Bowman, D; Harte, T L; Chardonnet, V; De Groot, C; Denny, S J; Le Goc, G; Anderson, M; Ireland, P; Cassettari, D; Bruce, G D
2017-05-15
We demonstrate simultaneous control of both the phase and amplitude of light using a conjugate gradient minimisation-based hologram calculation technique and a single phase-only spatial light modulator (SLM). A cost function, which incorporates the inner product of the light field with a chosen target field within a defined measure region, is efficiently minimised to create high fidelity patterns in the Fourier plane of the SLM. A fidelity of F = 0.999997 is achieved for a pattern resembling an LG10 mode with a calculated light-usage efficiency of 41.5%. Possible applications of our method in optical trapping and ultracold atoms are presented and we show uncorrected experimental realisation of our patterns with F = 0.97 and 7.8% light efficiency.
Patterns of communication in high-fidelity simulation.
Anderson, Judy K; Nelson, Kimberly
2015-01-01
High-fidelity simulation is commonplace in nursing education. However, critical thinking, decision making, and psychomotor skills scenarios are emphasized. Scenarios involving communication occur in interprofessional or intraprofessional settings. The importance of effective nurse-patient communication is reflected in statements from the American Nurses Association and Quality and Safety Education for Nurses, and in the graduate outcomes of most nursing programs. This qualitative study examined the patterns of communication observed in video recordings of a medical-surgical scenario with 71 senior students in a baccalaureate program. Thematic analysis revealed patterns of (a) focusing on tasks, (b) communicating-in-action, and (c) being therapeutic. Additional categories under the patterns included missing opportunities, viewing the "small picture," relying on informing, speaking in "medical tongues," offering choices…okay?, feeling uncomfortable, and using therapeutic techniques. The findings suggest the importance of using high-fidelity simulation to develop expertise in communication. In addition, the findings reinforce the recommendation to prioritize communication aspects of scenarios and debriefing for all simulations. Copyright 2015, SLACK Incorporated.
High-fidelity large area nano-patterning of silicon with femtosecond light sheet
NASA Astrophysics Data System (ADS)
Sidhu, Mehra S.; Munjal, Pooja; Singh, Kamal P.
2018-01-01
We employ a femtosecond light sheet generated by a cylindrical lens to rapidly produce high-fidelity nano-structures over large area on silicon surface. The Fourier analysis of electron microscopy images of the laser-induced surface structures reveals sharp peaks indicating good homogeneity. We observed an emergence of second-order spatial periodicity on increasing the scan speed. Our reliable approach may rapidly nano-pattern curved solid surfaces and tiny objects for diverse potential applications in optical devices, structural coloring, plasmonic substrates and in high-harmonic generation.
EUV via hole pattern fidelity enhancement through novel resist and post-litho plasma treatment
NASA Astrophysics Data System (ADS)
Yaegashi, Hidetami; Koike, Kyohei; Fonseca, Carlos; Yamashita, Fumiko; Kaushik, Kumar; Morikita, Shinya; Ito, Kiyohito; Yoshimura, Shota; Timoshkov, Vadim; Maslow, Mark; Jee, Tae Kwon; Reijnen, Liesbeth; Choi, Peter; Feng, Mu; Spence, Chris; Schoofs, Stijn
2018-03-01
Extreme UV(EUV) technology must be potential solution for sustainable scaling, and its adoption in high volume manufacturing(HVM) is getting realistic more and more. This technology has a wide capability to mitigate various technical problem in Multi-patterning (LELELE) for via hole patterning with 193-i. It induced local pattern fidelity error such like CDU, CER, Pattern placement error. Exactly, EUV must be desirable scaling-driving tool, however, specific technical issue, named RLS (Resolution-LER-Sensitivity) triangle, obvious remaining issue. In this work, we examined hole patterning sensitizing (Lower dose approach) utilizing hole patterning restoration technique named "CD-Healing" as post-Litho. treatment.
Oblique patterned etching of vertical silicon sidewalls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burckel, D. Bruce; Finnegan, Patrick S.; Henry, M. David
A method for patterning on vertical silicon surfaces in high aspect ratio silicontopography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.
Oblique patterned etching of vertical silicon sidewalls
NASA Astrophysics Data System (ADS)
Bruce Burckel, D.; Finnegan, Patrick S.; David Henry, M.; Resnick, Paul J.; Jarecki, Robert L.
2016-04-01
A method for patterning on vertical silicon surfaces in high aspect ratio silicon topography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.
Oblique patterned etching of vertical silicon sidewalls
Burckel, D. Bruce; Finnegan, Patrick S.; Henry, M. David; ...
2016-04-05
A method for patterning on vertical silicon surfaces in high aspect ratio silicontopography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.
Rådmark, Magnus; Zukowski, Marek; Bourennane, Mohamed
2009-10-09
Quantum multiphoton interferometry has now reached the six-photon stage. Thus far, the observed fidelities of entangled states never reached 2/3. We report a high fidelity (estimated at 88%) experiment in which six-qubit singlet correlations were observed. With such a high fidelity we are able to demonstrate the central property of these "singlet" correlations, their "rotational invariance," by performing a full set of measurements in three complementary polarization bases. The patterns are almost indistinguishable. The data reveal genuine six-photon entanglement. We also study several five-photon states, which result upon detection of one of the photons. Multiphoton singlet states survive some types of depolarization and are thus important in quantum communication schemes.
NASA Astrophysics Data System (ADS)
Mitra, Joydeep; Torres, Andres; Ma, Yuansheng; Pan, David Z.
2018-01-01
Directed self-assembly (DSA) has emerged as one of the most compelling next-generation patterning techniques for sub 7 nm via or contact layers. A key issue in enabling DSA as a mainstream patterning technique is the generation of grapho-epitaxy-based guiding pattern (GP) shapes to assemble the contact patterns on target with high fidelity and resolution. Current GP generation is mostly empirical, and limited to a very small number of via configurations. We propose the first model-based GP synthesis algorithm and methodology for on-target and robust DSA, on general via pattern configurations. The final postoptical proximity correction-printed GPs derived from our original synthesized GPs are resilient to process variations and continue to maintain the same DSA fidelity in terms of placement error and target shape.
Goodson, Jamie; Al-Azzawi, Haneen; Allain, Shannon Q.; Simon, Noah; Palasek, Stan; Miller, Daniel G.; Johnson, Winslow C.; Laird, Charles D.
2017-01-01
In storing and transmitting epigenetic information, organisms must balance the need to maintain information about past conditions with the capacity to respond to information in their current and future environments. Some of this information is encoded by DNA methylation, which can be transmitted with variable fidelity from parent to daughter strand. High fidelity confers strong pattern matching between the strands of individual DNA molecules and thus pattern stability over rounds of DNA replication; lower fidelity confers reduced pattern matching, and thus greater flexibility. Here, we present a new conceptual framework, Ratio of Concordance Preference (RCP), that uses double-stranded methylation data to quantify the flexibility and stability of the system that gave rise to a given set of patterns. We find that differentiated mammalian cells operate with high DNA methylation stability, consistent with earlier reports. Stem cells in culture and in embryos, in contrast, operate with reduced, albeit significant, methylation stability. We conclude that preference for concordant DNA methylation is a consistent mode of information transfer, and thus provides epigenetic stability across cell divisions, even in stem cells and those undergoing developmental transitions. Broader application of our RCP framework will permit comparison of epigenetic-information systems across cells, developmental stages, and organisms whose methylation machineries differ substantially or are not yet well understood. PMID:29107996
Visualizing Dynamic Bitcoin Transaction Patterns.
McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J
2016-06-01
This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network.
Visualizing Dynamic Bitcoin Transaction Patterns
McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J.
2016-01-01
Abstract This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network. PMID:27441715
Czaplewski, David A; Holt, Martin V; Ocola, Leonidas E
2013-08-02
We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.
Gallo, Carlos; Pantin, Hilda; Villamar, Juan; Prado, Guillermo; Tapia, Maria; Ogihara, Mitsunori; Cruden, Gracelyn; Brown, C Hendricks
2015-09-01
Careful fidelity monitoring and feedback are critical to implementing effective interventions. A wide range of procedures exist to assess fidelity; most are derived from observational assessments (Schoenwald and Garland, Psycholog Assess 25:146-156, 2013). However, these fidelity measures are resource intensive for research teams in efficacy/effectiveness trials, and are often unattainable or unmanageable for the host organization to rate when the program is implemented on a large scale. We present a first step towards automated processing of linguistic patterns in fidelity monitoring of a behavioral intervention using an innovative mixed methods approach to fidelity assessment that uses rule-based, computational linguistics to overcome major resource burdens. Data come from an effectiveness trial of the Familias Unidas intervention, an evidence-based, family-centered preventive intervention found to be efficacious in reducing conduct problems, substance use and HIV sexual risk behaviors among Hispanic youth. This computational approach focuses on "joining," which measures the quality of the working alliance of the facilitator with the family. Quantitative assessments of reliability are provided. Kappa scores between a human rater and a machine rater for the new method for measuring joining reached 0.83. Early findings suggest that this approach can reduce the high cost of fidelity measurement and the time delay between fidelity assessment and feedback to facilitators; it also has the potential for improving the quality of intervention fidelity ratings.
Gallo, Carlos; Pantin, Hilda; Villamar, Juan; Prado, Guillermo; Tapia, Maria; Ogihara, Mitsunori; Cruden, Gracelyn; Brown, C Hendricks
2014-01-01
Careful fidelity monitoring and feedback are critical to implementing effective interventions. A wide range of procedures exist to assess fidelity; most are derived from observational assessments (Schoenwald et al, 2013). However, these fidelity measures are resource intensive for research teams in efficacy/effectiveness trials, and are often unattainable or unmanageable for the host organization to rate when the program is implemented on a large scale. We present a first step towards automated processing of linguistic patterns in fidelity monitoring of a behavioral intervention using an innovative mixed methods approach to fidelity assessment that uses rule-based, computational linguistics to overcome major resource burdens. Data come from an effectiveness trial of the Familias Unidas intervention, an evidence-based, family-centered preventive intervention found to be efficacious in reducing conduct problems, substance use and HIV sexual risk behaviors among Hispanic youth. This computational approach focuses on “joining,” which measures the quality of the working alliance of the facilitator with the family. Quantitative assessments of reliability are provided. Kappa scores between a human rater and a machine rater for the new method for measuring joining reached .83. Early findings suggest that this approach can reduce the high cost of fidelity measurement and the time delay between fidelity assessment and feedback to facilitators; it also has the potential for improving the quality of intervention fidelity ratings. PMID:24500022
NASA Astrophysics Data System (ADS)
Xu, Wenjun; Tang, Chen; Zheng, Tingyue; Qiu, Yue
2018-07-01
Oriented partial differential equations (OPDEs) have been demonstrated to be a powerful tool for preserving the integrity of fringes while filtering electronic speckle pattern interferometry (ESPI) fringe patterns. However, the main drawback of OPDEs-based methods is that many iterations are often needed, which causes the change in the shape of fringes. Change in the shape of fringes will affect the accuracy of subsequent fringe analysis. In this paper, we focus on preserving the shape of fringes while filtering, suggested here for the first time. We propose a shape-preserving OPDE for ESPI fringe patterns denoising by introducing a new fidelity term to the previous second-order single oriented PDE (SOOPDE). In our proposed fidelity term, the evolution image is subtracted from the shrinkage result of original noisy image by shearlet transform. Our proposed shape-preserving OPDE is capable of eliminating noise effectively, keeping the integrity of fringes, and more importantly, preserving the shape of fringes. We test the proposed shape-preserving OPDE on three computer-simulated and three experimentally obtained ESPI fringe patterns with poor quality. Furthermore, we compare our model with three representative filtering methods, including the widely used SOOPDE, shearlet transform and coherence-enhancing diffusion (CED). We also compare our proposed fidelity term with the traditional fidelity term. Experimental results show that the proposed shape-preserving OPDE not only yields filtered images with visual quality on par with those by CED which is the state-of-the-art method for ESPI fringe patterns denoising, but also keeps the shape of ESPI fringe patterns.
Martinez, Aline S; Queiroz, Eduardo V; Bryson, Mitch; Byrne, Maria; Coleman, Ross A
2017-07-01
Understanding site fidelity is important in animal ecology, but evidence is lacking that this behaviour is due to an animal choosing a specific location. To discern site selection behaviour, it is necessary to consider the spatial distribution of habitats that animals can occupy within a landscape. Tracking animals and defining clear habitat boundaries, however, is often difficult. We use in situ habitat distribution data and animal movement simulations to investigate behavioural choice in site fidelity patterns. We resolved the difficulty of gathering data by working with intertidal rock pool systems, which are of manageable size and where boundaries are easy to define. Movements of the intertidal starfish Parvulastra exigua were quantified to test the hypotheses that (1) this species displays fidelity to a particular rock pool and that (2) rock pool fidelity is due to site selection behaviour. Observed patterns of individuals (n = 10 starfish) returning to a previously occupied rock pool (n = 5 pools per location) were tested against an expected null distribution generated through simulations of random movements within their natural patchy environment. Starfish exhibited site selection behaviour at only one location even though site fidelity was high (av. 7·4 starfish out of 10 found in test pools) in two of the three locations. The random chance of a starfish returning to a pool increased 67% for each metre further a rock pool was from the original pool, and 120% for each square metre increase in surface area of an original pool. The decision of returning to an original rock pool was influenced by food availability. When microalgal cover was >60%, there was a c. 50% chance of animals staying faithful to that pool. Our results show the importance to consider spatial distribution of habitats in understanding patterns of animal movement associated with animal choices and site fidelity. Returning to a particular place does not necessarily mean that an animal is homing; it may be the only place to go. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
McCormack, Jane; Baker, Elise; Masso, Sarah; Crowe, Kathryn; McLeod, Sharynne; Wren, Yvonne; Roulstone, Sue
2017-06-01
Implementation fidelity refers to the degree to which an intervention or programme adheres to its original design. This paper examines implementation fidelity in the Sound Start Study, a clustered randomised controlled trial of computer-assisted support for children with speech sound disorders (SSD). Sixty-three children with SSD in 19 early childhood centres received computer-assisted support (Phoneme Factory Sound Sorter [PFSS] - Australian version). Educators facilitated the delivery of PFSS targeting phonological error patterns identified by a speech-language pathologist. Implementation data were gathered via (1) the computer software, which recorded when and how much intervention was completed over 9 weeks; (2) educators' records of practice sessions; and (3) scoring of fidelity (intervention procedure, competence and quality of delivery) from videos of intervention sessions. Less than one-third of children received the prescribed number of days of intervention, while approximately one-half participated in the prescribed number of intervention plays. Computer data differed from educators' data for total number of days and plays in which children participated; the degree of match was lower as data became more specific. Fidelity to intervention procedures, competency and quality of delivery was high. Implementation fidelity may impact intervention outcomes and so needs to be measured in intervention research; however, the way in which it is measured may impact on data.
Malard, Lucie A.; McGuigan, Katrina
2016-01-01
The intertidal zone is a transitional environment that undergoes daily environmental fluctuations as tides rise and fall. Relatively few fish species are adapted to endure the physiological pressures of this environment. This study focused on Bathygobius cocosensis (Gobiidae), a common intertidal fish in New South Wales, Australia. We investigated whether shore height impacted site fidelity, survival probability, fish size, and morphological traits with respect to tidal height. Mark-recapture methods were used over a five month period to determine if individuals in high shore pools had greater site fidelity; fish in high tide pools were more than twice as likely to be recaptured in their original pool than fish from low tide pools. High pool individuals were, on average, smaller with larger eyes and longer snouts relative to their size as compared to low pool individuals. We discuss several mechanisms that could cause the observed pattern in morphological variation. Ultimately, this study suggests that within species behaviour and morphology differ by tidal position for an intertidal fish. PMID:27547568
Malard, Lucie A; McGuigan, Katrina; Riginos, Cynthia
2016-01-01
The intertidal zone is a transitional environment that undergoes daily environmental fluctuations as tides rise and fall. Relatively few fish species are adapted to endure the physiological pressures of this environment. This study focused on Bathygobius cocosensis (Gobiidae), a common intertidal fish in New South Wales, Australia. We investigated whether shore height impacted site fidelity, survival probability, fish size, and morphological traits with respect to tidal height. Mark-recapture methods were used over a five month period to determine if individuals in high shore pools had greater site fidelity; fish in high tide pools were more than twice as likely to be recaptured in their original pool than fish from low tide pools. High pool individuals were, on average, smaller with larger eyes and longer snouts relative to their size as compared to low pool individuals. We discuss several mechanisms that could cause the observed pattern in morphological variation. Ultimately, this study suggests that within species behaviour and morphology differ by tidal position for an intertidal fish.
A novel methodology for litho-to-etch pattern fidelity correction for SADP process
NASA Astrophysics Data System (ADS)
Chen, Shr-Jia; Chang, Yu-Cheng; Lin, Arthur; Chang, Yi-Shiang; Lin, Chia-Chi; Lai, Jun-Cheng
2017-03-01
For 2x nm node semiconductor devices and beyond, more aggressive resolution enhancement techniques (RETs) such as source-mask co-optimization (SMO), litho-etch-litho-etch (LELE) and self-aligned double patterning (SADP) are utilized for the low k1 factor lithography processes. In the SADP process, the pattern fidelity is extremely critical since a slight photoresist (PR) top-loss or profile roughness may impact the later core trim process, due to its sensitivity to environment. During the subsequent sidewall formation and core removal processes, the core trim profile weakness may worsen and induces serious defects that affect the final electrical performance. To predict PR top-loss, a rigorous lithography simulation can provide a reference to modify mask layouts; but it takes a much longer run time and is not capable of full-field mask data preparation. In this paper, we first brought out an algorithm which utilizes multi-intensity levels from conventional aerial image simulation to assess the physical profile through lithography to core trim etching steps. Subsequently, a novel correction method was utilized to improve the post-etch pattern fidelity without the litho. process window suffering. The results not only matched PR top-loss in rigorous lithography simulation, but also agreed with post-etch wafer data. Furthermore, this methodology can also be incorporated with OPC and post-OPC verification to improve core trim profile and final pattern fidelity at an early stage.
Movements of wintering surf scoters: Predator responses to different prey landscapes
Kirk, M.; Esler, Daniel N.; Iverson, S.A.; Boyd, W.S.
2008-01-01
The distribution of predators is widely recognized to be intimately linked to the distribution of their prey. Foraging theory suggests that predators will modify their behaviors, including movements, to optimize net energy intake when faced with variation in prey attributes or abundance. While many studies have documented changes in movement patterns of animals in response to temporal changes in food, very few have contrasted movements of a single predator species naturally occurring in dramatically different prey landscapes. We documented variation in the winter movements, foraging range size, site fidelity, and distribution patterns of a molluscivorous sea duck, the surf scoter (Melanitta perspicillata), in two areas of coastal British Columbia with very different shellfish prey features. Baynes Sound has extensive tidal flats with abundant clams, which are high-quality and temporally stable prey for scoters. Malaspina Inlet is a rocky fjord-like inlet where scoters consume mussels that are superabundant and easily accessible in some patches but are heavily depleted over the course of winter. We used radio telemetry to track surf scoter movements in both areas and found that in the clam habitats of Baynes Sound, surf scoters exhibited limited movement, small winter ranges, strong foraging site fidelity, and very consistent distribution patterns. By contrast, in mussel habitats in the Malaspina Inlet, surf scoters displayed more movement, larger ranges, little fidelity to specific foraging sites, and more variable distribution patterns. We conclude that features associated with the different prey types, particularly the higher depletion rates of mussels, strongly influenced seasonal space use patterns. These findings are consistent with foraging theory and confirm that predator behavior, specifically movements, is environmentally mediated. ?? 2008 Springer-Verlag.
NASA Technical Reports Server (NTRS)
Alexandrov, N. M.; Nielsen, E. J.; Lewis, R. M.; Anderson, W. K.
2000-01-01
First-order approximation and model management is a methodology for a systematic use of variable-fidelity models or approximations in optimization. The intent of model management is to attain convergence to high-fidelity solutions with minimal expense in high-fidelity computations. The savings in terms of computationally intensive evaluations depends on the ability of the available lower-fidelity model or a suite of models to predict the improvement trends for the high-fidelity problem, Variable-fidelity models can be represented by data-fitting approximations, variable-resolution models. variable-convergence models. or variable physical fidelity models. The present work considers the use of variable-fidelity physics models. We demonstrate the performance of model management on an aerodynamic optimization of a multi-element airfoil designed to operate in the transonic regime. Reynolds-averaged Navier-Stokes equations represent the high-fidelity model, while the Euler equations represent the low-fidelity model. An unstructured mesh-based analysis code FUN2D evaluates functions and sensitivity derivatives for both models. Model management for the present demonstration problem yields fivefold savings in terms of high-fidelity evaluations compared to optimization done with high-fidelity computations alone.
Robustness of high-fidelity Rydberg gates with single-site addressability
NASA Astrophysics Data System (ADS)
Goerz, Michael H.; Halperin, Eli J.; Aytac, Jon M.; Koch, Christiane P.; Whaley, K. Birgitta
2014-09-01
Controlled-phase (cphase) gates can be realized with trapped neutral atoms by making use of the Rydberg blockade. Achieving the ultrahigh fidelities required for quantum computation with such Rydberg gates, however, is compromised by experimental inaccuracies in pulse amplitudes and timings, as well as by stray fields that cause fluctuations of the Rydberg levels. We report here a comparative study of analytic and numerical pulse sequences for the Rydberg cphase gate that specifically examines the robustness of the gate fidelity with respect to such experimental perturbations. Analytical pulse sequences of both simultaneous and stimulated Raman adiabatic passage (STIRAP) are found to be at best moderately robust under these perturbations. In contrast, optimal control theory is seen to allow generation of numerical pulses that are inherently robust within a predefined tolerance window. The resulting numerical pulse shapes display simple modulation patterns and can be rationalized in terms of an interference between distinct two-photon Rydberg excitation pathways. Pulses of such low complexity should be experimentally feasible, allowing gate fidelities of order 99.90-99.99% to be achievable under realistic experimental conditions.
NASA Astrophysics Data System (ADS)
Loikith, Paul C.; Waliser, Duane E.; Lee, Huikyo; Neelin, J. David; Lintner, Benjamin R.; McGinnis, Seth; Mearns, Linda O.; Kim, Jinwon
2015-12-01
Large-scale meteorological patterns (LSMPs) associated with temperature extremes are evaluated in a suite of regional climate model (RCM) simulations contributing to the North American Regional Climate Change Assessment Program. LSMPs are characterized through composites of surface air temperature, sea level pressure, and 500 hPa geopotential height anomalies concurrent with extreme temperature days. Six of the seventeen RCM simulations are driven by boundary conditions from reanalysis while the other eleven are driven by one of four global climate models (GCMs). Four illustrative case studies are analyzed in detail. Model fidelity in LSMP spatial representation is high for cold winter extremes near Chicago. Winter warm extremes are captured by most RCMs in northern California, with some notable exceptions. Model fidelity is lower for cool summer days near Houston and extreme summer heat events in the Ohio Valley. Physical interpretation of these patterns and identification of well-simulated cases, such as for Chicago, boosts confidence in the ability of these models to simulate days in the tails of the temperature distribution. Results appear consistent with the expectation that the ability of an RCM to reproduce a realistically shaped frequency distribution for temperature, especially at the tails, is related to its fidelity in simulating LMSPs. Each ensemble member is ranked for its ability to reproduce LSMPs associated with observed warm and cold extremes, identifying systematically high performing RCMs and the GCMs that provide superior boundary forcing. The methodology developed here provides a framework for identifying regions where further process-based evaluation would improve the understanding of simulation error and help guide future model improvement and downscaling efforts.
Pattern fidelity in nanoimprinted films using CD-SAXS
NASA Astrophysics Data System (ADS)
Jones, Ronald L.; Soles, Christopher L.; Lin, Eric K.; Hu, Walter; Reano, Ronald M.; Pang, Stella W.; Weigand, Steven J.; Keane, Denis T.; Quintana, John P.
2005-05-01
The primary measure of process quality in nanoimprint lithography (NIL) is the fidelity of pattern transfer, comparing the dimensions of the imprinted pattern to those of the mold. As a potential next generation lithography, NIL is capable of true nanofabrication, producing patterns of sub-10 nm dimensions. Routine production of nanoscale patterns will require new metrologies capable of non-destructive dimensional measurements of both the mold and the pattern with sub-nm precision. In this article, a rapid, non-destructive technique termed Critical Dimension Small Angle X-ray Scattering (CD-SAXS) is used to measure the cross sectional shape of both a pattern master, or mold, and the resulting imprinted films. CD-SAXS data are used to extract periodicity as well as pattern height, width, and sidewall angles. Films of varying materials are molded by thermal embossed NIL at temperatures both near and far from the bulk glass transition (TG). The polymer systems include a photoresist, representing a mixture of a polymer and small molecular components, and two pure homopolymers. Molding at low temperatures (T-TG < 40°C) produces small aspect ratio patterns that maintain periodicity to within a single nanometer, but feature large sidewall angles. While the pattern height does not reach that of the mold until very large imprinting temperatures (T-TG ~ 70°C), the pattern width of the mold is accurately transferred for T-TG > 30°C. In addition to obtaining basic dimensions, CD-SAXS data are used to assess the origin of loss in pattern fidelity.
NASA Astrophysics Data System (ADS)
Yu, Hao Yun; Liu, Chun-Hung; Shen, Yu Tian; Lee, Hsuan-Ping; Tsai, Kuen Yu
2014-03-01
Line edge roughness (LER) influencing the electrical performance of circuit components is a key challenge for electronbeam lithography (EBL) due to the continuous scaling of technology feature sizes. Controlling LER within an acceptable tolerance that satisfies International Technology Roadmap for Semiconductors requirements while achieving high throughput become a challenging issue. Although lower dosage and more-sensitive resist can be used to improve throughput, they would result in serious LER-related problems because of increasing relative fluctuation in the incident positions of electrons. Directed self-assembly (DSA) is a promising technique to relax LER-related pattern fidelity (PF) requirements because of its self-healing ability, which may benefit throughput. To quantify the potential of throughput improvement in EBL by introducing DSA for post healing, rigorous numerical methods are proposed to simultaneously maximize throughput by adjusting writing parameters of EBL systems subject to relaxed LER-related PF requirements. A fast, continuous model for parameter sweeping and a hybrid model for more accurate patterning prediction are employed for the patterning simulation. The tradeoff between throughput and DSA self-healing ability is investigated. Preliminary results indicate that significant throughput improvements are achievable at certain process conditions.
Grady, Janet L; Kehrer, Rosemary G; Trusty, Carole E; Entin, Eileen B; Entin, Elliot E; Brunye, Tad T
2008-09-01
Simulation technologies are gaining widespread acceptance across a variety of educational domains and applications. The current research examines whether basic nursing procedure training with high-fidelity versus low-fidelity mannequins results in differential skill acquisition and perceptions of simulator utility. Fifty-two first-year students were taught nasogastric tube and indwelling urinary catheter insertion in one of two ways. The first group learned nasogastric tube and urinary catheter insertion using high-fidelity and low-fidelity mannequins, respectively, and the second group learned nasogastric tube and urinary catheter insertion using low-fidelity and high-fidelity mannequins, respectively. The dependent measures included student performance on nasogastric tube and urinary catheter insertion testing, as measured by observer-based instruments, and self-report questionnaires probing student attitudes about the use of simulation in nursing education. Results demonstrated higher performance with high-fidelity than with low-fidelity mannequin training. In response to a self-report posttraining questionnaire, participants expressed a more positive attitude toward the high-fidelity mannequin, especially regarding its responsiveness and realism.
Evaluating display fidelity and interaction fidelity in a virtual reality game.
McMahan, Ryan P; Bowman, Doug A; Zielinski, David J; Brady, Rachael B
2012-04-01
In recent years, consumers have witnessed a technological revolution that has delivered more-realistic experiences in their own homes through high-definition, stereoscopic televisions and natural, gesture-based video game consoles. Although these experiences are more realistic, offering higher levels of fidelity, it is not clear how the increased display and interaction aspects of fidelity impact the user experience. Since immersive virtual reality (VR) allows us to achieve very high levels of fidelity, we designed and conducted a study that used a six-sided CAVE to evaluate display fidelity and interaction fidelity independently, at extremely high and low levels, for a VR first-person shooter (FPS) game. Our goal was to gain a better understanding of the effects of fidelity on the user in a complex, performance-intensive context. The results of our study indicate that both display and interaction fidelity significantly affect strategy and performance, as well as subjective judgments of presence, engagement, and usability. In particular, performance results were strongly in favor of two conditions: low-display, low-interaction fidelity (representative of traditional FPS games) and high-display, high-interaction fidelity (similar to the real world).
Roseate Tern breeding dispersal and fidelity: Responses to two newly restored colony sites
Spendelow, Jeffrey A.; Monticelli, David; Nichols, James D.; Hines, James; Nisbet, Ian; Cormons, Grace; Hays, Helen; Hatch, Jeremy; Mostello, Carolyn
2016-01-01
We used 22 yr of capture–mark–reencounter (CMR) data collected from 1988 to 2009 on about 12,500 birds at what went from three to five coastal colony sites in Massachusetts, New York, and Connecticut, United States, to examine spatial and temporal variation in breeding dispersal/fidelity rates of adult Roseate Terns (Sterna dougallii). At the start of our study, Roseate Terns nested at only one site (Bird Island) in Buzzards Bay, Massachusetts, but two more sites in this bay (Ram and Penikese Islands) were subsequently recolonized and became incorporated into our CMR metapopulation study. We examined four major hypotheses about factors we thought might influence colony-site fidelity and movement rates in the restructured system. We found some evidence that colony-site fidelity remained higher at long-established sites compared with newer ones and that breeding dispersal was more likely to occur among nearby sites than distant ones. Sustained predation at Falkner Island, Connecticut, did not result in a sustained drop in fidelity rates of breeders. Patterns of breeding dispersal differed substantially at the two restored sites. The fidelity of Roseate Terns at Bird dropped quickly after nearby Ram was recolonized in 1994, and fidelity rates for Ram soon approached those for Bird. After an oil spill in Buzzards Bay in April 2003, hazing (deliberate disturbance) of the terns at Ram prior to the start of egg-laying resulted in lowering of fidelity at this site, a decrease in immigration from Bird, and recolonization of Penikese by Roseate Terns. Annual fidelity rates at Penikese increased somewhat several years after the initial recolonization, but they remained much lower there than at all the other sites throughout the study period. The sustained high annual rates of emigration from Penikese resulted in the eventual failure of the restoration effort there, and in 2013, no Roseate Terns nested at this site.
Patil, Kapil S; Bhalsing, Sanjivani R
2015-07-01
Boerhaavia diffusa L is a medicinal herb with immense pharmaceutical significance. The plant is used by many herbalist, Ayurvedic and pharmaceutical industries for production biopharmaceuticals. It is among the 46 medicinal plant species in high trade sourced mainly from wastelands and generally found in temperate regions of the world. However, the commercial bulk of this plant shows genetic variations which are the main constraint to use this plant as medicinal ingredient and to obtain high value products of pharmaceutical interest from this plant. In this study, we have regenerated the plant of Boerhaavia diffusa L through nodal explants and evaluated genetic fidelity of the micropropagated plants of Boerhaavia diffusa L with the help of random amplified polymorphic DNA (RAPD) markers. The results obtained using RAPD showed monomorphic banding pattern revealing genetic stability among the mother plant and in vitro regenerated plants of Boerhaavia diffusa L.
Flow-structure Interaction Modeling of a Fish Caudal Fin during Steady Swimming
NASA Astrophysics Data System (ADS)
Liu, Geng; Geng, Biao; Zheng, Xudong; Xue, Qian; Dong, Haibo
2017-11-01
It's widely thought that the flexibilities of fish fins play critical roles in propulsive performance enhancement (such as thrust augment and efficiency improvement) in nature. In order to explore the formation mechanisms of the fish fin's flexible morphing and its hydrodynamic benefits as well, a high-fidelity flow-structure/membrane interaction modeling of the fish caudal fin is conducted in this work. Following the realistic configuration of the fish caudal fin, a thin membrane supported by a series of beams is constructed. The material properties of the membrane and the beams are reversely determined by the realistic fin morphing obtained from the high-speed videos and the high fidelity flow-structure interaction simulations. With the accurate material property, we investigate the interplay between structure, kinematics and fluid flow in caudal fin propulsion. Detailed analyses on the relationship between the flexural stiffness, fin morphing patterns, hydrodynamic forces and vortex dynamics are then conducted.
State transfer in highly connected networks and a quantum Babinet principle
NASA Astrophysics Data System (ADS)
Tsomokos, D. I.; Plenio, M. B.; de Vega, I.; Huelga, S. F.
2008-12-01
The transfer of a quantum state between distant nodes in two-dimensional networks is considered. The fidelity of state transfer is calculated as a function of the number of interactions in networks that are described by regular graphs. It is shown that perfect state transfer is achieved in a network of size N , whose structure is that of an (N/2) -cross polytope graph, if N is a multiple of 4 . The result is reminiscent of the Babinet principle of classical optics. A quantum Babinet principle is derived, which allows for the identification of complementary graphs leading to the same fidelity of state transfer, in analogy with complementary screens providing identical diffraction patterns.
Gonzalez-Cota, Alan; Chiravuri, Srinivas; Stansfield, R Brent; Brummett, Chad M; Hamstra, Stanley J
2013-01-01
The purpose of this study was to determine whether high-fidelity simulators provide greater benefit than low-fidelity models in training fluoroscopy-guided transforaminal epidural injection. This educational study was a single-center, prospective, randomized 3-arm pretest-posttest design with a control arm. Eighteen anesthesia and physical medicine and rehabilitation residents were instructed how to perform a fluoroscopy-guided transforaminal epidural injection and assessed by experts on a reusable injectable phantom cadaver. The high- and low-fidelity groups received 30 minutes of supervised hands-on practice according to group assignment, and the control group received 30 minutes of didactic instruction from an expert. We found no differences at posttest between the high- and low-fidelity groups on global ratings of performance (P = 0.17) or checklist scores (P = 0.81). Participants who received either form of hands-on training significantly outperformed the control group on both the global rating of performance (control vs low-fidelity, P = 0.0048; control vs high-fidelity, P = 0.0047) and the checklist (control vs low-fidelity, P = 0.0047; control vs high-fidelity, P = 0.0047). Training an epidural procedure using a low-fidelity model may be equally effective as training on a high-fidelity model. These results are consistent with previous research on a variety of interventional procedures and further demonstrate the potential impact of simple, low-fidelity training models.
Geometrical E-beam proximity correction for raster scan systems
NASA Astrophysics Data System (ADS)
Belic, Nikola; Eisenmann, Hans; Hartmann, Hans; Waas, Thomas
1999-04-01
High pattern fidelity is a basic requirement for the generation of masks containing sub micro structures and for direct writing. Increasing needs mainly emerging from OPC at mask level and x-ray lithography require a correction of the e-beam proximity effect. The most part of e-beam writers are raster scan system. This paper describes a new method for geometrical pattern correction in order to provide a correction solution for e-beam system that are not able to apply variable doses.
Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair.
De Greve, Kristiaan; McMahon, Peter L; Yu, Leo; Pelc, Jason S; Jones, Cody; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa
2013-01-01
Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin-photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin-photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin-photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.
Gaussian functional regression for output prediction: Model assimilation and experimental design
NASA Astrophysics Data System (ADS)
Nguyen, N. C.; Peraire, J.
2016-03-01
In this paper, we introduce a Gaussian functional regression (GFR) technique that integrates multi-fidelity models with model reduction to efficiently predict the input-output relationship of a high-fidelity model. The GFR method combines the high-fidelity model with a low-fidelity model to provide an estimate of the output of the high-fidelity model in the form of a posterior distribution that can characterize uncertainty in the prediction. A reduced basis approximation is constructed upon the low-fidelity model and incorporated into the GFR method to yield an inexpensive posterior distribution of the output estimate. As this posterior distribution depends crucially on a set of training inputs at which the high-fidelity models are simulated, we develop a greedy sampling algorithm to select the training inputs. Our approach results in an output prediction model that inherits the fidelity of the high-fidelity model and has the computational complexity of the reduced basis approximation. Numerical results are presented to demonstrate the proposed approach.
Ball, Laura; Shreves, Kypher; Pilot, Małgorzata; Moura, André E
2017-01-01
Social structure plays a crucial role in determining a species' dispersal patterns and genetic structure. Cetaceans show a diversity of social and mating systems, but their effects on dispersal and genetic structure are not well known, in part because of technical difficulties in obtaining robust observational data. Here, we combine genetic profiling and GIS analysis to identify patterns of kin distribution over time and space, to infer mating structure and dispersal patterns in short-beaked common dolphins ( Delphinus delphis ). This species is highly social, and exhibits weak spatial genetic structure in the Northeast Atlantic and Mediterranean Sea, thought to result from fluid social structure and low levels of site fidelity. We found that although sampled groups were not composed of closely related individuals, close kin were frequently found in the same geographic location over several years. Our results suggest that common dolphin exhibits some level of site fidelity, which could be explained by foraging for temporally varying prey resource in areas familiar to individuals. Dispersal from natal area likely involves long-distance movements of females, as males are found more frequently than females in the same locations as their close kin. Long-distance dispersal may explain the near panmixia observed in this species. By analysing individuals sampled in the same geographic location over multiple years, we avoid caveats associated with divergence-based methods of inferring sex-biased dispersal. We thus provide a unique perspective on this species' social structure and dispersal behaviour, and how it relates to the observed low levels of population genetic structure in European waters. Movement patterns and social interactions are aspects of wild animal's behaviour important for understanding their ecology. However, tracking these behaviours directly can be very challenging in wide-ranging species such as whales and dolphins. In this study, we used genetic information to detect how patterns of kin associations change in space and time, to infer aspects of movement and social structure. We identified previously unknown site fidelity, and suggested that dispersal usually involves females, travelling long distances from the natal area. Our data analysis strategy overcomes known limitations of previously used genetic inference methods, and provides a new approach to identify differences in dispersal between the sexes, which contribute to better understanding of the species' behaviour and ecology. In this case, we suggest that females are more likely to disperse than males, a pattern unusual amongst mammals.
Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.
Perdikaris, P; Raissi, M; Damianou, A; Lawrence, N D; Karniadakis, G E
2017-02-01
Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity models. However, in many cases of practical interest, low-fidelity models can only be well correlated to their high-fidelity counterparts for a specific range of input parameters, and potentially return wrong trends and erroneous predictions if probed outside of their validity regime. Here we put forth a probabilistic framework based on Gaussian process regression and nonlinear autoregressive schemes that is capable of learning complex nonlinear and space-dependent cross-correlations between models of variable fidelity, and can effectively safeguard against low-fidelity models that provide wrong trends. This introduces a new class of multi-fidelity information fusion algorithms that provide a fundamental extension to the existing linear autoregressive methodologies, while still maintaining the same algorithmic complexity and overall computational cost. The performance of the proposed methods is tested in several benchmark problems involving both synthetic and real multi-fidelity datasets from computational fluid dynamics simulations.
2009-04-01
primarily deep-water species ap- pear to exhibit high levels of fidelity to the islands, including rough-toothed dol- phins ( Steno bredanensis), and...and association patterns in a deep-water dolphin: Rough- toothed dolphins ( Steno bredanensis) in the Hawaiian Archipelago. Marine Mammal Science 24:535
Multi-fidelity stochastic collocation method for computation of statistical moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xueyu, E-mail: xueyu-zhu@uiowa.edu; Linebarger, Erin M., E-mail: aerinline@sci.utah.edu; Xiu, Dongbin, E-mail: xiu.16@osu.edu
We present an efficient numerical algorithm to approximate the statistical moments of stochastic problems, in the presence of models with different fidelities. The method extends the multi-fidelity approximation method developed in . By combining the efficiency of low-fidelity models and the accuracy of high-fidelity models, our method exhibits fast convergence with a limited number of high-fidelity simulations. We establish an error bound of the method and present several numerical examples to demonstrate the efficiency and applicability of the multi-fidelity algorithm.
Nesting fidelity and molecular evidence for natal homing in the freshwater turtle, Graptemys kohnii
Freedberg, Steven; Ewert, Michael A; Ridenhour, Benjamin J; Neiman, Maurine; Nelson, Craig E
2005-01-01
Numerous studies of sea turtle nesting ecology have revealed that females exhibit natal homing, whereby they imprint on the nesting area from which they hatch and subsequently return there to nest as adults. Because freshwater turtles comprise the majority of reptiles known to display environmental sex determination (ESD), the study of natal homing in this group may shed light on recent evolutionary models of sex allocation that are predicated on natal homing in reptiles with ESD. We examined natal homing in Graptemys kohnii, a freshwater turtle with ESD, using mitochondrial sequencing, microsatellite genotyping and mark and recapture of 290 nesting females. Females showed high fidelity to nesting areas, even after being transplanted several kilometres away. A Mantel test revealed significant genetic isolation by distance with respect to nesting locations (r=0.147; p<0.05), suggesting that related females nest in close proximity to one another. The patterns of fidelity and genotype distributions are consistent with homing at a scale that may affect population sex ratios. PMID:16006324
Raedeke, Thomas D; Dlugonski, Deirdre
2017-12-01
This study was designed to compare a low versus high theoretical fidelity pedometer intervention applying social-cognitive theory on step counts and self-efficacy. Fifty-six public university employees participated in a 10-week randomized controlled trial with 2 conditions that varied in theoretical fidelity. Participants in the high theoretical fidelity condition wore a pedometer and participated in a weekly group walk followed by a meeting to discuss cognitive-behavioral strategies targeting self-efficacy. Participants in the low theoretical fidelity condition met for a group walk and also used a pedometer as a motivational tool and to monitor steps. Step counts were assessed throughout the 10-week intervention and after a no-treatment follow-up (20 weeks and 30 weeks). Self-efficacy was measured preintervention and postintervention. Participants in the high theoretical fidelity condition increased daily steps by 2,283 from preintervention to postintervention, whereas participants in the low fidelity condition demonstrated minimal change during the same time period (p = .002). Individuals attending at least 80% of the sessions in the high theoretical fidelity condition showed an increase of 3,217 daily steps (d = 1.03), whereas low attenders increased by 925 (d = 0.40). Attendance had minimal impact in the low theoretical fidelity condition. Follow-up data revealed that step counts were at least somewhat maintained. For self-efficacy, participants in the high, compared with those in the low, theoretical fidelity condition showed greater improvements. Findings highlight the importance of basing activity promotion efforts on theory. The high theoretical fidelity intervention that included cognitive-behavioral strategies targeting self-efficacy was more effective than the low theoretical fidelity intervention, especially for those with high attendance.
An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Allison, E-mail: lewis.allison10@gmail.com; Smith, Ralph; Williams, Brian
For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is tomore » employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.« less
Gollner, Sabine; Govenar, Breea; Fisher, Charles R.; Bright, Monika
2015-01-01
Species with markedly different sizes interact when sharing the same habitat. Unravelling mechanisms that control diversity thus requires consideration of a range of size classes. We compared patterns of diversity and community structure for meio- and macrofaunal communities sampled along a gradient of environmental stress at deep-sea hydrothermal vents on the East Pacific Rise (9° 50′ N) and neighboring basalt habitats. Both meio- and macrofaunal species richnesses were lowest in the high-stress vent habitat, but macrofaunal richness was highest among intermediate-stress vent habitats. Meiofaunal species richness was negatively correlated with stress, and highest on the basalt. In these deep-sea basalt habitats surrounding hydrothermal vents, meiofaunal species richness was consistently higher than that of macrofauna. Consideration of the physiological capabilities and life history traits of different-sized animals suggests that different patterns of diversity may be caused by different capabilities to deal with environmental stress in the 2 size classes. In contrast to meiofauna, adaptations of macrofauna may have evolved to allow them to maintain their physiological homeostasis in a variety of hydrothermal vent habitats and exploit this food-rich deep-sea environment in high abundances. The habitat fidelity patterns also differed: macrofaunal species occurred primarily at vents and were generally restricted to this habitat, but meiofaunal species were distributed more evenly across proximate and distant basalt habitats and were thus not restricted to vent habitats. Over evolutionary time scales these contrasting patterns are likely driven by distinct reproduction strategies and food demands inherent to fauna of different sizes. PMID:26166922
Scalable patterning using laser-induced shock waves
NASA Astrophysics Data System (ADS)
Ilhom, Saidjafarzoda; Kholikov, Khomidkhodza; Li, Peizhen; Ottman, Claire; Sanford, Dylan; Thomas, Zachary; San, Omer; Karaca, Haluk E.; Er, Ali O.
2018-04-01
An advanced direct imprinting method with low cost, quick, and minimal environmental impact to create a thermally controllable surface pattern using the laser pulses is reported. Patterned microindents were generated on Ni50Ti50 shape memory alloys and aluminum using an Nd: YAG laser operating at 1064 nm combined with a suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities, which generate pressure pulses up to a few GPa on the surface, were focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the surface. Scanning electron microscope and optical microscope images show that various patterns were obtained on the surface with high fidelity. One-dimensional profile analysis indicates that the depth of the patterned sample initially increases with the laser energy and later levels off. Our simulations of laser irradiation process also confirm that high temperature and high pressure could be generated when the laser energy density of 2 J/cm2 is used.
Gilmer, Todd P; Stefancic, Ana; Katz, Marian L; Sklar, Marisa; Tsemberis, Sam; Palinkas, Lawrence A
2014-11-01
Permanent supported housing programs are being implemented throughout the United States. This study examined the relationship between fidelity to the Housing First model and residential outcomes among clients of full service partnerships (FSPs) in California. This study had a mixed-methods design. Quantitative administrative and survey data were used to describe FSP practices and to examine the association between fidelity to Housing First and residential outcomes in the year before and after enrollment of 6,584 FSP clients in 86 programs. Focus groups at 20 FSPs provided qualitative data to enhance the understanding of these findings with actual accounts of housing-related experiences in high- and low-fidelity programs. Prior to enrollment, the mean days of homelessness were greater at high- versus low-fidelity (101 versus 46 days) FSPs. After adjustment for individual characteristics, the analysis found that days spent homeless after enrollment declined by 87 at high-fidelity programs and by 34 at low-fidelity programs. After adjustment for days spent homeless before enrollment, days spent homeless after enrollment declined by 63 at high-fidelity programs and by 53 at low-fidelity programs. After enrollment, clients at high-fidelity programs spent more than 60 additional days in apartments than clients at low-facility programs. Differences were found between high- and low-fidelity FSPs in client choice in housing and how much clients' goals were considered in housing placement. Programs with greater fidelity to the Housing First model enrolled clients with longer histories of homelessness and placed most of them in apartments.
ERIC Educational Resources Information Center
Lievens, Filip; Patterson, Fiona
2011-01-01
In high-stakes selection among candidates with considerable domain-specific knowledge and experience, investigations of whether high-fidelity simulations (assessment centers; ACs) have incremental validity over low-fidelity simulations (situational judgment tests; SJTs) are lacking. Therefore, this article integrates research on the validity of…
Single-walled carbon nanotubes/polymer composite electrodes patterned directly from solution.
Chang, Jingbo; Najeeb, Choolakadavil Khalid; Lee, Jae-Hyeok; Kim, Jae-Ho
2011-06-07
This work describes a simple technique for direct patterning of single-walled carbon nanotube (SWNT)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) composite electrodes in a large area on a substrate based on the solution transfer process by microcontact printing using poly(dimethylsiloxane) (PDMS) stamps. Various shapes of SWNT/PEDOT-PSS composite patterns, such as line, circle, and square, can be easily fabricated with high pattern fidelity and structural integrity. The single parallel line pattern device exhibits high electrical conductivity (0.75 × 10(5) S/m) and electronic stability because of alignment of nanotubes and big-size SWNT bundles (∼5 nm). The electromechanical study reveals that the composite patterns show ∼1% resistance change along SWNT alignment direction and ∼5% resistance change along vertical alignment direction after 200 bend cycles. Our approach provides a facile, low-cost method to pattern transparent conductive SWNT/polymer composite electrodes and demonstrates a novel platform for future integration of conducting SWNT/polymer composite patterns for optoelectronic applications.
Ivey, Gary L.; Dugger, Bruce D.; Herziger, Caroline P.; Casazza, Michael L.; Fleskes, Joseph P.
2015-01-01
Body size is known to correlate with many aspects of life history in birds, and this knowledge can be used to manage and conserve bird species. However, few studies have compared the wintering ecology of sympatric subspecies that vary significantly in body size. We used radiotelemetry to examine the relationship between body size and site fidelity, movements, and home range in 2 subspecies of Sandhill Crane (Grus canadensis) wintering in the Sacramento–San Joaquin Delta of California, USA. Both subspecies showed high interannual return rates to the Delta study area, but Greater Sandhill Cranes (G. c. tabida) showed stronger within-winter fidelity to landscapes in our study region and to roost complexes within landscapes than did Lesser Sandhill Cranes (G. c. canadensis). Foraging flights from roost sites were shorter for G. c. tabida than for G. c. canadensis (1.9 ± 0.01 km vs. 4.5 ± 0.01 km, respectively) and, consequently, the mean size of 95% fixed-kernel winter home ranges was an order of magnitude smaller for G. c. tabida than for G. c. canadensis (1.9 ± 0.4 km2 vs. 21.9 ± 1.9 km2, respectively). Strong site fidelity indicates that conservation planning to manage for adequate food resources around traditional roost sites can be effective for meeting the habitat needs of these cranes, but the scale of conservation efforts should differ by subspecies. Analysis of movement patterns suggests that conservation planners and managers should consider all habitats within 5 km of a known G. c. tabida roost and within 10 km of a G. c. canadensis roost when planning for habitat management, mitigation, acquisition, and easements.
Difference in EUV photoresist design towards reduction of LWR and LCDU
NASA Astrophysics Data System (ADS)
Jiang, Jing; De Simone, Danilo; Vandenberghe, Geert
2017-03-01
Pattern fidelity of EUV lithography is crucial for high resolution features, since small variation can affect device performance and even cause short or open circuit. For 1D features, dense lines and contact holes are the most common features for active, metal and contact layer, therefore line width roughness (LWR) and local critical dimension uniformity (LCDU) are important indexes to monitor. Both LWR and LCDU are greatly influenced by photon and acid shot noise. In addition, LWR is also affected by resist mechanical properties, like pattern collapse. In this study, we studied the influence of different chemically amplified resist components, such as polymer, PAG and quencher for both types and concentrations in order to understand the relative extent of influences of deprotection, acid diffusion, and base neutralization on pattern fidelity. However, conventional methods to approach higher resolution or low LWR/LCDU by sacrificing the dose are not sustainable. In order to continue to improve resist performance, a new component, metal salt sensitizer, is introduced into the resist system. This metal salt is able to achieve 30% dose reduction by increasing EUV absorption, maintaining LWR. We believe metal sensitizer might give us a new way to challenge the RLS trade-off.
A multi-fidelity framework for physics based rotor blade simulation and optimization
NASA Astrophysics Data System (ADS)
Collins, Kyle Brian
New helicopter rotor designs are desired that offer increased efficiency, reduced vibration, and reduced noise. Rotor Designers in industry need methods that allow them to use the most accurate simulation tools available to search for these optimal designs. Computer based rotor analysis and optimization have been advanced by the development of industry standard codes known as "comprehensive" rotorcraft analysis tools. These tools typically use table look-up aerodynamics, simplified inflow models and perform aeroelastic analysis using Computational Structural Dynamics (CSD). Due to the simplified aerodynamics, most design studies are performed varying structural related design variables like sectional mass and stiffness. The optimization of shape related variables in forward flight using these tools is complicated and results are viewed with skepticism because rotor blade loads are not accurately predicted. The most accurate methods of rotor simulation utilize Computational Fluid Dynamics (CFD) but have historically been considered too computationally intensive to be used in computer based optimization, where numerous simulations are required. An approach is needed where high fidelity CFD rotor analysis can be utilized in a shape variable optimization problem with multiple objectives. Any approach should be capable of working in forward flight in addition to hover. An alternative is proposed and founded on the idea that efficient hybrid CFD methods of rotor analysis are ready to be used in preliminary design. In addition, the proposed approach recognizes the usefulness of lower fidelity physics based analysis and surrogate modeling. Together, they are used with high fidelity analysis in an intelligent process of surrogate model building of parameters in the high fidelity domain. Closing the loop between high and low fidelity analysis is a key aspect of the proposed approach. This is done by using information from higher fidelity analysis to improve predictions made with lower fidelity models. This thesis documents the development of automated low and high fidelity physics based rotor simulation frameworks. The low fidelity framework uses a comprehensive code with simplified aerodynamics. The high fidelity model uses a parallel processor capable CFD/CSD methodology. Both low and high fidelity frameworks include an aeroacoustic simulation for prediction of noise. A synergistic process is developed that uses both the low and high fidelity frameworks together to build approximate models of important high fidelity metrics as functions of certain design variables. To test the process, a 4-bladed hingeless rotor model is used as a baseline. The design variables investigated include tip geometry and spanwise twist distribution. Approximation models are built for metrics related to rotor efficiency and vibration using the results from 60+ high fidelity (CFD/CSD) experiments and 400+ low fidelity experiments. Optimization using the approximation models found the Pareto Frontier anchor points, or the design having maximum rotor efficiency and the design having minimum vibration. Various Pareto generation methods are used to find designs on the frontier between these two anchor designs. When tested in the high fidelity framework, the Pareto anchor designs are shown to be very good designs when compared with other designs from the high fidelity database. This provides evidence that the process proposed has merit. Ultimately, this process can be utilized by industry rotor designers with their existing tools to bring high fidelity analysis into the preliminary design stage of rotors. In conclusion, the methods developed and documented in this thesis have made several novel contributions. First, an automated high fidelity CFD based forward flight simulation framework has been built for use in preliminary design optimization. The framework was built around an integrated, parallel processor capable CFD/CSD/AA process. Second, a novel method of building approximate models of high fidelity parameters has been developed. The method uses a combination of low and high fidelity results and combines Design of Experiments, statistical effects analysis, and aspects of approximation model management. And third, the determination of rotor blade shape variables through optimization using CFD based analysis in forward flight has been performed. This was done using the high fidelity CFD/CSD/AA framework and method mentioned above. While the low and high fidelity predictions methods used in the work still have inaccuracies that can affect the absolute levels of the results, a framework has been successfully developed and demonstrated that allows for an efficient process to improve rotor blade designs in terms of a selected choice of objective function(s). Using engineering judgment, this methodology could be applied today to investigate opportunities to improve existing designs. With improvements in the low and high fidelity prediction components that will certainly occur, this framework could become a powerful tool for future rotorcraft design work. (Abstract shortened by UMI.)
Preparation and performance of broadband antireflective sub-wavelength structures on Ge substrate
NASA Astrophysics Data System (ADS)
Shen, Xiang-Wei; Liu, Zheng-Tang; Li, Yang-Ping; Lu, Hong-Cheng; Xu, Qi-Yuan; Liu, Wen-Ting
2009-01-01
Sub-wavelength structures (SWS) were prepared on Ge substrates through photolithography and reactive ion etching (RIE) technology for broadband antireflective purposes in the long wave infrared (LWIR) waveband of 8-12 μm. Topography of the etched patterns was observed using high resolution optical microscope and atomic force microscope (AFM). Infrared transmission performance of the SWS was investigated by Fourier transform infrared (FTIR) spectrometer. Results show that the etched patterns were of high uniformity and fidelity, the SWS exhibited a good broadband antireflective performance with the increment of the average transmittance which is over 8-12 μm up to 8%.
Visual pattern image sequence coding
NASA Technical Reports Server (NTRS)
Silsbee, Peter; Bovik, Alan C.; Chen, Dapang
1990-01-01
The visual pattern image coding (VPIC) configurable digital image-coding process is capable of coding with visual fidelity comparable to the best available techniques, at compressions which (at 30-40:1) exceed all other technologies. These capabilities are associated with unprecedented coding efficiencies; coding and decoding operations are entirely linear with respect to image size and entail a complexity that is 1-2 orders of magnitude faster than any previous high-compression technique. The visual pattern image sequence coding to which attention is presently given exploits all the advantages of the static VPIC in the reduction of information from an additional, temporal dimension, to achieve unprecedented image sequence coding performance.
High-Fidelity Simulations of Electromagnetic Propagation and RF Communication Systems
2017-05-01
addition to high -fidelity RF propagation modeling, lower-fidelity mod- els, which are less computationally burdensome, are available via a C++ API...expensive to perform, requiring roughly one hour of computer time with 36 available cores and ray tracing per- formed by a single high -end GPU...ER D C TR -1 7- 2 Military Engineering Applied Research High -Fidelity Simulations of Electromagnetic Propagation and RF Communication
Hoekstra, Femke; van Offenbeek, Marjolein A G; Dekker, Rienk; Hettinga, Florentina J; Hoekstra, Trynke; van der Woude, Lucas H V; van der Schans, Cees P
2017-12-01
Although the importance of evaluating implementation fidelity is acknowledged, little is known about heterogeneity in fidelity over time. This study aims to generate insight into the heterogeneity in implementation fidelity trajectories of a health promotion program in multidisciplinary settings and the relationship with changes in patients' health behavior. This study used longitudinal data from the nationwide implementation of an evidence-informed physical activity promotion program in Dutch rehabilitation care. Fidelity scores were calculated based on annual surveys filled in by involved professionals (n = ± 70). Higher fidelity scores indicate a more complete implementation of the program's core components. A hierarchical cluster analysis was conducted on the implementation fidelity scores of 17 organizations at three different time points. Quantitative and qualitative data were used to explore organizational and professional differences between identified trajectories. Regression analyses were conducted to determine differences in patient outcomes. Three trajectories were identified as the following: 'stable high fidelity' (n = 9), 'moderate and improving fidelity' (n = 6), and 'unstable fidelity' (n = 2). The stable high fidelity organizations were generally smaller, started earlier, and implemented the program in a more structured way compared to moderate and improving fidelity organizations. At the implementation period's start and end, support from physicians and physiotherapists, professionals' appreciation, and program compatibility were rated more positively by professionals working in stable high fidelity organizations as compared to the moderate and improving fidelity organizations (p < .05). Qualitative data showed that the stable high fidelity organizations had often an explicit vision and strategy about the implementation of the program. Intriguingly, the trajectories were not associated with patients' self-reported physical activity outcomes (adjusted model β = - 651.6, t(613) = - 1032, p = .303). Differences in organizational-level implementation fidelity trajectories did not result in outcome differences at patient-level. This suggests that an effective implementation fidelity trajectory is contingent on the local organization's conditions. More specifically, achieving stable high implementation fidelity required the management of tensions: realizing a localized change vision, while safeguarding the program's standardized core components and engaging the scarce physicians throughout the process. When scaling up evidence-informed health promotion programs, we propose to tailor the management of implementation tensions to local organizations' starting position, size, and circumstances. The Netherlands National Trial Register NTR3961 . Registered 18 April 2013.
The Need for High Fidelity Lunar Regolith Simulants
NASA Technical Reports Server (NTRS)
Gaier, James R.
2007-01-01
The case is made for the need to have high fidelity lunar regolith simulants to verify the performance of structures and mechanisms to be used on the lunar surface. Minor constituents will in some cases have major consequences. Small amounts of sulfur in the regolith can poison catalysts, and metallic iron on the surface of nano-sized dust particles may cause a dramatic increase in its toxicity. So the definition of a high fidelity simulant is application dependent. For example, in situ resource utilization will require high fidelity in chemistry, meaning careful attention to the minor components and phases; but some other applications, such as the abrasive effects on suit fabrics, might be relatively insensitive to minor component chemistry. The lunar environment itself will change the surface chemistry of the simulant, so to have a high fidelity simulant at must be used in a high fidelity simulated environment to get a high fidelity simulation. Research must be conducted to determine how sensitive technologies will be to minor components and environmental factors before they can be dismissed as unimportant.
Roosting patterns in a captive colony of short-nosed fruit bat Cynopterus sphinx (Vahl).
Gopukumar, N; Manikandan, M; Arivarignan, G
2002-10-01
Development of roosting patterns under a limited resource was studied in the short-nosed fruit bat C. sphinx in captivity. Spatial fidelity during the resting period (day time) and the individual male bat's presence/absence in the roost (occupancy index) were estimated during the active period (night time). Results show the presence of three groups on the basis of spatial fidelity. The first group was associated with the tent consisting of a harem male and seven females. The second group stayed near to the harem. The third group consisting of two males showed little occupancy index and no spatial fidelity. Female turnover between the first and second groups, and harem male replacement were observed. These findings of male groupings and female loyalty on the basis of "resource", suggest that resource defence polygyny is the primary mating strategy in C. sphinx.
Monolayer graphene-insulator-semiconductor emitter for large-area electron lithography
NASA Astrophysics Data System (ADS)
Kirley, Matthew P.; Aloui, Tanouir; Glass, Jeffrey T.
2017-06-01
The rapid adoption of nanotechnology in fields as varied as semiconductors, energy, and medicine requires the continual improvement of nanopatterning tools. Lithography is central to this evolving nanotechnology landscape, but current production systems are subject to high costs, low throughput, or low resolution. Herein, we present a solution to these problems with the use of monolayer graphene in a graphene-insulator-semiconductor (GIS) electron emitter device for large-area electron lithography. Our GIS device displayed high emission efficiency (up to 13%) and transferred large patterns (500 × 500 μm) with high fidelity (<50% spread). The performance of our device demonstrates a feasible path to dramatic improvements in lithographic patterning systems, enabling continued progress in existing industries and opening opportunities in nanomanufacturing.
Highly Loaded Mesoporous Silica/Nanoparticle Composites and Patterned Mesoporous Silica Films
NASA Astrophysics Data System (ADS)
Kothari, Rohit; Hendricks, Nicholas R.; Wang, Xinyu; Watkins, James J.
2014-03-01
Novel approaches for the preparation of highly filled mesoporous silica/nanoparticle (MS/NP) composites and for the fabrication of patterned MS films are described. The incorporation of iron platinum NPs within the walls of MS is achieved at high NP loadings by doping amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (Pluronic®) copolymer templates via selective hydrogen bonding between the pre-synthesized NPs and the hydrophilic portion of the block copolymer. The MS is then synthesized by means of phase selective condensation of tetraethylorthosilicate (TEOS) within the NP loaded block copolymer templates dilated with supercritical carbon dioxide (scCO2) followed by calcination. For patterned films, microphase separated block copolymer/small molecule additive blends are patterned using UV-assisted nanoimprint lithography. Infusion and condensation of a TEOS within template films using ScCO2 as a processing medium followed by calcination yields the patterned MS films. Scanning electron microscopy is used characterize pattern fidelity and transmission electron microscopy analysis confirms the presence of the mesopores. Long range order in nanocomposites is confirmed by low angle x-ray diffraction.
NASA Astrophysics Data System (ADS)
Sun, Dezheng; Kim, Daeho; Le, Duy; Borck, Øyvind; Berland, Kristian; Kim, Kwangmoo; Lu, Wenhao; Zhu, Yeming; Luo, Miaomiao; Wyrick, Jon; Cheng, Zhihai; Einstein, T. L.; Rahman, Talat; Hyldgaard, Per; Bartels, Ludwig
2011-03-01
Intermolecular force plays an important role in self-assembly and surface pattern formation. Anthracene and similar unsubstituted arenes attach to a metallic substrate predominantly through van der Waals interaction leading. In this contribution we present images how anthracene on Cu(111) forms a large number of highly ordered patterns that feature a broad array of structural motifs. Density functional theory modeling including vdW interactions allows us to model the energetic of the pattern formation at high fidelity. Moreover, it allows us to deduce the strain energy associated with films of varying coverage. From this work, we obtain the Young's modulus and Poisson Ratio of a molecular monolayer, which resemble properties conventionally found for porous materials. These patterns are in marked contrast to those found after introduction of functional groups in the molecules, such as carbonyls or thiols.
Photolithographic surface micromachining of polydimethylsiloxane (PDMS).
Chen, Weiqiang; Lam, Raymond H W; Fu, Jianping
2012-01-21
A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O(2) plasma treatment to PDMS to activate its surface to overcome the challenge of poor photoresist adhesion on PDMS for photolithography. Our photolithographic PDMS surface micromachining technique is compatible with conventional soft lithography techniques and other silicon-based surface and bulk micromachining methods. To illustrate the general application of our method, we demonstrated fabrication of large microfiltration membranes and free-standing beam structures in PDMS.
Photolithographic surface micromachining of polydimethylsiloxane (PDMS)
Chen, Weiqiang; Lam, Raymond H. W.
2014-01-01
A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O2 plasma treatment to PDMS to activate its surface to overcome the challenge of poor photoresist adhesion on PDMS for photolithography. Our photolithographic PDMS surface micromachining technique is compatible with conventional soft lithography techniques and other silicon-based surface and bulk micromachining methods. To illustrate the general application of our method, we demonstrated fabrications of large microfiltration membranes and free-standing beam structures in PDMS. PMID:22089984
NASA Astrophysics Data System (ADS)
Bryson, Dean Edward
A model's level of fidelity may be defined as its accuracy in faithfully reproducing a quantity or behavior of interest of a real system. Increasing the fidelity of a model often goes hand in hand with increasing its cost in terms of time, money, or computing resources. The traditional aircraft design process relies upon low-fidelity models for expedience and resource savings. However, the reduced accuracy and reliability of low-fidelity tools often lead to the discovery of design defects or inadequacies late in the design process. These deficiencies result either in costly changes or the acceptance of a configuration that does not meet expectations. The unknown opportunity cost is the discovery of superior vehicles that leverage phenomena unknown to the designer and not illuminated by low-fidelity tools. Multifidelity methods attempt to blend the increased accuracy and reliability of high-fidelity models with the reduced cost of low-fidelity models. In building surrogate models, where mathematical expressions are used to cheaply approximate the behavior of costly data, low-fidelity models may be sampled extensively to resolve the underlying trend, while high-fidelity data are reserved to correct inaccuracies at key locations. Similarly, in design optimization a low-fidelity model may be queried many times in the search for new, better designs, with a high-fidelity model being exercised only once per iteration to evaluate the candidate design. In this dissertation, a new multifidelity, gradient-based optimization algorithm is proposed. It differs from the standard trust region approach in several ways, stemming from the new method maintaining an approximation of the inverse Hessian, that is the underlying curvature of the design problem. Whereas the typical trust region approach performs a full sub-optimization using the low-fidelity model at every iteration, the new technique finds a suitable descent direction and focuses the search along it, reducing the number of low-fidelity evaluations required. This narrowing of the search domain also alleviates the burden on the surrogate model corrections between the low- and high-fidelity data. Rather than requiring the surrogate to be accurate in a hyper-volume bounded by the trust region, the model needs only to be accurate along the forward-looking search direction. Maintaining the approximate inverse Hessian also allows the multifidelity algorithm to revert to high-fidelity optimization at any time. In contrast, the standard approach has no memory of the previously-computed high-fidelity data. The primary disadvantage of the proposed algorithm is that it may require modifications to the optimization software, whereas standard optimizers may be used as black-box drivers in the typical trust region method. A multifidelity, multidisciplinary simulation of aeroelastic vehicle performance is developed to demonstrate the optimization method. The numerical physics models include body-fitted Euler computational fluid dynamics; linear, panel aerodynamics; linear, finite-element computational structural mechanics; and reduced, modal structural bases. A central element of the multifidelity, multidisciplinary framework is a shared parametric, attributed geometric representation that ensures the analysis inputs are consistent between disciplines and fidelities. The attributed geometry also enables the transfer of data between disciplines. The new optimization algorithm, a standard trust region approach, and a single-fidelity quasi-Newton method are compared for a series of analytic test functions, using both polynomial chaos expansions and kriging to correct discrepancies between fidelity levels of data. In the aggregate, the new method requires fewer high-fidelity evaluations than the trust region approach in 51% of cases, and the same number of evaluations in 18%. The new approach also requires fewer low-fidelity evaluations, by up to an order of magnitude, in almost all cases. The efficacy of both multifidelity methods compared to single-fidelity optimization depends significantly on the behavior of the high-fidelity model and the quality of the low-fidelity approximation, though savings are realized in a large number of cases. The multifidelity algorithm is also compared to the single-fidelity quasi-Newton method for complex aeroelastic simulations. The vehicle design problem includes variables for planform shape, structural sizing, and cruise condition with constraints on trim and structural stresses. Considering the objective function reduction versus computational expenditure, the multifidelity process performs better in three of four cases in early iterations. However, the enforcement of a contracting trust region slows the multifidelity progress. Even so, leveraging the approximate inverse Hessian, the optimization can be seamlessly continued using high-fidelity data alone. Ultimately, the proposed new algorithm produced better designs in all four cases. Investigating the return on investment in terms of design improvement per computational hour confirms that the multifidelity advantage is greatest in early iterations, and managing the transition to high-fidelity optimization is critical.
Curran, Vernon; Fleet, Lisa; White, Susan; Bessell, Clare; Deshpandey, Akhil; Drover, Anne; Hayward, Mark; Valcour, James
2015-03-01
The neonatal resuscitation program (NRP) has been developed to educate physicians and other health care providers about newborn resuscitation and has been shown to improve neonatal resuscitation skills. Simulation-based training is recommended as an effective modality for instructing neonatal resuscitation and both low and high-fidelity manikin simulators are used. There is limited research that has compared the effect of low and high-fidelity manikin simulators for NRP learning outcomes, and more specifically on teamwork performance and confidence. The purpose of this study was to examine the effect of using low versus high-fidelity manikin simulators in NRP instruction. A randomized posttest-only control group study design was conducted. Third year undergraduate medical students participated in NRP instruction and were assigned to an experimental group (high-fidelity manikin simulator) or control group (low-fidelity manikin simulator). Integrated skills station (megacode) performance, participant satisfaction, confidence and teamwork behaviour scores were compared between the study groups. Participants in the high-fidelity manikin simulator instructional group reported significantly higher total scores in overall satisfaction (p = 0.001) and confidence (p = 0.001). There were no significant differences in teamwork behaviour scores, as observed by two independent raters, nor differences on mandatory integrated skills station performance items at the p < 0.05 level. Medical students' reported greater satisfaction and confidence with high-fidelity manikin simulators, but did not demonstrate overall significantly improved teamwork or integrated skills station performance. Low and high-fidelity manikin simulators facilitate similar levels of objectively measured NRP outcomes for integrated skills station and teamwork performance.
Correlated variability modifies working memory fidelity in primate prefrontal neuronal ensembles
Leavitt, Matthew L.; Pieper, Florian; Sachs, Adam J.; Martinez-Trujillo, Julio C.
2017-01-01
Neurons in the primate lateral prefrontal cortex (LPFC) encode working memory (WM) representations via sustained firing, a phenomenon hypothesized to arise from recurrent dynamics within ensembles of interconnected neurons. Here, we tested this hypothesis by using microelectrode arrays to examine spike count correlations (rsc) in LPFC neuronal ensembles during a spatial WM task. We found a pattern of pairwise rsc during WM maintenance indicative of stronger coupling between similarly tuned neurons and increased inhibition between dissimilarly tuned neurons. We then used a linear decoder to quantify the effects of the high-dimensional rsc structure on information coding in the neuronal ensembles. We found that the rsc structure could facilitate or impair coding, depending on the size of the ensemble and tuning properties of its constituent neurons. A simple optimization procedure demonstrated that near-maximum decoding performance could be achieved using a relatively small number of neurons. These WM-optimized subensembles were more signal correlation (rsignal)-diverse and anatomically dispersed than predicted by the statistics of the full recorded population of neurons, and they often contained neurons that were poorly WM-selective, yet enhanced coding fidelity by shaping the ensemble’s rsc structure. We observed a pattern of rsc between LPFC neurons indicative of recurrent dynamics as a mechanism for WM-related activity and that the rsc structure can increase the fidelity of WM representations. Thus, WM coding in LPFC neuronal ensembles arises from a complex synergy between single neuron coding properties and multidimensional, ensemble-level phenomena. PMID:28275096
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weilnboeck, F.; Metzler, D.; Kumar, N.
2011-12-26
Roughening of nanoscale polymer masks during plasma etching (PE) limits feature critical dimensions in current and future lithographic technologies. Roughness formation of 193 nm photoresist (PR) is mechanistically explained by plasma-induced changes in mechanical properties introduced at the PR surface ({approx}2 nm) by ions and in parallel in the material bulk ({approx}200 nm) by ultraviolet (UV) plasma radiation. Synergistic roughening of polymer masks can be prevented by pretreating PR patterns with a high dose of He plasma UV exposure to saturate bulk material modifications. During subsequent PE, PR patterns are stabilized and exhibit improved etch resistance and reduced surface/line-edge roughness.
High Fidelity System Simulation of Multiple Components in Support of the UEET Program
NASA Technical Reports Server (NTRS)
Plybon, Ronald C.; VanDeWall, Allan; Sampath, Rajiv; Balasubramaniam, Mahadevan; Mallina, Ramakrishna; Irani, Rohinton
2006-01-01
The High Fidelity System Simulation effort has addressed various important objectives to enable additional capability within the NPSS framework. The scope emphasized High Pressure Turbine and High Pressure Compressor components. Initial effort was directed at developing and validating intermediate fidelity NPSS model using PD geometry and extended to high-fidelity NPSS model by overlaying detailed geometry to validate CFD against rig data. Both "feedforward" and feedback" approaches of analysis zooming was employed to enable system simulation capability in NPSS. These approaches have certain benefits and applicability in terms of specific applications "feedback" zooming allows the flow-up of information from high-fidelity analysis to be used to update the NPSS model results by forcing the NPSS solver to converge to high-fidelity analysis predictions. This apporach is effective in improving the accuracy of the NPSS model; however, it can only be used in circumstances where there is a clear physics-based strategy to flow up the high-fidelity analysis results to update the NPSS system model. "Feed-forward" zooming approach is more broadly useful in terms of enabling detailed analysis at early stages of design for a specified set of critical operating points and using these analysis results to drive design decisions early in the development process.
Negative Selection Algorithm for Aircraft Fault Detection
NASA Technical Reports Server (NTRS)
Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.
2004-01-01
We investigated a real-valued Negative Selection Algorithm (NSA) for fault detection in man-in-the-loop aircraft operation. The detection algorithm uses body-axes angular rate sensory data exhibiting the normal flight behavior patterns, to generate probabilistically a set of fault detectors that can detect any abnormalities (including faults and damages) in the behavior pattern of the aircraft flight. We performed experiments with datasets (collected under normal and various simulated failure conditions) using the NASA Ames man-in-the-loop high-fidelity C-17 flight simulator. The paper provides results of experiments with different datasets representing various failure conditions.
Wintering ecology of adult North American ospreys
Washburn, Brian E.; Martell, Mark S.; Bierregaard, Richard O.; Henny, Charles J.; Dorr, Brian S.; Olexa, Thomas J.
2014-01-01
North American Ospreys (Pandion haliaetus) typically migrate long distances to their wintering grounds in the tropics. Beyond the general distribution of their wintering range (i.e., the Caribbean, South America, and Central America), very little is known about the wintering ecology of these birds. We used satellite telemetry to determine the duration of wintering period, to examine the characteristics of wintering areas used by Ospreys, and to quantify space use and activity patterns of wintering Ospreys. Adult Ospreys migrated to wintering sites and exhibited high wintering site fidelity among years. Overall, Ospreys wintered on river systems (50.6%) more than on lakes (19.0%), and use of coastal areas was (30.4%) intermediate. Ospreys remained on their wintering grounds for an average of 154 d for males and 167 d for females. Locations of wintering Ospreys obtained via GPS-capable satellite telemetry suggest these birds move infrequently and their movements are very localized (i.e., 2 and 1.4 km2, respectively. Overall, our findings suggest wintering adult North American Ospreys are very sedentary, demonstrating a pattern of limited daily movements and high fidelity to a few select locations (presumably roosts). We suggest this wintering strategy might be effective for reducing the risk of mortality and maximizing energy conservation.
2008-07-01
van Beneden (1889, cited in Tomilin 1967) reported a group following a vessel from Brazil to the English Channel. However, there is no published...of site fidelity: A case study involving nearctic-neotropical migrant songbirds wintering in a Costa Rican mangrove . Biological Conservation 77:143–150. Received: 6 July 2007 Accepted: 12 February 2008
NASA Astrophysics Data System (ADS)
Schaetz, Thomas; Hay, Bernd; Walden, Lars; Ziegler, Wolfram
1999-04-01
With the ongoing shrinking of design rules, the complexity of photomasks does increase continuously. Features are getting smaller and denser, their characterization requires sophisticated procedures. Looking for the deviation from their target value and their linewidth variation is not sufficient any more. In addition, measurements of corner rounding and line end shortening are necessary to define the pattern fidelity on the mask. Otherwise printing results will not be satisfying. Contacts and small features are suffering mainly from imaging inaccuracies. The size of the contacts as an example may come out too small on the photomask and therefore reduces the process window in lithography. In order to meet customer requirements for pattern fidelity, a measurement algorithm and a measurement procedure needs to be introduced and specifications to be defined. In this paper different approaches are compared, allowing an automatic qualification of photomask by optical light microscopy based on a MueTec CD-metrology system, the newly developed MueTec 2030UV, provided with a 365 nm light source. The i-line illumination allows to resolve features down to 0.2 micrometers size with good repeatability.
The Need for High Fidelity Lunar Regolith Simulants
NASA Technical Reports Server (NTRS)
Gaier, James R.
2008-01-01
The case is made for the need to have high fidelity lunar regolith simulants to verify the performance of structures, mechanisms, and processes to be used on the lunar surface. Minor constituents will in some cases have major consequences. Small amounts of sulfur in the regolith can poison catalysts, and metallic iron on the surface of nano-sized dust particles may cause a dramatic increase in its toxicity. So the definition of a high fidelity simulant is application-dependent. For example, in situ resource utilization will require high fidelity in chemistry, meaning careful attention to the minor components and phases; but some other applications, such as the abrasive effects on suit fabrics, might be relatively insensitive to minor component chemistry while abrasion of some metal components may be highly dependent on trace components. The lunar environment itself will change the surface chemistry of the simulant, so to have a high fidelity simulant it must be used in a high fidelity simulated environment to get an accurate simulation. Research must be conducted to determine how sensitive technologies will be to minor components and environmental factors before they can be dismissed as unimportant.
American woodcock winter distribution and fidelity to wintering areas
Diefenbach, D.R.; Derleth, E.L.; Vander Haegen, W. Matthew; Nichols, J.D.; Hines, J.E.
1990-01-01
We examined winter distribution and fidelity to wintering areas for the American Woodcock (Scolopax minor), which exhibits reversed, sexual size dimorphism. Band-recovery data revealed no difference in winter distributions of different age/sex classes for woodcock from the same breeding ares. Similarly, band recoveries from woodcock banded on wintering grounds revealed no difference in fidelity to wintering sites. Males may winter north of a latitude that is optimal for survival based on physiological considerations, but they gain a reproductive advantage if they are among the first to arrive on the breeding grounds. This may explain our results, which indicate males and females have similar distribution patterns during winter.
Economical Unsteady High-Fidelity Aerodynamics for Structural Optimization with a Flutter Constraint
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Stanford, Bret K.
2017-01-01
Structural optimization with a flutter constraint for a vehicle designed to fly in the transonic regime is a particularly difficult task. In this speed range, the flutter boundary is very sensitive to aerodynamic nonlinearities, typically requiring high-fidelity Navier-Stokes simulations. However, the repeated application of unsteady computational fluid dynamics to guide an aeroelastic optimization process is very computationally expensive. This expense has motivated the development of methods that incorporate aspects of the aerodynamic nonlinearity, classical tools of flutter analysis, and more recent methods of optimization. While it is possible to use doublet lattice method aerodynamics, this paper focuses on the use of an unsteady high-fidelity aerodynamic reduced order model combined with successive transformations that allows for an economical way of utilizing high-fidelity aerodynamics in the optimization process. This approach is applied to the common research model wing structural design. As might be expected, the high-fidelity aerodynamics produces a heavier wing than that optimized with doublet lattice aerodynamics. It is found that the optimized lower skin of the wing using high-fidelity aerodynamics differs significantly from that using doublet lattice aerodynamics.
NASA Astrophysics Data System (ADS)
Marshell, A.; Mills, J. S.; Rhodes, K. L.; McIlwain, J.
2011-09-01
Marine reserves are the primary management tool for Guam's reef fish fishery. While a build-up of fish biomass has occurred inside reserve boundaries, it is unknown whether reserve size matches the scale of movement of target species. Using passive acoustic telemetry, we quantified movement patterns and home range size of two heavily exploited unicornfish Naso unicornis and Naso lituratus. Fifteen fish ( N. unicornis: n = 7; N. lituratus: n = 4 male, n = 4 female) were fitted with internal acoustic tags and tracked continuously over four months within a remote acoustic receiver array located in a decade-old marine reserve. This approach provided robust estimates of unicornfish movement patterns and home range size. The mean home range of 3.2 ha for N. unicornis was almost ten times larger than that previously recorded from a three-week tracking study of the species in Hawaii. While N. lituratus were smaller in body size, their mean home range (6.8 ha) was over twice that of N. unicornis. Both species displayed strong site fidelity, particularly during nocturnal and crepuscular periods. Although there was some overlap, individual movement patterns and home range size were highly variable within species and between sexes. N. unicornis home range increased with body size, and only the three largest fish home ranges extended into the deeper outer reef slope beyond the shallow reef flat. Both Naso species favoured habitat dominated by corals. Some individuals made predictable daily crepuscular migrations between different locations or habitat types. There was no evidence of significant spillover from the marine reserve into adjacent fished areas. Strong site fidelity coupled with negligible spillover suggests that small-scale reserves, with natural habitat boundaries to emigration, are effective in protecting localized unicornfish populations.
Direct transfer of subwavelength plasmonic nanostructures on bioactive silk films.
Lin, Dianmin; Tao, Hu; Trevino, Jacob; Mondia, Jessica P; Kaplan, David L; Omenetto, Fiorenzo G; Dal Negro, Luca
2012-11-27
By a reusable transfer fabrication technique, we demonstrate high-fidelity fabrication of metal nanoparticles, optical nanoantennas, and nanohole arrays directly on a functional silk biopolymer. The ability to reproducibly pattern silk biopolymers with arbitrarily complex plasmonic arrays is of importance for a variety of applications in optical biosensing, tissue engineering, cell biology, and the development of novel bio-optoelectronic medical devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Concept Maps: A Tool to Prepare for High Fidelity Simulation in Nursing
ERIC Educational Resources Information Center
Daley, Barbara J.; Beman, Sarah Black; Morgan, Sarah; Kennedy, Linda; Sheriff, Mandy
2017-01-01
In this study, the use of concept mapping as a method to prepare for high fidelity simulated learning experiences was investigated. Fourth year baccalaureate nursing students were taught how to use concept maps as a way to prepare for high fidelity simulated nursing experiences. Students prepared concept maps for two simulated experiences…
Moseley, Hunter N B; Riaz, Nadeem; Aramini, James M; Szyperski, Thomas; Montelione, Gaetano T
2004-10-01
We present an algorithm and program called Pattern Picker that performs editing of raw peak lists derived from multidimensional NMR experiments with characteristic peak patterns. Pattern Picker detects groups of correlated peaks within peak lists from reduced dimensionality triple resonance (RD-TR) NMR spectra, with high fidelity and high yield. With typical quality RD-TR NMR data sets, Pattern Picker performs almost as well as human analysis, and is very robust in discriminating real peak sets from noise and other artifacts in unedited peak lists. The program uses a depth-first search algorithm with short-circuiting to efficiently explore a search tree representing every possible combination of peaks forming a group. The Pattern Picker program is particularly valuable for creating an automated peak picking/editing process. The Pattern Picker algorithm can be applied to a broad range of experiments with distinct peak patterns including RD, G-matrix Fourier transformation (GFT) NMR spectra, and experiments to measure scalar and residual dipolar coupling, thus promoting the use of experiments that are typically harder for a human to analyze. Since the complexity of peak patterns becomes a benefit rather than a drawback, Pattern Picker opens new opportunities in NMR experiment design.
Maneval, Rhonda; Fowler, Kimberly A; Kays, John A; Boyd, Tiffany M; Shuey, Jennifer; Harne-Britner, Sarah; Mastrine, Cynthia
2012-03-01
This study was conducted to determine whether the addition of high-fidelity patient simulation to new nurse orientation enhanced critical thinking and clinical decision-making skills. A pretest-posttest design was used to assess critical thinking and clinical decision-making skills in two groups of graduate nurses. Compared with the control group, the high-fidelity patient simulation group did not show significant improvement in mean critical thinking or clinical decision-making scores. When mean scores were analyzed, both groups showed an increase in critical thinking scores from pretest to posttest, with the high-fidelity patient simulation group showing greater gains in overall scores. However, neither group showed a statistically significant increase in mean test scores. The effect of high-fidelity patient simulation on critical thinking and clinical decision-making skills remains unclear. Copyright 2012, SLACK Incorporated.
High-Fidelity Simulation for Neonatal Nursing Education: An Integrative Review of the Literature.
Cooper, Allyson
2015-01-01
The lack of safe avenues to develop neonatal nursing competencies using human subjects leads to the notion that simulation education for neonatal nurses might be an ideal form of education. This integrative literature review compares traditional, teacher-centered education with high-fidelity simulation education for neonatal nurses. It examines the theoretical frameworks used in neonatal nursing education and outlines the advantages of this type of training, including improving communication and teamwork; providing an innovative pedagogical approach; and aiding in skill acquisition, confidence, and participant satisfaction. The importance of debriefing is also examined. High-fidelity simulation is not without disadvantages, including its significant cost, the time associated with training, the need for very complex technical equipment, and increased faculty resource requirements. Innovative uses of high-fidelity simulation in neonatal nursing education are suggested. High-fidelity simulation has great potential but requires additional research to fully prove its efficacy.
NASA Technical Reports Server (NTRS)
Derkevorkian, Armen; Peterson, Lee; Kolaini, Ali R.; Hendricks, Terry J.; Nesmith, Bill J.
2016-01-01
An analytic approach is demonstrated to reveal potential pyroshock -driven dynamic effects causing power losses in the Thermo -Electric (TE) module bars of the Mars Science Laboratory (MSL) Multi -Mission Radioisotope Thermoelectric Generator (MMRTG). This study utilizes high- fidelity finite element analysis with SIERRA/PRESTO codes to estimate wave propagation effects due to large -amplitude suddenly -applied pyro shock loads in the MMRTG. A high fidelity model of the TE module bar was created with approximately 30 million degrees -of-freedom (DOF). First, a quasi -static preload was applied on top of the TE module bar, then transient tri- axial acceleration inputs were simultaneously applied on the preloaded module. The applied input acceleration signals were measured during MMRTG shock qualification tests performed at the Jet Propulsion Laboratory. An explicit finite element solver in the SIERRA/PRESTO computational environment, along with a 3000 processor parallel super -computing framework at NASA -AMES, was used for the simulation. The simulation results were investigated both qualitatively and quantitatively. The predicted shock wave propagation results provide detailed structural responses throughout the TE module bar, and key insights into the dynamic response (i.e., loads, displacements, accelerations) of critical internal spring/piston compression systems, TE materials, and internal component interfaces in the MMRTG TE module bar. They also provide confidence on the viability of this high -fidelity modeling scheme to accurately predict shock wave propagation patterns within complex structures. This analytic approach is envisioned for modeling shock sensitive hardware susceptible to intense shock environments positioned near shock separation devices in modern space vehicles and systems.
Alagapan, Sankaraleengam; Franca, Eric; Pan, Liangbin; Leondopulos, Stathis; Wheeler, Bruce C; DeMarse, Thomas B
2016-01-01
In this study, we created four network topologies composed of living cortical neurons and compared resultant structural-functional dynamics including the nature and quality of information transmission. Each living network was composed of living cortical neurons and were created using microstamping of adhesion promoting molecules and each was "designed" with different levels of convergence embedded within each structure. Networks were cultured over a grid of electrodes that permitted detailed measurements of neural activity at each node in the network. Of the topologies we tested, the "Random" networks in which neurons connect based on their own intrinsic properties transmitted information embedded within their spike trains with higher fidelity relative to any other topology we tested. Within our patterned topologies in which we explicitly manipulated structure, the effect of convergence on fidelity was dependent on both topology and time-scale (rate vs. temporal coding). A more detailed examination using tools from network analysis revealed that these changes in fidelity were also associated with a number of other structural properties including a node's degree, degree-degree correlations, path length, and clustering coefficients. Whereas information transmission was apparent among nodes with few connections, the greatest transmission fidelity was achieved among the few nodes possessing the highest number of connections (high degree nodes or putative hubs). These results provide a unique view into the relationship between structure and its affect on transmission fidelity, at least within these small neural populations with defined network topology. They also highlight the potential role of tools such as microstamp printing and microelectrode array recordings to construct and record from arbitrary network topologies to provide a new direction in which to advance the study of structure-function relationships.
Li, Chen; Wang, Haiwei; Yuan, Tiangang; Woodman, Andrew; Yang, Decheng; Zhou, Guohui; Cameron, Craig E; Yu, Li
2018-05-01
Previous studies have shown that the FMDV Asia1/YS/CHA/05 high-fidelity mutagen-resistant variants are attenuated (Zeng et al., 2014). Here, we introduced the same single or multiple-amino-acid substitutions responsible for increased 3D pol fidelity of type Asia1 FMDV into the type O FMDV O/YS/CHA/05 infectious clone. The rescued viruses O-DA and O-DAMM are lower replication fidelity mutants and showed an attenuated phenotype. These results demonstrated that the same amino acid substitution of 3D pol in different serotypes of FMDV strains had different effects on viral fidelity. In addition, nucleoside analogues were used to select high-fidelity mutagen-resistant type O FMDV variants. The rescued mutagen-resistant type O FMDV high-fidelity variants exhibited significantly attenuated fitness and a reduced virulence phenotype. These results have important implications for understanding the molecular mechanism of FMDV evolution and pathogenicity, especially in developing a safer modified live-attenuated vaccine against FMDV. Copyright © 2018 Elsevier Inc. All rights reserved.
Holistic approach for overlay and edge placement error to meet the 5nm technology node requirements
NASA Astrophysics Data System (ADS)
Mulkens, Jan; Slachter, Bram; Kubis, Michael; Tel, Wim; Hinnen, Paul; Maslow, Mark; Dillen, Harm; Ma, Eric; Chou, Kevin; Liu, Xuedong; Ren, Weiming; Hu, Xuerang; Wang, Fei; Liu, Kevin
2018-03-01
In this paper, we discuss the metrology methods and error budget that describe the edge placement error (EPE). EPE quantifies the pattern fidelity of a device structure made in a multi-patterning scheme. Here the pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. EPE is computed by combining optical and ebeam metrology data. We show that high NA optical scatterometer can be used to densely measure in device CD and overlay errors. Large field e-beam system enables massive CD metrology which is used to characterize the local CD error. Local CD distribution needs to be characterized beyond 6 sigma, and requires high throughput e-beam system. We present in this paper the first images of a multi-beam e-beam inspection system. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As a use case, we evaluated a 5-nm logic patterning process based on Self-Aligned-QuadruplePatterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography.
Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis
Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.
2015-01-01
Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505
Acuña-Marrero, David; Smith, Adam N H; Hammerschlag, Neil; Hearn, Alex; Anderson, Marti J; Calich, Hannah; Pawley, Matthew D M; Fischer, Chris; Salinas-de-León, Pelayo
2017-01-01
The potential effectiveness of marine protected areas (MPAs) as a conservation tool for large sharks has been questioned due to the limited spatial extent of most MPAs in contrast to the complex life history and high mobility of many sharks. Here we evaluated the movement dynamics of a highly migratory apex predatory shark (tiger shark Galeocerdo cuvier) at the Galapagos Marine Reserve (GMR). Using data from satellite tracking passive acoustic telemetry, and stereo baited remote underwater video, we estimated residency, activity spaces, site fidelity, distributional abundances and migration patterns from the GMR and in relation to nesting beaches of green sea turtles (Chelonia mydas), a seasonally abundant and predictable prey source for large tiger sharks. Tiger sharks exhibited a high degree of philopatry, with 93% of the total satellite-tracked time across all individuals occurring within the GMR. Large sharks (> 200 cm TL) concentrated their movements in front of the two most important green sea turtle-nesting beaches in the GMR, visiting them on a daily basis during nocturnal hours. In contrast, small sharks (< 200 cm TL) rarely visited turtle-nesting areas and displayed diurnal presence at a third location where only immature sharks were found. Small and some large individuals remained in the three study areas even outside of the turtle-nesting season. Only two sharks were satellite-tracked outside of the GMR, and following long-distance migrations, both individuals returned to turtle-nesting beaches at the subsequent turtle-nesting season. The spatial patterns of residency and site fidelity of tiger sharks suggest that the presence of a predictable source of prey and suitable habitats might reduce the spatial extent of this large shark that is highly migratory in other parts of its range. This highly philopatric behaviour enhances the potential effectiveness of the GMR for their protection.
Smith, Adam N. H.; Hammerschlag, Neil; Hearn, Alex; Anderson, Marti J.; Calich, Hannah; Pawley, Matthew D. M.; Fischer, Chris; Salinas-de-León, Pelayo
2017-01-01
The potential effectiveness of marine protected areas (MPAs) as a conservation tool for large sharks has been questioned due to the limited spatial extent of most MPAs in contrast to the complex life history and high mobility of many sharks. Here we evaluated the movement dynamics of a highly migratory apex predatory shark (tiger shark Galeocerdo cuvier) at the Galapagos Marine Reserve (GMR). Using data from satellite tracking passive acoustic telemetry, and stereo baited remote underwater video, we estimated residency, activity spaces, site fidelity, distributional abundances and migration patterns from the GMR and in relation to nesting beaches of green sea turtles (Chelonia mydas), a seasonally abundant and predictable prey source for large tiger sharks. Tiger sharks exhibited a high degree of philopatry, with 93% of the total satellite-tracked time across all individuals occurring within the GMR. Large sharks (> 200 cm TL) concentrated their movements in front of the two most important green sea turtle-nesting beaches in the GMR, visiting them on a daily basis during nocturnal hours. In contrast, small sharks (< 200 cm TL) rarely visited turtle-nesting areas and displayed diurnal presence at a third location where only immature sharks were found. Small and some large individuals remained in the three study areas even outside of the turtle-nesting season. Only two sharks were satellite-tracked outside of the GMR, and following long-distance migrations, both individuals returned to turtle-nesting beaches at the subsequent turtle-nesting season. The spatial patterns of residency and site fidelity of tiger sharks suggest that the presence of a predictable source of prey and suitable habitats might reduce the spatial extent of this large shark that is highly migratory in other parts of its range. This highly philopatric behaviour enhances the potential effectiveness of the GMR for their protection. PMID:28829820
Cultured High-Fidelity Three-Dimensional Human Urogenital Tract Carcinomas and Process
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)
1998-01-01
Artificial high-fidelity three-dimensional human urogenital tract carcinomas are propagated under in vitro-microgravity conditions from carcinoma cells. Artificial high-fidelity three-dimensional human urogenital tract carcinomas are also propagated from a coculture of normal urogenital tract cells inoculated with carcinoma cells. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
An Automatic Medium to High Fidelity Low-Thrust Global Trajectory Toolchain; EMTG-GMAT
NASA Technical Reports Server (NTRS)
Beeson, Ryne T.; Englander, Jacob A.; Hughes, Steven P.; Schadegg, Maximillian
2015-01-01
Solving the global optimization, low-thrust, multiple-flyby interplanetary trajectory problem with high-fidelity dynamical models requires an unreasonable amount of computational resources. A better approach, and one that is demonstrated in this paper, is a multi-step process whereby the solution of the aforementioned problem is solved at a lower-fidelity and this solution is used as an initial guess for a higher-fidelity solver. The framework presented in this work uses two tools developed by NASA Goddard Space Flight Center: the Evolutionary Mission Trajectory Generator (EMTG) and the General Mission Analysis Tool (GMAT). EMTG is a medium to medium-high fidelity low-thrust interplanetary global optimization solver, which now has the capability to automatically generate GMAT script files for seeding a high-fidelity solution using GMAT's local optimization capabilities. A discussion of the dynamical models as well as thruster and power modeling for both EMTG and GMAT are given in this paper. Current capabilities are demonstrated with examples that highlight the toolchains ability to efficiently solve the difficult low-thrust global optimization problem with little human intervention.
Mask manufacturing of advanced technology designs using multi-beam lithography (Part 1)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-10-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking Sub-Resolution Assist Features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, we study one such process, characterizing mask manufacturing capability of 10nm and below structures with particular focus on minimum resolution and pattern fidelity.
Park, Jong Hyuk; Nagpal, Prashant; McPeak, Kevin M; Lindquist, Nathan C; Oh, Sang-Hyun; Norris, David J
2013-10-09
The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics.
Multi-fidelity methods for uncertainty quantification in transport problems
NASA Astrophysics Data System (ADS)
Tartakovsky, G.; Yang, X.; Tartakovsky, A. M.; Barajas-Solano, D. A.; Scheibe, T. D.; Dai, H.; Chen, X.
2016-12-01
We compare several multi-fidelity approaches for uncertainty quantification in flow and transport simulations that have a lower computational cost than the standard Monte Carlo method. The cost reduction is achieved by combining a small number of high-resolution (high-fidelity) simulations with a large number of low-resolution (low-fidelity) simulations. We propose a new method, a re-scaled Multi Level Monte Carlo (rMLMC) method. The rMLMC is based on the idea that the statistics of quantities of interest depends on scale/resolution. We compare rMLMC with existing multi-fidelity methods such as Multi Level Monte Carlo (MLMC) and reduced basis methods and discuss advantages of each approach.
ERIC Educational Resources Information Center
Raedeke, Thomas D.; Dlugonski, Deirdre
2017-01-01
Purpose: This study was designed to compare a low versus high theoretical fidelity pedometer intervention applying social-cognitive theory on step counts and self-efficacy. Method: Fifty-six public university employees participated in a 10-week randomized controlled trial with 2 conditions that varied in theoretical fidelity. Participants in the…
Improving contact layer patterning using SEM contour based etch model
NASA Astrophysics Data System (ADS)
Weisbuch, François; Lutich, Andrey; Schatz, Jirka; Hertzsch, Tino; Moll, Hans-Peter
2016-10-01
The patterning of the contact layer is modulated by strong etch effects that are highly dependent on the geometry of the contacts. Such litho-etch biases need to be corrected to ensure a good pattern fidelity. But aggressive designs contain complex shapes that can hardly be compensated with etch bias table and are difficult to characterize with standard CD metrology. In this work we propose to implement a model based etch compensation method able to deal with any contact configuration. With the help of SEM contours, it was possible to get reliable 2D measurements particularly helpful to calibrate the etch model. The selections of calibration structures was optimized in combination with model form to achieve an overall errRMS of 3nm allowing the implementation of the model in production.
Creation of a Rapid High-Fidelity Aerodynamics Module for a Multidisciplinary Design Environment
NASA Technical Reports Server (NTRS)
Srinivasan, Muktha; Whittecar, William; Edwards, Stephen; Mavris, Dimitri N.
2012-01-01
In the traditional aerospace vehicle design process, each successive design phase is accompanied by an increment in the modeling fidelity of the disciplinary analyses being performed. This trend follows a corresponding shrinking of the design space as more and more design decisions are locked in. The correlated increase in knowledge about the design and decrease in design freedom occurs partly because increases in modeling fidelity are usually accompanied by significant increases in the computational expense of performing the analyses. When running high fidelity analyses, it is not usually feasible to explore a large number of variations, and so design space exploration is reserved for conceptual design, and higher fidelity analyses are run only once a specific point design has been selected to carry forward. The designs produced by this traditional process have been recognized as being limited by the uncertainty that is present early on due to the use of lower fidelity analyses. For example, uncertainty in aerodynamics predictions produces uncertainty in trajectory optimization, which can impact overall vehicle sizing. This effect can become more significant when trajectories are being shaped by active constraints. For example, if an optimal trajectory is running up against a normal load factor constraint, inaccuracies in the aerodynamic coefficient predictions can cause a feasible trajectory to be considered infeasible, or vice versa. For this reason, a trade must always be performed between the desired fidelity and the resources available. Apart from this trade between fidelity and computational expense, it is very desirable to use higher fidelity analyses earlier in the design process. A large body of work has been performed to this end, led by efforts in the area of surrogate modeling. In surrogate modeling, an up-front investment is made by running a high fidelity code over a Design of Experiments (DOE); once completed, the DOE data is used to create a surrogate model, which captures the relationships between input variables and responses into regression equations. Depending on the dimensionality of the problem and the fidelity of the code for which a surrogate model is being created, the initial DOE can itself be computationally prohibitive to run. Cokriging, a modeling approach from the field of geostatistics, provides a desirable compromise between computational expense and fidelity. To do this, cokriging leverages a large body of data generated by a low fidelity analysis, combines it with a smaller set of data from a higher fidelity analysis, and creates a kriging surrogate model with prediction fidelity approaching that of the higher fidelity analysis. When integrated into a multidisciplinary environment, a disciplinary analysis module employing cokriging can raise the analysis fidelity without drastically impacting the expense of design iterations. This is demonstrated through the creation of an aerodynamics analysis module in NASA s OpenMDAO framework. Aerodynamic analyses including Missile DATCOM, APAS, and USM3D are leveraged to create high fidelity aerodynamics decks for parametric vehicle geometries, which are created in NASA s Vehicle Sketch Pad (VSP). Several trade studies are performed to examine the achieved level of model fidelity, and the overall impact to vehicle design is quantified.
Experiments towards establishing of design rules for R2R-UV-NIL with polymer working shims
NASA Astrophysics Data System (ADS)
Nees, Dieter; Ruttloff, Stephan; Palfinger, Ursula; Stadlober, Barbara
2016-03-01
Roll-to-Roll-UV-nanoimprint lithography (R2R-UV-NIL) enables high resolution large area patterning of flexible substrates and is therefore of increasing industrial interest. We have set up a custom-made R2R-UV-NIL pilot machine which is able to convert 10 inch wide web with velocities of up to 30 m/min. In addition, we have developed self-replicable UV-curable resins with tunable surface energy and Young's modulus for UV-imprint material as well as for polymer working stamp/shim manufacturing. Now we have designed test patterns for the evaluation of the impact of structure shape, critical dimension, pitch, depth, side wall angle and orientation relative to the web movement onto the imprint fidelity and working shim life time. We have used female (recessed structures) silicon masters of that design with critical dimensions between CD = 200 nm and 1600 nm, and structure depths of d = 500 nm and 1000 nm - all with vertical as well as inclined side walls. These entire master patterns have been transferred onto single male (protruding structures) R2R polymer working shims. The polymer working shims have been used for R2R-UV-NIL runs of several hundred meters and the imprint fidelity and process stability of the various test patterns have been compared. This study is intended as a first step towards establishing of design rules and developing of nanoimprint proximity correction strategies for industrial R2R-UV-NIL processes using polymer working shims.
High-fidelity in vivo replication of DNA base shape mimics without Watson–Crick hydrogen bonds
Delaney, James C.; Henderson, Paul T.; Helquist, Sandra A.; Morales, Juan C.; Essigmann, John M.; Kool, Eric T.
2003-01-01
We report studies testing the importance of Watson–Crick hydrogen bonding, base-pair geometry, and steric effects during DNA replication in living bacterial cells. Nonpolar DNA base shape mimics of thymine and adenine (abbreviated F and Q, respectively) were introduced into Escherichia coli by insertion into a phage genome followed by transfection of the vector into bacteria. Genetic assays showed that these two base mimics were bypassed with moderate to high efficiency in the cells and with very high efficiency under damage-response (SOS induction) conditions. Under both sets of conditions, the T-shape mimic (F) encoded genetic information in the bacteria as if it were thymine, directing incorporation of adenine opposite it with high fidelity. Similarly, the A mimic (Q) directed incorporation of thymine opposite itself with high fidelity. The data establish that Watson–Crick hydrogen bonding is not necessary for high-fidelity replication of a base pair in vivo. The results suggest that recognition of DNA base shape alone serves as the most powerful determinant of fidelity during transfer of genetic information in a living organism. PMID:12676985
2010-07-26
evolving Voce hardness at the end of each bending and straightening cycle. The value contoured is the element average Voce hardness calculated by volume...cycle is shown in Figure 18. These results show that the gradient hardness is on the order of 10% of the Voce hardness. Increasing the gradient...the models or to the Voce hardness patterns. There are notable changes between the fully bent and fully straightened deformations that indicate a
Dubbin, Karen; Hori, Yuki; Lewis, Kazuomori K; Heilshorn, Sarah C
2016-10-01
Current bioinks for cell-based 3D bioprinting are not suitable for technology scale-up due to the challenges of cell sedimentation, cell membrane damage, and cell dehydration. A novel bioink hydrogel is presented with dual-stage crosslinking specifically designed to overcome these three major hurdles. This bioink enables the direct patterning of highly viable, multicell type constructs with long-term spatial fidelity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Achieving pattern uniformity in plasmonic lithography by spatial frequency selection
NASA Astrophysics Data System (ADS)
Liang, Gaofeng; Chen, Xi; Zhao, Qing; Guo, L. Jay
2018-01-01
The effects of the surface roughness of thin films and defects on photomasks are investigated in two representative plasmonic lithography systems: thin silver film-based superlens and multilayer-based hyperbolic metamaterial (HMM). Superlens can replicate arbitrary patterns because of its broad evanescent wave passband, which also makes it inherently vulnerable to the roughness of the thin film and imperfections of the mask. On the other hand, the HMM system has spatial frequency filtering characteristics and its pattern formation is based on interference, producing uniform and stable periodic patterns. In this work, we show that the HMM system is more immune to such imperfections due to its function of spatial frequency selection. The analyses are further verified by an interference lithography system incorporating the photoresist layer as an optical waveguide to improve the aspect ratio of the pattern. It is concluded that a system capable of spatial frequency selection is a powerful method to produce deep-subwavelength periodic patterns with high degree of uniformity and fidelity.
Transfer molding processes for nanoscale patterning of poly-L-lactic acid (PLLA) films
NASA Astrophysics Data System (ADS)
Dhakal, Rabin; Peer, Akshit; Biswas, Rana; Kim, Jaeyoun
2016-03-01
Nanoscale patterned structures composed of biomaterials exhibit great potential for the fabrication of functional biostructures. In this paper, we report cost-effective, rapid, and highly reproducible soft lithographic transfer-molding techniques for creating periodic micro- and nano-scale textures on poly (L-lactic acid) (PLLA) surface. These artificial textures can increase the overall surface area and change the release dynamics of the therapeutic agents coated on it. Specifically, we use the double replication technique in which the master pattern is first transferred to the PDMS mold and the pattern on PDMS is then transferred to the PLLA films through drop-casting as well as nano-imprinting. The ensuing comparison studies reveal that the drop-cast PLLA allows pattern transfer at higher levels of fidelity, enabling the realization of nano-hole and nano-cone arrays with pitch down to ~700 nm. The nano-patterned PLLA film was then coated with rapamycin to make it drug-eluting.
High Fidelity Simulation of Atomization in Diesel Engine Sprays
2015-09-01
ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D
Implementation Fidelity in Community-Based Interventions
Breitenstein, Susan M.; Gross, Deborah; Garvey, Christine; Hill, Carri; Fogg, Louis; Resnick, Barbara
2012-01-01
Implementation fidelity is the degree to which an intervention is delivered as intended and is critical to successful translation of evidence-based interventions into practice. Diminished fidelity may be why interventions that work well in highly controlled trials may fail to yield the same outcomes when applied in real life contexts. The purpose of this paper is to define implementation fidelity and describe its importance for the larger science of implementation, discuss data collection methods and current efforts in measuring implementation fidelity in community-based prevention interventions, and present future research directions for measuring implementation fidelity that will advance implementation science. PMID:20198637
NPSS Multidisciplinary Integration and Analysis
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Rasche, Joseph; Simons, Todd A.; Hoyniak, Daniel
2006-01-01
The objective of this task was to enhance the capability of the Numerical Propulsion System Simulation (NPSS) by expanding its reach into the high-fidelity multidisciplinary analysis area. This task investigated numerical techniques to convert between cold static to hot running geometry of compressor blades. Numerical calculations of blade deformations were iteratively done with high fidelity flow simulations together with high fidelity structural analysis of the compressor blade. The flow simulations were performed with the Advanced Ducted Propfan Analysis (ADPAC) code, while structural analyses were performed with the ANSYS code. High fidelity analyses were used to evaluate the effects on performance of: variations in tip clearance, uncertainty in manufacturing tolerance, variable inlet guide vane scheduling, and the effects of rotational speed on the hot running geometry of the compressor blades.
Cherry, Seth G; Derocher, Andrew E; Thiemann, Gregory W; Lunn, Nicholas J
2013-07-01
Understanding how seasonal environmental conditions affect the timing and distribution of synchronized animal movement patterns is a central issue in animal ecology. Migration, a behavioural adaptation to seasonal environmental fluctuations, is a fundamental part of the life history of numerous species. However, global climate change can alter the spatiotemporal distribution of resources and thus affect the seasonal movement patterns of migratory animals. We examined sea ice dynamics relative to migration patterns and seasonal geographical fidelity of an Arctic marine predator, the polar bear (Ursus maritimus). Polar bear movement patterns were quantified using satellite-linked telemetry data collected from collars deployed between 1991-1997 and 2004-2009. We showed that specific sea ice characteristics can predict the timing of seasonal polar bear migration on and off terrestrial refugia. In addition, fidelity to specific onshore regions during the ice-free period was predicted by the spatial pattern of sea ice break-up but not by the timing of break-up. The timing of migration showed a trend towards earlier arrival of polar bears on shore and later departure from land, which has been driven by climate-induced declines in the availability of sea ice. Changes to the timing of migration have resulted in polar bears spending progressively longer periods of time on land without access to sea ice and their marine mammal prey. The links between increased atmospheric temperatures, sea ice dynamics, and the migratory behaviour of an ice-dependent species emphasizes the importance of quantifying and monitoring relationships between migratory wildlife and environmental cues that may be altered by climate change. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Generation and applications of an ultrahigh-fidelity four-photon Greenberger-Horne-Zeilinger state.
Zhang, Chao; Huang, Yun-Feng; Zhang, Cheng-Jie; Wang, Jian; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can
2016-11-28
High-quality entangled photon pairs generated via spontaneous parametric down-conversion have made great contributions to the modern quantum information science and the fundamental tests of quantum mechanics. However, the quality of the entangled states decreases sharply when moving from biphoton to multiphoton experiments, mainly due to the lack of interactions between photons. Here, for the first time, we generate a four-photon Greenberger-Horne-Zeilinger state with a fidelity of 98%, which is even comparable to the best fidelity of biphoton entangled states. Thus, it enables us to demonstrate an ultrahigh-fidelity entanglement swapping-the key ingredient in various quantum information tasks. Our results push the fidelity of multiphoton entanglement generation to a new level and would be useful in some demanding tasks, e.g., we successfully demonstrate the genuine multipartite nonlocality of the observed state in the nonsignaling scenario by violating a novel Hardy-like inequality, which requires very high state-fidelity.
Pattern fidelity improvement of chemo-epitaxy DSA process for high-volume manufacturing
NASA Astrophysics Data System (ADS)
Muramatsu, Makoto; Nishi, Takanori; You, Gen; Saito, Yusuke; Ido, Yasuyuki; Ito, Kiyohito; Tobana, Toshikatsu; Hosoya, Masanori; Chen, Weichien; Nakamura, Satoru; Somervell, Mark; Kitano, Takahiro
2016-03-01
Directed self-assembly (DSA) is one of the candidates for next generation lithography. Over the past few years, cylindrical and lamellar structures dictated by the block co-polymer (BCP) composition have been investigated for use in patterning contact holes or lines, and, Tokyo Electron Limited (TEL is a registered trademark or a trademark of Tokyo Electron Limited in Japan and /or other countries.) has presented the evaluation results and the advantages of each-1-5. In this report, we will present the latest results regarding the defect reduction work on a model line/space system. Especially it is suggested that the defectivity of the neutral layer has a large impact on the defectivity of the DSA patterns. Also, LER/LWR reduction results will be presented with a focus on the improvements made during the etch transferring the DSA patterns into the underlayer.
C-FSCV: Compressive Fast-Scan Cyclic Voltammetry for Brain Dopamine Recording.
Zamani, Hossein; Bahrami, Hamid Reza; Chalwadi, Preeti; Garris, Paul A; Mohseni, Pedram
2018-01-01
This paper presents a novel compressive sensing framework for recording brain dopamine levels with fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode. Termed compressive FSCV (C-FSCV), this approach compressively samples the measured total current in each FSCV scan and performs basic FSCV processing steps, e.g., background current averaging and subtraction, directly with compressed measurements. The resulting background-subtracted faradaic currents, which are shown to have a block-sparse representation in the discrete cosine transform domain, are next reconstructed from their compressively sampled counterparts with the block sparse Bayesian learning algorithm. Using a previously recorded dopamine dataset, consisting of electrically evoked signals recorded in the dorsal striatum of an anesthetized rat, the C-FSCV framework is shown to be efficacious in compressing and reconstructing brain dopamine dynamics and associated voltammograms with high fidelity (correlation coefficient, ), while achieving compression ratio, CR, values as high as ~ 5. Moreover, using another set of dopamine data recorded 5 minutes after administration of amphetamine (AMPH) to an ambulatory rat, C-FSCV once again compresses (CR = 5) and reconstructs the temporal pattern of dopamine release with high fidelity ( ), leading to a true-positive rate of 96.4% in detecting AMPH-induced dopamine transients.
Implementing a high-fidelity simulation program in a community college setting.
Tuoriniemi, Pamela; Schott-Baer, Darlene
2008-01-01
Despite their relatively high cost, there is heightened interest by faculty in undergraduate nursing programs to implement high-fidelity simulation (HFS) programs. High-fidelity simulators are appealing because they allow students to experience high-risk, low-volume patient problems in a realistic setting. The decision to purchase a simulator is the first step in the process of implementing and maintaining an HFS lab. Knowledge, technical skill, commitment, and considerable time are needed to develop a successful program. The process, as experienced by one community college nursing program, is described.
Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério
2014-03-01
The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills' training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs' skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P < 0.0000) and felt more confident to perform elliptical excision skills (all P < 0.0000) when compared to the control. There was no significant difference (all P > 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills' training) was considered large (>0.80) in all measurements. The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials.
Lu, Hsuan-Hao; Lukens, Joseph M.; Peters, Nicholas A.; ...
2018-01-18
In this paper, we report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.99998±0.00003), requires only a single microwave drive tone for near-ideal performance, functions across the entire C band (1530–1570 nm), and can operate concurrently on multiple qubits spaced as tightly as four frequency modes apart, with no observable degradation in the fidelity. For qutrits, we implement a 3×3 extension of the Hadamard gate: the balanced tritter. This tritter—the first ever demonstrated for frequency modes—attains fidelitymore » 0.9989±0.0004. Finally, these gates represent important building blocks toward scalable, high-fidelity quantum information processing based on frequency encoding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Hsuan-Hao; Lukens, Joseph M.; Peters, Nicholas A.
In this paper, we report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.99998±0.00003), requires only a single microwave drive tone for near-ideal performance, functions across the entire C band (1530–1570 nm), and can operate concurrently on multiple qubits spaced as tightly as four frequency modes apart, with no observable degradation in the fidelity. For qutrits, we implement a 3×3 extension of the Hadamard gate: the balanced tritter. This tritter—the first ever demonstrated for frequency modes—attains fidelitymore » 0.9989±0.0004. Finally, these gates represent important building blocks toward scalable, high-fidelity quantum information processing based on frequency encoding.« less
Rotorcraft Research at the NASA Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Aponso, Bimal Lalith; Tran, Duc T.; Schroeder, Jeffrey A.
2009-01-01
In the 1970 s the role of the military helicopter evolved to encompass more demanding missions including low-level nap-of-the-earth flight and operation in severely degraded visual environments. The Vertical Motion Simulator (VMS) at the NASA Ames Research Center was built to provide a high-fidelity simulation capability to research new rotorcraft concepts and technologies that could satisfy these mission requirements. The VMS combines a high-fidelity large amplitude motion system with an adaptable simulation environment including interchangeable and configurable cockpits. In almost 30 years of operation, rotorcraft research on the VMS has contributed significantly to the knowledge-base on rotorcraft performance, handling qualities, flight control, and guidance and displays. These contributions have directly benefited current rotorcraft programs and flight safety. The high fidelity motion system in the VMS was also used to research simulation fidelity. This research provided a fundamental understanding of pilot cueing modalities and their effect on simulation fidelity.
Communication variations and aircrew performance
NASA Technical Reports Server (NTRS)
Kanki, Barbara G.; Folk, Valerie G.; Irwin, Cheryl M.
1991-01-01
The relationship between communication variations and aircrew performance (high-error vs low-error performances) was investigated by analyzing the coded verbal transcripts derived from the videotape records of 18 two-person air transport crews who participated in a high-fidelity, full-mission flight simulation. The flight scenario included a task which involved abnormal operations and required the coordinated efforts of all crew members. It was found that the best-performing crews were characterized by nearly identical patterns of communication, whereas the midrange and poorer performing crews showed a great deal of heterogeneity in their speech patterns. Although some specific speech sequences can be interpreted as being more or less facilitative to the crew-coordination process, predictability appears to be the key ingredient for enhancing crew performance. Crews communicating in highly standard (hence predictable) ways were better able to coordinate their task, whereas crews characterized by multiple, nonstandard communication profiles were less effective in their performance.
Prioritization of Potential Mates' History of Sexual Fidelity During a Conjoint Ranking Task.
Mogilski, Justin K; Wade, T Joel; Welling, Lisa L M
2014-07-01
This series of studies is the first to use conjoint analysis to examine how individuals make trade-offs during mate selection when provided information about a partner's history of sexual infidelity. Across three studies, participants ranked profiles of potential mates, with each profile varying across five attributes: financial stability, physical attractiveness, sexual fidelity, emotional investment, and similarity. They also rated each attribute separately for importance in an ideal mate. Overall, we found that for a long-term mate, participants prioritized a potential partner's history of sexual fidelity over other attributes when profiles were ranked conjointly. For a short-term mate, sexual fidelity, physical attractiveness, and financial stability were equally important, and each was more important than emotional investment and similarity. These patterns contrast with participants' self-reported importance ratings of each individual attribute. Our results are interpreted within the context of previous literature examining how making trade-offs affect mate selection. © 2014 by the Society for Personality and Social Psychology, Inc.
First-Order Frameworks for Managing Models in Engineering Optimization
NASA Technical Reports Server (NTRS)
Alexandrov, Natlia M.; Lewis, Robert Michael
2000-01-01
Approximation/model management optimization (AMMO) is a rigorous methodology for attaining solutions of high-fidelity optimization problems with minimal expense in high- fidelity function and derivative evaluation. First-order AMMO frameworks allow for a wide variety of models and underlying optimization algorithms. Recent demonstrations with aerodynamic optimization achieved three-fold savings in terms of high- fidelity function and derivative evaluation in the case of variable-resolution models and five-fold savings in the case of variable-fidelity physics models. The savings are problem dependent but certain trends are beginning to emerge. We give an overview of the first-order frameworks, current computational results, and an idea of the scope of the first-order framework applicability.
Vermeulen, Joeri; Beeckman, Katrien; Turcksin, Rivka; Van Winkel, Lies; Gucciardo, Léonardo; Laubach, Monika; Peersman, Wim; Swinnen, Eva
2017-06-01
Simulation training is a powerful and evidence-based teaching method in healthcare. It allows students to develop essential competences that are often difficult to achieve during internships. High-Fidelity Perinatal Simulation exposes them to real-life scenarios in a safe environment. Although student midwives' experiences need to be considered to make the simulation training work, these have been overlooked so far. To explore the experiences of last-year student midwives with High-Fidelity Perinatal Simulation training. A qualitative descriptive study, using three focus group conversations with last-year student midwives (n=24). Audio tapes were transcribed and a thematic content analysis was performed. The entire data set was coded according to recurrent or common themes. To achieve investigator triangulation and confirm themes, discussions among the researchers was incorporated in the analysis. Students found High-Fidelity Perinatal Simulation training to be a positive learning method that increased both their competence and confidence. Their experiences varied over the different phases of the High-Fidelity Perinatal Simulation training. Although uncertainty, tension, confusion and disappointment were experienced throughout the simulation trajectory, they reported that this did not affect their learning and confidence-building. As High-Fidelity Perinatal Simulation training constitutes a helpful learning experience in midwifery education, it could have a positive influence on maternal and neonatal outcomes. In the long term, it could therefore enhance the midwifery profession in several ways. The present study is an important first step in opening up the debate about the pedagogical use of High-Fidelity Perinatal Simulation training within midwifery education. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.
Mejía, Vilma; Gonzalez, Carlos; Delfino, Alejandro E; Altermatt, Fernando R; Corvetto, Marcia A
The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects' performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025), prioritization of initial actions of management (p = 0.003), recognize complications (p = 0.025) and communication (p = 0.025). Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032). Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents. Copyright © 2018 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Applications of fidelity measures to complex quantum systems
2016-01-01
We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular–chaotic phase space. PMID:27140967
Tokunaga, Yuuki; Kuwashiro, Shin; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
2008-05-30
We experimentally demonstrate a simple scheme for generating a four-photon entangled cluster state with fidelity over 0.860+/-0.015. We show that the fidelity is high enough to guarantee that the produced state is distinguished from Greenberger-Horne-Zeilinger, W, and Dicke types of genuine four-qubit entanglement. We also demonstrate basic operations of one-way quantum computing using the produced state and show that the output state fidelities surpass classical bounds, which indicates that the entanglement in the produced state essentially contributes to the quantum operation.
Implementation of a Text-Based Content Intervention in Secondary Social Studies Classes.
Wanzek, Jeanne; Vaughn, Sharon
2016-12-01
We describe teacher fidelity (adherence to the components of the treatment as specified by the research team) based on a series of studies of a multicomponent intervention, Promoting Acceleration of Comprehension and Content Through Text (PACT), with middle and high school social studies teachers and their students. Findings reveal that even with highly specified materials and implementing practices that are aligned with effective reading comprehension and content instruction, teachers' fidelity was consistently low for some components and high for others. Teachers demonstrated consistently high implementation fidelity and quality for the instructional components of building background knowledge (comprehension canopy) and teaching key content vocabulary (essential words), whereas we recorded consistently lower fidelity and quality of implementation for the instructional components of critical reading and knowledge application. © 2016 Wiley Periodicals, Inc.
A comparison of select image-compression algorithms for an electronic still camera
NASA Technical Reports Server (NTRS)
Nerheim, Rosalee
1989-01-01
This effort is a study of image-compression algorithms for an electronic still camera. An electronic still camera can record and transmit high-quality images without the use of film, because images are stored digitally in computer memory. However, high-resolution images contain an enormous amount of information, and will strain the camera's data-storage system. Image compression will allow more images to be stored in the camera's memory. For the electronic still camera, a compression algorithm that produces a reconstructed image of high fidelity is most important. Efficiency of the algorithm is the second priority. High fidelity and efficiency are more important than a high compression ratio. Several algorithms were chosen for this study and judged on fidelity, efficiency and compression ratio. The transform method appears to be the best choice. At present, the method is compressing images to a ratio of 5.3:1 and producing high-fidelity reconstructed images.
Valenzuela, Luciano O; Sironi, Mariano; Rowntree, Victoria J; Seger, Jon
2009-03-01
Ocean warming will undoubtedly affect the migratory patterns of many marine species, but specific changes can be predicted only where behavioural mechanisms guiding migration are understood. Southern right whales show maternally inherited site fidelity to near-shore winter nursery grounds, but exactly where they feed in summer (collectively and individually) remains mysterious. They consume huge quantities of copepods and krill, and their reproductive rates respond to fluctuations in krill abundance linked to El Niño Southern Oscillation (ENSO). Here we show that genetic and isotopic signatures, analysed together, indicate maternally directed site fidelity to diverse summer feeding grounds for female right whales calving at Península Valdés, Argentina. Isotopic values from 131 skin samples span a broad range (-23.1 to -17.2‰ δ¹³C, 6.0 to 13.8‰ δ¹⁵N) and are more similar than expected among individuals sharing the same mitochondrial haplotype. This pattern indicates that calves learn summer feeding locations from their mothers, and that the timescale of culturally inherited site fidelity to feeding grounds is at least several generations. Such conservatism would be expected to limit the exploration of new feeding opportunities, and may explain why this population shows increased rates of reproductive failure in years following elevated sea-surface temperature anomalies off South Georgia, the richest known feeding ground for baleen whales in the South Atlantic.
Pearce, J.M.; Talbot, S.L.; Petersen, M.R.; Rearick, J.R.
2005-01-01
Due to declines in the Alaska breeding population, the Steller's eider (Polysticta stelleri) was listed as threatened in North America in 1997. Periodic non-breeding in Russia and Alaska has hampered field-based assessments of behavioral patterns critical to recovery plans, such as levels of breeding site fidelity and movements among three regional populations: Atlantic-Russia, Pacific-Russia and Alaska. Therefore, we analyzed samples from across the species range with seven nuclear microsatellite DNA loci and cytochrome b mitochondrial (mt)DNA sequence data to infer levels of interchange among sampling areas and patterns of site fidelity. Results demonstrated low levels of population differentiation within Atlantic and Pacific nesting areas, with higher levels observed between these regions, but only for mtDNA. Bayesian analysis of microsatellite data from wintering and molting birds showed no signs of sub-population structure, even though band-recovery data suggests multiple breeding areas are present. We observed higher estimates of F-statistics for female mtDNA data versus male data, suggesting female-biased natal site fidelity. Summary statistics for mtDNA were consistent with models of historic population expansion. Lack of spatial structure in Steller's eiders may result largely from insufficient time since historic population expansions for behaviors, such as natal site fidelity, to isolate breeding areas genetically. However, other behaviors such as the periodic non-breeding observed in Steller's eiders may also play a more contemporary role in genetic homogeneity, especially for microsatellite loci.
Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.
Massey, Steven M; Spring, Justin B; Russell, Timothy H
2008-07-21
Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.
Jerger, Susan; Tye-Murray, Nancy; Damian, Markus F.; Abdi, Hervé
2016-01-01
Objectives Our research determined 1) how phonological priming of picture naming was affected by the mode (auditory-visual [AV] vs auditory), fidelity (intact vs non-intact auditory onsets), and lexical status (words vs nonwords) of speech stimuli in children with prelingual sensorineural hearing impairment (CHI) vs. children with normal hearing (CNH); and 2) how the degree of hearing impairment (HI), auditory word recognition, and age influenced results in CHI. Note that some of our AV stimuli were not the traditional bimodal input but instead they consisted of an intact consonant/rhyme in the visual track coupled to a non-intact onset/rhyme in the auditory track. Example stimuli for the word bag are: 1) AV: intact visual (b/ag) coupled to non-intact auditory (−b/ag) and 2) Auditory: static face coupled to the same non-intact auditory (−b/ag). Our question was whether the intact visual speech would “restore or fill-in” the non-intact auditory speech in which case performance for the same auditory stimulus would differ depending upon the presence/absence of visual speech. Design Participants were 62 CHI and 62 CNH whose ages had a group-mean and -distribution akin to that in the CHI group. Ages ranged from 4 to 14 years. All participants met the following criteria: 1) spoke English as a native language, 2) communicated successfully aurally/orally, and 3) had no diagnosed or suspected disabilities other than HI and its accompanying verbal problems. The phonological priming of picture naming was assessed with the multi-modal picture word task. Results Both CHI and CNH showed greater phonological priming from high than low fidelity stimuli and from AV than auditory speech. These overall fidelity and mode effects did not differ in the CHI vs. CNH—thus these CHI appeared to have sufficiently well specified phonological onset representations to support priming and visual speech did not appear to be a disproportionately important source of the CHI’s phonological knowledge. Two exceptions occurred, however. First—with regard to lexical status—both the CHI and CNH showed significantly greater phonological priming from the nonwords than words, a pattern consistent with the prediction that children are more aware of phonetics-phonology content for nonwords. This overall pattern of similarity between the groups was qualified by the finding that CHI showed more nearly equal priming by the high vs. low fidelity nonwords than the CNH; in other words, the CHI were less affected by the fidelity of the auditory input for nonwords. Second, auditory word recognition—but not degree of HI or age—uniquely influenced phonological priming by the nonwords presented AV. Conclusions With minor exceptions, phonological priming in CHI and CNH showed more similarities than differences. Importantly, we documented that the addition of visual speech significantly increased phonological priming in both groups. Clinically these data support intervention programs that view visual speech as a powerful asset for developing spoken language in CHI. PMID:27438867
Phosphate-binding pocket in Dicer-2 PAZ domain for high-fidelity siRNA production
Kandasamy, Suresh K.
2016-01-01
The enzyme Dicer produces small silencing RNAs such as micro-RNAs (miRNAs) and small interfering RNAs (siRNAs). In Drosophila, Dicer-1 produces ∼22–24-nt miRNAs from pre-miRNAs, whereas Dicer-2 makes 21-nt siRNAs from long double-stranded RNAs (dsRNAs). How Dicer-2 precisely makes 21-nt siRNAs with a remarkably high fidelity is unknown. Here we report that recognition of the 5′-monophosphate of a long dsRNA substrate by a phosphate-binding pocket in the Dicer-2 PAZ (Piwi, Argonaute, and Zwille/Pinhead) domain is crucial for the length fidelity, but not the efficiency, in 21-nt siRNA production. Loss of the length fidelity, meaning increased length heterogeneity of siRNAs, caused by point mutations in the phosphate-binding pocket of the Dicer-2 PAZ domain decreased RNA silencing activity in vivo, showing the importance of the high fidelity to make 21-nt siRNAs. We propose that the 5′-monophosphate of a long dsRNA substrate is anchored by the phosphate-binding pocket in the Dicer-2 PAZ domain and the distance between the pocket and the RNA cleavage active site in the RNaseIII domain corresponds to the 21-nt pitch in the A-form duplex of a long dsRNA substrate, resulting in high-fidelity 21-nt siRNA production. This study sheds light on the molecular mechanism by which Dicer-2 produces 21-nt siRNAs with a remarkably high fidelity for efficient RNA silencing. PMID:27872309
NASA Astrophysics Data System (ADS)
Horton, Scott
This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and low fidelity polygon models and high and low fidelity shaders. A total of 76 college age (18+ years of age) participants were randomly assigned to one of the four conditions. The participants interacted with the VLE and then completed several posttest measures on learning, presence, and attitudes towards the VLE experience. Demographic information was also collected, including age, computer gameplay experience, number of virtual environments interacted with, gender and time spent in this virtual environment. The data was analyzed as a 2 x 2 between subjects ANOVA. The main effects of shader fidelity and polygon fidelity were both non-significant for both learning and all presence subscales inside the VLE. In addition, there was no significant interaction between shader fidelity and model fidelity. However, there were two significant results on the supplementary variables. First, gender was found to have a significant main effect on all the presence subscales. Females reported higher average levels of presence than their male counterparts. Second, gameplay hours, or the number of hours a participant played computer games per week, also had a significant main effect on participant score on the learning measure. The participants who reported playing 15+ hours of computer games per week, the highest amount of time in the variable, had the highest score as a group on the mercury learning measure while those participants that played 1-5 hours per week had the lowest scores.
Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério
2014-01-01
Background: The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. Aims: To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Materials and Methods: Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills’ training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs’ skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. Results: The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P < 0.0000) and felt more confident to perform elliptical excision skills (all P < 0.0000) when compared to the control. There was no significant difference (all P > 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills’ training) was considered large (>0.80) in all measurements. Conclusion: The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials. PMID:24700937
Stanton, Bonita; Wang, Bo; Deveaux, Lynette; Lunn, Sonja; Rolle, Glenda; Mortimer, Arvis; Li, Xiaoming; Marshall, Sharon; Poitier, Maxwell; Adderley, Richard
2015-01-01
More information is needed about factors influencing real-life implementation and program impact of interventions effective in controlled study conditions. Ongoing national implementation of an evidence-based HIV prevention program targeting grade 6 students in The Bahamas offers the opportunity to examine patterns of implementation and relate them to student outcomes. Data were collected from 208 grade 6 teachers, 75 grade 7 teachers and 4,411 grade 6 students followed over two years. Mixed-effects modeling analysis examined the association of teachers’ patterns of implementation with student outcomes. High quality program implementation in grade 6 (high implementation dosage and fidelity) was significantly related to student outcomes six and 18 months post-intervention. Quality of implementation of the booster session in grade 7 was also significantly related to student outcomes in grade 7. Quality of delivery of the brief booster session a year after initial implementation is important in maintaining or resetting the student outcome trajectory. PMID:26093781
Use of High Fidelity Methods in Multidisciplinary Optimization-A Preliminary Survey
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)
2002-01-01
Multidisciplinary optimization is a key element of design process. To date multidiscipline optimization methods that use low fidelity methods are well advanced. Optimization methods based on simple linear aerodynamic equations and plate structural equations have been applied to complex aerospace configurations. However, use of high fidelity methods such as the Euler/ Navier-Stokes for fluids and 3-D (three dimensional) finite elements for structures has begun recently. As an activity of Multidiscipline Design Optimization Technical Committee (MDO TC) of AIAA (American Institute of Aeronautics and Astronautics), an effort was initiated to assess the status of the use of high fidelity methods in multidisciplinary optimization. Contributions were solicited through the members MDO TC committee. This paper provides a summary of that survey.
Measuring trainer fidelity in the transfer of suicide prevention training
Cross, Wendi F.; Pisani, Anthony R.; Schmeelk-Cone, Karen; Xia, Yinglin; Tu, Xin; McMahon, Marcie; Munfakh, Jimmie Lou; Gould, Madelyn S.
2014-01-01
Background Finding effective and efficient models to train large numbers of suicide prevention interventionists, including ‘hotline’ crisis counselors, is a high priority. Train-the-trainer (TTT) models are widely used but understudied. Aims To assess the extent to which trainers following TTT delivered the Applied Suicide Intervention Skills Training (ASIST) program with fidelity, and to examine fidelity across two trainings and seven training segments. Methods We recorded and reliably rated trainer fidelity, defined as adherence to program content and competence of program delivery, for 34 newly trained ASIST trainers delivering the program to crisis center staff on two separate occasions. A total of 324 observations were coded. Trainer demographics were also collected. Results On average, trainers delivered two-thirds of the program. Previous training was associated with lower levels of trainer adherence to the program. 18% of trainers' observations were rated as solidly competent. Trainers did not improve fidelity from their first to second training. Significantly higher fidelity was found for lectures and lower fidelity was found for interactive training activities including asking about suicide and creating a safe plan. Conclusions We found wide variability in trainer fidelity to the ASIST program following TTT and few trainers had high levels of both adherence and competence. More research is needed to examine the cost-effectiveness of TTT models. PMID:24901061
Lillard, Angeline S
2012-06-01
Research on the outcomes of Montessori education is scarce and results are inconsistent. One possible reason for the inconsistency is variations in Montessori implementation fidelity. To test whether outcomes vary according to implementation fidelity, we examined preschool children enrolled in high fidelity classic Montessori programs, lower fidelity Montessori programs that supplemented the program with conventional school activities, and, for comparison, conventional programs. Children were tested at the start and end of the school year on a range of social and academic skills. Although they performed no better in the fall, children in Classic Montessori programs, as compared with children in Supplemented Montessori and Conventional programs, showed significantly greater school-year gains on outcome measures of executive function, reading, math, vocabulary, and social problem-solving, suggesting that high fidelity Montessori implementation is associated with better outcomes than lower fidelity Montessori programs or conventional programs. Copyright © 2012 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Persing, T. Ray; Bellish, Christine A.; Brandon, Jay; Kenney, P. Sean; Carzoo, Susan; Buttrill, Catherine; Guenther, Arlene
2005-01-01
Several aircraft airframe modeling approaches are currently being used in the DoD community for acquisition, threat evaluation, training, and other purposes. To date there has been no clear empirical study of the impact of airframe simulation fidelity on piloted real-time aircraft simulation study results, or when use of a particular level of fidelity is indicated. This paper documents a series of piloted simulation studies using three different levels of airframe model fidelity. This study was conducted using the NASA Langley Differential Maneuvering Simulator. Evaluations were conducted with three pilots for scenarios requiring extensive maneuvering of the airplanes during air combat. In many cases, a low-fidelity modified point-mass model may be sufficient to evaluate the combat effectiveness of the aircraft. However, in cases where high angle-of-attack flying qualities and aerodynamic performance are a factor or when precision tracking ability of the aircraft must be represented, use of high-fidelity models is indicated.
Comparison of Performance Predictions for New Low-Thrust Trajectory Tools
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Kos, Larry; Hopkins, Randall; Crane, Tracie
2006-01-01
Several low thrust trajectory optimization tools have been developed over the last 3% years by the Low Thrust Trajectory Tools development team. This toolset includes both low-medium fidelity and high fidelity tools which allow the analyst to quickly research a wide mission trade space and perform advanced mission design. These tools were tested using a set of reference trajectories that exercised each tool s unique capabilities. This paper compares the performance predictions of the various tools against several of the reference trajectories. The intent is to verify agreement between the high fidelity tools and to quantify the performance prediction differences between tools of different fidelity levels.
A Transfer of Training Study of Control Loader Dynamics
NASA Technical Reports Server (NTRS)
Cardullo, Frank M.; Stanco, Anthony A.; Kelly, Lon C.; Houck, Jacob A.; Grube, Richard C.
2011-01-01
The control inceptor used in a simulated vehicle is an important part in maintaining the fidelity of a simulation. The force feedback provided by the control inceptor gives the operator important cues to maintain adequate performance. The dynamics of a control inceptor are typically based on a second order spring mass damper system with damping, force gradient, breakout force, and natural frequency parameters. Changing these parameters can have a great effect on pilot or driver control of the vehicle. The neuromuscular system has a very important role in manipulating the control inceptor within a vehicle. Many studies by McRuer, Aponso, and Hess have dealt with modeling the neuromuscular system and quantifying the effects of a high fidelity control loader as compared to a low fidelity control loader. Humans are adaptive in nature and their control behavior changes based on different control loader dynamics. Humans will change their control behavior to maintain tracking bandwidth and minimize tracking error. This paper reports on a quasi-transfer of training experiment which was performed at the NASA Langley Research Center. The quasi transfer of training study used a high fidelity control loader and a low fidelity control loader. Subjects trained in both simulations and then were transferred to the high fidelity control loader simulation. The parameters for the high fidelity control loader were determined from the literature. The low fidelity control loader parameters were found through testing of a simple computer joystick. A disturbance compensatory task is employed. The compensatory task involves implementing a simple horizon out the window display. A disturbance consisting of a sum of sines is used. The task consists of the subject compensating for the disturbance on the roll angle of the aircraft. The vehicle dynamics are represented as 1/s and 1/s2. The subject will try to maintain level flight throughout the experiment. The subjects consist of non-pilots to remove any effects of pilot experience. First, this paper discusses the implementation of the disturbance compensation task. Second, the high and low fidelity parameters used within the experiment are presented. Finally, an explanation of results from the experiments is presented.
Gu, Yuqi; Witter, Tobias; Livingston, Patty; Rao, Purnima; Varshney, Terry; Kuca, Tom; Dylan Bould, M
2017-12-01
As simulator fidelity (i.e., realism) increases from low to high, the simulator more closely resembles the real environment, but it also becomes more expensive. It is generally assumed that the use of high-fidelity simulators results in better learning; however, the effect of fidelity on learning non-technical skills (NTS) is unknown. This was a non-inferiority trial comparing the efficacy of high- vs low-fidelity simulators on learning NTS. Thirty-six postgraduate medical trainees were recruited for the trial. During the pre-test phase, the trainees were randomly assigned to manage a scenario using either a high-fidelity simulator (HFS) or a low-fidelity simulator (LFS), followed by expert debriefing. All trainees then underwent a video recorded post-test scenario on a HFS, and the NTS were assessed between the two groups. The primary outcome was the overall post-test Ottawa Global Rating Scale (OGRS), while controlling for overall pre-test OGRS scores. Non-inferiority between the LFS and HFS was based on a non-inferiority margin of greater than 1. For our primary outcome, the mean (SD) post-test overall OGRS score was not significantly different between the HFS and LFS groups after controlling for pre-test overall OGRS scores [3.8 (0.9) vs 4.0 (0.9), respectively; mean difference, 0.2; 95% confidence interval, -0.4 to 0.8; P = 0.48]. For our secondary outcomes, the post-test total OGRS score was not significantly different between the HFS and LFS groups after controlling for pre-test total OGRS scores (P = 0.33). There were significant improvements in mean overall (P = 0.01) and total (P = 0.003) OGRS scores from pre-test to post-test. There were no significant associations between postgraduate year (P = 0.82) and specialty (P = 0.67) on overall OGRS performance. This study suggests that low-fidelity simulators are non-inferior to the more costly high-fidelity simulators for teaching NTS to postgraduate medical trainees.
High Aspect Ratio Sub-15 nm Silicon Trenches From Block Copolymer Templates
NASA Astrophysics Data System (ADS)
Gu, Xiaodan; Liu, Zuwei; Gunkel, Ilja; Olynick, Deirdre; Russell, Thomas; University of Massachusetts Amherst Collaboration; Oxford Instrument Collaboration; Lawrence Berkeley National Lab Collaboration
2013-03-01
High-aspect-ratio sub-15 nm silicon trenches are fabricated directly from plasma etching of a block copolymer (BCP) mask. Polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) 40k-b-18k was spin coated and solvent annealed to form cylindrical structures parallel to the silicon substrate. The BCP thin film was reconstructed by immersion in ethanol and then subjected to an oxygen and argon reactive ion etching to fabricate the polymer mask. A low temperature ion coupled plasma with sulfur hexafluoride and oxygen was used to pattern transfer block copolymer structure to silicon with high selectivity (8:1) and fidelity. The silicon pattern was characterized by scanning electron microscopy and grazing incidence x-ray scattering. We also demonstrated fabrication of silicon nano-holes using polystyrene-b-polyethylene oxide (PS-b-PEO) using same methodology described above for PS-b-P2VP. Finally, we show such silicon nano-strucutre serves as excellent nano-imprint master template to pattern various functional materials like poly 3-hexylthiophene (P3HT).
Toomey, Elaine; Matthews, James; Hurley, Deirdre A
2017-08-04
Despite an increasing awareness of the importance of fidelity of delivery within complex behaviour change interventions, it is often poorly assessed. This mixed methods study aimed to establish the fidelity of delivery of a complex self-management intervention and explore the reasons for these findings using a convergent/triangulation design. Feasibility trial of the Self-management of Osteoarthritis and Low back pain through Activity and Skills (SOLAS) intervention (ISRCTN49875385), delivered in primary care physiotherapy. 60 SOLAS sessions were delivered across seven sites by nine physiotherapists. Fidelity of delivery of prespecified intervention components was evaluated using (1) audio-recordings (n=60), direct observations (n=24) and self-report checklists (n=60) and (2) individual interviews with physiotherapists (n=9). Quantitatively, fidelity scores were calculated using percentage means and SD of components delivered. Associations between fidelity scores and physiotherapist variables were analysed using Spearman's correlations. Interviews were analysed using thematic analysis to explore potential reasons for fidelity scores. Integration of quantitative and qualitative data occurred at an interpretation level using triangulation. Quantitatively, fidelity scores were high for all assessment methods; with self-report (92.7%) consistently higher than direct observations (82.7%) or audio-recordings (81.7%). There was significant variation between physiotherapists' individual scores (69.8% - 100%). Both qualitative and quantitative data (from physiotherapist variables) found that physiotherapists' knowledge (Spearman's association at p=0.003) and previous experience (p=0.008) were factors that influenced their fidelity. The qualitative data also postulated participant-level (eg, individual needs) and programme-level factors (eg, resources) as additional elements that influenced fidelity. The intervention was delivered with high fidelity. This study contributes to the limited evidence regarding fidelity assessment methods within complex behaviour change interventions. The findings suggest a combination of quantitative methods is suitable for the assessment of fidelity of delivery. A mixed methods approach provided a more insightful understanding of fidelity and its influencing factors. ISRCTN49875385; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Toomey, Elaine; Matthews, James; Hurley, Deirdre A
2017-01-01
Objectives and design Despite an increasing awareness of the importance of fidelity of delivery within complex behaviour change interventions, it is often poorly assessed. This mixed methods study aimed to establish the fidelity of delivery of a complex self-management intervention and explore the reasons for these findings using a convergent/triangulation design. Setting Feasibility trial of the Self-management of Osteoarthritis and Low back pain through Activity and Skills (SOLAS) intervention (ISRCTN49875385), delivered in primary care physiotherapy. Methods and outcomes 60 SOLAS sessions were delivered across seven sites by nine physiotherapists. Fidelity of delivery of prespecified intervention components was evaluated using (1) audio-recordings (n=60), direct observations (n=24) and self-report checklists (n=60) and (2) individual interviews with physiotherapists (n=9). Quantitatively, fidelity scores were calculated using percentage means and SD of components delivered. Associations between fidelity scores and physiotherapist variables were analysed using Spearman’s correlations. Interviews were analysed using thematic analysis to explore potential reasons for fidelity scores. Integration of quantitative and qualitative data occurred at an interpretation level using triangulation. Results Quantitatively, fidelity scores were high for all assessment methods; with self-report (92.7%) consistently higher than direct observations (82.7%) or audio-recordings (81.7%). There was significant variation between physiotherapists’ individual scores (69.8% - 100%). Both qualitative and quantitative data (from physiotherapist variables) found that physiotherapists’ knowledge (Spearman’s association at p=0.003) and previous experience (p=0.008) were factors that influenced their fidelity. The qualitative data also postulated participant-level (eg, individual needs) and programme-level factors (eg, resources) as additional elements that influenced fidelity. Conclusion The intervention was delivered with high fidelity. This study contributes to the limited evidence regarding fidelity assessment methods within complex behaviour change interventions. The findings suggest a combination of quantitative methods is suitable for the assessment of fidelity of delivery. A mixed methods approach provided a more insightful understanding of fidelity and its influencing factors. Trial registration number ISRCTN49875385; Pre-results. PMID:28780544
Observational Requirements for High-Fidelity Reverberation Mapping
NASA Technical Reports Server (NTRS)
Horne, Keith; Peterson, Bradley M.; Collier, Stefan J.; Netzer, Hagai
2004-01-01
We present a series of simulations to demonstrate that high-fidelity velocity-delay maps of the emission-line regions in active galactic nuclei can be obtained from time-resolved spectrophotometric data sets like those that will arise from the proposed Kronos satellite. While previous reverberation-mapping experiments have established the size scale R of the broad emission-line regions from the mean time delay tau = R/c between the line and continuum variations and have provided strong evidence for supermassive black holes, the detailed structure and kinematics of the broad-line region remain ambiguous and poorly constrained. Here we outline the technical improvements that will be required to successfully map broad-line regions by reverberation techniques. For typical AGN continuum light curves, characterized by power-law power spectra P (f) is proportional to f(exp -alpha) with a = -1.5 +/- 0.5, our simulations show that a small UV/optical spectrometer like Kronos will clearly distinguish between currently viable alternative kinematic models. From spectra sampled at time intervals Delta t and sustained for a total duration T(sub dur), we can reconstruct high-fidelity velocity-delay maps with velocity resolution comparable to that of the spectra, and delay resolution Delta tau approx. 2 Delta t, provided T(sub dur) exceeds the broad-line region light crossing time by at least a factor of three. Even very complicated kinematical models, such as a Keplerian flow with superimposed spiral wave pattern, are resolved in maps from our simulated Kronos datasets. Reverberation mapping with Kronos data is therefore likely deliver the first clear maps of the geometry and kinematics in the broad emission-line regions 1-100 microarcseconds from supermassive black holes.
2013-01-01
The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics. PMID:24001174
High-fidelity gates towards a scalable superconducting quantum processor
NASA Astrophysics Data System (ADS)
Chow, Jerry M.; Corcoles, Antonio D.; Gambetta, Jay M.; Rigetti, Chad; Johnson, Blake R.; Smolin, John A.; Merkel, Seth; Poletto, Stefano; Rozen, Jim; Rothwell, Mary Beth; Keefe, George A.; Ketchen, Mark B.; Steffen, Matthias
2012-02-01
We experimentally explore the implementation of high-fidelity gates on multiple superconducting qubits coupled to multiple resonators. Having demonstrated all-microwave single and two qubit gates with fidelities > 90% on multi-qubit single-resonator systems, we expand the application to qubits across two resonators and investigate qubit coupling in this circuit. The coupled qubit-resonators are building blocks towards two-dimensional lattice networks for the application of surface code quantum error correction algorithms.
Vincent, Mary Anne; Sheriff, Susan; Mellott, Susan
2015-02-01
High-fidelity simulation has become a growing educational modality among institutions of higher learning ever since the Institute of Medicine recommended that it be used to improve patient safety in 2000. However, there is limited research on the effect of high-fidelity simulation on psychomotor clinical performance improvement of undergraduate nursing students being evaluated by experts using reliable and valid appraisal instruments. The purpose of this integrative review and meta-analysis is to explore what researchers have established about the impact of high-fidelity simulation on improving the psychomotor clinical performance of undergraduate nursing students. Only eight of the 1120 references met inclusion criteria. A meta-analysis using Hedges' g to compute the effect size and direction of impact yielded a range of -0.26 to +3.39. A positive effect was shown in seven of eight studies; however, there were five different research designs and six unique appraisal instruments used among these studies. More research is necessary to determine if high-fidelity simulation improves psychomotor clinical performance in undergraduate nursing students. Nursing programs from multiple sites having a standardized curriculum and using the same appraisal instruments with established reliability and validity are ideal for this work.
Assessing fidelity of delivery of smoking cessation behavioural support in practice.
Lorencatto, Fabiana; West, Robert; Christopherson, Charlotte; Michie, Susan
2013-04-04
Effectiveness of evidence-based behaviour change interventions is likely to be undermined by failure to deliver interventions as planned. Behavioural support for smoking cessation can be a highly cost-effective, life-saving intervention. However, in practice, outcomes are highly variable. Part of this may be due to variability in fidelity of intervention implementation. To date, there have been no published studies on this. The present study aimed to: evaluate a method for assessing fidelity of behavioural support; assess fidelity of delivery in two English Stop-Smoking Services; and compare the extent of fidelity according to session types, duration, individual practitioners, and component behaviour change techniques (BCTs). Treatment manuals and transcripts of 34 audio-recorded behavioural support sessions were obtained from two Stop-Smoking Services and coded into component BCTs using a taxonomy of 43 BCTs. Inter-rater reliability was assessed using percentage agreement. Fidelity was assessed by examining the proportion of BCTs specified in the manuals that were delivered in individual sessions. This was assessed by session type (i.e., pre-quit, quit, post-quit), duration, individual practitioner, and BCT. Inter-coder reliability was high (87.1%). On average, 66% of manual-specified BCTs were delivered per session (SD 15.3, range: 35% to 90%). In Service 1, average fidelity was highest for post-quit sessions (69%) and lowest for pre-quit (58%). In Service 2, fidelity was highest for quit-day (81%) and lowest for post-quit sessions (56%). Session duration was not significantly correlated with fidelity. Individual practitioner fidelity ranged from 55% to 78%. Individual manual-specified BCTs were delivered on average 63% of the time (SD 28.5, range: 0 to 100%). The extent to which smoking cessation behavioural support is delivered as specified in treatment manuals can be reliably assessed using transcripts of audiotaped sessions. This allows the investigation of the implementation of evidence-based practice in relation to smoking cessation, a first step in designing interventions to improve it. There are grounds for believing that fidelity in the English Stop-Smoking Services may be low and that routine monitoring is warranted.
Fidelity and outcomes in six integrated dual disorders treatment programs.
Chandler, Daniel W
2011-02-01
Fidelity scores and outcomes were measured in six outpatient programs in California which implemented Integrated Dual Disorders Treatment (IDDT). Outcomes were measured for 1 year in four sites and 2 years in two sites; fidelity was assessed at 6 month intervals. Three of the six sites achieved high fidelity (at least a 4 on a 5 point fidelity scale) and three moderate fidelity (at least a 3). Retention in treatment, mental health functioning, stage of substance abuse treatment, abstinence, and psychiatric hospitalization were measured. Outcomes for individual programs were generally positive but not consistent within programs or across programs. Using pooled data in a longitudinal regression model with random effects at person level and adjustment of standard errors for clustering by site, change over time was not statistically significant for the primary outcomes. Fidelity scores had limited association with positive outcomes.
Commentary: Learning from Variations in Fidelity of Implementation
ERIC Educational Resources Information Center
Balu, Rekha; Doolittle, Fred
2016-01-01
The articles in this special issue discuss efforts to improve academic reading outcomes for students and ways to achieve high implementation fidelity of promising strategies. At times the authors discuss if--and how--strong fidelity is associated with strong outcomes and potentially even impacts (the difference between program and control group…
ERIC Educational Resources Information Center
Lillard, Angeline S.
2012-01-01
Research on the outcomes of Montessori education is scarce and results are inconsistent. One possible reason for the inconsistency is variations in Montessori implementation fidelity. To test whether outcomes vary according to implementation fidelity, we examined preschool children enrolled in high fidelity classic Montessori programs, lower…
Uncertainty quantification for PZT bimorph actuators
NASA Astrophysics Data System (ADS)
Bravo, Nikolas; Smith, Ralph C.; Crews, John
2018-03-01
In this paper, we discuss the development of a high fidelity model for a PZT bimorph actuator used for micro-air vehicles, which includes the Robobee. We developed a high-fidelity model for the actuator using the homogenized energy model (HEM) framework, which quantifies the nonlinear, hysteretic, and rate-dependent behavior inherent to PZT in dynamic operating regimes. We then discussed an inverse problem on the model. We included local and global sensitivity analysis of the parameters in the high-fidelity model. Finally, we will discuss the results of Bayesian inference and uncertainty quantification on the HEM.
2017-10-03
Physics of Solids, 78 (314-332). 2014. 6. C . X. Zhang, J . Z. Song, Q. D. Yang, “Periodic buckling patterns of graphene/hexagonal boron nitride...Mechanics, 139 (78-97), 2015. 9. Y. C . Gu, J . Jung, Q. D. Yang, and W. Q. Chen, “A New Stabilizing Method for Numerical Analyses with Severe...Local and Global Instability”, ASME Journal of Applied Mechanics, 82 (101010-1, -12), 2015 10. J . Jung, B. C . Do, and Q. D. Yang, “A-FEM for Arbitrary
Seasonal movement, residency, and migratory patterns of Wilson's Snipe (Gallinago delicata)
Cline, Brittany B.; Haig, Susan M.
2011-01-01
Cross-seasonal studies of avian movement establish links between geographically distinct wintering, breeding, and migratory stopover locations, or assess site fidelity and movement between distinct phases of the annual cycle. Far fewer studies have investigated individual movement patterns within and among seasons over an annual cycle. Within western Oregon's Willamette Valley throughout 2007, we quantified intra- and interseasonal movement patterns, fidelity (regional and local), and migratory patterns of 37 radiomarked Wilson's Snipe (Gallinago delicata) to elucidate residency in a region of breeding- and wintering-range overlap. Telemetry revealed complex regional population structure, including winter residents (74%), winter transients (14%), summer residents (9%), and one year-round resident breeder (3%). Results indicated a lack of connectivity between winter and summer capture populations, some evidence of partial migration, and between-season fidelity to the region (winter-resident return; subsequent fall). Across seasons, the extent of movements and use of multiple wetland sites suggested that Wilson's Snipe were capable of exploratory movements but more regularly perceived local and fine-scale segments of the landscape as connected. Movements differed significantly by season and residency; individuals exhibited contracted movements during late winter and more expansive movements during precipitation-limited periods (late spring, summer, fall). Mean home-range size was 3.5 ± 0.93 km2 (100% minimum convex polygon [MCP]) and 1.6 ± 0.42 km2 (95% fixed kernel) and did not vary by sex; however, home range varied markedly by season (range of 100% MCPs: 1.04–7.56 km2). The results highlight the need to consider seasonal and interspecific differences in shorebird life histories and space-use requirements when developing regional wetland conservation plans.
Benefits of computer screen-based simulation in learning cardiac arrest procedures.
Bonnetain, Elodie; Boucheix, Jean-Michel; Hamet, Maël; Freysz, Marc
2010-07-01
What is the best way to train medical students early so that they acquire basic skills in cardiopulmonary resuscitation as effectively as possible? Studies have shown the benefits of high-fidelity patient simulators, but have also demonstrated their limits. New computer screen-based multimedia simulators have fewer constraints than high-fidelity patient simulators. In this area, as yet, there has been no research on the effectiveness of transfer of learning from a computer screen-based simulator to more realistic situations such as those encountered with high-fidelity patient simulators. We tested the benefits of learning cardiac arrest procedures using a multimedia computer screen-based simulator in 28 Year 2 medical students. Just before the end of the traditional resuscitation course, we compared two groups. An experiment group (EG) was first asked to learn to perform the appropriate procedures in a cardiac arrest scenario (CA1) in the computer screen-based learning environment and was then tested on a high-fidelity patient simulator in another cardiac arrest simulation (CA2). While the EG was learning to perform CA1 procedures in the computer screen-based learning environment, a control group (CG) actively continued to learn cardiac arrest procedures using practical exercises in a traditional class environment. Both groups were given the same amount of practice, exercises and trials. The CG was then also tested on the high-fidelity patient simulator for CA2, after which it was asked to perform CA1 using the computer screen-based simulator. Performances with both simulators were scored on a precise 23-point scale. On the test on a high-fidelity patient simulator, the EG trained with a multimedia computer screen-based simulator performed significantly better than the CG trained with traditional exercises and practice (16.21 versus 11.13 of 23 possible points, respectively; p<0.001). Computer screen-based simulation appears to be effective in preparing learners to use high-fidelity patient simulators, which present simulations that are closer to real-life situations.
High-fidelity data embedding for image annotation.
He, Shan; Kirovski, Darko; Wu, Min
2009-02-01
High fidelity is a demanding requirement for data hiding, especially for images with artistic or medical value. This correspondence proposes a high-fidelity image watermarking for annotation with robustness to moderate distortion. To achieve the high fidelity of the embedded image, we introduce a visual perception model that aims at quantifying the local tolerance to noise for arbitrary imagery. Based on this model, we embed two kinds of watermarks: a pilot watermark that indicates the existence of the watermark and an information watermark that conveys a payload of several dozen bits. The objective is to embed 32 bits of metadata into a single image in such a way that it is robust to JPEG compression and cropping. We demonstrate the effectiveness of the visual model and the application of the proposed annotation technology using a database of challenging photographic and medical images that contain a large amount of smooth regions.
High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation
NASA Astrophysics Data System (ADS)
Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang
2015-11-01
Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated.
Surrogate based wind farm layout optimization using manifold mapping
NASA Astrophysics Data System (ADS)
Kaja Kamaludeen, Shaafi M.; van Zuijle, Alexander; Bijl, Hester
2016-09-01
High computational cost associated with the high fidelity wake models such as RANS or LES serves as a primary bottleneck to perform a direct high fidelity wind farm layout optimization (WFLO) using accurate CFD based wake models. Therefore, a surrogate based multi-fidelity WFLO methodology (SWFLO) is proposed. The surrogate model is built using an SBO method referred as manifold mapping (MM). As a verification, optimization of spacing between two staggered wind turbines was performed using the proposed surrogate based methodology and the performance was compared with that of direct optimization using high fidelity model. Significant reduction in computational cost was achieved using MM: a maximum computational cost reduction of 65%, while arriving at the same optima as that of direct high fidelity optimization. The similarity between the response of models, the number of mapping points and its position, highly influences the computational efficiency of the proposed method. As a proof of concept, realistic WFLO of a small 7-turbine wind farm is performed using the proposed surrogate based methodology. Two variants of Jensen wake model with different decay coefficients were used as the fine and coarse model. The proposed SWFLO method arrived at the same optima as that of the fine model with very less number of fine model simulations.
Takei, Nobuyuki; Yonezawa, Hidehiro; Aoki, Takao; Furusawa, Akira
2005-06-10
We experimentally demonstrate continuous-variable quantum teleportation beyond the no-cloning limit. We teleport a coherent state and achieve the fidelity of 0.70 +/- 0.02 that surpasses the no-cloning limit of 2/3. Surpassing the limit is necessary to transfer the nonclassicality of an input quantum state. By using our high-fidelity teleporter, we demonstrate entanglement swapping, namely, teleportation of quantum entanglement, as an example of transfer of nonclassicality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McInerney, Peter; Adams, Paul; Hadi, Masood Z.
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less
Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase
McInerney, Peter; Adams, Paul; Hadi, Masood Z.
2014-01-01
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maunz, Peter; Wilhelm, Lukas
Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systemsmore » of 5 to 15 qubits [6–8].« less
Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control.
Li, Chuang; Song, Jie; Xia, Yan; Ding, Weiqiang
2018-01-22
Based on Lyapunov control theory in closed and open systems, we propose a scheme to generate W state of many distant atoms in the cavity-fiber-cavity system. In the closed system, the W state is generated successfully even when the coupling strength between the cavity and fiber is extremely weak. In the presence of atomic spontaneous emission or cavity and fiber decay, the photon-measurement and quantum feedback approaches are proposed to improve the fidelity, which enable efficient generation of high-fidelity W state in the case of large dissipation. Furthermore, the time-optimal Lyapunov control is investigated to shorten the evolution time and improve the fidelity in open systems.
Multi-fidelity machine learning models for accurate bandgap predictions of solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab
Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelitymore » quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.« less
Multi-fidelity machine learning models for accurate bandgap predictions of solids
Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab
2016-12-28
Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelitymore » quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.« less
Bond, Mark E.; Babcock, Elizabeth A.; Pikitch, Ellen K.; Abercrombie, Debra L.; Lamb, Norlan F.; Chapman, Demian D.
2012-01-01
Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as “reef sharks”, are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves). Key predictions of this hypothesis are that (a) individual reef sharks exhibit high site-fidelity to these protected areas and (b) their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV) surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi), the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR), Belize. Acoustically tagged sharks (N = 34) were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs) showed that the factor “marine reserve” had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s) involved: reduced fishing mortality or enhanced prey availability. PMID:22412965
Measuring multielectron beam imaging fidelity with a signal-to-noise ratio analysis
NASA Astrophysics Data System (ADS)
Mukhtar, Maseeh; Bunday, Benjamin D.; Quoi, Kathy; Malloy, Matt; Thiel, Brad
2016-07-01
Java Monte Carlo Simulator for Secondary Electrons (JMONSEL) simulations are used to generate expected imaging responses of chosen test cases of patterns and defects with the ability to vary parameters for beam energy, spot size, pixel size, and/or defect material and form factor. The patterns are representative of the design rules for an aggressively scaled FinFET-type design. With these simulated images and resulting shot noise, a signal-to-noise framework is developed, which relates to defect detection probabilities. Additionally, with this infrastructure, the effect of detection chain noise and frequency-dependent system response can be made, allowing for targeting of best recipe parameters for multielectron beam inspection validation experiments. Ultimately, these results should lead to insights into how such parameters will impact tool design, including necessary doses for defect detection and estimations of scanning speeds for achieving high throughput for high-volume manufacturing.
She, Zhe; Difalco, Andrea; Hähner, Georg; Buck, Manfred
2012-01-01
Self-assembled monolayers (SAMs) of 4'-methylbiphenyl-4-thiol (MBP0) adsorbed on polycrystalline gold substrates served as templates to control electrochemical deposition of Cu structures from acidic solution, and enabled the subsequent lift-off of the metal structures by attachment to epoxy glue. By exploiting the negative-resist behaviour of MBP0, the SAM was patterned by means of electron-beam lithography. For high deposition contrast a two-step procedure was employed involving a nucleation phase around -0.7 V versus Cu(2+)/Cu and a growth phase at around -0.35 V versus Cu(2+)/Cu. Structures with features down to 100 nm were deposited and transferred with high fidelity. By using substrates with different surface morphologies, AFM measurements revealed that the roughness of the substrate is a crucial factor but not the only one determining the roughness of the copper surface that is exposed after lift-off.
NASA Astrophysics Data System (ADS)
Shaw, Amelia R.; Smith Sawyer, Heather; LeBoeuf, Eugene J.; McDonald, Mark P.; Hadjerioua, Boualem
2017-11-01
Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2 is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. The reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.
Al-Ghareeb, Amal Z; Cooper, Simon J
2016-01-01
This integrative review identified, critically appraised and synthesised the existing evidence on the barriers and enablers to using high-fidelity human patient simulator manikins (HPSMs) in undergraduate nursing education. In nursing education, specifically at the undergraduate level, a range of low to high-fidelity simulations have been used as teaching aids. However, nursing educators encounter challenges when introducing new teaching methods or technology, despite the prevalence of high-fidelity HPSMs in nursing education. An integrative review adapted a systematic approach. Medline, CINAHL plus, ERIC, PsychINFO, EMBASE, SCOPUS, Science Direct, Cochrane database, Joanna Brigge Institute, ProQuest, California Simulation Alliance, Simulation Innovative Recourses Center and the search engine Google Scholar were searched. Keywords were selected and specific inclusion/exclusion criteria were applied. The review included all research designs for papers published between 2000 and 2015 that identified the barriers and enablers to using high-fidelity HPSMs in undergraduate nursing education. Studies were appraised using the Critical Appraisal Skills Programme criteria. Thematic analysis was undertaken and emergent themes were extracted. Twenty-one studies were included in the review. These studies adopted quasi-experimental, prospective non-experimental and descriptive designs. Ten barriers were identified, including "lack of time," "fear of technology" and "workload issues." Seven enablers were identified, including "faculty training," "administrative support" and a "dedicated simulation coordinator." Barriers to simulation relate specifically to the complex technologies inherent in high-fidelity HPSMs approaches. Strategic approaches that support up-skilling and provide dedicated technological support may overcome these barriers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shaw, Amelia R.; Sawyer, Heather Smith; LeBoeuf, Eugene J.; ...
2017-10-24
Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2more » is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. Here, the reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.« less
Costello, John P; Olivieri, Laura J; Krieger, Axel; Thabit, Omar; Marshall, M Blair; Yoo, Shi-Joon; Kim, Peter C; Jonas, Richard A; Nath, Dilip S
2014-07-01
The current educational approach for teaching congenital heart disease (CHD) anatomy to students involves instructional tools and techniques that have significant limitations. This study sought to assess the feasibility of utilizing present-day three-dimensional (3D) printing technology to create high-fidelity synthetic heart models with ventricular septal defect (VSD) lesions and applying these models to a novel, simulation-based educational curriculum for premedical and medical students. Archived, de-identified magnetic resonance images of five common VSD subtypes were obtained. These cardiac images were then segmented and built into 3D computer-aided design models using Mimics Innovation Suite software. An Objet500 Connex 3D printer was subsequently utilized to print a high-fidelity heart model for each VSD subtype. Next, a simulation-based educational curriculum using these heart models was developed and implemented in the instruction of 29 premedical and medical students. Assessment of this curriculum was undertaken with Likert-type questionnaires. High-fidelity VSD models were successfully created utilizing magnetic resonance imaging data and 3D printing. Following instruction with these high-fidelity models, all students reported significant improvement in knowledge acquisition (P < .0001), knowledge reporting (P < .0001), and structural conceptualization (P < .0001) of VSDs. It is feasible to use present-day 3D printing technology to create high-fidelity heart models with complex intracardiac defects. Furthermore, this tool forms the foundation for an innovative, simulation-based educational approach to teach students about CHD and creates a novel opportunity to stimulate their interest in this field. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, Amelia R.; Sawyer, Heather Smith; LeBoeuf, Eugene J.
Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2more » is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. Here, the reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.« less
NASA Astrophysics Data System (ADS)
Takemiya, Tetsushi
In modern aerospace engineering, the physics-based computational design method is becoming more important, as it is more efficient than experiments and because it is more suitable in designing new types of aircraft (e.g., unmanned aerial vehicles or supersonic business jets) than the conventional design method, which heavily relies on historical data. To enhance the reliability of the physics-based computational design method, researchers have made tremendous efforts to improve the fidelity of models. However, high-fidelity models require longer computational time, so the advantage of efficiency is partially lost. This problem has been overcome with the development of variable fidelity optimization (VFO). In VFO, different fidelity models are simultaneously employed in order to improve the speed and the accuracy of convergence in an optimization process. Among the various types of VFO methods, one of the most promising methods is the approximation management framework (AMF). In the AMF, objective and constraint functions of a low-fidelity model are scaled at a design point so that the scaled functions, which are referred to as "surrogate functions," match those of a high-fidelity model. Since scaling functions and the low-fidelity model constitutes surrogate functions, evaluating the surrogate functions is faster than evaluating the high-fidelity model. Therefore, in the optimization process, in which gradient-based optimization is implemented and thus many function calls are required, the surrogate functions are used instead of the high-fidelity model to obtain a new design point. The best feature of the AMF is that it may converge to a local optimum of the high-fidelity model in much less computational time than the high-fidelity model. However, through literature surveys and implementations of the AMF, the author xx found that (1) the AMF is very vulnerable when the computational analysis models have numerical noise, which is very common in high-fidelity models, and that (2) the AMF terminates optimization erroneously when the optimization problems have constraints. The first problem is due to inaccuracy in computing derivatives in the AMF, and the second problem is due to erroneous treatment of the trust region ratio, which sets the size of the domain for an optimization in the AMF. In order to solve the first problem of the AMF, automatic differentiation (AD) technique, which reads the codes of analysis models and automatically generates new derivative codes based on some mathematical rules, is applied. If derivatives are computed with the generated derivative code, they are analytical, and the required computational time is independent of the number of design variables, which is very advantageous for realistic aerospace engineering problems. However, if analysis models implement iterative computations such as computational fluid dynamics (CFD), which solves system partial differential equations iteratively, computing derivatives through the AD requires a massive memory size. The author solved this deficiency by modifying the AD approach and developing a more efficient implementation with CFD, and successfully applied the AD to general CFD software. In order to solve the second problem of the AMF, the governing equation of the trust region ratio, which is very strict against the violation of constraints, is modified so that it can accept the violation of constraints within some tolerance. By accepting violations of constraints during the optimization process, the AMF can continue optimization without terminating immaturely and eventually find the true optimum design point. With these modifications, the AMF is referred to as "Robust AMF," and it is applied to airfoil and wing aerodynamic design problems using Euler CFD software. The former problem has 21 design variables, and the latter 64. In both problems, derivatives computed with the proposed AD method are first compared with those computed with the finite differentiation (FD) method, and then, the Robust AMF is implemented along with the sequential quadratic programming (SQP) optimization method with only high-fidelity models. The proposed AD method computes derivatives more accurately and faster than the FD method, and the Robust AMF successfully optimizes shapes of the airfoil and the wing in a much shorter time than SQP with only high-fidelity models. These results clearly show the effectiveness of the Robust AMF. Finally, the feasibility of reducing computational time for calculating derivatives and the necessity of AMF with an optimum design point always in the feasible region are discussed as future work.
Bhargava, Ayush; Bertrand, Jeffrey W; Gramopadhye, Anand K; Madathil, Kapil C; Babu, Sabarish V
2018-04-01
With costs of head-mounted displays (HMDs) and tracking technology decreasing rapidly, various virtual reality applications are being widely adopted for education and training. Hardware advancements have enabled replication of real-world interactions in virtual environments to a large extent, paving the way for commercial grade applications that provide a safe and risk-free training environment at a fraction of the cost. But this also mandates the need to develop more intrinsic interaction techniques and to empirically evaluate them in a more comprehensive manner. Although there exists a body of previous research that examines the benefits of selected levels of interaction fidelity on performance, few studies have investigated the constituent components of fidelity in a Interaction Fidelity Continuum (IFC) with several system instances and their respective effects on performance and learning in the context of a real-world skills training application. Our work describes a large between-subjects investigation conducted over several years that utilizes bimanual interaction metaphors at six discrete levels of interaction fidelity to teach basic precision metrology concepts in a near-field spatial interaction task in VR. A combined analysis performed on the data compares and contrasts the six different conditions and their overall effects on performance and learning outcomes, eliciting patterns in the results between the discrete application points on the IFC. With respect to some performance variables, results indicate that simpler restrictive interaction metaphors and highest fidelity metaphors perform better than medium fidelity interaction metaphors. In light of these results, a set of general guidelines are created for developers of spatial interaction metaphors in immersive virtual environments for precise fine-motor skills training simulations.
Biopatterning of Silk Proteins for Soft Micro-optics.
Pal, Ramendra K; Kurland, Nicholas E; Wang, Congzhou; Kundu, Subhas C; Yadavalli, Vamsi K
2015-04-29
Silk proteins from spiders and silkworms have been proposed as outstanding candidates for soft micro-optic and photonic applications because of their optical transparency, unique biological properties, and mechanical robustness. Here, we present a method to form microstructures of the two constituent silk proteins, fibroin and sericin for use as an optical biomaterial. Using photolithography, chemically modified silk protein photoresists are patterned in 2D arrays of periodic patterns and Fresnel zone plates. Angle-dependent iridescent colors are produced in these periodic micropatterns because of the Bragg diffraction. Silk protein photolithography can used to form patterns on different substrates including flexible sheets with features of any shape with high fidelity and resolution over large areas. Finally, we show that these mechanically stable and transparent iridescent architectures are also completely biodegradable. This versatile and scalable technique can therefore be used to develop biocompatible, soft micro-optic devices that can be degraded in a controlled manner.
Effect of laser pulse shaping parameters on the fidelity of quantum logic gates.
Zaari, Ryan R; Brown, Alex
2012-09-14
The effect of varying parameters specific to laser pulse shaping instruments on resulting fidelities for the ACNOT(1), NOT(2), and Hadamard(2) quantum logic gates are studied for the diatomic molecule (12)C(16)O. These parameters include varying the frequency resolution, adjusting the number of frequency components and also varying the amplitude and phase at each frequency component. A time domain analytic form of the original discretized frequency domain laser pulse function is derived, providing a useful means to infer the resulting pulse shape through variations to the aforementioned parameters. We show that amplitude variation at each frequency component is a crucial requirement for optimal laser pulse shaping, whereas phase variation provides minimal contribution. We also show that high fidelity laser pulses are dependent upon the frequency resolution and increasing the number of frequency components provides only a small incremental improvement to quantum gate fidelity. Analysis through use of the pulse area theorem confirms the resulting population dynamics for one or two frequency high fidelity laser pulses and implies similar dynamics for more complex laser pulse shapes. The ability to produce high fidelity laser pulses that provide both population control and global phase alignment is attributed greatly to the natural evolution phase alignment of the qubits involved within the quantum logic gate operation.
NASA Astrophysics Data System (ADS)
Carrad, Damon J.; Mostert, Bernard; Meredith, Paul; Micolich, Adam P.
2016-09-01
A key task in bioelectronics is the transduction between ionic/protonic signals and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics. We present our work on a new class of organic-inorganic transducing interface utilising semiconducting InAs and GaAs nanowires directly gated with a proton transporting hygroscopic polymer consisting of undoped polyethylene oxide (PEO) patterned to nanoscale dimensions by a newly developed electron-beam lithography process [1]. Remarkably, we find our undoped PEO polymer electrolyte gate dielectric [2] gives equivalent electrical performance to the more traditionally used LiClO4-doped PEO [3], with an ionic conductivity three orders of magnitude higher than previously reported for undoped PEO [4]. The observed behaviour is consistent with proton conduction in PEO. We attribute our undoped PEO-based devices' performance to the small external surface and high surface-to-volume ratio of both the nanowire conducting channel and patterned PEO dielectric in our devices, as well as the enhanced hydration afforded by device processing and atmospheric conditions. In addition to studying the basic transducing mechanisms, we also demonstrate high-fidelity ionic to electronic conversion of a.c. signals at frequencies up to 50 Hz. Moreover, by combining complementary n- and p-type transducers we demonstrate functional hybrid ionic-electronic circuits can achieve logic (NOT operation), and with some further engineering of the nanowire contacts, potentially also amplification. Our device structures have significant potential to be scaled towards realising integrated bioelectronic circuitry. [1] D.J. Carrad et al., Nano Letters 14, 94 (2014). [2] D.J. Carrad et al., Manuscript in preparation (2016). [3] S.H. Kim et al., Advanced Materials 25, 1822 (2013). [4] S.K. Fullerton-Shirey et al., Macromolecules 42, 2142 (2009).
State resolved vibrational relaxation modeling for strongly nonequilibrium flows
NASA Astrophysics Data System (ADS)
Boyd, Iain D.; Josyula, Eswar
2011-05-01
Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.
Introduction of pre-etch deposition techniques in EUV patterning
NASA Astrophysics Data System (ADS)
Xiang, Xun; Beique, Genevieve; Sun, Lei; Labonte, Andre; Labelle, Catherine; Nagabhirava, Bhaskar; Friddle, Phil; Schmitz, Stefan; Goss, Michael; Metzler, Dominik; Arnold, John
2018-04-01
The thin nature of EUV (Extreme Ultraviolet) resist has posed significant challenges for etch processes. In particular, EUV patterning combined with conventional etch approaches suffers from loss of pattern fidelity in the form of line breaks. A typical conventional etch approach prevents the etch process from having sufficient resist margin to control the trench CD (Critical Dimension), minimize the LWR (Line Width Roughness), LER (Line Edge Roughness) and reduce the T2T (Tip-to-Tip). Pre-etch deposition increases the resist budget by adding additional material to the resist layer, thus enabling the etch process to explore a wider set of process parameters to achieve better pattern fidelity. Preliminary tests with pre-etch deposition resulted in blocked isolated trenches. In order to mitigate these effects, a cyclic deposition and etch technique is proposed. With optimization of deposition and etch cycle time as well as total number of cycles, it is possible to open the underlying layers with a beneficial over etch and simultaneously keep the isolated trenches open. This study compares the impact of no pre-etch deposition, one time deposition and cyclic deposition/etch techniques on 4 aspects: resist budget, isolated trench open, LWR/LER and T2T.
Mills, Brennen W; Carter, Owen B-J; Rudd, Cobie J; Claxton, Louise A; Ross, Nathan P; Strobel, Natalie A
2016-02-01
High-fidelity simulation-based training is often avoided for early-stage students because of the assumption that while practicing newly learned skills, they are ill suited to processing multiple demands, which can lead to "cognitive overload" and poorer learning outcomes. We tested this assumption using a mixed-methods experimental design manipulating psychological immersion. Thirty-nine randomly assigned first-year paramedicine students completed low- or high-environmental fidelity simulations [low-environmental fidelity simulations (LF(en)S) vs. high-environmental fidelity simulation (HF(en)S)] involving a manikin with obstructed airway (SimMan3G). Psychological immersion and cognitive burden were determined via continuous heart rate, eye tracking, self-report questionnaire (National Aeronautics and Space Administration Task Load Index), independent observation, and postsimulation interviews. Performance was assessed by successful location of obstruction and time-to-termination. Eye tracking confirmed that students attended to multiple, concurrent stimuli in HF(en)S and interviews consistently suggested that they experienced greater psychological immersion and cognitive burden than their LF(en)S counterparts. This was confirmed by significantly higher mean heart rate (P < 0.001) and National Aeronautics and Space Administration Task Load Index mental demand (P < 0.05). Although group allocation did not influence the proportion of students who ultimately revived the patient (58% vs. 30%, P < 0.10), the HF(en)S students did so significantly more quickly (P < 0.01). The LF(en)S students had low immersion resulting in greater assessment anxiety. High-environmental fidelity simulation engendered immersion and a sense of urgency in students, whereas LF(en)S created assessment anxiety and slower performance. We conclude that once early-stage students have learned the basics of a clinical skill, throwing them in the "deep end" of high-fidelity simulation creates significant additional cognitive burden but this has considerable educational merit.
2004-11-01
Target Centroid 98 RANW / R SC GIS 04071 Data valid as of 11 Mar 04 rogertargets_a#2.apr Figure 2-3. Chemical/Industrial and High Fidelity Urban...existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding...Fidelity Targets, NTTR Nevada Division of Wildlife – Nevada Test and Training Range JDAM Targets Nevada Natural Heritage Program – Data Request received 8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki
We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.
NASA Astrophysics Data System (ADS)
Ro, Hyun Wook; Jones, Ronald L.; Peng, Huagen; Lee, Hae-Jeong; Lin, Eric K.; Karim, Alamgir; Yoon, Do Y.; Gidley, David W.; Soles, Christopher L.
2008-03-01
Direct patterning of low-dielectric constant (low-k) materials via nanoimprint lithography (NIL) has the potential to simplify fabrication processes and significantly reduce the manufacturing costs for semiconductor devices. We report direct imprinting of sub-100 nm features into a high modulus methylsilsesquioxane-based organosilicate glass (OSG) material. An excellent fidelity of the pattern transfer process is quantified with nm precision using critical dimension small angle X-ray scattering (CD-SAXS) and specular X-ray reflectivity (SXR). X-ray porosimetry (XRP) and positron annihilation lifetime spectroscopy (PALS) measurements indicate that imprinting increases the inherent microporosity of the methylsilsequioxane-based OSG material. When a porogen (pore generating material) is added, imprinting decreases the population of mesopores associated with the porogen while retaining the enhanced microporosity. The net effect is a decrease the pore interconnectivity. There is also evidence for a sealing effect that is interpreted as an imprint induced dense skin at the surface of the porous pattern.
Kelly, Stephanie A.; Oswalt, Krista; Melnyk, Bernadette Mazurek; Jacobson, Diana
2015-01-01
Fidelity in implementing an intervention is critical to accurately determine and interpret the effects of an intervention. It is important to monitor the manner in which the behavioral intervention is implemented (e.g. adaptations, delivery as intended and dose). Few interventions are implemented with 100% fidelity. In this study, high school health teachers implemented the intervention. To attribute study findings to the intervention, it was vital to know to what degree the intervention was implemented. Therefore, the purposes of this study were to evaluate intervention fidelity and to compare implementation fidelity between the creating opportunities for personal empowerment (COPE) Healthy Lifestyles TEEN (thinking, emotions, exercise, and nutrition) program, the experimental intervention and Healthy Teens, an attention-control intervention, in a randomized controlled trial with 779 adolescents from 11 high schools in the southwest region of the United States. Thirty teachers participated in this study. Findings indicated that the attention-control teachers implemented their intervention with greater fidelity than COPE TEEN teachers. It is possible due to the novel intervention and the teachers’ unfamiliarity with cognitive-behavioral skills building, COPE TEEN teachers had less fidelity. It is important to assess novel skill development prior to the commencement of experimental interventions and to provide corrective feedback during the course of implementation. PMID:25355179
Orbit Stability of OSIRIS-REx in the Vicinity of Bennu Using a High-Fidelity Solar Radiation Model
NASA Technical Reports Server (NTRS)
Williams, Trevor; Hughes, Kyle; Mashiku, Alinda; Longuski, James
2015-01-01
The OSIRIS-REx mission (Origins Spectral Interpretation Resource Identification Security Regolith EXPlorer) is an asteroid sample return mission to Bennu (RQ36) that is scheduled to launch in 2016. The planned science operations precluding the small retrieval involve operations in terminator orbits (orbit plane is perpendicular to the sun). Over longer durations the solar radiation pressure (SRP) perturbs the orbit causing it to precess. Our work involves: modeling high fidelity SRP model to capture the perturbations during attitude changes; design a stable orbit from the high fidelity models to analyze the stability over time.
Lattice Boltzmann for Airframe Noise Predictions
NASA Technical Reports Server (NTRS)
Barad, Michael; Kocheemoolayil, Joseph; Kiris, Cetin
2017-01-01
Increase predictive use of High-Fidelity Computational Aero- Acoustics (CAA) capabilities for NASA's next generation aviation concepts. CFD has been utilized substantially in analysis and design for steady-state problems (RANS). Computational resources are extremely challenged for high-fidelity unsteady problems (e.g. unsteady loads, buffet boundary, jet and installation noise, fan noise, active flow control, airframe noise, etc) ü Need novel techniques for reducing the computational resources consumed by current high-fidelity CAA Need routine acoustic analysis of aircraft components at full-scale Reynolds number from first principles Need an order of magnitude reduction in wall time to solution!
NASA Technical Reports Server (NTRS)
Arnold, Steven M. (Technical Monitor); Bansal, Yogesh; Pindera, Marek-Jerzy
2004-01-01
The High-Fidelity Generalized Method of Cells is a new micromechanics model for unidirectionally reinforced periodic multiphase materials that was developed to overcome the original model's shortcomings. The high-fidelity version predicts the local stress and strain fields with dramatically greater accuracy relative to the original model through the use of a better displacement field representation. Herein, we test the high-fidelity model's predictive capability in estimating the elastic moduli of periodic composites characterized by repeating unit cells obtained by rotation of an infinite square fiber array through an angle about the fiber axis. Such repeating unit cells may contain a few or many fibers, depending on the rotation angle. In order to analyze such multi-inclusion repeating unit cells efficiently, the high-fidelity micromechanics model's framework is reformulated using the local/global stiffness matrix approach. The excellent agreement with the corresponding results obtained from the standard transformation equations confirms the new model's predictive capability for periodic composites characterized by multi-inclusion repeating unit cells lacking planes of material symmetry. Comparison of the effective moduli and local stress fields with the corresponding results obtained from the original Generalized Method of Cells dramatically highlights the original model's shortcomings for certain classes of unidirectional composites.
NASA Astrophysics Data System (ADS)
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-07-01
We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.
NASA Astrophysics Data System (ADS)
Baranoski, Gladimir V. G.; Van Leeuwen, Spencer; Chen, Tenn F.
2016-04-01
Hyperspectral technologies are being increasingly employed in precision agriculture. By separating the surface and subsurface components of foliar hyperspectral signatures using polarization optics, it is possible to enhance the remote discrimination of different plant species and optimize the assessment of different factors associated with the crops' health status such as chlorophyll levels and water content. These initiatives, in turn, can lead to higher crop yield and lower environmental impact through a more effective use of freshwater supplies and fertilizers (reducing the risk of nitrogen leaching). It is important to consider, however, that the main varieties of crops, represented by C3 (e.g., soy) and C4 (e.g., maize) plants, have markedly distinct morphological characteristics. Accordingly, the influence of these characteristics on their interactions with impinging light may affect the selection of optimal probe wavelengths for specific applications making use of combined hyperspectral and polarization measurements. In this work, we compare the sensitivity of the surface and subsurface reflectance responses of C3 and C4 plants to different spectral and geometrical light incidence conditions. In our comparisons, we also consider intra- species variability with respect to specimen characterization data. This investigation is supported by measured biophysical data and predictive light transport simulations. The results of our comparisons indicate that the surface and subsurface reflectance responses of C3 and C4 plants depict well-defined patterns of sensitivity to varying illumination conditions. We believe that these patterns should be considered in the design of new high-fidelity crop discrimination and monitoring procedures.
Hussain, Mahmood Irtiza; Petrasiunas, Matthew Joseph; Bentley, Christopher D B; Taylor, Richard L; Carvalho, André R R; Hope, Joseph J; Streed, Erik W; Lobino, Mirko; Kielpinski, David
2016-07-25
Trapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.5 ps ultraviolet (UV) pulses at a stabilized repetition rate of 300.00000 MHz with an average power of 190 mW. The laser wavelength is resonant with the strong transition in Ytterbium (Yb+) at 369.53 nm and its repetition rate can be scaled up using high harmonic mode locking. We show that our source can produce arbitrary pulse patterns using a programmable pulse pattern generator and fast modulating components. Finally, simulations demonstrate that our laser is capable of performing resonant, temperature-insensitive, two-qubit quantum logic gates on trapped Yb+ ions faster than the trap period and with fidelity above 99%.
Feasibility and fidelity of practising surgical fixation on a virtual ulna bone
LeBlanc, Justin; Hutchison, Carol; Hu, Yaoping; Donnon, Tyrone
2013-01-01
Background Surgical simulators provide a safe environment to learn and practise psychomotor skills. A goal for these simulators is to achieve high levels of fidelity. The purpose of this study was to develop a reliable surgical simulator fidelity questionnaire and to assess whether a newly developed virtual haptic simulator for fixation of an ulna has comparable levels of fidelity as Sawbones. Methods Simulator fidelity questionnaires were developed. We performed a stratified randomized study with surgical trainees. They performed fixation of the ulna using a virtual simulator and Sawbones. They completed the fidelity questionnaires after each procedure. Results Twenty-two trainees participated in the study. The reliability of the fidelity questionnaire for each separate domain (environment, equipment, psychological) was Cronbach α greater than 0.70, except for virtual environment. The Sawbones had significantly higher levels of fidelity than the virtual simulator (p < 0.001) with a large effect size difference (Cohen d < 1.3). Conclusion The newly developed fidelity questionnaire is a reliable tool that can potentially be used to determine the fidelity of other surgical simulators. Increasing the fidelity of this virtual simulator is required before its use as a training tool for surgical fixation. The virtual simulator brings with it the added benefits of repeated, independent safe use with immediate, objective feedback and the potential to alter the complexity of the skill. PMID:23883510
ERIC Educational Resources Information Center
Kopp, Jason P.; Hulleman, Chris S.; Harackiewicz, Judith M.; Rozek, Chris
2012-01-01
Assessing fidelity of implementation is becoming increasingly important in education research, in particular as a tool for understanding variations in treatment effectiveness. Fidelity of implementation is defined as "the determination of how well an intervention is implemented in comparison with the original program design during an efficacy…
Development of a site fidelity index based on population capture-recapture data
Ferrari, Mariano A.; Crespo, Enrique A.; Coscarella, Mariano A.
2018-01-01
Background Site fidelity is considered as an animal’s tendency to return to a previously occupied place; this is a component of animal behaviour that allows us to understand movement patterns and aspects related to the animal’s life history. Although there are many site fidelity metrics, the lack of standardisation presents a considerable challenge in terms of comparability among studies. Methods This investigation focused on the theoretical development of a standardised composite site fidelity index and its statistical distribution in order to obtain reliable population-level site fidelity comparisons. The arithmetic and harmonic means were used as mathematical structures in order to create different indexes by combining the most commonly used indicators for site fidelity such as Occurrence, Permanence and Periodicity. The index performance was then evaluated in simulated populations and one real population of Commerson’s dolphins (Cephalorhynchus commersonii (Lacépède 1804)). In the first case, the indexes were evaluated based on how they were affected by different probability values such as the occurrence of the individual within the study area (φ) and capture probability (p). As a precision measure for the comparison of the indexes, the Wald confidence interval (CI) and the mean square error were applied. Given that there was no previous data concerning the distribution parameters of this population, bootstrap CIs were applied for the study case. Results Eight alternative indexes were developed. The indexes with an arithmetic mean structure, in general, had a consistently inferior performance than those with a harmonic mean structure. The index IH4, in particular, achieved the best results in all of the scenarios and in the study case. Additionally, this index presented a normal distribution. As such, it was proposed as a standardised measure for site fidelity (Standardised Site Fidelity Index—SSFI). Discussion The SSFI is the first standardised metric that quantifies site fidelity at a populational level. It is an estimator that varies between zero and one and works in situations where detection is not perfect and effort can be constant or not. Moreover, it has an associated CI that allows users to make comparisons. PMID:29761064
Development of a site fidelity index based on population capture-recapture data.
Tschopp, Ayelen; Ferrari, Mariano A; Crespo, Enrique A; Coscarella, Mariano A
2018-01-01
Site fidelity is considered as an animal's tendency to return to a previously occupied place; this is a component of animal behaviour that allows us to understand movement patterns and aspects related to the animal's life history. Although there are many site fidelity metrics, the lack of standardisation presents a considerable challenge in terms of comparability among studies. This investigation focused on the theoretical development of a standardised composite site fidelity index and its statistical distribution in order to obtain reliable population-level site fidelity comparisons. The arithmetic and harmonic means were used as mathematical structures in order to create different indexes by combining the most commonly used indicators for site fidelity such as Occurrence, Permanence and Periodicity. The index performance was then evaluated in simulated populations and one real population of Commerson's dolphins ( Cephalorhynchus commersonii (Lacépède 1804)). In the first case, the indexes were evaluated based on how they were affected by different probability values such as the occurrence of the individual within the study area (φ) and capture probability ( p ). As a precision measure for the comparison of the indexes, the Wald confidence interval (CI) and the mean square error were applied. Given that there was no previous data concerning the distribution parameters of this population, bootstrap CIs were applied for the study case. Eight alternative indexes were developed. The indexes with an arithmetic mean structure, in general, had a consistently inferior performance than those with a harmonic mean structure. The index IH4, in particular, achieved the best results in all of the scenarios and in the study case. Additionally, this index presented a normal distribution. As such, it was proposed as a standardised measure for site fidelity (Standardised Site Fidelity Index-SSFI). The SSFI is the first standardised metric that quantifies site fidelity at a populational level. It is an estimator that varies between zero and one and works in situations where detection is not perfect and effort can be constant or not. Moreover, it has an associated CI that allows users to make comparisons.
A novel double patterning approach for 30nm dense holes
NASA Astrophysics Data System (ADS)
Hsu, Dennis Shu-Hao; Wang, Walter; Hsieh, Wei-Hsien; Huang, Chun-Yen; Wu, Wen-Bin; Shih, Chiang-Lin; Shih, Steven
2011-04-01
Double Patterning Technology (DPT) was commonly accepted as the major workhorse beyond water immersion lithography for sub-38nm half-pitch line patterning before the EUV production. For dense hole patterning, classical DPT employs self-aligned spacer deposition and uses the intersection of horizontal and vertical lines to define the desired hole patterns. However, the increase in manufacturing cost and process complexity is tremendous. Several innovative approaches have been proposed and experimented to address the manufacturing and technical challenges. A novel process of double patterned pillars combined image reverse will be proposed for the realization of low cost dense holes in 30nm node DRAM. The nature of pillar formation lithography provides much better optical contrast compared to the counterpart hole patterning with similar CD requirements. By the utilization of a reliable freezing process, double patterned pillars can be readily implemented. A novel image reverse process at the last stage defines the hole patterns with high fidelity. In this paper, several freezing processes for the construction of the double patterned pillars were tested and compared, and 30nm double patterning pillars were demonstrated successfully. A variety of different image reverse processes will be investigated and discussed for their pros and cons. An economic approach with the optimized lithography performance will be proposed for the application of 30nm DRAM node.
Wang, Carolyn L; Schopp, Jennifer G; Petscavage, Jonelle M; Paladin, Angelisa M; Richardson, Michael L; Bush, William H
2011-06-01
The objective of our study was to assess whether high-fidelity simulation-based training is more effective than traditional didactic lecture to train radiology residents in the management of contrast reactions. This was a prospective study of 44 radiology residents randomized into a simulation group versus a lecture group. All residents attended a contrast reaction didactic lecture. Four months later, baseline knowledge was assessed with a written test, which we refer to as the "pretest." After the pretest, the 21 residents in the lecture group attended a repeat didactic lecture and the 23 residents in the simulation group underwent high-fidelity simulation-based training with five contrast reaction scenarios. Next, all residents took a second written test, which we refer to as the "posttest." Two months after the posttest, both groups took a third written test, which we refer to as the "delayed posttest," and underwent performance testing with a high-fidelity severe contrast reaction scenario graded on predefined critical actions. There was no statistically significant difference between the simulation and lecture group pretest, immediate posttest, or delayed posttest scores. The simulation group performed better than the lecture group on the severe contrast reaction simulation scenario (p = 0.001). The simulation group reported improved comfort in identifying and managing contrast reactions and administering medications after the simulation training (p ≤ 0.04) and was more comfortable than the control group (p = 0.03), which reported no change in comfort level after the repeat didactic lecture. When compared with didactic lecture, high-fidelity simulation-based training of contrast reaction management shows equal results on written test scores but improved performance during a high-fidelity severe contrast reaction simulation scenario.
ERIC Educational Resources Information Center
Palmer, Elizabeth; Edwards, Taylor; Racchini, James
2014-01-01
High-fidelity simulation is frequently used in nursing education to provide students with simulated experiences prior to and throughout clinical coursework that involves direct patient care. These high-tech exercises take advantage of the benefits of a standardized patient or mock patient encounter, while eliminating some of the drawbacks…
High fidelity quantum teleportation assistance with quantum neural network
NASA Astrophysics Data System (ADS)
Huang, Chunhui; Wu, Bichun
2014-09-01
In this paper, a high fidelity scheme of quantum teleportation based on quantum neural network (QNN) is proposed. The QNN is composed of multi-bit control-not gates. The quantum teleportation of a qubit state via two-qubit entangled channels is investigated by solving the master equation in Lindblad operators with a noisy environment. To ensure the security of quantum teleportation, the indirect training of QNN is employed. Only 10% of teleported information is extracted for the training of QNN parameters. Then the outputs are corrected by the other QNN at Bob's side. We build a random series of numbers ranged in [0, π] as inputs and simulate the properties of our teleportation scheme. The results show that the fidelity of quantum teleportation system is significantly improved to approach 1 by the error-correction of QNN. It illustrates that the distortion can be eliminated perfectly and the high fidelity of quantum teleportation could be implemented.
High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities
NASA Astrophysics Data System (ADS)
Li, Tao; Gao, Jian-Cun; Deng, Fu-Guo; Long, Gui-Lu
2018-04-01
We propose some high-fidelity quantum circuits for quantum computing on electron spins of quantum dots (QD) embedded in low-Q optical microcavities, including the two-qubit controlled-NOT gate and the multiple-target-qubit controlled-NOT gate. The fidelities of both quantum gates can, in principle, be robust to imperfections involved in a practical input-output process of a single photon by converting the infidelity into a heralded error. Furthermore, the influence of two different decay channels is detailed. By decreasing the quality factor of the present microcavity, we can largely increase the efficiencies of these quantum gates while their high fidelities remain unaffected. This proposal also has another advantage regarding its experimental feasibility, in that both quantum gates can work faithfully even when the QD-cavity systems are non-identical, which is of particular importance in current semiconductor QD technology.
Site fidelity, mate fidelity, and breeding dispersal in American kestrels
Steenhof, K.; Peterson, B.E.
2009-01-01
We assessed mate fidelity, nest-box fidelity, and breeding dispersal distances of American Kestrels (falco sparverius) nesting in boxes in southwestern Idaho from 1990 through 2006. Seventy-seven percent of boxes had different males and 87% had different females where nest-box occupants were identified in consecutive years. High turnover rates were partly a result of box-switching. Forty-eight percent of males and 58% of females that nested within the study area in successive years used different boxes. The probability of changing boxes was unrelated to gender, nesting success in the prior year, or years of nesting experience. Breeding dispersal distances for birds that moved to different boxes averaged 2.2 km for males (max = 22 km) and 3.2 km for females (max = 32 km). Approximately 70% of birds that nested in consecutive years on the study area had a different mate in the second year. Mate fidelity was related to box fidelity but not to prior nesting success or years of nesting experience. Mate changes occurred 32% of the time when the previous mate was known to be alive and nesting in the area. Kestrels that switched mates and boxes did not improve or decrease their subsequent nesting success. Kestrels usually switched to mates with less experience and lower lifetime productivity than their previous mates. The costs of switching boxes and mates were low, and there were no obvious benefits to fidelity. The cost of "waiting" for a previous mate that might have died could be high in species with high annual mortality.
Crofts, Joanna F; Bartlett, Christine; Ellis, Denise; Hunt, Linda P; Fox, Robert; Draycott, Timothy J
2006-12-01
To evaluate the effectiveness of simulation training for shoulder dystocia management and compare training using a high-fidelity mannequin with that using traditional devices. Training was undertaken in six hospitals and a medical simulation center in the United Kingdom. Midwives and obstetricians working for participating hospitals were eligible for inclusion. One hundred forty participants (45 doctors, 95 midwives) were randomized to training with a high-fidelity training mannequin (incorporating force perception training) or traditional low-fidelity mannequins. Performance was assessed pre- and posttraining, using a videoed, standardized shoulder dystocia simulation. Outcome measures were delivery, head-to-body delivery time, use of appropriate and inappropriate actions, force applied, and communication. One hundred thirty-two participants completed the posttraining assessment. All training was associated with improved performance: use of basic maneuvers 114 of 140 (81.4%) to 125 of 132 (94.7%) (P=.002), successful deliveries 60 of 140 (42.9%) to 110 of 132 (83.3%) (P<.001), good communication with the patient 79 of 139 (56.8%) to 109 of 132 (82.6%) (P<.001), pre- and posttraining, respectively. Training with the high-fidelity mannequin was associated with a higher successful delivery rate than training with traditional devices: 94% compared with 72% (odds ratio 6.53, 95% confidence interval 2.05-20.81; P=.002). Total applied force was significantly lower for those who had undergone force training (2,030 Newton seconds versus 2,916 Newton seconds; P=.006) but there was no significant difference in the peak applied force 102 Newtons versus 112 Newtons (P=.242). This study verifies the need for shoulder dystocia training; before training only 43% participants could achieve delivery. All training with mannequins improved the management of simulated shoulder dystocia. Training on a high-fidelity mannequin, including force perception teaching, offered additional training benefits. I.
Progress in the Utilization of High-Fidelity Simulation in Basic Science Education
ERIC Educational Resources Information Center
Helyer, Richard; Dickens, Peter
2016-01-01
High-fidelity patient simulators are mainly used to teach clinical skills and remain underutilized in teaching basic sciences. This article summarizes our current views on the use of simulation in basic science education and identifies pitfalls and opportunities for progress.
GIS Data Based Automatic High-Fidelity 3D Road Network Modeling
NASA Technical Reports Server (NTRS)
Wang, Jie; Shen, Yuzhong
2011-01-01
3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks
Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method
NASA Astrophysics Data System (ADS)
Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon
2008-06-01
For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.
NASA Astrophysics Data System (ADS)
Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro
2018-06-01
A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.
ERIC Educational Resources Information Center
Kelly, Stephanie A.; Oswalt, Krista; Melnyk, Bernadette Mazurek; Jacobson, Diana
2015-01-01
Fidelity in implementing an intervention is critical to accurately determine and interpret the effects of an intervention. It is important to monitor the manner in which the behavioral intervention is implemented (e.g. adaptations, delivery as intended and dose). Few interventions are implemented with 100% fidelity. In this study, high school…
A high-throughput assay for the comprehensive profiling of DNA ligase fidelity
Lohman, Gregory J. S.; Bauer, Robert J.; Nichols, Nicole M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C.
2016-01-01
DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. PMID:26365241
A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.
Lohman, Gregory J S; Bauer, Robert J; Nichols, Nicole M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C
2016-01-29
DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Spawning site fidelity of wild and hatchery lake trout (Salvelinus namaycush) in northern Lake Huron
Binder, Thomas; Riley, Stephen C.; Holbrook, Christopher; Hansen, Michael J.; Bergstedt, Roger A.; Bronte, Charles R.; He, Ji; Krueger, Charles C.
2016-01-01
Fidelity to high-quality spawning sites helps ensure that adults repeatedly spawn at sites that maximize reproductive success. Fidelity is also an important behavioural characteristic to consider when hatchery-reared individuals are stocked for species restoration, because artificial rearing environments may interfere with cues that guide appropriate spawning site selection. Acoustic telemetry was used in conjunction with Cormack–Jolly–Seber capture–recapture models to compare degree of spawning site fidelity of wild and hatchery-reared lake trout (Salvelinus namaycush) in northern Lake Huron. Annual survival was estimated to be between 77% and 81% and did not differ among wild and hatchery males and females. Site fidelity estimates were high in both wild and hatchery-reared lake trout (ranging from 0.78 to 0.94, depending on group and time filter), but were slightly lower in hatchery-reared fish than in wild fish. The ecological implication of the small difference in site fidelity between wild and hatchery-reared lake trout is unclear, but similarities in estimates suggest that many hatchery-reared fish use similar spawning sites to wild fish and that most return to those sites annually for spawning.
High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity.
Reed, M D; DiCarlo, L; Johnson, B R; Sun, L; Schuster, D I; Frunzio, L; Schoelkopf, R J
2010-10-22
We demonstrate a qubit readout scheme that exploits the Jaynes-Cummings nonlinearity of a superconducting cavity coupled to transmon qubits. We find that, in the strongly driven dispersive regime of this system, there is the unexpected onset of a high-transmission "bright" state at a critical power which depends sensitively on the initial qubit state. A simple and robust measurement protocol exploiting this effect achieves a single-shot fidelity of 87% using a conventional sample design and experimental setup, and at least 61% fidelity to joint correlations of three qubits.
Gautrot, Julien E.; Trappmann, Britta; Oceguera-Yanez, Fabian; Connelly, John; He, Ximin; Watt, Fiona M.; Huck, Wilhelm T.S.
2010-01-01
The control of the cell microenvironment on model patterned substrates allows the systematic study of cell biology in well defined conditions, potentially using automated systems. The extreme protein resistance of poly(oligo(ethylene glycol methacrylate)) (POEGMA) brushes is exploited to achieve high fidelity patterning of single cells. These coatings can be patterned by soft lithography on large areas (a microscope slide) and scale (substrates were typically prepared in batches of 200). The present protocol relies on the adsorption of extra-cellular matrix (ECM) proteins on unprotected areas using simple incubation and washing steps. The stability of POEGMA brushes, as examined via ellipsometry and SPR, is found to be excellent, both during storage and cell culture. The impact of substrate treatment, brush thickness and incubation protocol on ECM deposition, both for ultra-thin gold and glass substrates, is investigated via fluorescence microscopy and AFM. Optimised conditions result in high quality ECM patterns at the micron scale, even on glass substrates, that are suitable for controlling cell spreading and polarisation. These patterns are compatible with state-of-the-art technologies (fluorescence microscopy, FRET) used for live cell imaging. This technology, combined with single cell analysis methods, provides a platform for exploring the mechanisms that regulate cell behaviour. PMID:20347135
In-Plane Channel-Structured Catalyst Layer for Polymer Electrolyte Membrane Fuel Cells.
Lee, Dong-Hyun; Jo, Wonhee; Yuk, Seongmin; Choi, Jaeho; Choi, Sungyu; Doo, Gisu; Lee, Dong Wook; Kim, Hee-Tak
2018-02-07
In this study, we present a novel catalyst layer (CL) with in-plane flow channels to enhance the mass transports in polymer electrolyte membrane fuel cells. The CL with in-plane channels on its surface is fabricated by coating a CL slurry onto a surface-treated substrate with the inverse line pattern and transferring the dried CL from the substrate to a membrane. The membrane electrode assembly with the in-plane channel-patterned CL has superior power performances in high current densities compared with an unpatterned, flat CL, demonstrating a significant enhancement of the mass-transport property by the in-plane channels carved in the CL. The performance gain is more pronounced when the channel direction is perpendicular to the flow field direction, indicating that the in-plane channels increase the utilization of the CL under the rib area. An oxygen-transport resistance analysis shows that both molecular and Knudsen diffusion can be facilitated with the introduction of the in-plane channels. The direct CL patterning technique provides a platform for the fabrication of advanced CL structures with a high structural fidelity and design flexibility and a rational guideline for designing high-performance CLs.
Jeyaprakash, Ayyamperumal; Hoy, Marjorie A
2004-07-01
Amplifying microbial DNA by the polymerase chain reaction (PCR) from single phytoseiid mites has been difficult, perhaps due to the low titer of bacteria and to interference by the relatively larger amounts of mite genomic DNA. In this paper we evaluate the efficiency of standard and high-fidelity PCR protocols subsequent to amplification of the whole genome by a multiple displacement amplification (MDA) procedure developed by Dean et al. DNA from the phytoseiid Phytoseiulus persimilis (Athias-Henriot) was tested because it lacks a Cytophaga-like organism (CLO) and we could add known amounts of a plasmid containing a cloned 16S rRNA gene fragment from a CLO from Metaseiulus occidentalis (Nesbitt). P. persimilis genomic DNA was mixed with the serially diluted plasmid and amplified using MDA followed by either standard or high-fidelity PCR. MDA followed by high-fidelity PCR was most efficient and successfully amplified an expected 1.5-kb band from as little as 0.01fg of the plasmid, which is equivalent to about 1 copy. MDA followed by high-fidelity PCR also consistently amplified Wolbachia- or CLO-specific products from naturally infected single females or eggs of M. occidentalis, which will allow detailed studies of infection frequency and transmission of several microorganisms associated with this predatory mite.
Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.
Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver
2012-06-01
Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.
NASA Astrophysics Data System (ADS)
Huang, Wei; Chen, Xiu; Wang, Yueyun
2018-03-01
Landsat data are widely used in various earth observations, but the clouds interfere with the applications of the images. This paper proposes a weighted variational gradient-based fusion method (WVGBF) for high-fidelity thin cloud removal of Landsat images, which is an improvement of the variational gradient-based fusion (VGBF) method. The VGBF method integrates the gradient information from the reference band into visible bands of cloudy image to enable spatial details and remove thin clouds. The VGBF method utilizes the same gradient constraints to the entire image, which causes the color distortion in cloudless areas. In our method, a weight coefficient is introduced into the gradient approximation term to ensure the fidelity of image. The distribution of weight coefficient is related to the cloud thickness map. The map is built on Independence Component Analysis (ICA) by using multi-temporal Landsat images. Quantitatively, we use R value to evaluate the fidelity in the cloudless regions and metric Q to evaluate the clarity in the cloud areas. The experimental results indicate that the proposed method has the better ability to remove thin cloud and achieve high fidelity.
Damschroder, Laura J; Goodrich, David E; Kim, Hyungjin Myra; Holleman, Robert; Gillon, Leah; Kirsh, Susan; Richardson, Caroline R; Lutes, Lesley D
2016-09-01
Practical and valid instruments are needed to assess fidelity of coaching for weight loss. The purpose of this study was to develop and validate the ASPIRE Coaching Fidelity Checklist (ACFC). Classical test theory guided ACFC development. Principal component analyses were used to determine item groupings. Psychometric properties, internal consistency, and inter-rater reliability were evaluated for each subscale. Criterion validity was tested by predicting weight loss as a function of coaching fidelity. The final 19-item ACFC consists of two domains (session process and session structure) and five subscales (sets goals and monitor progress, assess and personalize self-regulatory content, manages the session, creates a supportive and empathetic climate, and stays on track). Four of five subscales showed high internal consistency (Cronbach alphas > 0.70) for group-based coaching; only two of five subscales had high internal reliability for phone-based coaching. All five sub-scales were positively and significantly associated with weight loss for group- but not for phone-based coaching. The ACFC is a reliable and valid instrument that can be used to assess fidelity and guide skill-building for weight management interventionists.
The use of virtual patient scenarios as a vehicle for teaching professionalism.
Marei, H F; Al-Eraky, M M; Almasoud, N N; Donkers, J; Van Merrienboer, J J G
2018-05-01
This study aimed to measure students' perceptions of virtual patient scenarios (VPs) for developing ethical reasoning skills and to explore features in VP design that are necessary to promote professionalism. Sixty-five dental students participated in learning sessions that involved collaborative practice with five VPs (four high fidelity and one low fidelity), followed by reflection sessions. Students' perceptions towards the use of VPs in developing ethical reasoning skills were assessed using a questionnaire that involved 10 closed and three open-ended questions. High-fidelity VPs were perceived as significantly better for developing ethical reasoning skills than low-fidelity VPs. Analyses of answers to open-ended questions revealed two new features that are specific for VPs intended for teaching professionalism, which are VP dramatic structure and how it should end. VPs intended for teaching professionalism need to have high fidelity, follow a specific dramatic structure and should include multiple plausible endings. The use of VPs as part of a collaborative activity that is followed by a reflection session is perceived as an effective tool for the development of ethical reasoning skills in dental education. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
High-Fidelity Multidisciplinary Design Optimization of Aircraft Configurations
NASA Technical Reports Server (NTRS)
Martins, Joaquim R. R. A.; Kenway, Gaetan K. W.; Burdette, David; Jonsson, Eirikur; Kennedy, Graeme J.
2017-01-01
To evaluate new airframe technologies we need design tools based on high-fidelity models that consider multidisciplinary interactions early in the design process. The overarching goal of this NRA is to develop tools that enable high-fidelity multidisciplinary design optimization of aircraft configurations, and to apply these tools to the design of high aspect ratio flexible wings. We develop a geometry engine that is capable of quickly generating conventional and unconventional aircraft configurations including the internal structure. This geometry engine features adjoint derivative computation for efficient gradient-based optimization. We also added overset capability to a computational fluid dynamics solver, complete with an adjoint implementation and semiautomatic mesh generation. We also developed an approach to constraining buffet and started the development of an approach for constraining utter. On the applications side, we developed a new common high-fidelity model for aeroelastic studies of high aspect ratio wings. We performed optimal design trade-o s between fuel burn and aircraft weight for metal, conventional composite, and carbon nanotube composite wings. We also assessed a continuous morphing trailing edge technology applied to high aspect ratio wings. This research resulted in the publication of 26 manuscripts so far, and the developed methodologies were used in two other NRAs. 1
Patterning control strategies for minimum edge placement error in logic devices
NASA Astrophysics Data System (ADS)
Mulkens, Jan; Hanna, Michael; Slachter, Bram; Tel, Wim; Kubis, Michael; Maslow, Mark; Spence, Chris; Timoshkov, Vadim
2017-03-01
In this paper we discuss the edge placement error (EPE) for multi-patterning semiconductor manufacturing. In a multi-patterning scheme the creation of the final pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. We describe the fidelity of the final pattern in terms of EPE, which is defined as the relative displacement of the edges of two features from their intended target position. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As an experimental test vehicle we use the 7-nm logic device patterning process flow as developed by IMEC. This patterning process is based on Self-Aligned-Quadruple-Patterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography. The computational metrology method to determine EPE is explained. It will be shown that ArF to EUV overlay, CDU from the individual process steps, and local CD and placement of the individual pattern features, are the important contributors. Based on the error budget, we developed an optimization strategy for each individual step and for the final pattern. Solutions include overlay and CD metrology based on angle resolved scatterometry, scanner actuator control to enable high order overlay corrections and computational lithography optimization to minimize imaging induced pattern placement errors of devices and metrology targets.
NASA Astrophysics Data System (ADS)
Warlick, Kent M.
While the addition of short fiber to 3D printed articles has increased structural performance, ultimate gains will only be realized through the introduction of continuous reinforcement placed along pre-planned load paths. Most additive manufacturing research focusing on the addition of continuous reinforcement has revolved around utilization of a prefrabricated composite filament or a fiber and matrix mixed within a hot end prior to deposition on a printing surface such that conventional extrusion based FDM can be applied. Although stronger 3D printed parts can be made in this manner, high quality homogenous composites are not possible due to fiber dominated regions, matrix dominated regions, and voids present between adjacent filaments. Conventional composite manufacturing processes are much better at creating homogeneous composites; however, the layer by layer approach in which they are made is inhibiting the alignment of reinforcement with loads. Automated Fiber Placement techniques utilize in plane bending deformation of the tow to facilitate tow steering. Due to buckling fibers on the inner radius of curves, manufacturers recommend a minimum curvature for path placement with this technique. A method called continuous tow shearing has shown promise to enable the placement of tows in complex patterns without tow buckling, spreading, and separation inherent in conventional forms of automated reinforcement positioning. The current work employs fused deposition modeling hardware and the continuous tow shearing technique to manufacture high quality fiber reinforced composites with high positional fidelity, varying continuous reinforcement orientations within a layer, and plastic elements incorporated enabling the ultimate gains in structural performance possible. A mechanical system combining concepts of additive manufacturing with fiber placement via filament winding was developed. Paths with and without tension inherent in filament winding were analyzed through microscopy in order to examine best and worst case scenarios. High quality fiber reinforced composite materials, in terms of low void content, high fiber volume fractions and homogeneity in microstructure, were manufactured in both of these scenarios. In order to improve fidelity and quality in fiber path transition regions, a forced air cooling manifold was designed, printed, and implemented into the current system. To better understand the composite performance that results from varying pertinent manufacturing parameters, the effect of feed rate, hot end temperature, forced air cooling, and deposition surface (polypropylene and previously deposited glass polypropylene commingled tow) on interply performance, microstructure, and positional fidelity were analyzed. Interply performance, in terms of average maximum load and average peel strength, was quantified through a t-peel test of the bonding quality between two surfaces. With use of forced air cooling, minor decreases in average peel strength were present due to a reduction in tow deposition temperature which was found to be the variable most indicative of performance. Average maximum load was comparable between the forced air cooled and non-air cooled samples. Microstructure was evaluated through characterization of composite area, void content, and flash percentage. Low void contents mostly between five to seven percent were attained. Further reduction of this void content to two percent is possible through higher processing temperatures; however, reduced composite area, low average peel strength performance, and the presence of smoke during manufacturing implied thermal degradation of the polypropylene matrix occurred in these samples with higher processing temperatures. Positional fidelity was measured through calculations of shear angle, shift width, and error of a predefined path. While positional fidelity variation was low with a polypropylene deposition surface, forced air cooling is necessary to achieve fidelity on top of an already deposited tow surface as evident by the fifty-six percent reduction in error tolerance profile achieved. Lastly, proof of concept articles with unique fiber paths and neat plastic elements incorporated were produced to demonstrate fiber placement along pre-planned load paths and the ability to achieve greater structural efficiency through the use of less material. The results show that high positional fidelity and high quality composites can be produced through the use of the tow shearing technique implemented in the developed mechanical system. The implementation of forced air cooling was critical in achieving fidelity and quality in transition regions. Alignment of continuous reinforcement with pre-planned load paths was demonstrated in the proof of concept article with varying fiber orientations within a layer. Combining fused deposition modeling of plastic with the placement of continuous reinforcement enabled a honeycomb composite to be produced with higher specific properties than traditional composites. Thus, the current system demonstrated a greater capability of achieving ultimate gains in structural performance than previously possible.
Competency: Does High Fidelity Simulation Make a Difference?
ERIC Educational Resources Information Center
Valente, Alice M.
2010-01-01
High fidelity simulation is a well documented adjunctive teaching method in medical and nurse practitioner programs, but few studies of effectiveness on this technology on the development of competency have emphasized pre-licensure associate degree level programs. This study explored student competency in the application of the nursing process…
Using nonfaculty registered nurses to facilitate high-fidelity human patient simulation activities.
Foster, Janet G; Sheriff, Susan; Cheney, Susan
2008-01-01
Maximizing faculty resources using nonfaculty registered nurses to supervise high-fidelity human-patient simulation is an innovative strategy for addressing the nursing faculty shortage and preparing graduates to practice safely in hospitals. The authors describe their use of nonfaculty registered nurses and its outcomes.
Tidal Energy Resource Assessment for McMurdo Station, Antarctica
2016-12-01
highest power coefficient possible, only to provide a high- fidelity data set for a simple geometry turbine model at reasonably high blade chord Reynolds...highest power coefficient possible, only to provide a high-fidelity data set for a simple geometry turbine model at reasonably high blade chord...Reynolds numbers. Tip speed ratio, , is defined as = where is the anglular velocity of the blade and is the
ERIC Educational Resources Information Center
Kimemia, Judy
2017-01-01
Purpose: The purpose of this project was to compare web-based to high-fidelity simulation training in the management of high risk/low occurrence anesthesia related events, to enhance knowledge acquisition for Certified Registered Nurse Anesthetists (CRNAs). This project was designed to answer the question: Is web-based training as effective as…
CTF (Subchannel) Calculations and Validation L3:VVI.H2L.P15.01
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Natalie
The goal of the Verification and Validation Implementation (VVI) High to Low (Hi2Lo) process is utilizing a validated model in a high resolution code to generate synthetic data for improvement of the same model in a lower resolution code. This process is useful in circumstances where experimental data does not exist or it is not sufficient in quantity or resolution. Data from the high-fidelity code is treated as calibration data (with appropriate uncertainties and error bounds) which can be used to train parameters that affect solution accuracy in the lower-fidelity code model, thereby reducing uncertainty. This milestone presents a demonstrationmore » of the Hi2Lo process derived in the VVI focus area. The majority of the work performed herein describes the steps of the low-fidelity code used in the process with references to the work detailed in the companion high-fidelity code milestone (Reference 1). The CASL low-fidelity code used to perform this work was Cobra Thermal Fluid (CTF) and the high-fidelity code was STAR-CCM+ (STAR). The master branch version of CTF (pulled May 5, 2017 – Reference 2) was utilized for all CTF analyses performed as part of this milestone. The statistical and VVUQ components of the Hi2Lo framework were performed using Dakota version 6.6 (release date May 15, 2017 – Reference 3). Experimental data from Westinghouse Electric Company (WEC – Reference 4) was used throughout the demonstrated process to compare with the high-fidelity STAR results. A CTF parameter called Beta was chosen as the calibration parameter for this work. By default, Beta is defined as a constant mixing coefficient in CTF and is essentially a tuning parameter for mixing between subchannels. Since CTF does not have turbulence models like STAR, Beta is the parameter that performs the most similar function to the turbulence models in STAR. The purpose of the work performed in this milestone is to tune Beta to an optimal value that brings the CTF results closer to those measured in the WEC experiments.« less
Morrison, Janet D; Becker, Heather; Stuifbergen, Alexa K
2017-12-01
Careful consideration of intervention fidelity is critical to establishing the validity and reliability of research findings, yet such reports are often lacking in the research literature. It is imperative that intervention fidelity be methodically evaluated and reported to promote the translation of effective interventions into sound evidence-based practice. The purpose of this article is to explore strategies used to promote intervention fidelity, incorporating examples from a multisite clinical trial, that illustrate the National Institutes of Health Behavior Change Consortium's 5 domains for recommended treatment practices: (1) study design, (2) facilitator training, (3) intervention delivery, (4) intervention receipt, and (5) intervention enactment. A multisite randomized clinical trial testing the efficacy of a computer-assisted cognitive rehabilitation intervention for adults with multiple sclerosis is used to illustrate strategies promoting intervention fidelity. Data derived from audiotapes of intervention classes, audits of computer exercises completed by participants, participant class attendance, and goal attainment scaling suggested relatively high fidelity to the intervention protocol. This study illustrates how to report intervention fidelity in the literature guided by best practice strategies, which may serve to promote fidelity monitoring and reporting in future studies.
Benson, Thomas J; Ward, Michael P; Lampman, Richard L; Raim, Arlo; Weatherhead, Patrick J
2012-10-01
The arrival of West Nile virus (WNV) in North America has led to interest in the interaction between birds, the amplification hosts of WNV, and Culex mosquitoes, the primary WNV vectors. American robins (Turdus migratorius) are particularly important amplification hosts of WNV, and because the vector Culex mosquitoes are primarily nocturnal and feed on roosting birds, robin communal roosting behavior may play an important role in the transmission ecology of WNV. Using data from 43 radio-tracked individuals, we determined spatial and temporal patterns of robin roosting behavior, and how these patterns related to the distribution of WNV-infected mosquitoes. Use of the communal roost and fidelity to foraging areas was highly variable both within and among individual robins, and differed markedly from patterns documented in a previous study of robin roosting. Although there were clear seasonal patterns to both robin roosting and WNV occurrence, there was no significant relationship between communal roosting by robins and temporal or spatial patterns of WNV-positive mosquitoes. Our results suggest that, although robins may be important as WNV hosts, communal roosts are not necessarily important for WNV amplification. Other factors, including the availability and distribution of high-quality mosquito habitat and favorable weather for mosquito reproduction, may influence the importance of robin roosts for local WNV amplification and transmission.
Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong
2016-01-01
Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149
High fidelity simulations of infrared imagery with animated characters
NASA Astrophysics Data System (ADS)
Näsström, F.; Persson, A.; Bergström, D.; Berggren, J.; Hedström, J.; Allvar, J.; Karlsson, M.
2012-06-01
High fidelity simulations of IR signatures and imagery tend to be slow and do not have effective support for animation of characters. Simplified rendering methods based on computer graphics methods can be used to overcome these limitations. This paper presents a method to combine these tools and produce simulated high fidelity thermal IR data of animated people in terrain. Infrared signatures for human characters have been calculated using RadThermIR. To handle multiple character models, these calculations use a simplified material model for the anatomy and clothing. Weather and temperature conditions match the IR-texture used in the terrain model. The calculated signatures are applied to the animated 3D characters that, together with the terrain model, are used to produce high fidelity IR imagery of people or crowds. For high level animation control and crowd simulations, HLAS (High Level Animation System) has been developed. There are tools available to create and visualize skeleton based animations, but tools that allow control of the animated characters on a higher level, e.g. for crowd simulation, are usually expensive and closed source. We need the flexibility of HLAS to add animation into an HLA enabled sensor system simulation framework.
NASA Astrophysics Data System (ADS)
Kojima, Yosuke; Shirasaki, Masanori; Chiba, Kazuaki; Tanaka, Tsuyoshi; Inazuki, Yukio; Yoshikawa, Hiroki; Okazaki, Satoshi; Iwase, Kazuya; Ishikawa, Kiichi; Ozawa, Ken
2007-05-01
For 45 nm node and beyond, the alternating phase-shift mask (alt. PSM), one of the most expected resolution enhancement technologies (RET) because of its high image contrast and small mask error enhancement factor (MEEF), and the binary mask (BIM) attract attention. Reducing CD and registration errors and defect are their critical issues. As the solution, the new blank for alt. PSM and BIM is developed. The top film of new blank is thin Cr, and the antireflection film and shielding film composed of MoSi are deposited under the Cr film. The mask CD performance is evaluated for through pitch, CD linearity, CD uniformity, global loading, resolution and pattern fidelity, and the blank performance is evaluated for optical density, reflectivity, sheet resistance, flatness and defect level. It is found that the performance of new blank is equal to or better than that of conventional blank in all items. The mask CD performance shows significant improvement. The lithography performance of new blank is confirmed by wafer printing and AIMS measurement. The full dry type alt. PSM has been used as test plate, and the test results show that new blank can almost meet the specifications of pi-0 CD difference, CD uniformity and process margin for 45 nm node. Additionally, the new blank shows the better pattern fidelity than that of conventional blank on wafer. AIMS results are almost same as wafer results except for the narrowest pattern. Considering the result above, this new blank can reduce the mask error factors of alt. PSM and BIM for 45 nm node and beyond.
Prowse, Phuong-Tu; Nagel, Tricia
2014-01-01
The aim of this study was to design and trial an Adherence Scale to measure fidelity of Motivational Care Planning (MCP) within a clinical trial. This culturally adapted therapy MCP uses a client centered holistic approach that emphasises family and culture to motivate healthy life style changes. The Motivational Care Planning-Adherence Scale (MCP-AS) was developed through consultation with Aboriginal and Islander Mental Health Initiative (AIMhi) Indigenous and non-Indigenous trainers, and review of MCP training resources. The resultant ten-item scale incorporates a 9-Point Likert Scale with a supporting protocol manual and uses objective, behaviourally anchored criteria for each scale point. A fidelity assessor piloted the tool through analysis of four audio-recordings of MCP (conducted by Indigenous researchers within a study in remote communities in Northern Australia). File audits of the remote therapy sessions were utilised as an additional source of information. A Gold Standard Motivational Care Planning training video was also assessed using the MCP-AS. The Motivational Care Planning-Adherence Scale contains items measuring both process and content of therapy sessions. This scale was used successfully to assess therapy through observation of audio or video-recorded sessions and review of clinical notes. Treatment fidelity measured by the MCP-AS within the pilot study indicated high fidelity ratings. Ratings were high across the three domains of rapport, motivation, and self-management with especially high ratings for positive feedback and engagement, review of stressors and goal setting. The Motivational Care Planning-Adherence Scale has the potential to provide a measure of quality of delivery of Motivation Care Planning. The pilot findings suggest that despite challenges within the remote Indigenous community setting, Indigenous therapists delivered therapy that was of high fidelity. While developed as a research tool, the scale has the potential to support fidelity of delivery of Motivation Care Planning in clinical, supervision and training settings. Larger studies are needed to establish inter-rater reliability and internal and external validity.
Bartoli, Carlo R.; Rogers, Benjamin D.; Ionan, Constantine E.; Koenig, Steven C.; Pantalos, George M.
2013-01-01
OBJECTIVE Counterpulsation with an intraaortic balloon pump (IABP) has not achieved the same successes or clinical use in pediatric patients as in adults. In a pediatric animal model, IABP efficacy was investigated to determine whether IABP timing with a high-fidelity blood pressure signal may improve counterpulsation therapy versus a low-fidelity signal. METHODS In Yorkshire piglets (n=19, 13.0±0.5 kg) with coronary ligation-induced acute ischemic left ventricular failure, pediatric IABPs (5 or 7cc) were placed in the descending thoracic aorta. Inflation and deflation were timed with traditional criteria from low-fidelity (fluid-filled) and high-fidelity (micromanometer) blood pressure signals during 1:1 support. Aortic, carotid, and coronary hemodynamics were measured with pressure and flow transducers. Myocardial oxygen consumption was calculated from coronary sinus and arterial blood samples. Left ventricular myocardial blood flow and end-organ blood flow were measured with microspheres. RESULTS Despite significant suprasystolic diastolic augmentation and afterload reduction at heart rates of 105±3bmp, left ventricular myocardial blood flow, myocardial oxygen consumption, the myocardial oxygen supply/demand relationship, cardiac output, and end-organ blood flow did not change. Statistically significant end-diastolic coronary, carotid, and aortic flow reversal occurred with IABP deflation. Inflation and deflation timed with a high-fidelity versus low-fidelity signal did not attenuate systemic flow reversal or improve the myocardial oxygen supply/demand relationship. CONCLUSIONS Systemic end-diastolic flow reversal limited counterpulsation efficacy in a pediatric model of acute left ventricular failure. Adjustment of IABP inflation and deflation timing with traditional criteria and a high-fidelity blood pressure waveform did not improve IABP efficacy or attenuate flow reversal. End-diastolic flow reversal may limit the efficacy of IABP counterpulsation therapy in pediatric patients with traditional timing criteria. Investigation of alternative deflation timing strategies is warranted. PMID:24139614
Bartoli, Carlo R; Rogers, Benjamin D; Ionan, Constantine E; Pantalos, George M
2014-05-01
Counterpulsation with an intra-aortic balloon pump (IABP) has not achieved the same success or clinical use in pediatric patients as in adults. In a pediatric animal model, IABP efficacy was investigated to determine whether IABP timing with a high-fidelity blood pressure signal may improve counterpulsation therapy versus a low-fidelity signal. In Yorkshire piglets (n = 19; weight, 13.0 ± 0.5 kg) with coronary ligation-induced acute ischemic left ventricular failure, pediatric IABPs (5 or 7 mL) were placed in the descending thoracic aorta. Inflation and deflation were timed with traditional criteria from low-fidelity (fluid-filled) and high-fidelity (micromanometer) blood pressure signals during 1:1 support. Aortic, carotid, and coronary hemodynamics were measured with pressure and flow transducers. Myocardial oxygen consumption was calculated from coronary sinus and arterial blood samples. Left ventricular myocardial blood flow and end-organ blood flow were measured with microspheres. Despite significant suprasystolic diastolic augmentation and afterload reduction at heart rates of 105 ± 3 beats per minute, left ventricular myocardial blood flow, myocardial oxygen consumption, the myocardial oxygen supply/demand relationship, cardiac output, and end-organ blood flow did not change. Statistically significant end-diastolic coronary, carotid, and aortic flow reversal occurred with IABP deflation. Inflation and deflation timed with a high-fidelity versus low-fidelity signal did not attenuate systemic flow reversal or improve the myocardial oxygen supply/demand relationship. Systemic end-diastolic flow reversal limited counterpulsation efficacy in a pediatric model of acute left ventricular failure. Adjustment of IABP inflation and deflation timing with traditional criteria and a high-fidelity blood pressure waveform did not improve IABP efficacy or attenuate flow reversal. End-diastolic flow reversal may limit the efficacy of IABP counterpulsation therapy in pediatric patients with traditional timing criteria. Investigation of alternative deflation timing strategies is warranted. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)
2001-01-01
Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are interfaced. This capability rapidly provides the high-fidelity results needed in the early design phase. Moreover, the capability is applicable to the general field of engineering science and mechanics. Hence, it provides a collaborative capability that accounts for interactions among engineering analysis methods.
Watson, T F; Weber, B; House, M G; Büch, H; Simmons, M Y
2015-10-16
We demonstrate high-fidelity electron spin read-out of a precision placed single donor in silicon via spin selective tunneling to either the D(+) or D(-) charge state of the donor. By performing read-out at the stable two electron D(0)↔D(-) charge transition we can increase the tunnel rates to a nearby single electron transistor charge sensor by nearly 2 orders of magnitude, allowing faster qubit read-out (1 ms) with minimum loss in read-out fidelity (98.4%) compared to read-out at the D(+)↔D(0) transition (99.6%). Furthermore, we show that read-out via the D(-) charge state can be used to rapidly initialize the electron spin qubit in its ground state with a fidelity of F(I)=99.8%.
Global spatial ecology of three closely-related gadfly petrels
Ramos, Raül; Ramírez, Iván; Paiva, Vitor H.; Militão, Teresa; Biscoito, Manuel; Menezes, Dília; Phillips, Richard A.; Zino, Francis; González-Solís, Jacob
2016-01-01
The conservation status and taxonomy of the three gadfly petrels that breed in Macaronesia is still discussed partly due to the scarce information on their spatial ecology. Using geolocator and capture-mark-recapture data, we examined phenology, natal philopatry and breeding-site fidelity, year-round distribution, habitat usage and at-sea activity of the three closely-related gadfly petrels that breed in Macaronesia: Zino’s petrel Pterodroma madeira, Desertas petrel P. deserta and Cape Verde petrel P. feae. All P. feae remained around the breeding area during their non-breeding season, whereas P. madeira and P. deserta dispersed far from their colony, migrating either to the Cape Verde region, further south to equatorial waters in the central Atlantic, or to the Brazil Current. The three taxa displayed a clear allochrony in timing of breeding. Habitat modelling and at-sea activity patterns highlighted similar environmental preferences and foraging behaviours of the three taxa. Finally, no chick or adult was recaptured away from its natal site and survival estimates were relatively high at all study sites, indicating strong philopatry and breeding-site fidelity for the three taxa. The combination of high philopatry, marked breeding asynchrony and substantial spatio-temporal segregation of their year-round distribution suggest very limited gene flow among the three taxa. PMID:27001141
Global spatial ecology of three closely-related gadfly petrels
NASA Astrophysics Data System (ADS)
Ramos, Raül; Ramírez, Iván; Paiva, Vitor H.; Militão, Teresa; Biscoito, Manuel; Menezes, Dília; Phillips, Richard A.; Zino, Francis; González-Solís, Jacob
2016-03-01
The conservation status and taxonomy of the three gadfly petrels that breed in Macaronesia is still discussed partly due to the scarce information on their spatial ecology. Using geolocator and capture-mark-recapture data, we examined phenology, natal philopatry and breeding-site fidelity, year-round distribution, habitat usage and at-sea activity of the three closely-related gadfly petrels that breed in Macaronesia: Zino’s petrel Pterodroma madeira, Desertas petrel P. deserta and Cape Verde petrel P. feae. All P. feae remained around the breeding area during their non-breeding season, whereas P. madeira and P. deserta dispersed far from their colony, migrating either to the Cape Verde region, further south to equatorial waters in the central Atlantic, or to the Brazil Current. The three taxa displayed a clear allochrony in timing of breeding. Habitat modelling and at-sea activity patterns highlighted similar environmental preferences and foraging behaviours of the three taxa. Finally, no chick or adult was recaptured away from its natal site and survival estimates were relatively high at all study sites, indicating strong philopatry and breeding-site fidelity for the three taxa. The combination of high philopatry, marked breeding asynchrony and substantial spatio-temporal segregation of their year-round distribution suggest very limited gene flow among the three taxa.
Hurlburt, Russell T.; Alderson-Day, Ben; Fernyhough, Charles; Kühn, Simone
2015-01-01
The brain’s resting-state has attracted considerable interest in recent years, but currently little is known either about typical experience during the resting-state or about whether there are inter-individual differences in resting-state phenomenology. We used descriptive experience sampling (DES) in an attempt to apprehend high fidelity glimpses of the inner experience of five participants in an extended fMRI study. Results showed that the inner experiences and the neural activation patterns (as quantified by amplitude of low frequency fluctuations analysis) of the five participants were largely consistent across time, suggesting that our extended-duration scanner sessions were broadly similar to typical resting-state sessions. However, there were very large individual differences in inner phenomena, suggesting that the resting-state itself may differ substantially from one participant to the next. We describe these individual differences in experiential characteristics and display some typical moments of resting-state experience. We also show that retrospective characterizations of phenomena can often be very different from moment-by-moment reports. We discuss implications for the assessment of inner experience in neuroimaging studies more generally, concluding that it may be possible to use fMRI to investigate neural correlates of phenomena apprehended in high fidelity. PMID:26500590
Reubens, Jan T; Pasotti, Francesca; Degraer, Steven; Vincx, Magda
2013-09-01
Because offshore wind energy development is fast growing in Europe it is important to investigate the changes in the marine environment and how these may influence local biodiversity and ecosystem functioning. One of the species affected by these ecosystem changes is Atlantic cod (Gadus morhua), a heavily exploited, commercially important fish species. In this research we investigated the residency, site fidelity and habitat use of Atlantic cod on a temporal scale at windmill artificial reefs in the Belgian part of the North Sea. Acoustic telemetry was used and the Vemco VR2W position system was deployed to quantify the movement behaviour. In total, 22 Atlantic cod were tagged and monitored for up to one year. Many fish were present near the artificial reefs during summer and autumn, and demonstrated strong residency and high individual detection rates. When present within the study area, Atlantic cod also showed distinct habitat selectivity. We identified aggregation near the artificial hard substrates of the wind turbines. In addition, a clear seasonal pattern in presence was observed. The high number of fish present in summer and autumn alternated with a period of very low densities during the winter period. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wolfe, Barrett W; Lowe, Christopher G
2015-08-01
White croaker (Genyonemus lineatus family: Sciaenidae) are a schooling, benthic foraging fish historically associated with soft sediment and wastewater outfalls in southern California. While they are often used as an indicator species due to their high organochlorine contaminant loads, little is known of their movements in relation to contaminated habitats. A Vemco Positioning System acoustic telemetry array was used to collect fine-scale movement data and characterize the site fidelity, area use, and dispersal of 83 white croaker on the Palos Verdes Shelf Superfund Site, California over 27 months. White croaker generally demonstrated low residency and recurrence to the Palos Verdes Shelf, and were observed to be largely nomadic. However, individual behavior was highly variable. Although the entire monitored shelf was visited by tagged white croaker, habitats in 0-200 m proximity to wastewater outfalls and between 25 and 35 m depth were used most frequently. Approximately half of white croaker migrated into Los Angeles and Long Beach Harbors; areas where they may be targeted by subsistence fishers. A model framework for incorporating fish movement data into contaminant exposure estimates was developed to better understanding organochlorine contaminant exposure for planning future remediation and monitoring. Copyright © 2015 Elsevier Ltd. All rights reserved.
Walton, Holly; Spector, Aimee; Tombor, Ildiko; Michie, Susan
2017-11-01
Understanding the effectiveness of complex, face-to-face health behaviour change interventions requires high-quality measures to assess fidelity of delivery and engagement. This systematic review aimed to (1) identify the types of measures used to monitor fidelity of delivery of, and engagement with, complex, face-to-face health behaviour change interventions and (2) describe the reporting of psychometric and implementation qualities. Electronic databases were searched, systematic reviews and reference lists were hand-searched, and 21 experts were contacted to identify articles. Studies that quantitatively measured fidelity of delivery of, and/or engagement with, a complex, face-to-face health behaviour change intervention for adults were included. Data on interventions, measures, and psychometric and implementation qualities were extracted and synthesized using narrative analysis. Sixty-six studies were included: 24 measured both fidelity of delivery and engagement, 20 measured fidelity of delivery, and 22 measured engagement. Measures of fidelity of delivery included observation (n = 17; 38.6%), self-report (n = 15; 34%), quantitatively rated qualitative interviews (n = 1; 2.3%), or multiple measures (n = 11; 25%). Measures of engagement included self-report (n = 18; 39.1%), intervention records (n = 11; 24%), or multiple measures (n = 17; 37%). Fifty-one studies (77%) reported at least one psychometric or implementation quality; 49 studies (74.2%) reported at least one psychometric quality, and 17 studies (25.8%) reported at least one implementation quality. Fewer than half of the reviewed studies measured both fidelity of delivery of, and engagement with complex, face-to-face health behaviour change interventions. More studies reported psychometric qualities than implementation qualities. Interpretation of intervention outcomes from fidelity of delivery and engagement measurements may be limited due to a lack of reporting of psychometric and implementation qualities. Statement of contribution What is already known on this subject? Evidence of fidelity and engagement is needed to understand effectiveness of complex interventions Evidence of fidelity and engagement are rarely reported High-quality measures are needed to measure fidelity and engagement What does this study add? Evidence that indicators of quality of measures are reported in some studies Evidence that psychometric qualities are reported more frequently than implementation qualities A recommendation for intervention evaluations to report indicators of quality of fidelity and engagement measures. © 2017 The Authors. British Journal of Health Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Spin qubit transport in a double quantum dot
NASA Astrophysics Data System (ADS)
Zhao, Xinyu; Hu, Xuedong
Long distance spin communication is a crucial ingredient to scalable quantum computer architectures based on electron spin qubits. One way to transfer spin information over a long distance on chip is via electron transport. Here we study the transport of an electron spin qubit in a double quantum dot by tuning the interdot detuning voltage. We identify a parameter regime where spin relaxation hot-spots can be avoided and high-fidelity spin transport is possible. Within this parameter space, the spin transfer fidelity is determined by the operation speed and the applied magnetic field. In particular, near zero detuning, a proper choice of operation speed is essential to high fidelity. In addition, we also investigate the modification of the effective g-factor by the interdot detuning, which could lead to a phase error between spin up and down states. The results presented in this work could be a useful guidance for experimentally achieving high-fidelity spin qubit transport. We thank financial support by US ARO via Grant W911NF1210609.
Ferguson, Adrian M.; Harvey, Euan S.; Taylor, Matthew D.; Knott, Nathan A.
2013-01-01
Understanding movement patterns, habitat use and behaviour of fish is critical to determining how targeted species may respond to protection provided by “no-take” sanctuary zones within marine parks. We assessed the fine and broad scale movement patterns of an exploited herbivore, luderick (Girella tricuspidata), using acoustic telemetry to evaluate how this species may respond to protection within Jervis Bay (New South Wales, Australia). We surgically implanted fourteen fish with acoustic transmitters and actively and passively tracked individuals to determine fine and broad scale movement patterns respectively. Eight fish were actively tracked for 24 h d¯1 for 6 d (May 2011), and then intermittently over the following 30 d. Six fish were passively tracked from December 2011 to March 2012, using a fixed array of receivers deployed across rocky reefs around the perimeter of the bay. Luderick exhibited strong site fidelity on shallow subtidal reefs, tending to remain on or return consistently to the reef where they were caught and released. All eight fish actively tracked used core areas solely on their release reef, with the exception of one fish that used multiple core areas, and four of the six fish passively tracked spent between 75 to 96% of days on release reefs over the entire tracking period. Luderick did move frequently to adjacent reefs, and occasionally to more distant reefs, however consistently returned to their release reef. Luderick also exhibited predictable patterns in movement between spatially distinct daytime and night-time core use areas. Night-time core use areas were generally located in sheltered areas behind the edge of reefs. Overall, our data indicate luderick exhibit strong site fidelity on shallow subtidal reefs in Jervis Bay and suggests that this important herbivore may be likely to show a positive response to protection within the marine park. PMID:23741515
Ferguson, Adrian M; Harvey, Euan S; Taylor, Matthew D; Knott, Nathan A
2013-01-01
Understanding movement patterns, habitat use and behaviour of fish is critical to determining how targeted species may respond to protection provided by "no-take" sanctuary zones within marine parks. We assessed the fine and broad scale movement patterns of an exploited herbivore, luderick (Girella tricuspidata), using acoustic telemetry to evaluate how this species may respond to protection within Jervis Bay (New South Wales, Australia). We surgically implanted fourteen fish with acoustic transmitters and actively and passively tracked individuals to determine fine and broad scale movement patterns respectively. Eight fish were actively tracked for 24 h d¯(1) for 6 d (May 2011), and then intermittently over the following 30 d. Six fish were passively tracked from December 2011 to March 2012, using a fixed array of receivers deployed across rocky reefs around the perimeter of the bay. Luderick exhibited strong site fidelity on shallow subtidal reefs, tending to remain on or return consistently to the reef where they were caught and released. All eight fish actively tracked used core areas solely on their release reef, with the exception of one fish that used multiple core areas, and four of the six fish passively tracked spent between 75 to 96% of days on release reefs over the entire tracking period. Luderick did move frequently to adjacent reefs, and occasionally to more distant reefs, however consistently returned to their release reef. Luderick also exhibited predictable patterns in movement between spatially distinct daytime and night-time core use areas. Night-time core use areas were generally located in sheltered areas behind the edge of reefs. Overall, our data indicate luderick exhibit strong site fidelity on shallow subtidal reefs in Jervis Bay and suggests that this important herbivore may be likely to show a positive response to protection within the marine park.
The Relationship Between Fidelity and Learning in Aviation Training and Assessment
NASA Technical Reports Server (NTRS)
Noble, Cliff
2002-01-01
Flight simulators can be designed to train pilots or assess their flight performance. Low-Fidelity simulators maximize the initial learning rate of novice pilots and minimize initial costs; whereas, expensive, high-fidelity simulators predict the realworld in-flight performance of expert pilots (Fink & Shriver, 1978 Hays & Singer 1989; Kinkade & Wheaton. 1972). Although intuitively appealing and intellectually convenient to generalize concepts of learning and assessment, what holds true for the role of fidelity in assessment may not always hold true for learning, and vice versa. To bring clarity to this issue, the author distinguishes the role of fidelity in learning from its role in assessment as a function of skill level by applying the hypothesis of Alessi (1988) and reviewing the Laughery, Ditzian, and Houtman (1982) study on simulator validity. Alessi hypothesized that there is it point beyond which one additional unit of flight-simulator fidelity results in a diminished rate of learning. The author of this current paper also suggests the existence of an optimal point beyond which one additional unit of flight-simulator fidelity results in a diminished rate of practical assessment of nonexpert pilot performance.
High fidelity quantum gates with vibrational qubits.
Berrios, Eduardo; Gruebele, Martin; Shyshlov, Dmytro; Wang, Lei; Babikov, Dmitri
2012-11-26
Physical implementation of quantum gates acting on qubits does not achieve a perfect fidelity of 1. The actual output qubit may not match the targeted output of the desired gate. According to theoretical estimates, intrinsic gate fidelities >99.99% are necessary so that error correction codes can be used to achieve perfect fidelity. Here we test what fidelity can be accomplished for a CNOT gate executed by a shaped ultrafast laser pulse interacting with vibrational states of the molecule SCCl(2). This molecule has been used as a test system for low-fidelity calculations before. To make our test more stringent, we include vibrational levels that do not encode the desired qubits but are close enough in energy to interfere with population transfer by the laser pulse. We use two complementary approaches: optimal control theory determines what the best possible pulse can do; a more constrained physical model calculates what an experiment likely can do. Optimal control theory finds pulses with fidelity >0.9999, in excess of the quantum error correction threshold with 8 × 10(4) iterations. On the other hand, the physical model achieves only 0.9992 after 8 × 10(4) iterations. Both calculations converge as an inverse power law toward unit fidelity after >10(2) iterations/generations. In principle, the fidelities necessary for quantum error correction are reachable with qubits encoded by molecular vibrations. In practice, it will be challenging with current laboratory instrumentation because of slow convergence past fidelities of 0.99.
High Fidelity: Investing in Evaluation Training. Ask the Team
ERIC Educational Resources Information Center
Fetters, Jenni
2013-01-01
High-quality training is a crucial investment in establishing and maintaining implementation fidelity as well as building educators' trust in the new process. Training approaches for educator evaluation vary both in format (i.e., how it's delivered) and content (i.e., what is provided). Train-the-trainer sessions, online professional learning…
Designing High Fidelity Simulation to Maximize Student Registered Nursing Decision-Making Ability
ERIC Educational Resources Information Center
Deckers, Cathleen
2011-01-01
The current healthcare environment is a complex system of patients, procedures, and equipment that strives to deliver safe and effective medical care. High fidelity simulation provides healthcare educators with a tool to create safety conscious practitioners utilizing an environment that replicates practice without risk to patients. Using HFS…
76 FR 60047 - Agency Information Collection Activities; Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-28
... Response: Periodic. Total Annual Labor Cost: $18,300 per year ($12,900 for testing + $5,400 for disclosures... and Estimated Burden: (a) Testing--High fidelity manufacturers--300 new products/year x 1 hour each = 300 hours; and (b) Disclosures--High fidelity manufacturers--[(300 new products/ year x 1...
ERIC Educational Resources Information Center
Rossler, Kelly Lynn
2013-01-01
High-fidelity human patient simulation has emerged as a valuable medium to reinforce educational content within programs of nursing. As simulation learning experiences have been identified as augmenting both didactic lecture content and clinical learning, these experiences have expanded to incorporate interprofessional education. Review of…
The Impact of Human Patient Simulation on the Attainment of Learning Outcomes
ERIC Educational Resources Information Center
Re, Antonio
2011-01-01
Human patient simulation, and more specifically, high fidelity patient simulation is a growing teaching technique that enables students in medical and health related professions to learn through interacting with a simulator. This study examined the uses of high fidelity simulation with 106 students enrolled in nursing and respiratory therapist…
The Development of the Simulation Thinking Rubric
ERIC Educational Resources Information Center
Doolen, Jessica
2012-01-01
High fidelity simulation has become a widespread and costly learning strategy in nursing education because it can fill the gap left by a shortage of clinical sites. In addition, high fidelity simulation is an active learning strategy that is thought to increase higher order thinking such as clinical reasoning and judgment skills in nursing…
Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools
NASA Technical Reports Server (NTRS)
Orr, Stanley A.; Narducci, Robert P.
2009-01-01
A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.
High-Fidelity Buckling Analysis of Composite Cylinders Using the STAGS Finite Element Code
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.
2014-01-01
Results from previous shell buckling studies are presented that illustrate some of the unique and powerful capabilities in the STAGS finite element analysis code that have made it an indispensable tool in structures research at NASA over the past few decades. In particular, prototypical results from the development and validation of high-fidelity buckling simulations are presented for several unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells along with a discussion on the specific methods and user-defined subroutines in STAGS that are used to carry out the high-fidelity simulations. These simulations accurately account for the effects of geometric shell-wall imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and elastic boundary conditions. The analysis procedure uses a combination of nonlinear quasi-static and transient dynamic solution algorithms to predict the prebuckling and unstable collapse response characteristics of the cylinders. Finally, the use of high-fidelity models in the development of analysis-based shell-buckling knockdown (design) factors is demonstrated.
Investigation of Control Inceptor Dynamics and Effect on Human Subject Performance
NASA Technical Reports Server (NTRS)
Stanco, Anthony A.; Cardullo, Frank M.; Houck, Jacob A.; Grube, Richard C.; Kelly, Lon C.
2013-01-01
The control inceptor used in a vehicle simulation is an important part of adequately representing the dynamics of the vehicle. The inceptor characteristics are typically based on a second order spring mass damper system with damping, force gradient, breakout force, and natural frequency parameters. Changing these parameters can have a great effect on pilot control of the vehicle. A quasi transfer of training experiment was performed employing a high fidelity and a low fidelity control inceptor. A disturbance compensatory task was employed which involved a simple horizon line disturbed in roll by a sum of sinusoids presented in an out-the-window display. Vehicle dynamics were modeled as 1/s and 1/s2. The task was to maintain level flight. Twenty subjects were divided between the high and the low fidelity training groups. Each group was trained to a performance asymptote, and then transferred to the high fidelity simulation. RMS tracking error, a PSD analysis, and a workload analysis were performed to quantify the transfer of training effect. Quantitative results of the experiments show that there is no significant difference between the high and low fidelity training groups for 1/s plant dynamics. For 1/s2 plant dynamics there is a greater difference in tracking performance and PSD; and the subjects are less correlated with the input disturbance function
Holographic method for site-resolved detection of a 2D array of ultracold atoms
NASA Astrophysics Data System (ADS)
Hoffmann, Daniel Kai; Deissler, Benjamin; Limmer, Wolfgang; Hecker Denschlag, Johannes
2016-08-01
We propose a novel approach to site-resolved detection of a 2D gas of ultracold atoms in an optical lattice. A near-resonant laser beam is coherently scattered by the atomic array, and after passing a lens its interference pattern is holographically recorded by superimposing it with a reference laser beam on a CCD chip. Fourier transformation of the recorded intensity pattern reconstructs the atomic distribution in the lattice with single-site resolution. The holographic detection method requires only about two hundred scattered photons per atom in order to achieve a high reconstruction fidelity of 99.9 %. Therefore, additional cooling during detection might not be necessary even for light atomic elements such as lithium. Furthermore, first investigations suggest that small aberrations of the lens can be post-corrected in imaging processing.
Lorencatto, Fabiana; Gould, Natalie J; McIntyre, Stephen A; During, Camilla; Bird, Jon; Walwyn, Rebecca; Cicero, Robert; Glidewell, Liz; Hartley, Suzanne; Stanworth, Simon J; Foy, Robbie; Grimshaw, Jeremy M; Michie, Susan; Francis, Jill J
2016-12-12
In England, NHS Blood and Transplant conducts national audits of transfusion and provides feedback to hospitals to promote evidence-based practice. Audits demonstrate 20% of transfusions fall outside guidelines. The AFFINITIE programme (Development & Evaluation of Audit and Feedback INterventions to Increase evidence-based Transfusion practIcE) involves two linked, 2×2 factorial, cluster-randomised trials, each evaluating two theoretically-enhanced audit and feedback interventions to reduce unnecessary blood transfusions in UK hospitals. The first intervention concerns the content/format of feedback reports. The second aims to support hospital transfusion staff to plan their response to feedback and includes a web-based toolkit and telephone support. Interpretation of trials is enhanced by comprehensively assessing intervention fidelity. However, reviews demonstrate fidelity evaluations are often limited, typically only assessing whether interventions were delivered as intended. This protocol presents methods for assessing fidelity across five dimensions proposed by the Behaviour Change Consortium fidelity framework, including intervention designer-, provider- and recipient-levels. (1) Design: Intervention content will be specified in intervention manuals in terms of component behaviour change techniques (BCTs). Treatment differentiation will be examined by comparing BCTs across intervention/standard practice, noting the proportion of unique/convergent BCTs. (2) Training: draft feedback reports and audio-recorded role-play telephone support scenarios will be content analysed to assess intervention providers' competence to deliver manual-specified BCTs. (3) Delivery: intervention materials (feedback reports, toolkit) and audio-recorded telephone support session transcripts will be content analysed to assess actual delivery of manual-specified BCTs during the intervention period. (4) Receipt and (5) enactment: questionnaires, semi-structured interviews based on the Theoretical Domains Framework, and objective web-analytics data (report downloads, toolkit usage patterns) will be analysed to assess hospital transfusion staff exposure to, understanding and enactment of the interventions, and to identify contextual barriers/enablers to implementation. Associations between observed fidelity and trial outcomes (% unnecessary transfusions) will be examined using mediation analyses. If the interventions have acceptable fidelity, then results of the AFFINITIE trials can be attributed to effectiveness, or lack of effectiveness, of the interventions. Hence, this comprehensive assessment of fidelity will be used to interpret trial findings. These methods may inform fidelity assessments in future trials. ISRCTN 15490813 . Registered 11/03/2015.
Population substructure and space use of Foxe Basin polar bears.
Sahanatien, Vicki; Peacock, Elizabeth; Derocher, Andrew E
2015-07-01
Climate change has been identified as a major driver of habitat change, particularly for sea ice-dependent species such as the polar bear (Ursus maritimus). Population structure and space use of polar bears have been challenging to quantify because of their circumpolar distribution and tendency to range over large areas. Knowledge of movement patterns, home range, and habitat is needed for conservation and management. This is the first study to examine the spatial ecology of polar bears in the Foxe Basin management unit of Nunavut, Canada. Foxe Basin is in the mid-Arctic, part of the seasonal sea ice ecoregion and it is being negatively affected by climate change. Our objectives were to examine intrapopulation spatial structure, to determine movement patterns, and to consider how polar bear movements may respond to changing sea ice habitat conditions. Hierarchical and fuzzy cluster analyses were used to assess intrapopulation spatial structure of geographic position system satellite-collared female polar bears. Seasonal and annual movement metrics (home range, movement rates, time on ice) and home-range fidelity (static and dynamic overlap) were compared to examine the influence of regional sea ice on movements. The polar bears were distributed in three spatial clusters, and there were differences in the movement metrics between clusters that may reflect sea ice habitat conditions. Within the clusters, bears moved independently of each other. Annual and seasonal home-range fidelity was observed, and the bears used two movement patterns: on-ice range residency and annual migration. We predict that home-range fidelity may decline as the spatial and temporal predictability of sea ice changes. These new findings also provide baseline information for managing and monitoring this polar bear population.
NASA Technical Reports Server (NTRS)
Toups, Zachary O.; Hamilton, William A.; Kerne, Andruid
2012-01-01
Team coordination is essential across domains, enabling efficiency and safety. As technology improves, our temptation is to simulate with ever-higher fidelity, by making simulators re-create reality through their physical interfaces, functionality, and by making participants believe they are undertaking the simulated task. However, high-fidelity simulations often miss salient human-human work practices. We introduce the concept of zero-fidelity simulation (ZFS), a move away from literal high-fidelity mimesis of the concrete environment. ZFS alternatively models cooperation and communication as the basis of simulation. The ZFS Team Coordination Game (TeC) is developed from observation of fire emergency response work practice. We identify ways in which team members are mutually dependent on one another for information, and use these as the basis for the ZFS game design. The design creates a need for cooperation by restricting individual activity and requiring communication. The present research analyzes the design of interdependence in the validated ZFS TeC game. We successfully simulate interdependence between roles in emergency response without simulating the concrete environment.
Integral Full Core Multi-Physics PWR Benchmark with Measured Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forget, Benoit; Smith, Kord; Kumar, Shikhar
In recent years, the importance of modeling and simulation has been highlighted extensively in the DOE research portfolio with concrete examples in nuclear engineering with the CASL and NEAMS programs. These research efforts and similar efforts worldwide aim at the development of high-fidelity multi-physics analysis tools for the simulation of current and next-generation nuclear power reactors. Like all analysis tools, verification and validation is essential to guarantee proper functioning of the software and methods employed. The current approach relies mainly on the validation of single physic phenomena (e.g. critical experiment, flow loops, etc.) and there is a lack of relevantmore » multiphysics benchmark measurements that are necessary to validate high-fidelity methods being developed today. This work introduces a new multi-cycle full-core Pressurized Water Reactor (PWR) depletion benchmark based on two operational cycles of a commercial nuclear power plant that provides a detailed description of fuel assemblies, burnable absorbers, in-core fission detectors, core loading and re-loading patterns. This benchmark enables analysts to develop extremely detailed reactor core models that can be used for testing and validation of coupled neutron transport, thermal-hydraulics, and fuel isotopic depletion. The benchmark also provides measured reactor data for Hot Zero Power (HZP) physics tests, boron letdown curves, and three-dimensional in-core flux maps from 58 instrumented assemblies. The benchmark description is now available online and has been used by many groups. However, much work remains to be done on the quantification of uncertainties and modeling sensitivities. This work aims to address these deficiencies and make this benchmark a true non-proprietary international benchmark for the validation of high-fidelity tools. This report details the BEAVRS uncertainty quantification for the first two cycle of operations and serves as the final report of the project.« less
High-speed and high-fidelity system and method for collecting network traffic
Weigle, Eric H [Los Alamos, NM
2010-08-24
A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.
Point-of-care ultrasound education: the increasing role of simulation and multimedia resources.
Lewiss, Resa E; Hoffmann, Beatrice; Beaulieu, Yanick; Phelan, Mary Beth
2014-01-01
This article reviews the current technology, literature, teaching models, and methods associated with simulation-based point-of-care ultrasound training. Patient simulation appears particularly well suited for learning point-of-care ultrasound, which is a required core competency for emergency medicine and other specialties. Work hour limitations have reduced the opportunities for clinical practice, and simulation enables practicing a skill multiple times before it may be used on patients. Ultrasound simulators can be categorized into 2 groups: low and high fidelity. Low-fidelity simulators are usually static simulators, meaning that they have nonchanging anatomic examples for sonographic practice. Advantages are that the model may be reused over time, and some simulators can be homemade. High-fidelity simulators are usually high-tech and frequently consist of many computer-generated cases of virtual sonographic anatomy that can be scanned with a mock probe. This type of equipment is produced commercially and is more expensive. High-fidelity simulators provide students with an active and safe learning environment and make a reproducible standardized assessment of many different ultrasound cases possible. The advantages and disadvantages of using low- versus high-fidelity simulators are reviewed. An additional concept used in simulation-based ultrasound training is blended learning. Blended learning may include face-to-face or online learning often in combination with a learning management system. Increasingly, with simulation and Web-based learning technologies, tools are now available to medical educators for the standardization of both ultrasound skills training and competency assessment.
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blyth, Taylor S.; Avramova, Maria
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics- based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR)more » cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal- hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.« less
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
NASA Astrophysics Data System (ADS)
Blyth, Taylor S.
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics-based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal-hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.
Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off
She, Zhe; DiFalco, Andrea; Hähner, Georg
2012-01-01
Summary Self-assembled monolayers (SAMs) of 4'-methylbiphenyl-4-thiol (MBP0) adsorbed on polycrystalline gold substrates served as templates to control electrochemical deposition of Cu structures from acidic solution, and enabled the subsequent lift-off of the metal structures by attachment to epoxy glue. By exploiting the negative-resist behaviour of MBP0, the SAM was patterned by means of electron-beam lithography. For high deposition contrast a two-step procedure was employed involving a nucleation phase around −0.7 V versus Cu2+/Cu and a growth phase at around −0.35 V versus Cu2+/Cu. Structures with features down to 100 nm were deposited and transferred with high fidelity. By using substrates with different surface morphologies, AFM measurements revealed that the roughness of the substrate is a crucial factor but not the only one determining the roughness of the copper surface that is exposed after lift-off. PMID:22428101
New approach for pattern collapse problem by increasing contact area at sub-100nm patterning
NASA Astrophysics Data System (ADS)
Lee, Sung-Koo; Jung, Jae Chang; Lee, Min Suk; Lee, Sung K.; Kim, Sam Young; Hwang, Young-Sun; Bok, Cheol K.; Moon, Seung-Chan; Shin, Ki S.; Kim, Sang-Jung
2003-06-01
To accomplish minimizing feature size to sub 100nm, new light sources for photolithography are emerging, such as ArF(193nm), F2(157nm), and EUV(13nm). However as the pattern size decreases to sub 100nm, a new obstacle, that is pattern collapse problem, becomes most serious bottleneck to the road for the sub 100 nm lithography. The main reason for this pattern collapse problem is capillary force that is increased as the pattern size decreases. As a result there were some trials to decrease this capillary force by changing developer or rinse materials that had low surface tension. On the other hands, there were other efforts to increase adhesion between resists and sub materials (organic BARC). In this study, we will propose a novel approach to solve pattern collapse problems by increasing contact area between sub material (organic BARC) and resist pattern. The basic concept of this approach is that if nano-scale topology is made at the sub material, the contact area between sub materials and resist will be increased. The process scheme was like this. First after coating and baking of organic BARC material, the nano-scale topology (3~10nm) was made by etching at this organic BARC material. On this nano-scale topology, resist was coated and exposed. Finally after develop, the contact area between organic BARC and resist could be increased. Though nano-scale topology was made by etching technology, this 20nm topology variation induced large substrate reflectivity of 4.2% and as a result the pattern fidelity was not so good at 100nm 1:1 island pattern. So we needed a new method to improve pattern fidelity problem. This pattern fidelity problem could be solved by introducing a sacrificial BARC layer. The process scheme was like this. First organic BARC was coated of which k value was about 0.64 and then sacrificial BARC layers was coated of which k value was about 0.18 on the organic BARC. The nano-scale topology (1~4nm) was made by etching of this sacrificial BARC layer and then as the same method mentioned above, the contact area between sacrificial layer and resist could be increased. With this introduction of sacrificial layer, the substrate reflectivity of sacrificial BARC layer was decreased enormously to 0.2% though there is 20nm topology variation of sacrificial BARC layer. With this sacrificial BARC layer, we could get 100nm 1:1 L/S pattern. With conventional process, the minimum CD where no collapse occurred, was 96.5nm. By applying this sacrificial BARC layer, the minimum CD where no collapse occurred, was 65.7nm. In conclusion, with nano-scale topology and sacrificial BARC layer, we could get very small pattern that was strong to pattern collapse issue.
Simulation Learning PC Screen-Based vs. High Fidelity
2011-08-01
D., Burgess, L., Berg, B . and Connolly, K . (2009). Teaching mass casualty triage skills using iterative multimanikin simulations. Prehospital...SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b . ABSTRACT U...learning PC screen-based vs. high fidelity – progress chart Attachment B . Approved Protocol - Simulation Learning: PC-Screen Based (PCSB) versus High
Zaari, Ryan R; Brown, Alex
2011-07-28
The importance of the ro-vibrational state energies on the ability to produce high fidelity binary shaped laser pulses for quantum logic gates is investigated. The single frequency 2-qubit ACNOT(1) and double frequency 2-qubit NOT(2) quantum gates are used as test cases to examine this behaviour. A range of diatomics is sampled. The laser pulses are optimized using a genetic algorithm for binary (two amplitude and two phase parameter) variation on a discretized frequency spectrum. The resulting trends in the fidelities were attributed to the intrinsic molecular properties and not the choice of method: a discretized frequency spectrum with genetic algorithm optimization. This is verified by using other common laser pulse optimization methods (including iterative optimal control theory), which result in the same qualitative trends in fidelity. The results differ from other studies that used vibrational state energies only. Moreover, appropriate choice of diatomic (relative ro-vibrational state arrangement) is critical for producing high fidelity optimized quantum logic gates. It is also suggested that global phase alignment imposes a significant restriction on obtaining high fidelity regions within the parameter search space. Overall, this indicates a complexity in the ability to provide appropriate binary laser pulse control of diatomics for molecular quantum computing. © 2011 American Institute of Physics
Fidelity of the representation of value in decision-making
Dowding, Ben A.
2017-01-01
The ability to make optimal decisions depends on evaluating the expected rewards associated with different potential actions. This process is critically dependent on the fidelity with which reward value information can be maintained in the nervous system. Here we directly probe the fidelity of value representation following a standard reinforcement learning task. The results demonstrate a previously-unrecognized bias in the representation of value: extreme reward values, both low and high, are stored significantly more accurately and precisely than intermediate rewards. The symmetry between low and high rewards pertained despite substantially higher frequency of exposure to high rewards, resulting from preferential exploitation of more rewarding options. The observed variation in fidelity of value representation retrospectively predicted performance on the reinforcement learning task, demonstrating that the bias in representation has an impact on decision-making. A second experiment in which one or other extreme-valued option was omitted from the learning sequence showed that representational fidelity is primarily determined by the relative position of an encoded value on the scale of rewards experienced during learning. Both variability and guessing decreased with the reduction in the number of options, consistent with allocation of a limited representational resource. These findings have implications for existing models of reward-based learning, which typically assume defectless representation of reward value. PMID:28248958
Steigerwald, Sarah N.; Park, Jason; Hardy, Krista M.; Gillman, Lawrence; Vergis, Ashley S.
2015-01-01
Background Considerable resources have been invested in both low- and high-fidelity simulators in surgical training. The purpose of this study was to investigate if the Fundamentals of Laparoscopic Surgery (FLS, low-fidelity box trainer) and LapVR (high-fidelity virtual reality) training systems correlate with operative performance on the Global Operative Assessment of Laparoscopic Skills (GOALS) global rating scale using a porcine cholecystectomy model in a novice surgical group with minimal laparoscopic experience. Methods Fourteen postgraduate year 1 surgical residents with minimal laparoscopic experience performed tasks from the FLS program and the LapVR simulator as well as a live porcine laparoscopic cholecystectomy. Performance was evaluated using standardized FLS metrics, automatic computer evaluations, and a validated global rating scale. Results Overall, FLS score did not show an association with GOALS global rating scale score on the porcine cholecystectomy. None of the five LapVR task scores were significantly associated with GOALS score on the porcine cholecystectomy. Conclusions Neither the low-fidelity box trainer or the high-fidelity virtual simulator demonstrated significant correlation with GOALS operative scores. These findings offer caution against the use of these modalities for brief assessments of novice surgical trainees, especially for predictive or selection purposes. PMID:26641071
NASA Astrophysics Data System (ADS)
Baranowski, D.; Waliser, D. E.; Jiang, X.
2016-12-01
One of the key challenges in subseasonal weather forecasting is the fidelity in representing the propagation of the Madden-Julian Oscillation (MJO) across the Maritime Continent (MC). In reality both propagating and non-propagating MJO events are observed, but in numerical forecast the latter group largely dominates. For this study, comprehensive model performances are evaluated using metrics that utilize the mean precipitation pattern and the amplitude and phase of the diurnal cycle, with a particular focus on the linkage between a model's local MC variability and its fidelity in representing propagation of the MJO and equatorial Kelvin waves across the MC. Subseasonal to seasonal variability of mean precipitation and its diurnal cycle in 20 year long climate simulations from over 20 general circulation models (GCMs) is examined to benchmark model performance. Our results show that many models struggle to represent the precipitation pattern over complex Maritime Continent terrain. Many models show negative biases of mean precipitation and amplitude of its diurnal cycle; these biases are often larger over land than over ocean. Furthermore, only a handful of models realistically represent the spatial variability of the phase of the diurnal cycle of precipitation. Models tend to correctly simulate the timing of the diurnal maximum of precipitation over ocean during local solar time morning, but fail to acknowledge influence of the land, with the timing of the maximum of precipitation there occurring, unrealistically, at the same time as over ocean. The day-to-day and seasonal variability of the mean precipitation follows observed patterns, but is often unrealistic for the diurnal cycle amplitude. The intraseasonal variability of the amplitude of the diurnal cycle of precipitation is mainly driven by model's ability (or lack of) to produce eastward propagating MJO-like signal. Our results show that many models tend to decrease apparent air-sea contrast in the mean precipitation and diurnal cycle of precipitation patterns over the Maritime Continent. As a result, the complexity of those patterns is heavily smoothed, to such an extent in some models that the Maritime Continent features and imprint is almost unrecognizable relative to the eastern Indian Ocean or Western Pacific.
NASA Technical Reports Server (NTRS)
Kim, Won S.; Bejczy, Antal K.
1993-01-01
A highly effective predictive/preview display technique for telerobotic servicing in space under several seconds communication time delay has been demonstrated on a large laboratory scale in May 1993, involving the Jet Propulsion Laboratory as the simulated ground control station and, 2500 miles away, the Goddard Space Flight Center as the simulated satellite servicing set-up. The technique is based on a high-fidelity calibration procedure that enables a high-fidelity overlay of 3-D graphics robot arm and object models over given 2-D TV camera images of robot arm and objects. To generate robot arm motions, the operator can confidently interact in real time with the graphics models of the robot arm and objects overlaid on an actual camera view of the remote work site. The technique also enables the operator to generate high-fidelity synthetic TV camera views showing motion events that are hidden in a given TV camera view or for which no TV camera views are available. The positioning accuracy achieved by this technique for a zoomed-in camera setting was about +/-5 mm, well within the allowable +/-12 mm error margin at the insertion of a 45 cm long tool in the servicing task.
NASA Astrophysics Data System (ADS)
Toth, Kristof; Hu, Hanqiong; Choo, Youngwoo; Loewenberg, Michael; Osuji, Chinedum
The delivery of sub-micron droplets of dilute polymer solutions to a heated substrate by electrospray deposition (ESD) enables precisely controlled and continuous growth of block copolymer (BCP) thin films. Here we explore patterned deposition of BCP films by spatially varying the electric field at the substrate using an underlying charged grid, as well as film growth kinetics. Numerical analysis was performed to examine pattern fidelity by considering the trajectories of charged droplets during flight through imposed periodic field variations in the vicinity of the substrate. Our work uncovered an unexpected modality for improving the resolution of the patterning process via stronger field focusing through the use of a second oppositely charged grid beneath a primary focusing array, with an increase in highly localized droplet deposition on the intersecting nodes of the grid. Substrate coverage kinetics are considered for homopolymer deposition in the context of simple kinetic models incorporating temperature and molecular weight dependence of diffusivity. By contrast, film coverage kinetics for block copolymer depositions are additionally convoluted with preferential wetting and thickness-periodicity commensurability effects. NSF GRFP.
NASA Astrophysics Data System (ADS)
Doss, Derek J.; Heiselman, Jon S.; Collins, Jarrod A.; Weis, Jared A.; Clements, Logan W.; Geevarghese, Sunil K.; Miga, Michael I.
2017-03-01
Sparse surface digitization with an optically tracked stylus for use in an organ surface-based image-to-physical registration is an established approach for image-guided open liver surgery procedures. However, variability in sparse data collections during open hepatic procedures can produce disparity in registration alignments. In part, this variability arises from inconsistencies with the patterns and fidelity of collected intraoperative data. The liver lacks distinct landmarks and experiences considerable soft tissue deformation. Furthermore, data coverage of the organ is often incomplete or unevenly distributed. While more robust feature-based registration methodologies have been developed for image-guided liver surgery, it is still unclear how variation in sparse intraoperative data affects registration. In this work, we have developed an application to allow surgeons to study the performance of surface digitization patterns on registration. Given the intrinsic nature of soft-tissue, we incorporate realistic organ deformation when assessing fidelity of a rigid registration methodology. We report the construction of our application and preliminary registration results using four participants. Our preliminary results indicate that registration quality improves as users acquire more experience selecting patterns of sparse intraoperative surface data.
DDDAMS-based Urban Surveillance and Crowd Control via UAVs and UGVs
2015-12-04
for crowd dynamics modeling by incorporating multi-resolution data, where a grid-based method is used to model crowd motion with UAVs’ low -resolution...information and more computational intensive (and time-consuming). Given that the deployment of fidelity selection results in simulation faces computational... low fidelity information FOV y (A) DR x (A) DR y (A) Not detected high fidelity information Table 1: Parameters for UAV and UGV for their detection
Survey of CIG Data Base Generation from Imagery.
1980-09-01
world as measured by training transfer. There is no conclusive research as to therequired degree of realism or fidelity necessary to train. In order to...driving force behind emphasizing perceptual fidelity as opposed to realisn is the high cost of realism . Replication of all sensible attri- butes of the...and specification of visual simulation systems will con- tinue to je based on physical fidelity to the real world until those trade-offs on realism
EBT Fidelity Trajectories Across Training Cohorts Using the Interagency Collaborative Team Strategy
Hecht, Debra; Aarons, Greg; Fettes, Danielle; Hurlburt, Michael; Ledesma, Karla
2015-01-01
The Interdisciplinary Collaborative Team (ICT) strategy uses front-line providers as adaptation, training and quality control agents for multi-agency EBT implementation. This study tests whether an ICT transmits fidelity to subsequent provider cohorts. SafeCare was implemented by home visitors from multiple community-based agencies contracting with child welfare. Client-reported fidelity trajectories for 5,769 visits, 957 clients and 45 providers were compared using three-level growth models. Provider cohorts trained and live-coached by the ICT attained benchmark fidelity after 12 weeks, and this was sustained. Hispanic clients reported high cultural competency, supporting a cultural adaptation crafted by the ICT. PMID:25586878
EBT Fidelity Trajectories Across Training Cohorts Using the Interagency Collaborative Team Strategy.
Chaffin, Mark; Hecht, Debra; Aarons, Greg; Fettes, Danielle; Hurlburt, Michael; Ledesma, Karla
2016-03-01
The Interdisciplinary Collaborative Team (ICT) strategy uses front-line providers as adaptation, training and quality control agents for multi-agency EBT implementation. This study tests whether an ICT transmits fidelity to subsequent provider cohorts. SafeCare was implemented by home visitors from multiple community-based agencies contracting with child welfare. Client-reported fidelity trajectories for 5,769 visits, 957 clients and 45 providers were compared using three-level growth models. Provider cohorts trained and live-coached by the ICT attained benchmark fidelity after 12 weeks, and this was sustained. Hispanic clients reported high cultural competency, supporting a cultural adaptation crafted by the ICT.
Jelsma, Judith G M; Mertens, Vera-Christina; Forsberg, Lisa; Forsberg, Lars
2015-07-01
Many randomized controlled trials in which motivational interviewing (MI) is a key intervention make no provision for the assessment of treatment fidelity. This methodological shortcoming makes it impossible to distinguish between high- and low-quality MI interventions, and, consequently, to know whether MI provision has contributed to any intervention effects. This article makes some practical recommendations for the collection, selection, coding and reporting of MI fidelity data, as measured using the Motivational Interviewing Treatment Integrity Code. We hope that researchers will consider these recommendations and include MI fidelity measures in future studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Commentary: Learning from Variations in Fidelity of Implementation.
Balu, Rekha; Doolittle, Fred
2016-12-01
The articles in this special issue discuss efforts to improve academic reading outcomes for students and ways to achieve high implementation fidelity of promising strategies. At times the authors discuss if-and how-strong fidelity is associated with strong outcomes and potentially even impacts (the difference between program and control group outcomes). We want to explore this theme in two ways: (a) learning from the variation in fidelity to think about potential points of entry and levers for improvement in implementation, and (b) broadening the evaluation focus to include "service contrast" as a factor driving impacts on student outcomes. We conclude with suggestions for future research. © 2016 Wiley Periodicals, Inc.
A method for assessing fidelity of delivery of telephone behavioral support for smoking cessation.
Lorencatto, Fabiana; West, Robert; Bruguera, Carla; Michie, Susan
2014-06-01
Behavioral support for smoking cessation is delivered through different modalities, often guided by treatment manuals. Recently developed methods for assessing fidelity of delivery have shown that face-to-face behavioral support is often not delivered as specified in the service treatment manual. This study aimed to extend this method to evaluate fidelity of telephone-delivered behavioral support. A treatment manual and transcripts of 75 audio-recorded behavioral support sessions were obtained from the United Kingdom's national Quitline service and coded into component behavior change techniques (BCTs) using a taxonomy of 45 smoking cessation BCTs. Interrater reliability was assessed using percentage agreement. Fidelity was assessed by comparing the number of BCTs identified in the manual with those delivered in telephone sessions by 4 counselors. Fidelity was assessed according to session type, duration, counselor, and BCT. Differences between self-reported and actual BCT use were examined. Average coding reliability was high (81%). On average, 41.8% of manual-specified BCTs were delivered per session (SD = 16.2), with fidelity varying by counselor from 32% to 49%. Fidelity was highest in pre-quit sessions (46%) and for BCT "give options for additional support" (95%). Fidelity was lowest for quit-day sessions (35%) and BCT "set graded tasks" (0%). Session duration was positively correlated with fidelity (r = .585; p < .01). Significantly fewer BCTs were used than were reported as being used, t(15) = -5.52, p < .001. The content of telephone-delivered behavioral support can be reliably coded in terms of BCTs. This can be used to assess fidelity to treatment manuals and to in turn identify training needs. The observed low fidelity underlines the need to establish routine procedures for monitoring delivery of behavioral support. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Lithographic VCSEL array multimode and single mode sources for sensing and 3D imaging
NASA Astrophysics Data System (ADS)
Leshin, J.; Li, M.; Beadsworth, J.; Yang, X.; Zhang, Y.; Tucker, F.; Eifert, L.; Deppe, D. G.
2016-05-01
Sensing applications along with free space data links can benefit from advanced laser sources that produce novel radiation patterns and tight spectral control for optical filtering. Vertical-cavity surface-emitting lasers (VCSELs) are being developed for these applications. While oxide VCSELs are being produced by most companies, a new type of oxide-free VCSEL is demonstrating many advantages in beam pattern, spectral control, and reliability. These lithographic VCSELs offer increased power density from a given aperture size, and enable dense integration of high efficiency and single mode elements that improve beam pattern. In this paper we present results for lithographic VCSELs and describes integration into military systems for very low cost pulsed applications, as well as continuouswave applications in novel sensing applications. The VCSELs are being developed for U.S. Army for soldier weapon engagement simulation training to improve beam pattern and spectral control. Wavelengths in the 904 nm to 990 nm ranges are being developed with the spectral control designed to eliminate unwanted water absorption bands from the data links. Multiple beams and radiation patterns based on highly compact packages are being investigated for improved target sensing and transmission fidelity in free space data links. These novel features based on the new VCSEL sources are also expected to find applications in 3-D imaging, proximity sensing and motion control, as well as single mode sensors such as atomic clocks and high speed data transmission.
Brittian, Aerika S.; Lerner, Richard M.
2014-01-01
Although Eriksonian theory suggests that adolescents’ sense of fidelity is a key component of healthy development, research on this psychosocial construct has been limited. The current study developed an index of youth fidelity, examined the developmental course of this construct, explored the influence of contextual factors on different fidelity trajectories, and tested if trajectories were associated with later indicators of adolescents’ positive development. Participants included 1,941 ethnically diverse youth (61% female) participants in the 4-H Study of Positive Youth Development who were recruited from schools and youth development programs across the United States. Results suggested that three types of developmental trajectories existed among youth: high and increasing, moderate and increasing, and low and decreasing. Fidelity group membership varied in relation to social relationships and psychosocial and behavioral characteristics (i.e., contribution, substance use, and delinquency). Girls were more likely than boys to be in the highest fidelity trajectories. Directions for future research and implications for enhancing the thriving of adolescents are discussed. PMID:22545838
NASA Astrophysics Data System (ADS)
Yi, Jin; Li, Xinyu; Xiao, Mi; Xu, Junnan; Zhang, Lin
2017-01-01
Engineering design often involves different types of simulation, which results in expensive computational costs. Variable fidelity approximation-based design optimization approaches can realize effective simulation and efficiency optimization of the design space using approximation models with different levels of fidelity and have been widely used in different fields. As the foundations of variable fidelity approximation models, the selection of sample points of variable-fidelity approximation, called nested designs, is essential. In this article a novel nested maximin Latin hypercube design is constructed based on successive local enumeration and a modified novel global harmony search algorithm. In the proposed nested designs, successive local enumeration is employed to select sample points for a low-fidelity model, whereas the modified novel global harmony search algorithm is employed to select sample points for a high-fidelity model. A comparative study with multiple criteria and an engineering application are employed to verify the efficiency of the proposed nested designs approach.
Debriefing after High-Fidelity Simulation and Knowledge Retention: A Quasi-Experimental Study
ERIC Educational Resources Information Center
Olson, Susan L.
2013-01-01
High-fidelity simulation (HFS) use in nursing education has been a frequent research topic in recent years. Previous research included studies on the use of HFS with nursing students, focusing on their feelings of self-confidence and anxiety. However, research focused specifically on the debriefing portion of HFS was limited. This quantitative,…
Capacity Development and Multi-Tiered Systems of Support: Guiding Principles
ERIC Educational Resources Information Center
Sugai, George; Simonsen, Brandi; Freeman, Jennifer; La Salle, Tamika
2016-01-01
Implementation of multi-tiered systems of support is occurring within and across a number of countries with an increased recent focus on the development of local system capacity to maintain high levels of practice implementation fidelity. The purpose of this paper is to describe the importance of local capacity development in the high fidelity and…
ERIC Educational Resources Information Center
Harris, David M.; Bellew, Christine; Cheng, Zixi J.; Cendán, Juan C.; Kibble, Jonathan D.
2014-01-01
The use of high-fidelity patient simulators (HFPSs) has expanded throughout medical, nursing, and allied health professions education in the last decades. These manikins can be programmed to represent pathological states and are used to teach clinical skills as well as clinical reasoning. First, the students are typically oriented either to the…
ERIC Educational Resources Information Center
McCormick, Kiyan
2014-01-01
Simulated learning experiences using high-fidelity human patient simulators (HPS) are increasingly being integrated into baccalaureate nursing programs. Thus, the purpose of this study was to examine relationships among learning style, critical thinking disposition, critical thinking, and clinical judgment during high-fidelity human patient…
ERIC Educational Resources Information Center
Tivener, Kristin Ann; Gloe, Donna Sue
2015-01-01
Context: High-fidelity simulation is widely used in healthcare for the training and professional education of students though literature of its application to athletic training education remains sparse. Objective: This research attempts to address a wide-range of data. This includes athletic training student knowledge acquisition from…
Evaluating Outcomes of High Fidelity Simulation Curriculum in a Community College Nursing Program
ERIC Educational Resources Information Center
Denlea, Gregory Richard
2017-01-01
This study took place at a Wake Technical Community College, a multi-campus institution in Raleigh, North Carolina. An evaluation of the return on investment in high fidelity simulation used by an associate degree of nursing program was conducted with valid and reliable instruments. The study demonstrated that comparable student outcomes are…
ERIC Educational Resources Information Center
Rossing, Thomas D.
1980-01-01
Described are the components for a high-fidelity sound-reproducing system which focuses on various program sources, the amplifier, and loudspeakers. Discussed in detail are amplifier power and distortion, air suspension, loudspeaker baffles and enclosures, bass-reflex enclosure, drone cones, rear horn and acoustic labyrinth enclosures, horn…
Developing High-Fidelity Health Care Simulation Scenarios: A Guide for Educators and Professionals
ERIC Educational Resources Information Center
Alinier, Guillaume
2011-01-01
The development of appropriate scenarios is critical in high-fidelity simulation training. They need to be developed to address specific learning objectives, while not preventing other learning points from emerging. Buying a patient simulator, finding a volunteer to act as the patient, or even obtaining ready-made scenarios from another simulation…
ERIC Educational Resources Information Center
Subiaul, Francys; Patterson, Eric M.; Schilder, Brian; Renner, Elizabeth; Barr, Rachel
2015-01-01
In contrast to other primates, human children's imitation performance goes from low to high fidelity soon after infancy. Are such changes associated with the development of other forms of learning? We addressed this question by testing 215 children (26-59 months) on two social conditions (imitation, emulation)--involving a demonstration--and two…
Orbit Stability of OSIRIS-REx in the Vicinity of Bennu Using a High-Fidelity Solar Radiation Model
NASA Technical Reports Server (NTRS)
Williams, Trevor W.; Hughes, Kyle M.; Mashiku, Alinda K.; Longuski, James M.
2015-01-01
Solar radiation pressure is one of the largest perturbing forces on the OSIRISRex trajectory as it orbits the asteroid Bennu. In this work, we investigate how forces due to solar radiation perturb the OSIRIS-REx trajectory in a high-fidelity model. The model accounts for Bennu's non-spherical gravity field, third-body gravity forces from the Sun and Jupiter, as well as solar radiation forces acting on a simplified spacecraft model. Such high-fidelity simulations indicate significant solar radiation pressure perturbations from the nominal orbit. Modifications to the initial design of the nominal orbit are found using a variation of parameters approach that reduce the perturbation in eccentricity by a factor of one-half.
Fast, high-fidelity readout of multiple qubits
NASA Astrophysics Data System (ADS)
Bronn, N. T.; Abdo, B.; Inoue, K.; Lekuch, S.; Córcoles, A. D.; Hertzberg, J. B.; Takita, M.; Bishop, L. S.; Gambetta, J. M.; Chow, J. M.
2017-05-01
Quantum computing requires a delicate balance between coupling quantum systems to external instruments for control and readout, while providing enough isolation from sources of decoherence. Circuit quantum electrodynamics has been a successful method for protecting superconducting qubits, while maintaining the ability to perform readout [1, 2]. Here, we discuss improvements to this method that allow for fast, high-fidelity readout. Specifically, the integration of a Purcell filter, which allows us to increase the resonator bandwidth for fast readout, the incorporation of a Josephson parametric converter, which enables us to perform high-fidelity readout by amplifying the readout signal while adding the minimum amount of noise required by quantum mechanics, and custom control electronics, which provide us with the capability of fast decision and control.
High-fidelity cluster state generation for ultracold atoms in an optical lattice.
Inaba, Kensuke; Tokunaga, Yuuki; Tamaki, Kiyoshi; Igeta, Kazuhiro; Yamashita, Makoto
2014-03-21
We propose a method for generating high-fidelity multipartite spin entanglement of ultracold atoms in an optical lattice in a short operation time with a scalable manner, which is suitable for measurement-based quantum computation. To perform the desired operations based on the perturbative spin-spin interactions, we propose to actively utilize the extra degrees of freedom (DOFs) usually neglected in the perturbative treatment but included in the Hubbard Hamiltonian of atoms, such as, (pseudo-)charge and orbital DOFs. Our method simultaneously achieves high fidelity, short operation time, and scalability by overcoming the following fundamental problem: enhancing the interaction strength for shortening the operation time breaks the perturbative condition of the interaction and inevitably induces unwanted correlations among the spin and extra DOFs.
Xu, Zhongxiao; Wu, Yuelong; Tian, Long; Chen, Lirong; Zhang, Zhiying; Yan, Zhihui; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi
2013-12-13
Long-lived and high-fidelity memory for a photonic polarization qubit (PPQ) is crucial for constructing quantum networks. We present a millisecond storage system based on electromagnetically induced transparency, in which a moderate magnetic field is applied on a cold-atom cloud to lift Zeeman degeneracy and, thus, the PPQ states are stored as two magnetic-field-insensitive spin waves. Especially, the influence of magnetic-field-sensitive spin waves on the storage performances is almost totally avoided. The measured average fidelities of the polarization states are 98.6% at 200 μs and 78.4% at 4.5 ms, respectively.
MacLeod, Molly; Genung, Mark A; Ascher, John S; Winfree, Rachael
2016-11-01
Recent studies of mutualistic networks show that interactions between partners change across years. Both biological mechanisms and chance could drive these patterns, but the relative importance of these factors has not been separated. We established a field experiment consisting of 102 monospecific plots of 17 native plant species, from which we collected 6713 specimens of 52 bee species over four years. We used these data and a null model to determine whether bee species' foraging choices varied more or less over time beyond the variation expected by chance. Thus we provide the first quantitative definition of rewiring and fidelity as these terms are used in the literature on interaction networks. All 52 bee species varied in plant partner choice across years, but for 27 species this variation was indistinguishable from random partner choice. Another 11 species showed rewiring, varying more across years than expected by chance, while 14 species showed fidelity, indicating that they both prefer certain plant species and are consistent in those preferences across years. Our study shows that rewiring and fidelity both exist in mutualist networks, but that once sampling effects have been accounted for, they are less common than has been reported in the ecological literature. © 2016 by the Ecological Society of America.
Augustsson, Hanna; von Thiele Schwarz, Ulrica; Stenfors-Hayes, Terese; Hasson, Henna
2015-06-01
The workplace has been suggested as an important arena for health promotion, but little is known about how the organizational setting influences the implementation of interventions. The aims of this study are to evaluate implementation fidelity in an organizational-level occupational health intervention and to investigate possible explanations for variations in fidelity between intervention units. The intervention consisted of an integration of health promotion, occupational health and safety, and a system for continuous improvements (Kaizen) and was conducted in a quasi-experimental design at a Swedish hospital. Implementation fidelity was evaluated with the Conceptual Framework for Implementation Fidelity and implementation factors used to investigate variations in fidelity with the Framework for Evaluating Organizational-level Interventions. A multi-method approach including interviews, Kaizen notes, and questionnaires was applied. Implementation fidelity differed between units even though the intervention was introduced and supported in the same way. Important differences in all elements proposed in the model for evaluating organizational-level interventions, i.e., context, intervention, and mental models, were found to explain the differences in fidelity. Implementation strategies may need to be adapted depending on the local context. Implementation fidelity, as well as pre-intervention implementation elements, is likely to affect the implementation success and needs to be assessed in intervention research. The high variation in fidelity across the units indicates the need for adjustments to the type of designs used to assess the effects of interventions. Thus, rather than using designs that aim to control variation, it may be necessary to use those that aim at exploring and explaining variation, such as adapted study designs.
Patterning N-type and S-type neuroblastoma cells with Pluronic F108 and ECM proteins.
Corey, Joseph M; Gertz, Caitlyn C; Sutton, Thomas J; Chen, Qiaoran; Mycek, Katherine B; Wang, Bor-Shuen; Martin, Abbey A; Johnson, Sara L; Feldman, Eva L
2010-05-01
Influencing cell shape using micropatterned substrates affects cell behaviors, such as proliferation and apoptosis. Cell shape may also affect these behaviors in human neuroblastoma (NBL) cancer, but to date, no substrate design has effectively patterned multiple clinically important human NBL lines. In this study, we investigated whether Pluronic F108 was an effective antiadhesive coating for human NBL cells and whether it would localize three NBL lines to adhesive regions of tissue culture plastic or collagen I on substrate patterns. The adhesion and patterning of an S-type line, SH-EP, and two N-type lines, SH-SY5Y and IMR-32, were tested. In adhesion assays, F108 deterred NBL adhesion equally as well as two antiadhesive organofunctional silanes and far better than bovine serum albumin. Patterned stripes of F108 restricted all three human NBL lines to adhesive stripes of tissue culture plastic. We then investigated four schemes of applying collagen and F108 to different regions of a substrate. Contact with collagen obliterates the ability of F108 to deter NBL adhesion, limiting how both materials can be applied to substrates to produce high fidelity NBL patterning. This patterned substrate design should facilitate investigations of the role of cell shape in NBL cell behavior. Copyright 2009 Wiley Periodicals, Inc.
Patterning N-type and S-type Neuroblastoma Cells with Pluronic F108 and ECM Proteins
Corey, Joseph M.; Gertz, Caitlyn C.; Sutton, Thomas J.; Chen, Qiaoran; Mycek, Katherine B.; Wang, Bor-Shuen; Martin, Abbey A.; Johnson, Sara L.; Feldman, Eva L.
2009-01-01
Influencing cell shape using micropatterned substrates affects cell behaviors, such as proliferation and apoptosis. Cell shape may also affect these behaviors in human neuroblastoma (NBL) cancer, but to date, no substrate design has effectively patterned multiple clinically important human NBL lines. In this study, we investigated whether Pluronic F108 was an effective anti-adhesive coating for human NBL cells and whether it would localize three NBL lines to adhesive regions of tissue culture plastic or collagen I on substrate patterns. The adhesion and patterning of an S-type line, SH-EP, and two N-type lines, SH-SY5Y and IMR-32, were tested. In adhesion assays, F108 deterred NBL adhesion equally as well as two anti-adhesive organofunctional silanes and far better than bovine serum albumin. Patterned stripes of F108 restricted all three human NBL lines to adhesive stripes of tissue culture plastic. We then investigated four schemes of applying collagen and F108 to different regions of a substrate. Contact with collagen obliterates the ability of F108 to deter NBL adhesion, limiting how both materials can be applied to substrates to produce high fidelity NBL patterning. This patterned substrate design should facilitate investigations of the role of cell shape in NBL cell behavior. PMID:19609877
Site fidelity, territory fidelity, and natal philopatry in Willow Flycatchers (Empidonax traillii)
Sedgwick, James A.
2004-01-01
I investigated the causes and consequences of adult breeding-site fidelity, territory fidelity, and natal philopatry in Willow Flycatchers (Empidonax traillii) in southeastern Oregon over a 10-year period, testing the general hypothesis that fidelity and dispersal distances are influenced by previous breeding performance. Willow Flycatchers adhered to the generally observed tendencies of passerine birds for low natal philopatry and high breedingsite fidelity. Site fidelity (return to the study area) of adult males (52.0%) and females (51.3%), and median dispersal distances between seasons (16 m vs. 19 m) were similar. Previous breeding performance and residency (age-experience), but not study-site quality, explained site fidelity in females. Site fidelity of females rearing 4–5 young (64.4%) exceeded that of unsuccessful females (40.0%), breeding dispersal was less (successful: 15 m; unsuccessful: 33 m), and novice residents were more site-faithful than former residents. Probability of site fidelity was higher for previously successful females (odds ratio = 4.76), those with greater seasonal fecundity (odds ratio = 1.58), novice residents (odds ratio = 1.41), and unparasitized females (odds ratio = 2.76). Male site fidelity was not related to residency, site quality, or previous breeding performance. Territory fidelity (return to the previous territory) in females was best explained by previous breeding performance, but not by site quality or residency. Previously successful females were more likely to return to their territory of the previous season than either unsuccessful (odds ratio = 14.35) or parasitized birds (odds ratio = 6.38). Male territory fidelity was not related to residency, site quality, or previous breeding performance. Natal philopatry was low (7.8%) and similar for males and females. Site quality appeared to influence philopatry, given that no birds reared at a low-quality study site returned there to breed, and birds reared there dispersed farther than birds reared at two other study sites. My results partially support the hypothesis that site fidelity is an adaptive response: (1) previously successful females that switched territories underperformed those that did not switch (P = 0.01); and (2) previously unsuccessful females that switched territories outperformed those that did not switch, but not significantly (P = 0.22).
Rojas, David; Kapralos, Bill; Cristancho, Sayra; Collins, Karen; Hogue, Andrew; Conati, Cristina; Dubrowski, Adam
2012-01-01
Despite the benefits associated with virtual learning environments and serious games, there are open, fundamental issues regarding simulation fidelity and multi-modal cue interaction and their effect on immersion, transfer of knowledge, and retention. Here we describe the results of a study that examined the effect of ambient (background) sound on the perception of visual fidelity (defined with respect to texture resolution). Results suggest that the perception of visual fidelity is dependent on ambient sound and more specifically, white noise can have detrimental effects on our perception of high quality visuals. The results of this study will guide future studies that will ultimately aid in developing an understanding of the role that fidelity, and multi-modal interactions play with respect to knowledge transfer and retention for users of virtual simulations and serious games.
Multifamily Group Psychoeducation in New York State: Implementation and Fidelity Outcomes.
Kealey, Edith M; Leckman-Westin, Emily; Jewell, Thomas C; Finnerty, Molly T
2015-11-01
The study examined implementation outcomes from a large state initiative to support dissemination of multifamily group (MFG) psychoeducation in outpatient mental health settings. Thirty-one sites participated in the project. Baseline training in the MFG model was followed by monthly expert consultation delivered in either a group (16 sites) or individual format (15 sites). Research staff assessed fidelity to the MFG model by telephone at baseline and 12, 18, and 24 months and documented time to completion of three key milestones: holding a family joining session, a family educational workshop, and an MFG meeting. Intent-to-train analyses found that 12 sites (39%) achieved high fidelity to the MFG model, and 20 (65%) achieved moderate or high fidelity. Mean scores on the Family Psychoeducation Fidelity Assessment Scale increased over time. Twenty-five sites (81%) conducted at least one joining session, and 20 (65%) conducted at least one MFG. Mean±SD time from baseline to the first group was 11.75±4.78 months. Programs that held the first joining session within four to 12 months after training were significantly more likely than programs that did not to conduct a group (p<.05). No significant differences were found by consultation format. Implementation of moderate- to high-fidelity MFG programs in routine outpatient mental health settings is feasible. Sites that moved very quickly or very slowly in early implementation stages were less likely to be successful in conducting an MFG. More research on the efficiency and effectiveness of consultation formats is needed to guide future implementation efforts.
Use of VR Technology and Passive Haptics for MANPADS Training System
2017-09-01
this setup also does not offer a variety of challenging scenarios needed for good training as the aircraft are mostly flying in landing or take-off... customized high-fidelity immersive training facilities are limited. Moreover, low trainee throughput from such high-end facilities is an ongoing obstacle...opportunities allow few operators to fire during live exercises. Simulation training is effective, but customized high-fidelity immersive training
Dry etching of chrome for photomasks for 100-nm technology using chemically amplified resist
NASA Astrophysics Data System (ADS)
Mueller, Mark; Komarov, Serguie; Baik, Ki-Ho
2002-07-01
Photo mask etching for the 100nm technology node places new requirements on dry etching processes. As the minimum-size features on the mask, such as assist bars and optical proximity correction (OPC) patterns, shrink down to 100nm, it is necessary to produce etch CD biases of below 20nm in order to reproduce minimum resist features into chrome with good pattern fidelity. In addition, vertical profiles are necessary. In previous generations of photomask technology, footing and sidewall profile slope were tolerated, since this dry etch profile was an improvement from wet etching. However, as feature sizes shrink, it is extremely important to select etch processes which do not generate a foot, because this will affect etch linearity and also limit the smallest etched feature size. Chemically amplified resist (CAR) from TOK is patterned with a 50keV MEBES eXara e-beam writer, allowing for patterning of small features with vertical resist profiles. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. Chrome etch process development has been performed using Design of Experiments to optimize parameters such as sidewall profile, etch CD bias, etch CD linearity for varying sizes of line/space patterns, etch CD linearity for varying sizes of isolated lines and spaces, loading effects, and application to contact etching.
Better Water Demand and Pipe Description Improve the Distribution Network Modeling Results
Distribution system modeling simplifies pipe network in skeletonization and simulates the flow and water quality by using generalized water demand patterns. While widely used, the approach has not been examined fully on how it impacts the modeling fidelity. This study intends to ...
Families Matter! Presexual Risk Prevention Intervention
Lasswell, Sarah M.; Riley, Drewallyn B.; Poulsen, Melissa N.
2013-01-01
Parent-based HIV prevention programming may play an important role in reaching youths early to help establish lifelong patterns of safe and healthy sexual behaviors. Families Matter! is a 5-session, evidence-based behavioral intervention designed for primary caregivers of children aged 9 to 12 years to promote positive parenting and effective parent–child communication about sexuality and sexual risk reduction. The program’s 5-step capacity-building model was implemented with local government, community, and faith-based partners in 8 sub-Saharan African countries with good intervention fidelity and high levels of participant retention. Families Matter! may be useful in other resource-constrained settings. PMID:24028229
Development of Adaptive Model Refinement (AMoR) for Multiphysics and Multifidelity Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turinsky, Paul
This project investigated the development and utilization of Adaptive Model Refinement (AMoR) for nuclear systems simulation applications. AMoR refers to utilization of several models of physical phenomena which differ in prediction fidelity. If the highest fidelity model is judged to always provide or exceeded the desired fidelity, than if one can determine the difference in a Quantity of Interest (QoI) between the highest fidelity model and lower fidelity models, one could utilize the fidelity model that would just provide the magnitude of the QoI desired. Assuming lower fidelity models require less computational resources, in this manner computational efficiency can bemore » realized provided the QoI value can be accurately and efficiently evaluated. This work utilized Generalized Perturbation Theory (GPT) to evaluate the QoI, by convoluting the GPT solution with the residual of the highest fidelity model determined using the solution from lower fidelity models. Specifically, a reactor core neutronics problem and thermal-hydraulics problem were studied to develop and utilize AMoR. The highest fidelity neutronics model was based upon the 3D space-time, two-group, nodal diffusion equations as solved in the NESTLE computer code. Added to the NESTLE code was the ability to determine the time-dependent GPT neutron flux. The lower fidelity neutronics model was based upon the point kinetics equations along with utilization of a prolongation operator to determine the 3D space-time, two-group flux. The highest fidelity thermal-hydraulics model was based upon the space-time equations governing fluid flow in a closed channel around a heat generating fuel rod. The Homogenous Equilibrium Mixture (HEM) model was used for the fluid and Finite Difference Method was applied to both the coolant and fuel pin energy conservation equations. The lower fidelity thermal-hydraulic model was based upon the same equations as used for the highest fidelity model but now with coarse spatial meshing, corrected somewhat by employing effective fuel heat conduction values. The effectiveness of switching between the highest fidelity model and lower fidelity model as a function of time was assessed using the neutronics problem. Based upon work completed to date, one concludes that the time switching is effective in annealing out differences between the highest and lower fidelity solutions. The effectiveness of using a lower fidelity GPT solution, along with a prolongation operator, to estimate the QoI was also assessed. The utilization of a lower fidelity GPT solution was done in an attempt to avoid the high computational burden associated with solving for the highest fidelity GPT solution. Based upon work completed to date, one concludes that the lower fidelity adjoint solution is not sufficiently accurate with regard to estimating the QoI; however, a formulation has been revealed that may provide a path for addressing this shortcoming.« less
van Lieshout, Sanne; Mevissen, Fraukje; de Waal, Esri; Kok, Gerjo
2017-06-01
Schools are a common setting for adolescents to receive health education, but implementation of these programs with high levels of completeness and fidelity is not self-evident. Programs that are only partially implemented (completeness) or not implemented as instructed (fidelity) are unlikely to be effective. Therefore, it is important to identify which determinants affect completeness and fidelity of program implementation. As part of the launch of Long Live Love+ (LLL+), an online school-based sexuality education program for adolescents aged 15-17, we performed a process evaluation among teachers and students to measure the levels of completeness and fidelity, identify factors influencing teachers' implementation, and to evaluate the students' response. Sixteen Biology teachers from nine secondary schools throughout the Netherlands who implemented LLL+ were interviewed and 60 students participated in 13 focus group discussions. Results showed that teachers' completeness ranged between 22-100% (M = 75%). Fidelity was high, but many teachers added elements. Teachers and students enjoyed LLL+, particularly the diversity in the exercises and its interactive character. The most important factors that influenced implementation were time and organizational constraints, lack of awareness on the impact of completeness and fidelity, and student response. These factors should be taken into account when developing school-based prevention programs. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Fidelity assessment of a UH-60A simulation on the NASA Ames vertical motion simulator
NASA Technical Reports Server (NTRS)
Atencio, Adolph, Jr.
1993-01-01
Helicopter handling qualities research requires that a ground-based simulation be a high-fidelity representation of the actual helicopter, especially over the frequency range of the investigation. This experiment was performed to assess the current capability to simulate the UH-60A Black Hawk helicopter on the Vertical Motion Simulator (VMS) at NASA Ames, to develop a methodology for assessing the fidelity of a simulation, and to find the causes for lack of fidelity. The approach used was to compare the simulation to the flight vehicle for a series of tasks performed in flight and in the simulator. The results show that subjective handling qualities ratings from flight to simulator overlap, and the mathematical model matches the UH-60A helicopter very well over the range of frequencies critical to handling qualities evaluation. Pilot comments, however, indicate a need for improvement in the perceptual fidelity of the simulation in the areas of motion and visual cuing. The methodology used to make the fidelity assessment proved useful in showing differences in pilot work load and strategy, but additional work is needed to refine objective methods for determining causes of lack of fidelity.
Unbiased multi-fidelity estimate of failure probability of a free plane jet
NASA Astrophysics Data System (ADS)
Marques, Alexandre; Kramer, Boris; Willcox, Karen; Peherstorfer, Benjamin
2017-11-01
Estimating failure probability related to fluid flows is a challenge because it requires a large number of evaluations of expensive models. We address this challenge by leveraging multiple low fidelity models of the flow dynamics to create an optimal unbiased estimator. In particular, we investigate the effects of uncertain inlet conditions in the width of a free plane jet. We classify a condition as failure when the corresponding jet width is below a small threshold, such that failure is a rare event (failure probability is smaller than 0.001). We estimate failure probability by combining the frameworks of multi-fidelity importance sampling and optimal fusion of estimators. Multi-fidelity importance sampling uses a low fidelity model to explore the parameter space and create a biasing distribution. An unbiased estimate is then computed with a relatively small number of evaluations of the high fidelity model. In the presence of multiple low fidelity models, this framework offers multiple competing estimators. Optimal fusion combines all competing estimators into a single estimator with minimal variance. We show that this combined framework can significantly reduce the cost of estimating failure probabilities, and thus can have a large impact in fluid flow applications. This work was funded by DARPA.
Bland, Andrew J; Topping, Annie; Tobbell, Jane
2014-07-01
High-fidelity patient simulation is a method of education increasingly utilised by educators of nursing to provide authentic learning experiences. Fidelity and authenticity, however, are not conceptually equivalent. Whilst fidelity is important when striving to replicate a life experience such as clinical practice, authenticity can be produced with low fidelity. A challenge for educators of undergraduate nursing is to ensure authentic representation of the clinical situation which is a core component for potential success. What is less clear is the relationship between fidelity and authenticity in the context of simulation based learning. Authenticity does not automatically follow fidelity and as a result, educators of nursing cannot assume that embracing the latest technology-based educational tools will in isolation provide a learning environment perceived authentic by the learner. As nursing education programmes increasingly adopt simulators that offer the possibility of representing authentic real world situations, there is an urgency to better articulate and understand the terms fidelity and authenticity. Without such understanding there is a real danger that simulation as a teaching and learning resource in nurse education will never reach its potential and be misunderstood, creating a potential barrier to learning. This paper examines current literature to promote discussion within nurse education, concluding that authenticity in the context of simulation-based learning is complex, relying on far more than engineered fidelity. Copyright © 2014 Elsevier Ltd. All rights reserved.
2016-05-24
experimental data. However, the time and length scales, and energy deposition rates in the canonical laboratory flames that have been studied over the...is to obtain high-fidelity experimental data critically needed to validate research codes at relevant conditions, and to develop systematic and...validated with experimental data. However, the time and length scales, and energy deposition rates in the canonical laboratory flames that have been
Fluid/Structure Interaction Studies of Aircraft Using High Fidelity Equations on Parallel Computers
NASA Technical Reports Server (NTRS)
Guruswamy, Guru; VanDalsem, William (Technical Monitor)
1994-01-01
Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.
Cho, E; Kim, B; Choi, S; Han, J; Jin, J; Han, J; Lim, J; Heo, Y; Kim, S; Sung, G Y; Kang, S
2011-01-01
This paper introduces technology to fabricate a guided mode resonance filter biochip using injection molding. Of the various nanofabrication processes that exist, injection molding is the most suitable for the mass production of polymer nanostructures. Fabrication of a nanograting pattern for guided mode resonance filters by injection molding requires a durable metal stamp, because of the high injection temperature and pressure. Careful consideration of the optimized process parameters is also required to achieve uniform sub-wavelength gratings with high fidelity. In this study, a metallic nanostructure pattern to be used as the stamp for the injection molding process was fabricated using electron beam lithography, a UV nanoimprinting process, and an electroforming process. A one-dimensional nanograting substrate was replicated by injection molding, during which the process parameters were controlled. To evaluate the geometric quality of the injection molded nanograting patterns, the surface profile of the fabricated nanograting for different processing conditions was analyzed using an atomic force microscope and a scanning electron microscope. Finally, to demonstrate the feasibility of the proposed process for fabricating guided mode resonance filter biochips, a high-refractive-index material was deposited on the polymer nanograting and its guided mode resonance characteristics were analyzed.
Snow Pattern Delineation, Scaling, Fidelity, and Landscape Factors
NASA Astrophysics Data System (ADS)
Hiemstra, C. A.; Wagner, A. M.; Deeb, E. J.; Morriss, B. F.; Sturm, M.
2014-12-01
In many snow-covered landscapes, snow tends to be shallow or deep in the same locations year after year. As snowmelt progresses in spring, areas of shallow snow become snow-free earlier than areas with deep snow. This pattern (Sturm and Wagner 2010) could likely be used to inform or improve modeled snow depth estimates where ground measurements are not collected; however, we must be certain of their utility before ingesting them into model calculations. Do patterns, as we detect them, have a relationship with earlier measured snow distributions? Second, are certain areas on the landscape likely to yield patterns that are influenced too highly by melting to be useful? Our Imnavait Creek Study Area (11 by 19 km) is on Alaska's North Slope, where we have examined a vast library of spring satellite imagery (ranging from mostly snow-covered to mostly snow-free). Landsat TM Imagery has been collected from the early 1980s-present, and the temporal and spatial resolution is roughly two weeks and 30 m, respectively. High resolution satellite imagery (WorldView 1, WorldView 2, IKONOS) has been obtained from 2010-2013 for the same area with almost daily- to monthly-temporal and at 2.5 m spatial resolutions, respectively. We found that there is a striking similarity among patterns from year to year across the span of decades and resolutions. However, the relationship of pattern with observed snow depths was strong in some areas and less clear in others. Overall, we suspect spatial scaling, spatial mismatch, sampling errors, and melt patterns explain most of the areas of pattern and depth disparity.
Epitaxially grown collagen fibrils reveal diversity in contact guidance behavior among cancer cells.
Wang, Juan; Petefish, Joseph W; Hillier, Andrew C; Schneider, Ian C
2015-01-01
Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers. These aligned fibers of ECM are commonly composed of type I collagen, an abundant structural protein around tumors. In this paper, we epitaxially grew several different patterns of organized type I collagen on mica and compared the morphology and contact guidance behavior of two invasive breast cancer cell lines (MDA-MB-231 and MTLn3 cells). Others have shown that these cells randomly migrate in qualitatively different ways. MDA-MB-231 cells exert large traction forces, tightly adhere to the ECM, and migrate with spindle-shaped morphology and thus adopt a mesenchymal mode of migration. MTLn3 cells exert small traction forces, loosely adhere to the ECM, and migrate with a more rounded morphology and thus adopt an amoeboid mode of migration. As the degree of alignment of type I collagen fibrils increases, cells become more elongated and engage in more directed contact guidance. MDA-MB-231 cells perceive the directional signal of highly aligned type I collagen fibrils with high fidelity, elongating to large extents and migrating directionally. Interestingly, behavior in MTLn3 cells differs. While highly aligned type I collagen fibril patterns facilitate spreading and random migration of MTLn3 cells, they do not support elongation or directed migration. Thus, different contact guidance cues bias cell migration differently and the fidelity of contact guidance is cell type dependent, suggesting that ECM alignment is a permissive cue for contact guidance, but requires a cell to have certain properties to interpret that cue.
ERIC Educational Resources Information Center
Vieck, Jana
2013-01-01
The purpose of this study was to examine the impact of moderate- and high-fidelity patient simulator use on the critical thinking skills of associate degree nursing students. This quantitative study used a quasi-experimental design and the Health Sciences Reasoning Test (HSRT) to evaluate the critical thinking skills of third semester nursing…
ERIC Educational Resources Information Center
Harris, David M.; Ryan, Kathleen; Rabuck, Cynthia
2012-01-01
Students are relying on technology for learning more than ever, and educators need to adapt to facilitate student learning. High-fidelity patient simulators (HFPS) are usually reserved for the clinical years of medical education and are geared to improve clinical decision skills, teamwork, and patient safety. Finding ways to incorporate HFPS into…
Modeling of Passive Acoustic Liners from High Fidelity Numerical Simulations
NASA Astrophysics Data System (ADS)
Ferrari, Marcello do Areal Souto
Noise reduction in aviation has been an important focus of study in the last few decades. One common solution is setting up acoustic liners in the internal walls of the engines. However, measurements in the laboratory with liners are expensive and time consuming. The present work proposes a nonlinear physics-based time domain model to predict the acoustic behavior of a given liner in a defined flow condition. The parameters of the model are defined by analysis of accurate numerical solutions of the flow obtained from a high-fidelity numerical code. The length of the cavity is taken into account by using an analytical procedure to account for internal reflections in the interior of the cavity. Vortices and jets originated from internal flow separations are confirmed to be important mechanisms of sound absorption, which defines the overall efficiency of the liner. Numerical simulations at different frequency, geometry and sound pressure level are studied in detail to define the model parameters. Comparisons with high-fidelity numerical simulations show that the proposed model is accurate, robust, and can be used to define a boundary condition simulating a liner in a high-fidelity code.
Comparison of Low-Thrust Control Laws for Application in Planetocentric Space
NASA Technical Reports Server (NTRS)
Falck, Robert D.; Sjauw, Waldy K.; Smith, David A.
2014-01-01
Recent interest at NASA for the application of solar electric propulsion for the transfer of significant payloads in cislunar space has led to the development of high-fidelity simulations of such missions. With such transfers involving transfer times on the order of months, simulation time can be significant. In the past, the examination of such missions typically began with the use of lower-fidelity trajectory optimization tools such as SEPSPOT to develop and tune guidance laws which delivered optimal or near- optimal trajectories, where optimal is generally defined as minimizing propellant expenditure or time of flight. The transfer of these solutions to a high-fidelity simulation is typically an iterative process whereby the initial solution may nearly, but not precisely, meet mission objectives. Further tuning of the guidance algorithm is typically necessary when accounting for high-fidelity perturbations such as those due to more detailed gravity models, secondary-body effects, solar radiation pressure, etc. While trajectory optimization is a useful method for determining optimal performance metrics, algorithms which deliver nearly optimal performance with minimal tuning are an attractive alternative.
NASA Astrophysics Data System (ADS)
Hu, Jiexiang; Zhou, Qi; Jiang, Ping; Shao, Xinyu; Xie, Tingli
2018-01-01
Variable-fidelity (VF) modelling methods have been widely used in complex engineering system design to mitigate the computational burden. Building a VF model generally includes two parts: design of experiments and metamodel construction. In this article, an adaptive sampling method based on improved hierarchical kriging (ASM-IHK) is proposed to refine the improved VF model. First, an improved hierarchical kriging model is developed as the metamodel, in which the low-fidelity model is varied through a polynomial response surface function to capture the characteristics of a high-fidelity model. Secondly, to reduce local approximation errors, an active learning strategy based on a sequential sampling method is introduced to make full use of the already required information on the current sampling points and to guide the sampling process of the high-fidelity model. Finally, two numerical examples and the modelling of the aerodynamic coefficient for an aircraft are provided to demonstrate the approximation capability of the proposed approach, as well as three other metamodelling methods and two sequential sampling methods. The results show that ASM-IHK provides a more accurate metamodel at the same simulation cost, which is very important in metamodel-based engineering design problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glascoe, Lee; Gowardhan, Akshay; Lennox, Kristin
In the interest of promoting the international exchange of technical expertise, the US Department of Energy’s Office of Emergency Operations (NA-40) and the French Commissariat à l'Energie Atomique et aux énergies alternatives (CEA) requested that the National Atmospheric Release Advisory Center (NARAC) of Lawrence Livermore National Laboratory (LLNL) in Livermore, California host a joint table top exercise with experts in emergency management and atmospheric transport modeling. In this table top exercise, LLNL and CEA compared each other’s flow and dispersion models. The goal of the comparison is to facilitate the exchange of knowledge, capabilities, and practices, and to demonstrate themore » utility of modeling dispersal at different levels of computational fidelity. Two modeling approaches were examined, a regional scale modeling approach, appropriate for simple terrain and/or very large releases, and an urban scale modeling approach, appropriate for small releases in a city environment. This report is a summary of LLNL and CEA modeling efforts from this exercise. Two different types of LLNL and CEA models were employed in the analysis: urban-scale models (Aeolus CFD at LLNL/NARAC and Parallel- Micro-SWIFT-SPRAY, PMSS, at CEA) for analysis of a 5,000 Ci radiological release and Lagrangian Particle Dispersion Models (LODI at LLNL/NARAC and PSPRAY at CEA) for analysis of a much larger (500,000 Ci) regional radiological release. Two densely-populated urban locations were chosen: Chicago with its high-rise skyline and gridded street network and Paris with its more consistent, lower building height and complex unaligned street network. Each location was considered under early summer daytime and nighttime conditions. Different levels of fidelity were chosen for each scale: (1) lower fidelity mass-consistent diagnostic, intermediate fidelity Navier-Stokes RANS models, and higher fidelity Navier-Stokes LES for urban-scale analysis, and (2) lower-fidelity single-profile meteorology versus higher-fidelity three-dimensional gridded weather forecast for regional-scale analysis. Tradeoffs between computation time and the fidelity of the results are discussed for both scales. LES, for example, requires nearly 100 times more processor time than the mass-consistent diagnostic model or the RANS model, and seems better able to capture flow entrainment behind tall buildings. As anticipated, results obtained by LLNL and CEA at regional scale around Chicago and Paris look very similar in terms of both atmospheric dispersion of the radiological release and total effective dose. Both LLNL and CEA used the same meteorological data, Lagrangian particle dispersion models, and the same dose coefficients. LLNL and CEA urban-scale modeling results show consistent phenomenological behavior and predict similar impacted areas even though the detailed 3D flow patterns differ, particularly for the Chicago cases where differences in vertical entrainment behind tall buildings are particularly notable. Although RANS and LES (LLNL) models incorporate more detailed physics than do mass-consistent diagnostic flow models (CEA), it is not possible to reach definite conclusions about the prediction fidelity of the various models as experimental measurements were not available for comparison. Stronger conclusions about the relative performances of the models involved and evaluation of the tradeoffs involved in model simplification could be made with a systematic benchmarking of urban-scale modeling. This could be the purpose of a future US / French collaborative exercise.« less
Creation of a High-fidelity, Low-cost Pediatric Skull Fracture Ultrasound Phantom.
Soucy, Zachary P; Mills, Lisa; Rose, John S; Kelley, Kenneth; Ramirez, Francisco; Kuppermann, Nathan
2015-08-01
Over the past decade, point-of-care ultrasound has become a common tool used for both procedures and diagnosis. Developing high-fidelity phantoms is critical for training in new and novel point-of-care ultrasound applications. Detecting skull fractures on ultrasound imaging in the younger-than-2-year-old patient is an emerging area of point-of-care ultrasound research. Identifying a skull fracture on ultrasound imaging in this age group requires knowledge of the appearance and location of sutures to distinguish them from fractures. There are currently no commercially available pediatric skull fracture models. We outline a novel approach to building a cost-effective, simple, high-fidelity pediatric skull fracture phantom to meet a unique training requirement. © 2015 by the American Institute of Ultrasound in Medicine.
Analyzing Interaction Patterns to Verify a Simulation/Game Model
ERIC Educational Resources Information Center
Myers, Rodney Dean
2012-01-01
In order for simulations and games to be effective for learning, instructional designers must verify that the underlying computational models being used have an appropriate degree of fidelity to the conceptual models of their real-world counterparts. A simulation/game that provides incorrect feedback is likely to promote misunderstanding and…
Trends and individual differences in response to short-haul flight operations
NASA Technical Reports Server (NTRS)
Chidester, Thomas R.
1990-01-01
A survey of airline pilots was undertaken to determine normative patterns and individual differences in mood and sleep during short-haul flight operations. The results revealed that over the course of a typical 2-d trip, pilots experience a decline in positive mood, or activity, and an increase in negative mood, or tension. On layovers, pilots report experiencing sleep of shorter duration and poorer quality than at home. These patterns are very similar to those reported by Gander and Graeber (1987) and by Gander et al. (1988), using high-fidelity sleep and activity monitoring equipment. Examination of the impact of two personality dimensions extracted from the Jenkins Activity Survey measure of the Type A personality, Achievement Striving and Impatience/Irritability, suggested that Impatience/Irritability may serve as a marker of individuals most likely to experience health-related problems on trips. Achievement Striving may serve as a predictor of performance in crew settings.
Trends and individual differences in response to short-haul fight operations
NASA Technical Reports Server (NTRS)
Chidester, T. R.
1990-01-01
A survey of airline pilots was undertaken to determine normative patterns and individual differences in mood and sleep during short-haul flight operations. The results revealed that over the course of a typical 2-d trip, pilots experience a decline in positive mood, or activity, and an increase in negative mood, or tension. On layovers, pilots report experiencing sleep of shorter duration and poorer quality than at home. These patterns are very similar to those reported by Gander and Graeber and by Gander et al. using high-fidelity sleep and activity monitoring equipment. Examination of the impact of two personality dimensions extracted from the Jenkins Activity Survey measure of the Type A personality, Achievement Striving and Impatience/Irritability, suggested that Impatience/Irritability may serve as a marker of individuals most likely to experience health-related problems on trips. Achievement Striving may serve as a predictor of performance in crew settings.
Measuring Implementation Fidelity in a Community-Based Parenting Intervention
Breitenstein, Susan M.; Fogg, Louis; Garvey, Christine; Hill, Carri; Resnick, Barbara; Gross, Deborah
2012-01-01
Background Establishing the feasibility and validity of implementation fidelity monitoring strategies is an important methodological step in implementing evidence-based interventions on a large scale. Objectives The objective of the study was to examine the reliability and validity of the Fidelity Checklist, a measure designed to assess group leader adherence and competence delivering a parent training intervention (the Chicago Parent Program) in child care centers serving low-income families. Method The sample included 9 parent groups (12 group sessions each), 12 group leaders, and 103 parents. Independent raters reviewed 106 audiotaped parent group sessions and coded group leaders’ fidelity on the Adherence and Competence Scales of the Fidelity Checklist. Group leaders completed self-report adherence checklists and a measure of parent engagement in the intervention. Parents completed measures of consumer satisfaction and child behavior. Results High interrater agreement (Adherence Scale = 94%, Competence Scale = 85%) and adequate intraclass correlation coefficients (Adherence Scale = .69, Competence Scale = .91) were achieved for the Fidelity Checklist. Group leader adherence changed over time, but competence remained stable. Agreement between group leader self-report and independent ratings on the Adherence Scale was 85%; disagreements were more frequently due to positive bias in group leader self-report. Positive correlations were found between group leader adherence and parent attendance and engagement in the intervention and between group leader competence and parent satisfaction. Although child behavior problems improved, improvements were not related to fidelity. Discussion The results suggest that the Fidelity Checklist is a feasible, reliable, and valid measure of group leader implementation fidelity in a group-based parenting intervention. Future research will be focused on testing the Fidelity Checklist with diverse and larger samples and generalizing to other group-based interventions using a similar intervention model. PMID:20404777
Opportunistic Visitors: Long-Term Behavioural Response of Bull Sharks to Food Provisioning in Fiji
Brunnschweiler, Juerg M.; Barnett, Adam
2013-01-01
Shark-based tourism that uses bait to reliably attract certain species to specific sites so that divers can view them is a growing industry globally, but remains a controversial issue. We evaluate multi-year (2004–2011) underwater visual (n = 48 individuals) and acoustic tracking data (n = 82 transmitters; array of up to 16 receivers) of bull sharks Carcharhinus leucas from a long-term shark feeding site at the Shark Reef Marine Reserve and reefs along the Beqa Channel on the southern coast of Viti Levu, Fiji. Individual C. leucas showed varying degrees of site fidelity. Determined from acoustic tagging, the majority of C. leucas had site fidelity indexes >0.5 for the marine reserve (including the feeding site) and neighbouring reefs. However, during the time of the day (09:00–12:00) when feeding takes place, sharks mainly had site fidelity indexes <0.5 for the feeding site, regardless of feeding or non-feeding days. Site fidelity indexes determined by direct diver observation of sharks at the feeding site were lower compared to such values determined by acoustic tagging. The overall pattern for C. leucas is that, if present in the area, they are attracted to the feeding site regardless of whether feeding or non-feeding days, but they remain for longer periods of time (consecutive hours) on feeding days. The overall diel patterns in movement are for C. leucas to use the area around the feeding site in the morning before spreading out over Shark Reef throughout the day and dispersing over the entire array at night. Both focal observation and acoustic monitoring show that C. leucas intermittently leave the area for a few consecutive days throughout the year, and for longer time periods (weeks to months) at the end of the calendar year before returning to the feeding site. PMID:23516496
Opportunistic visitors: long-term behavioural response of bull sharks to food provisioning in Fiji.
Brunnschweiler, Juerg M; Barnett, Adam
2013-01-01
Shark-based tourism that uses bait to reliably attract certain species to specific sites so that divers can view them is a growing industry globally, but remains a controversial issue. We evaluate multi-year (2004-2011) underwater visual (n = 48 individuals) and acoustic tracking data (n = 82 transmitters; array of up to 16 receivers) of bull sharks Carcharhinus leucas from a long-term shark feeding site at the Shark Reef Marine Reserve and reefs along the Beqa Channel on the southern coast of Viti Levu, Fiji. Individual C. leucas showed varying degrees of site fidelity. Determined from acoustic tagging, the majority of C. leucas had site fidelity indexes >0.5 for the marine reserve (including the feeding site) and neighbouring reefs. However, during the time of the day (09:00-12:00) when feeding takes place, sharks mainly had site fidelity indexes <0.5 for the feeding site, regardless of feeding or non-feeding days. Site fidelity indexes determined by direct diver observation of sharks at the feeding site were lower compared to such values determined by acoustic tagging. The overall pattern for C. leucas is that, if present in the area, they are attracted to the feeding site regardless of whether feeding or non-feeding days, but they remain for longer periods of time (consecutive hours) on feeding days. The overall diel patterns in movement are for C. leucas to use the area around the feeding site in the morning before spreading out over Shark Reef throughout the day and dispersing over the entire array at night. Both focal observation and acoustic monitoring show that C. leucas intermittently leave the area for a few consecutive days throughout the year, and for longer time periods (weeks to months) at the end of the calendar year before returning to the feeding site.
Replication fidelity improvement of PMMA microlens array based on weight evaluation and optimization
NASA Astrophysics Data System (ADS)
Jiang, Bing-yan; Shen, Long-jiang; Peng, Hua-jiang; Yin, Xiang-lin
2007-12-01
High replication fidelity is a prerequisite of high quality plastic microlens array in injection molding. But, there's not an economical and practical method to evaluate and improve the replication fidelity until now. Based on part weight evaluation and optimization, this paper presents a new method of replication fidelity improvement. Firstly, a simplified analysis model of PMMA micro columns arrays (5×16) with 200μm diameter was set up. And then, Flow (3D) module of Moldflow MPI6.0 based on Navier-Stokes equations was used to calculate the weight of the micro columns arrays in injection molding. The effects of processing parameters (melt temperature, mold temperature, injection time, packing pressure and packing time) on the part weight were investigated in the simulations. The simulation results showed that the mold temperature and the injection time have important effects on the filling of micro columns; the optimal mold temperature and injection time for better replication fidelity could be determined by the curves of mold temperature vs part weight and injection time vs part weight. At last, the effects of processing parameters on part weight of micro columns array were studied experimentally. The experimental results showed that the increase of melt temperature and mold temperature can make the packing pressure transfer to micro cavity more effectively through runner system, and increase the part weight. From the observation results of the image measuring apparatus, it was discovered that the higher the part weight, the better the filling of the microstructures. In conclusion, part weight can be used to evaluate the replication fidelity of micro-feature structured parts primarily; which is an economical and practical method to improve the replication fidelity of microlens arrays based on weight evaluation and optimization.
Housing first on a large scale: Fidelity strengths and challenges in the VA's HUD-VASH program.
Kertesz, Stefan G; Austin, Erika L; Holmes, Sally K; DeRussy, Aerin J; Van Deusen Lukas, Carol; Pollio, David E
2017-05-01
Housing First (HF) combines permanent supportive housing and supportive services for homeless individuals and removes traditional treatment-related preconditions for housing entry. There has been little research describing strengths and shortfalls of HF implementation outside of research demonstration projects. The U.S. Department of Veterans Affairs (VA) has transitioned to an HF approach in a supportive housing program serving over 85,000 persons. This offers a naturalistic window to study fidelity when HF is adopted on a large scale. We operationalized HF into 20 criteria grouped into 5 domains. We assessed 8 VA medical centers twice (1 year apart), scoring each criterion using a scale ranging from 1 ( low fidelity ) to 4 ( high fidelity ). There were 2 HF domains (no preconditions and rapidly offering permanent housing) for which high fidelity was readily attained. There was uneven progress in prioritizing the most vulnerable clients for housing support. Two HF domains (sufficient supportive services and a modern recovery philosophy) had considerably lower fidelity. Interviews suggested that operational issues such as shortfalls in staffing and training likely hindered performance in these 2 domains. In this ambitious national HF program, the largest to date, we found substantial fidelity in focusing on permanent housing and removal of preconditions to housing entry. Areas of concern included the adequacy of supportive services and adequacy in deployment of a modern recovery philosophy. Under real-world conditions, large-scale implementation of HF is likely to require significant additional investment in client service supports to assure that results are concordant with those found in research studies. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
High-Fidelity Design of Multimodal Restorative Interventions in Gulf War Illness
2017-10-01
Bockmayr A, Klarner H, Siebert H. Time series dependent analysis of unparametrized Thomas networks. IEEE/ACM Transactions on Computational Biology and...Award Number: W81XWH-15-1-0582 TITLE:High-Fidelity Design of Multimodal Restorative Interventions in Gulf War Illness PRINCIPAL INVESTIGATOR...not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation. REPORT
ERIC Educational Resources Information Center
Hall, Rachel Mattson
2013-01-01
High Fidelity Simulation is a teaching strategy that is becoming well-entrenched in the world of nursing education and is rapidly expanding due to the challenges and demands of the health care environment. The problem addressed in this study is the conflicting research results regarding the effectiveness of HFS for students' knowledge acquisition…
ERIC Educational Resources Information Center
Kuznar, Kathleen A.
2009-01-01
One of the newest methodologies in nursing education is high-fidelity human patient simulation (HPS). Many nursing educators have embraced the method as it offers a strategy to facilitate cognitive, affective, and psychomotor outcomes. Despite their popularity, however, HPS systems are costly and, in an era of cost containment and tuition…
LEONARD REITSMA; PAMELA HUNT; SHERMAN L. BURSON III; BENJAMIN B. STEELE
2002-01-01
We studied the dispersion of Northern Waterthrushes (Seiurus novaboracensis) in southwestern Puerto Rico during four nonbreeding seasons, 1996â1999. Densities were high (up to 13 birds/ha) on a 3-ha mature black mangrove (Avicennia germinans) study plot, but were significantly lower during periods of high water levels. Individuals exhibited site fidelity within and...
ERIC Educational Resources Information Center
Howard, Sheri
2017-01-01
The purpose of this study is to compare satisfaction, self-confidence, and engagement of baccalaureate nursing students using defined observational roles and expectations versus traditional observer role assignments in high fidelity simulation and debriefing and to evaluate student perceptions of these constructs. The NLN/Jeffries Simulation…
ERIC Educational Resources Information Center
Lisha, Nadra E.; Sun, Ping; Rohrbach, Louise A.; Spruijt-Metz, Donna; Unger, Jennifer B.; Sussman, Steve
2012-01-01
The present study provides an implementation fidelity, process, and immediate outcomes evaluation of Project Towards No Drug Abuse (TND), a drug prevention program targeting continuation high school youth (n = 1426) at risk for drug abuse. A total of 24 schools participated in three randomized conditions: TND Only, TND and motivational…
ERIC Educational Resources Information Center
Duvall, Judy Jo
2012-01-01
There are many driving forces to increase the use of high-fidelity simulation (HFS) in nursing education, as well as many factors that may influence the implementation of this teaching strategy. These include the motivation of nurse educators to use HFS, the technological readiness of nurse educators to use HFS and the changing demographics of the…
Evaluation of high fidelity patient simulator in assessment of performance of anaesthetists.
Weller, J M; Bloch, M; Young, S; Maze, M; Oyesola, S; Wyner, J; Dob, D; Haire, K; Durbridge, J; Walker, T; Newble, D
2003-01-01
There is increasing emphasis on performance-based assessment of clinical competence. The High Fidelity Patient Simulator (HPS) may be useful for assessment of clinical practice in anaesthesia, but needs formal evaluation of validity, reliability, feasibility and effect on learning. We set out to assess the reliability of a global rating scale for scoring simulator performance in crisis management. Using a global rating scale, three judges independently rated videotapes of anaesthetists in simulated crises in the operating theatre. Five anaesthetists then independently rated subsets of these videotapes. There was good agreement between raters for medical management, behavioural attributes and overall performance. Agreement was high for both the initial judges and the five additional raters. Using a global scale to assess simulator performance, we found good inter-rater reliability for scoring performance in a crisis. We estimate that two judges should provide a reliable assessment. High fidelity simulation should be studied further for assessing clinical performance.
Gaber, Rikki; Mallett, Kimberly A.; Hultgren, Brittney; Turrisi, Rob; Gilbertsen, Margaret L.; Martini, Mary C.; Robinson, June K.
2014-01-01
Background Melanoma can metastasize but is often successfully treated when discovered in an early stage. Melanoma patients and their skin check partners can learn skin self-examination (SSE) skills and these skills can be improved by practice. The purpose of this study is to determine the degree of fidelity with which educational in-person SSE intervention can be delivered by trained research coordinators to patients at risk of developing another melanoma and their skin check partners. Methods The in-person intervention was performed in two iterations. In phase 1 (2006-2008), the research coordinators were trained to perform the intervention using a written script. In phase 2 (2011-2013), the research coordinators were trained to perform the intervention with a PowerPoint aid. Each research coordinator was individually counseled by one of the authors (KM) to insure standardization and enhance fidelity of intervention delivery. Phase 1 and Phase 2 were compared on 16 fidelity components. Further, Phase 2 fidelity was assessed by comparing mean scores of fidelity across the five research coordinators who delivered the intervention. Results Phase 2, which utilized a PowerPoint aid, was delivered with a higher degree of fidelity compared to phase 1with four fidelity components with significantly higher fidelity than Phase 1: 1) Explained details of melanoma, χ2 (1, n = 199)= 96.31, p < .001, 2) Discussed when to call doctor, χ2 (1, n = 199) = 53.68, p < .001 3) Explained assessment at month 1, χ2 (1, n = 199)= 12.39, p < .01, and 4) Explained assessment at month 2, χ2 (1, n = 199) = 117.75, p < .001. Further, no significant differences on mean fidelity were found across research coordinators in Phase 2. Discussion When using the PowerPoint aide, the research coordinators delivered the intervention with high fidelity (all scores >14) and there were no mean differences in fidelity across research coordinators, indicating consistency in fidelity. This can be attributed to the standardization and cueing that the PowerPoint program offered. Supervision was also a key component in establishing and maintaining fidelity of the patient educational process. This method of intervention delivery enables trained healthcare professionals to deliver an educational intervention in an effective, consistent manner. PMID:25414761
Gaber, Rikki; Mallett, Kimberly A; Hultgren, Brittney; Turrisi, Rob; Gilbertsen, Margaret L; Martini, Mary C; Robinson, June K
2014-01-01
Melanoma can metastasize but is often successfully treated when discovered in an early stage. Melanoma patients and their skin check partners can learn skin self-examination (SSE) skills and these skills can be improved by practice. The purpose of this study is to determine the degree of fidelity with which educational in-person SSE intervention can be delivered by trained research coordinators to patients at risk of developing another melanoma and their skin check partners. The in-person intervention was performed in two iterations. In phase 1 (2006-2008), the research coordinators were trained to perform the intervention using a written script. In phase 2 (2011-2013), the research coordinators were trained to perform the intervention with a PowerPoint aid. Each research coordinator was individually counseled by one of the authors (KM) to insure standardization and enhance fidelity of intervention delivery. Phase 1 and Phase 2 were compared on 16 fidelity components. Further, Phase 2 fidelity was assessed by comparing mean scores of fidelity across the five research coordinators who delivered the intervention. Phase 2, which utilized a PowerPoint aid, was delivered with a higher degree of fidelity compared to phase 1with four fidelity components with significantly higher fidelity than Phase 1: 1) Explained details of melanoma, χ 2 (1, n = 199)= 96.31, p < .001, 2) Discussed when to call doctor, χ 2 (1, n = 199) = 53.68, p < .001 3) Explained assessment at month 1, χ 2 (1, n = 199)= 12.39, p < .01, and 4) Explained assessment at month 2, χ 2 (1, n = 199) = 117.75, p < .001. Further, no significant differences on mean fidelity were found across research coordinators in Phase 2. When using the PowerPoint aide, the research coordinators delivered the intervention with high fidelity (all scores >14) and there were no mean differences in fidelity across research coordinators, indicating consistency in fidelity. This can be attributed to the standardization and cueing that the PowerPoint program offered. Supervision was also a key component in establishing and maintaining fidelity of the patient educational process. This method of intervention delivery enables trained healthcare professionals to deliver an educational intervention in an effective, consistent manner.
Attenuation of Foot-and-Mouth Disease Virus by Engineered Viral Polymerase Fidelity.
Rai, Devendra K; Diaz-San Segundo, Fayna; Campagnola, Grace; Keith, Anna; Schafer, Elizabeth A; Kloc, Anna; de Los Santos, Teresa; Peersen, Olve; Rieder, Elizabeth
2017-08-01
Foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase (RdRp) (3D pol ) catalyzes viral RNA synthesis. Its characteristic low fidelity and absence of proofreading activity allow FMDV to rapidly mutate and adapt to dynamic environments. In this study, we used the structure of FMDV 3D pol in combination with previously reported results from similar picornaviral polymerases to design point mutations that would alter replication fidelity. In particular, we targeted Trp237 within conserved polymerase motif A because of the low reversion potential inherent in the single UGG codon. Using biochemical and genetic tools, we show that the replacement of tryptophan 237 with phenylalanine imparts higher fidelity, but replacements with isoleucine and leucine resulted in lower-fidelity phenotypes. Viruses containing these W237 substitutions show in vitro growth kinetics and plaque morphologies similar to those of the wild-type (WT) A 24 Cruzeiro strain in BHK cells, and both high- and low-fidelity variants retained fitness during coinfection with the wild-type virus. The higher-fidelity W237F (W237F HF ) mutant virus was more resistant to the mutagenic nucleoside analogs ribavirin and 5-fluorouracil than the WT virus, whereas the lower-fidelity W237I (W237I LF ) and W237L LF mutant viruses exhibited lower ribavirin resistance. Interestingly, the variant viruses showed heterogeneous and slightly delayed growth kinetics in primary porcine kidney cells, and they were significantly attenuated in mouse infection experiments. These data demonstrate, for a single virus, that either increased or decreased RdRp fidelity attenuates virus growth in animals, which is a desirable feature for the development of safer and genetically more stable vaccine candidates. IMPORTANCE Foot-and-mouth disease (FMD) is the most devastating disease affecting livestock worldwide. Here, using structural and biochemical analyses, we have identified FMDV 3D pol mutations that affect polymerase fidelity. Recombinant FMDVs containing substitutions at 3D pol tryptophan residue 237 were genetically stable and displayed plaque phenotypes and growth kinetics similar to those of the wild-type virus in cell culture. We further demonstrate that viruses harboring either a W237F HF substitution or W237I LF and W237L LF mutations were highly attenuated in animals. Our study shows that obtaining 3D pol fidelity variants by protein engineering based on polymerase structure and function could be exploited for the development of attenuated FMDV vaccine candidates that are safer and more stable than strains obtained by selective pressure via mutagenic nucleotides or adaptation approaches. Copyright © 2017 American Society for Microbiology.
Attenuation of Foot-and-Mouth Disease Virus by Engineered Viral Polymerase Fidelity
Rai, Devendra K.; Diaz-San Segundo, Fayna; Campagnola, Grace; Keith, Anna; Schafer, Elizabeth A.; Kloc, Anna; de los Santos, Teresa; Peersen, Olve
2017-01-01
ABSTRACT Foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase (RdRp) (3Dpol) catalyzes viral RNA synthesis. Its characteristic low fidelity and absence of proofreading activity allow FMDV to rapidly mutate and adapt to dynamic environments. In this study, we used the structure of FMDV 3Dpol in combination with previously reported results from similar picornaviral polymerases to design point mutations that would alter replication fidelity. In particular, we targeted Trp237 within conserved polymerase motif A because of the low reversion potential inherent in the single UGG codon. Using biochemical and genetic tools, we show that the replacement of tryptophan 237 with phenylalanine imparts higher fidelity, but replacements with isoleucine and leucine resulted in lower-fidelity phenotypes. Viruses containing these W237 substitutions show in vitro growth kinetics and plaque morphologies similar to those of the wild-type (WT) A24 Cruzeiro strain in BHK cells, and both high- and low-fidelity variants retained fitness during coinfection with the wild-type virus. The higher-fidelity W237F (W237FHF) mutant virus was more resistant to the mutagenic nucleoside analogs ribavirin and 5-fluorouracil than the WT virus, whereas the lower-fidelity W237I (W237ILF) and W237LLF mutant viruses exhibited lower ribavirin resistance. Interestingly, the variant viruses showed heterogeneous and slightly delayed growth kinetics in primary porcine kidney cells, and they were significantly attenuated in mouse infection experiments. These data demonstrate, for a single virus, that either increased or decreased RdRp fidelity attenuates virus growth in animals, which is a desirable feature for the development of safer and genetically more stable vaccine candidates. IMPORTANCE Foot-and-mouth disease (FMD) is the most devastating disease affecting livestock worldwide. Here, using structural and biochemical analyses, we have identified FMDV 3Dpol mutations that affect polymerase fidelity. Recombinant FMDVs containing substitutions at 3Dpol tryptophan residue 237 were genetically stable and displayed plaque phenotypes and growth kinetics similar to those of the wild-type virus in cell culture. We further demonstrate that viruses harboring either a W237FHF substitution or W237ILF and W237LLF mutations were highly attenuated in animals. Our study shows that obtaining 3Dpol fidelity variants by protein engineering based on polymerase structure and function could be exploited for the development of attenuated FMDV vaccine candidates that are safer and more stable than strains obtained by selective pressure via mutagenic nucleotides or adaptation approaches. PMID:28515297
Helicity multiplexed broadband metasurface holograms.
Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Pun, Edwin Yue Bun; Zhang, Shuang; Chen, Xianzhong
2015-09-10
Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.
Helicity multiplexed broadband metasurface holograms
Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Yue Bun Pun, Edwin; Zhang, Shuang; Chen, Xianzhong
2015-01-01
Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices. PMID:26354497
Coordinating DNA polymerase traffic during high and low fidelity synthesis.
Sutton, Mark D
2010-05-01
With the discovery that organisms possess multiple DNA polymerases (Pols) displaying different fidelities, processivities, and activities came the realization that mechanisms must exist to manage the actions of these diverse enzymes to prevent gratuitous mutations. Although many of the Pols encoded by most organisms are largely accurate, and participate in DNA replication and DNA repair, a sizeable fraction display a reduced fidelity, and act to catalyze potentially error-prone translesion DNA synthesis (TLS) past lesions that persist in the DNA. Striking the proper balance between use of these different enzymes during DNA replication, DNA repair, and TLS is essential for ensuring accurate duplication of the cell's genome. This review highlights mechanisms that organisms utilize to manage the actions of their different Pols. A particular emphasis is placed on discussion of current models for how different Pols switch places with each other at the replication fork during high fidelity replication and potentially error-pone TLS. Copyright (c) 2010 Elsevier B.V. All rights reserved.
The Simplified Aircraft-Based Paired Approach With the ALAS Alerting Algorithm
NASA Technical Reports Server (NTRS)
Perry, Raleigh B.; Madden, Michael M.; Torres-Pomales, Wilfredo; Butler, Ricky W.
2013-01-01
This paper presents the results of an investigation of a proposed concept for closely spaced parallel runways called the Simplified Aircraft-based Paired Approach (SAPA). This procedure depends upon a new alerting algorithm called the Adjacent Landing Alerting System (ALAS). This study used both low fidelity and high fidelity simulations to validate the SAPA procedure and test the performance of the new alerting algorithm. The low fidelity simulation enabled a determination of minimum approach distance for the worst case over millions of scenarios. The high fidelity simulation enabled an accurate determination of timings and minimum approach distance in the presence of realistic trajectories, communication latencies, and total system error for 108 test cases. The SAPA procedure and the ALAS alerting algorithm were applied to the 750-ft parallel spacing (e.g., SFO 28L/28R) approach problem. With the SAPA procedure as defined in this paper, this study concludes that a 750-ft application does not appear to be feasible, but preliminary results for 1000-ft parallel runways look promising.
The human factors of workstation telepresence
NASA Technical Reports Server (NTRS)
Smith, Thomas J.; Smith, Karl U.
1990-01-01
The term workstation telepresence has been introduced to describe human-telerobot compliance, which enables the human operator to effectively project his/her body image and behavioral skills to control of the telerobot itself. Major human-factors considerations for establishing high fidelity workstation telepresence during human-telerobot operation are discussed. Telerobot workstation telepresence is defined by the proficiency and skill with which the operator is able to control sensory feedback from direct interaction with the workstation itself, and from workstation-mediated interaction with the telerobot. Numerous conditions influencing such control have been identified. This raises the question as to what specific factors most critically influence the realization of high fidelity workstation telepresence. The thesis advanced here is that perturbations in sensory feedback represent a major source of variability in human performance during interactive telerobot operation. Perturbed sensory feedback research over the past three decades has established that spatial transformations or temporal delays in sensory feedback engender substantial decrements in interactive task performance, which training does not completely overcome. A recently developed social cybernetic model of human-computer interaction can be used to guide this approach, based on computer-mediated tracking and control of sensory feedback. How the social cybernetic model can be employed for evaluating the various modes, patterns, and integrations of interpersonal, team, and human-computer interactions which play a central role is workstation telepresence are discussed.
Scale-dependent habitat use by a large free-ranging predator, the Mediterranean fin whale
NASA Astrophysics Data System (ADS)
Cotté, Cédric; Guinet, Christophe; Taupier-Letage, Isabelle; Mate, Bruce; Petiau, Estelle
2009-05-01
Since the heterogeneity of oceanographic conditions drives abundance, distribution, and availability of prey, it is essential to understand how foraging predators interact with their dynamic environment at various spatial and temporal scales. We examined the spatio-temporal relationships between oceanographic features and abundance of fin whales ( Balaenoptera physalus), the largest free-ranging predator in the Western Mediterranean Sea (WM), through two independent approaches. First, spatial modeling was used to estimate whale density, using waiting distance (the distance between detections) for fin whales along ferry routes across the WM, in relation to remotely sensed oceanographic parameters. At a large scale (basin and year), fin whales exhibited fidelity to the northern WM with a summer-aggregated and winter-dispersed pattern. At mesoscale (20-100 km), whales were found in colder, saltier (from an on-board system) and dynamic areas defined by steep altimetric and temperature gradients. Second, using an independent fin whale satellite tracking dataset, we showed that tracked whales were effectively preferentially located in favorable habitats, i.e. in areas of high predicted densities as identified by our previous model using oceanographic data contemporaneous to the tracking period. We suggest that the large-scale fidelity corresponds to temporally and spatially predictable habitat of whale favorite prey, the northern krill ( Meganyctiphanes norvegica), while mesoscale relationships are likely to identify areas of high prey concentration and availability.
AOSLO: from benchtop to clinic
NASA Astrophysics Data System (ADS)
Zhang, Yuhua; Poonja, Siddharth; Roorda, Austin
2006-08-01
We present a clinically deployable adaptive optics scanning laser ophthalmoscope (AOSLO) that features micro-electro-mechanical (MEMS) deformable mirror (DM) based adaptive optics (AO) and low coherent light sources. With the miniaturized optical aperture of a μDMS-Multi TM MEMS DM (Boston Micromachines Corporation, Watertown, MA), we were able to develop a compact and robust AOSLO optical system that occupies a 50 cm X 50 cm area on a mobile optical table. We introduced low coherent light sources, which are superluminescent laser diodes (SLD) at 680 nm with 9 nm bandwidth and 840 nm with 50 nm bandwidth, in confocal scanning ophthalmoscopy to eliminate interference artifacts in the images. We selected a photo multiplier tube (PMT) for photon signal detection and designed low noise video signal conditioning circuits. We employed an acoustic-optical (AOM) spatial light modulator to modulate the light beam so that we could avoid unnecessary exposure to the retina or project a specific stimulus pattern onto the retina. The MEMS DM based AO system demonstrated robust performance. The use of low coherent light sources effectively mitigated the interference artifacts in the images and yielded high-fidelity retinal images of contiguous cone mosaic. We imaged patients with inherited retinal degenerations including cone-rod dystrophy (CRD) and retinitis pigmentosa (RP). We have produced high-fidelity, real-time, microscopic views of the living human retina for healthy and diseased eyes.
Fero, Laura J; O'Donnell, John M; Zullo, Thomas G; Dabbs, Annette DeVito; Kitutu, Julius; Samosky, Joseph T; Hoffman, Leslie A
2010-10-01
This paper is a report of an examination of the relationship between metrics of critical thinking skills and performance in simulated clinical scenarios. Paper and pencil assessments are commonly used to assess critical thinking but may not reflect simulated performance. In 2007, a convenience sample of 36 nursing students participated in measurement of critical thinking skills and simulation-based performance using videotaped vignettes, high-fidelity human simulation, the California Critical Thinking Disposition Inventory and California Critical Thinking Skills Test. Simulation-based performance was rated as 'meeting' or 'not meeting' overall expectations. Test scores were categorized as strong, average, or weak. Most (75.0%) students did not meet overall performance expectations using videotaped vignettes or high-fidelity human simulation; most difficulty related to problem recognition and reporting findings to the physician. There was no difference between overall performance based on method of assessment (P = 0.277). More students met subcategory expectations for initiating nursing interventions (P ≤ 0.001) using high-fidelity human simulation. The relationship between videotaped vignette performance and critical thinking disposition or skills scores was not statistically significant, except for problem recognition and overall critical thinking skills scores (Cramer's V = 0.444, P = 0.029). There was a statistically significant relationship between overall high-fidelity human simulation performance and overall critical thinking disposition scores (Cramer's V = 0.413, P = 0.047). Students' performance reflected difficulty meeting expectations in simulated clinical scenarios. High-fidelity human simulation performance appeared to approximate scores on metrics of critical thinking best. Further research is needed to determine if simulation-based performance correlates with critical thinking skills in the clinical setting. © 2010 The Authors. Journal of Advanced Nursing © 2010 Blackwell Publishing Ltd.
Fero, Laura J.; O’Donnell, John M.; Zullo, Thomas G.; Dabbs, Annette DeVito; Kitutu, Julius; Samosky, Joseph T.; Hoffman, Leslie A.
2018-01-01
Aim This paper is a report of an examination of the relationship between metrics of critical thinking skills and performance in simulated clinical scenarios. Background Paper and pencil assessments are commonly used to assess critical thinking but may not reflect simulated performance. Methods In 2007, a convenience sample of 36 nursing students participated in measurement of critical thinking skills and simulation-based performance using videotaped vignettes, high-fidelity human simulation, the California Critical Thinking Disposition Inventory and California Critical Thinking Skills Test. Simulation- based performance was rated as ‘meeting’ or ‘not meeting’ overall expectations. Test scores were categorized as strong, average, or weak. Results Most (75·0%) students did not meet overall performance expectations using videotaped vignettes or high-fidelity human simulation; most difficulty related to problem recognition and reporting findings to the physician. There was no difference between overall performance based on method of assessment (P = 0·277). More students met subcategory expectations for initiating nursing interventions (P ≤ 0·001) using high-fidelity human simulation. The relationship between video-taped vignette performance and critical thinking disposition or skills scores was not statistically significant, except for problem recognition and overall critical thinking skills scores (Cramer’s V = 0·444, P = 0·029). There was a statistically significant relationship between overall high-fidelity human simulation performance and overall critical thinking disposition scores (Cramer’s V = 0·413, P = 0·047). Conclusion Students’ performance reflected difficulty meeting expectations in simulated clinical scenarios. High-fidelity human simulation performance appeared to approximate scores on metrics of critical thinking best. Further research is needed to determine if simulation-based performance correlates with critical thinking skills in the clinical setting. PMID:20636471
Movements of four native Hawaiian birds across a naturally fragmented landscape
Knowlton, Jessie L.; Flaspohler, David J.; Paxton, Eben H.; Fukami, Tadashi; Giardina, Christian P.; Gruner, Daniel S.; Wilson Rankin, Erin E.
2017-01-01
Animals often increase their fitness by moving across space in response to temporal variation in habitat quality and resource availability, and as a result of intra and inter-specific interactions. The long-term persistence of populations and even whole species depends on the collective patterns of individual movements, yet animal movements have been poorly studied at the landscape level. We quantified movement behavior within four native species of Hawaiian forest birds in a complex lava-fragmented landscape: Hawai‛i ‘amakihi Chlorodrepanis virens, ‘oma‘o Myadestes obscurus, ‘apapane Himatione sanguinea, and ‘i‘iwi Drepanis coccinea. We evaluated the relative importance of six potential intrinsic and extrinsic drivers of movement behavior and patch fidelity: 1) forest fragment size, 2) the presence or absence of invasive rats (Rattus sp.), 3) season, 4) species, 5) age, and 6) sex. The study was conducted across a landscape of 34 forest fragments varying in size from 0.07 to 12.37 ha, of which 16 had rats removed using a treatment-control design. We found the largest movements in the nectivorous ‘apapane and ‘i‘iwi, intermediate levels in the generalist Hawai‛i ‘amakihi, and shortest average movement for the ‘oma‘o, a frugivore. We found evidence for larger patch sizes increasing patch fidelity only in the ‘oma‘o, and an effect of rat-removal increasing patch fidelity of Hawai‛i ‘amakihi only after two years of rat-removal. Greater movement during the non-breeding season was observed in all species, and season was an important factor in explaining higher patch fidelity in the breeding season for ‘apapane and ‘i‘iwi. Sex was important in explaining patch fidelity in ‘oma‘o only, with males showing higher patch fidelity. Our results provide new insights into how these native Hawaiian species will respond to a changing environment, including habitat fragmentation and changing distribution of threats from climate change.
Robitaille, Arnaud; Perron, Roger; Germain, Jean-François; Tanoubi, Issam; Georgescu, Mihai
2015-04-01
Transcutaneous cardiac pacing (TCP) is a potentially lifesaving technique that is part of the recommended treatment for symptomatic bradycardia. Transcutaneous cardiac pacing however is used uncommonly, and its successful application is not straightforward. Simulation could, therefore, play an important role in the teaching and assessment of TCP competence. However, even the highest-fidelity mannequins available on the market have important shortcomings, which limit the potential of simulation. Six criteria defining clinical competency in TCP were established and used as a starting point in the creation of an improved TCP simulator. The goal was a model that could be used to assess experienced clinicians, an objective that justifies the additional effort required by the increased fidelity. The proposed 2-mannequin model (TMM) combines a highly modified Human Patient Simulator with a SimMan 3G, the latter being used solely to provide the electrocardiography (ECG) tracing. The TMM improves the potential of simulation to assess experienced clinicians (1) by reproducing key features of TCP, like using the same multifunctional pacing electrodes used clinically, allowing dual ECG monitoring, and responding with upper body twitching when stimulated, but equally importantly (2) by reproducing key pitfalls of the technique, like allowing pacing electrode misplacement and reproducing false signs of ventricular capture, commonly, but erroneously, used clinically to establish that effective pacing has been achieved (like body twitching, electrical artifact on the ECG, and electrical capture without ventricular capture). The proposed TMM uses a novel combination of 2 high-fidelity mannequins to improve TCP simulation until upgraded mannequins become commercially available.
Simulator technology as a tool for education in cardiac care.
Hravnak, Marilyn; Beach, Michael; Tuite, Patricia
2007-01-01
Assisting nurses in gaining the cognitive and psychomotor skills necessary to safely and effectively care for patients with cardiovascular disease can be challenging for educators. Ideally, nurses would have the opportunity to synthesize and practice these skills in a protected training environment before application in the dynamic clinical setting. Recently, a technology known as high fidelity human simulation was introduced, which permits learners to interact with a simulated patient. The dynamic physiologic parameters and physical assessment capabilities of the simulated patient provide for a realistic learning environment. This article describes the High Fidelity Human Simulation Laboratory at the University of Pittsburgh School of Nursing and presents strategies for using this technology as a tool in teaching complex cardiac nursing care at the basic and advanced practice nursing levels. The advantages and disadvantages of high fidelity human simulation in learning are discussed.
Autonomous Aerobraking: Thermal Analysis and Response Surface Development
NASA Technical Reports Server (NTRS)
Dec, John A.; Thornblom, Mark N.
2011-01-01
A high-fidelity thermal model of the Mars Reconnaissance Orbiter was developed for use in an autonomous aerobraking simulation study. Response surface equations were derived from the high-fidelity thermal model and integrated into the autonomous aerobraking simulation software. The high-fidelity thermal model was developed using the Thermal Desktop software and used in all phases of the analysis. The use of Thermal Desktop exclusively, represented a change from previously developed aerobraking thermal analysis methodologies. Comparisons were made between the Thermal Desktop solutions and those developed for the previous aerobraking thermal analyses performed on the Mars Reconnaissance Orbiter during aerobraking operations. A variable sensitivity screening study was performed to reduce the number of variables carried in the response surface equations. Thermal analysis and response surface equation development were performed for autonomous aerobraking missions at Mars and Venus.
Band-selective shaped pulse for high fidelity quantum control in diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yan-Chun; Xing, Jian; Liu, Gang-Qin
High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host {sup 14}N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevelsmore » (e.g., of a nearby {sup 13}C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.« less
Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho
2015-10-21
Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.
Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho
2015-01-01
Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability. PMID:26487083
SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind Plant Control Approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, P.; Gebraad, P.; van Wingerden, J. W.
2013-01-01
This paper presents a new tool for testing wind plant controllers in the Simulator for Offshore Wind Farm Applications (SOWFA). SOWFA is a high-fidelity simulator for the interaction between wind turbine dynamics and the fluid flow in a wind plant. The new super-controller testing environment in SOWFA allows for the implementation of the majority of the wind plant control strategies proposed in the literature.
Simulation Learning: PC-Screen Based (PCSB) versus High Fidelity Simulation (HFS)
2012-08-01
methods for the use of simulation for teaching clinical skills to military and civilian clinicians . High fidelity simulation is an expensive method of...without the knowledge and approval of the IRB. Changes include, but not limited to, modifications in study design, recruitment process and number of...Person C-Collar simulation algorithm Pathway A Scenario A - Spinal stabilization: Sub processes Legend: Pathway Points Complex task to be performed by
Compact Single Site Resolution Cold Atom Experiment for Adiabatic Quantum Computing
2016-02-03
goal of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically 1. REPORT DATE (DD-MM-YYYY) 4...of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically separated and optically addressed...Specifically, we will design and construct a set of compact single atom traps with integrated optics, suitable for heralded entanglement and loophole
High-fidelity patient simulation in nursing education: an integrative review.
Weaver, Amy
2011-01-01
An integrative review was undertaken to analyze studies published since 1998 on the use of high-fidelity patient simulation (HFPS) in undergraduate nursing education. This review found that HFPS benefits nursing students in terms of knowledge, value, realism, and learner satisfaction;findings were mixed in the areas of student confidence, knowledge transfer, and stress. Further research in these and other areas will determine whether its increased use is warranted.
Children Perceive Speech Onsets by Ear and Eye
ERIC Educational Resources Information Center
Jerger, Susan; Damian, Markus F.; Tye-Murrey, Nancy; Abdi, Herve
2017-01-01
Adults use vision to perceive low-fidelity speech; yet how children acquire this ability is not well understood. The literature indicates that children show reduced sensitivity to visual speech from kindergarten to adolescence. We hypothesized that this pattern reflects the effects of complex tasks and a growth period with harder-to-utilize…
Kirigami Nanocomposites as Wide-Angle Diffraction Gratings.
Xu, Lizhi; Wang, Xinzhi; Kim, Yoonseob; Shyu, Terry C; Lyu, Jing; Kotov, Nicholas A
2016-06-28
Beam steering devices represent an essential part of an advanced optics toolbox and are needed in a spectrum of technologies ranging from astronomy and agriculture to biosensing and networked vehicles. Diffraction gratings with strain-tunable periodicity simplify beam steering and can serve as a foundation for light/laser radar (LIDAR/LADAR) components of robotic systems. However, the mechanical properties of traditional materials severely limit the beam steering angle and cycle life. The large strain applied to gratings can severely impair the device performance both in respect of longevity and diffraction pattern fidelity. Here, we show that this problem can be resolved using micromanufactured kirigami patterns from thin film nanocomposites based on high-performance stiff plastics, metals, and carbon nanotubes, etc. The kirigami pattern of microscale slits reduces the stochastic concentration of strain in stiff nanocomposites including those made by layer-by-layer assembly (LBL). The slit patterning affords reduction of strain by 2 orders of magnitude for stretching deformation and consequently enables reconfigurable optical gratings with over a 100% range of period tunability. Elasticity of the stiff nanocomposites and plastics makes possible cyclic reconfigurability of the grating with variable time constant that can also be referred to as 4D kirigami. High-contrast, sophisticated diffraction patterns with as high as fifth diffraction order can be obtained. The angular range of beam steering can be as large as 6.5° for a 635 nm laser beam compared to ∼1° in surface-grooved elastomer gratings and ∼0.02° in MEMS gratings. The versatility of the kirigami patterns, the diversity of the available nanocomposite materials, and their advantageous mechanical properties of the foundational materials open the path for engineering of reconfigurable optical elements in LIDARs essential for autonomous vehicles and other optical devices with spectral range determined by the kirigami periodicity.
Pettigrew, Jonathan; Miller-Day, Michelle; Shin, Youngju; Hecht, Michael L; Krieger, Janice L; Graham, John W
2013-03-01
Variations in the delivery of school-based substance use prevention curricula affect students' acquisition of the lesson content and program outcomes. Although adaptation is sometimes viewed as a lack of fidelity, it is unclear what types of variations actually occur in the classroom. This observational study investigated teacher and student behaviors during implementation of a middle school-based drug prevention curriculum in 25 schools across two Midwestern states. Trained observers coded videos of 276 lessons, reflecting a total of 31 predominantly Caucasian teachers (10 males and 21 females) in 73 different classes. Employing qualitative coding procedures, the study provides a working typology of implementation patterns based on varying levels of teacher control and student participation. These patterns are fairly consistent across lessons and across classes of students, suggesting a teacher-driven delivery model where teachers create a set of constraints within which students vary their engagement. Findings provide a descriptive basis grounded in observation of classroom implementation that can be used to test models of implementation fidelity and quality as well as impact training and other dissemination research.
Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J
2017-04-17
This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.
High-fidelity spin entanglement using optimal control.
Dolde, Florian; Bergholm, Ville; Wang, Ya; Jakobi, Ingmar; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Neumann, Philipp; Schulte-Herbrüggen, Thomas; Biamonte, Jacob; Wrachtrup, Jörg
2014-02-28
Precise control of quantum systems is of fundamental importance in quantum information processing, quantum metrology and high-resolution spectroscopy. When scaling up quantum registers, several challenges arise: individual addressing of qubits while suppressing cross-talk, entangling distant nodes and decoupling unwanted interactions. Here we experimentally demonstrate optimal control of a prototype spin qubit system consisting of two proximal nitrogen-vacancy centres in diamond. Using engineered microwave pulses, we demonstrate single electron spin operations with a fidelity F≈0.99. With additional dynamical decoupling techniques, we further realize high-quality, on-demand entangled states between two electron spins with F>0.82, mostly limited by the coherence time and imperfect initialization. Crosstalk in a crowded spectrum and unwanted dipolar couplings are simultaneously eliminated to a high extent. Finally, by high-fidelity entanglement swapping to nuclear spin quantum memory, we demonstrate nuclear spin entanglement over a length scale of 25 nm. This experiment underlines the importance of optimal control for scalable room temperature spin-based quantum information devices.
Validation of a Low-Thrust Mission Design Tool Using Operational Navigation Software
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Knittel, Jeremy M.; Williams, Ken; Stanbridge, Dale; Ellison, Donald H.
2017-01-01
Design of flight trajectories for missions employing solar electric propulsion requires a suitably high-fidelity design tool. In this work, the Evolutionary Mission Trajectory Generator (EMTG) is presented as a medium-high fidelity design tool that is suitable for mission proposals. EMTG is validated against the high-heritage deep-space navigation tool MIRAGE, demonstrating both the accuracy of EMTG's model and an operational mission design and navigation procedure using both tools. The validation is performed using a benchmark mission to the Jupiter Trojans.
A novel method for accurate patterning and positioning of biological cells
NASA Astrophysics Data System (ADS)
Jing, Gaoshan; Labukas, Joseph P.; Iqbal, Aziz; Perry, Susan Fueshko; Ferguson, Gregory S.; Tatic-Lucic, Svetlana
2007-05-01
The ability to anchor cells in predefined patterns on a surface has become very important for the development of cell-based sensors, tissue-engineering applications, and the understanding of basic cell functions. Currently, the most widely used technique to generate micrometer or sub-micrometer-sized patterns for various biological applications is microcontact printing (μCP). However, the fidelity of the final pattern may be compromised by deformation of the PDMS stamps used during printing. A novel technique for accurately patterning and positioning biological cells is presented, which can overcome this obstacle. We have fabricated a chip on a silicon wafer using standard photolithographic and deposition processes consisting of gold patterns on top of PECVD silicon dioxide. A hydrophobic self-assembled monolayer (SAM) derived from 1-hexadecanethiol (HDT) was coated on the gold surface to prevent cell growth, and a hydrophilic SAM derived from (3-trimethoxysilyl propyl)-diethylenetriamine (DETA) was coated on the exposed PECVD silicon dioxide surface to promote cell growth. Immortalized mouse hypothalamic neurons (GT1-7) were cultured in vitro on the chip, and patterned cells were fluorescently stained and visualized by fluorescence microscopy. By our method, hydrophobic and hydrophilic regions can be reliably generated and easily visualized under a microscope prior to cell culturing. Cell growth was precisely controlled and limited to specific areas. The achieved resolution was 2 microns, and it could be improved with high resolution photolithographic methods.
Unidirectionally aligned line patterns driven by entropic effects on faceted surfaces
Hong, Sung Woo; Huh, June; Gu, Xiaodan; Lee, Dong Hyun; Jo, Won Ho; Park, Soojin; Xu, Ting; Russell, Thomas P.
2012-01-01
A simple, versatile approach to the directed self-assembly of block copolymers into a macroscopic array of unidirectionally aligned cylindrical microdomains on reconstructed faceted single crystal surfaces or on flexible, inexpensive polymeric replicas was discovered. High fidelity transfer of the line pattern generated from the microdomains to a master mold is also shown. A single-grained line patterns over arbitrarily large surface areas without the use of top-down techniques is demonstrated, which has an order parameter typically in excess of 0.97 and a slope error of 1.1 deg. This degree of perfection, produced in a short time period, has yet to be achieved by any other methods. The exceptional alignment arises from entropic penalties of chain packing in the facets coupled with the bending modulus of the cylindrical microdomains. This is shown, theoretically, to be the lowest energy state. The atomic crystalline ordering of the substrate is transferred, over multiple length scales, to the block copolymer microdomains, opening avenues to large-scale roll-to-roll type and nanoimprint processing of perfectly patterned surfaces and as templates and scaffolds for magnetic storage media, polarizing devices, and nanowire arrays. PMID:22307591
Intervention Fidelity in Family-Based Prevention Counseling for Adolescent Problem Behaviors
ERIC Educational Resources Information Center
Hogue, Aaron; Liddle, Howard A.; Singer, Alisa; Leckrone, Jodi
2005-01-01
This study examined fidelity in multidimensional family prevention (MDFP), a family-based prevention counseling model for adolescents at high risk for substance abuse and related behavior problems, in comparison to two empirically based treatments for adolescent drug abuse: multidimensional family therapy (MDFT) and cognitive-behavioral therapy…
Progress towards a microwave-based high-fidelity Toffoli gate with superconducting qubits
NASA Astrophysics Data System (ADS)
Rigetti, Chad; Chow, Jerry; Corcoles, Antonio; Rozen, Jim; Keefe, George; Rothwell, Mary Beth; Rohrs, Jack; Borstelmann, Mark; Divincenzo, David; Ketchen, Mark; Steffen, Matthias
2011-03-01
We describe recent progress at IBM towards a microwave-based implementation of the Toffoli gate using three capacitively shunted flux qubits dispersively coupled to a resonator. We discuss the device architecture and the microwave protocol, along with expected limits to gate fidelity and scaling.
Sedinger, J.S.; Chelgren, N.D.; Ward, D.H.; Lindberg, M.S.
2008-01-01
1. Patterns of temporary emigration (associated with non-breeding) are important components of variation in individual quality. Permanent emigration from the natal area has important implications for both individual fitness and local population dynamics. 2. We estimated both permanent and temporary emigration of black brent geese (Branta bernicla nigricans Lawrence) from the Tutakoke River colony, using observations of marked brent geese on breeding and wintering areas, and recoveries of ringed individuals by hunters. We used the likelihood developed by Lindberg, Kendall, Hines & Anderson 2001 (Combining band recovery data and Pollock's robust design to model temporary and permanent emigration. Biometrics, 57, 273-281) to assess hypotheses and estimate parameters. 3. Temporary emigration (the converse of breeding) varied among age classes up to age 5, and differed between individuals that bred in the previous years vs. those that did not. Consistent with the hypothesis of variation in individual quality, individuals with a higher probability of breeding in one year also had a higher probability of breeding the next year. 4. Natal fidelity of females ranged from 0.70 ?? 0.07-0.96 ?? 0.18 and averaged 0.83. In contrast to Lindberg et al. (1998), we did not detect a relationship between fidelity and local population density. Natal fidelity was negatively correlated with first-year survival, suggesting that competition among individuals of the same age for breeding territories influenced dispersal. Once females nested at the Tutakoke River, colony breeding fidelity was 1.0. 5. Our analyses show substantial variation in individual quality associated with fitness, which other analyses suggest is strongly influenced by early environment. Our analyses also suggest substantial interchange among breeding colonies of brent geese, as first shown by Lindberg et al. (1998).
Yang, Huiqin; Thompson, Carl; Bland, Martin
2012-12-01
Apparent overconfidence and underconfidence in clinicians making clinical judgements could be a feature of evaluative research designs that fail to accurately represent clinical environments. To test the effect of improved realism of clinical judgement tasks on confidence calibration performance of nurses and student nurses. A comparative confidence calibration analysis. The study was conducted in a large university of Northern England. Ninety-seven participants rated their confidence - using a scale that ranged from 0 (no confidence) to 100 (totally confident) on dichotomous clinical judgements of critical event risk. The judgements were in response to 25 paper-based and 25 higher fidelity scenarios using a computerised patient simulator and clinical equipment. Scenarios, and judgement criteria of 'correctness', were generated from real patient cases. Using a series of calibration measures (calibration, resolution and over/underconfidence), participants' confidence was calibrated against the proportion of correct judgements. The calibration measures generated by the paper-based and high fidelity clinical simulation conditions were compared. Participants made significantly less accurate clinical judgements of risk in the high fidelity clinical simulations compared to the paper simulations (P=0.0002). They were significantly less confident in high fidelity clinical simulations than paper simulations (P=0.03). However, there was no significant difference of over/underconfidence for participants between the two simulated settings (P=0.06). Participants were no better calibrated in the high fidelity clinical simulations than paper simulations, P=0.85. Likewise, participants had no better ability of discriminating correct judgements from incorrect judgements as measured by the resolution statistic in high fidelity clinical simulations than paper simulations, P=0.76. Improving the realism of simulated judgement tasks led to reduced confidence and judgement accuracy in participants but did not alter confidence calibration. These findings suggest that judgemental miscalibration of confidence in nurses may be a systematic cognitive bias and that simply making scenarios more realistic may not be a sufficient condition for correction. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Development of Nanotechnology for X-Ray Astronomy Instrumentation
NASA Technical Reports Server (NTRS)
Schattenburg, Mark L.
2004-01-01
This Research Grant provides support for development of nanotechnology for x-ray astronomy instrumentation. MIT has made significant progress in several development areas. In the last year we have made considerable progress in demonstrating the high-fidelity patterning and replication of x-ray reflection gratings. We developed a process for fabricating blazed gratings in silicon with extremely smooth and sharp sawtooth profiles, and developed a nanoimprint process for replication. We also developed sophisticated new fixturing for holding thin optics during metrology without causing distortion. We developed a new image processing algorithm for our Shack-Hartmann tool that uses Zernike polynomials. This has resulted in much more accurate and repeatable measurements on thin optics.
Mapping GRACE Accelerometer Error
NASA Astrophysics Data System (ADS)
Sakumura, C.; Harvey, N.; McCullough, C. M.; Bandikova, T.; Kruizinga, G. L. H.
2017-12-01
After more than fifteen years in orbit, instrument noise, and accelerometer noise in particular, remains one of the limiting error sources for the NASA/DLR Gravity Recovery and Climate Experiment mission. The recent V03 Level-1 reprocessing campaign used a Kalman filter approach to produce a high fidelity, smooth attitude solution fusing star camera and angular acceleration data. This process provided an unprecedented method for analysis and error estimation of each instrument. The accelerometer exhibited signal aliasing, differential scale factors between electrode plates, and magnetic effects. By applying the noise model developed for the angular acceleration data to the linear measurements, we explore the magnitude and geophysical pattern of gravity field error due to the electrostatic accelerometer.
Xiong, Ai-Sheng; Yao, Quan-Hong; Peng, Ri-He; Li, Xian; Fan, Hui-Qin; Cheng, Zong-Ming; Li, Yi
2004-07-07
Chemical synthesis of DNA sequences provides a powerful tool for modifying genes and for studying gene function, structure and expression. Here, we report a simple, high-fidelity and cost-effective PCR-based two-step DNA synthesis (PTDS) method for synthesis of long segments of DNA. The method involves two steps. (i) Synthesis of individual fragments of the DNA of interest: ten to twelve 60mer oligonucleotides with 20 bp overlap are mixed and a PCR reaction is carried out with high-fidelity DNA polymerase Pfu to produce DNA fragments that are approximately 500 bp in length. (ii) Synthesis of the entire sequence of the DNA of interest: five to ten PCR products from the first step are combined and used as the template for a second PCR reaction using high-fidelity DNA polymerase pyrobest, with the two outermost oligonucleotides as primers. Compared with the previously published methods, the PTDS method is rapid (5-7 days) and suitable for synthesizing long segments of DNA (5-6 kb) with high G + C contents, repetitive sequences or complex secondary structures. Thus, the PTDS method provides an alternative tool for synthesizing and assembling long genes with complex structures. Using the newly developed PTDS method, we have successfully obtained several genes of interest with sizes ranging from 1.0 to 5.4 kb.
Numerical study of phase conjugation in stimulated Brillouin scattering from an optical waveguide
NASA Astrophysics Data System (ADS)
Lehmberg, R. H.
1983-05-01
Stimulated Brillouin scattering (SBS) in a multimode optical waveguide is examined, and the parameters that affect the wavefront conjugation fidelity are studied. The nonlinear propagation code is briefly described and the calculated quantities are defined. The parameter study in the low reflectivity limit is described, and the effects of pump depletion are considered. The waveguide produced significantly higher fidelities than the focused configuration, in agreement with several experimental studies. The light scattered back through the phase aberrator exhibited a farfield intenstiy profile closely matching that of the incident beam; however, the nearfield intensity exhibited large and rapid spatial inhomogeneities across the entire aberrator, even for conjugation fidelities as high as 98 percent. In the absence of pump depletion, the fidelity increased with average pump intensity for amplitude gains up to around e to the 10th and then decreased slowly and monotonically with higher intensity. For all cases, pump depletion significantly enhanced the fidelity of the wavefront conjugation by inhibiting the small-scale pulling effect.
Courbin, Nicolas; Besnard, Aurélien; Péron, Clara; Saraux, Claire; Fort, Jérôme; Perret, Samuel; Tornos, Jérémy; Grémillet, David
2018-04-16
Spatio-temporally stable prey distributions coupled with individual foraging site fidelity are predicted to favour individual resource specialisation. Conversely, predators coping with dynamic prey distributions should diversify their individual diet and/or shift foraging areas to increase net intake. We studied individual specialisation in Scopoli's shearwaters (Calonectris diomedea) from the highly dynamic Western Mediterranean, using daily prey distributions together with resource selection, site fidelity and trophic-level analyses. As hypothesised, we found dietary diversification, low foraging site fidelity and almost no individual specialisation in resource selection. Crucially, shearwaters switched daily foraging tactics, selecting areas with contrasting prey of varying trophic levels. Overall, information use and plastic resource selection of individuals with reduced short-term foraging site fidelity allow predators to overcome prey field lability. Our study is an essential step towards a better understanding of individual responses to enhanced environmental stochasticity driven by global changes, and of pathways favouring population persistence. © 2018 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Peratt, A. L.
2008-11-01
A past intense solar outburst and its effect on Earth circa 8,000 BCE was proposed by Gold who based his hypotheses on astronomical and geophysical evidence [1]. The discovery of high-current Z-pinch patterns in Neolithic petroglyphs provides evidence for this occurrence and insight into the origin and meaning of these ancient symbols produced by mankind. These correspond to mankind's visual observations of ancient aurora if the solar wind had increased between one and two orders of magnitude millennia ago [2]. Our data show identical MHD patterns from surveys along 300 km of the Orinoco River (Venezuela), the Chuluut River (Mongolia), the Columbia River (USA), Red Gorge (South Australia) and the Urubamba River (Peru). Three-dimensional, high-fidelity PIC simulations of intense Z-pinches replicate the carved data [3]. 1. T. Gold, Pontificiae Academiae Scientiarvm Scripta Varia, 25, 159, 1962. 2. A. L. Peratt. Trans. Plasma Sci. 35. 778. 2007. 3. A. L. Peratt and W. F. Yao, Physica Scripta, T130, August 2008.
García, José R.; Singh, Ankur; García, Andrés J.
2016-01-01
In the pursuit to develop enhanced technologies for cellular bioassays as well as understand single cell interactions with its underlying substrate, the field of biotechnology has extensively utilized lithographic techniques to spatially pattern proteins onto surfaces in user-defined geometries. Microcontact printing (μCP) remains an incredibly useful patterning method due to its inexpensive nature, scalability, and the lack of considerable use of specialized clean room equipment. However, as new technologies emerge that necessitate various nano-sized areas of deposited proteins, traditional microcontact printing methods may not be able to supply users with the needed resolution size. Recently, our group developed a modified “subtractive microcontact printing” method which still retains many of the benefits offered by conventional μCP. Using this technique, we have been able to reach resolution sizes of fibronectin as small as 250 nm in largely spaced arrays for cell culture. In this communication, we present a detailed description of our subtractive μCP procedure that expands on many of the little tips and tricks that together make this procedure an easy and effective method for controlling protein patterning. PMID:24439290
High-Fidelity Single-Shot Readout for a Spin Qubit via an Enhanced Latching Mechanism
NASA Astrophysics Data System (ADS)
Harvey-Collard, Patrick; D'Anjou, Benjamin; Rudolph, Martin; Jacobson, N. Tobias; Dominguez, Jason; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Coish, William A.; Pioro-Ladrière, Michel; Carroll, Malcolm S.
2018-04-01
The readout of semiconductor spin qubits based on spin blockade is fast but suffers from a small charge signal. Previous work suggested large benefits from additional charge mapping processes; however, uncertainties remain about the underlying mechanisms and achievable fidelity. In this work, we study the single-shot fidelity and limiting mechanisms for two variations of an enhanced latching readout. We achieve average single-shot readout fidelities greater than 99.3% and 99.86% for the conventional and enhanced readout, respectively, the latter being the highest to date for spin blockade. The signal amplitude is enhanced to a full one-electron signal while preserving the readout speed. Furthermore, layout constraints are relaxed because the charge sensor signal is no longer dependent on being aligned with the conventional (2,0)-(1,1) charge dipole. Silicon donor-quantum-dot qubits are used for this study, for which the dipole insensitivity substantially relaxes donor placement requirements. One of the readout variations also benefits from a parametric lifetime enhancement by replacing the spin-relaxation process with a charge-metastable one. This provides opportunities to further increase the fidelity. The relaxation mechanisms in the different regimes are investigated. This work demonstrates a readout that is fast, has a one-electron signal, and results in higher fidelity. It further predicts that going beyond 99.9% fidelity in a few microseconds of measurement time is within reach.
Advances in High-Fidelity Multi-Physics Simulation Techniques
2008-01-01
predictor - corrector method is used to advance the solution in time. 33 x (m) y (m ) 0 1 2 3.00001 0 1 2 3 4 5 40 x 50 Grid 3 Figure 17: Typical...Unclassified c . THIS PAGE Unclassified 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 60 Datta Gaitonde 19b. TELEPHONE...advanced parallel computing platforms. The motivation to develop high-fidelity algorithms derives from considerations in various areas of current
ARC integration into the NEAMS Workbench
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauff, N.; Gaughan, N.; Kim, T.
2017-01-01
One of the objectives of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Integration Product Line (IPL) is to facilitate the deployment of the high-fidelity codes developed within the program. The Workbench initiative was launched in FY-2017 by the IPL to facilitate the transition from conventional tools to high fidelity tools. The Workbench provides a common user interface for model creation, real-time validation, execution, output processing, and visualization for integrated codes.
High-Fidelity Simulation for Advanced Cardiac Life Support Training
Davis, Lindsay E.; Storjohann, Tara D.; Spiegel, Jacqueline J.; Beiber, Kellie M.
2013-01-01
Objective. To determine whether a high-fidelity simulation technique compared with lecture would produce greater improvement in advanced cardiac life support (ACLS) knowledge, confidence, and overall satisfaction with the training method. Design. This sequential, parallel-group, crossover trial randomized students into 2 groups distinguished by the sequence of teaching technique delivered for ACLS instruction (ie, classroom lecture vs high-fidelity simulation exercise). Assessment. Test scores on a written examination administered at baseline and after each teaching technique improved significantly from baseline in all groups but were highest when lecture was followed by simulation. Simulation was associated with a greater degree of overall student satisfaction compared with lecture. Participation in a simulation exercise did not improve pharmacy students’ knowledge of ACLS more than attending a lecture, but it was associated with improved student confidence in skills and satisfaction with learning and application. Conclusions. College curricula should incorporate simulation to complement but not replace lecture for ACLS education. PMID:23610477
Implementing a strand of a scalable fault-tolerant quantum computing fabric.
Chow, Jerry M; Gambetta, Jay M; Magesan, Easwar; Abraham, David W; Cross, Andrew W; Johnson, B R; Masluk, Nicholas A; Ryan, Colm A; Smolin, John A; Srinivasan, Srikanth J; Steffen, M
2014-06-24
With favourable error thresholds and requiring only nearest-neighbour interactions on a lattice, the surface code is an error-correcting code that has garnered considerable attention. At the heart of this code is the ability to perform a low-weight parity measurement of local code qubits. Here we demonstrate high-fidelity parity detection of two code qubits via measurement of a third syndrome qubit. With high-fidelity gates, we generate entanglement distributed across three superconducting qubits in a lattice where each code qubit is coupled to two bus resonators. Via high-fidelity measurement of the syndrome qubit, we deterministically entangle the code qubits in either an even or odd parity Bell state, conditioned on the syndrome qubit state. Finally, to fully characterize this parity readout, we develop a measurement tomography protocol. The lattice presented naturally extends to larger networks of qubits, outlining a path towards fault-tolerant quantum computing.
General solution to inhomogeneous dephasing and smooth pulse dynamical decoupling
NASA Astrophysics Data System (ADS)
Zeng, Junkai; Deng, Xiu-Hao; Russo, Antonio; Barnes, Edwin
2018-03-01
In order to achieve the high-fidelity quantum control needed for a broad range of quantum information technologies, reducing the effects of noise and system inhomogeneities is an essential task. It is well known that a system can be decoupled from noise or made insensitive to inhomogeneous dephasing dynamically by using carefully designed pulse sequences based on square or delta-function waveforms such as Hahn spin echo or CPMG. However, such ideal pulses are often challenging to implement experimentally with high fidelity. Here, we uncover a new geometrical framework for visualizing all possible driving fields, which enables one to generate an unlimited number of smooth, experimentally feasible pulses that perform dynamical decoupling or dynamically corrected gates to arbitrarily high order. We demonstrate that this scheme can significantly enhance the fidelity of single-qubit operations in the presence of noise and when realistic limitations on pulse rise times and amplitudes are taken into account.
High-fidelity simulation for advanced cardiac life support training.
Davis, Lindsay E; Storjohann, Tara D; Spiegel, Jacqueline J; Beiber, Kellie M; Barletta, Jeffrey F
2013-04-12
OBJECTIVE. To determine whether a high-fidelity simulation technique compared with lecture would produce greater improvement in advanced cardiac life support (ACLS) knowledge, confidence, and overall satisfaction with the training method. DESIGN. This sequential, parallel-group, crossover trial randomized students into 2 groups distinguished by the sequence of teaching technique delivered for ACLS instruction (ie, classroom lecture vs high-fidelity simulation exercise). ASSESSMENT. Test scores on a written examination administered at baseline and after each teaching technique improved significantly from baseline in all groups but were highest when lecture was followed by simulation. Simulation was associated with a greater degree of overall student satisfaction compared with lecture. Participation in a simulation exercise did not improve pharmacy students' knowledge of ACLS more than attending a lecture, but it was associated with improved student confidence in skills and satisfaction with learning and application. CONCLUSIONS. College curricula should incorporate simulation to complement but not replace lecture for ACLS education.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutland, Christopher J.
2009-04-26
The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with newmore » numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.« less
Self-Reflection of Video-Recorded High-Fidelity Simulations and Development of Clinical Judgment.
Bussard, Michelle E
2016-09-01
Nurse educators are increasingly using high-fidelity simulators to improve prelicensure nursing students' ability to develop clinical judgment. Traditionally, oral debriefing sessions have immediately followed the simulation scenarios as a method for students to connect theory to practice and therefore develop clinical judgment. Recently, video recording of the simulation scenarios is being incorporated. This qualitative, interpretive description study was conducted to identify whether self-reflection on video-recorded high-fidelity simulation (HFS) scenarios helped prelicensure nursing students to develop clinical judgment. Tanner's clinical judgment model was the framework for this study. Four themes emerged from this study: Confidence, Communication, Decision Making, and Change in Clinical Practice. This study indicated that self-reflection of video-recorded HFS scenarios is beneficial for prelicensure nursing students to develop clinical judgment. [J Nurs Educ. 2016;55(9):522-527.]. Copyright 2016, SLACK Incorporated.
Zhang, Yingqiu; Xu, Qiang; Alós, Josep; Liu, Hui; Xu, Qinzeng; Yang, Hongsheng
2015-01-01
The recent miniaturization of acoustic tracking devices has allowed fishery managers and scientists to collect spatial and temporal data for sustainable fishery management. The spatial and temporal dimensions of fish behavior (movement and/or vertical migrations) are particularly relevant for rockfishes (Sebastes spp.) because most rockfish species are long-lived and have high site fidelity, increasing their vulnerability to overexploitation. In this study, we describe the short-term (with a tracking period of up to 46 d) spatial behavior, as determined by acoustic tracking, of the black rockfish Sebastes schlegelii, a species subject to overexploitation in the Yellow Sea of China. The average residence index (the ratio of detected days to the total period from release to the last detection) in the study area was 0.92 ± 0.13, and most of the tagged fish were detected by only one region of the acoustic receiver array, suggesting relatively high site fidelity to the study area. Acoustic tracking also suggested that this species is more frequently detected during the day than at night in our study area. However, the diel detection periodicity (24 h) was only evident for certain periods of the tracking time, as revealed by a continuous wavelet transform. The habitat selection index of tagged S. schlegelii suggested that S. schlegelii preferred natural reefs, mixed sand/artificial reef bottoms and mixed bottoms of boulder, cobble, gravel and artificial reefs. The preference of this species for the artificial reefs that were recently deployed in the study area suggests that artificial seascapes may be effective management tools to attract individuals. The vertical movement of tagged S. schlegelii was mostly characterized by bottom dwelling behavior, and there was high individual variability in the vertical migration pattern. Our results have important implications for S. schlegelii catchability, the implementation of marine protected areas, and the identification of key species habitats, and our study provides novel information for future studies on the sustainability of this important marine resource in eastern China. PMID:26322604
Harasti, David; Lee, Kate A.; Gallen, Christopher; Hughes, Julian M.; Stewart, John
2015-01-01
Understanding the movement dynamics of marine fish provides valuable information that can assist with species management, particularly regarding protection within marine protected areas (MPAs). We performed an acoustic tagging study implemented within the Port Stephens-Great Lakes Marine Park on the mid-north coast of New South Wales, Australia, to assess the movement patterns, home range and diel activity of snapper (Chrysophrys auratus; Sparidae); a species of significant recreational and commercial fishing importance in Australia. The study focused on C. auratus movements around Cabbage Tree Island, which is predominantly a no-take sanctuary zone (no fishing), with an array of acoustic stations deployed around the island and adjacent reefs and islands. Thirty C. auratus were tagged with internal acoustic tags in November 2010 with their movements recorded until September 2014. Both adult and juvenile C. auratus were observed to display strong site fidelity to Cabbage Tree Island with a mean 12-month residency index of 0.83 (range = 0 low to 1 high). Only three fish were detected on acoustic receivers away from Cabbage Tree Island, with one fish moving a considerable distance of ~ 290 kms over a short time frame (46 days). The longest period of residency recorded at the island was for three fish occurring regularly at the site for a period of 1249 days. Chrysophrys auratus displayed strong diurnal behaviour and detection frequency was significantly higher during the day than at night; however, there was no significant difference in detection frequency between different hours. This study demonstrates that even small-scale protected areas can benefit C. auratus during multiple life-history stages as it maintains a small home range and displays strong site fidelity over a period of 3 years. PMID:26544185
O'Neil, Shawn T.; Warren, Jeffrey M.; Takekawa, John Y.; De La Cruz, Susan E. W.; Cutting, Kyle A.; Parker, Michael W.; Yee, Julie L.
2014-01-01
Prebreeding habitat selection in birds can often be explained in part by habitat characteristics. However, females may also select habitats on the basis of fidelity to areas of previous reproductive success or use by conspecifics. The relative influences of sociobehavioural attributes versus habitat characteristics in habitat selection has been primarily investigated in songbirds, while less is known about how these factors affect habitat selection processes in migratory waterfowl. Animal resource selection models often exhibit much unexplained variation; spatial patterns driven by social and behavioural characteristics may account for some of this. We radiomarked female lesser scaup, Aythya affinis, in the southwestern extent of their breeding range to explore hypotheses regarding relative roles of habitat quality, site fidelity and conspecific density in prebreeding habitat selection. We used linear mixed-effects models to relate intensity of use within female home ranges to habitat features, distance to areas of reproductive success during the previous breeding season and conspecific density. Home range habitats included shallow water (≤118 cm), moderate to high densities of flooded emergent vegetation/open water edge and open water areas with submerged aquatic vegetation. Compared with habitat features, conspecific female density and proximity to successful nesting habitats from the previous breeding season had greater influences on habitat use within home ranges. Fidelity and conspecific attraction are behavioural characteristics in some waterfowl species that may exert a greater influence than habitat features in influencing prebreeding space use and habitat selection within home ranges, particularly where quality habitat is abundant. These processes may be of critical importance to a better understanding of habitat selection in breeding birds.
Impact of materials engineering on edge placement error (Conference Presentation)
NASA Astrophysics Data System (ADS)
Freed, Regina; Mitra, Uday; Zhang, Ying
2017-04-01
Transistor scaling has transitioned from wavelength scaling to multi-patterning techniques, due to the resolution limits of immersion of immersion lithography. Deposition and etch have enabled scaling in the by means of SADP and SAQP. Spacer based patterning enables extremely small linewidths, sufficient for several future generations of transistors. However, aligning layers in Z-direction, as well as aligning cut and via patterning layers, is becoming a road-block due to global and local feature variation and fidelity. This presentation will highlight the impact of deposition and etch on this feature alignment (EPE) and illustrate potential paths toward lowering EPE using material engineering.
Evaluating intervention fidelity: an example from a high-intensity interval training study.
Taylor, Kathryn L; Weston, Matthew; Batterham, Alan M
2015-01-01
Intervention fidelity refers to the degree to which an experimental manipulation has been implemented as intended, but simple, robust methods for quantifying fidelity have not been well documented. Therefore, we aim to illustrate a rigorous quantitative evaluation of intervention fidelity, using data collected during a high-intensity interval training intervention. Single-group measurement study. Seventeen adolescents (mean age ± standard deviation [SD] 14.0 ± 0.3 years) attended a 10-week high-intensity interval training intervention, comprising two exercise sessions per week. Sessions consisted of 4-7 45-s maximal effort repetitions, interspersed with 90-s rest. We collected heart rate data at 5-s intervals and recorded the peak heart rate for each repetition. The high-intensity exercise criterion was ≥ 90% of individual maximal heart rate. For each participant, we calculated the proportion of total exercise repetitions exceeding this threshold. A linear mixed model was applied to properly separate the variability in peak heart rate between- and within-subjects. Results are presented both as intention to treat (including missed sessions) and per protocol (only participants with 100% attendance; n=8). For intention to treat, the median (interquartile range) proportion of repetitions meeting the high-intensity criterion was 58% (42% to 68%). The mean peak heart rate was 85% of maximal, with a between-subject SD of 7.8 (95% confidence interval 5.4 to 11.3) percentage points and a within-subject SD of 15.1 (14.6 to 15.6) percentage points. For the per protocol analysis, the median proportion of high-intensity repetitions was 68% (47% to 86%). The mean peak heart rate was 91% of maximal, with between- and within-subject SDs of 3.1 (-1.3 to 4.6) and 3.4 (3.2 to 3.6) percentage points, respectively. Synthesising information on exercise session attendance and compliance (exercise intensity) quantifies the intervention dose and informs evaluations of treatment fidelity.
Development of high sensitivity and high speed large size blank inspection system LBIS
NASA Astrophysics Data System (ADS)
Ohara, Shinobu; Yoshida, Akinori; Hirai, Mitsuo; Kato, Takenori; Moriizumi, Koichi; Kusunose, Haruhiko
2017-07-01
The production of high-resolution flat panel displays (FPDs) for mobile phones today requires the use of high-quality large-size photomasks (LSPMs). Organic light emitting diode (OLED) displays use several transistors on each pixel for precise current control and, as such, the mask patterns for OLED displays are denser and finer than the patterns for the previous generation displays throughout the entire mask surface. It is therefore strongly demanded that mask patterns be produced with high fidelity and free of defect. To enable the production of a high quality LSPM in a short lead time, the manufacturers need a high-sensitivity high-speed mask blank inspection system that meets the requirement of advanced LSPMs. Lasertec has developed a large-size blank inspection system called LBIS, which achieves high sensitivity based on a laser-scattering technique. LBIS employs a high power laser as its inspection light source. LBIS's delivery optics, including a scanner and F-Theta scan lens, focus the light from the source linearly on the surface of the blank. Its specially-designed optics collect the light scattered by particles and defects generated during the manufacturing process, such as scratches, on the surface and guide it to photo multiplier tubes (PMTs) with high efficiency. Multiple PMTs are used on LBIS for the stable detection of scattered light, which may be distributed at various angles due to irregular shapes of defects. LBIS captures 0.3mμ PSL at a detection rate of over 99.5% with uniform sensitivity. Its inspection time is 20 minutes for a G8 blank and 35 minutes for G10. The differential interference contrast (DIC) microscope on the inspection head of LBIS captures high-contrast review images after inspection. The images are classified automatically.
Development of a measure of model fidelity for mental health Crisis Resolution Teams.
Lloyd-Evans, Brynmor; Bond, Gary R; Ruud, Torleif; Ivanecka, Ada; Gray, Richard; Osborn, David; Nolan, Fiona; Henderson, Claire; Mason, Oliver; Goater, Nicky; Kelly, Kathleen; Ambler, Gareth; Morant, Nicola; Onyett, Steve; Lamb, Danielle; Fahmy, Sarah; Brown, Ellie; Paterson, Beth; Sweeney, Angela; Hindle, David; Fullarton, Kate; Frerichs, Johanna; Johnson, Sonia
2016-12-01
Crisis Resolution Teams (CRTs) provide short-term intensive home treatment to people experiencing mental health crisis. Trial evidence suggests CRTs can be effective at reducing hospital admissions and increasing satisfaction with acute care. When scaled up to national level however, CRT implementation and outcomes have been variable. We aimed to develop and test a fidelity scale to assess adherence to a model of best practice for CRTs, based on best available evidence. A concept mapping process was used to develop a CRT fidelity scale. Participants (n = 68) from a range of stakeholder groups prioritised and grouped statements (n = 72) about important components of the CRT model, generated from a literature review, national survey and qualitative interviews. These data were analysed using Ariadne software and the resultant cluster solution informed item selection for a CRT fidelity scale. Operational criteria and scoring anchor points were developed for each item. The CORE CRT fidelity scale was then piloted in 75 CRTs in the UK to assess the range of scores achieved and feasibility for use in a 1-day fidelity review process. Trained reviewers (n = 16) rated CRT service fidelity in a vignette exercise to test the scale's inter-rater reliability. There were high levels of agreement within and between stakeholder groups regarding the most important components of the CRT model. A 39-item measure of CRT model fidelity was developed. Piloting indicated that the scale was feasible for use to assess CRT model fidelity and had good face validity. The wide range of item scores and total scores across CRT services in the pilot demonstrate the measure can distinguish lower and higher fidelity services. Moderately good inter-rater reliability was found, with an estimated correlation between individual ratings of 0.65 (95% CI: 0.54 to 0.76). The CORE CRT Fidelity Scale has been developed through a rigorous and systematic process. Promising initial testing indicates its value in assessing adherence to a model of CRT best practice and to support service improvement monitoring and planning. Further research is required to establish its psychometric properties and international applicability.
ERIC Educational Resources Information Center
Shapley, Kelly S.; Sheehan, Daniel; Maloney, Catherine; Caranikas-Walker, Fanny
2010-01-01
In a pilot study of the Technology Immersion model, high-need middle schools were "immersed" in technology by providing a laptop for each student and teacher, wireless Internet access, curricular and assessment resources, professional development, and technical and pedagogical support. This article examines the fidelity of model…
Attenuation of foot-and-mouth disease virus by engineered viral polymerase fidelity
USDA-ARS?s Scientific Manuscript database
The foot-and-mouth disease virus (FMDV) RNA dependent RNA polymerase (RdRp or 3Dpol) catalyzes viral RNA synthesis. The 3Dpol is a low fidelity enzyme incapable of proofreading which results in a high mutation frequencies that allow the virus to rapidly adapt to different environments. In this study...
Nursing Simulation: A Review of the Past 40 Years
ERIC Educational Resources Information Center
Nehring, Wendy M.; Lashley, Felissa R.
2009-01-01
Simulation, in its many forms, has been a part of nursing education and practice for many years. The use of games, computer-assisted instruction, standardized patients, virtual reality, and low-fidelity to high-fidelity mannequins have appeared in the past 40 years, whereas anatomical models, partial task trainers, and role playing were used…
ERIC Educational Resources Information Center
Mincic, Melissa; Smith, Barbara J.; Strain, Phil
2009-01-01
Implementing the Pyramid Model with fidelity and achieving positive outcomes for children and their families requires that administrators understand their roles in the implementation process. Every administrative decision impacts program quality and sustainability. This Policy Brief underscores the importance of facilitative administrative…
ERIC Educational Resources Information Center
Curran, Vernon; Fleet, Lisa; White, Susan; Bessell, Clare; Deshpandey, Akhil; Drover, Anne; Hayward, Mark; Valcour, James
2015-01-01
The neonatal resuscitation program (NRP) has been developed to educate physicians and other health care providers about newborn resuscitation and has been shown to improve neonatal resuscitation skills. Simulation-based training is recommended as an effective modality for instructing neonatal resuscitation and both low and high-fidelity manikin…
Fidelity and over-wintering of sea turtles.
Broderick, Annette C; Coyne, Michael S; Fuller, Wayne J; Glen, Fiona; Godley, Brendan J
2007-06-22
While fidelity to breeding sites is well demonstrated in marine turtles, emerging knowledge of migratory routes and key foraging sites is of limited conservation value unless levels of fidelity can be established. We tracked green (Chelonia mydas, n=10) and loggerhead (Caretta caretta, n=10) turtles during their post-nesting migration from the island of Cyprus to their foraging grounds. After intervals of 2-5 years, five of these females were recaptured at the nesting beach and tracked for a second migration. All five used highly similar migratory routes to return to the same foraging and over-wintering areas. None of the females visited other foraging habitats over the study period (units lasted on average 305 days; maximum, 1356 days), moving only to deeper waters during the winter months where they demonstrated extremely long resting dives of up to 10.2h (the longest breath-holding dive recorded for a marine vertebrate). High levels of fidelity and the relatively discrete nature of the home ranges demonstrate that protection of key migratory pathways, foraging and over-wintering sites can serve as an important tool for the future conservation of marine turtles.
Optimization of a solid-state electron spin qubit using Gate Set Tomography
Dehollain, Juan P.; Muhonen, Juha T.; Blume-Kohout, Robin J.; ...
2016-10-13
Here, state of the art qubit systems are reaching the gate fidelities required for scalable quantum computation architectures. Further improvements in the fidelity of quantum gates demands characterization and benchmarking protocols that are efficient, reliable and extremely accurate. Ideally, a benchmarking protocol should also provide information on how to rectify residual errors. Gate Set Tomography (GST) is one such protocol designed to give detailed characterization of as-built qubits. We implemented GST on a high-fidelity electron-spin qubit confined by a single 31P atom in 28Si. The results reveal systematic errors that a randomized benchmarking analysis could measure but not identify, whereasmore » GST indicated the need for improved calibration of the length of the control pulses. After introducing this modification, we measured a new benchmark average gate fidelity of 99.942(8)%, an improvement on the previous value of 99.90(2)%. Furthermore, GST revealed high levels of non-Markovian noise in the system, which will need to be understood and addressed when the qubit is used within a fault-tolerant quantum computation scheme.« less
NASA Astrophysics Data System (ADS)
Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga
2016-11-01
This paper investigates the level of model fidelity needed in order for a model predictive control (MPC)-based obstacle avoidance algorithm to be able to safely and quickly avoid obstacles even when the vehicle is close to its dynamic limits. The context of this work is large autonomous ground vehicles that manoeuvre at high speed within unknown, unstructured, flat environments and have significant vehicle dynamics-related constraints. Five different representations of vehicle dynamics models are considered: four variations of the two degrees-of-freedom (DoF) representation as lower fidelity models and a fourteen DoF representation with combined-slip Magic Formula tyre model as a higher fidelity model. It is concluded that the two DoF representation that accounts for tyre nonlinearities and longitudinal load transfer is necessary for the MPC-based obstacle avoidance algorithm in order to operate the vehicle at its limits within an environment that includes large obstacles. For less challenging environments, however, the two DoF representation with linear tyre model and constant axle loads is sufficient.
Broken symmetry in a two-qubit quantum control landscape
NASA Astrophysics Data System (ADS)
Bukov, Marin; Day, Alexandre G. R.; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj; Sels, Dries
2018-05-01
We analyze the physics of optimal protocols to prepare a target state with high fidelity in a symmetrically coupled two-qubit system. By varying the protocol duration, we find a discontinuous phase transition, which is characterized by a spontaneous breaking of a Z2 symmetry in the functional form of the optimal protocol, and occurs below the quantum speed limit. We study in detail this phase and demonstrate that even though high-fidelity protocols come degenerate with respect to their fidelity, they lead to final states of different entanglement entropy shared between the qubits. Consequently, while globally both optimal protocols are equally far away from the target state, one is locally closer than the other. An approximate variational mean-field theory which captures the physics of the different phases is developed.
Experimental magic state distillation for fault-tolerant quantum computing.
Souza, Alexandre M; Zhang, Jingfu; Ryan, Colm A; Laflamme, Raymond
2011-01-25
Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0〉 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.
High-Fidelity Preservation of Quantum Information During Trapped-Ion Transport
NASA Astrophysics Data System (ADS)
Kaufmann, Peter; Gloger, Timm F.; Kaufmann, Delia; Johanning, Michael; Wunderlich, Christof
2018-01-01
A promising scheme for building scalable quantum simulators and computers is the synthesis of a scalable system using interconnected subsystems. A prerequisite for this approach is the ability to faithfully transfer quantum information between subsystems. With trapped atomic ions, this can be realized by transporting ions with quantum information encoded into their internal states. Here, we measure with high precision the fidelity of quantum information encoded into hyperfine states of a
Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiong-Peng; Shao, Bin, E-mail: sbin610@bit.edu.cn; Hu, Shuai
Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that themore » scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.« less
La Porte, Sherry L; Eigenbrot, Charles; Ultsch, Mark; Ho, Wei-Hsien; Foletti, Davide; Forgie, Alison; Lindquist, Kevin C; Shelton, David L; Pons, Jaume
2014-01-01
Nerve growth factor (NGF) is indispensable during normal embryonic development and critical for the amplification of pain signals in adults. Intervention in NGF signaling holds promise for the alleviation of pain resulting from human diseases such as osteoarthritis, cancer and chronic lower back disorders. We developed a fast, high-fidelity method to convert a hybridoma-derived NGF-targeted mouse antibody into a clinical candidate. This method, termed Library Scanning Mutagenesis (LSM), resulted in the ultra-high affinity antibody tanezumab, a first-in-class anti-hyperalgesic specific for an NGF epitope. Functional and structural comparisons between tanezumab and the mouse 911 precursor antibody using neurotrophin-specific cell survival assays and X-ray crystal structures of both Fab-antigen complexes illustrated high fidelity retention of the NGF epitope. These results suggest the potential for wide applicability of the LSM method for optimization of well-characterized antibodies during humanization. PMID:24830649
Developing Capture Mechanisms and High-Fidelity Dynamic Models for the MXER Tether System
NASA Technical Reports Server (NTRS)
Canfield, Steven L.
2007-01-01
A team consisting of collaborators from Tennessee Technological University (TTU), Marshall Space Flight Center, BD Systems, and the University of Delaware (herein called the TTU team) conducted specific research and development activities in MXER tether systems during the base period of May 15, 2004 through September 30, 2006 under contract number NNM04AB13C. The team addressed two primary topics related to the MXER tether system: 1) Development of validated high-fidelity dynamic models of an elastic rotating tether and 2) development of feasible mechanisms to enable reliable rendezvous and capture. This contractor report will describe in detail the activities that were performed during the base period of this cycle-2 MXER tether activity and will summarize the results of this funded activity. The primary deliverables of this project were the quad trap, a robust capture mechanism proposed, developed, tested, and demonstrated with a high degree of feasibility and the detailed development of a validated high-fidelity elastic tether dynamic model provided through multiple formulations.
Application of cyclic fluorocarbon/argon discharges to device patterning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzler, Dominik, E-mail: dmetzler@umd.edu; Uppireddi, Kishore; Bruce, Robert L.
2016-01-15
With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5 nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this work, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with thismore » work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.« less
Application of cyclic fluorocarbon/argon discharges to device patterning
Metzler, Dominik; Uppiredi, Kishore; Bruce, Robert L.; ...
2015-11-13
With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this study, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with thismore » work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.« less
2012-08-27
dolphins ( Steno bredanensis) (Baird et al. 2008a). Limited satellite tagging work has been undertaken with several species of odontocetes off of...D.J. McSweeney, G.S. Schorr and A.D. Ligon. 2008a. Site fidelity and association patterns in a deep-water dolphin: rough-toothed dolphins ( Steno
2005-09-01
22 4. Soundscape ...traffic noise, while Fidel et al. (2000) examined aircraft noise exposure. 4. Soundscape In residential settings there are noise soundscapes . A... soundscape is physically defined by noise source location (e.g., streets), barriers such as buildings and quiet areas. A perceived soundscape is the
Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates
NASA Astrophysics Data System (ADS)
Rodionov, Andrey
An important challenge in quantum information science and quantum computing is the experimental realization of high-fidelity quantum operations on multi-qubit systems. Quantum process tomography (QPT) is a procedure devised to fully characterize a quantum operation. We first present the results of the estimation of the process matrix for superconducting multi-qubit quantum gates using the full data set employing various methods: linear inversion, maximum likelihood, and least-squares. To alleviate the problem of exponential resource scaling needed to characterize a multi-qubit system, we next investigate a compressed sensing (CS) method for QPT of two-qubit and three-qubit quantum gates. Using experimental data for two-qubit controlled-Z gates, taken with both Xmon and superconducting phase qubits, we obtain estimates for the process matrices with reasonably high fidelities compared to full QPT, despite using significantly reduced sets of initial states and measurement configurations. We show that the CS method still works when the amount of data is so small that the standard QPT would have an underdetermined system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with simulated noise, and similarly show that the method works well for a substantially reduced set of data. For the CS calculations we use two different bases in which the process matrix is approximately sparse (the Pauli-error basis and the singular value decomposition basis), and show that the resulting estimates of the process matrices match with reasonably high fidelity. For both two-qubit and three-qubit gates, we characterize the quantum process by its process matrix and average state fidelity, as well as by the corresponding standard deviation defined via the variation of the state fidelity for different initial states. We calculate the standard deviation of the average state fidelity both analytically and numerically, using a Monte Carlo method. Overall, we show that CS QPT offers a significant reduction in the needed amount of experimental data for two-qubit and three-qubit quantum gates.
Coherent frequency bridge between visible and telecommunications band for vortex light.
Liu, Shi-Long; Liu, Shi-Kai; Li, Yin-Hai; Shi, Shuai; Zhou, Zhi-Yuan; Shi, Bao-Sen
2017-10-02
In quantum communications, vortex photons can encode higher-dimensional quantum states and build high-dimensional communication networks (HDCNs). The interfaces that connect different wavelengths are significant in HDCNs. We construct a coherent orbital angular momentum (OAM) frequency bridge via difference frequency conversion in a nonlinear bulk crystal for HDCNs. Using a single resonant cavity, maximum quantum conversion efficiencies from visible to infrared are 36%, 15%, and 7.8% for topological charges of 0,1, and 2, respectively. The average fidelity obtained using quantum state tomography for the down-converted infrared OAM-state of topological charge 1 is 96.51%. We also prove that the OAM is conserved in this process by measuring visible and infrared interference patterns. This coherent OAM frequency-down conversion bridge represents a basis for an interface between two high-dimensional quantum systems operating with different spectra.
Electromagnetic Modeling of Human Body Using High Performance Computing
NASA Astrophysics Data System (ADS)
Ng, Cho-Kuen; Beall, Mark; Ge, Lixin; Kim, Sanghoek; Klaas, Ottmar; Poon, Ada
Realistic simulation of electromagnetic wave propagation in the actual human body can expedite the investigation of the phenomenon of harvesting implanted devices using wireless powering coupled from external sources. The parallel electromagnetics code suite ACE3P developed at SLAC National Accelerator Laboratory is based on the finite element method for high fidelity accelerator simulation, which can be enhanced to model electromagnetic wave propagation in the human body. Starting with a CAD model of a human phantom that is characterized by a number of tissues, a finite element mesh representing the complex geometries of the individual tissues is built for simulation. Employing an optimal power source with a specific pattern of field distribution, the propagation and focusing of electromagnetic waves in the phantom has been demonstrated. Substantial speedup of the simulation is achieved by using multiple compute cores on supercomputers.
2001-12-01
instrumented with a high fidelity, dual-sensor micromanometer to measure left ventricular and aortic pressure and a transit-time ultrasound probe to...isoflurane in 100% oxy- gen) prior to insertion of the high -fidelity pressure micromanome- ters during cardiac fluoroscopy. Once the micromanometer trans...and allowed to fully recover from the isoflurane seda- tion for a period of 60 min, during which blood pressure and aortic flow were monitored to ensure
Solar Sail Spaceflight Simulation
NASA Technical Reports Server (NTRS)
Lisano, Michael; Evans, James; Ellis, Jordan; Schimmels, John; Roberts, Timothy; Rios-Reyes, Leonel; Scheeres, Daniel; Bladt, Jeff; Lawrence, Dale; Piggott, Scott
2007-01-01
The Solar Sail Spaceflight Simulation Software (S5) toolkit provides solar-sail designers with an integrated environment for designing optimal solar-sail trajectories, and then studying the attitude dynamics/control, navigation, and trajectory control/correction of sails during realistic mission simulations. Unique features include a high-fidelity solar radiation pressure model suitable for arbitrarily-shaped solar sails, a solar-sail trajectory optimizer, capability to develop solar-sail navigation filter simulations, solar-sail attitude control models, and solar-sail high-fidelity force models.
Interprofessional education in pharmacology using high-fidelity simulation.
Meyer, Brittney A; Seefeldt, Teresa M; Ngorsuraches, Surachat; Hendrickx, Lori D; Lubeck, Paula M; Farver, Debra K; Heins, Jodi R
2017-11-01
This study examined the feasibility of an interprofessional high-fidelity pharmacology simulation and its impact on pharmacy and nursing students' perceptions of interprofessionalism and pharmacology knowledge. Pharmacy and nursing students participated in a pharmacology simulation using a high-fidelity patient simulator. Faculty-facilitated debriefing included discussion of the case and collaboration. To determine the impact of the activity on students' perceptions of interprofessionalism and their ability to apply pharmacology knowledge, surveys were administered to students before and after the simulation. Attitudes Toward Health Care Teams scale (ATHCT) scores improved from 4.55 to 4.72 on a scale of 1-6 (p = 0.005). Almost all (over 90%) of the students stated their pharmacology knowledge and their ability to apply that knowledge improved following the simulation. A simulation in pharmacology is feasible and favorably affected students' interprofessionalism and pharmacology knowledge perceptions. Pharmacology is a core science course required by multiple health professions in early program curricula, making it favorable for incorporation of interprofessional learning experiences. However, reports of high-fidelity interprofessional simulation in pharmacology courses are limited. This manuscript contributes to the literature in the field of interprofessional education by demonstrating that an interprofessional simulation in pharmacology is feasible and can favorably affect students' perceptions of interprofessionalism. This manuscript provides an example of a pharmacology interprofessional simulation that faculty in other programs can use to build similar educational activities. Copyright © 2017 Elsevier Inc. All rights reserved.
High-Fidelity Simulation: Preparing Dental Hygiene Students for Managing Medical Emergencies.
Bilich, Lisa A; Jackson, Sarah C; Bray, Brenda S; Willson, Megan N
2015-09-01
Medical emergencies can occur at any time in the dental office, so being prepared to properly manage the situation can be the difference between life and death. The entire dental team must be properly trained regarding all aspects of emergency management in the dental clinic. The aim of this study was to evaluate a new educational approach using a high-fidelity simulator to prepare dental hygiene students for medical emergencies. This study utilized high-fidelity simulation (HFS) to evaluate the abilities of junior dental hygiene students at Eastern Washington University to handle a medical emergency in the dental hygiene clinic. Students were given a medical emergency scenario requiring them to assess the emergency and implement life-saving protocols in a simulated "real-life" situation using a high-fidelity manikin. Retrospective data were collected for four years from the classes of 2010 through 2013 (N=114). The results indicated that learning with simulation was effective in helping the students identify the medical emergency in a timely manner, implement emergency procedures correctly, locate and correctly utilize contents of the emergency kit, administer appropriate intervention/treatment for a specific patient, and provide the patient with appropriate follow-up instructions. For dental hygiene programs seeking to enhance their curricula in the area of medical emergencies, this study suggests that HFS is an effective tool to prepare students to appropriately handle medical emergencies. Faculty calibration is essential to standardize simulation.
Bonding thermoplastic polymers
Wallow, Thomas I [Fremont, CA; Hunter, Marion C [Livermore, CA; Krafcik, Karen Lee [Livermore, CA; Morales, Alfredo M [Livermore, CA; Simmons, Blake A [San Francisco, CA; Domeier, Linda A [Danville, CA
2008-06-24
We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.
Single-expose patterning development for EUV lithography
NASA Astrophysics Data System (ADS)
De Silva, Anuja; Petrillo, Karen; Meli, Luciana; Shearer, Jeffrey C.; Beique, Genevieve; Sun, Lei; Seshadri, Indira; Oh, Taehwan; Han, Seulgi; Saulnier, Nicole; Lee, Joe; Arnold, John C.; Hamieh, Bassem; Felix, Nelson M.; Furukawa, Tsuyoshi; Singh, Lovejeet; Ayothi, Ramakrishnan
2017-03-01
Initial readiness of EUV (extreme ultraviolet) patterning was demonstrated in 2016 with IBM Alliance's 7nm device technology. The focus has now shifted to driving the 'effective' k1 factor and enabling the second generation of EUV patterning. With the substantial cost of EUV exposure there is significant interest in extending the capability to do single exposure patterning with EUV. To enable this, emphasis must be placed on the aspect ratios, adhesion, defectivity reduction, etch selectivity, and imaging control of the whole patterning process. Innovations in resist materials and processes must be included to realize the full entitlement of EUV lithography at 0.33NA. In addition, enhancements in the patterning process to enable good defectivity, lithographic process window, and post etch pattern fidelity are also required. Through this work, the fundamental material challenges in driving down the effective k1 factor will be highlighted.
Banaszek, Daniel; You, Daniel; Chang, Justues; Pickell, Michael; Hesse, Daniel; Hopman, Wilma M; Borschneck, Daniel; Bardana, Davide
2017-04-05
Work-hour restrictions as set forth by the Accreditation Council for Graduate Medical Education (ACGME) and other governing bodies have forced training programs to seek out new learning tools to accelerate acquisition of both medical skills and knowledge. As a result, competency-based training has become an important part of residency training. The purpose of this study was to directly compare arthroscopic skill acquisition in both high-fidelity and low-fidelity simulator models and to assess skill transfer from either modality to a cadaveric specimen, simulating intraoperative conditions. Forty surgical novices (pre-clerkship-level medical students) voluntarily participated in this trial. Baseline demographic data, as well as data on arthroscopic knowledge and skill, were collected prior to training. Subjects were randomized to 5-week independent training sessions on a high-fidelity virtual reality arthroscopic simulator or on a bench-top arthroscopic setup, or to an untrained control group. Post-training, subjects were asked to perform a diagnostic arthroscopy on both simulators and in a simulated intraoperative environment on a cadaveric knee. A more difficult surprise task was also incorporated to evaluate skill transfer. Subjects were evaluated using the Global Rating Scale (GRS), the 14-point arthroscopic checklist, and a timer to determine procedural efficiency (time per task). Secondary outcomes focused on objective measures of virtual reality simulator motion analysis. Trainees on both simulators demonstrated a significant improvement (p < 0.05) in arthroscopic skills compared with baseline scores and untrained controls, both in and ex vivo. The virtual reality simulation group consistently outperformed the bench-top model group in the diagnostic arthroscopy crossover tests and in the simulated cadaveric setup. Furthermore, the virtual reality group demonstrated superior skill transfer in the surprise skill transfer task. Both high-fidelity and low-fidelity simulation trainings were effective in arthroscopic skill acquisition. High-fidelity virtual reality simulation was superior to bench-top simulation in the acquisition of arthroscopic skills, both in the laboratory and in vivo. Further clinical investigation is needed to interpret the importance of these results.
Mihalic, Sharon F; Fagan, Abigail A; Argamaso, Susanne
2008-01-18
Widespread replication of effective prevention programs is unlikely to affect the incidence of adolescent delinquency, violent crime, and substance use until the quality of implementation of these programs by community-based organizations can be assured. This paper presents the results of a process evaluation employing qualitative and quantitative methods to assess the extent to which 432 schools in 105 sites implemented the LifeSkills Training (LST) drug prevention program with fidelity. Regression analysis was used to examine factors influencing four dimensions of fidelity: adherence, dosage, quality of delivery, and student responsiveness. Although most sites faced common barriers, such as finding room in the school schedule for the program, gaining full support from key participants (i.e., site coordinators, principals, and LST teachers), ensuring teacher participation in training workshops, and classroom management difficulties, most schools involved in the project implemented LST with very high levels of fidelity. Across sites, 86% of program objectives and activities required in the three-year curriculum were delivered to students. Moreover, teachers were observed using all four recommended teaching practices, and 71% of instructors taught all the required LST lessons. Multivariate analyses found that highly rated LST program characteristics and better student behavior were significantly related to a greater proportion of material taught by teachers (adherence). Instructors who rated the LST program characteristics as ideal were more likely to teach all lessons (dosage). Student behavior and use of interactive teaching techniques (quality of delivery) were positively related. No variables were related to student participation (student responsiveness). Although difficult, high implementation fidelity by community-based organizations can be achieved. This study suggests some important factors that organizations should consider to ensure fidelity, such as selecting programs with features that minimize complexity while maximizing flexibility. Time constraints in the classroom should be considered when choosing a program. Student behavior also influences program delivery, so schools should train teachers in the use of classroom management skills. This project involved comprehensive program monitoring and technical assistance that likely facilitated the identification and resolution of problems and contributed to the overall high quality of implementation. Schools should recognize the importance of training and technical assistance to ensure quality program delivery.
Clark, Daniel E.; Koenen, Kiana K. G.; Whitney, Jillian J.; MacKenzie, Kenneth G.; DeStefano, Stephen
2016-01-01
While the breeding ecology of gulls (Laridae) has been well studied, their movements and spatial organization during the non-breeding season is poorly understood. The seasonal movements, winter-site fidelity, and site persistence of Ring-billed (Larus delawarensis) and Herring (L. argentatus) gulls to wintering areas were studied from 2008–2012. Satellite transmitters were deployed on Ring-billed Gulls (n = 21) and Herring Gulls (n = 14). Ten Ring-billed and six Herring gulls were tracked over multiple winters and > 300 wing-tagged Ring-billed Gulls were followed to determine winter-site fidelity and persistence. Home range overlap for individuals between years ranged between 0–1.0 (95% minimum convex polygon) and 0.31–0.79 (kernel utilization distributions). Ringbilled and Herring gulls remained at local wintering sites during the non-breeding season from 20–167 days and 74–161 days, respectively. The probability of a tagged Ring-billed Gull returning to the same site in subsequent winters was high; conversely, there was a low probability of a Ring-billed Gull returning to a different site. Ring-billed and Herring gulls exhibited high winter-site fidelity, but exhibited variable site persistence during the winter season, leading to a high probability of encountering the same individuals in subsequent winters.
Thermal Protection System Mass Estimating Relationships for Blunt-Body, Earth Entry Spacecraft
NASA Technical Reports Server (NTRS)
Sepka, Steven A.; Samareh, Jamshid A.
2015-01-01
System analysis and design of any entry system must balance the level fidelity for each discipline against the project timeline. One way to inject high fidelity analysis earlier in the design effort is to develop surrogate models for the high-fidelity disciplines. Surrogate models for the Thermal Protection System (TPS) are formulated as Mass Estimating Relationships (MERs). The TPS MERs are presented that predict the amount of TPS necessary for safe Earth entry for blunt-body spacecraft using simple correlations that closely match estimates from NASA's high-fidelity ablation modeling tool, the Fully Implicit Ablation and Thermal Analysis Program (FIAT). These MERs provide a first order estimate for rapid feasibility studies. There are 840 different trajectories considered in this study, and each TPS MER has a peak heating limit. MERs for the vehicle forebody include the ablators Phenolic Impregnated Carbon Ablator (PICA) and Carbon Phenolic atop Advanced Carbon-Carbon. For the aftbody, the materials are Silicone Impregnated Reusable Ceramic Ablator (SIRCA), Acusil II, SLA-561V, and LI-900. The MERs are accurate to within 14% (at one standard deviation) of FIAT prediction, and the most any MER under predicts FIAT TPS thickness is 18.7%. This work focuses on the development of these MERs, the resulting equations, model limitations, and model accuracy.
Bufton, Amy; Campbell, Amity; Howie, Erin; Straker, Leon
2014-12-01
Active virtual games (AVG) may facilitate gross motor skill development, depending on their fidelity. This study compared the movement patterns of nineteen 10-12 yr old children, while playing table tennis on three AVG consoles (Nintendo Wii, Xbox Kinect, Sony Move) and as a real world task. Wrist and elbow joint angles and hand path distance and speed were captured. Children playing real table tennis had significantly smaller (e.g. Wrist Angle Forehand Real-Kinect: Mean Difference (MD): -18.2°, 95% Confidence Interval (CI): -26.15 to -10.26) and slower (e.g. Average Speed Forehand Real-Kinect: MD: -1.98 ms(-1), 95% CI: -2.35 to -1.61) movements than when using all three AVGs. Hand path distance was smaller in forehand and backhand strokes (e.g. Kinect-Wii: MD: 0.46 m, 95% CI: 0.13-0.79) during playing with Kinect than Move and Wii. The movement patterns when playing real and virtual table tennis were different and this may impede the development of real world gross motor skills. Several elements, including display, input and task characteristics, may have contributed to the differences in movement patterns observed. Understanding the interface components for AVGs may help development of higher fidelity games to potentially enhance the development of gross motor skill and thus participation in PA. Copyright © 2014 Elsevier B.V. All rights reserved.
Vianna, Gabriel M. S.; Meekan, Mark G.; Meeuwig, Jessica J.; Speed, Conrad W.
2013-01-01
We used acoustic telemetry to describe the patterns of vertical movement, site fidelity and residency of grey reef sharks (Carcharhinus amblyrhynchos) on the outer slope of coral reefs in Palau, Micronesia, over a period of two years and nine months. We tagged 39 sharks (mostly adult females) of which 31 were detected regularly throughout the study. Sharks displayed strong inter-annual residency with greater attendance at monitored sites during summer than winter months. More individuals were detected during the day than at night. Mean depths of tagged sharks increased from 35 m in winter to 60 m in spring following an increase in water temperature at 60 m, with maximum mean depths attained when water temperatures at 60 m stabilised around 29°C. Sharks descended to greater depths and used a wider range of depths around the time of the full moon. There were also crepuscular cycles in mean depth, with sharks moving into shallower waters at dawn and dusk each day. We suggest that daily, lunar and seasonal cycles in vertical movement and residency are strategies for optimising both energetic budgets and foraging behaviour. Cyclical patterns of movement in response to environmental variables might affect the susceptibility of reef sharks to fishing, a consideration that should be taken into account in the implementation of conservation strategies. PMID:23593193
Vianna, Gabriel M S; Meekan, Mark G; Meeuwig, Jessica J; Speed, Conrad W
2013-01-01
We used acoustic telemetry to describe the patterns of vertical movement, site fidelity and residency of grey reef sharks (Carcharhinus amblyrhynchos) on the outer slope of coral reefs in Palau, Micronesia, over a period of two years and nine months. We tagged 39 sharks (mostly adult females) of which 31 were detected regularly throughout the study. Sharks displayed strong inter-annual residency with greater attendance at monitored sites during summer than winter months. More individuals were detected during the day than at night. Mean depths of tagged sharks increased from 35 m in winter to 60 m in spring following an increase in water temperature at 60 m, with maximum mean depths attained when water temperatures at 60 m stabilised around 29°C. Sharks descended to greater depths and used a wider range of depths around the time of the full moon. There were also crepuscular cycles in mean depth, with sharks moving into shallower waters at dawn and dusk each day. We suggest that daily, lunar and seasonal cycles in vertical movement and residency are strategies for optimising both energetic budgets and foraging behaviour. Cyclical patterns of movement in response to environmental variables might affect the susceptibility of reef sharks to fishing, a consideration that should be taken into account in the implementation of conservation strategies.
Pixel-based OPC optimization based on conjugate gradients.
Ma, Xu; Arce, Gonzalo R
2011-01-31
Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.
Ultrathin high-resolution flexographic printing using nanoporous stamps
Kim, Sanha; Sojoudi, Hossein; Zhao, Hangbo; Mariappan, Dhanushkodi; McKinley, Gareth H.; Gleason, Karen K.; Hart, A. John
2016-01-01
Since its invention in ancient times, relief printing, commonly called flexography, has been used to mass-produce artifacts ranging from decorative graphics to printed media. Now, higher-resolution flexography is essential to manufacturing low-cost, large-area printed electronics. However, because of contact-mediated liquid instabilities and spreading, the resolution of flexographic printing using elastomeric stamps is limited to tens of micrometers. We introduce engineered nanoporous microstructures, comprising polymer-coated aligned carbon nanotubes (CNTs), as a next-generation stamp material. We design and engineer the highly porous microstructures to be wetted by colloidal inks and to transfer a thin layer to a target substrate upon brief contact. We demonstrate printing of diverse micrometer-scale patterns of a variety of functional nanoparticle inks, including Ag, ZnO, WO3, and CdSe/ZnS, onto both rigid and compliant substrates. The printed patterns have highly uniform nanoscale thickness (5 to 50 nm) and match the stamp features with high fidelity (edge roughness, ~0.2 μm). We derive conditions for uniform printing based on nanoscale contact mechanics, characterize printed Ag lines and transparent conductors, and achieve continuous printing at a speed of 0.2 m/s. The latter represents a combination of resolution and throughput that far surpasses industrial printing technologies. PMID:27957542
Case Studies of Forecasting Ionospheric Total Electron Content
NASA Astrophysics Data System (ADS)
Mannucci, A. J.; Meng, X.; Verkhoglyadova, O. P.; Tsurutani, B.; McGranaghan, R. M.
2017-12-01
We report on medium-range forecast-mode runs of ionosphere-thermosphere coupled models that calculate ionospheric total electron content (TEC), focusing on low-latitude daytime conditions. A medium-range forecast-mode run refers to simulations that are driven by inputs that can be predicted 2-3 days in advance, for example based on simulations of the solar wind. We will present results from a weak geomagnetic storm caused by a high-speed solar wind stream on June 29, 2012. Simulations based on the Global Ionosphere Thermosphere Model (GITM) and the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM) significantly over-estimate TEC in certain low latitude daytime regions, compared to TEC maps based on observations. We will present the results from a more intense coronal mass ejection (CME) driven storm where the simulations are closer to observations. We compare high latitude data sets to model inputs, such as auroral boundary and convection patterns, to assess the degree to which poorly estimated high latitude drivers may be the largest cause of discrepancy between simulations and observations. Our results reveal many factors that can affect the accuracy of forecasts, including the fidelity of empirical models used to estimate high latitude precipitation patterns, or observation proxies for solar EUV spectra, such as the F10.7 index. Implications for forecasts with few-day lead times are discussed
Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets.
Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun
2016-08-05
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.
Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets
NASA Astrophysics Data System (ADS)
Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun
2016-08-01
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.
Proofreading of DNA polymerase: a new kinetic model with higher-order terminal effects
NASA Astrophysics Data System (ADS)
Song, Yong-Shun; Shu, Yao-Gen; Zhou, Xin; Ou-Yang, Zhong-Can; Li, Ming
2017-01-01
The fidelity of DNA replication by DNA polymerase (DNAP) has long been an important issue in biology. While numerous experiments have revealed details of the molecular structure and working mechanism of DNAP which consists of both a polymerase site and an exonuclease (proofreading) site, there were quite a few theoretical studies on the fidelity issue. The first model which explicitly considered both sites was proposed in the 1970s and the basic idea was widely accepted by later models. However, all these models did not systematically investigate the dominant factor on DNAP fidelity, i.e. the higher-order terminal effects through which the polymerization pathway and the proofreading pathway coordinate to achieve high fidelity. In this paper, we propose a new and comprehensive kinetic model of DNAP based on some recent experimental observations, which includes previous models as special cases. We present a rigorous and unified treatment of the corresponding steady-state kinetic equations of any-order terminal effects, and derive analytical expressions for fidelity in terms of kinetic parameters under bio-relevant conditions. These expressions offer new insights on how the higher-order terminal effects contribute substantially to the fidelity in an order-by-order way, and also show that the polymerization-and-proofreading mechanism is dominated only by very few key parameters. We then apply these results to calculate the fidelity of some real DNAPs, which are in good agreements with previous intuitive estimates given by experimentalists.
Senko, Jesse; Koch, Volker; Megill, William M.; Carthy, Raymond R.; Templeton, R.obert P.; Nichols, Wallace J.
2010-01-01
Green turtles spend most of their lives in coastal foraging areas where they face multiple anthropogenic impacts. Therefore, understanding their spatial use in this environment is a priority for conservation efforts. We studied the fine scale daily movements and habitat use of East Pacific green turtles (Chelonia mydas) at Laguna San Ignacio, a shallow coastal lagoon in Baja California Sur, Mexico where sea turtles are subject to high levels of gillnet bycatch and directed hunting. Six turtles ranging from 44.6 to 83.5 cm in straight carapace length were tracked for short deployments (1 to 6 d) with GPS-VHF telemetry. Turtles were active throughout diurnal, nocturnal, and crepuscular periods. Although they moved greater total distances during daytime, their speed of travel and net displacement remained consistent throughout 24-h periods. A positive selection for areas of seagrass and moderate water depth (5 to 10 m) was determined using Ivlev's electivity index, with neutral selection for shallow water (< 5 m) and avoidance of deep water (> 10 m). Turtles exhibited two distinct behavioral movement patterns: circular movements with high fidelity to the capture–release location and meandering movements with low fidelity to the capture–release location. Our results indicate that green turtles were active throughout the diel cycle while traveling large distances and traversing multiple habitats over short temporal scales.
Tuzer, Hilal; Dinc, Leyla; Elcin, Melih
2016-10-01
Existing research literature indicates that the use of various simulation techniques in the training of physical examination skills develops students' cognitive and psychomotor abilities in a realistic learning environment while improving patient safety. The study aimed to compare the effects of the use of a high-fidelity simulator and standardized patients on the knowledge and skills of students conducting thorax-lungs and cardiac examinations, and to explore the students' views and learning experiences. A mixed-method explanatory sequential design. The study was conducted in the Simulation Laboratory of a Nursing School, the Training Center at the Faculty of Medicine, and in the inpatient clinics of the Education and Research Hospital. Fifty-two fourth-year nursing students. Students were randomly assigned to Group I and Group II. The students in Group 1 attended the thorax-lungs and cardiac examination training using a high-fidelity simulator, while the students in Group 2 using standardized patients. After the training sessions, all students practiced their skills on real patients in the clinical setting under the supervision of the investigator. Knowledge and performance scores of all students increased following the simulation activities; however, the students that worked with standardized patients achieved significantly higher knowledge scores than those that worked with the high-fidelity simulator; however, there was no significant difference in performance scores between the groups. The mean performance scores of students on real patients were significantly higher compared to the post-simulation assessment scores (p<0.001). Results of this study revealed that use of standardized patients was more effective than the use of a high-fidelity simulator in increasing the knowledge scores of students on thorax-lungs and cardiac examinations; however, practice on real patients increased performance scores of all students without any significant difference in two groups. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dankbaar, Mary E W; Alsma, Jelmer; Jansen, Els E H; van Merrienboer, Jeroen J G; van Saase, Jan L C M; Schuit, Stephanie C E
2016-08-01
Simulation games are becoming increasingly popular in education, but more insight in their critical design features is needed. This study investigated the effects of fidelity of open patient cases in adjunct to an instructional e-module on students' cognitive skills and motivation. We set up a three-group randomized post-test-only design: a control group working on an e-module; a cases group, combining the e-module with low-fidelity text-based patient cases, and a game group, combining the e-module with a high-fidelity simulation game with the same cases. Participants completed questionnaires on cognitive load and motivation. After a 4-week study period, blinded assessors rated students' cognitive emergency care skills in two mannequin-based scenarios. In total 61 students participated and were assessed; 16 control group students, 20 cases students and 25 game students. Learning time was 2 h longer for the cases and game groups than for the control group. Acquired cognitive skills did not differ between groups. The game group experienced higher intrinsic and germane cognitive load than the cases group (p = 0.03 and 0.01) and felt more engaged (p < 0.001). Students did not profit from working on open cases (in adjunct to an e-module), which nonetheless challenged them to study longer. The e-module appeared to be very effective, while the high-fidelity game, although engaging, probably distracted students and impeded learning. Medical educators designing motivating and effective skills training for novices should align case complexity and fidelity with students' proficiency level. The relation between case-fidelity, motivation and skills development is an important field for further study.
ERIC Educational Resources Information Center
McMaster, Kristen L.; Jung, Pyung-Gang; Brandes, Dana; Pinto, Viveca; Fuchs, Douglas; Kearns, Devin; Lemons, Christopher; Sáenz, Laura; Yen, Loulee
2014-01-01
Teachers are often asked to implement research-based instructional programs with fidelity and to ensure that all students reach high academic standards. These requests sometimes conflict when teachers find that not all their students are benefiting from the research-backed programs. In this article, we suggest that researchers and teachers can…
Experimental purification of two-atom entanglement.
Reichle, R; Leibfried, D; Knill, E; Britton, J; Blakestad, R B; Jost, J D; Langer, C; Ozeri, R; Seidelin, S; Wineland, D J
2006-10-19
Entanglement is a necessary resource for quantum applications--entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement 'purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.
Crystal plasticity modeling of β phase deformation in Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Moore, John A.; Barton, Nathan R.; Florando, Jeff; Mulay, Rupalee; Kumar, Mukul
2017-10-01
Ti-6Al-4V is an alloy of titanium that dominates titanium usage in applications ranging from mass-produced consumer goods to high-end aerospace parts. The material’s structure on a microscale is known to affect its mechanical properties but these effects are not fully understood. Specifically, this work will address the effects of low volume fraction intergranular β phase on Ti-6Al-4V’s mechanical response during the transition from elastic to plastic deformation. A crystal plasticity-based finite element model is used to fully resolve the deformation of the β phase for the first time. This high fidelity model captures mechanisms difficult to access via experiments or lower fidelity models. The results are used to assess lower fidelity modeling assumptions and identify phenomena that have ramifications for failure of the material.
Decoherence and Fidelity in Teleportation of Coherent Photon-Added Two-Mode Squeezed Thermal States
NASA Astrophysics Data System (ADS)
Li, Heng-Mei; Yuan, Hong-Chun; Wan, Zhi-Long; Wang, Zhen
2018-04-01
We theoretically introduce a kind of non-Gaussian entangled resources, i.e., coherent photon-added two-mode squeezed thermal states (CPA-TMSTS), by successively performing coherent photon addition operation to the two-mode squeezed thermal states. The normalization factor related to bivariate Hermite polynomials is obtained. Based upon it, the nonclassicality and decoherence process are analyzed by virtue of the Wigner function. It is shown that the coherent photon addition operation is an effective way in generating partial negative values of Wigner function, which clearly manifests the nonclassicality and non-Gaussianity of the target states. Additionally, the fidelity in teleporting coherent states using CPA-TMSTS as entangled resource is quantified both analytically and numerically. It is found that the CPA-TMSTS is an entangled resource of high-efficiency and high-fidelity in quantum teleportation.
High-Fidelity e-Learning: SEI’s Virtual Training Environment (VTE)
2009-01-01
Assessment 2.4 Collaboration 2.4.1 Peer-Student Collaboration 2.4.2 Instructor Support 2.5 Accessibility 2.6 Modularity 2.6.1 Design for Re-Use 2.6.2 Design ...ing Environment as an implementation of a high-fidelity e-Ieaming system. This report does not cover concepts of pedagogy or instructional design in e...pedagogical agents. This is the basis for Clark and Mayer’s Personalization principle for designing media for e-learning [Clark & Mayer 2003]. E-learning
Athanasiou, Thanos; Long, Susannah J; Beveridge, Iain; Sevdalis, Nick
2017-01-01
Objectives Frontline insights into care delivery correlate with patients’ clinical outcomes. These outcomes might be improved through near-real time identification and mitigation of staff concerns. We evaluated the effects of a prospective frontline surveillance system on patient and team outcomes. Design Prospective, stepped wedge, non-randomised, cluster controlled trial; prespecified per protocol analysis for high-fidelity intervention delivery. Participants Seven interdisciplinary medical ward teams from two hospitals in the UK. Intervention Prospective clinical team surveillance (PCTS): structured daily interdisciplinary briefings to capture staff concerns, with organisational facilitation and feedback. Main measures The primary outcome was excess length of stay (eLOS): an admission more than 24 hours above the local average for comparable patients. Secondary outcomes included safety and teamwork climates, and incident reporting. Mixed-effects models adjusted for time effects, age, comorbidity, palliation status and ward admissions. Safety and teamwork climates were measured with the Safety Attitudes Questionnaire. High-fidelity PCTS delivery comprised high engagement and high briefing frequency. Results Implementation fidelity was variable, both in briefing frequency (median 80% working days/month, IQR 65%–90%) and engagement (median 70 issues/ward/month, IQR 34–113). 1714/6518 (26.3%) intervention admissions had eLOS versus 1279/4927 (26.0%) control admissions, an absolute risk increase of 0.3%. PCTS increased eLOS in the adjusted intention-to-treat model (OR 1.32, 95% CI 1.10 to 1.58, p=0.003). Conversely, high-fidelity PCTS reduced eLOS (OR 0.79, 95% CI 0.67 to 0.94, p=0.006). High-fidelity PCTS also increased total, high-yield and non-nurse incident reports (incidence rate ratios 1.28–1.79, all p<0.002). Sustained PCTS significantly improved safety and teamwork climates over time. Conclusions This study highlighted the potential benefits and pitfalls of ward-level interdisciplinary interventions. While these interventions can improve care delivery in complex, fluid environments, the manner of their implementation is paramount. Suboptimal implementation may have an unexpectedly negative impact on performance. Trial registration number ISRCTN 34806867 (http://www.isrctn.com/ISRCTN34806867). PMID:28720612
Effects of an Approach Spacing Flight Deck Tool on Pilot Eyescan
NASA Technical Reports Server (NTRS)
Oseguera-Lohr, Rosa M.; Nadler, Eric D.
2004-01-01
An airborne tool has been developed based on the concept of an aircraft maintaining a time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) aircraft state data to compute a speed command for the ATAAS-equipped aircraft to obtain a required time interval behind another aircraft. The tool and candidate operational procedures were tested in a high-fidelity, full mission simulator with active airline subject pilots flying an arrival scenario using three different modes for speed control. Eyetracker data showed only slight changes in instrument scan patterns, and no significant change in the amount of time spent looking out the window with ATAAS, versus standard ILS procedures.
Joint optimization of source, mask, and pupil in optical lithography
NASA Astrophysics Data System (ADS)
Li, Jia; Lam, Edmund Y.
2014-03-01
Mask topography effects need to be taken into consideration for more advanced resolution enhancement techniques in optical lithography. However, rigorous 3D mask model achieves high accuracy at a large computational cost. This work develops a combined source, mask and pupil optimization (SMPO) approach by taking advantage of the fact that pupil phase manipulation is capable of partially compensating for mask topography effects. We first design the pupil wavefront function by incorporating primary and secondary spherical aberration through the coefficients of the Zernike polynomials, and achieve optimal source-mask pair under the condition of aberrated pupil. Evaluations against conventional source mask optimization (SMO) without incorporating pupil aberrations show that SMPO provides improved performance in terms of pattern fidelity and process window sizes.
Eboreime, Ejemai Amaize; Abimbola, Seye; Obi, Felix Abrahams; Ebirim, Obinna; Olubajo, Olalekan; Eyles, John; Nxumalo, Nonhlanhla Lynette; Mambulu, Faith Nankasa
2017-03-21
Policy making, translation and implementation in politically and administratively decentralized systems can be challenging. Beyond the mere sub-national acceptance of national initiatives, adherence to policy implementation processes is often poor, particularly in low and middle-income countries. In this study, we explore the implementation fidelity of integrated PHC governance policy in Nigeria's decentralized governance system and its implications on closing implementation gaps with respect to other top-down health policies and initiatives. Having engaged policy makers, we identified 9 core components of the policy (Governance, Legislation, Minimum Service Package, Repositioning, Systems Development, Operational Guidelines, Human Resources, Funding Structure, and Office Establishment). We evaluated the level and pattern of implementation at state level as compared to the national guidelines using a scorecard approach. Contrary to national government's assessment of level of compliance, we found that sub-national governments exercised significant discretion with respect to the implementation of core components of the policy. Whereas 35 and 32% of states fully met national criteria for the structural domains of "Office Establishment" and Legislation" respectively, no state was fully compliant to "Human Resource Management" and "Funding" requirements, which are more indicative of functionality. The pattern of implementation suggests that, rather than implementing to improve outcomes, state governments may be more interested in executing low hanging fruits in order to access national incentives. Our study highlights the importance of evaluating implementation fidelity in providing evidence of implementation gaps towards improving policy execution, particularly in decentralized health systems. This approach will help national policy makers identify more effective ways of supporting lower tiers of governance towards improvement of health systems and outcomes.
Demonstration of universal parametric entangling gates on a multi-qubit lattice
Reagor, Matthew; Osborn, Christopher B.; Tezak, Nikolas; Staley, Alexa; Prawiroatmodjo, Guenevere; Scheer, Michael; Alidoust, Nasser; Sete, Eyob A.; Didier, Nicolas; da Silva, Marcus P.; Acala, Ezer; Angeles, Joel; Bestwick, Andrew; Block, Maxwell; Bloom, Benjamin; Bradley, Adam; Bui, Catvu; Caldwell, Shane; Capelluto, Lauren; Chilcott, Rick; Cordova, Jeff; Crossman, Genya; Curtis, Michael; Deshpande, Saniya; El Bouayadi, Tristan; Girshovich, Daniel; Hong, Sabrina; Hudson, Alex; Karalekas, Peter; Kuang, Kat; Lenihan, Michael; Manenti, Riccardo; Manning, Thomas; Marshall, Jayss; Mohan, Yuvraj; O’Brien, William; Otterbach, Johannes; Papageorge, Alexander; Paquette, Jean-Philip; Pelstring, Michael; Polloreno, Anthony; Rawat, Vijay; Ryan, Colm A.; Renzas, Russ; Rubin, Nick; Russel, Damon; Rust, Michael; Scarabelli, Diego; Selvanayagam, Michael; Sinclair, Rodney; Smith, Robert; Suska, Mark; To, Ting-Wai; Vahidpour, Mehrnoosh; Vodrahalli, Nagesh; Whyland, Tyler; Yadav, Kamal; Zeng, William; Rigetti, Chad T.
2018-01-01
We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gate set for a linear array of four superconducting qubits. An average process fidelity of ℱ = 93% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity with the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all these permutations, an average fidelity of ℱ = 91.6 ± 2.6% is observed. These results thus offer a path to a scalable architecture with high selectivity and low cross-talk. PMID:29423443
Strong homing does not predict high site fidelity in juvenile reef fishes
NASA Astrophysics Data System (ADS)
Streit, Robert P.; Bellwood, David R.
2018-03-01
After being displaced, juvenile reef fishes are able to return home over large distances. This strong homing behaviour is extraordinary and may allow insights into the longer-term spatial ecology of fish communities. For example, it appears intuitive that strong homing behaviour should be indicative of long-term site fidelity. However, this connection has rarely been tested. We quantified the site fidelity of juvenile fishes of four species after returning home following displacement. Two species, parrotfishes and Pomacentrus moluccensis, showed significantly reduced site fidelity after returning home. On average, they disappeared from their home sites almost 3 d earlier than expected. Mortality or competitive exclusion does not seem to be the main reasons for their disappearance. Rather, we suggest an increased propensity to relocate after encountering alternative reef locations while homing. It appears that some juvenile fishes may have a higher innate spatial flexibility than their strict homing drive suggests.
Sauer, Juergen; Sonderegger, Andreas
2009-07-01
An empirical study examined the impact of prototype fidelity on user behaviour, subjective user evaluation and emotion. The independent factors of prototype fidelity (paper prototype, computer prototype, fully operational appliance) and aesthetics of design (high vs. moderate) were varied in a between-subjects design. The 60 participants of the experiment were asked to complete two typical tasks of mobile phone usage: sending a text message and suppressing a phone number. Both performance data and a number of subjective measures were recorded. The results suggested that task completion time may be overestimated when a computer prototype is being used. Furthermore, users appeared to compensate for deficiencies in aesthetic design by overrating the aesthetic qualities of reduced fidelity prototypes. Finally, user emotions were more positively affected by the operation of the more attractive mobile phone than by the less appealing one.
A quarter of a world away: female humpback whale moves 10,000 km between breeding areas.
Stevick, Peter T; Neves, Mariana C; Johansen, Freddy; Engel, Marcia H; Allen, Judith; Marcondes, Milton C C; Carlson, Carole
2011-04-23
Fidelity of individual animals to breeding sites is a primary determinant of population structure. The degree and scale of philopatry in a population reflect the fitness effects of social facilitation, ecological adaptation and optimal inbreeding. Patterns of breeding-site movement and fidelity are functions of social structure and are frequently sex biased. We report on a female humpback whale (Megaptera novaeangliae) first identified by natural markings off Brazil that subsequently was photographed off Madagascar. The minimum travel distance between these locations is greater than 9800 km, approximately 4000 km longer than any previously reported movement between breeding grounds, more than twice the species' typical seasonal migratory distance and the longest documented movement by a mammal. It is unexpected to find this exceptional long-distance movement between breeding groups by a female, as models of philopatry suggest that male mammals move more frequently or over longer distances in search of mating opportunities. While such movement may be advantageous, especially in changeable or unpredictable circumstances, it is not possible to unambiguously ascribe causality to this rare observation. This finding illustrates the behavioural flexibility in movement patterns that may be demonstrated within a typically philopatric species.
Miller-Day, Michelle; Shin, Young Ju; Hecht, Michael L.; Krieger, Janice L.; Graham, John W.
2014-01-01
Variations in the delivery of school-based substance use prevention curricula affect students’ acquisition of the lesson content and program outcomes. Although adaptation is sometimes viewed as a lack of fidelity, it is unclear what types of variations actually occur in the classroom. This observational study investigated teacher and student behaviors during implementation of a middle school-based drug prevention curriculum in 25 schools across two Midwestern states. Trained observers coded videos of 276 lessons, reflecting a total of 31 predominantly Caucasian teachers (10 males and 21 females) in 73 different classes. Employing qualitative coding procedures, the study provides a working typology of implementation patterns based on varying levels of teacher control and student participation. These patterns are fairly consistent across lessons and across classes of students, suggesting a teacher-driven delivery model where teachers create a set of constraints within which students vary their engagement. Findings provide a descriptive basis grounded in observation of classroom implementation that can be used to test models of implementation fidelity and quality as well as impact training and other dissemination research. PMID:22739791
High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits.
Ballance, C J; Harty, T P; Linke, N M; Sepiol, M A; Lucas, D M
2016-08-05
We demonstrate laser-driven two-qubit and single-qubit logic gates with respective fidelities 99.9(1)% and 99.9934(3)%, significantly above the ≈99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed-fidelity trade-off for the two-qubit gate, for gate times between 3.8 μs and 520 μs, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.
NASA Astrophysics Data System (ADS)
Oh, Seonghyeon; Han, Dandan; Shim, Hyeon Bo; Hahn, Jae W.
2018-01-01
Subwavelength features have been successfully demonstrated in near-field lithography. In this study, the point spread function (PSF) of a near-field beam spot from a plasmonic ridge nanoaperture is discussed with regard to the complex decaying characteristic of a non-propagating wave and the asymmetry of the field distribution for pattern design. We relaxed the shape complexity of the field distribution with pixel-based optical proximity correction (OPC) for simplifying the pattern image distortion. To enhance the pattern fidelity for a variety of arbitrary patterns, field-sectioning structures are formulated via convolutions with a time-modulation function and a transient PSF along the near-field dominant direction. The sharpness of corners and edges, and line shortening can be improved by modifying the original target pattern shape using the proposed approach by considering both the pattern geometry and directionality of the field decay for OPC in near-field lithography.
Oh, Seonghyeon; Han, Dandan; Shim, Hyeon Bo; Hahn, Jae W
2018-01-26
Subwavelength features have been successfully demonstrated in near-field lithography. In this study, the point spread function (PSF) of a near-field beam spot from a plasmonic ridge nanoaperture is discussed with regard to the complex decaying characteristic of a non-propagating wave and the asymmetry of the field distribution for pattern design. We relaxed the shape complexity of the field distribution with pixel-based optical proximity correction (OPC) for simplifying the pattern image distortion. To enhance the pattern fidelity for a variety of arbitrary patterns, field-sectioning structures are formulated via convolutions with a time-modulation function and a transient PSF along the near-field dominant direction. The sharpness of corners and edges, and line shortening can be improved by modifying the original target pattern shape using the proposed approach by considering both the pattern geometry and directionality of the field decay for OPC in near-field lithography.
Mimicking muscle activity with electrical stimulation
NASA Astrophysics Data System (ADS)
Johnson, Lise A.; Fuglevand, Andrew J.
2011-02-01
Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.
Brydges, Ryan; Carnahan, Heather; Rose, Don; Dubrowski, Adam
2010-08-01
In this paper, we tested the over-arching hypothesis that progressive self-guided learning offers equivalent learning benefit vs. proficiency-based training while limiting the need to set proficiency standards. We have shown that self-guided learning is enhanced when students learn on simulators that progressively increase in fidelity during practice. Proficiency-based training, a current gold-standard training approach, requires achievement of a criterion score before students advance to the next learning level. Baccalaureate nursing students (n = 15/group) practised intravenous catheterization using simulators that differed in fidelity (i.e. students' perceived realism). Data were collected in 2008. Proficiency-based students advanced from low- to mid- to high-fidelity after achieving a proficiency criterion at each level. Progressive students self-guided their progression from low- to mid- to high-fidelity. Yoked control students followed an experimenter-defined progressive practice schedule. Open-ended students moved freely between the simulators. One week after practice, blinded experts evaluated students' skill transfer on a standardized patient simulation. Group differences were examined using analyses of variance. Proficiency-based students scored highest on the high-fidelity post-test (effect size = 1.22). An interaction effect showed that the Progressive and Open-ended groups maintained their performance from post-test to transfer test, whereas the Proficiency-based and Yoked control groups experienced a significant decrease (P < 0.05). Surprisingly, most Open-ended students (73%) chose the progressive practice schedule. Progressive training and proficiency-based training resulted in equivalent transfer test performance, suggesting that progressive students effectively self-guided when to transition between simulators. Students' preference for the progressive practice schedule indicates that educators should consider this sequence for simulation-based training.
High-Throughput Printing Process for Flexible Electronics
NASA Astrophysics Data System (ADS)
Hyun, Woo Jin
Printed electronics is an emerging field for manufacturing electronic devices with low cost and minimal material waste for a variety of applications including displays, distributed sensing, smart packaging, and energy management. Moreover, its compatibility with roll-to-roll production formats and flexible substrates is desirable for continuous, high-throughput production of flexible electronics. Despite the promise, however, the roll-to-roll production of printed electronics is quite challenging due to web movement hindering accurate ink registration and high-fidelity printing. In this talk, I will present a promising strategy for roll-to-roll production using a novel printing process that we term SCALE (Self-aligned Capillarity-Assisted Lithography for Electronics). By utilizing capillarity of liquid inks on nano/micro-structured substrates, the SCALE process facilitates high-resolution and self-aligned patterning of electrically functional inks with greatly improved printing tolerance. I will show the fabrication of key building blocks (e.g. transistor, resistor, capacitor) for electronic circuits using the SCALE process on plastics.
Enhancing pediatric clinical competency with high-fidelity simulation.
Birkhoff, Susan D; Donner, Carol
2010-09-01
In today's tertiary pediatric hospital setting, the increased complexity of patient care demands seamless coordination and collaboration among multidisciplinary team members. In an effort to enhance patient safety, clinical competence, and teamwork, simulation-based learning has become increasingly integrated into pediatric clinical practice as an innovative educational strategy. The simulated setting provides a risk-free environment where learners can incorporate cognitive, psychomotor, and affective skill acquisition without fear of harming patients. One pediatric university hospital in Southeastern Pennsylvania has enhanced the traditional American Heart Association (AHA) Pediatric Advanced Life Support (PALS) course by integrating high-fidelity simulation into skill acquisition, while still functioning within the guidelines and framework of the AHA educational standards. However, very little research with reliable standardized testing methods has been done to measure the effect of simulation-based learning. This article discusses the AHA guidelines for PALS, evaluation of PALS and nursing clinical competencies, communication among a multidisciplinary team, advantages and disadvantages of simulation, incorporation of high-fidelity simulation into pediatric practice, and suggestions for future practice. Copyright 2010, SLACK Incorporated.
Dunnington, Renee M
2014-01-01
Simulation technology is increasingly being used in nursing education. Previously used primarily for teaching procedural, instrumental, or critical incident types of skills, simulation is now being applied to training related to more dynamic, complex, and interpersonal human contexts. While high fidelity human patient simulators have significantly increased in authenticity, human responses have greater complexity and are qualitatively different than current technology represents. This paper examines the texture of representation by simulation. Through a tracing of historical and contemporary philosophical perspectives on simulation, the nature and limits of the reality of human health responses represented by high fidelity human patient simulation (HF-HPS) are explored. Issues concerning nursing education are raised around the nature of reality represented in HF-HPS. Drawing on Waks, a framework for guiding pedagogical considerations around simulation in nursing education is presented for the ultimate purpose of promoting an educative experience with simulation. © 2013 John Wiley & Sons Ltd.
Coupling two spin qubits with a high-impedance resonator
NASA Astrophysics Data System (ADS)
Harvey, S. P.; Bøttcher, C. G. L.; Orona, L. A.; Bartlett, S. D.; Doherty, A. C.; Yacoby, A.
2018-06-01
Fast, high-fidelity single and two-qubit gates are essential to building a viable quantum information processor, but achieving both in the same system has proved challenging for spin qubits. We propose and analyze an approach to perform a long-distance two-qubit controlled phase (CPHASE) gate between two singlet-triplet qubits using an electromagnetic resonator to mediate their interaction. The qubits couple longitudinally to the resonator, and by driving the qubits near the resonator's frequency, they can be made to acquire a state-dependent geometric phase that leads to a CPHASE gate independent of the initial state of the resonator. Using high impedance resonators enables gate times of order 10 ns while maintaining long coherence times. Simulations show average gate fidelities of over 96% using currently achievable experimental parameters and over 99% using state-of-the-art resonator technology. After optimizing the gate fidelity in terms of parameters tuneable in situ, we find it takes a simple power-law form in terms of the resonator's impedance and quality and the qubits' noise bath.
ERIC Educational Resources Information Center
Quinby, Rose K.; Hanson, Koren; Brooke-Weiss, Blair; Arthur, Michael W.; Hawkins, J. David; Fagan, Abigail A.
2008-01-01
This article describes the degree to which high fidelity implementation of the Communities That Care (CTC) prevention operating system was reached during the first 18 months of intervention in 12 communities in the Community Youth Development Study, a 5-year group randomized controlled trial designed to test the efficacy of the CTC system. CTC…
An Analysis of the Educational Value of Low-Fidelity Anatomy Models as External Representations
ERIC Educational Resources Information Center
Chan, Lap Ki; Cheng, Maurice M. W.
2011-01-01
Although high-fidelity digital models of human anatomy based on actual cross-sectional images of the human body have been developed, reports on the use of physical models in anatomy teaching continue to appear. This article aims to examine the common features shared by these physical models and analyze their educational value based on the…
ERIC Educational Resources Information Center
van Lieshout, Sanne; Mevissen, Fraukje; de Waal, Esri; Kok, Gerjo
2017-01-01
Schools are a common setting for adolescents to receive health education, but implementation of these programs with high levels of completeness and fidelity is not self-evident. Programs that are only partially implemented (completeness) or not implemented as instructed (fidelity) are unlikely to be effective. Therefore, it is important to…
Transmission fidelity is the key to the build-up of cumulative culture
Lewis, Hannah M.; Laland, Kevin N.
2012-01-01
Many animals have socially transmitted behavioural traditions, but human culture appears unique in that it is cumulative, i.e. human cultural traits increase in diversity and complexity over time. It is often suggested that high-fidelity cultural transmission is necessary for cumulative culture to occur through refinement, a process known as ‘ratcheting’, but this hypothesis has never been formally evaluated. We discuss processes of information transmission and loss of traits from a cognitive viewpoint alongside other cultural processes of novel invention (generation of entirely new traits), modification (refinement of existing traits) and combination (bringing together two established traits to generate a new trait). We develop a simple cultural transmission model that does not assume major evolutionary changes (e.g. in brain architecture) and show that small changes in the fidelity with which information is passed between individuals can lead to cumulative culture. In comparison, modification and combination have a lesser influence on, and novel invention appears unimportant to, the ratcheting process. Our findings support the idea that high-fidelity transmission is the key driver of human cumulative culture, and that progress in cumulative culture depends more on trait combination than novel invention or trait modification. PMID:22734060
Fidelity and over-wintering of sea turtles
Broderick, Annette C; Coyne, Michael S; Fuller, Wayne J; Glen, Fiona; Godley, Brendan J
2007-01-01
While fidelity to breeding sites is well demonstrated in marine turtles, emerging knowledge of migratory routes and key foraging sites is of limited conservation value unless levels of fidelity can be established. We tracked green (Chelonia mydas, n=10) and loggerhead (Caretta caretta, n=10) turtles during their post-nesting migration from the island of Cyprus to their foraging grounds. After intervals of 2–5 years, five of these females were recaptured at the nesting beach and tracked for a second migration. All five used highly similar migratory routes to return to the same foraging and over-wintering areas. None of the females visited other foraging habitats over the study period (units lasted on average 305 days; maximum, 1356 days), moving only to deeper waters during the winter months where they demonstrated extremely long resting dives of up to 10.2 h (the longest breath-holding dive recorded for a marine vertebrate). High levels of fidelity and the relatively discrete nature of the home ranges demonstrate that protection of key migratory pathways, foraging and over-wintering sites can serve as an important tool for the future conservation of marine turtles. PMID:17456456
Organic preservation of fossil musculature with ultracellular detail
McNamara, Maria; Orr, Patrick J.; Kearns, Stuart L.; Alcalá, Luis; Anadón, Pere; Peñalver-Mollá, Enrique
2010-01-01
The very labile (decay-prone), non-biomineralized, tissues of organisms are rarely fossilized. Occurrences thereof are invaluable supplements to a body fossil record dominated by biomineralized tissues, which alone are extremely unrepresentative of diversity in modern and ancient ecosystems. Fossil examples of extremely labile tissues (e.g. muscle) that exhibit a high degree of morphological fidelity are almost invariably replicated by inorganic compounds such as calcium phosphate. There is no consensus as to whether such tissues can be preserved with similar morphological fidelity as organic remains, except when enclosed inside amber. Here, we report fossilized musculature from an approximately 18 Myr old salamander from lacustrine sediments of Ribesalbes, Spain. The muscle is preserved organically, in three dimensions, and with the highest fidelity of morphological preservation yet documented from the fossil record. Preserved ultrastructural details include myofilaments, endomysium, layering within the sarcolemma, and endomysial circulatory vessels infilled with blood. Slight differences between the fossil tissues and their counterparts in extant amphibians reflect limited degradation during fossilization. Our results provide unequivocal evidence that high-fidelity organic preservation of extremely labile tissues is not only feasible, but likely to be common. This is supported by the discovery of similarly preserved tissues in the Eocene Grube Messel biota. PMID:19828545
Transmission fidelity is the key to the build-up of cumulative culture.
Lewis, Hannah M; Laland, Kevin N
2012-08-05
Many animals have socially transmitted behavioural traditions, but human culture appears unique in that it is cumulative, i.e. human cultural traits increase in diversity and complexity over time. It is often suggested that high-fidelity cultural transmission is necessary for cumulative culture to occur through refinement, a process known as 'ratcheting', but this hypothesis has never been formally evaluated. We discuss processes of information transmission and loss of traits from a cognitive viewpoint alongside other cultural processes of novel invention (generation of entirely new traits), modification (refinement of existing traits) and combination (bringing together two established traits to generate a new trait). We develop a simple cultural transmission model that does not assume major evolutionary changes (e.g. in brain architecture) and show that small changes in the fidelity with which information is passed between individuals can lead to cumulative culture. In comparison, modification and combination have a lesser influence on, and novel invention appears unimportant to, the ratcheting process. Our findings support the idea that high-fidelity transmission is the key driver of human cumulative culture, and that progress in cumulative culture depends more on trait combination than novel invention or trait modification.
Barnes, W M
1994-01-01
A target length limitation to PCR amplification of DNA has been identified and addressed. Concomitantly, the base-pair fidelity, the ability to use PCR products as primers, and the maximum yield of target fragment were increased. These improvements were achieved by the combination of a high level of an exonuclease-free, N-terminal deletion mutant of Taq DNA polymerase, Klentaq1, with a very low level of a thermostable DNA polymerase exhibiting a 3'-exonuclease activity (Pfu, Vent, or Deep Vent). At least 35 kb can be amplified to high yields from 1 ng of lambda DNA template. Images PMID:8134376
A high repetition deterministic single ion source
NASA Astrophysics Data System (ADS)
Sahin, C.; Geppert, P.; Müllers, A.; Ott, H.
2017-12-01
We report on a deterministic single ion source with high repetition rate and high fidelity. The source employs a magneto-optical trap, where ultracold rubidium atoms are photoionized. The electrons herald the creation of a corresponding ion, whose timing information is used to manipulate its trajectory in flight. We demonstrate an ion rate of up to 4× {10}4 {{{s}}}-1 and achieve a fidelity for single ion operation of 98%. The technique can be used for all atomic species, which can be laser-cooled, and opens up new applications in ion microscopy, ion implantation and surface spectroscopy.
Towards developing high-fidelity simulated learning environment training modules in audiology.
Dzulkarnain, A A; Rahmat, S; Mohd Puzi, N A F; Badzis, M
2017-02-01
This discussion paper reviews and synthesises the literature on simulated learning environment (SLE) from allied health sciences, medical and nursing in general and audiology specifically. The focus of the paper is on discussing the use of high-fidelity (HF) SLE and describing the challenges for developing a HF SLE for clinical audiology training. Through the review of the literature, this paper discusses seven questions, (i) What is SLE? (ii) What are the types of SLEs? (iii) How is SLE classified? (iv) What is HF SLE? (v) What types of SLEs are available in audiology and their level of fidelity? (vi) What are the components needed for developing HF SLE? (vii) What are the possible types of HF SLEs that are suitable for audiology training? Publications were identified by structured searches from three major databases PubMed, Web of Knowledge and PsychInfo and from the reference lists of relevant articles. The authors discussed and mapped the levels of fidelity of SLE audiology training modules from the literature and the learning domains involved in the clinical audiology courses. The discussion paper has highlighted that most of the existing SLE audiology training modules consist of either low- or medium-fidelity types of simulators. Those components needed to achieve a HF SLE for audiology training are also highlighted. Overall, this review recommends that the combined approach of different levels and types of SLE could be used to obtain a HF SLE training module in audiology training.
High fidelity, low cost moulage as a valid simulation tool to improve burns education.
Pywell, M J; Evgeniou, E; Highway, K; Pitt, E; Estela, C M
2016-06-01
Simulation allows the opportunity for repeated practice in controlled, safe conditions. Moulage uses materials such as makeup to simulate clinical presentations. Moulage fidelity can be assessed by face validity (realism) and content validity (appropriateness). The aim of this project is to compare the fidelity of professional moulage to non-professional moulage in the context of a burns management course. Four actors were randomly assigned to a professional make-up artist or a course faculty member for moulage preparation such that two actors were in each group. Participants completed the actor-based burn management scenarios and answered a ten-question Likert-scale questionnaire on face and content validity. Mean scores and a linear mixed effects model were used to compare professional and non-professional moulage. Cronbach's alpha assessed internal consistency. Twenty participants experienced three out of four scenarios and at the end of the course completed a total of 60 questionnaires. Professional moulage had higher average ratings for face (4.30 v 3.80; p=0.11) and content (4.30 v 4.00; p=0.06) validity. Internal consistency of face (α=0.91) and content (α=0.85) validity questions was very good. The fidelity of professionally prepared moulage, as assessed by content validity, was higher than non-professionally prepared moulage. We have shown that using professional techniques and low cost materials we can prepare quality high fidelity moulage simulations. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Butler, Troy; Wildey, Timothy
2018-01-01
In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less
Development and validation of a high-fidelity phonomicrosurgical trainer.
Klein, Adam M; Gross, Jennifer
2017-04-01
To validate the use of a high-fidelity phonomicrosurgical trainer. A high-fidelity phonomicrosurgical trainer, based on a previously validated model by Contag et al., 1 was designed with multilayered vocal folds that more closely mimic the consistency of true vocal folds, containing intracordal lesions to practice phonomicrosurgical removal. A training module was developed to simulate the true phonomicrosurgical experience. A validation study with novice and expert surgeons was conducted. Novices and experts were instructed to remove the lesion from the synthetic vocal folds, and novices were given four training trials. Performances were measured by the amount of time spent and tissue injury (microflap, superficial, deep) to the vocal fold. An independent Student t test and Fisher exact tests were used to compare subjects. A matched-paired t test and Wilcoxon signed rank tests were used to compare novice performance on the first and fourth trials and assess for improvement. Experts completed the excision with less total errors than novices (P = .004) and made less injury to the microflap (P = .05) and superficial tissue (P = .003). Novices improved their performance with training, making less total errors (P = .002) and superficial tissue injuries (P = .02) and spending less time for removal (P = .002) after several practice trials. This high-fidelity phonomicrosurgical trainer has been validated for novice surgeons. It can distinguish between experts and novices; and after training, it helped to improve novice performance. N/A. Laryngoscope, 127:888-893, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Undergraduate interprofessional education using high-fidelity paediatric simulation.
Stewart, Moira; Kennedy, Neil; Cuene-Grandidier, Hazel
2010-06-01
High-fidelity simulation is becoming increasingly important in the delivery of teaching and learning to health care professionals within a safe environment. Its use in an interprofessional context and at undergraduate level has the potential to facilitate the learning of good communication and teamworking, in addition to clinical knowledge and skills. Interprofessional teaching and learning workshops using high-fidelity paediatric simulation were developed and delivered to undergraduate medical and nursing students at Queen's University Belfast. Learning outcomes common to both professions, and essential in the clinical management of sick children, included basic competencies, communication and teamworking skills. Quantitative and qualitative evaluation was undertaken using published questionnaires. Quantitative results - the 32-item questionnaire was analysed for reliability using spss. Responses were positive for both groups of students across four domains - acquisition of knowledge and skills, communication and teamworking, professional identity and role awareness, and attitudes to shared learning. Qualitative results - thematic content analysis was used to analyse open-ended responses. Students from both groups commented that an interprofessional education (IPE) approach to paediatric simulation improved clinical and practice-based skills, and provided a safe learning environment. Students commented that there should be more interprofessional and simulation learning opportunities. High-fidelity paediatric simulation, used in an interprofessional context, has the potential to meet the requirements of undergraduate medical and nursing curricula. Further research is needed into the long-term benefits for patient care, and its generalisability to other areas within health care teaching and learning. © Blackwell Publishing Ltd 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Troy; Wildey, Timothy
In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2002-01-01
A high-fidelity simulation of a commercial turbofan engine has been created as part of the Numerical Propulsion System Simulation Project. The high-fidelity computer simulation utilizes computer models that were developed at NASA Glenn Research Center in cooperation with turbofan engine manufacturers. The average-passage (APNASA) Navier-Stokes based viscous flow computer code is used to simulate the 3D flow in the compressors and turbines of the advanced commercial turbofan engine. The 3D National Combustion Code (NCC) is used to simulate the flow and chemistry in the advanced aircraft combustor. The APNASA turbomachinery code and the NCC combustor code exchange boundary conditions at the interface planes at the combustor inlet and exit. This computer simulation technique can evaluate engine performance at steady operating conditions. The 3D flow models provide detailed knowledge of the airflow within the fan and compressor, the high and low pressure turbines, and the flow and chemistry within the combustor. The models simulate the performance of the engine at operating conditions that include sea level takeoff and the altitude cruise condition.
Variations of flow in human airways as a consequence of lung diseases
NASA Astrophysics Data System (ADS)
Lizal, Frantisek; Stejskal, David; Belka, Miloslav; Jedelsky, Jan; Jicha, Miroslav; Brat, Kristian; Herout, Vladimir; Lizalova Sujanska, Elena
2018-06-01
The efficiency of drug delivery administered by inhalation depends, among other factors, such as size and shape of aerosol particles, significantly also on the flow in the airways. As many lung diseases change both the breathing pattern and the shape of airways, we focus in this study on the influence of several selected diseases on the distribution of flow between the lung lobes and on changes the diseases induce on the course of flowrate. First, we present results of a literature survey focused on the published records of pathological breathing patterns. In the second part, we describe the newly designed breathing simulator and the implementation of the patterns into it. The last part is focused on the experimental verification of fidelity of the simulated breathing patterns.
Crystal plasticity modeling of β phase deformation in Ti-6Al-4V
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, John A.; Barton, Nathan R.; Florando, Jeff
Ti-6Al-4V is an alloy of titanium that dominates titanium usage in applications ranging from mass-produced consumer goods to high-end aerospace parts. The material's structure on a microscale is known to affect its mechanical properties but these effects are not fully understood. Specifically, this work will address the effects of low volume fraction intergranular β phase on Ti-6Al-4V's mechanical response during the transition from elastic to plastic deformation. A crystal plasticity-based finite element model is used to fully resolve the deformation of the β phase for the first time. This high fidelity model captures mechanisms difficult to access via experiments ormore » lower fidelity models. Lastly, the results are used to assess lower fidelity modeling assumptions and identify phenomena that have ramifications for failure of the material.« less
Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin.
Arroyo-Camejo, Silvia; Lazariev, Andrii; Hell, Stefan W; Balasubramanian, Gopalakrishnan
2014-09-12
At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions.
Crystal plasticity modeling of β phase deformation in Ti-6Al-4V
Moore, John A.; Barton, Nathan R.; Florando, Jeff; ...
2017-08-24
Ti-6Al-4V is an alloy of titanium that dominates titanium usage in applications ranging from mass-produced consumer goods to high-end aerospace parts. The material's structure on a microscale is known to affect its mechanical properties but these effects are not fully understood. Specifically, this work will address the effects of low volume fraction intergranular β phase on Ti-6Al-4V's mechanical response during the transition from elastic to plastic deformation. A crystal plasticity-based finite element model is used to fully resolve the deformation of the β phase for the first time. This high fidelity model captures mechanisms difficult to access via experiments ormore » lower fidelity models. Lastly, the results are used to assess lower fidelity modeling assumptions and identify phenomena that have ramifications for failure of the material.« less
Islands in the sea: extreme female natal site fidelity in the Australian sea lion, Neophoca cinerea.
Campbell, R A; Gales, N J; Lento, G M; Baker, C S
2008-02-23
Pinnipeds (seals, fur seals, sea lions and walrus) form large breeding aggregations with females often remaining faithful to a natal site or area. In these cases, females are philopatric to regional areas on broad geographical scales of hundreds to thousands of kilometers. An investigation of variation in a control region sequence of mtDNA in the Australian sea lion (Neophoca cinerea) has shown a case of extreme female natal site fidelity that has resulted in almost fixed population differentiation across its range (PhiST=0.93). This high level of population subdivision over short geographical distances (approx. 60 km) is unparalleled in any social marine mammal and reflects the unique life-history traits of this rare species. The high level of population subdivision and exclusive female natal site fidelity has important ramifications for conservation management, and poses many interesting questions of both academic and applied interest.
Tsujimoto, Yoshiaki; Tanaka, Motoki; Iwasaki, Nobuo; Ikuta, Rikizo; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
2018-01-23
We experimentally demonstrate a high-fidelity entanglement swapping and a generation of the Greenberger-Horne-Zeilinger (GHZ) state using polarization-entangled photon pairs at telecommunication wavelength produced by spontaneous parametric down conversion with continuous-wave pump light. While spatially separated sources asynchronously emit photon pairs, the time-resolved photon detection guarantees the temporal indistinguishability of photons without active timing synchronizations of pump lasers and/or adjustment of optical paths. In the experiment, photons are sufficiently narrowed by fiber-based Bragg gratings with the central wavelengths of 1541 nm & 1580 nm, and detected by superconducting nanowire single-photon detectors with low timing jitters. The observed fidelities of the final states for entanglement swapping and the generated three-qubit state were 0.84 ± 0.04 and 0.70 ± 0.05, respectively.
Retrieval of high-fidelity memory arises from distributed cortical networks.
Wais, Peter E; Jahanikia, Sahar; Steiner, Daniel; Stark, Craig E L; Gazzaley, Adam
2017-04-01
Medial temporal lobe (MTL) function is well established as necessary for memory of facts and events. It is likely that lateral cortical regions critically guide cognitive control processes to tune in high-fidelity details that are most relevant for memory retrieval. Here, convergent results from functional and structural MRI show that retrieval of detailed episodic memory arises from lateral cortical-MTL networks, including regions of inferior frontal and angular gyrii. Results also suggest that recognition of items based on low-fidelity, generalized information, rather than memory arising from retrieval of relevant episodic details, is not associated with functional connectivity between MTL and lateral cortical regions. Additionally, individual differences in microstructural properties in white matter pathways, associated with distributed MTL-cortical networks, are positively correlated with better performance on a mnemonic discrimination task. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
A Mixed-Fidelity Approach for Design of Low-Boom Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Li, Wu; Shields, Elwood; Geiselhart, Karl A.
2010-01-01
This paper documents a mixed-fidelity approach for the design of low-boom supersonic aircraft as a viable approach for designing a practical low-boom supersonic configuration. A low-boom configuration that is based on low-fidelity analysis is used as the baseline. Tail lift is included to help tailor the aft portion of the ground signature. A comparison of low- and high-fidelity analysis results demonstrates the necessity of using computational fluid dynamics (CFD) analysis in a low-boom supersonic configuration design process. The fuselage shape is modified iteratively to obtain a configuration with a CFD equivalent-area distribution that matches a predetermined low-boom target distribution. The mixed-fidelity approach can easily refine the low-fidelity low-boom baseline into a low-boom configuration with the use of CFD equivalent-area analysis. The ground signature of the final configuration is calculated by using a state-of-the-art CFD-based boom analysis method that generates accurate midfield pressure distributions for propagation to the ground with ray tracing. The ground signature that is propagated from a midfield pressure distribution has a shaped ramp front, which is similar to the ground signature that is propagated from the CFD equivalent-area distribution. This result confirms the validity of the low-boom supersonic configuration design by matching a low-boom equivalent-area target, which is easier to accomplish than matching a low-boom midfield pressure target.
Importance of single molecular determinants in the fidelity of expanded genetic codes.
Antonczak, Alicja K; Simova, Zuzana; Yonemoto, Isaac T; Bochtler, Matthias; Piasecka, Anna; Czapinska, Honorata; Brancale, Andrea; Tippmann, Eric M
2011-01-25
The site-selective encoding of noncanonical amino acids (NAAs) is a powerful technique for the installation of novel chemical functional groups in proteins. This is often achieved by recoding a stop codon and requires two additional components: an evolved aminoacyl tRNA synthetase (AARS) and a cognate tRNA. Analysis of the most successful AARSs reveals common characteristics. The highest fidelity NAA systems derived from the Methanocaldococcus jannaschii tyrosyl AARS feature specific mutations to two residues reported to interact with the hydroxyl group of the substrate tyrosine. We demonstrate that the restoration of just one of these determinants for amino acid specificity results in the loss of fidelity as the evolved AARSs become noticeably promiscuous. These results offer a partial explanation of a recently retracted strategy for the synthesis of glycoproteins. Similarly, we reinvestigated a tryptophanyl AARS reported to allow the site-selective incorporation of 5-hydroxy tryptophan within mammalian cells. In multiple experiments, the enzyme displayed elements of promiscuity despite its previous characterization as a high fidelity enzyme. Given the many similarities of the TyrRSs and TrpRSs reevaluated here, our findings can be largely combined, and in doing so they reinforce the long-established central dogma regarding the molecular basis by which these enzymes contribute to the fidelity of translation. Thus, our view is that the central claims of fidelity reported in several NAA systems remain unproven and unprecedented.
Importance of single molecular determinants in the fidelity of expanded genetic codes
Antonczak, Alicja K.; Simova, Zuzana; Yonemoto, Isaac T.; Bochtler, Matthias; Piasecka, Anna; Czapińska, Honorata; Brancale, Andrea; Tippmann, Eric M.
2011-01-01
The site-selective encoding of noncanonical amino acids (NAAs) is a powerful technique for the installation of novel chemical functional groups in proteins. This is often achieved by recoding a stop codon and requires two additional components: an evolved aminoacyl tRNA synthetase (AARS) and a cognate tRNA. Analysis of the most successful AARSs reveals common characteristics. The highest fidelity NAA systems derived from the Methanocaldococcus jannaschii tyrosyl AARS feature specific mutations to two residues reported to interact with the hydroxyl group of the substrate tyrosine. We demonstrate that the restoration of just one of these determinants for amino acid specificity results in the loss of fidelity as the evolved AARSs become noticeably promiscuous. These results offer a partial explanation of a recently retracted strategy for the synthesis of glycoproteins. Similarly, we reinvestigated a tryptophanyl AARS reported to allow the site-selective incorporation of 5-hydroxy tryptophan within mammalian cells. In multiple experiments, the enzyme displayed elements of promiscuity despite its previous characterization as a high fidelity enzyme. Given the many similarities of the TyrRSs and TrpRSs reevaluated here, our findings can be largely combined, and in doing so they reinforce the long-established central dogma regarding the molecular basis by which these enzymes contribute to the fidelity of translation. Thus, our view is that the central claims of fidelity reported in several NAA systems remain unproven and unprecedented. PMID:21224416
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weina; Hellinga, Homme W.; Beese, Lorena S.
Even though high-fidelity polymerases copy DNA with remarkable accuracy, some base-pair mismatches are incorporated at low frequency, leading to spontaneous mutagenesis. Using high-resolution X-ray crystallographic analysis of a DNA polymerase that catalyzes replication in crystals, we observe that a C {center_dot} A mismatch can mimic the shape of cognate base pairs at the site of incorporation. This shape mimicry enables the mismatch to evade the error detection mechanisms of the polymerase, which would normally either prevent mismatch incorporation or promote its nucleolytic excision. Movement of a single proton on one of the mismatched bases alters the hydrogen-bonding pattern such thatmore » a base pair forms with an overall shape that is virtually indistinguishable from a canonical, Watson-Crick base pair in double-stranded DNA. These observations provide structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis, a long-standing concept that has been difficult to demonstrate directly.« less
García, José R; Singh, Ankur; García, Andrés J
2014-01-01
In the pursuit to develop enhanced technologies for cellular bioassays as well as understand single cell interactions with its underlying substrate, the field of biotechnology has extensively utilized lithographic techniques to spatially pattern proteins onto surfaces in user-defined geometries. Microcontact printing (μCP) remains an incredibly useful patterning method due to its inexpensive nature, scalability, and the lack of considerable use of specialized clean room equipment. However, as new technologies emerge that necessitate various nano-sized areas of deposited proteins, traditional μCP methods may not be able to supply users with the needed resolution size. Recently, our group developed a modified "subtractive μCP" method which still retains many of the benefits offered by conventional μCP. Using this technique, we have been able to reach resolution sizes of fibronectin as small as 250 nm in largely spaced arrays for cell culture. In this communication, we present a detailed description of our subtractive μCP procedure that expands on many of the little tips and tricks that together make this procedure an easy and effective method for controlling protein patterning. © 2014 Elsevier Inc. All rights reserved.
Considerations for pattern placement error correction toward 5nm node
NASA Astrophysics Data System (ADS)
Yaegashi, Hidetami; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Koike, Kyohei; Maslow, Mark John; Timoshkov, Vadim; Kiers, Ton; Di Lorenzo, Paolo; Fonseca, Carlos
2017-03-01
Multi-patterning has been adopted widely in high volume manufacturing as 193 immersion extension, and it becomes realistic solution of nano-order scaling. In fact, it must be key technology on single directional (1D) layout design [1] for logic devise and it becomes a major option for further scaling technique in SAQP. The requirement for patterning fidelity control is getting savior more and more, stochastic fluctuation as well as LER (Line edge roughness) has to be micro-scopic observation aria. In our previous work, such atomic order controllability was viable in complemented technique with etching and deposition [2]. Overlay issue form major potion in yield management, therefore, entire solution is needed keenly including alignment accuracy on scanner and detectability on overlay measurement instruments. As EPE (Edge placement error) was defined as the gap between design pattern and contouring of actual pattern edge, pattern registration in single process level must be considerable. The complementary patterning to fabricate 1D layout actually mitigates any process restrictions, however, multiple process step, symbolized as LELE with 193-i, is burden to yield management and affordability. Recent progress of EUV technology is remarkable, and it is major potential solution for such complicated technical issues. EUV has robust resolution limit and it must be definitely strong scaling driver for process simplification. On the other hand, its stochastic variation such like shot noise due to light source power must be resolved with any additional complemented technique. In this work, we examined the nano-order CD and profile control on EUV resist pattern and would introduce excellent accomplishments.
Leitgeb, Markus; Nees, Dieter; Ruttloff, Stephan; Palfinger, Ursula; Götz, Johannes; Liska, Robert; Belegratis, Maria R; Stadlober, Barbara
2016-05-24
Top-down fabrication of nanostructures with high throughput is still a challenge. We demonstrate the fast (>10 m/min) and continuous fabrication of multilength scale structures by roll-to-roll UV-nanoimprint lithography on a 250 mm wide web. The large-area nanopatterning is enabled by a multicomponent UV-curable resist system (JRcure) with viscous, mechanical, and surface properties that are tunable over a wide range to either allow for usage as polymer stamp material or as imprint resist. The adjustable elasticity and surface chemistry of the resist system enable multistep self-replication of structured resist layers. Decisive for defect-free UV-nanoimprinting in roll-to-roll is the minimization of the surface energies of stamp and resist, and the stepwise reduction of the stiffness from one layer to the next is essential for optimizing the reproduction fidelity especially for nanoscale features. Accordingly, we demonstrate the continuous replication of 3D nanostructures and the high-throughput fabrication of multilength scale resist structures resulting in flexible polyethylenetherephtalate film rolls with superhydrophobic properties. Moreover, a water-soluble UV-imprint resist (JRlift) is introduced that enables residue-free nanoimprinting in roll-to-roll. Thereby we could demonstrate high-throughput fabrication of metallic patterns with only 200 nm line width.
Experiential Fidelity: Leveraging the Mind to Improve the VR Experience
NASA Astrophysics Data System (ADS)
Beckhaus, Steffi; Lindeman, Robert W.
Much of Virtual Reality (VR) is about creating environments that are believable. But though the visual and audio experiences we provide today are already of a rather high sensory fidelity, there is still something lacking; something hinders us from fully buying into the worlds we experience through VR technology. We introduce the notion of Experiential Fidelity, which is an attempt to create a deeper sense of presence by carefully designing the user experience. We suggest to guide the users' frame of mind in a way that their expectations, attitude, and attention are aligned with the actual VR experience, and that the user's own imagination is stimulated to complete the experience. This work was inspired by a collection of personal magic moments and factors that were named by leading researchers in VR. We present those magic moments and some thoughts on how we can tap into experiential fidelity. We propose to do this not through technological means, but rather through the careful use of suggestion and allusion. By priming the user's mind prior to exposure to our virtual worlds, we can assist her in entering a mental state that is more willing to believe, even using the limited actual fidelity available today.
Information theoretic approach for assessing image fidelity in photon-counting arrays.
Narravula, Srikanth R; Hayat, Majeed M; Javidi, Bahram
2010-02-01
The method of photon-counting integral imaging has been introduced recently for three-dimensional object sensing, visualization, recognition and classification of scenes under photon-starved conditions. This paper presents an information-theoretic model for the photon-counting imaging (PCI) method, thereby providing a rigorous foundation for the merits of PCI in terms of image fidelity. This, in turn, can facilitate our understanding of the demonstrated success of photon-counting integral imaging in compressive imaging and classification. The mutual information between the source and photon-counted images is derived in a Markov random field setting and normalized by the source-image's entropy, yielding a fidelity metric that is between zero and unity, which respectively corresponds to complete loss of information and full preservation of information. Calculations suggest that the PCI fidelity metric increases with spatial correlation in source image, from which we infer that the PCI method is particularly effective for source images with high spatial correlation; the metric also increases with the reduction in photon-number uncertainty. As an application to the theory, an image-classification problem is considered showing a congruous relationship between the fidelity metric and classifier's performance.
ERIC Educational Resources Information Center
Grierson, Lawrence E. M.
2014-01-01
Much has been made in the recent medical education literature of the incorrect characterization of simulation along a continuum of low to high fidelity (Cook et al. "JAMA" 306(9): 978-988, 2011; Norman et al. "Med Educ" 46(7): 636-647, 2012; Teteris et al. "Adv Health Sci Educ" 17(1): 137-144, 2012). For the most…
ERIC Educational Resources Information Center
Grimsley, Douglas L.
This study is the first in a series which was conducted under the name STRANGER III, and which was to examine trainee's long-term memory of motor skills. This phase examined the effects of varying fidelity of training devices on acquisition, retention, and reinstatement of ability to perform a 92-step procedural task. Three versions of the Section…
A daylong clinical laboratory: from gaming to high-fidelity simulators.
Bantz, Diana; Dancer, Michelle Mattice; Hodson-Carlton, Kay; Van Hove, Sharon
2007-01-01
Meeting required objectives in the clinical setting can be difficult because of low exposure to critical events. This has been further compounded by an increase in the number of enrolling students without a reciprocal rise in the number of field-related clinical sites. As simulation gains popularity in nursing, exploration of its use and benefits to teach nursing-related concepts is desirable. The authors discuss a variety of teaching strategies ranging from the use of games to high-fidelity simulators that have been incorporated into an all-day clinical simulation campus laboratory.