplasia. Squamous metaplasia was observed in the S. haematobium eggs+NDMA group at week 12 but not in other groups. Immunohistochemistry revealed significantly high expression of Ki-67 in urothelial epithelial cells of the S. haematobium eggs+BBN group at week 20. The qRT-PCR showed high expression of p53 gene in S. haematobium eggs group at week 4 and S. haematobium eggs+BBN group at week 20. E-cadherin and vimentin showed contrasting expression in S. haematobium eggs+BBN group. Such inverse expression of E-cadherin and vimentin may indicate epithelial mesenchymal transition in the UB tissue. In conclusion, S. haematobium eggs and nitrosamines may transform UB cells into squamous metaplasia and dysplasia in correlation with increased expression of Ki-67. Marked decrease in E-cadherin and increase in p53 and vimentin expressions may support the transformation. The present study introduces a promising modified animal model for UB cancer study using S. haematobium eggs. PMID:28285503
Kamat, Chandrashekhar D.; Shmueli, Ron B.; Connis, Nick; Rudin, Charles M.; Green, Jordan J.; Hann, Christine L.
2013-01-01
Small cell lung cancer (SCLC) is an aggressive disease with one of the highest case-fatality rates among cancer. The recommended therapy for SCLC has not changed significantly over the past 30 years; new therapeutic approaches are a critical need. TP53 is mutated in the majority of SCLC cases and its loss is required in transgenic mouse models of the disease. We synthesized an array of biodegradable poly(beta-amino ester) (PBAE) polymers which self-assemble with DNA and assayed for transfection efficiency in the p53-mutant H446 SCLC cell line using high-throughput methodologies. Two of the top candidates were selected for further characterization and TP53 delivery in vitro and in vivo. Nanoparticle delivery of TP53 resulted in expression of exogenous p53, induction of p21, induction of apoptosis and accumulation of cells in sub-G1 consistent with functional p53 activity. Intratumoral injection of subcutaneous H446 xenografts with polymers carrying TP53 caused marked tumor growth inhibition. This is the first demonstration of TP53 gene therapy in SCLC using non-viral polymeric nanoparticles. This technology may have general applicability as a novel anti-cancer strategy based on restoration of tumor suppressor gene function. PMID:23364678
De Smet, Frederik; Saiz Rubio, Mirian; Hompes, Daphne; Naus, Evelyne; De Baets, Greet; Langenberg, Tobias; Hipp, Mark S; Houben, Bert; Claes, Filip; Charbonneau, Sarah; Delgado Blanco, Javier; Plaisance, Stephane; Ramkissoon, Shakti; Ramkissoon, Lori; Simons, Colinda; van den Brandt, Piet; Weijenberg, Matty; Van England, Manon; Lambrechts, Sandrina; Amant, Frederic; D'Hoore, André; Ligon, Keith L; Sagaert, Xavier; Schymkowitz, Joost; Rousseau, Frederic
2017-05-01
Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia
Folkerts, Hendrik; Hilgendorf, Susan; Wierenga, Albertus T J; Jaques, Jennifer; Mulder, André B; Coffer, Paul J; Schuringa, Jan Jacob; Vellenga, Edo
2017-01-01
Here we have explored whether inhibition of autophagy can be used as a treatment strategy for acute myeloid leukemia (AML). Steady-state autophagy was measured in leukemic cell lines and primary human CD34+ AML cells with a large variability in basal autophagy between AMLs observed. The autophagy flux was higher in AMLs classified as poor risk, which are frequently associated with TP53 mutations (TP53mut), compared with favorable- and intermediate-risk AMLs. In addition, the higher flux was associated with a higher expression level of several autophagy genes, but was not affected by alterations in p53 expression by knocking down p53 or overexpression of wild-type p53 or p53R273H. AML CD34+ cells were more sensitive to the autophagy inhibitor hydroxychloroquine (HCQ) than normal bone marrow CD34+ cells. Similar, inhibition of autophagy by knockdown of ATG5 or ATG7 triggered apoptosis, which coincided with increased expression of p53. In contrast to wild-type p53 AML (TP53wt), HCQ treatment did not trigger a BAX and PUMA-dependent apoptotic response in AMLs harboring TP53mut. To further characterize autophagy in the leukemic stem cell-enriched cell fraction AML CD34+ cells were separated into ROSlow and ROShigh subfractions. The immature AML CD34+-enriched ROSlow cells maintained higher basal autophagy and showed reduced survival upon HCQ treatment compared with ROShigh cells. Finally, knockdown of ATG5 inhibits in vivo maintenance of AML CD34+ cells in NSG mice. These results indicate that targeting autophagy might provide new therapeutic options for treatment of AML since it affects the immature AML subfraction. PMID:28703806
[The Expression of Pokemon in Endometrial Carcinoma Tissue and the Correlation with Mutant p53].
Yi, Tian-jin; Wang, Ping
2016-05-01
To detect the expression of Pokemon in endometrial carcinoma (EC), to provide preliminary theoretical basis for clarifying pathogenesis and searching for effective targets. Ninety-eight cases of endometrial tissue paraffin specimens form July 2012 to July 2014 in West China Second University Hospital, Sichuan University, were collected, including: EC group, consisting of adenocarcinoma 23 cases, adenosquamous 12 cases, serous 3 cases, mucinous 11 cases and clear cell 9 cases, and control group, consisting of atypical hyperplasia endometrium 20 cases and normal endometrium 20 cases (secretory 10 cases, hyperplasia 10 cases). Immunohistochemistry was used to detect the expression of Pokemonin each section, analyzing the correlation of Pokemon expression with clinicopathologic characteristics and p53 expression. The positive rate of Pokemon in normal endometrium was 25% (5/20), significantly lower than that in atypical hyperplasia endometrium (60.0%, 12/20) and EC (93.1%, 54/58) (P < 0.05); the rate in type II was 97. 12% (34/35), significantly higher than that in type I (86.96%, 20/23) (P = 0.018). The positive rate of Pokemon in III-IV stage, type II and Ki-67 ≥ 50 EC tissue was much higher (P = 0.012, 0.023, 0.029). In type II EC tissue, the correlation index between Pokemon and p53 is 0.669 (P = 0.000). The over expression of Pokemon upregulates the expression of mutant p53, which may be one of the carcinogenesis modes in type II EC.
Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD
Wu, Rui; Liang, Yingjian; Lin, Meihua; Liu, Jia; Chan, Chang S.; Hu, Wenwei; Feng, Zhaohui
2014-01-01
Cancer cells display enhanced glycolysis to meet their energetic and biosynthetic demands even under normal oxygen concentrations. Recent studies have revealed that tumor suppressor p53 represses glycolysis under normoxia as a novel mechanism for tumor suppression. As the common microenvironmental stress for tumors, hypoxia drives the metabolic switch from the oxidative phosphorylation to glycolysis, which is crucial for survival and proliferation of cancer cells under hypoxia. The p53's role and mechanism in regulating glycolysis under hypoxia is poorly understood. Here, we found that p53 represses hypoxia-stimulated glycolysis in cancer cells through RRAD, a newly-identified p53 target. RRAD expression is frequently decreased in lung cancer. Ectopic expression of RRAD greatly reduces glycolysis whereas knockdown of RRAD promotes glycolysis in lung cancer cells. Furthermore, RRAD represses glycolysis mainly through inhibition of GLUT1 translocation to the plasma membrane. Under hypoxic conditions, p53 induces RRAD, which in turn inhibits the translocation of GLUT1 and represses glycolysis in lung cancer cells. Blocking RRAD by siRNA greatly abolishes p53's function in repressing glycolysis under hypoxia. Taken together, our results revealed an important role and mechanism of p53 in antagonizing the stimulating effect of hypoxia on glycolysis, which contributes to p53's function in tumor suppression. PMID:25114038
Osteoblast differentiation and skeletal development are regulated by Mdm2–p53 signaling
Lengner, Christopher J.; Steinman, Heather A.; Gagnon, James; Smith, Thomas W.; Henderson, Janet E.; Kream, Barbara E.; Stein, Gary S.; Lian, Jane B.; Jones, Stephen N.
2006-01-01
Mdm2 is required to negatively regulate p53 activity at the peri-implantation stage of early mouse development. However, the absolute requirement for Mdm2 throughout embryogenesis and in organogenesis is unknown. To explore Mdm2–p53 signaling in osteogenesis, Mdm2-conditional mice were bred with Col3.6-Cre–transgenic mice that express Cre recombinase in osteoblast lineage cells. Mdm2-conditional Col3.6-Cre mice die at birth and display multiple skeletal defects. Osteoblast progenitor cells deleted for Mdm2 have elevated p53 activity, reduced proliferation, reduced levels of the master osteoblast transcriptional regulator Runx2, and reduced differentiation. In contrast, p53-null osteoprogenitor cells have increased proliferation, increased expression of Runx2, increased osteoblast maturation, and increased tumorigenic potential, as mice specifically deleted for p53 in osteoblasts develop osteosarcomas. These results demonstrate that p53 plays a critical role in bone organogenesis and homeostasis by negatively regulating bone development and growth and by suppressing bone neoplasia and that Mdm2-mediated inhibition of p53 function is a prerequisite for Runx2 activation, osteoblast differentiation, and proper skeletal formation. PMID:16533949
Eberhart, Charles G; Chaudhry, Aneeka; Daniel, Richard W; Khaki, Leila; Shah, Keerti V; Gravitt, Patti E
2005-01-01
Background p53 mutations are relatively uncommon in medulloblastoma, but abnormalities in this cell cycle pathway have been associated with anaplasia and worse clinical outcomes. We correlated p53 protein expression with pathological subtype and clinical outcome in 75 embryonal brain tumors. The presence of JC virus, which results in p53 protein accumulation, was also examined. Methods p53 protein levels were evaluated semi-quantitatively in 64 medulloblastomas, 3 atypical teratoid rhabdoid tumors (ATRT), and 8 supratentorial primitive neuroectodermal tumors (sPNET) using immunohistochemistry. JC viral sequences were analyzed in DNA extracted from 33 frozen medulloblastoma and PNET samples using quantitative polymerase chain reaction. Results p53 expression was detected in 18% of non-anaplastic medulloblastomas, 45% of anaplastic medulloblastomas, 67% of ATRT, and 88% of sPNET. The increased p53 immunoreactivity in anaplastic medulloblastoma, ATRT, and sPNET was statistically significant. Log rank analysis of clinical outcome revealed significantly shorter survival in patients with p53 immunopositive embryonal tumors. No JC virus was identified in the embryonal brain tumor samples, while an endogenous human retrovirus (ERV-3) was readily detected. Conclusion Immunoreactivity for p53 protein is more common in anaplastic medulloblastomas, ATRT and sPNET than in non-anaplastic tumors, and is associated with worse clinical outcomes. However, JC virus infection is not responsible for increased levels of p53 protein. PMID:15717928
Thangasamy, Thilakavathy; Sittadjody, Sivanandane; Limesand, Kirsten H; Burd, Randy
2008-01-01
Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr(+) cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 microM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 microM). Both pcDNA3 and Tyr(+) DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr(+) cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr(+) cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase.
Thangasamy, Thilakavathy; Sittadjody, Sivanandane; H. Limesand, Kirsten; Burd, Randy
2008-01-01
Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 μM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 μM). Both pcDNA3 and Tyr DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase. PMID:18791269
Vékony, H; Röser, K; Löning, T; Raaphorst, F M; Leemans, C R; Van der Waal, I; Bloemena, E
2008-12-01
Myoepithelial salivary gland tumours are uncommon and follow an unpredictable biological course. The aim was to examine their molecular background to acquire a better understanding of their clinical behaviour. Expression of protein (E2F1, p16(INK4a), p53, cyclin D1, Ki67 and Polycomb group proteins BMI-1, MEL-18 and EZH2) was investigated in 49 benign and 30 primary malignant myoepithelial tumours and five histologically benign recurrences by immunohistochemistry and the findings correlated with histopathological characteristics. Benign tumours showed a higher percentage of cells with expression of p16(INK4a) pathway members [p16(INK4a) and E2F1 (both P < 0.001), and cyclin D1, P = 0.002] compared with normal salivary gland. Furthermore, malignant tumours expressed p53 (P = 0.003) and EZH2 (P = 0.09) in a higher percentage. Recurrences displayed more p53 + tumour cells (P = 0.02) than benign primaries. Amongst the benign tumours, the clear cell type had the highest proliferation fraction (P = 0.05) and a higher percentage of EZH2 was detected in the plasmacytoid cell type (P = 0.002). This study is the first to demonstrate that deregulation of the p16(INK4a) senescence pathway is involved in the development of myoepithelial tumours. We propose that additional inactivation of p53 in malignant primaries and benign recurrences contributes to myoepithelial neoplastic transformation and aggressive tumour growth.
Yan, Bin; Yang, Xinping; Lee, Tin-Lap; Friedman, Jay; Tang, Jun; Van Waes, Carter; Chen, Zhong
2007-01-01
Background Differentially expressed gene profiles have previously been observed among pathologically defined cancers by microarray technologies, including head and neck squamous cell carcinomas (HNSCCs). However, the molecular expression signatures and transcriptional regulatory controls that underlie the heterogeneity in HNSCCs are not well defined. Results Genome-wide cDNA microarray profiling of ten HNSCC cell lines revealed novel gene expression signatures that distinguished cancer cell subsets associated with p53 status. Three major clusters of over-expressed genes (A to C) were defined through hierarchical clustering, Gene Ontology, and statistical modeling. The promoters of genes in these clusters exhibited different patterns and prevalence of transcription factor binding sites for p53, nuclear factor-κB (NF-κB), activator protein (AP)-1, signal transducer and activator of transcription (STAT)3 and early growth response (EGR)1, as compared with the frequency in vertebrate promoters. Cluster A genes involved in chromatin structure and function exhibited enrichment for p53 and decreased AP-1 binding sites, whereas clusters B and C, containing cytokine and antiapoptotic genes, exhibited a significant increase in prevalence of NF-κB binding sites. An increase in STAT3 and EGR1 binding sites was distributed among the over-expressed clusters. Novel regulatory modules containing p53 or NF-κB concomitant with other transcription factor binding motifs were identified, and experimental data supported the predicted transcriptional regulation and binding activity. Conclusion The transcription factors p53, NF-κB, and AP-1 may be important determinants of the heterogeneous pattern of gene expression, whereas STAT3 and EGR1 may broadly enhance gene expression in HNSCCs. Defining these novel gene signatures and regulatory mechanisms will be important for establishing new molecular classifications and subtyping, which in turn will promote development of targeted therapeutics for HNSCC. PMID:17498291
Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie
2015-11-18
Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.
Matondo, Ramadhan B; Toussaint, Mathilda Jm; Govaert, Klaas M; van Vuuren, Luciel D; Nantasanti, Sathidpak; Nijkamp, Maarten W; Pandit, Shusil K; Tooten, Peter Cj; Koster, Mirjam H; Holleman, Kaylee; Schot, Arend; Gu, Guoqiang; Spee, Bart; Roskams, Tania; Rinkes, Inne Borel; Schotanus, Baukje; Kranenburg, Onno; de Bruin, Alain
2016-08-23
The long term prognosis of liver cancer patients remains unsatisfactory because of cancer recurrence after surgical interventions, particularly in patients with viral infections. Since hepatitis B and C viral proteins lead to inactivation of the tumor suppressors p53 and Retinoblastoma (Rb), we hypothesize that surgery in the context of p53/Rb inactivation initiate de novo tumorigenesis.We, therefore, generated transgenic mice with hepatocyte and cholangiocyte/liver progenitor cell (LPC)-specific deletion of p53 and Rb, by interbreeding conditional p53/Rb knockout mice with either Albumin-cre or Cytokeratin-19-cre transgenic mice.We show that liver cancer develops at the necrotic injury site after surgical resection or radiofrequency ablation in p53/Rb deficient livers. Cancer initiation occurs as a result of specific migration, expansion and transformation of cytokeratin-19+-liver (CK-19+) cells. At the injury site migrating CK-19+ cells formed small bile ducts and adjacent cells strongly expressed the transforming growth factor β (TGFβ). Isolated cytokeratin-19+ cells deficient for p53/Rb were resistant against hypoxia and TGFβ-mediated growth inhibition. CK-19+ specific deletion of p53/Rb verified that carcinomas at the injury site originates from cholangiocytes or liver progenitor cells.These findings suggest that human liver patients with hepatitis B and C viral infection or with mutations for p53 and Rb are at high risk to develop tumors at the surgical intervention site.
Govaert, Klaas M; van Vuuren, Luciel D; Nantasanti, Sathidpak; Nijkamp, Maarten W; Pandit, Shusil K; Tooten, Peter CJ; Koster, Mirjam H; Holleman, Kaylee; Schot, Arend; Gu, Guoqiang; Spee, Bart; Roskams, Tania; Rinkes, Inne Borel; Schotanus, Baukje; Kranenburg, Onno; de Bruin, Alain
2016-01-01
The long term prognosis of liver cancer patients remains unsatisfactory because of cancer recurrence after surgical interventions, particularly in patients with viral infections. Since hepatitis B and C viral proteins lead to inactivation of the tumor suppressors p53 and Retinoblastoma (Rb), we hypothesize that surgery in the context of p53/Rb inactivation initiate de novo tumorigenesis. We, therefore, generated transgenic mice with hepatocyte and cholangiocyte/liver progenitor cell (LPC)-specific deletion of p53 and Rb, by interbreeding conditional p53/Rb knockout mice with either Albumin-cre or Cytokeratin-19-cre transgenic mice. We show that liver cancer develops at the necrotic injury site after surgical resection or radiofrequency ablation in p53/Rb deficient livers. Cancer initiation occurs as a result of specific migration, expansion and transformation of cytokeratin-19+-liver (CK-19+) cells. At the injury site migrating CK-19+ cells formed small bile ducts and adjacent cells strongly expressed the transforming growth factor β (TGFβ). Isolated cytokeratin-19+ cells deficient for p53/Rb were resistant against hypoxia and TGFβ-mediated growth inhibition. CK-19+ specific deletion of p53/Rb verified that carcinomas at the injury site originates from cholangiocytes or liver progenitor cells. These findings suggest that human liver patients with hepatitis B and C viral infection or with mutations for p53 and Rb are at high risk to develop tumors at the surgical intervention site. PMID:27323406
WWOX and p53 Dysregulation Synergize to Drive the Development of Osteosarcoma.
Del Mare, Sara; Husanie, Hussam; Iancu, Ortal; Abu-Odeh, Mohammad; Evangelou, Konstantinos; Lovat, Francesca; Volinia, Stefano; Gordon, Jonathan; Amir, Gail; Stein, Janet; Stein, Gary S; Croce, Carlo M; Gorgoulis, Vassilis; Lian, Jane B; Aqeilan, Rami I
2016-10-15
Osteosarcoma is a highly metastatic form of bone cancer in adolescents and young adults that is resistant to existing treatments. Development of an effective therapy has been hindered by very limited understanding of the mechanisms of osteosarcomagenesis. Here, we used genetically engineered mice to investigate the effects of deleting the tumor suppressor Wwox selectively in either osteoblast progenitors or mature osteoblasts. Mice with conditional deletion of Wwox in preosteoblasts (Wwox Δosx1 ) displayed a severe inhibition of osteogenesis accompanied by p53 upregulation, effects that were not observed in mice lacking Wwox in mature osteoblasts. Deletion of p53 in Wwox Δosx1 mice rescued the osteogenic defect. In addition, the Wwox;p53 Δosx1 double knockout mice developed poorly differentiated osteosarcomas that resemble human osteosarcoma in histology, location, metastatic behavior, and gene expression. Strikingly, the development of osteosarcomas in these mice was greatly accelerated compared with mice lacking p53 only. In contrast, combined WWOX and p53 inactivation in mature osteoblasts did not accelerate osteosarcomagenesis compared with p53 inactivation alone. These findings provide evidence that a WWOX-p53 network regulates normal bone formation and that disruption of this network in osteoprogenitors results in accelerated osteosarcoma. The Wwox;p53 Δosx1 double knockout establishes a new osteosarcoma model with significant advancement over existing models. Cancer Res; 76(20); 6107-17. ©2016 AACR. ©2016 American Association for Cancer Research.
Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence.
Jiang, Peng; Du, Wenjing; Mancuso, Anthony; Wellen, Kathryn E; Yang, Xiaolu
2013-01-31
Cellular senescence both protects multicellular organisms from cancer and contributes to their ageing. The pre-eminent tumour suppressor p53 has an important role in the induction and maintenance of senescence, but how it carries out this function remains poorly understood. In addition, although increasing evidence supports the idea that metabolic changes underlie many cell-fate decisions and p53-mediated tumour suppression, few connections between metabolic enzymes and senescence have been established. Here we describe a new mechanism by which p53 links these functions. We show that p53 represses the expression of the tricarboxylic-acid-cycle-associated malic enzymes ME1 and ME2 in human and mouse cells. Both malic enzymes are important for NADPH production, lipogenesis and glutamine metabolism, but ME2 has a more profound effect. Through the inhibition of malic enzymes, p53 regulates cell metabolism and proliferation. Downregulation of ME1 and ME2 reciprocally activates p53 through distinct MDM2- and AMP-activated protein kinase-mediated mechanisms in a feed-forward manner, bolstering this pathway and enhancing p53 activation. Downregulation of ME1 and ME2 also modulates the outcome of p53 activation, leading to strong induction of senescence, but not apoptosis, whereas enforced expression of either malic enzyme suppresses senescence. Our findings define physiological functions of malic enzymes, demonstrate a positive-feedback mechanism that sustains p53 activation, and reveal a connection between metabolism and senescence mediated by p53.
Effect of cell phone-like electromagnetic radiation on primary human thyroid cells.
Silva, Veronica; Hilly, Ohad; Strenov, Yulia; Tzabari, Cochava; Hauptman, Yirmi; Feinmesser, Raphael
2016-01-01
To evaluate the potential carcinogenic effects of radiofrequency energy (RFE) emitted by cell phones on human thyroid primary cells. Primary thyroid cell culture was prepared from normal thyroid tissue obtained from patients who underwent surgery at our department. Subconfluent thyroid cells were irradiated under different conditions inside a cell incubator using a device that simulates cell phone-RFE. Proliferation of control and irradiated cells was assessed by the immunohistochemical staining of antigen Kiel clone-67 (Ki-67) and tumor suppressor p53 (p53) expression. DNA ploidy and the stress biomarkers heat shock protein 70 (HSP70) and reactive oxygen species (ROS) was evaluated by fluorescence-activated cell sorting (FACS). Our cells highly expressed thyroglobulin (Tg) and sodium-iodide symporter (NIS) confirming the origin of the tissue. None of the irradiation conditions evaluated here had an effect neither on the proliferation marker Ki-67 nor on p53 expression. DNA ploidy was also not affected by RFE, as well as the expression of the biomarkers HSP70 and ROS. Our conditions of RFE exposure seem to have no potential carcinogenic effect on human thyroid cells. Moreover, common biomarkers usually associated to environmental stress also remained unchanged. We failed to find an association between cell phone-RFE and thyroid cancer. Additional studies are recommended.
Distinct downstream targets manifest p53-dependent pathologies in mice.
Pant, V; Xiong, S; Chau, G; Tsai, K; Shetty, G; Lozano, G
2016-11-03
Mdm2, the principal negative regulator of p53, is critical for survival, a fact clearly demonstrated by the p53-dependent death of germline or conditional mice following deletion of Mdm2. On the other hand, Mdm2 hypomorphic (Mdm2 Puro/Δ7-12 ) or heterozygous (Mdm2 +/- ) mice that express either 30 or 50% of normal Mdm2 levels, respectively, are viable but present distinct phenotypes because of increased p53 activity. Mdm2 levels are also transcriptionally regulated by p53. We evaluated the significance of this reciprocal relationship in a new hypomorphic mouse model inheriting an aberrant Mdm2 allele with insertion of the neomycin cassette and deletion of 184-bp sequence in intron 3. These mice also carry mutations in the Mdm2 P2-promoter and thus express suboptimal levels of Mdm2 entirely encoded from the P1-promoter. Resulting mice exhibit abnormalities in skin pigmentation and reproductive tissue architecture, and are subfertile. Notably, all these phenotypes are rescued on a p53-null background. Furthermore, these phenotypes depend on distinct p53 downstream activities as genetic ablation of the pro-apoptotic gene Puma reverts the reproductive abnormalities but not skin hyperpigmentation, whereas deletion of cell cycle arrest gene p21 does not rescue either phenotype. Moreover, p53-mediated upregulation of Kitl influences skin pigmentation. Altogether, these data emphasize tissue-specific p53 activities that regulate cell fate.
40 Years of Research Put p53 in Translation
Marcel, Virginie; Nguyen Van Long, Flora; Diaz, Jean-Jacques
2018-01-01
Since its discovery in 1979, p53 has shown multiple facets. Initially the tumor suppressor p53 protein was considered as a stress sensor able to maintain the genome integrity by regulating transcription of genes involved in cell cycle arrest, apoptosis and DNA repair. However, it rapidly came into light that p53 regulates gene expression to control a wider range of biological processes allowing rapid cell adaptation to environmental context. Among them, those related to cancer have been extensively documented. In addition to its role as transcription factor, scattered studies reported that p53 regulates miRNA processing, modulates protein activity by direct interaction or exhibits RNA-binding activity, thus suggesting a role of p53 in regulating several layers of gene expression not restricted to transcription. After 40 years of research, it appears more and more clearly that p53 is strongly implicated in translational regulation as well as in the control of the production and activity of the translational machinery. Translation control of specific mRNAs could provide yet unsuspected capabilities to this well-known guardian of the genome.
p53 in pure epithelioid PEComa: an immunohistochemistry study and gene mutation analysis.
Bing, Zhanyong; Yao, Yuan; Pasha, Theresa; Tomaszewski, John E; Zhang, Paul J
2012-04-01
Pure epithelioid PEComa (PEP; so-called epithelioid angiomyolipoma) is rare and is more often associated with aggressive behaviors. The pathogenesis of PEP has been poorly understood. The authors studied p53 expression and gene mutation in PEPs by immunohistochemistry, single-strand conformation polymorphism, and direct sequencing in paraffin material from 8 PEPs. A group of classic angiomyolipomas (AMLs) were also analyzed for comparison. Five PEPs were from kidneys and 1 each from the heart, the liver, and the uterus. PEPs showed much stronger p53 nuclear staining (Allred score 6.4 ± 2.5) than the classic AML (2.3 ± 2.9) (P < .01). There was no p53 single-strand conformation polymorphism identified in either the PEPs or the 8 classic AMLs. p53 mutation analyses by direct sequencing of exons 5 to 9 showed 4 mutations in 3 of 8 PEPs but none in any of the 8 classic AMLs. The mutations included 2 missense mutations in a hepatic PEComa and 2 silent mutations in 2 renal PEPs. Both the missense mutations in the hepatic PEComa involved the exon 5, one involving codon 165, with change from CAG to CAC (coding amino acid changed from glutamine to histidine), and the other involving codon 182, with change from TGC to TAC (coding amino acid changed from cysteine to tyrosine). The finding of stronger p53 expression and mutations in epithelioid angiomyolipomas might have contributed to their less predictable behavior. However, the abnormal p53 expression cannot be entirely explained by p53 mutations in the exons examined in the PEPs.
Cheng, Chang-Hong; Yang, Fang-Fang; Liao, Shao-An; Miao, Yu-Tao; Ye, Chao-Xia; Wang, An-Li; Tan, Jia-Wen; Chen, Xiao-Yan
2015-10-01
Water temperature is an important environmental factor in aquaculture farming that affects the survival and growth of organisms. The change in culture water temperature may not only modify various chemical and biological processes but also affect the status of fish populations. In previous studies, high temperature induced apoptosis and oxidative stress. However, the precise mechanism and the pathways that are activated in fish are still unclear. In the present study, we investigated the effects of high temperature (34°C) on the induction of apoptosis and oxidative stress in pufferfish (Takifugu obscurus) blood cells. The data showed that high temperature exposure increased oxygen species (ROS), cytoplasmic free-Ca(2+) concentration and cell apoptosis. To test the apoptotic pathway, the expression pattern of some key apoptotic related genes including P53, Bax, caspase 9 and caspase 3 were examined. The results showed that acute high temperature stress induced up-regulation of these genes, suggesting that the p53-Bax pathway and the caspase-dependent apoptotic pathway could be involved in apoptosis induced by high temperature stress. Furthermore, the gene expression of antioxidant enzymes (Cu/Zn-SOD, Mn-SOD, CAT, GPx, and GR) and heat shock proteins (HSP90 and HSP70) in the blood cells were induced by high temperature stress. Taken together, our results showed that high temperature-induced oxidative stress may cause pufferfish blood cells apoptosis, and cooperatively activated p53-Bax and caspase-dependent apoptotic pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kaminagakura, E; Bonan, P R F; Lopes, M A; Almeida, O P
2006-09-01
Paracoccidioidomycosis (PCMycosis) is a systemic mycosis frequently found in many regions of Latin America. Microscopically, it is characterised by granulomatous inflammation and pseudoepitheliomatous hyperplasia (PEH). This work describes the proliferation index and p53 expression by immunohistochemistry in PEH of PCMycosis, normal oral mucosa (NOM) and mild oral epithelial dysplasia (ED). Ki67 positive cells were present in the basal and parabasal layers in NOM and PEH, while in ED it was also observed in the spinous layer. Percentage of ki67 positive cells was 7.7, 28.2 and 46.0 in NOM, PEH and ED respectively. p53 was negative in NOM and in PEH it was expressed by few cells in the basal layer of only three cases. However, it was expressed in all cases of ED, in basal and parabasal layers. Although histologically PEH mimics well-differentiated squamous cell carcinoma, its proliferative pattern and p53 expression are more similar to NOM than to dysplasia. These findings, confirm PEH as a reactive process probably associated with the underlying chronic inflammation.
Nuñez-Hernandez, Dahlia M; Felix-Portillo, Monserrath; Peregrino-Uriarte, Alma B; Yepiz-Plascencia, Gloria
2018-01-01
Although hypoxic aquatic environments cause negative effects on shrimp, these animals can withstand somewhat hypoxia, but the cellular mechanisms underlying this capacity are still poorly understood. In humans, mild hypoxia causes the induction of many proteins to allow cell survival. In contrast, apoptosis is induced during severe hypoxia leading to cell death. p53 is a key transcription factor that determines cells fate towards cell cycle arrest or induction of apoptosis in humans. The aim of this work was to study the role of p53 in cell cycle regulation and apoptosis in response to hypoxia in hepatopancreas of the white shrimp Litopenaeus vannamei. p53 was silenced by RNAi and afterwards the shrimp were exposed to hypoxia. Cdk-2 was used as indicator of cell cycle progression while caspase-3 expression and caspase activity were analyzed as indicators of apoptosis. p53 levels in hepatopancreas were significantly higher at 48 h after hypoxic treatment. Increased expression levels of Cdk-2 were found in p53-silenced shrimp after 24 and 48 h in the normoxic treatments as well as 48 h after hypoxia, indicating a possible role of p53 in cell cycle regulation. In response to hypoxia, unsilenced shrimp showed an increase in caspase-3 expression levels, however an increase was also observed in caspase activity at 24 h of normoxic conditions in p53-silenced shrimps. Taken together these results indicate the involvement of p53 in regulation of cell cycle and apoptosis in the white shrimp in response to hypoxia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kanagasabai, Ragu; Krishnamurthy, Karthikeyan; Druhan, Lawrence J.; Ilangovan, Govindasamy
2011-01-01
Mutant p53 accumulation has been shown to induce the multidrug resistance gene (MDR1) and ATP binding cassette (ABC)-based drug efflux in human breast cancer cells. In the present work, we have found that transcriptional activation of the oxidative stress-responsive heat shock factor 1 (HSF-1) and expression of heat shock proteins, including Hsp27, which is normally known to augment proteasomal p53 degradation, are inhibited in Adriamycin (doxorubicin)-resistant MCF-7 cells (MCF-7/adr). Such an endogenous inhibition of HSF-1 and Hsp27 in turn results in p53 mutation with gain of function in its transcriptional activity and accumulation in MCF-7/adr. Also, lack of HSF-1 enhances nuclear factor κB (NF-κB) DNA binding activity together with mutant p53 and induces MDR1 gene and P-glycoprotein (P-gp, ABCB1), resulting in a multidrug-resistant phenotype. Ectopic expression of Hsp27, however, significantly depleted both mutant p53 and NF-κB (p65), reversed the drug resistance by inhibiting MDR1/P-gp expression in MCF-7/adr cells, and induced cell death by increased G2/M population and apoptosis. We conclude from these results that HSF-1 inhibition and depletion of Hsp27 is a trigger, at least in part, for the accumulation of transcriptionally active mutant p53, which can either directly or NF-κB-dependently induce an MDR1/P-gp phenotype in MCF-7 cells. Upon Hsp27 overexpression, this pathway is abrogated, and the acquired multidrug resistance is significantly abolished so that MCF-7/adr cells are sensitized to Dox. Thus, clinical alteration in Hsp27 or NF-κB level will be a potential approach to circumvent drug resistance in breast cancer. PMID:21784846
Kanagasabai, Ragu; Krishnamurthy, Karthikeyan; Druhan, Lawrence J; Ilangovan, Govindasamy
2011-09-23
Mutant p53 accumulation has been shown to induce the multidrug resistance gene (MDR1) and ATP binding cassette (ABC)-based drug efflux in human breast cancer cells. In the present work, we have found that transcriptional activation of the oxidative stress-responsive heat shock factor 1 (HSF-1) and expression of heat shock proteins, including Hsp27, which is normally known to augment proteasomal p53 degradation, are inhibited in Adriamycin (doxorubicin)-resistant MCF-7 cells (MCF-7/adr). Such an endogenous inhibition of HSF-1 and Hsp27 in turn results in p53 mutation with gain of function in its transcriptional activity and accumulation in MCF-7/adr. Also, lack of HSF-1 enhances nuclear factor κB (NF-κB) DNA binding activity together with mutant p53 and induces MDR1 gene and P-glycoprotein (P-gp, ABCB1), resulting in a multidrug-resistant phenotype. Ectopic expression of Hsp27, however, significantly depleted both mutant p53 and NF-κB (p65), reversed the drug resistance by inhibiting MDR1/P-gp expression in MCF-7/adr cells, and induced cell death by increased G(2)/M population and apoptosis. We conclude from these results that HSF-1 inhibition and depletion of Hsp27 is a trigger, at least in part, for the accumulation of transcriptionally active mutant p53, which can either directly or NF-κB-dependently induce an MDR1/P-gp phenotype in MCF-7 cells. Upon Hsp27 overexpression, this pathway is abrogated, and the acquired multidrug resistance is significantly abolished so that MCF-7/adr cells are sensitized to Dox. Thus, clinical alteration in Hsp27 or NF-κB level will be a potential approach to circumvent drug resistance in breast cancer.
Guha, Gunjan; Liang, Xiaobo; Kulesz-Martin, Molly F.; Mahmud, Taifo; Indra, Arup Kumar; Ganguli-Indra, Gitali
2015-01-01
Pactamycin, although putatively touted as a potent antitumor agent, has never been used as an anticancer drug due to its high cytotoxicity. In this study, we characterized the effects of two novel biosynthetically engineered analogs of pactamycin, de-6MSA-7-demethyl-7-deoxypactamycin (TM-025) and 7-demethyl-7-deoxypactamycin (TM-026), in head and neck squamous cell carcinoma (HNSCC) cell lines SCC25 and SCC104. Both TM-025 and TM-026 exert growth inhibitory effects on HNSCC cells by inhibiting cell proliferation. Interestingly, unlike their parent compound pactamycin, the analogs do not inhibit synthesis of nascent protein in a cell-based assay. Furthermore, they do not induce apoptosis or autophagy in a dose- or a time-dependent manner, but induce mild senescence in the tested cell lines. Cell cycle analysis demonstrated that both analogs significantly induce cell cycle arrest of the HNSCC cells at S-phase resulting in reduced accumulation of G2/M-phase cells. The pactamycin analogs induce expression of cell cycle regulatory proteins including master regulator p53, its downstream target p21Cip1/WAF1, p27kip21, p19, cyclin E, total and phospho Cdc2 (Tyr15) and Cdc25C. Besides, the analogs mildly reduce cyclin D1 expression without affecting expression of cyclin B, Cdk2 and Cdk4. Specific inhibition of p53 by pifithrin-α reduces the percentage of cells accumulated in S-phase, suggesting contribution of p53 to S-phase increase. Altogether, our results demonstrate that Pactamycin analogs TM-025 and TM-026 induce senescence and inhibit proliferation of HNSCC cells via accumulation in S-phase through possible contribution of p53. The two PCT analogs can be widely used as research tools for cell cycle inhibition studies in proliferating cancer cells with specific mechanisms of action. PMID:25938491
Knappskog, Stian; Chrisanthar, Ranjan; Løkkevik, Erik; Anker, Gun; Østenstad, Bjørn; Lundgren, Steinar; Risberg, Terje; Mjaaland, Ingvil; Leirvaag, Beryl; Miletic, Hrvoje; Lønning, Per E
2012-03-15
Mutations affecting p53 or its upstream activator Chk2 are associated with resistance to DNA-damaging chemotherapy in breast cancer. ATM (Ataxia Telangiectasia Mutated protein) is the key activator of p53 and Chk2 in response to genotoxic stress. Here, we sought to evaluate ATM's potential role in resistance to chemotherapy. We sequenced ATM and assessed gene expression levels in pre-treatment biopsies from 71 locally advanced breast cancers treated in the neoadjuvant setting with doxorubicin monotherapy or mitomycin combined with 5-fluorouracil. Findings were confirmed in a separate patient cohort treated with epirubicin monotherapy. Each tumor was previously analyzed for CHEK2 and TP53 mutation status. While ATM mutations were not associated with chemo-resistance, low ATM expression levels predicted chemo-resistance among patients with tumors wild-type for TP53 and CHEK2 (P = 0.028). Analyzing the ATM-chk2-p53 cascade, low ATM levels (defined as the lower 5 to 50% percentiles) or mutations inactivating TP53 or CHEK2 robustly predicted anthracycline resistance (P-values varying between 0.001 and 0.027 depending on the percentile used to define "low" ATM levels). These results were confirmed in an independent cohort of 109 patients treated with epirubicin monotherapy. In contrast, ATM-levels were not suppressed in resistant tumors harboring TP53 or CHEK2 mutations (P > 0.5). Our data indicate loss of function of the ATM-Chk2-p53 cascade to be strongly associated with resistance to anthracycline/mitomycin-containing chemotherapy in breast cancer.
Zhao, Yi; Yao, Yun-hong; Li, Li; An, Wei-fang; Chen, Hong-zen; Sun, Li-ping; Kang, Hai-xian; Wang, Sen; Hu, Xin-rong
2014-12-01
Pokemon has been showed to directly suppress p14(ARF) expression and also to overexpress in multiple cancers. However, p14(ARF)-MDM2-p53 pathway is usually aberrant in colorectal cancer (CRC). The aim is to confirm whether Pokemon plays a role in CRC and explore whether Pokemon works through p14(ARF)-MDM2-p53 pathway in CRC. Immunohistochemistry for Pokemon, p14(ARF) and Mtp53 protein was applied to 45 colorectal epitheliums (CREs), 42 colorectal adenomas (CRAs) and 66 CRCs. Pokemon was knocked down with RNAi technique in CRC cell line Lovo to detect mRNA expression of p14(ARF) with qRT-PCR, cell proliferation with CCK8 assay, and cell cycle and apoptosis with flowcytometry analysis. The protein expression rates were significantly higher in CRC (75.8%) than in CRE (22.2 %) or CRA (38.1%) for Pokemon and higher in CRC (53.0%) than in CRE (0) or CRA (4.8%) for Mtp53, but not significantly different in CRC (86.4 %) versus CRE (93.3%) or CRA (90.5 %) for p14(ARF). Higher expression rate of Pokemon was associated with lymph node metastasis and higher Duke's stage. After knockdown of Pokemon in Lovo cells, the mRNA level of p14(ARF) was not significantly changed, the cell proliferation ability was decreased by 20.6%, cell cycle was arrested by 55.7% in G0/G1 phase, and apoptosis rate was increased by 19.0%. Pokemon enhanced the oncogenesis of CRC by promoting proliferation, cell cycle progression and anti-apoptosis activity of CRC cells independently of p14(ARF)-MDM2-p53 pathway. This finding provided a novel idea for understanding and further studying the molecular mechanism of Pokemon on carcinogenesis of CRC.
Adikesavan, Anbu Karani; Karmakar, Sudipan; Pardo, Patricia; Wang, Liguo; Liu, Shuang; Li, Wei
2014-01-01
The silencing mediator of retinoic acid and thyroid hormone receptors (SMRT) is an established histone deacetylase 3 (HDAC3)-dependent transcriptional corepressor. Microarray analyses of MCF-7 cells transfected with control or SMRT small interfering RNA revealed SMRT regulation of genes involved in DNA damage responses, and the levels of the DNA damage marker γH2AX as well as poly(ADP-ribose) polymerase cleavage were elevated in SMRT-depleted cells treated with doxorubicin. A number of these genes are established p53 targets. SMRT knockdown decreased the activity of two p53-dependent reporter genes as well as the expression of p53 target genes, such as CDKN1A (which encodes p21). SMRT bound directly to p53 and was recruited to p53 binding sites within the p21 promoter. Depletion of GPS2 and TBL1, components of the SMRT corepressor complex, but not histone deacetylase 3 (HDAC3) decreased p21-luciferase activity. p53 bound to the SMRT deacetylase activation domain (DAD), which mediates HDAC3 binding and activation, and HDAC3 could attenuate p53 binding to the DAD region of SMRT. Moreover, an HDAC3 binding-deficient SMRT DAD mutant coactivated p53 transcriptional activity. Collectively, these data highlight a biological role for SMRT in mediating DNA damage responses and suggest a model where p53 binding to the DAD limits HDAC3 interaction with this coregulator, thereby facilitating SMRT coactivation of p53-dependent gene expression. PMID:24449765
p14 expression differences in ovarian benign, borderline and malignant epithelial tumors.
Cabral, Vinicius Duarte; Cerski, Marcelle Reesink; Sa Brito, Ivana Trindade; Kliemann, Lucia Maria
2016-10-22
Abnormalities in tumor suppressors p14, p16 and p53 are reported in several human cancers. In ovarian epithelial carcinogenesis, p16 and p53 show higher immunohistochemical staining frequencies in malignant tumors and are associated with poor prognoses. p14 was only analyzed in carcinomas, with conflicting results. There are no reports on its expression in benign and borderline tumors. This study aims to determine p14, p16 and p53 expression frequencies in ovarian benign, borderline and malignant tumors and their associations with clinical parameters. A cross-sectional study utilizing immunohistochemistry was performed on paraffin-embedded ovarian epithelial tumor samples. Clinical data were collected from medical records. Fisher's exact test and the Bonferroni correction were performed for frequency associations. Survival comparisons utilized Kaplan-Meier and log rank testing. Associations were considered significant when p < 0.05. p14 absent expression was associated with malignant tumors (60 % positive) (p = 0.000), while 93 % and 94 % of benign and borderline tumors, respectively, were positive. p16 was positive in 94.6 % of carcinomas, 75 % of borderline and 45.7 % of benign tumors (p = 0.000). p53 negative staining was associated with benign tumors (2.9 % positive) (p = 0.016) but no difference was observed between borderline (16.7 %) and malignant tumors (29.7 %) (p = 0.560). No associations were found between expression rates, disease-free survival times or clinical variables. Carcinoma subtypes showed no difference in expression. This is the first description of p14 expression in benign and borderline tumors. It remains stable in benign and borderline tumors, while carcinomas show a significant absence of staining. This may indicate that p14 abnormalities occur later in carcinogenesis. p16 and p53 frequencies increase from benign to borderline and malignant tumors, similarly to previous reports, possibly reflecting the accumulation of inactive mutant protein. The small sample size may have prevented statistically significant survival analyses and clinical correlations. Future studies should investigate genetic abnormalities in p14 coding sequences and include all types of ovarian epithelial tumors. Bigger sample sizes may be needed for significant associations.
Knight, Jennifer F.; Lesurf, Robert; Zhao, Hong; Pinnaduwage, Dushanthi; Davis, Ryan R.; Saleh, Sadiq M. I.; Zuo, Dongmei; Naujokas, Monica A.; Chughtai, Naila; Herschkowitz, Jason I.; Prat, Aleix; Mulligan, Anna Marie; Muller, William J.; Cardiff, Robert D.; Gregg, Jeff P.; Andrulis, Irene L.; Hallett, Michael T.; Park, Morag
2013-01-01
Triple-negative breast cancer (TNBC) accounts for ∼20% of cases and contributes to basal and claudin-low molecular subclasses of the disease. TNBCs have poor prognosis, display frequent mutations in tumor suppressor gene p53 (TP53), and lack targeted therapies. The MET receptor tyrosine kinase is elevated in TNBC and transgenic Met models (Metmt) develop basal-like tumors. To investigate collaborating events in the genesis of TNBC, we generated Metmt mice with conditional loss of murine p53 (Trp53) in mammary epithelia. Somatic Trp53 loss, in combination with Metmt, significantly increased tumor penetrance over Metmt or Trp53 loss alone. Unlike Metmt tumors, which are histologically diverse and enriched in a basal-like molecular signature, the majority of Metmt tumors with Trp53 loss displayed a spindloid pathology with a distinct molecular signature that resembles the human claudin-low subtype of TNBC, including diminished claudins, an epithelial-to-mesenchymal transition signature, and decreased expression of the microRNA-200 family. Moreover, although mammary specific loss of Trp53 promotes tumors with diverse pathologies, those with spindloid pathology and claudin-low signature display genomic Met amplification. In both models, MET activity is required for maintenance of the claudin-low morphological phenotype, in which MET inhibitors restore cell-cell junctions, rescue claudin 1 expression, and abrogate growth and dissemination of cells in vivo. Among human breast cancers, elevated levels of MET and stabilized TP53, indicative of mutation, correlate with highly proliferative TNBCs of poor outcome. This work shows synergy between MET and TP53 loss for claudin-low breast cancer, identifies a restricted claudin-low gene signature, and provides a rationale for anti-MET therapies in TNBC. PMID:23509284
E6/E7-P53-POU2F1-CTHRC1 axis promotes cervical cancer metastasis and activates Wnt/PCP pathway
Zhang, Rong; Lu, Huan; Lyu, Yuan-yuan; Yang, Xiao-mei; Zhu, Lin-yan; Yang, Guang-dong; Jiang, Peng-cheng; Re, Yuan; Song, Wei-wei; Wang, Jin-hao; Zhang, Can-can; Gu, Fei; Luo, Tian-jiao; Wu, Zhi-yong; Xu, Cong-jian
2017-01-01
Cervical cancer is an infectious cancer and the most common gynecologic cancer worldwide. E6/E7, the early genes of the high-risk mucosal human papillomavirus type, play key roles in the carcinogenic process of cervical cancer. However, little was known about its roles in modulating tumor microenvironment, particular extracellular matrix (ECM). In this study, we found that E6/E7 could regulate multiple ECM proteins, especially collagen triple helix repeat containing 1 (CTHRC1). CTHRC1 is highly expressed in cervical cancer tissue and serum and closely correlated with clinicopathological parameters. CTHRC1 promotes cervical cancer cell migration and invasion in vitro and metastasis in vivo. E6/E7 regulates the expression of CTHRC1 in cervical cancer by E6/E7-p53-POU2F1 (POU class 2 homeobox 1) axis. Futhermore, CTHRC1 activates Wnt/PCP signaling pathway. Take together, E6/E7-p53-POU2F1-CTHRC1 axis promotes cervical cancer cell invasion and metastasis and may act as a potential therapeutic target for interventions against cervical cancer invasion and metastasis. PMID:28303973
Tardif, Keith D; Rogers, Aaron; Cassiano, Jared; Roth, Bruce L; Cimbora, Daniel M; McKinnon, Rena; Peterson, Ashley; Douce, Thomas B; Robinson, Rosann; Dorweiler, Irene; Davis, Thaylon; Hess, Mark A; Ostanin, Kirill; Papac, Damon I; Baichwal, Vijay; McAlexander, Ian; Willardsen, J Adam; Saunders, Michael; Christophe, Hoarau; Kumar, D Vijay; Wettstein, Daniel A; Carlson, Robert O; Williams, Brandi L
2011-12-01
Mps1 is a dual specificity protein kinase that is essential for the bipolar attachment of chromosomes to the mitotic spindle and for maintaining the spindle assembly checkpoint until all chromosomes are properly attached. Mps1 is expressed at high levels during mitosis and is abundantly expressed in cancer cells. Disruption of Mps1 function induces aneuploidy and cell death. We report the identification of MPI-0479605, a potent and selective ATP competitive inhibitor of Mps1. Cells treated with MPI-0479605 undergo aberrant mitosis, resulting in aneuploidy and formation of micronuclei. In cells with wild-type p53, this promotes the induction of a postmitotic checkpoint characterized by the ATM- and RAD3-related-dependent activation of the p53-p21 pathway. In both wild-type and p53 mutant cells lines, there is a growth arrest and inhibition of DNA synthesis. Subsequently, cells undergo mitotic catastrophe and/or an apoptotic response. In xenograft models, MPI-0479605 inhibits tumor growth, suggesting that drugs targeting Mps1 may have utility as novel cancer therapeutics.
Myc, Aurora Kinase-A, and mutant p53R172H co-operate in a mouse model of metastatic skin carcinoma
Torchia, Enrique C.; Caulin, Carlos; Acin, Sergio; Terzian, Tamara; Kubick, Bradley J.; Box, Neil F.; Roop, Dennis R.
2015-01-01
Clinical observations, as well as data obtained from the analysis of genetically engineered mouse models, firmly established the gain-of-function (GOF) properties of certain p53 mutations. However, little is known about the underlying mechanisms. We have used two independent microarray platforms to perform a comprehensive and global analysis of tumors arising in a model of metastatic skin cancer progression, which compares the consequences of a GOF p53R172H mutant vs. p53 deficiency. DNA profiling revealed a higher level of genomic instability in GOF vs. loss-of-function (LOF) p53 squamous cell carcinomas (SCCs). Moreover, GOF p53 SCCs showed preferential amplification of Myc with a corresponding increase in its expression and deregulation of Aurora Kinase-A. Fluorescent in situ hybridization confirmed amplification of Myc in primary GOF p53 SCCs and its retention in metastatic tumors. We also identified by RNA profiling distinct gene expression profiles in GOF p53 tumors, which included enriched integrin and Rho signaling, independent of tumor stage. Thus, the progression of GOF p53 papillomas to carcinoma was marked by the acquisition of epithelial to mesenchymal transition and metastatic signatures. In contrast, LOF p53 tumors showed enrichment of genes associated with cancer proliferation and chromosomal instability. Collectively, these observations suggest that genomic instability plays a prominent role in the early stages of GOF p53 tumor progression (i.e., papillomas), while it is implicated at a later stage in LOF p53 tumors (i.e., SCCs). This model will allow us to identify specific targets in mutant p53 SCCs, which may lead to the development of new therapeutic agents for the treatment of metastatic SCCs. PMID:21963848
Differential programming of p53-deficient embryonic cells during rotenone block
Mitochondrial dysfunction has been implicated in chemical toxicities. The present study used an in vitro model to investigate the differential expression of metabolic pathways during cellular stress in p53- efficient embryonic fibroblasts compared to p53-deficient cells. These c...
Bublik, Débora R.; Bursać, Slađana; Sheffer, Michal; Oršolić, Ines; Shalit, Tali; Tarcic, Ohad; Kotler, Eran; Mouhadeb, Odelia; Hoffman, Yonit; Fuchs, Gilad; Levin, Yishai; Volarević, Siniša; Oren, Moshe
2017-01-01
The microRNA miR-504 targets TP53 mRNA encoding the p53 tumor suppressor. miR-504 resides within the fibroblast growth factor 13 (FGF13) gene, which is overexpressed in various cancers. We report that the FGF13 locus, comprising FGF13 and miR-504, is transcriptionally repressed by p53, defining an additional negative feedback loop in the p53 network. Furthermore, we show that FGF13 1A is a nucleolar protein that represses ribosomal RNA transcription and attenuates protein synthesis. Importantly, in cancer cells expressing high levels of FGF13, the depletion of FGF13 elicits increased proteostasis stress, associated with the accumulation of reactive oxygen species and apoptosis. Notably, stepwise neoplastic transformation is accompanied by a gradual increase in FGF13 expression and increased dependence on FGF13 for survival (“nononcogene addiction”). Moreover, FGF13 overexpression enables cells to cope more effectively with the stress elicited by oncogenic Ras protein. We propose that, in cells in which activated oncogenes drive excessive protein synthesis, FGF13 may favor survival by maintaining translation rates at a level compatible with the protein quality-control capacity of the cell. Thus, FGF13 may serve as an enabler, allowing cancer cells to evade proteostasis stress triggered by oncogene activation. PMID:27994142
Fahrer, Jörg; Schweitzer, Brigitte; Fiedler, Katja; Langer, Torben; Gierschik, Peter; Barth, Holger
2013-04-17
We have previously generated a recombinant C2-streptavidin fusion protein for the delivery of biotin-labeled molecules of low molecular weight into the cytosol of mammalian cells. A nontoxic moiety of Clostridium botulinum C2 toxin mediates the cellular uptake, whereas the streptavidin unit serves as a binding platform for biotin-labeled cargo molecules. In the present study, we used the C2-streptavidin transporter to introduce biotin-conjugated p53 protein into various mammalian cell lines. The p53 tumor suppressor protein is inactivated in many human cancers by multiple mechanisms and therefore the restoration of its activity in tumor cells is of great therapeutic interest. Recombinant p53 was expressed in insect cells and biotin-labeled. Biotin-p53 retained its specific high-affinity DNA-binding as revealed by gel-shift analysis. Successful conjugation of biotin-p53 to the C2-streptavidin transporter was monitored by an overlay blot technique and confirmed by real-time surface plasmon resonance, providing a KD-value in the low nM range. C2-streptavidin significantly enhanced the uptake of biotin-p53 into African Green Monkey (Vero) epithelial cells as shown by flow cytometry. Using cell fractionation, the cytosolic translocation of biotin-p53 was detected in Vero cells as well as in HeLa cervix carcinoma cells. In line with this finding, confocal microscopy displayed cytoplasmic staining of biotin-p53 in HeLa and HL60 leukemia cells. Internalized biotin-p53 partially colocalized with early endosomes, as confirmed by confocal microscopy. In conclusion, our results demonstrate the successful conjugation of biotin-p53 to C2-streptavidin and its subsequent receptor-mediated endocytosis into different human tumor cell lines.
Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage
Logan, Ian R.; McNeill, Hesta V.; Cook, Susan; Lu, Xiaohong; Meek, David W.; Fuller-Pace, Frances V.; Lunec, John; Robson, Craig N.
2009-01-01
Here we define an important role for heat shock factor 1 (HSF1) in the cellular response to genotoxic agents. We demonstrate for the first time that HSF1 can complex with nuclear p53 and that both proteins are co-operatively recruited to p53-responsive genes such as p21. Analysis of natural and synthetic cis elements demonstrates that HSF1 can enhance p53-mediated transcription, whilst depletion of HSF1 reduces the expression of p53-responsive transcripts. We find that HSF1 is required for optimal p21 expression and p53-mediated cell-cycle arrest in response to genotoxins while loss of HSF1 attenuates apoptosis in response to these agents. To explain these novel properties of HSF1 we show that HSF1 can complex with DNA damage kinases ATR and Chk1 to effect p53 phosphorylation in response to DNA damage. Our data reveal HSF1 as a key transcriptional regulator in response to genotoxic compounds widely used in the clinical setting, and suggest that HSF1 will contribute to the efficacy of these agents. PMID:19295133
Min, Kyoung-Jin; Nam, Ju-Ock; Kwon, Taeg Kyu
2017-08-02
Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.
Saf, Coskun; Gulcan, Enver Mahir; Ozkan, Ferda; Cobanoglu Saf, Seyhan Perihan; Vitrinel, Ayca
2015-02-01
Helicobacter pylori that is generally acquired in childhood and infects the gastric mucosa is considered to be responsible for many pathobiological changes that are linked to the pathogenesis of gastric cancer. Although the majority of studies on the subject have been carried out in adults, there are a limited number of studies on children that reflect the early period of infection and may be of greater significance. We aimed to determine the role of H. pylori infection and/or gastritis in several histopathological changes, p53, p21, and cell proliferation-associated Ki-67 antigen expression in the gastric mucosa. We studied 60 patients with a mean age of 7.5 ± 4.5 years at referral. On the basis of endoscopic appearance and the evaluation of the gastric antral specimens, the patients were divided into three groups: patients without gastritis, patients with H. pylori-positive gastritis, and patients with H. pylori-negative gastritis. To determine the expression of p53, Ki-67, and p21 in gastric biopsy specimens, immunohistochemical stains were performed. The incidence of neutrophil activity, which was one of our histopathologic parameters, was significantly higher in the H. pylori-positive gastritis group than the other two groups. The presence of lymphoid aggregate was more frequent in H. pylori ± gastritis groups than the nongastritis group. p53 expression was found to be significantly higher in the H. pylori-positive gastritis group than the nongastritis group. Ki-67 and p21 expressions were significantly more frequent in the H. pylori-positive gastritis group than the other two groups. When we evaluated the density of H. pylori, as the density of bacteria increases, we found that the expressions of p53, p21, and Ki-67 increased significantly. Expression of the studied precancerous markers in significant amounts indicates the importance of childhood H. pylori infection in the constitution of gastric cancer in adulthood.
p53 as the focus of gene therapy: past, present and future.
Valente, Joana Fa; Queiroz, Joao A; Sousa, Fani
2018-01-15
Several gene deviations can be responsible for triggering oncogenic processes. However, mutations in tumour suppressor genes are usually more associated to malignant diseases, being p53 one of the most affected and studied element. p53 is implicated in a number of known cellular functions, including DNA damage repair, cell cycle arrest in G1/S and G2/M and apoptosis, being an interesting target for cancer treatment. Considering these facts, the development of gene therapy approaches focused on p53 expression and regulation seems to be a promising strategy for cancer therapy. Several studies have shown that transfection of cancer cells with wild-type p53 expressing plasmids could directly drive cells into apoptosis and/or growth arrest, suggesting that a gene therapy approach for cancer treatment can be based on the re-establishment of the normal p53 expression levels and function. Up until now, several clinical research studies using viral and non-viral vectors delivering p53 genes, isolated or combined with other therapeutic agents, have been accomplished and there are already in the market therapies based on the use of this gene. This review summarizes the different methods used to deliver and/or target the p53 as well as the main results of therapeutic effect obtained with the different strategies applied. Finally, the ongoing approaches are described, also focusing the combinatorial therapeutics to show the increased therapeutic potential of combining gene therapy vectors with chemo or radiotherapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Dickinson, Douglas; Yu, Hongfang; Ohno, Seiji; Thomas, Cristina; DeRossi, Scott; Ma, Yat-Ho; Yates, Nicole; Hahn, Emily; Bisch, Frederick; Yamamoto, Tetsuya; Hsu, Stephen
2015-01-01
The submandibular salivary glands of non-obese diabetic (NOD) mice, a model for Sjogren’s syndrome and type-1 diabetes, show an elevated level of proliferating cell nuclear antigen (PCNA), a protein involved in cell proliferation and repair of DNA damage. We reported previously that epigallocatechin-3-gallate (EGCG), the most abundant green tea catechin, normalizes the PCNA level. PCNA’s activity can be regulated by the cyclin-dependent kinase inhibitor p21, which is also important for epithelial cell differentiation. In turn, expression of p21 and PCNA are partially regulated by Rb phosphorylation levels. EGCG was found to modulate p21 expression in epithelial cells, suggesting that EGCG-induced p21 could be associated with down-regulation of PCNA in vivo. The current study examined the protein levels of p21 and p53 (which can up-regulate p21) in NOD mice fed with either water or EGCG, and the effect of EGCG on p21 and p53 in cell line models with either normal or defective Rb. In NOD mice, the p21 level was low, and EGCG normalized it. In contrast to HSG cells with functional Rb, negligible expression of p21 in NS-SV-AC cells that lack Rb was not altered by EGCG treatment. Inhibition of p53 by siRNA demonstrated that p21 and p53 were induced independently in HSG cells by a physiological concentration range of EGCG, suggesting p53 could be an important but not conditional factor associated with p21 expression. In conclusion, PCNA and p21 levels are altered inversely in the NOD model for SS and in HSG cells, and warrant further study as candidate new markers for salivary dysfunction associated with xerostomia. Induction of p21 by EGCG could provide clinically useful normalization of salivary glands by promoting differentiation and reducing PCNA levels. PMID:24329914
Kuncová, Jitka; Urban, Michael; Mandys, Václav
2007-11-01
Alterations of CD44 glycoproteins have been shown to play an important role in progression of various malignancies, including urothelial cancer. We investigated expression patterns of CD44s and CD44v6 in transitional cell carcinoma (TCC) of the urinary bladder in relation to tumour grade, proliferative activity, and immunoreactivity for p53. The selected markers were detected immunohistochemically in 122 samples of TCC. We found a close relationship between CD44s and CD44v6 expression and tumour grade. The extension of positive staining for CD44s and CD44v6 towards the luminal surface was a predominant feature of differentiated carcinomas (grades 1 and 2), suggesting deranged maturation of cancer cells related to their neoplastic transformation. Heterogeneous expression of CD44s and CD44v6 predominated in poorly differentiated tumours (G3-4). However, areas of squamous differentiation within the high-grade tumours displayed strong immunoreactivity for both CD44s and CD44v6. The proliferative activity and p53 overexpression increased with the dedifferentiation of the tumour. The results of this study are discussed in relation to the significance of CD44 expression in TCC and to the explanation for controversial results reported in previous studies on the relationship between CD44 expression and the biological behaviour of urothelial cells.
Goldman, Stewart; Yamada, Tohru; Beattie, Craig W.; Bressler, Linda; Pacini, Michael; Pollack, Ian F.; Fisher, Paul Graham; Packer, Roger J.; Dunkel, Ira J.; Dhall, Girish; Wu, Shengjie; Onar, Arzu; Boyett, James M.; Fouladi, Maryam
2016-01-01
Background p53 is a promising target in human cancer. p28 is a cell-penetrating peptide that preferentially enters cancer cells and binds to both wild-type and mutant p53 protein, inhibiting COP1-mediated ubiquitination and proteasomal degradation. This results in increased levels of p53, which induces cell cycle arrest at G2/M. We conducted a phase I study to determine the maximum-tolerated dose (MTD) and describe the dose-limiting toxicities (DLTs) and pharmacokinetics (PKs) of p28 in children. Methods Children aged 3–21 years with recurrent or progressive central nervous system tumors were eligible. Intravenous p28 was administered 3 times weekly for 4 consecutive weeks of a 6-week cycle at 4.16 mg/kg/dose (the adult recommended phase II dose) using a rolling-6 study design. Expression status of p53 was characterized by immunohistochemistry, and serum PK parameters were established on the second dose. Results Of the 18 eligible patients enrolled in the study, 12 completed the DLT monitoring period and were evaluable for toxicity. p28 was well-tolerated; 7 participants received ≥2 courses, and the most common adverse event attributed to the drug was transient grade 1 infusion-related reaction. PK analysis revealed a profile similar to adults; however, an increased area under the curve was observed in pediatric patients. High p53 expression in tumor cell nuclei was observed in 6 of 12 available tissue samples. There were no objective responses; 2 participants remained stable on the study for >4 cycles. Conclusions This phase I study demonstrated that p28 is well-tolerated in children with recurrent CNS malignancies at the adult recommended phase II dose. PMID:27022131
ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.
Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya
2013-01-01
ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.
Tee, Y T; Wang, P H; Ko, J L; Chen, G D; Chang, H; Lin, L Y
2007-01-01
To assess the relation between expressions of human nonmetastatic clone 23 (nm23-H1) and p53 in cervical cancer, their relationships with lymph node metastasis, and further to examine their predictive of lymph node metastases. nm23-H1 and p53 expression profiles were visualized by immunohistochemistry in early-stage cervical cancer specimens. Immunoreactivities of nm23-H1 and p53 were disassociated. The independent variables related with lymph node metastases were grade of cancer cell differentiation (p < 0.029) and stromal invasion (p < 0.039). Sensitivity, specificity, positive and negative predictive values, and accuracy for lymph node metastasis were calculated to be 91.7%, 13.5%, 25.6%, 83.3%, and 32.7% for nm23-H1 and 66.7%, 51.4%, 30.8%, 82.6%, and 55.1% for p53. Nm23-H1 and p53 are disassociated and not good predictors of lymph node metastases in early-stage cervical cancer patients. However, stromal invasion and cell differentiation can predict lymph node metastasis.
1985-01-01
SEC53, a gene that is required for completion of assembly of proteins in the endoplasmic reticulum in yeast, has been cloned, sequenced, and the product localized by cell fractionation. Complementation of a sec53 mutation is achieved with unique plasmids from genomic or cDNA expression banks. These inserts contain the authentic gene, a cloned copy of which integrates at the sec53 locus. An open reading frame in the insert predicts a 29-kD protein with no significant hydrophobic character. This prediction is confirmed by detection of a 28-kD protein overproduced in cells that carry SEC53 on a multicopy plasmid. To follow Sec53p more directly, a LacZ-SEC53 gene fusion has been constructed which allows the isolation of a hybrid protein for use in production of antibody. With such an antibody, quantitative immune decoration has shown that the sec53-6 mutation decreases the level of Sec53p at 37 degrees C, while levels comparable to wild-type are seen at 24 degrees C. An eightfold overproduction of Sec53p accompanies transformation of cells with a multicopy plasmid containing SEC53. Cell fractionation, performed with conditions that preserve the lumenal content of the endoplasmic reticulum (ER), shows Sec53p highly enriched in the cytosol fraction. We suggest that Sec53p acts indirectly to facilitate assembly in the ER, possibly by interacting with a stable ER component, or by providing a small molecule, other than an oligosaccharide precursor, necessary for the assembly event. PMID:3905826
Yildirim, Müjdat; Müller von der Grün, Jens; Winkelmann, Ria; Fokas, Emmanouil; Rödel, Franz; Ackermann, Hanns; Rödel, Claus; Balermpas, Panagiotis
2017-04-01
Cervical cancer of unknown primary (CUP) represents an uncommon and heterogeneous subentity of head and neck cancer. However, both optimal diagnostics and therapy remain unclear. An improved understanding of the underlying pathology is essential to enable future tailored therapies and optimized outcomes. We retrospectively analyzed 53 patients with head and neck CUP and 48 available cervical lymph node specimens. All patients have received radiotherapy between 2007 and 2015. Preradiotherapy involved lymph node specimens were analyzed for p16 and p53 immunoreactivity. The prognostic relevance of the combined p16 and p53 status and other clinical parameters were examined by univariate and multivariate analyses. Median patient age was 61.5 years and median irradiation dose to the involved nodal levels was 66 Gy. Of the 48 evaluated specimens, 13 (27%) were p16-positive and 31 (64.6%) p53-positive. After a median follow up of 32.9 months, patients with p16-negative and simultaneously p53-positive tumors showed a significantly inferior tumor-specific survival (TSS) compared to those with either p16+/p53-, p16+/p53+, or p16-/p53- (univariate: p = 0.055, multivariate: p = 0.038). Other factors with an adverse impact on TSS in the univariate analysis were smoking history (p = 0.032) and nodal stage (p = 0.038). The combined p16- and p53-expression status in cervical metastases of CUP may represent a simple method for risk stratification. Further validation of these biomarkers in large prospective trials is essential to design rational trials for CUP treatment optimization.