Science.gov

Sample records for high performance buildings

  1. High Performance Buildings Database

    DOE Data Explorer

    The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

  2. INL High Performance Building Strategy

    SciTech Connect

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  3. Project materials [Commercial High Performance Buildings Project

    SciTech Connect

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  4. Commercial Buildings High Performance Rooftop Unit Challenge

    SciTech Connect

    2011-12-16

    The U.S. Department of Energy (DOE) and the Commercial Building Energy Alliances (CBEAs) are releasing a new design specification for high performance rooftop air conditioning units (RTUs). Manufacturers who develop RTUs based on this new specification will find strong interest from the commercial sector due to the energy and financial savings.

  5. Integrating advanced facades into high performance buildings

    SciTech Connect

    Selkowitz, Stephen E.

    2001-05-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  6. Commercial Building Partners Catalyze High Performance Buildings Across the Nation

    SciTech Connect

    Baechler, Michael C.; Dillon, Heather E.; Bartlett, Rosemarie

    2012-08-01

    In 2008 the US Department of Energy (DOE) launched the Commercial Buildings Partnership (CBP) project to accelerate market adoption of commercially available energy saving technologies into the design process for new and upgraded commercial buildings. The CBP represents a unique collaboration between industry leaders and DOE to develop high performance buildings as a model for future construction and renovation. CBP was implemented in two stages. This paper focuses on lessons learned at Pacific Northwest National Laboratory (PNNL) in the first stage and discusses some partner insights from the second stage. In the first stage, PNNL and the National Renewable Energy Laboratory recruited CBP partners that own large portfolios of buildings. The labs provide assistance to the partners' design teams and make a business case for energy investments.

  7. High-performance commercial building systems

    SciTech Connect

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and

  8. 77 FR 2296 - Office of Federal High-Performance Green Buildings; the Green Building Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... ADMINISTRATION Office of Federal High-Performance Green Buildings; the Green Building Advisory Committee... provides the schedule for three teleconference meetings of the Green Building Advisory Committee (the..., Designated Federal Officer, Office of Federal High Performance Green Buildings, Office of...

  9. High-performance commercial building facades

    SciTech Connect

    Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

    2002-06-01

    This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to understand which performance goals are being met by current

  10. 77 FR 66616 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... ADMINISTRATION Office of Federal High-Performance Green Buildings; Green Building Advisory Committee... provides the schedule and agenda for the November 27, 2012, meeting of the Green Building Advisory... High-Performance Green Buildings, Office of Government-wide Policy, General Services...

  11. 77 FR 24494 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... ADMINISTRATION Office of Federal High-Performance Green Buildings; Green Building Advisory Committee... and agenda for the May 9, 2012, meeting of the Green Building Advisory Committee Meeting (the... Sandler, Designated Federal Officer, Office of Federal High-Performance Green Buildings, Office...

  12. The Process Guidelines for High-Performance Buildings

    SciTech Connect

    Grondzik, W.

    1999-07-01

    The Process Guidelines for High-Performance Buildings are a set of recommendations for the design and operation of efficient and effective commercial/institutional buildings. The Process Guidelines have been developed in a searchable database format and are intended to replace print documents that provide guidance for new building designs for the State of Florida and for the operation of existing State buildings. The Process Guidelines for High-Performance buildings reside on the World Wide Web and are publicly accessible. Contents may be accessed in a variety of ways to best suit the needs of the user. The Process Guidelines address the interests of a range of facilities professionals; are organized around the primary phases of building design, construction, and operation; and include content dealing with all major building systems. The Process Guidelines for High-Performance Buildings may be accessed through the ``Resources'' area of the edesign Web site: http://fcn.state.fl.us/fdi/edesign/resource/index.html.

  13. High Performance Home Building Guide for Habitat for Humanity Affiliates

    SciTech Connect

    Lindsey Marburger

    2010-10-01

    This guide covers basic principles of high performance Habitat construction, steps to achieving high performance Habitat construction, resources to help improve building practices, materials, etc., and affiliate profiles and recommendations.

  14. Highlighting High Performance Buildings: National Renewable Energy Laboratory's Visitors Center

    SciTech Connect

    2001-06-01

    The National Renewable Energy Laboratory Visitors Center, also known as the Dan Schaefer Federal Building, is a high-performance building located in Golden, Colorado. The 6,400-square-foot building incorporates passive solar heating, energy-efficient lighting, an evaporative cooling system, and other technologies to minimize energy costs and environmental impact. The Visitors Center displays a variety of interactive exhibits on energy efficiency and renewable energy, and the building includes an auditorium, a public reading room, and office space.

  15. Daylighting Strategies Promote Healthy High Performance Buildings

    ERIC Educational Resources Information Center

    Gille, Steve

    2010-01-01

    There are many reasons to incorporate daylighting into the building or renovation of K-16 learning facilities. Benefits include increased productivity for students and staff, improved health, a better connection to the outdoors, energy savings and better quality of light. Add the role daylighting can play in LEED certification and it's clear that…

  16. 78 FR 56703 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... ADMINISTRATION Office of Federal High-Performance Green Buildings; Green Building Advisory Committee..., 2013, meeting of the Green Building Advisory Committee Meeting (the Committee) and the schedule for a... CONTACT: Ken Sandler, Designated Federal Officer, ] Office of Federal High-Performance Green...

  17. 78 FR 21368 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... ADMINISTRATION Office of Federal High-Performance Green Buildings; Green Building Advisory Committee... provides the schedule and agenda for the May 1, 2013, meeting of the Green Building Advisory Committee... Green Buildings, Office of Government-wide Policy, General Services Administration, 1275 First Street...

  18. Revisit of Energy Use and Technologies of High Performance Buildings

    SciTech Connect

    Li, Cheng; Hong, Tianzhen

    2014-03-30

    Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

  19. Creating high performance buildings: Lower energy, better comfort

    NASA Astrophysics Data System (ADS)

    Brager, Gail; Arens, Edward

    2015-03-01

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64-84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.

  20. Creating high performance buildings: Lower energy, better comfort

    SciTech Connect

    Brager, Gail; Arens, Edward

    2015-03-30

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.

  1. Building and managing high performance, scalable, commodity mass storage systems

    NASA Technical Reports Server (NTRS)

    Lekashman, John

    1998-01-01

    The NAS Systems Division has recently embarked on a significant new way of handling the mass storage problem. One of the basic goals of this new development are to build systems at very large capacity and high performance, yet have the advantages of commodity products. The central design philosophy is to build storage systems the way the Internet was built. Competitive, survivable, expandable, and wide open. The thrust of this paper is to describe the motivation for this effort, what we mean by commodity mass storage, what the implications are for a facility that performs such an action, and where we think it will lead.

  2. National Best Practices Manual for Building High Performance Schools

    ERIC Educational Resources Information Center

    US Department of Energy, 2007

    2007-01-01

    The U.S. Department of Energy's Rebuild America EnergySmart Schools program provides school boards, administrators, and design staff with guidance to help make informed decisions about energy and environmental issues important to school systems and communities. "The National Best Practices Manual for Building High Performance Schools" is a part of…

  3. Best Practices Guide for High-Performance Indian Office Buildings

    SciTech Connect

    Singh, Reshma; Sartor, Dale; Ghatikar, Girish

    2013-04-01

    This document provides best practice guidance and energy- efficiency recommendations for the design, construction, and operation of high-­performance office buildings in India. Through a discussion of learnings from exemplary projects and inputs from experts, it provides recommendations that can potentially help achieve (1) enhanced working environments, (2) economic construction/faster payback, (3) reduced operating costs, and (4) reduced greenhouse gas (GHG) emissions. It also provides ambitious (but achievable) energy performance benchmarks, both as adopted targets during building modeling (design phase) and during measurement and verification (operations phase). These benchmarks have been derived from a set of representative best-in-class office buildings in India. The best practices strategies presented in this guide would ideally help in delivering high-­performance in terms of a triad—of energy efficiency, cost efficiency, and occupant comfort and well-­being. These best practices strategies and metrics should be normalized—that is, corrected to account for building characteristics, diversity of operations, weather, and materials and construction methods.

  4. 76 FR 35894 - Office of Federal High-Performance Green Buildings; Establishment of the Green Building Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ...] Office of Federal High-Performance Green Buildings; Establishment of the Green Building Advisory...: Notice. SUMMARY: GSA announces the establishment of the Green Building Advisory Committee (the Committee... strategic plans, products and activities of the Office of Federal High-Performance Green Buildings...

  5. Realizing High-Performance Buildings; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-03-02

    High-performance buildings (HPBs) are exceptional examples of both design and practice. Their energy footprints are small, and these are buildings that people want to work in because of their intelligent structure, operations, and coincident comfort. However, the operation of most buildings, even ones that are properly constructed and commissioned at the start, can deviate significantly from the original design intent over time, particularly due to control system overrides and growing plug and data center loads. With early planning for systems such as submetering and occupant engagement tools, operators can identify and remedy the problems. This guide is a primer for owners and owners’ representatives who are pursuing HPBs. It describes processes that have been successful in the planning, procurement, and operation of HPBs with exceptional energy efficiency. Much of the guidance offered results from a series of semi-structured conference calls with a technical advisory group of 15 owners and operators of prominent HPBs in the United States. The guide provides a prescription for planning, achieving, and maintaining an HPB. Although the guide focuses on the operations stage of buildings, many of the operations practices are specified during the planning stage.

  6. Building and measuring a high performance network architecture

    SciTech Connect

    Kramer, William T.C.; Toole, Timothy; Fisher, Chuck; Dugan, Jon; Wheeler, David; Wing, William R; Nickless, William; Goddard, Gregory; Corbato, Steven; Love, E. Paul; Daspit, Paul; Edwards, Hal; Mercer, Linden; Koester, David; Decina, Basil; Dart, Eli; Paul Reisinger, Paul; Kurihara, Riki; Zekauskas, Matthew J; Plesset, Eric; Wulf, Julie; Luce, Douglas; Rogers, James; Duncan, Rex; Mauth, Jeffery

    2001-04-20

    Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning. The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.

  7. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    SciTech Connect

    Scheib, J.; Pless, S.; Torcellini, P.

    2014-08-01

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.

  8. High Performance Building Facade Solutions - PIER Final Project Report

    SciTech Connect

    Lee, Eleanor; Selkowitz, Stephen

    2009-12-31

    Building facades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. Facades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.This work focused on addressing significant near-term opportunities to reduce energy use in California commercial building stock by a) targeting voluntary, design-based opportunities derived from the use of better design guidelines and tools, and b) developing and deploying more efficient glazings, shading systems, daylighting systems, facade systems and integrated controls. This two-year project, supported by the California Energy Commission PIER program and the US Department of Energy, initiated a collaborative effort between The Lawrence Berkeley National Laboratory (LBNL) and major stakeholders in the facades industry to develop, evaluate, and accelerate market deployment of emerging, high-performance, integrated facade solutions. The LBNL Windows Testbed Facility acted as the primary catalyst and mediator on both sides of the building industry supply-user business transaction by a) aiding component suppliers to create and optimize cost effective, integrated systems that work, and b) demonstrating and verifying to the owner, designer, and specifier community that these integrated systems reliably deliver required energy performance. An industry consortium was initiated amongst approximately seventy disparate stakeholders, who unlike the HVAC or lighting industry, has no single representative, multi-disciplinary body or organized means of communicating and collaborating. The consortium provided guidance on the project and more importantly, began to mutually work out and agree on the goals, criteria, and pathways needed to attain the ambitious net zero energy goals defined by California and

  9. Building America System Research Results. Innovations for High Performance Homes

    SciTech Connect

    none,

    2006-05-01

    This report provides a summary of key lessons learned from the first 10 years of the Building America program and also included a summary of the future challenges that must be met to reach the program’s long term performance goals.

  10. High Performance Homes That Use 50% Less Energy Than the DOE Building America Benchmark Building

    SciTech Connect

    Christian, J.

    2011-01-01

    This document describes lessons learned from designing, building, and monitoring five affordable, energy-efficient test houses in a single development in the Tennessee Valley Authority (TVA) service area. This work was done through a collaboration of Habitat for Humanity Loudon County, the US Department of Energy (DOE), TVA, and Oak Ridge National Laboratory (ORNL).The houses were designed by a team led by ORNL and were constructed by Habitat's volunteers in Lenoir City, Tennessee. ZEH5, a two-story house and the last of the five test houses to be built, provided an excellent model for conducting research on affordable high-performance houses. The impressively low energy bills for this house have generated considerable interest from builders and homeowners around the country who wanted a similar home design that could be adapted to different climates. Because a design developed without the project constraints of ZEH5 would have more appeal for the mass market, plans for two houses were developed from ZEH5: a one-story design (ZEH6) and a two-story design (ZEH7). This report focuses on ZEH6, identical to ZEH5 except that the geothermal heat pump is replaced with a SEER 16 air source unit (like that used in ZEH4). The report also contains plans for the ZEH6 house. ZEH5 and ZEH6 both use 50% less energy than the DOE Building America protocol for energyefficient buildings. ZEH5 is a 4 bedroom, 2.5 bath, 2632 ft2 house with a home energy rating system (HERS) index of 43, which qualifies it for federal energy-efficiency incentives (a HERS rating of 0 is a zero-energy house, and a conventional new house would have a HERS rating of 100). This report is intended to help builders and homeowners build similar high-performance houses. Detailed specifications for the envelope and the equipment used in ZEH5 are compared with the Building America Benchmark building, and detailed drawings, specifications, and lessons learned in the construction and analysis of data gleaned from 94

  11. Building Synergy: The Power of High Performance Work Systems.

    ERIC Educational Resources Information Center

    Gephart, Martha A.; Van Buren, Mark E.

    1996-01-01

    Suggests that high-performance work systems create the synergy that lets companies gain and keep a competitive advantage. Identifies the components of high-performance work systems and critical action steps for implementation. Describes the results companies such as Xerox, Lever Brothers, and Corning Incorporated have achieved by using them. (JOW)

  12. Data and Analytics to Inform Energy Retrofit of High Performance Buildings

    SciTech Connect

    Hong, Tianzhen; Yang, Le; Hill, David; Feng, Wei

    2014-01-25

    Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC

  13. Challenges in building high performance geoscientific spatial data infrastructures

    NASA Astrophysics Data System (ADS)

    Dubros, Fabrice; Tellez-Arenas, Agnes; Boulahya, Faiza; Quique, Robin; Le Cozanne, Goneri; Aochi, Hideo

    2016-04-01

    One of the main challenges in Geosciences is to deal with both the huge amounts of data available nowadays and the increasing need for fast and accurate analysis. On one hand, computer aided decision support systems remain a major tool for quick assessment of natural hazards and disasters. High performance computing lies at the heart of such systems by providing the required processing capabilities for large three-dimensional time-dependent datasets. On the other hand, information from Earth observation systems at different scales is routinely collected to improve the reliability of numerical models. Therefore, various efforts have been devoted to design scalable architectures dedicated to the management of these data sets (Copernicus, EarthCube, EPOS). Indeed, standard data architectures suffer from a lack of control over data movement. This situation prevents the efficient exploitation of parallel computing architectures as the cost for data movement has become dominant. In this work, we introduce a scalable architecture that relies on high performance components. We discuss several issues such as three-dimensional data management, complex scientific workflows and the integration of high performance computing infrastructures. We illustrate the use of such architectures, mainly using off-the-shelf components, in the framework of both coastal flooding assessments and earthquake early warning systems.

  14. High-Performance Federal Buildings Act of 2011

    THOMAS, 112th Congress

    Rep. Carnahan, Russ [D-MO-3

    2011-11-04

    11/07/2011 Referred to the Subcommittee on Economic Development, Public Buildings and Emergency Management. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. Highlighting High Performance Buildings: 4 Times Square, New York City

    SciTech Connect

    2001-11-01

    4 Times Square is a 48-story environmentally responsible building in New York City and is the first project of its size to adopt standards for energy efficiency, indoor ecology, sustainable materials.

  16. High-performance thermoelectric nanocomposites from nanocrystal building blocks

    NASA Astrophysics Data System (ADS)

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V.; Cabot, Andreu

    2016-03-01

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom-up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS-Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS-Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.

  17. Calibration and Collaboration: Important Tools to Design high-Performance Affordable Buildings

    SciTech Connect

    Jiang, Wei; Liu, Bing; Snell, John; Helmes, Dan

    2008-03-31

    When new technologies are installed in a building, it is difficult to know how various systems will interact and if the building will perform as well as expected. A widely used technique to verify and quantify the actual energy savings from the energy-efficient features in high-performance buildings is to use the calibrated energy simulation approach. Maverick Gardens Mid-Rise A is a six-story apartment building located in East Boston, Massachusetts. The building was designed and constructed to meet the ENERGY STAR Homes Program rating and the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) certification. During the design phase, DOE-2.1E energy models for both budget building design and proposed building design were developed by the design team to demonstrate energy savings potential from various energy efficient technologies installed in this high-performance building. When comparing the energy use predicted by the proposed design energy model with utility bills, the design team observed that this building’s actual energy consumption was about one-third of what was estimated from the proposed design model, and therefore requested help from the authors through the U.S. Department of Energy’s Rebuild America Program to calibrate the proposed design energy model. This paper describes the energy simulation calibration approach using short-term metering data and utility bills. Details of the analysis, calibration results and the actual building energy performance are presented. This study also discusses lessons learned during the simulation calibration process and demonstrates the importance of collaboration among design professionals throughout the design, building, and commissioning process, as a way to ensure that high-performing building goals are met.

  18. Guiding Principles for Federal Leadership in High Performance and Sustainable Buildings

    EPA Pesticide Factsheets

    This page provides and overview of the memorandum of understanding (MOU) which was voluntarily committed the Agency to follow the Guiding Principles for Federal Leadership in High Performance and Sustainable Buildings.

  19. Data of cost-optimality and technical solutions for high energy performance buildings in warm climate

    PubMed Central

    Zacà, Ilaria; D’Agostino, Delia; Maria Congedo, Paolo; Baglivo, Cristina

    2015-01-01

    The data reported in this article refers to input and output information related to the research articles entitled Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area by Zacà et al. (Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area, in press.) and related to the research article Cost-optimal analysis and technical comparison between standard and high efficient mono residential buildings in a warm climate by Baglivo et al. (Energy, 2015, 10.1016/j.energy.2015.02.062, in press). PMID:26217793

  20. High-Performance Buildings – Value, Messaging, Financial and Policy Mechanisms

    SciTech Connect

    McCabe, Molly

    2011-02-22

    At the request of the Pacific Northwest National Laboratory, an in-depth analysis of the rapidly evolving state of real estate investments, high-performance building technology, and interest in efficiency was conducted by HaydenTanner, LLC, for the U.S. Department of Energy (DOE) Building Technologies Program. The analysis objectives were • to evaluate the link between high-performance buildings and their market value • to identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to appropriately value and deploy high-performance strategies and technologies across new and existing buildings • to summarize financial mechanisms that facilitate increased investment in these buildings. To meet these objectives, work consisted of a literature review of relevant writings, examination of existing and emergent financial and policy mechanisms, interviews with industry stakeholders, and an evaluation of the value implications through financial modeling. This report documents the analysis methodology and findings, conclusion and recommendations. Its intent is to support and inform the DOE Building Technologies Program on policy and program planning for the financing of high-performance new buildings and building retrofit projects.

  1. High-performance thermoelectric nanocomposites from nanocrystal building blocks

    PubMed Central

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V.; Cabot, Andreu

    2016-01-01

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom–up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS–Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS–Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K. PMID:26948987

  2. An insight into actual energy use and its drivers in high-performance buildings

    SciTech Connect

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accurately indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these findings are

  3. An insight into actual energy use and its drivers in high-performance buildings

    DOE PAGES

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accuratelymore » indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these

  4. Building Momentum: National Trends and Prospects for High-Performance Green Buildings.

    ERIC Educational Resources Information Center

    2003

    This report is an outgrowth of the Green Building Roundtable of the U.S. Senate Committee on Environment and Public Works held in conjunction with the U.S. Green Building Council on April 24, 2002. The roundtable brought together diverse interests to educate members of Congress on green building trends and generated discussion about the economic…

  5. Can High-Performance Equipment Lead to a Low-Performance Building?

    SciTech Connect

    Jonlin, Duane; Thornton, Brian A.; Rosenberg, Michael I.

    2016-08-22

    The performance-based compliance alternative available in most energy codes, intended to provide energy efficiency equivalent to that of prescriptive compliance while allowing innovation and design flexibility, can instead result in sub-standard energy performance in both the short and the long term. The potential deficiencies in modeled buildings originate with subtleties in the energy modeling rules, allowing building systems that consume more energy than their real-world, prescriptively-designed counterparts. This performance gap is exacerbated over subsequent decades as less efficient permanent features of the building remain while elements with shorter lives are regularly upgraded in most buildings. This paper summarizes an investigation into the topic for Pacific Northwest National Laboratory and the City of Seattle, including identification of the principal deficiencies exploited in the modeling path, and several potential code amendments that could resolve these deficiencies and establish better equivalency between prescriptive and performance compliance paths. The study, focusing on Seattle and Washington State energy codes, offers lessons and implications for other jurisdictions and energy codes.

  6. Building-Wide, Adaptive Energy Management Systems for High-Performance Buildings: Final CRADA Report

    SciTech Connect

    Zavala, Victor M.

    2016-10-27

    Development and field demonstration of the minimum ratio policy for occupancy-driven, predictive control of outdoor air ventilation. Technology transfer of Argonne’s methods for occupancy estimation and forecasting and for M&V to BuildingIQ for their deployment. Selection of CO2 sensing as the currently best-available technology for occupancy-driven controls. Accelerated restart capability for the commercial BuildingIQ system using horizon shifting strategies applied to receding horizon optimal control problems. Empirical-based evidence of 30% chilled water energy savings and 22% total HVAC energy savings achievable with the BuildingIQ system operating in the APS Office Building on-site at Argonne.

  7. Highlighting High Performance Buildings: Zion National Park Visitor Center - A Sustainable Building for the Future

    SciTech Connect

    2000-08-01

    In creating the Zion National Park Visitor Center, the National Park Service, working with the U.S. Department of Energy’s National Renewable Energy Laboratory, has stayed true to the tenets of protecting Zion’s natural beauty—by creating a sustainable building that incorporates the area’s natural features and energy-efficient building concepts into an attractive design, saving energy and operating expenses while protecting the environment.

  8. Overcoming barriers to high performance seismic design using lessons learned from the green building industry

    NASA Astrophysics Data System (ADS)

    Glezil, Dorothy

    NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.

  9. 76 FR 65511 - Office of Governmentwide Policy; Office of Federal High-Performance Green Buildings; the Green...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... ADMINISTRATION Office of Governmentwide Policy; Office of Federal High- Performance Green Buildings; the Green... provides the schedule and agenda for the first meeting of the Green Building Advisory Committee Meeting...: Ken Sandler, Designated Federal Official, Office of Federal High-Performance Green Buildings,...

  10. Federal High Performance and Sustainable Buildings: Guiding Principles for the Laboratory Support Building (LSB)

    SciTech Connect

    Pope, Jason E.

    2014-09-01

    This report documents the federal Guiding Principles conformance effort for LSB at PNNL. The effort is part of continued progress toward a campus building inventory that is 100% compliant with the Guiding Principles. The report documentation provides a narrative of how the LSB complies with each of the Guiding Principles requirements. These narratives draw from the many sources that are explained in the text and rely on extensive data collection. The descriptions point to each of these sources, providing the reader with specific policies, procedures, and data points.

  11. 76 FR 13617 - Office of Federal High-Performance Green Buildings (OFHPGB); Notice of GSA Bulletin OFHPGB 2011...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... ADMINISTRATION Office of Federal High-Performance Green Buildings (OFHPGB); Notice of GSA Bulletin OFHPGB 2011... Policy on Energy Efficient Commercial Buildings Tax Deduction. GSA Bulletin OFHPGB 2011-OGP-1 may be... Commercial Building Tax Deduction for government-owned buildings is set forth in Notice 2008-40,...

  12. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S.

    PubMed

    Zhong, Lexuan; Su, Feng-Chiao; Batterman, Stuart

    2017-01-21

    Exposure to volatile organic compounds (VOCs) has been an indoor environmental quality (IEQ) concern in schools and other buildings for many years. Newer designs, construction practices and building materials for "green" buildings and the use of "environmentally friendly" products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED)-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m³, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ) by limiting emissions from building-related sources and by increasing ventilation rates.

  13. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S.

    PubMed Central

    Zhong, Lexuan; Su, Feng-Chiao; Batterman, Stuart

    2017-01-01

    Exposure to volatile organic compounds (VOCs) has been an indoor environmental quality (IEQ) concern in schools and other buildings for many years. Newer designs, construction practices and building materials for “green” buildings and the use of “environmentally friendly” products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED)-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m3, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ) by limiting emissions from building-related sources and by increasing ventilation rates. PMID:28117727

  14. Double Wall Framing Technique An Example of High Performance, Sustainable Building Envelope Technology

    SciTech Connect

    Kosny, Dr. Jan; Asiz, Andi; Shrestha, Som S; Biswas, Kaushik; Nitin, Shukla

    2015-01-01

    Double wall technologies utilizing wood framing have been well-known and used in North American buildings for decades. Most of double wall designs use only natural materials such as wood products, gypsum, and cellulose fiber insulation, being one of few building envelope technologies achieving high thermal performance without use of plastic foams or fiberglass. Today, after several material and structural design modifications, these technologies are considered as highly thermally efficient, sustainable option for new constructions and sometimes, for retrofit projects. Following earlier analysis performed for U.S. Department of Energy by Fraunhofer CSE, this paper discusses different ways to build double walls and to optimize their thermal performance to minimize the space conditioning energy consumption. Description of structural configuration alternatives and thermal performance analysis are presented as well. Laboratory tests to evaluate thermal properties of used insulation and whole wall system thermal performance are also discussed in this paper. Finally, the thermal loads generated in field conditions by double walls are discussed utilizing results from a joined project performed by Zero Energy Building Research Alliance and Oak Ridge National Laboratory (ORNL), which made possible evaluation of the market viability of low-energy homes built in the Tennessee Valley. Experimental data recorded in two of the test houses built during this field study is presented in this work.

  15. Highlighting High Performance Buildings: Adam Joseph Lewis Center for Environmental Studies

    SciTech Connect

    2002-11-01

    Oberlin College's Adam Joseph Lewis Center for Environmental Studies is a high-performance building featuring an expansive photovoltaic system and a closed-loop groundwater heat pump system. Designers incorporated energy-efficient components and materials that are local, non-toxic, and durable.

  16. Model Policies in Support of High Performance School Buildings for All Children

    ERIC Educational Resources Information Center

    21st Century School Fund, 2006

    2006-01-01

    Model Policies in Support of High Performance School Buildings for All Children is to begin to create a coherent and comprehensive set of state policies that will provide the governmental infrastructure for effective and creative practice in facility management. There are examples of good policy in many states, but no state has a coherent set of…

  17. Introduction to Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Fact Sheet)

    SciTech Connect

    Not Available

    2014-09-01

    Momentum behind zero energy building design and construction is increasing, presenting a tremendous opportunity for advancing energy performance in the commercial building industry. At the same time, there is a lingering perception that zero energy buildings must be cost prohibitive or limited to showcase projects. Fortunately, an increasing number of projects are demonstrating that high performance can be achieved within typical budgets. This factsheet highlights replicable, recommended strategies for achieving high performance on a budget, based on experiences from past projects.

  18. Building America Top Innovations 2012: High-Performance Home Cost Performance Trade-offs: Production Builders

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research showing how some energy-efficiency measure cost increases can balance against measures that reduce up-front costs: Advanced framing cuts lumber costs, right sizing can mean downsizing the HVAC, moving HVAC into conditioned space cuts installation costs, designing on a 2-foot grid reduces materials waste, etc.

  19. Developing a next-generation community college curriculum forenergy-efficient high-performance building operations

    SciTech Connect

    Crabtree, Peter; Kyriakopedi, Nick; Mills, Evan; Haves, Philip; Otto, Roland J.; Piette, Mary Ann; Xu, Peng; Diamond, Rick; Frost, Chuck; Deringer, Joe

    2004-05-01

    The challenges of increased technological demands in today's workplace require virtually all workers to develop higher-order cognitive skills including problem solving and systems thinking in order to be productive. Such ''habits of mind'' are viewed as particularly critical for success in the information-based workplace, which values reduced hierarchy, greater worker independence, teamwork, communications skills, non-routine problem solving, and understanding of complex systems. The need is particularly compelling in the buildings arena. To scope the problem, this paper presents the results of interviews and focus groups--conducted by Oakland California's Peralta Community College District and Lawrence Berkeley National Laboratory--in which approximately 50 industry stakeholders discussed contemporary needs for building operator education at the community college level. Numerous gaps were identified between the education today received by building operators and technicians and current workplace needs. The participants concurred that many of the problems seen today in achieving and maintaining energy savings in buildings can be traced to inadequacies in building operation and lack of awareness and knowledge about how existing systems are to be used, monitored, and maintained. Participants and others we interviewed affirmed that while these issues are addressed in various graduate-level and continuing education programs, they are virtually absent at the community college level. Based on that assessment of industry needs, we present a new curriculum and innovative simulation-based learning tool to provide technicians with skills necessary to commission and operate high-performance buildings, with particular emphasis on energy efficiency and indoor environmental quality in the context of HVAC&R equipment and control systems.

  20. An Adaptive Intelligent Integrated Lighting Control Approach for High-Performance Office Buildings

    NASA Astrophysics Data System (ADS)

    Karizi, Nasim

    An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings. This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.'s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.

  1. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  2. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.

    2013-01-01

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719

  3. Play-Building: Creating a Documentary Theatre Performance in a High School Setting

    ERIC Educational Resources Information Center

    van Eyck, Philip

    2013-01-01

    This paper describes a high school theatre program's project in which Anna Deavere Smith's documentary theatre work serves as the foundation for play-building for students. Research in theatre arts supports the use of play-building as a way to explore major themes of relevance to students. However, there is little research addressing documentary…

  4. Towards Building High Performance Medical Image Management System for Clinical Trials.

    PubMed

    Wang, Fusheng; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel

    2011-01-01

    Medical image based biomarkers are being established for therapeutic cancer clinical trials, where image assessment is among the essential tasks. Large scale image assessment is often performed by a large group of experts by retrieving images from a centralized image repository to workstations to markup and annotate images. In such environment, it is critical to provide a high performance image management system that supports efficient concurrent image retrievals in a distributed environment. There are several major challenges: high throughput of large scale image data over the Internet from the server for multiple concurrent client users, efficient communication protocols for transporting data, and effective management of versioning of data for audit trails. We study the major bottlenecks for such a system, propose and evaluate a solution by using a hybrid image storage with solid state drives and hard disk drives, RESTful Web Services based protocols for exchanging image data, and a database based versioning scheme for efficient archive of image revision history. Our experiments show promising results of our methods, and our work provides a guideline for building enterprise level high performance medical image management systems.

  5. Towards Building High Performance Medical Image Management System for Clinical Trials

    PubMed Central

    Wang, Fusheng; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel

    2011-01-01

    Medical image based biomarkers are being established for therapeutic cancer clinical trials, where image assessment is among the essential tasks. Large scale image assessment is often performed by a large group of experts by retrieving images from a centralized image repository to workstations to markup and annotate images. In such environment, it is critical to provide a high performance image management system that supports efficient concurrent image retrievals in a distributed environment. There are several major challenges: high throughput of large scale image data over the Internet from the server for multiple concurrent client users, efficient communication protocols for transporting data, and effective management of versioning of data for audit trails. We study the major bottlenecks for such a system, propose and evaluate a solution by using a hybrid image storage with solid state drives and hard disk drives, RESTful Web Services based protocols for exchanging image data, and a database based versioning scheme for efficient archive of image revision history. Our experiments show promising results of our methods, and our work provides a guideline for building enterprise level high performance medical image management systems. PMID:21603096

  6. Towards building high performance medical image management system for clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Fusheng; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel

    2011-03-01

    Medical image based biomarkers are being established for therapeutic cancer clinical trials, where image assessment is among the essential tasks. Large scale image assessment is often performed by a large group of experts by retrieving images from a centralized image repository to workstations to markup and annotate images. In such environment, it is critical to provide a high performance image management system that supports efficient concurrent image retrievals in a distributed environment. There are several major challenges: high throughput of large scale image data over the Internet from the server for multiple concurrent client users, efficient communication protocols for transporting data, and effective management of versioning of data for audit trails. We study the major bottlenecks for such a system, propose and evaluate a solution by using a hybrid image storage with solid state drives and hard disk drives, RESTfulWeb Services based protocols for exchanging image data, and a database based versioning scheme for efficient archive of image revision history. Our experiments show promising results of our methods, and our work provides a guideline for building enterprise level high performance medical image management systems.

  7. Are biophilic-designed site office buildings linked to health benefits and high performing occupants?

    PubMed

    Gray, Tonia; Birrell, Carol

    2014-11-26

    This paper discusses the first phase of a longitudinal study underway in Australia to ascertain the broad health benefits of specific types of biophilic design for workers in a building site office. A bespoke site design was formulated to include open plan workspace, natural lighting, ventilation, significant plants, prospect and views, recycled materials and use of non-synthetic materials. Initial data in the first three months was gathered from a series of demographic questions and from interviews and observations of site workers. Preliminary data indicates a strong positive effect from incorporating aspects of biophilic design to boost productivity, ameliorate stress, enhance well-being, foster a collaborative work environment and promote workplace satisfaction, thus contributing towards a high performance workspace. The longitudinal study spanning over two years will track human-plant interactions in a biophilic influenced space, whilst also assessing the concomitant cognitive, social, psychological and physical health benefits for workers.

  8. Are Biophilic-Designed Site Office Buildings Linked to Health Benefits and High Performing Occupants?

    PubMed Central

    Gray, Tonia; Birrell, Carol

    2014-01-01

    This paper discusses the first phase of a longitudinal study underway in Australia to ascertain the broad health benefits of specific types of biophilic design for workers in a building site office. A bespoke site design was formulated to include open plan workspace, natural lighting, ventilation, significant plants, prospect and views, recycled materials and use of non-synthetic materials. Initial data in the first three months was gathered from a series of demographic questions and from interviews and observations of site workers. Preliminary data indicates a strong positive effect from incorporating aspects of biophilic design to boost productivity, ameliorate stress, enhance well-being, foster a collaborative work environment and promote workplace satisfaction, thus contributing towards a high performance workspace. The longitudinal study spanning over two years will track human-plant interactions in a biophilic influenced space, whilst also assessing the concomitant cognitive, social, psychological and physical health benefits for workers. PMID:25431874

  9. Building a High Performance Metadata Broker using Clojure, NoSQL and Message Queues

    NASA Astrophysics Data System (ADS)

    Truslove, I.; Reed, S.

    2013-12-01

    In practice, Earth and Space Science Informatics often relies on getting more done with less: fewer hardware resources, less IT staff, fewer lines of code. As a capacity-building exercise focused on rapid development of high-performance geoinformatics software, the National Snow and Ice Data Center (NSIDC) built a prototype metadata brokering system using a new JVM language, modern database engines and virtualized or cloud computing resources. The metadata brokering system was developed with the overarching goals of (i) demonstrating a technically viable product with as little development effort as possible, (ii) using very new yet very popular tools and technologies in order to get the most value from the least legacy-encumbered code bases, and (iii) being a high-performance system by using scalable subcomponents, and implementation patterns typically used in web architectures. We implemented the system using the Clojure programming language (an interactive, dynamic, Lisp-like JVM language), Redis (a fast in-memory key-value store) as both the data store for original XML metadata content and as the provider for the message queueing service, and ElasticSearch for its search and indexing capabilities to generate search results. On evaluating the results of the prototyping process, we believe that the technical choices did in fact allow us to do more for less, due to the expressive nature of the Clojure programming language and its easy interoperability with Java libraries, and the successful reuse or re-application of high performance products or designs. This presentation will describe the architecture of the metadata brokering system, cover the tools and techniques used, and describe lessons learned, conclusions, and potential next steps.

  10. Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers

    SciTech Connect

    Pless, S.; Torcellini, P.

    2012-05-01

    This paper presents a set of 15 best practices for owners, designers, and construction teams of office buildings to reach high performance goals for energy efficiency, while maintaining a competitive budget. They are based on the recent experiences of the owner and design/build team for the Research Support Facility (RSF) on National Renewable Energy Facility's campus in Golden, CO, which show that achieving this outcome requires each key integrated team member to understand their opportunities to control capital costs.

  11. 48 CFR 570.117-2 - Guiding principles for federal leadership in high performance and sustainable buildings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Guiding principles for federal leadership in high performance and sustainable buildings. 570.117-2 Section 570.117-2 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION SPECIAL CONTRACTING PROGRAMS ACQUIRING LEASEHOLD INTERESTS IN REAL PROPERTY...

  12. 48 CFR 570.117-2 - Guiding principles for federal leadership in high performance and sustainable buildings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Guiding principles for federal leadership in high performance and sustainable buildings. 570.117-2 Section 570.117-2 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION SPECIAL CONTRACTING PROGRAMS ACQUIRING LEASEHOLD INTERESTS IN REAL PROPERTY...

  13. 48 CFR 570.117-2 - Guiding principles for federal leadership in high performance and sustainable buildings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Guiding principles for federal leadership in high performance and sustainable buildings. 570.117-2 Section 570.117-2 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION SPECIAL CONTRACTING PROGRAMS ACQUIRING LEASEHOLD INTERESTS IN REAL PROPERTY...

  14. 48 CFR 570.117-2 - Guiding principles for federal leadership in high performance and sustainable buildings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Guiding principles for federal leadership in high performance and sustainable buildings. 570.117-2 Section 570.117-2 Federal... LEASEHOLD INTERESTS IN REAL PROPERTY General 570.117-2 Guiding principles for federal leadership in...

  15. Lessons Learned from Case Studies of Six High-Performance Buildings

    SciTech Connect

    Torcellini, P.; Pless, S.; Deru, M.; Griffith, B.; Long, N.; Judkoff, R.

    2006-06-01

    Commercial buildings have a significant impact on energy use and the environment. They account for approximately 18% (17.9 quads) of the total primary energy consumption in the United States (DOE 2005). The energy used by the building sector continues to increase, primarily because new buildings are added to the national building stock faster than old buildings are retired. Energy consumption by commercial buildings will continue to increase until buildings can be designed to produce more energy than they consume. As a result, the U.S. Department of Energy's (DOE) Building Technologies Program has established a goal to create the technology and knowledge base for marketable zero-energy commercial buildings (ZEBs) by 2025.

  16. Builders Challenge High Performance Builder Spotlight: Ecofutures Building Inc., Boulder, Colorado

    SciTech Connect

    2009-12-22

    Building America Builders Challenge fact sheet on Ecofutures Building Inc. of Boulder, Colorado. Ecofutures’ first Builders Challenge house has been equipped with extensive energy monitoring equipment and many energy-efficient features.

  17. Building America Top Innovations 2012: High-Performance Affordable Housing with Habitat for Humanity

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America support of Habitat for Humanity including researchers who wrote Habitat construction guides and teams that have worked with affiliates on numerous field projects.

  18. Building America Top Innovations 2012: High-Performance with Solar Electric Reduced Peak Demand

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  19. Wynkoop Building Performance Measurement: Water

    SciTech Connect

    Fowler, Kimberly M.; Kora, Angela R.

    2012-08-26

    This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual

  20. Building America Top Innovations 2012: Reduced Call-Backs with High-Performance Production Builders

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes ways Building America teams have helped builders cut call-backs. Harvard University study found builders who worked with Building America had a 50% drop in call-backs. One builder reported a 50-fold reduction in the incidence of pipe freezing, a 50% reduction in drywall cracking, and a 60% decline in call-backs.

  1. SAME4HPC: A Promising Approach in Building a Scalable and Mobile Environment for High-Performance Computing

    SciTech Connect

    Karthik, Rajasekar

    2014-01-01

    In this paper, an architecture for building Scalable And Mobile Environment For High-Performance Computing with spatial capabilities called SAME4HPC is described using cutting-edge technologies and standards such as Node.js, HTML5, ECMAScript 6, and PostgreSQL 9.4. Mobile devices are increasingly becoming powerful enough to run high-performance apps. At the same time, there exist a significant number of low-end and older devices that rely heavily on the server or the cloud infrastructure to do the heavy lifting. Our architecture aims to support both of these types of devices to provide high-performance and rich user experience. A cloud infrastructure consisting of OpenStack with Ubuntu, GeoServer, and high-performance JavaScript frameworks are some of the key open-source and industry standard practices that has been adopted in this architecture.

  2. Can We Build a Truly High Performance Computer Which is Flexible and Transparent?

    PubMed Central

    Rojas, Jhonathan P.; Torres Sevilla, Galo A.; Hussain, Muhammad M.

    2013-01-01

    State-of-the art computers need high performance transistors, which consume ultra-low power resulting in longer battery lifetime. Billions of transistors are integrated neatly using matured silicon fabrication process to maintain the performance per cost advantage. In that context, low-cost mono-crystalline bulk silicon (100) based high performance transistors are considered as the heart of today's computers. One limitation is silicon's rigidity and brittleness. Here we show a generic batch process to convert high performance silicon electronics into flexible and semi-transparent one while retaining its performance, process compatibility, integration density and cost. We demonstrate high-k/metal gate stack based p-type metal oxide semiconductor field effect transistors on 4 inch silicon fabric released from bulk silicon (100) wafers with sub-threshold swing of 80 mV dec−1 and on/off ratio of near 104 within 10% device uniformity with a minimum bending radius of 5 mm and an average transmittance of ~7% in the visible spectrum. PMID:24018904

  3. Building High-Performing and Improving Education Systems. Systems and Structures: Powers, Duties and Funding. Review

    ERIC Educational Resources Information Center

    Slater, Liz

    2013-01-01

    This Review looks at the way high-performing and improving education systems share out power and responsibility. Resources--in the form of funding, capital investment or payment of salaries and other ongoing costs--are some of the main levers used to make policy happen, but are not a substitute for well thought-through and appropriate policy…

  4. Building America Top Innovations 2012: Community Scale High Performance with Solar - Pulte Homes

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Pulte Homes of Tucson’s work with Building America to apply a suite of energy-efficiency measures integrated with passive solar design and solar water heating that reduced energy use more than 50% for a community of more than 1,000 homes.

  5. Building robust carbon nanotube-interweaved-nanocrystal architecture for high-performance anode materials.

    PubMed

    Jia, Xilai; Cheng, Yanhua; Lu, Yunfeng; Wei, Fei

    2014-09-23

    Rational design of electrode materials is essential but still a challenge for lithium-ion batteries. Herein, we report the design and fabrication of a class of nanocomposite architecture featured by hierarchically structured composite particles that are built from iron oxide nanocrystals and carbon nanotubes. An aerosol spray drying process was used to synthesize this architecture. Such nanoarchitecture enhanced the ion transport and conductivity that are required for high-power anodes. The large volume changes of the anodes during lithium insertion and extraction are accommodated by the particle's resilience and internal porosity. High reversible capacities, excellent rate capability, and stable performance are attained. The synthesis process is simple and broadly applicable, providing a general approach toward high-performance energy storage materials.

  6. Metrics for building performance assurance

    SciTech Connect

    Koles, G.; Hitchcock, R.; Sherman, M.

    1996-07-01

    This report documents part of the work performed in phase I of a Laboratory Directors Research and Development (LDRD) funded project entitled Building Performance Assurances (BPA). The focus of the BPA effort is to transform the way buildings are built and operated in order to improve building performance by facilitating or providing tools, infrastructure, and information. The efforts described herein focus on the development of metrics with which to evaluate building performance and for which information and optimization tools need to be developed. The classes of building performance metrics reviewed are (1) Building Services (2) First Costs, (3) Operating Costs, (4) Maintenance Costs, and (5) Energy and Environmental Factors. The first category defines the direct benefits associated with buildings; the next three are different kinds of costs associated with providing those benefits; the last category includes concerns that are broader than direct costs and benefits to the building owner and building occupants. The level of detail of the various issues reflect the current state of knowledge in those scientific areas and the ability of the to determine that state of knowledge, rather than directly reflecting the importance of these issues; it intentionally does not specifically focus on energy issues. The report describes work in progress and is intended as a resource and can be used to indicate the areas needing more investigation. Other reports on BPA activities are also available.

  7. CHP Fundamentals, NFMT High Performance Buildings (Presentation) – June 3, 2015

    EPA Pesticide Factsheets

    This presentation discusses how CHP can improve energy efficiency at a building or facility, and play a major role in reducing carbon emissions, optimizing fuel flexibility, lowering operating costs, and earning LEED points.

  8. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series

    SciTech Connect

    2007-06-01

    The sixth volume of the Building America Best Practices Series presents information that is useful throughout the U.S. for enhancing the energy efficiency practices in the specific climate zones that are presented in each of the volumes.

  9. Highlighting High Performance: Four Times Square. Office of Building Technology, State and Community Programs (BTS) Brochure

    SciTech Connect

    2001-11-01

    4 Times Square is a 48-story environmentally responsible building in New York City and is the first project of its size to adopt standards for energy efficiency, indoor ecology, sustainable materials.

  10. Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building

    SciTech Connect

    Ortiz, Anna C.; Russell, Marion; Lee, Wen-Yee; Apte, Michael; Maddalena, Randy

    2010-09-20

    The developers of the Paharpur Business Center (PBC) and Software Technology Incubator Park in New Delhi, India offer an environmentally sustainable building with a strong emphasis on energy conservation, waste minimization and superior indoor air quality (IAQ). To achieve the IAQ goal, the building utilizes a series of air cleaning technologies for treating the air entering the building. These technologies include an initial water wash followed by ultraviolet light treatment and biolfiltration using a greenhouse located on the roof and numerous plants distributed throughout the building. Even with the extensive treatment of makeup air and room air in the PBC, a recent study found that the concentrations of common volatile organic compounds and aldehydes appear to rise incrementally as the air passes through the building from the supply to the exhaust. This finding highlights the need to consider the minimization of chemical sources in buildings in combination with the use of advanced air cleaning technologies when seeking to achieve superior IAQ. The goal of this project was to identify potential source materials for indoor chemicals in the PBC. Samples of building materials, including wood paneling (polished and unpolished), drywall, and plastic from a hydroponic drum that was part of the air cleaning system, were collected from the building for testing. All materials were collected from the PBC building and shipped to the Lawrence Berkeley National Laboratory (LBNL) for testing. The materials were pre-conditioned for two different time periods before measuring material and chemical specific emission factors for a range of VOCs and Aldehydes. Of the six materials tested, we found that the highest emitter of formaldehyde was new plywood paneling. Although polish and paint contribute to some VOC emissions, the main influence of the polish was in altering the capacity of the surface to accumulate formaldehyde. Neither the new nor aged polish contributed

  11. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  12. Building America Top Innovations 2012: Affordable High Performance in Production Homes: Artistic Homes

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Artistic Homes, a successful New Mexico production builder, who went from code-minimum to under HERS 50 standard on every home, with optional PV upgrades to HERS 35 or true net zero on every home plan offered.

  13. Multicriteria Decision Analysis of Material Selection of High Energy Performance Residential Building

    NASA Astrophysics Data System (ADS)

    Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva

    2013-11-01

    In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic

  14. High-Performance Photovoltaic Polymers Employing Symmetry-Breaking Building Blocks.

    PubMed

    Liu, Deyu; Zhu, Qianqian; Gu, Chunyang; Wang, Junyi; Qiu, Meng; Chen, Weichao; Bao, Xichang; Sun, Mingliang; Yang, Renqiang

    2016-10-01

    Two 1D-2D asymmetric benzodithiophenes (BDTs) as donor building blocks are designed and synthesized, combining the advantages of both 1D and 2D symmetric BDTs. The photovoltaic properties of the asymmetric BDT-based polymers are improved greatly in comparison with corresponding symmetric BDT-based polymers. This work provides a new approach to design prospective organic optoelectronic materials employing the symmetry-breaking strategy.

  15. Federal R&D Agenda for Net Zero Energy, High-Performance Green Buildings

    DTIC Science & Technology

    2008-09-30

    Economic Cooperation and Development (Evaluation of Green and Other Sustainability Indices for the Biobased Economy); European Union Joint Research...waste; make greater use of natural and recycled content and biobased materials; reduce injuries; cost and build time; achieve greater durability and...impacts of its operations, including EPA’s Comprehensive Procurement Guidelines for the purchase of recycled content products and USDA’s biobased

  16. Targeting 100! Advanced Energy Efficient Building Technologies for High Performance Hospitals: Executive Summary.

    SciTech Connect

    Burpee, Heather; Loveland, Joel; Helmers, Aaron

    2015-09-02

    This research, Targeting 100!, provides a conceptual framework and decision-making structure at a schematic design level of precision for hospital owners, architects and engineers to radically reduce energy use in hospitals. Following the goals of Architecture 2030 and The 2030 Challenge, it offers access to design strategies and the cost implications of those strategies for new hospitals to utilize 60% less energy. The name, Targeting 100!, comes from the 2030 Challenge energy reduction goal for hospitals; a 60% energy use reduction from typical acute care hospital targets approximately 100 KBtu/SF Year, thus the name “Targeting 100!”. Targeting 100! was developed through funding partnerships with the US Department of Energy and the Northwest Energy Efficiency’s BetterBricks Initiative. The technical team was led by the University of Washington Integrated Design Lab supported by deep collaboration with Solarc Architecture and Engineering, TBD Cost Consultants, and NBBJ Architecture. Through extensive research and design development, Targeting 100! provides a framework for developing high performance healthcare projects today and into the future. An online tool houses a Targeting 100! knowlegebase and roadmap. It can be accessed at: www.idlseattle.com/t100. The webtool is structured from high-level overview materials to detailed library with modeling inputs and outputs, providing a comprehensive report of the background, data, and outcomes from the project.

  17. Seismic Assessment of R/C Building Structure through Nonlinear Probabilistic Analysis with High-performance Computing

    SciTech Connect

    Faggella, M.; Barbosa, A.; Conte, J. P.; Restrepo, J. I.; Spacone, E.

    2008-07-08

    This paper presents a probabilistic seismic demand analysis of a three dimensional R/C building model subjected to tri-axial earthquake excitation. Realistic probability distributions are assumed for the main structural and material properties and for the ground motion Intensity Measure (IM) Sa(T1. Natural ground motions are used in the analyses to represent the inherent randomness in the earthquake ground motion time histories. Monte Carlo simulations are performed to account for the record-to-record variability and Tornado diagrams are used to represent the uncertainty induced in the response by the basic uncertainties in the structural properties. In order to perform a probabilistic study on three-dimensional engineering demand parameters (EDPs), a large number of ensemble time history analyses were carried out using the TeraGrid high-performance computing resources available at the San Diego Supercomputer Center. Early results show that for the testbed building used in this study, uncertainty in the structural parameters contribute little to the uncertainty of the EDPs, while large variations in the EDPs are due to the variability of the ground motion intensity measure and the record-to-record variability.

  18. Using HIPPI switches to build high-performance multiple FDDI ring networks

    NASA Astrophysics Data System (ADS)

    Gilbert, Thomas A.

    1992-03-01

    It is a commonplace observation that computational power at the desktop is increasing at an exponential rate. This continues two decades after the first single chip VLSI microprocessor became commercially available and it is projected to continue for at least another decade. As a direct consequence, several observations can be made about the revolutionary impacts occurring in data networking: (1) Inexpensive computer power has made it economically feasible to distribute immense computational capacity to the desktop. (2) Distribution has created a demand for sophisticated networks to enable resource sharing among work groups. (3) Placing compute capacity at the point of consumption has removed the communication barrier from the `man/machine' interface. Virtually every user of computer systems is presented with increasingly rich visual paradigms. Current graphical user interfaces are designed to take advantage of bit mapped color displays that have spatial resolutions of 1024 pixels X 1280 pixels and 8 to 24 bits per pixel of color resolution. (4) Standards have been defined and systems are being built to extend the visual paradigm over the networks that interconnect information workers. (5) As a result of the exponential increase in computing capacity available for constant dollars, one would expect the demand networking capacity to increase accordingly. However, as a consequence of observation (4), the rate of increase is far greater. One of the narrow effects of the above has been to accelerate the demand for high performance networking solutions to support the burgeoning users of PCs and workstations. Fiber distributed data interface (FDDI) standard based bridges and routers have received rapid acceptance to provide backbone connections among Ethernet segments. It is not uncommon for an organization to have dozens of Ethernets within a single establishment. The cost of FDDI compatible interface boards for workstations and PCs is declining rapidly. This year the

  19. Analysis Methods for Post Occupancy Evaluation of Energy-Use in High Performance Buildings Using Short-Term Monitoring

    NASA Astrophysics Data System (ADS)

    Singh, Vipul

    2011-12-01

    The green building movement has been an effective catalyst in reducing energy demands of buildings and a large number of 'green' certified buildings have been in operation for several years. Whether these buildings are actually performing as intended, and if not, identifying specific causes for this discrepancy falls into the general realm of post-occupancy evaluation (POE). POE involves evaluating building performance in terms of energy-use, indoor environmental quality, acoustics and water-use; the first aspect i.e. energy-use is addressed in this thesis. Normally, a full year or more of energy-use and weather data is required to determine the actual post-occupancy energy-use of buildings. In many cases, either measured building performance data is not available or the time and cost implications may not make it feasible to invest in monitoring the building for a whole year. Knowledge about the minimum amount of measured data needed to accurately capture the behavior of the building over the entire year can be immensely beneficial. This research identifies simple modeling techniques to determine best time of the year to begin in-situ monitoring of building energy-use, and the least amount of data required for generating acceptable long-term predictions. Four analysis procedures are studied. The short-term monitoring for long-term prediction (SMLP) approach and dry-bulb temperature analysis (DBTA) approach allow determining the best time and duration of the year for in-situ monitoring to be performed based only on the ambient temperature data of the location. Multivariate change-point (MCP) modeling uses simulated/monitored data to determine best monitoring period of the year. This is also used to validate the SMLP and DBTA approaches. The hybrid inverse modeling method-1 predicts energy-use by combining a short dataset of monitored internal loads with a year of utility-bills, and hybrid inverse method-2 predicts long term building performance using utility

  20. Building High-Performing and Improving Education Systems: Quality Assurance and Accountability. Review

    ERIC Educational Resources Information Center

    Slater, Liz

    2013-01-01

    Monitoring, evaluation, and quality assurance in their various forms are seen as being one of the foundation stones of high-quality education systems. De Grauwe, writing about "school supervision" in four African countries in 2001, linked the decline in the quality of basic education to the cut in resources for supervision and support.…

  1. Solution processable colloidal nanoplates as building blocks for high-performance electronic thin films on flexible substrates.

    PubMed

    Lin, Zhaoyang; Chen, Yu; Yin, Anxiang; He, Qiyuan; Huang, Xiaoqing; Xu, Yuxi; Liu, Yuan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2014-11-12

    Low-temperature solution-processed electronic materials on plastic substrates are of considerable interest for flexible electronics. Solution dispersible inorganic nanostructures (e.g., zero-dimensional (0D) quantum dots or one-dimensional (1D) nanowires) have emerged as interesting ink materials for low-temperature solution processing of electronic thin films on flexible substrates, but usually with limited performance due to the large number of grain boundaries (0D) or incomplete surface coverage (1D). Here, we report two-dimensional (2D) colloidal nanoplates of layered materials as a new ink material for solution assembly of high-performance electronic thin films. The 2D colloidal nanoplates exhibit few dangling bonds and represent an ideal geometry for the assembly of highly uniform continuous thin films with greatly reduced grain boundaries dictated by large-area conformal plane-plane contact with atomically flat/clean interfaces. It can therefore promise efficient charge transport across neighboring nanoplates and throughout the entire thin film to enable unprecedented electronic performance. We show that Bi2Se3 and Bi2Te3 nanoplates can be synthesized with well-controlled thickness (6-15 nm) and lateral dimension (0.5-3 μm) and can be used for the assembly of highly uniform continuous thin films with a full surface coverage and an excellent room temperature carrier mobility >100 cm(2)·V(-1)·s(-1), approaching that of chemical vapor deposition grown materials. Our study demonstrates a general strategy to using 2D nanoplates as a unique building block for the construction of high-performance electronic thin films on plastic substrates for future flexible electronics and optoelectronics.

  2. Building America Case Study: Performance and Costs of Ductless Heat Pumps in Marine Climate High-Performance Homes: Habitat for Humanity -- The Woods, Tacoma, Washington

    SciTech Connect

    2016-02-01

    The Woods is a Habitat for Humanity (HFH) community of ENERGY STAR Homes (c) Northwest (ESHNW)-certified homes located in the marine climate of Tacoma/Pierce County, Washington. This research report builds on an earlier preliminary draft 2014 BA report, and includes significant billing analysis and cost effectiveness research from a collaborative, ongoing Ductless Heat Pump (DHP) research effort for Tacoma Public Utilities (TPU) and Bonneville Power Administration (BPA). This report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013 and October 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing such as HFH.

  3. Utilization of CO2 in High Performance Building and Infrastructure Products

    SciTech Connect

    DeCristofaro, Nicholas

    2015-11-01

    -core slabs, and aerated concrete were produced to verify the utility of the CO2-curing process. These products exhibited a range of part dimensions and densities that were representative of the precast concrete industry. In the subsequent Demonstration of Commercial Development phase, the characteristics and performance of Solidia Cement made at a LafargeHolcim cement plant were established. This Solidia Cement was then used to demonstrate the CO2-curing process within operating concrete plants. Pavers, concrete masonry units and roofing tiles were produced according to ASTM and manufacturer specifications. A number of attractive manufacturing economies were recognized when Solidia Cement-based concrete parts were compared to their Portland cement based counterparts. These include reduced raw materials waste, reduced dependence on admixtures to control efflorescence, shorter curing time to full concrete strength, faster equipment clean-up, reduced equipment maintenance, and improved inventory management. These economies make the adoption of the Solidia Cement / CO2-curing process attractive even in the absence of environmental incentives. The culminating activity of the Demonstration of Commercial Development phase was the conversion of 10% of the manufacturing capacity at a concrete paver and block company from Portland cement-based products to Solidia Cement-based products. The successful completion of the Demonstration of Commercial Development phase clearly illustrated the environmental benefits associated with Solidia Cement and Solidia Concrete technologies. The industrial production of Solidia Cement, as a low-lime alternative to traditional Portland cement, reduces CO2 emissions at the cement kiln from 816 kg of CO2 per tonne of Portland cement clinker to 570 kg per tonne of Solidia Cement clinker. Industrial scale CO2-curing of Solidia Concrete sequestered a net of 183 kg of CO2 per tonne of Solidia Cement used in concrete pavers. Taken together, these two effects

  4. Building Maintenance. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Taylor, Ernest

    Several intermediate performance objectives and corresponding criterion measures are listed for each of the 13 terminal objectives for a basic high school building maintenance course (the first year of a 3-year program). The materials were developed for a 36-week course (2 hours daily) designed to enable 10th grade students to develop competencies…

  5. Building America Case Study: High Performance Ducts in Hot-Dry Climates; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-08-01

    ?Ducts in conditioned space (DCS) represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. Various strategies exist for incorporating ducts within the conditioned thermal envelope. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of various DCS strategies. Builders were given incentives and design support in exchange for providing site access for construction observation, diagnostic testing, and builder survey feedback. Information from the project was designed to feed into California's 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project complemented information collected in the California project with BEopt simulations of DCS performance in hot/dry climate regions.

  6. Virtual Design Studio (VDS) - Development of an Integrated Computer Simulation Environment for Performance Based Design of Very-Low Energy and High IEQ Buildings

    SciTech Connect

    Chen, Yixing; Zhang, Jianshun; Pelken, Michael; Gu, Lixing; Rice, Danial; Meng, Zhaozhou; Semahegn, Shewangizaw; Feng, Wei; Ling, Francesca; Shi, Jun; Henderson, Hugh

    2013-09-01

    Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation tools as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus

  7. Building America Case Study: Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes; Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-05-01

    ?This project represents the third phase of a multi-year effort to develop and bring to market a High Performance Manufactured Home (HPMH). The scope of this project involved building four HPMH prototypes, resulting in what is expected to be a 30% savings relative to the Building America Benchmark. (The actual % savings varies depending on choice of heating equipment and climate zone). The HPMH home is intended to make significant progress toward performing as zero-net-energy ready. Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.
    home is intended to make significant progress toward performing as zero-net-energy ready. Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.

  8. The Cost-Effectiveness of Investments to Meet the Guiding Principles for High-Performance Sustainable Buildings on the PNNL Campus

    SciTech Connect

    Cort, Katherine A.; Judd, Kathleen S.

    2014-08-29

    As part its campus sustainability efforts, Pacific Northwest National Laboratory (PNNL) has invested in eight new and existing buildings to ensure they meet the U.S. Department of Energy’s requirements for high performance sustainable buildings (HPSB) at DOE sites. These investments are expected to benefit PNNL by reducing the total life-cycle cost of facilities, improving energy efficiency and water conservation, and making buildings safer and healthier for the occupants. This study examines the cost-effectiveness of the implementing measures that meet the criteria for HPSBs in 3 different types of buildings on the PNNL campus: offices, scientific laboratories, and data centers. In each of the three case studies examined the investments made to achieve HPSB status demonstrated a high return on the HPSB investments that have taken place in these varied environments. Simple paybacks for total investments in the three case study buildings ranged from just 2 to 5 years; savings-to-investment ratios all exceeded the desirable threshold of 1; and the net present values associated with these investments were all positive.

  9. Bay-annulated indigo (BAI) as an excellent electron accepting building block for high performance organic semiconductors

    SciTech Connect

    Liu, Yi; He, Bo; Pun, Andrew

    2016-04-19

    A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.

  10. Bay-annulated indigo (BAI) as an excellent electron accepting building block for high performance organic semiconductors

    DOEpatents

    Liu, Yi; He, Bo; Pun, Andrew

    2015-11-24

    A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.

  11. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries.

    PubMed

    Jia, Xilai; Chen, Zheng; Cui, Xia; Peng, Yiting; Wang, Xiaolei; Wang, Ge; Wei, Fei; Lu, Yunfeng

    2012-11-27

    Design and fabrication of effective electrode structure is essential but is still a challenge for current lithium-ion battery technology. Herein we report the design and fabrication of a class of high-performance robust nanocomposites based on iron oxide spheres and carbon nanotubes (CNTs). An efficient aerosol spray process combined with vacuum filtration was used to synthesize such composite architecture, where oxide nanocrystals were assembled into a continuous carbon skeleton and entangled in porous CNT networks. This material architecture offers many critical features that are required for high-performance anodes, including efficient ion transport, high conductivity, and structure durability, therefore enabling an electrode with outstanding lithium storage performance. For example, such an electrode with a thickness of ∼35 μm could deliver a specific capacity of 994 mA h g(-1) (based on total electrode weight) and high recharging rates. This effective strategy can be extended to construct many other composite electrodes for high-performance lithium-ion batteries.

  12. Building America Best Practices Series - High-Performance Home Technologies: Guide to Determining Climate Regions by County

    SciTech Connect

    Baechler, Michael C.; Gilbride, Theresa L.; Cole, Pam C.; Hefty, Marye G.; Ruiz, Kathi

    2013-11-01

    This report identifies the climate region of each county in the United States. The report is intended as an aid in helping builders to identify the appropriate climate designation for the counties in which they are building.

  13. High Performance Window Retrofit

    SciTech Connect

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  14. Switchable window modeling. Task 12: Building energy analysis and design tools for solar applications, Subtask A.1: High-performance glazing

    SciTech Connect

    Reilly, S.; Selkowitz, S.; Winkelmann, F.

    1992-06-30

    This document presents the work conducted as part of Subtask A.1, High-Performance Glazing, of Task 12 of the IEA Solar Heating and Cooling Program. At the start of the task, the participants agreed that chromogenic technology (switchable glazing) held considerable promise, and that algorithms to accurately model their dynamic behavior were needed. The purpose of this subtask was to develop algorithms that could be incorporated into building energy analysis programs for predicting the thermal and optical performance of switchable windows. The work entailed a review of current techniques for modelling switchable glazing in windows and switchable windows in buildings and methods for improving upon existing modeling approaches. The proposed approaches correct some of the shortcomings in the existing techniques, and could be adapted for use in other similar programs. The proposed approaches generally provide more detailed calculations needed for evaluating the short-term (hourly and daily) impact of switchable windows on the energy and daylighting performance of a building. Examples of the proposed algorithms are included.

  15. Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Brochure)

    SciTech Connect

    Not Available

    2014-09-01

    There is mounting evidence that zero energy can, in many cases, be achieved within typical construction budgets. To ensure that the momentum behind zero energy buildings and other low-energy buildings will continue to grow, this guide assembles recommendations for replicating specific successes of early adopters who have met their energy goals while controlling costs. Contents include: discussion of recommended cost control strategies, which are grouped by project phase (acquisition and delivery, design, and construction) and accompanied by industry examples; recommendations for balancing key decision-making factors; and quick reference tables that can help teams apply strategies to specific projects.

  16. Transparent and Self-Supporting Graphene Films with Wrinkled- Graphene-Wall-Assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors.

    PubMed

    Li, Na; Huang, Xuankai; Zhang, Haiyan; Li, Yunyong; Wang, Chengxin

    2017-03-22

    Improving mass loading while maintaining high transparency and large surface area in one self-supporting graphene film is still a challenge. Unfortunately, all of these factors are absolutely essential for enhancing the energy storage performance of transparent supercapacitors for practical applications. To solve the above bottleneck problem, we produce a novel self-supporting flexible and transparent graphene film (STF-GF) with wrinkled-wall-assembled opened-hollow polyhedron building units. Taking advantage of the microscopic morphology, the STF-GF exhibits improved mass loading with high transmittance (70.2% at 550 nm), a large surface area (1105.6 m(2)/g), and good electrochemical performance: high energy (552.3 μWh/cm(3)), power densities (561.9 mW/cm(3)), a superlong cycle life, and good cycling stability (the capacitance retention is ∼94.8% after 20,000 cycles).

  17. Building a medical multimedia database system to integrate clinical information: an application of high-performance computing and communications technology.

    PubMed Central

    Lowe, H J; Buchanan, B G; Cooper, G F; Vries, J K

    1995-01-01

    The rapid growth of diagnostic-imaging technologies over the past two decades has dramatically increased the amount of nontextual data generated in clinical medicine. The architecture of traditional, text-oriented, clinical information systems has made the integration of digitized clinical images with the patient record problematic. Systems for the classification, retrieval, and integration of clinical images are in their infancy. Recent advances in high-performance computing, imaging, and networking technology now make it technologically and economically feasible to develop an integrated, multimedia, electronic patient record. As part of The National Library of Medicine's Biomedical Applications of High-Performance Computing and Communications program, we plan to develop Image Engine, a prototype microcomputer-based system for the storage, retrieval, integration, and sharing of a wide range of clinically important digital images. Images stored in the Image Engine database will be indexed and organized using the Unified Medical Language System Metathesaurus and will be dynamically linked to data in a text-based, clinical information system. We will evaluate Image Engine by initially implementing it in three clinical domains (oncology, gastroenterology, and clinical pathology) at the University of Pittsburgh Medical Center. Images PMID:7703940

  18. Building Enclosure Hygrothermal Performance Study, Phase 1

    SciTech Connect

    Karagiozis, A.N.

    2002-08-08

    The moisture performance of three different classes of wall systems has been investigated in the context of the preliminary hygrothermal analysis of walls in Seattle. The results reported in this phase specifically address the moisture performance of walls designed with loads that have some unintentional water penetration. The results have been developed in a manner to present the relative performance of the walls in the same climate with similar water penetration effects. The analysis was performed with the best available input data. Several limitations should be recognized within the context of this study. Results showed that selection of wooden sheathing boards on interior vapor-tight assemblies does not significantly influence the performance of stucco-clad walls. A larger effect was observed when the interior vapor control is made vapor open. When continuous cavity ventilation is employed, the effect of the selection of the type of sheathing board on the hygrothermal performance of the wall was found to be negligible. When comparing oriented strand board sheathing performance against the performance of exterior grade gypsum, the differences are very significant in terms of the amount of moisture content present in the walls. Moisture content alone does not indicate their respective durability as durability is directly related to the combination of relative humidity and temperature, mechanical, chemical, and biological properties of the substrates. This study did not investigate the durability performance of either sheathing. In terms of interior vapor control, inhabitant behavior must be considered during the wall hygrothermal design stage. If interior relative humidity is maintained below 60%, then a latex primer and paint may perform better than the use of PVA or even a polyethylene sheet. When the interior environment is maintained at a higher relative humidity, then stricter vapor control is needed. Multilayered building paper was experimentally shown to

  19. Highlighting High Performance: National Renewable Energy Laboratory's Thermal Test Facility, Golden, Colorado. Office of Building Technology State and Community Programs (BTS) Brochure

    SciTech Connect

    Burgert, S.

    2002-10-21

    The National Renewable Energy Laboratory's Thermal Test Facility in Golden, Colorado, was designed using a whole-building approach--looking at the way the building's systems worked together most efficiently. Researchers monitor the performance of the 11,000-square-foot building, which boasts an energy cost savings of 63% for heating, cooling, and lighting. The basic plan of the building can be adapted to many needs, including retail and warehouse space. The Thermal Test Facility contains office and laboratory space; research focuses on the development of energy-efficiency and renewable energy technologies that are cost-effective and environmentally friendly.

  20. Building Nationally-Focussed, Globally Federated, High Performance Earth Science Platforms to Solve Next Generation Social and Economic Issues.

    NASA Astrophysics Data System (ADS)

    Wyborn, Lesley; Evans, Ben; Foster, Clinton; Pugh, Timothy; Uhlherr, Alfred

    2015-04-01

    Digital geoscience data and information are integral to informing decisions on the social, economic and environmental management of natural resources. Traditionally, such decisions were focused on regional or national viewpoints only, but it is increasingly being recognised that global perspectives are required to meet new challenges such as predicting impacts of climate change; sustainably exploiting scarce water, mineral and energy resources; and protecting our communities through better prediction of the behaviour of natural hazards. In recent years, technical advances in scientific instruments have resulted in a surge in data volumes, with data now being collected at unprecedented rates and at ever increasing resolutions. The size of many earth science data sets now exceed the computational capacity of many government and academic organisations to locally store and dynamically access the data sets; to internally process and analyse them to high resolutions; and then to deliver them online to clients, partners and stakeholders. Fortunately, at the same time, computational capacities have commensurately increased (both cloud and HPC): these can now provide the capability to effectively access the ever-growing data assets within realistic time frames. However, to achieve this, data and computing need to be co-located: bandwidth limits the capacity to move the large data sets; the data transfers are too slow; and latencies to access them are too high. These scenarios are driving the move towards more centralised High Performance (HP) Infrastructures. The rapidly increasing scale of data, the growing complexity of software and hardware environments, combined with the energy costs of running such infrastructures is creating a compelling economic argument for just having one or two major national (or continental) HP facilities that can be federated internationally to enable earth and environmental issues to be tackled at global scales. But at the same time, if

  1. Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires for high performance concurrent photocatalytic membrane water purification.

    PubMed

    Bai, Hongwei; Liu, Lei; Liu, Zhaoyang; Sun, Darren Delai

    2013-08-01

    Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D TiO2 nanoribbon/wires were hydrothermally synthesized via controlling the hydrolysis rate of precursor by EG. It is found that the EG and Cl(-) in the precursor solution are the dominant factors in controlling the hydrolysis rate of Ti(4+) from TTIP, and the growing direction of 1D TiO2, respectively. Through optimizing the molar ratio of TTIP:EG, hierarchical 3D dendritic TiO2 nanospheres building with long 1D nanoribbons (TiO2 nanoribbon spheres) were synthesized at a molar ratio of TTIP:EG = 1:2. And hierarchical 3D dendritic TiO2 nanospheres building with even longer and thinner 1D TiO2 nanowires (TiO2 nanowire spheres) were synthesized via further reducing the hydrolysis rate of Ti(4+) by increasing the content of EG at a molar ratio of TTIP:EG = 1:3. The hierarchical 3D dendritic TiO2 nanoribbon/wire spheres were well characterized by a variety of techniques such as FESEM, TEM, XRD, N2 adsorption/desorption, UV-vis spectra, etc. A "win-win" strategy was developed to integrate the hierarchical TiO2 nanoribbon/wire spheres and membrane for high performance photocatalytic membrane water purification through maximizing the advantages of TiO2 photocatalysis and membrane, while minimizing their disadvantages. Hierarchical TiO2 nanoribbon/wire spheres exhibited high performance for water purification in terms of high flux, low fouling, high removal rate of pollutants, and long lifespan of membrane, both in concurrent dead end and cross flow membrane system. The rationale behind this phenomenon lies in that the hierarchical TiO2 nanoribbon/wire spheres in the concurrent system possess the advantages of mitigating the membrane fouling via photocatalytic degrading the organic pollutants relying on their high photocatalytic activities; and keeping high water flux owing to the porous functional layer favorable for water pass through. The experimental results demonstrated that the hierarchical TiO2

  2. wolfPAC: building a high-performance distributed computing network for phylogenetic analysis using 'obsolete' computational resources.

    PubMed

    Reeves, Patrick A; Friedman, Philip H; Richards, Christopher M

    2005-01-01

    wolfPAC is an AppleScript-based software package that facilitates the use of numerous, remotely located Macintosh computers to perform computationally-intensive phylogenetic analyses using the popular application PAUP* (Phylogenetic Analysis Using Parsimony). It has been designed to utilise readily available, inexpensive processors and to encourage sharing of computational resources within the worldwide phylogenetics community.

  3. Experimental Evaluation of Indoor Air Distribution in High-Performance Residential Buildings: Part I. General Descriptions and Qualification Tests

    SciTech Connect

    Jalalzadeh, A. A.; Hancock, E.; Powell, D.

    2007-12-01

    The main objective of this project is to experimentally characterize an air distribution system in heating mode during a period of recovery from setback. The specific air distribution system under evaluation incorporates a high sidewall supply-air register/diffuser and a near-floor wall return air grille directly below. With this arrangement, the highest temperature difference between the supply air and the room can occur during the recovery period and create a favorable condition for stratification. The experimental approach will provide realistic input data and results for verification of computational fluid dynamics modeling.

  4. High-tech buildings - Market transformation project

    SciTech Connect

    Applications Team

    2001-10-01

    Facility managers and designers know their buildings are energy intensive yet have few techniques to quantify cleanroom energy performance. Benchmarking identifies the energy end uses in a cleanroom. As expected, besides the process loads, which are often very intense, the mechanical systems are the most energy intensive in these buildings. Benchmarking the mechanical systems and components can provide useful information on system and component performance and provide a basis to identify energy-saving opportunities in cleanrooms. HVAC systems in cleanrooms are dramatically different from their counterparts in commercial buildings in terms of reliability, safety requirements, and scale. The design of cleanroom HVAC systems is a specialty area requiring unique understanding of cleanliness guidelines, airflow quantities, room pressurization, code requirements, specialty equipment, tight control, and many more details. The HVAC systems must also operate reliably and safely. Since recirculation air systems use large amounts of fan power in moving large amounts of conditioned air through HEPA filters, the cleanroom, and return pathways they represent one of the largest energy end uses in a cleanroom. In addition, many processes requiring cleanrooms also have large make-up and exhaust airflow needs requiring huge amounts of energy to move and condition the displaced air. Energy intensity for mechanical systems in cleanrooms ranges between 4 to 100 times that of commercial buildings. There is, however, a lack of comparative data on the performance of cleanroom mechanical systems. To better understand existing cleanroom systems in high technology industries, and to better enable building owners, operators, and designers to compare energy use for a given cleanroom to others, it is necessary to benchmark energy performance in such facilities.

  5. Duct thermal performance models for large commercial buildings

    SciTech Connect

    Wray, Craig P.

    2003-10-01

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of

  6. Rating the energy performance of buildings

    SciTech Connect

    Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

    2004-12-01

    In order to succeed in developing a more sustainable society, buildings will need to be continuously improved. This paper discusses how to rate the energy performance of buildings. A brief review of recent approaches to energy rating is presented. It illustrates that there is no single correct or wrong concept, but one needs to be aware of the relative impact of the strategies. Different strategies of setting energy efficiency standards are discussed and the advantages of the minimum life cycle cost are shown. Indicators for building energy rating based on simulations, aggregated statistics and expert knowledge are discussed and illustrated in order to demonstrate strengths and weaknesses of each approach. In addition, the importance of considering the level of amenities offered is presented. Attributes of a rating procedure based on three elements, flexible enough for recognizing different strategies to achieve energy conservation, is proposed.

  7. Achieving high performance non-fullerene organic solar cells through tuning the numbers of electron deficient building blocks of molecular acceptors

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Chen, Yusheng; Chen, Shangshang; Dong, Tao; Deng, Wei; Lv, Lei; Yang, Saina; Yan, He; Huang, Hui

    2016-08-01

    Two analogous dimer and tetramer compounds, SF-PDI2 and SF-PDI4, were designed, theoretically calculated, synthesized, and developed as electron acceptors for organic solar cells. The effects of the number of the electron deficient building blocks on the optical absorption, energy levels, charge transport, morphology, crystallinity, and photovoltaic performance of the molecules were investigated. In combination with two different donors, PTB7-Th and PffBT4T-2OD, the results showed that increasing the numbers of PDI building blocks is beneficial to photovoltaic performance and leads to efficiency over 5%.

  8. 5 strategies for building a top-performing hospital.

    PubMed

    McCarthy, Kathleen H

    2012-11-01

    A hospital's strategy for attaining high performance under value-based business models should focus on five key objectives: Building meaningful scale and scope; Focusing on more integrated care delivery and management; Attaining demonstrably high levels of clinical quality; Differentiating from the competition through superior customer service; Establishing a competitive cost position.

  9. Development of an Integrated Process, Modeling and Simulation Platform for Performance-Based Design of Low-Energy and High IEQ Buildings

    ERIC Educational Resources Information Center

    Chen, Yixing

    2013-01-01

    The objective of this study was to develop a "Virtual Design Studio (VDS)": a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. The VDS is intended to assist collaborating architects,…

  10. Performance, Performance System, and High Performance System

    ERIC Educational Resources Information Center

    Jang, Hwan Young

    2009-01-01

    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  11. How Principals Level the Playing Field of Accountability in Florida's High-Poverty/Low-Performing Schools-Part II: Building Organizational Capacity under the Auspices of the A+ Plan.

    ERIC Educational Resources Information Center

    Acker-Hocevar, Michele; Touchton, Debra

    2002-01-01

    The second in three-part series on how the principals in 10 low-performing/high-poverty schools met the challenge of Florida's 1999 high-stakes testing and accountability initiative. Examines the challenges principals faced in trying to build organizational capacity from three perspectives: principals' beliefs and values, "it takes a whole…

  12. A Systems Approach to High Performance Buildings: A Computational Systems Engineering R&D Program to Increase DoD Energy Efficiency

    DTIC Science & Technology

    2012-02-01

    for Low Energy Building Ventilation and Space Conditioning Systems...Building Energy Models ................... 162 APPENDIX D: Reduced-Order Modeling and Control Design for Low Energy Building Systems .... 172 D.1...Design for Low Energy Building Ventilation and Space Conditioning Systems This section focuses on the modeling and control of airflow in buildings

  13. High Performance Schools--It's a No-Brainer.

    ERIC Educational Resources Information Center

    Nicklas, Mike

    2002-01-01

    A North Carolina middle school demonstrates that high performance, sustainable school buildings cost no more to build and are more comfortable and productive learning environments than conventional buildings. (Author)

  14. The impact of roofing material on building energy performance

    NASA Astrophysics Data System (ADS)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  15. Procedure for Measuring and Reporting Commercial Building Energy Performance

    SciTech Connect

    Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

    2005-10-01

    This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

  16. Building America Top Innovations 2012: Tankless Gas Water Heater Performance

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America field testing that shed light on how real-world water usage affects energy saving estimates of high-efficiency water heating systems.

  17. High performance polymer development

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.

  18. Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts

    SciTech Connect

    Not Available

    2006-06-01

    This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  19. Analysis of the seismic performance of isolated buildings according to life-cycle cost.

    PubMed

    Dang, Yu; Han, Jian-Ping; Li, Yong-Tao

    2015-01-01

    This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment.

  20. Analysis of the Seismic Performance of Isolated Buildings according to Life-Cycle Cost

    PubMed Central

    Dang, Yu; Han, Jian-ping; Li, Yong-tao

    2015-01-01

    This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment. PMID:25653677

  1. Re-Assessing Green Building Performance: A Post Occupancy Evaluation of 22 GSA Buildings

    SciTech Connect

    Fowler, Kimberly M.; Rauch, Emily M.; Henderson, Jordan W.; Kora, Angela R.

    2010-06-01

    2nd report on the performance of GSA's sustainably designed buildings. The purpose of this study was to provide an overview of measured whole building performance as it compares to GSA and industry baselines. The PNNL research team found the data analysis illuminated strengths and weaknesses of individual buildings as well as the portfolio of buildings. This section includes summary data, observations that cross multiple performance metrics, discussion of lessons learned from this research, and opportunities for future research. The summary of annual data for each of the performance metrics is provided in Table 25. The data represent 1 year of measurements and are not associated with any specific design features or strategies. Where available, multiple years of data were examined and there were minimal significant differences between the years. Individually focused post occupancy evaluation (POEs) would allow for more detailed analysis of the buildings. Examining building performance over multiple years could potentially offer a useful diagnostic tool for identifying building operations that are in need of operational changes. Investigating what the connection is between the building performance and the design intent would offer potential design guidance and possible insight into building operation strategies. The 'aggregate operating cost' metric used in this study represents the costs that were available for developing a comparative industry baseline for office buildings. The costs include water utilities, energy utilities, general maintenance, grounds maintenance, waste and recycling, and janitorial costs. Three of the buildings that cost more than the baseline in Figure 45 have higher maintenance costs than the baseline, and one has higher energy costs. Given the volume of data collected and analyzed for this study, the inevitable request is for a simple answer with respect to sustainably designed building performance. As previously stated, compiling the

  2. High performance collectors

    NASA Astrophysics Data System (ADS)

    Ogawa, H.; Hozumi, S.; Mitsumata, T.; Yoshino, K.; Aso, S.; Ebisu, K.

    1983-04-01

    Materials and structures used for flat plate solar collectors and evacuated tubular collectors were examined relative to their overall performance to project effectiveness for building heating and cooling and the feasibility of use for generating industrial process heat. Thermal efficiencies were calculated for black paint single glazed, selective surface single glazed, and selective surface double glazed flat plate collectors. The efficiencies of a single tube and central tube accompanied by two side tube collectors were also studied. Techniques for extending the lifetimes of the collectors were defined. The selective surface collectors proved to have a performance superior to other collectors in terms of the average annual energy delivered. Addition of a black chrome-coated fin system to the evacuated collectors produced significant collection efficiency increases.

  3. High performance systems

    SciTech Connect

    Vigil, M.B.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  4. Integrated Performance Criteria for Housing and Building Hazard Mitigation.

    DTIC Science & Technology

    1984-07-01

    principle objective, the program described S herein Is based on several precepts: 1. That the needs of all participants in the design-build- operate process ... process of Identifying the problems that must be addressed at the Interfaces between performance criteria development and risk-level determinations by...to do so outside the normal building and building regulatory processes have all too frequently proven to be counterproductive be- cause of overlaps

  5. High Performance Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2003-01-01

    This report summarizes results from research on high performance polymers. The research areas proposed in this report include: 1) Effort to improve the synthesis and to understand and replicate the dielectric behavior of 6HC17-PEK; 2) Continue preparation and evaluation of flexible, low dielectric silicon- and fluorine- containing polymers with improved toughness; and 3) Synthesis and characterization of high performance polymers containing the spirodilactam moiety.

  6. 76 FR 74050 - Measured Building Energy Performance Data Taxonomy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... Office of Energy Efficiency and Renewable Energy Measured Building Energy Performance Data Taxonomy AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of request..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000...

  7. Building America Performance Analysis Procedures: Revision 1

    SciTech Connect

    2004-06-01

    To measure progress toward multi-year research goals, cost and performance trade-offs are evaluated through a series of controlled field and laboratory experiments supported by energy analysis techniques using test data to calibrate simulation models.

  8. A Tutorial for Building CMMI Process Performance Models

    DTIC Science & Technology

    2010-04-26

    Process Simulation • Other Advanced Modeling Techniques • Markov Petri net Neural Nets Systems Dynamics, - , , 47 Robert Stoddard and Dave Zubrow...SSTC 2010 A Tutorial for Building CMMI Process Performance Models Software Engineering Institute C i M ll U i itarneg e e on n vers y...2010 to 00-00-2010 4. TITLE AND SUBTITLE A Tutorial for Building CMMI Process Performance Moels 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  9. Infrared survey of 50 buildings constructed during 100 years: thermal performances and damage conditions

    NASA Astrophysics Data System (ADS)

    Ljungberg, Sven-Ake

    1995-03-01

    Different building constructions and craftsmanship give rise to different thermal performance and damage conditions. The building stock of most industrial countries consists of buildings of various age, and constructions, from old historic buildings with heavy stone or wooden construction, to new buildings with heavy or light concrete construction, or modern steel or wooden construction. In this paper the result from a detailed infrared survey of 50 buildings from six Swedish military camps is presented. The presentation is limited to a comparison of thermal performance and damage conditions of buildings of various ages, functions, and constructions, of a building period of more than 100 years. The result is expected to be relevant even to civilian buildings. Infrared surveys were performed during 1992-1993, with airborne, and mobile short- and longwave infrared systems, out- and indoor thermography. Interpretation and analysis of infrared data was performed with interactive image and analyzing systems. Field inspections were carried out with fiber optics system, and by ocular inspections. Air-exchange rate was measured in order to quantify air leakages through the building envelope, indicated in thermograms. The objects studied were single-family houses, barracks, office-, service-, school- and exercise buildings, military hotels and restaurants, aircraft hangars, and ship factory buildings. The main conclusions from this study are that most buildings from 1880 - 1940 have a solid construction with a high quality of craftsmanship, relatively good thermal performance, due to extremely thick walls, and adding insulation at the attic floor. From about 1940 - 1960 the quality of construction, thermal performance and craftsmanship seem to vary a lot. Buildings constructed during the period of 1960 - 1990 have in general the best thermal performance due to a better insulation capacity, however, also one finds here the greatest variety of problems. The result from this

  10. Building Cost and Performance Metrics: Data Collection Protocol, Revision 1.0

    SciTech Connect

    Fowler, Kimberly M.; Solana, Amy E.; Spees, Kathleen L.

    2005-09-29

    This technical report describes the process for selecting and applying the building cost and performance metrics for measuring sustainably designed buildings in comparison to traditionally designed buildings.

  11. High performance polymeric foams

    SciTech Connect

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-08-28

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy.

  12. Building Leadership Talent through Performance Evaluation

    ERIC Educational Resources Information Center

    Clifford, Matthew

    2015-01-01

    Most states and districts scramble to provide professional development to support principals, but "principal evaluation" is often lost amid competing priorities. Evaluation is an important method for supporting principal growth, communicating performance expectations to principals, and improving leadership practice. It provides leaders…

  13. LED Lighting in a Performing Arts Building

    SciTech Connect

    Miller, N. J.; Kaye, S. M.; Coleman, P. M.; Wilkerson, A. M.; Perrin, T. E.; Sullivan, G. P.

    2014-07-31

    At the University of Florida in Gainesville, the DOE Solid-State Lighting GATEWAY program evaluated LED architectural and theatrical lighting in four academic/performance-related spaces within the Nadine McGuire Theatre + Dance Pavilion. Due to a wise choice of products and luminaire light distributions, the change brought significant quality improvements including improved controllability and color.

  14. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  15. High-Performance Happy

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2007-01-01

    Traditionally, the high-performance computing (HPC) systems used to conduct research at universities have amounted to silos of technology scattered across the campus and falling under the purview of the researchers themselves. This article reports that a growing number of universities are now taking over the management of those systems and…

  16. High Performance, Dependable Multiprocessor

    NASA Technical Reports Server (NTRS)

    Ramos, Jeremy; Samson, John R.; Troxel, Ian; Subramaniyan, Rajagopal; Jacobs, Adam; Greco, James; Cieslewski, Grzegorz; Curreri, John; Fischer, Michael; Grobelny, Eric; George, Alan; Aggarwal, Vikas; Patel, Minesh; Some, Raphael

    2006-01-01

    With the ever increasing demand for higher bandwidth and processing capacity of today's space exploration, space science, and defense missions, the ability to efficiently apply commercial-off-the-shelf (COTS) processors for on-board computing is now a critical need. In response to this need, NASA's New Millennium Program office has commissioned the development of Dependable Multiprocessor (DM) technology for use in payload and robotic missions. The Dependable Multiprocessor technology is a COTS-based, power efficient, high performance, highly dependable, fault tolerant cluster computer. To date, Honeywell has successfully demonstrated a TRL4 prototype of the Dependable Multiprocessor [I], and is now working on the development of a TRLS prototype. For the present effort Honeywell has teamed up with the University of Florida's High-performance Computing and Simulation (HCS) Lab, and together the team has demonstrated major elements of the Dependable Multiprocessor TRLS system.

  17. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-12-31

    DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

  18. Using Whole Building Performance Measurement to Develop a Business Case

    SciTech Connect

    Fowler, Kimberly M.

    2006-09-15

    Since 1998 the U.S. Navy?s Naval Facilities Engineering Command (NAVFAC) has had a policy for incorporating sustainable design principles into new building construction. The policy also states it is the intent of NAVFAC to accomplish this within the given budget constraints and while meeting customer requirements. Programming a building using a first cost approach instead of a life cycle cost approach is one of the biggest challenges for integrating sustainable design into projects at the Navy. Due to this hurdle, an attempt to develop a Navy specific business case was undertaken. Through this process, it was discovered that consistent data were not being collected for all applicable Navy buildings. Therefore, the current business case information being used by the Navy is the conglomeration of existing business case analysis in the literature. Although this business case information is useful, there is still a need for collecting and analyzing the Navy business case. To develop the Navy specific business case, NAVFAC is developing program metrics to capture the status of buildings in the design and construction phase and they have started to collect whole building cost and performance data for 14 buildings (7 sustainably designed and 7 traditionally designed buildings) to capture data on their existing inventory of sustainably design buildings. Performance measurement data are being collected on water, energy, operations and maintenance, waste generation, purchasing, occupant satisfaction, and transportation. The building cost and performance data will be collected for a minimum of 12 months. Both of these data collection and analysis efforts have offered lessons learned that will be shared alongside the current Navy business case information.

  19. APPLICATION OF DOE-2 TO RESIDENTIAL BUILDING ENERGY PERFORMANCE STANDARDS

    SciTech Connect

    Lokmanhekim, M.; Goldstein, D. B.; Levine, M. D.; Rosenfield, A. H.

    1980-10-01

    One important requirement emerging from national and international efforts to shift from our present energy-intensive way of life to an energy conservation mode is the development of standards for assessing and regulating energy use and performance in buildings. This paper describes a life-cycle-cost approach to Building Energy Performance Standards (BEPS) calculated by using DOE-2: The Energy Use Analysis of Buildings Computer Program. The procedure outlined raises important questions that must be answered before the energy budgets devised from this approach can be reliably used as a policy tool, The DOE-2 program was used to calculate the energy consumption in prototype buildings and in their modified versions in which energy conservation measures were effected. The energy use of a modified building with lowest life-cycle-cost determines the energy budget for all buildings of that type. These calculations were based on a number of assumptions that may be controversial. These assumptions regard accuracy of the model, comparison of the DOE-2 program with other programs, stability of the energy budget, and sensitivity of the results to variations in the building parameters.

  20. High Performance FORTRAN

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush

    1994-01-01

    High performance FORTRAN is a set of extensions for FORTRAN 90 designed to allow specification of data parallel algorithms. The programmer annotates the program with distribution directives to specify the desired layout of data. The underlying programming model provides a global name space and a single thread of control. Explicitly parallel constructs allow the expression of fairly controlled forms of parallelism in particular data parallelism. Thus the code is specified in a high level portable manner with no explicit tasking or communication statements. The goal is to allow architecture specific compilers to generate efficient code for a wide variety of architectures including SIMD, MIMD shared and distributed memory machines.

  1. A Model for Sustainable Building Energy Efficiency Retrofit (BEER) Using Energy Performance Contracting (EPC) Mechanism for Hotel Buildings in China

    NASA Astrophysics Data System (ADS)

    Xu, Pengpeng

    Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to

  2. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  3. Fire in High Buildings. Fire Study No. 21.

    ERIC Educational Resources Information Center

    Galbreath, M.

    Research into and measures of fire protection with regard to high building design are discussed with suggestions for proper building equipment, materials, and planning. The study outlines how smoke and toxic gases spread in high buildings through stairs, service shafts, air handling and heating equipment. The problems of basement fires, means of…

  4. High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  5. Ventilation and infiltration in high-rise apartment buildings

    SciTech Connect

    Diamond, R.C.; Feustel, H.E.; Dickerhoff, D.J.

    1996-03-01

    Air flow, air leakage measurements and numerical simulations were made on a 13-story apartment building to characterize the ventilation rates for the individual apartments. Parametric simulations were performed for specific conditions, e.g., height, orientation, outside temperature and wind speed. Our analysis of the air flow simulations suggest that the ventilation to the individual units varies considerably. With the mechanical ventilation system disabled and no wind, units at the lower level of the building have adequate ventilation only on days with high temperature differences, while units on higher floors have no ventilation at all. Units facing the windward side will be over-ventilated when the building experiences wind directions between west and north. At the same time, leeward apartments did not experience any fresh air-because, in these cases, air flows enter the apartments from the corridor and exit through the exhaust shafts and the cracks in the facade. Even with the mechanical ventilation system operating, we found wide variation in the air flows to the individual apartments. In addition to the specific case presented here, these findings have more general implications for energy retrofits and health and comfort of occupants in high-rise apartment buildings.

  6. High Performance Work Practices and Firm Performance.

    ERIC Educational Resources Information Center

    Department of Labor, Washington, DC. Office of the American Workplace.

    A literature survey established that a substantial amount of research has been conducted on the relationship between productivity and the following specific high performance work practices: employee involvement in decision making, compensation linked to firm or worker performance, and training. According to these studies, high performance work…

  7. High Performance Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek; Kaewpijit, Sinthop

    1998-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operational. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, aimed at concentrating the vital information and discarding redundant data. One such transformation, which is widely used in remote sensing, is the Principal Components Analysis (PCA). This report summarizes our progress on the development of a parallel PCA and its implementation on two Beowulf cluster configuration; one with fast Ethernet switch and the other with a Myrinet interconnection. Details of the implementation and performance results, for typical sets of multispectral and hyperspectral NASA remote sensing data, are presented and analyzed based on the algorithm requirements and the underlying machine configuration. It will be shown that the PCA application is quite challenging and hard to scale on Ethernet-based clusters. However, the measurements also show that a high- performance interconnection network, such as Myrinet, better matches the high communication demand of PCA and can lead to a more efficient PCA execution.

  8. High performance sapphire windows

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.; Liou, Larry

    1993-01-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  9. Environmental performance of green building code and certification systems.

    PubMed

    Suh, Sangwon; Tomar, Shivira; Leighton, Matthew; Kneifel, Joshua

    2014-01-01

    We examined the potential life-cycle environmental impact reduction of three green building code and certification (GBCC) systems: LEED, ASHRAE 189.1, and IgCC. A recently completed whole-building life cycle assessment (LCA) database of NIST was applied to a prototype building model specification by NREL. TRACI 2.0 of EPA was used for life cycle impact assessment (LCIA). The results showed that the baseline building model generates about 18 thousand metric tons CO2-equiv. of greenhouse gases (GHGs) and consumes 6 terajoule (TJ) of primary energy and 328 million liter of water over its life-cycle. Overall, GBCC-compliant building models generated 0% to 25% less environmental impacts than the baseline case (average 14% reduction). The largest reductions were associated with acidification (25%), human health-respiratory (24%), and global warming (GW) (22%), while no reductions were observed for ozone layer depletion (OD) and land use (LU). The performances of the three GBCC-compliant building models measured in life-cycle impact reduction were comparable. A sensitivity analysis showed that the comparative results were reasonably robust, although some results were relatively sensitive to the behavioral parameters, including employee transportation and purchased electricity during the occupancy phase (average sensitivity coefficients 0.26-0.29).

  10. High performing micromachined retroreflector

    NASA Astrophysics Data System (ADS)

    Lundvall, Axel; Nikolajeff, Fredrik; Lindstrom, Tomas

    2003-10-01

    This paper reports on the realization of a type of micromachined retroreflecting sheeting material. The geometry presented has high reflection efficiency even at large incident angles, and it can be manufactured through polymer replication techniques. The paper consists of two parts: A theoretical section outlining the design parameters and their impact on the optical performance, and secondly, an experimental part comprising both manufacturing and optical evaluation for a candidate retroreflecting sheet material in traffic control devices. Experimental data show that the retroreflecting properties are promising. The retroreflector consists of a front layer of densely packed spherical microlenses, a back surface of densely packed spherical micromirrors, and a transparent spacer layer. The thickness of the spacer layer determines in part the optical characteristics of the retroreflector.

  11. Synthesizing the Effect of Building Condition Quality on Academic Performance

    ERIC Educational Resources Information Center

    Gunter, Tracey; Shao, Jing

    2016-01-01

    Since the late 1970s, researchers have examined the relationship between school building condition and student performance. Though many literature reviews have claimed that a relationship exists, no meta-analysis has quantitatively examined this literature. The purpose of this review was to synthesize the existing literature on the relationship…

  12. Performance evaluation of the Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.

    1981-01-01

    The general performance of the NASA Solar Building Test Facility (SBTF) and its subsystems and components over a four year operational period is discussed, and data are provided for a typical one year period. The facility consists of a 4645 sq office building modified to accept solar heated water for operation of an absorption air conditioner and a baseboard heating system. An adjoining 1176 sq solar flat plate collector field with a 114 cu tank provides the solar heated water. The solar system provided 57 percent of the energy required for heating and cooling on an annual basis. The average efficiency of the solar collectors was 26 percent over a one year period.

  13. High Performance Work Systems and Firm Performance.

    ERIC Educational Resources Information Center

    Kling, Jeffrey

    1995-01-01

    A review of 17 studies of high-performance work systems concludes that benefits of employee involvement, skill training, and other high-performance work practices tend to be greater when new methods are adopted as part of a consistent whole. (Author)

  14. Data Preparation Process for the Buildings Performance Database

    SciTech Connect

    Walter, Travis; Dunn, Laurel; Mercado, Andrea; Brown, Richard E.; Mathew, Paul

    2014-06-30

    The Buildings Performance Database (BPD) includes empirically measured data from a variety of data sources with varying degrees of data quality and data availability. The purpose of the data preparation process is to maintain data quality within the database and to ensure that all database entries have sufficient data for meaningful analysis and for the database API. Data preparation is a systematic process of mapping data into the Building Energy Data Exchange Specification (BEDES), cleansing data using a set of criteria and rules of thumb, and deriving values such as energy totals and dominant asset types. The data preparation process takes the most amount of effort and time therefore most of the cleansing process has been automated. The process also needs to adapt as more data is contributed to the BPD and as building technologies over time. The data preparation process is an essential step between data contributed by providers and data published to the public in the BPD.

  15. Baxter Community—High Performance Green Building

    SciTech Connect

    2009-02-16

    This case study describes the Baxter community built by David Weekley Homes, which is reducing their energy demand through a number of techniques including advanced air sealing techniques, the installation of SEER 14 air conditioners, and Low-e windows in conjunction with conventional framing and insulation.

  16. Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation

    SciTech Connect

    Bazjanac, Vladimir

    2007-08-01

    The U.S. National Institute for Building Sciences (NIBS) started the development of the National Building Information Model Standard (NBIMS). Its goal is to define standard sets of data required to describe any given building in necessary detail so that any given AECO industry discipline application can find needed data at any point in the building lifecycle. This will include all data that are used in or are pertinent to building energy performance simulation and analysis. This paper describes the background that lead to the development of NBIMS, its goals and development methodology, its Part 1 (Version 1.0), and its probable impact on building energy performance simulation and analysis.

  17. High-albedo materials for reducing building cooling energy use

    SciTech Connect

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  18. Invention, design and performance of coconut agrowaste fiberboards for ecologically efficacious buildings

    NASA Astrophysics Data System (ADS)

    Lokko, Mae-ling Jovenes

    As global quantities of waste by-products from food production as well as the range of their applications increase, researchers are realizing critical opportunities to transform the burden of underutilized wastes into ecological profits. Within the tropical hot-humid region, where half the world's current and projected future population growth is concentrated, there is a dire demand for building materials to meet ambitious development schemes and rising housing deficits. However, the building sector has largely overlooked the potential of local agricultural wastes to serve as alternatives to energy-intensive, imported building technologies. Industrial ecologists have recently investigated the use of agrowaste biocomposites to replace conventional wood products that use harmful urea-formaldehyde, phenolic and isocyanate resins. Furthermore, developments in the performance of building material systems with respect to cost, energy, air quality management and construction innovation have evolved metrics about what constitutes material 'upcycling' within building life cycle. While these developments have largely been focused on technical and cost performance, much less attention has been paid to addressing deeply-seated social and cultural barriers to adoption that have sedimented over decades of importation. This dissertation evaluates the development coconut agricultural building material systems in four phases: (i) non-toxic, low-energy production of medium-high density boards (500-1200 kg/m3) from coconut fibers and emerging biobinders; (ii) characterization and evaluation of coconut agricultural building materials hygrothermal performance (iii) scaled-up design development of coconut modular building material systems and (iv) development of a value translation framework for the bottom-up distribution of value to stakeholders within the upcycling framework. This integrated design methodological approach is significant to develop ecological thinking around agrowaste

  19. High Performance Commercial Fenestration Framing Systems

    SciTech Connect

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  20. Strategy Guideline: Partnering for High Performance Homes

    SciTech Connect

    Prahl, D.

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

  1. Commoditization of High Performance Storage

    SciTech Connect

    Studham, Scott S.

    2004-04-01

    The commoditization of high performance computers started in the late 80s with the attack of the killer micros. Previously, high performance computers were exotic vector systems that could only be afforded by an illustrious few. Now everyone has a supercomputer composed of clusters of commodity processors. A similar commoditization of high performance storage has begun. Commodity disks are being used for high performance storage, enabling a paradigm change in storage and significantly changing the price point of high volume storage.

  2. Strategy Guideline. Partnering for High Performance Homes

    SciTech Connect

    Prahl, Duncan

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  3. Development of EnergyPlus Utility to Batch Simulate Building Energy Performance on a National Scale

    SciTech Connect

    Valencia, Jayson F.; Dirks, James A.

    2008-08-29

    EnergyPlus is a simulation program that requires a large number of details to fully define and model a building. Hundreds or even thousands of lines in a text file are needed to run the EnergyPlus simulation depending on the size of the building. To manually create these files is a time consuming process that would not be practical when trying to create input files for thousands of buildings needed to simulate national building energy performance. To streamline the process needed to create the input files for EnergyPlus, two methods were created to work in conjunction with the National Renewable Energy Laboratory (NREL) Preprocessor; this reduced the hundreds of inputs needed to define a building in EnergyPlus to a small set of high-level parameters. The first method uses Java routines to perform all of the preprocessing on a Windows machine while the second method carries out all of the preprocessing on the Linux cluster by using an in-house built utility called Generalized Parametrics (GPARM). A comma delimited (CSV) input file is created to define the high-level parameters for any number of buildings. Each method then takes this CSV file and uses the data entered for each parameter to populate an extensible markup language (XML) file used by the NREL Preprocessor to automatically prepare EnergyPlus input data files (idf) using automatic building routines and macro templates. Using a Linux utility called “make”, the idf files can then be automatically run through the Linux cluster and the desired data from each building can be aggregated into one table to be analyzed. Creating a large number of EnergyPlus input files results in the ability to batch simulate building energy performance and scale the result to national energy consumption estimates.

  4. Low Energy Building for High Energy People.

    ERIC Educational Resources Information Center

    American School and University, 1982

    1982-01-01

    The Huston Huffman Center at the University of Oklahoma's Norman campus has a jogging track as well as facilities for exercise and court games that are fully accessible to the handicapped. The building is set eight feet in the ground both to reduce its bulk and to conserve energy. (Author/MLF)

  5. High-School Buildings and Grounds. Bulletin, 1922, No. 23

    ERIC Educational Resources Information Center

    Bureau of Education, Department of the Interior, 1922

    1922-01-01

    The success of any high school depends largely upon the planning of its building. The wise planning of a high-school building requires familiarity with school needs and processes, knowledge of the best approved methods of safety, lighting, sanitation, and ventilation, and ability to solve the educational, structural, and architectural problems…

  6. High-albedo materials for reducing building cooling energy use

    SciTech Connect

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building's envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  7. Fenestration guideline for energy and daylight efficiency: Evaluation and prediction of performance in office buildings

    NASA Astrophysics Data System (ADS)

    Ko, Dong-Hwan

    The primary significance of this paper is the development of guidelines that can help in defining fenestration properties and design factors to increase building performances. Since the influence of fenestration on energy consumption is well known and proved, in order to encourage the development of appropriate designs to ensure high performance office buildings, fenestration guidelines have been developed. This research consisted of the following two parts. First, in relation to window design of typical office buildings, the main design parameters were considered for (1) daylight simulation using RADIANCE and (2) energy performance using eQUEST, based on the characteristics of the typical office building. Second, window area and properties such as U-factor, SHGC, and VT were considered, because building performance depends on a good configuration of fenestration factors. The main results of this research provide the necessary criteria with respect to fenestration in order to meet daylight requirements and conserve energy. These fenestration criteria are targeted at architects and designers to facilitate them in the selection of the U-factor, SHGC, VT, and window-to-wall ratio (WWR). Further, the application of the abovementioned method can result in more energy-efficient buildings, which, in turn, can assist in attaining an LEED green building rating system certification. In sum, in this research, guidelines to estimate energy conservation and daylight performance have been presented. Further, the use of the simplified method developed in this study can help in designing green buildings and obtaining more LEED credits. It is hoped that these criteria will enable architects to achieve better fenestration designs and ensure that they consider window properties and local climate types in the design process.

  8. Dinosaurs can fly -- High performance refining

    SciTech Connect

    Treat, J.E.

    1995-09-01

    High performance refining requires that one develop a winning strategy based on a clear understanding of one`s position in one`s company`s value chain; one`s competitive position in the products markets one serves; and the most likely drivers and direction of future market forces. The author discussed all three points, then described measuring performance of the company. To become a true high performance refiner often involves redesigning the organization as well as the business processes. The author discusses such redesigning. The paper summarizes ten rules to follow to achieve high performance: listen to the market; optimize; organize around asset or area teams; trust the operators; stay flexible; source strategically; all maintenance is not equal; energy is not free; build project discipline; and measure and reward performance. The paper then discusses the constraints to the implementation of change.

  9. High Performance Arcjet Engines

    NASA Technical Reports Server (NTRS)

    Kennel, Elliot B.; Ivanov, Alexey Nikolayevich; Nikolayev, Yuri Vyacheslavovich

    1994-01-01

    This effort sought to exploit advanced single crystal tungsten-tantalum alloy material for fabrication of a high strength, high temperature arcjet anode. The use of this material is expected to result in improved strength, temperature resistance, and lifetime compared to state of the art polycrystalline alloys. In addition, the use of high electrical and thermal conductivity carbon-carbon composites was considered, and is believed to be a feasible approach. Highly conductive carbon-carbon composite anode capability represents enabling technology for rotating-arc designs derived from the Russian Scientific Research Institute of Thermal Processes (NIITP) because of high heat fluxes at the anode surface. However, for US designs the anode heat flux is much smaller, and thus the benefits are not as great as in the case of NIITP-derived designs. Still, it does appear that the tensile properties of carbon-carbon can be even better than those of single crystal tungsten alloys, especially when nearly-single-crystal fibers such as vapor grown carbon fiber (VGCF) are used. Composites fabricated from such materials must be coated with a refractory carbide coating in order to ensure compatibility with high temperature hydrogen. Fabrication of tungsten alloy single crystals in the sizes required for fabrication of an arcjet anode has been shown to be feasible. Test data indicate that the material can be expected to be at least the equal of W-Re-HfC polycrystalline alloy in terms of its tensile properties, and possibly superior. We are also informed by our colleagues at Scientific Production Association Luch (NP0 Luch) that it is possible to use Russian technology to fabricate polycrystalline W-Re-HfC or other high strength alloys if desired. This is important because existing engines must rely on previously accumulated stocks of these materials, and a fabrication capability for future requirements is not assured.

  10. Building Integrated Active Flow Control: Improving the Aerodynamic Performance of Tall Buildings Using Fluid-Based Aerodynamic Modification

    NASA Astrophysics Data System (ADS)

    Menicovich, David

    By 2050 an estimated 9 billion people will inhabit planet earth and almost all the growth in the next 40 years will be in urban areas putting tremendous pressure on creating sustainable cities. The rapid increase in population, rise in land value and decrease in plot sizes in cities around the world positions tall or more importantly slender buildings as the best suited building typology to address the increasingly critical demand for space in this pressing urbanization trend. However, the majority of new tall building urban developments have not followed principles of environmental and/or sustainable design and incentives to innovate, both technological and economic, are urgently required. The biggest climatic challenge to the design, construction and performance of tall buildings is wind sensitivity. This challenge is further emphasized seeing two market driven trends: on one hand as urban population grows, land value rises while plot sizes decrease; on the other, more cost effective modular construction techniques are introducing much lighter tall building structures. The combination of the two suggests a potential increase in the slenderness ratio of tall buildings (typically less than 6:1 but stretching to 20:1 in the near future) where not-so-tall but much lighter buildings will be the bulk of new construction in densely populated cities, providing affordable housing in the face of fast urbanization but also introducing wind sensitivity which was previously the problem of a very limited number of super tall buildings to a much larger number of buildings and communities. The proposed research aims to investigate a novel approach to the interaction between tall buildings and their environment. Through this approach the research proposes a new relationship between buildings and the flows around, through and inside them, where buildings could adapt to better control and manage the air flow around them, and consequently produce significant opportunities to reduce

  11. Archaeomagnetic Study performed on Early Medieval Buildings from western France

    NASA Astrophysics Data System (ADS)

    Chauvin, A.; Lanos, P.; Dufresne, P.; Blain, S.; Guibert, P.; Oberlin, C.; Sapin, C.

    2009-05-01

    A multiple dating study, involving a collaboration between specialists of dating techniques (thermoluminescence (TL) and radiocarbon), historians of art and archaeologists, has been carried out on several early medieval buildings from western France. The early medieval period is not well known especially in France where there is a lack of visible evidence that identifies pre-Romanesque architecture. The majority of buildings to have survived from this period are religious ones, considered important enough to be made of strong, non-perishable material such as stone or brick, as for example the churches of Notre-Dame-sous- Terre in the Mont-Saint-Michel or St Martin in Angers. Due to their significance in architectural history, it is imperative to position them accurately in the chronology of the history of art. Bricks are often used to build up round-headed arches or to reinforce the frame of a wall with bonding courses in those churches. TL dating and archeomagnetic analysis were performed on cores drilled within bricks while radiocarbon dating were undertaken on coals found within mortars. In order to increase the number of data during the early Middle Ages, archeointensity determinations using the classical Thellier technique with anisotropy of thermal remanence and cooling rate corrections were performed. Archaeomagnetic directions were used to recognize the firing position of bricsk during manufacture. Reliable and precise ages were obtained on the church Notre-Dame-sous-Terre; they indicate two phases of building in 950±50AD and 990±50AD. Mean archeointensities obtained on 17 (21) samples from the first (second) phases appears very closed 69.1±1.2 and 68.3±1.6 microTesla. Ages and archeomagnetic results obtained on 4 other sites will be presented and compared to the available data in western Europe.

  12. Brain electrical responses to high- and low-ranking buildings.

    PubMed

    Oppenheim, Ilan; Mühlmann, Heiner; Blechinger, Gerhard; Mothersill, Ian W; Hilfiker, Peter; Jokeit, Hennric; Kurthen, Martin; Krämer, Günter; Grunwald, Thomas

    2009-07-01

    Since the ancient world, architecture generally distinguishes two categories of buildings with either high- or low-ranking design. High-ranking buildings are supposed to be more prominent and, therefore, more memorable. Here, we recorded event-related potentials (ERPs) to drawings of buildings with either high- or low-ranking architectural ornaments and found that ERP responses between 300 and 600 ms after stimulus presentation recorded over both frontal lobes were significantly more positive in amplitude to high-ranking buildings. Thus, ERPs differentiated reliably between both classes of architectural stimuli although subjects were not aware of the two categories. We take our data to suggest that neurophysiological correlates of building perception reflect aspects of an architectural rule system that adjust the appropriateness of style and content ("decorum"). Since this rule system is ubiquitous in Western architecture, it may define architectural prototypes that can elicit familiarity memory processes.

  13. Bedford Farmhouse High Performance Retrofit Prototype

    SciTech Connect

    2010-04-26

    In this case study, Building Science Corporation partnered with Habitat for Humanity of Greater Lowell on a retrofit of a mid-19th century farmhouse into affordable housing meeting Building America performance standards.

  14. High performance cyclone development

    SciTech Connect

    Giles, W.B.

    1981-01-01

    The results of cold flow experiments at atmospheric conditions of an air-shielded 18 in-dia electrocyclone with a central cusped electrode are reported using fine test dusts of both flyash and nickel powder. These results are found to confirm expectations of enhanced performance, similar to earlier work on a 12 in-dia model. An analysis of the combined inertial-electrostatic force field is also presented which identifies general design goals and scaling laws. From this, it is found that electrostatic enhancement will be particularly beneficial for fine dusts in large cyclones. Recommendations for further improvement in cyclone collection efficiency are proposed.

  15. High Performance Magnets

    DTIC Science & Technology

    2000-03-29

    Our efforts in this project were focused on three different materials, namely; interstitial Sm-Fe carbides and nitrides, high energy product Nd2Fe14B ...magnets with MgO addition, and nanocomposite Nd2Fe14B /alpha-Fe consisting of a fine mixture of hard and soft phases. In the Sm-Fe carbides and

  16. High Performance Biocomputation

    DTIC Science & Technology

    2005-03-01

    view, are failed grand challenges include the "War on Cancer " (circa 1970) and the "Decade of the Brain" in which an NIH report in 1990 argued that...ancestors possible. There have been claims made that DNA may be found in preserved ancient bacteria or even in dinosaur bones, but these claims remain highly

  17. Tough high performance composite matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)

    1994-01-01

    This invention is a semi-interpentrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. Provided is an improved high temperature matrix resin which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance, and moisture and solvent resistances.

  18. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-10-01

    Over 30 years ago U.S. industry introduced the world`s highest temperature (1200{degrees}F at 5000 psig) and most efficient power plant, the Eddystone coal-burning steam plant. The highest alloy material used in the plant was 316 stainless steel. Problems during the first few years of operation caused a reduction in operating temperature to 1100{degrees}F which has generally become the highest temperature used in plants around the world. Leadership in high temperature steam has moved to Japan and Europe over the last 30 years.

  19. High Performance YBCO Films

    DTIC Science & Technology

    1992-07-01

    growing high quality MgO films on SrF2 substrates is the oxygen partial pressure during the growth. The x-ray data presented in Fig. 13 indicates a...fluo-ide and quartz substrates. The best result with two buffer layers (MgO and YSZ) on SrF2 was an onset temperature (Tc) of 82K and a transition...With a YSZ buffer an onset temperature of 85K and a transition width of 5K was achieved. Recent success was demonstrated by Neocera ( under a NASA

  20. High Voltage SPT Performance

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jacobson, David; Jankovsky, Robert

    2001-01-01

    A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

  1. High-performance laboratories and cleanrooms

    SciTech Connect

    Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

    2002-07-01

    The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations--primarily safety driven--that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities.

  2. High performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Winkelman, D. M.

    1989-01-01

    Electroformed copper and nickel are used in structural applications for advanced propellant combustion chambers. An improved process has been developed by Bell Aerospace Textron, Inc. wherein electroformed nickel-manganese alloy has demonstrated superior mechanical and thermal stability when compared to previously reported deposits from known nickel plating processes. Solution chemistry and parametric operating procedures are now established and material property data is established for deposition of thick, large complex shapes such as the Space Shuttle Main Engine. The critical operating variables are those governing the ratio of codeposited nickel and manganese. The deposition uniformity which in turn affects the manganese concentration distribution is affected by solution resistance and geometric effects as well as solution agitation. The manganese concentration in the deposit must be between 2000 and 3000 ppm for optimum physical properties to be realized. The study also includes data regarding deposition procedures for achieving excellent bond strength at an interface with copper, nickel-manganese or INCONEL 718. Applications for this electroformed material include fabrication of complex or re-entry shapes which would be difficult or impossible to form from high strength alloys such as INCONEL 718.

  3. Strategy Guideline. High Performance Residential Lighting

    SciTech Connect

    Holton, J.

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  4. Building America

    SciTech Connect

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  5. High Performance Computing at NASA

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The speaker will give an overview of high performance computing in the U.S. in general and within NASA in particular, including a description of the recently signed NASA-IBM cooperative agreement. The latest performance figures of various parallel systems on the NAS Parallel Benchmarks will be presented. The speaker was one of the authors of the NAS (National Aerospace Standards) Parallel Benchmarks, which are now widely cited in the industry as a measure of sustained performance on realistic high-end scientific applications. It will be shown that significant progress has been made by the highly parallel supercomputer industry during the past year or so, with several new systems, based on high-performance RISC processors, that now deliver superior performance per dollar compared to conventional supercomputers. Various pitfalls in reporting performance will be discussed. The speaker will then conclude by assessing the general state of the high performance computing field.

  6. High Performance Fortran: An overview

    SciTech Connect

    Zosel, M.E.

    1992-12-23

    The purpose of this paper is to give an overview of the work of the High Performance Fortran Forum (HPFF). This group of industry, academic, and user representatives has been meeting to define a set of extensions for Fortran dedicated to the special problems posed by a very high performance computers, especially the new generation of parallel computers. The paper describes the HPFF effort and its goals and gives a brief description of the functionality of High Performance Fortran (HPF).

  7. Assuring the Performance of Buildings and Infrastructures: Report of Discussions

    SciTech Connect

    Hunter, Regina L.

    1999-05-28

    How to ensure the appropriate performance of our built environment in the face of normal conditions, natural hazards, and malevolent threats is an issue of emerging national and international importance. As the world population increases, new construction must be increasingly cost effective and at the same time increasingly secure, safe, and durable. As the existing infrastructure ages, materials and techniques for retrofitting must be developed in parallel with improvements in design, engineering, and building codes for new construction. Both new and renovated structures are more often being subjected to the scrutiny of risk analysis. An international conference, "Assuring the Performance of Buildings and Infrastructures," was held in May 1997 to address some of these issues. The conference was co-sponsored by the Architectural Engineering Division of the American Society of Civil Engineers (ASCE), the American Institute of Architects, and Sandia National Laboratories and convened in Albuquerque, NM. Many of the papers presented at the conference are found within this issue of Techno20~. This paper presents some of the major conference themes and summarizes discussions not found in the other papers.

  8. Trenton High School: Attitude Builds Community

    ERIC Educational Resources Information Center

    Principal Leadership, 2013

    2013-01-01

    High schools often are the anchor of their communities. Nowhere is this more so than in rural north-central Missouri where Trenton High School is the community. Over the last 10 years, this 400-student comprehensive high school mirrored the community's economic downturn and experienced a significant increase in students living in poverty--to the…

  9. VIEW OF THE INTERIOR OF BUILDING 442 OF THE HIGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE INTERIOR OF BUILDING 442 OF THE HIGH EFFICIENCY PARTICULATE AIR FILTERS TESTING EQUIPMENT - Rocky Flats Plant, Filter Test Laboratory & Warehouse, Southeast corner of Central Avenue & Fifth Street, Golden, Jefferson County, CO

  10. Energy efficiency indicators for high electric-load buildings

    SciTech Connect

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  11. EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-00-706-051286. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. High Five: Building Capacity for School Excellence

    ERIC Educational Resources Information Center

    McCullen, Caroline

    2006-01-01

    In 2004, five North Carolina school districts combined forces with five corporate foundations to leverage their collective wisdom and develop regional strategies for school improvement. The result was the High Five Regional Partnership for High School Excellence, a corporate-public sector effort that had the common goal of improving graduation…

  13. High Performance Thin Layer Chromatography.

    ERIC Educational Resources Information Center

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  14. Methodology for Modeling Building Energy Performance across the Commercial Sector

    SciTech Connect

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  15. Improving the Quality of School Facilities through Building Performance Assessment: Educational Reform and School Building Quality in Sao Paulo, Brazil

    ERIC Educational Resources Information Center

    Ornstein, Sheila Walbe; Moreira, Nanci Saraiva; Ono, Rosaria; Limongi Franca, Ana J. G.; Nogueira, Roselene A. M. F.

    2009-01-01

    Purpose: The paper describes the purpose of and strategies for conducting post-occupancy evaluations (POEs) as a method for assessing school building performance. Set within the larger context of global efforts to develop and apply common indicators of school building quality, the authors describe research conducted within the newest generation of…

  16. High Performance Flexible Thermal Link

    NASA Astrophysics Data System (ADS)

    Sauer, Arne; Preller, Fabian

    2014-06-01

    The paper deals with the design and performance verification of a high performance and flexible carbon fibre thermal link.Project goal was to design a space qualified thermal link combining low mass, flexibility and high thermal conductivity with new approaches regarding selected materials and processes. The idea was to combine the advantages of existing metallic links regarding flexibility and the thermal performance of high conductive carbon pitch fibres. Special focus is laid on the thermal performance improvement of matrix systems by means of nano-scaled carbon materials in order to improve the thermal performance also perpendicular to the direction of the unidirectional fibres.One of the main challenges was to establish a manufacturing process which allows handling the stiff and brittle fibres, applying the matrix and performing the implementation into an interface component using unconventional process steps like thermal bonding of fibres after metallisation.This research was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi).

  17. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS, HIGH BAY AREA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS, HIGH BAY AREA. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. TRANSFER AISLE NORTH DOOR, ARCHITECTURAL AND STRUCTURAL ELEVATIONS, SECTIONS AND DETAILS. Sheet 79 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  18. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS, HIGH BAY AREA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS, HIGH BAY AREA. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. TRANSFER AISLE NORTH DOOR,ARCHITECTURAL NORTH ELEVATION AND MISC. DETAILS. Sheet 78 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  19. High Performance Networks for High Impact Science

    SciTech Connect

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  20. Effect of heat and moisture transport and storage properties of building stones on the hygrothermal performance of historical building envelopes

    NASA Astrophysics Data System (ADS)

    KoÅáková, Dana; Kočí, Václav; Žumár, Jaromír; Keppert, Martin; Holčapek, Ondřej; Vejmelková, Eva; Černý, Robert

    2016-12-01

    The heat and moisture transport and storage parameters of three different natural stones used on the Czech territory since medieval times are determined experimentally, together with the basic physical properties and mechanical parameters. The measured data are applied as input parameters in the computational modeling of hygrothermal performance of building envelopes made of the analyzed stones. Test reference year climatic data of three different locations within the Czech Republic are used as boundary conditions on the exterior side. Using the simulated hygric and thermal performance of particular stone walls, their applicability is assessed in a relation to the geographical and climatic conditions. The obtained results indicate that all three investigated stones are highly resistant to weather conditions, freeze/thaw cycles in particular.

  1. High-Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Reuhs, Bradley L.; Rounds, Mary Ann

    High-performance liquid chromatography (HPLC) developed during the 1960s as a direct offshoot of classic column liquid chromatography through improvements in the technology of columns and instrumental components (pumps, injection valves, and detectors). Originally, HPLC was the acronym for high-pressure liquid chromatography, reflecting the high operating pressures generated by early columns. By the late 1970s, however, high-performance liquid chromatography had become the preferred term, emphasizing the effective separations achieved. In fact, newer columns and packing materials offer high performance at moderate pressure (although still high pressure relative to gravity-flow liquid chromatography). HPLC can be applied to the analysis of any compound with solubility in a liquid that can be used as the mobile phase. Although most frequently employed as an analytical technique, HPLC also may be used in the preparative mode.

  2. Towards the development of performance based guidelines for using Phase Change Materials in lightweight buildings

    NASA Astrophysics Data System (ADS)

    Poudel, Niraj

    optimal values are extracted. The findings from this research suggest that, there are only a few climate types within the United States where the use of PCM boards in lightweight buildings are viable. While the market potential for PCMs in building energy improvements can be significant, its acceptance is hindered by its extraordinary high cost. Analysis of the performance of PCM boards against six independent variables suggests that the internal load is a crucial factor in determining the optimal performance of PCM. Therefore any guideline on the selection of proper PCM should be formulated predominantly on the basis of internal load and the internal mean air temperature.

  3. Highlighting High Performance: Blackstone Valley Regional Vocational Technical High School; Upton, Massachusetts

    SciTech Connect

    Not Available

    2006-10-01

    This brochure describes the key high-performance building features of the Blackstone Valley High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar energy, building envelope, heating and cooling systems, and water conservation. Energy cost savings are also discussed.

  4. Procedure for Measuring and Reporting the Performance of Photovoltaic Systems in Buildings

    SciTech Connect

    Pless, S.; Deru, M.; Torcellini, P.; Hayter, S.

    2005-10-01

    This procedure provides a standard method for measuring and characterizing the long-term energy performance of photovoltaic (PV) systems in buildings and the resulting implications to the building's energy use. The performance metrics determined here may be compared against benchmarks for evaluating system performance and verifying that performance targets have been achieved. Uses may include comparison of performance with the design intent; comparison with other PV systems in buildings; economic analysis of PV systems in buildings; and the establishment of long-term performance records that enable maintenance staff to monitor trends in energy performance.

  5. Multilayer high performance insulation materials

    NASA Technical Reports Server (NTRS)

    Stuckey, J. M.

    1971-01-01

    A number of tests are required to evaluate both multilayer high performance insulation samples and the materials that comprise them. Some of the techniques and tests being employed for these evaluations and some of the results obtained from thermal conductivity tests, outgassing studies, effect of pressure on layer density tests, hypervelocity impact tests, and a multilayer high performance insulation ambient storage program at the Kennedy Space Center are presented.

  6. Whole Building Cost and Performance Measurement: Data Collection Protocol Revision 2

    SciTech Connect

    Fowler, Kimberly M.; Spees, Kathleen L.; Kora, Angela R.; Rauch, Emily M.; Hathaway, John E.; Solana, Amy E.

    2009-03-27

    This protocol was written for the Department of Energy’s Federal Energy Management Program (FEMP) to be used by the public as a tool for assessing building cost and performance measurement. The primary audiences are sustainable design professionals, asset owners, building managers, and research professionals within the Federal sector. The protocol was developed based on the need for measured performance and cost data on sustainable design projects. Historically there has not been a significant driver in the public or private sector to quantify whole building performance in comparable terms. The deployment of sustainable design into the building sector has initiated many questions on the performance and operational cost of these buildings.

  7. Three Buildings: Two Junior High Schools and an Elementary School

    ERIC Educational Resources Information Center

    American School and University, 1973

    1973-01-01

    Describes Thomas Jefferson Junior High School/Community Center, Arlington, Virginia, the first major effort at creating a facility aimed at the total development of the community's intellectual and physical needs. Discusses Stanwood Junior High, the first systems-built school building erected in Pennsylvania; and the Dalhart, Texas, Elementary…

  8. 1. GENERAL VIEW OF THE JUNIOR HIGH SCHOOL BUILDING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF THE JUNIOR HIGH SCHOOL BUILDING FROM THE SOUTH. THE ORIGINAL STRUCTURE (1914) IS VISIBLE ON THE RIGHT, AND THE 1928 ADDITION ON THE LEFT. THE HEARST FREE LIBRARY IS AT THE FAR LEFT OF THE PHOTO. - Anaconda Historic District, Anaconda Junior High School, Fourth & Main Streets, Anaconda, Deer Lodge County, MT

  9. High performance flexible heat pipes

    NASA Technical Reports Server (NTRS)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  10. Research Support Facility (RSF): Leadership in Building Performance (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

  11. Behavioral Change and Building Performance: Strategies for Significant, Persistent, and Measurable Institutional Change

    SciTech Connect

    Wolfe, Amy K.; Malone, Elizabeth L.; Heerwagen, Judith H.; Dion, Jerome P.

    2014-04-01

    The people who use Federal buildings — Federal employees, operations and maintenance staff, and the general public — can significantly impact a building’s environmental performance and the consumption of energy, water, and materials. Many factors influence building occupants’ use of resources (use behaviors) including work process requirements, ability to fulfill agency missions, new and possibly unfamiliar high-efficiency/high-performance building technologies; a lack of understanding, education, and training; inaccessible information or ineffective feedback mechanisms; and cultural norms and institutional rules and requirements, among others. While many strategies have been used to introduce new occupant use behaviors that promote sustainability and reduced resource consumption, few have been verified in the scientific literature or have properly documented case study results. This paper documents validated strategies that have been shown to encourage new use behaviors that can result in significant, persistent, and measureable reductions in resource consumption. From the peer-reviewed literature, the paper identifies relevant strategies for Federal facilities and commercial buildings that focus on the individual, groups of individuals (e.g., work groups), and institutions — their policies, requirements, and culture. The paper documents methods with evidence of success in changing use behaviors and enabling occupants to effectively interact with new technologies/designs. It also provides a case study of the strategies used at a Federal facility — Fort Carson, Colorado. The paper documents gaps in the current literature and approaches, and provides topics for future research.

  12. Improving Station Performance by Building Isolation Walls in the Tunnel

    NASA Astrophysics Data System (ADS)

    Jia, Yan; Horn, Nikolaus; Leohardt, Roman

    2014-05-01

    Conrad Observatory is situated far away from roads and industrial areas on the Trafelberg in Lower Austria. At the end of the seismic tunnel, the main seismic instrument of the Observatory with a station code CONA is located. This station is one of the most important seismic stations in the Austrian Seismic Network (network code OE). The seismic observatory consists of a 145m long gallery and an underground laboratory building with several working areas. About 25 meters away from the station CONA, six temporary seismic stations were implemented for research purposes. Two of them were installed with the same equipment as CONA, while the remaining four stations were set up with digitizers having lower noise and higher resolution (Q330HR) and sensors with the same type (STS-2). In order to prevent possible disturbances by air pressure and temperature fluctuation, three walls were built inside of the tunnel. The first wall is located ca 63 meters from the tunnel entrance, while a set of double walls with a distance of 1.5 meters is placed about 53 meters from the first isolation wall but between the station CONA and the six temporary stations. To assess impact of the isolation walls on noise reduction and detection performance, investigations are conducted in two steps. The first study is carried out by comparing the noise level and detection performance between the station CONA behind the double walls and the stations in front of the double walls for verifying the noise isolation by the double walls. To evaluate the effect of the single wall, station noise level and detection performance were studied by comparing the results before and after the installation of the wall. Results and discussions will be presented. Additional experiment is conducted by filling insulation material inside of the aluminium boxes of the sensors (above and around the sensors). This should help us to determine an optimal insulation of the sensors with respect to pressure and temperature

  13. High performance dielectric materials development

    NASA Astrophysics Data System (ADS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-09-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  14. High performance dielectric materials development

    NASA Technical Reports Server (NTRS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-01-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  15. Measuring Thermal Performance of Building Envelopes: Nine Case Studies,

    DTIC Science & Technology

    1985-03-01

    inch P/B = 11.36, present worth factor for an es- of expanded polystyrene insulation) to the build- calating series for a 15-year period ing exterior...inch of The one MCA building roof we measured was a expanded polystyrene at R-3.6 per inch. Where the cathedral system with a sloped built-up roofing

  16. "Slow Science": Building Scientific Concepts in Physics in High School

    ERIC Educational Resources Information Center

    Bigozzi, Lucia; Tarchi, Christian; Falsini, Paola; Fiorentini, Carlo

    2014-01-01

    In this study, a progressive-learning approach to physics, based on knowledge-building pedagogy, was compared to a content-centered approach in which explanations, experiments, and discussions are centered on the transmission of knowledge. Forty-six students attending the first year of high school participated in this study over a whole school…

  17. A high-speed DAQ framework for future high-level trigger and event building clusters

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Ardila Perez, L. E.; Balzer, M.; Dritschler, T.; Kopmann, A.; Mohr, H.; Rota, L.; Vogelgesang, M.; Weber, M.

    2017-03-01

    Modern data acquisition and trigger systems require a throughput of several GB/s and latencies of the order of microseconds. To satisfy such requirements, a heterogeneous readout system based on FPGA readout cards and GPU-based computing nodes coupled by InfiniBand has been developed. The incoming data from the back-end electronics is delivered directly into the internal memory of GPUs through a dedicated peer-to-peer PCIe communication. High performance DMA engines have been developed for direct communication between FPGAs and GPUs using "DirectGMA (AMD)" and "GPUDirect (NVIDIA)" technologies. The proposed infrastructure is a candidate for future generations of event building clusters, high-level trigger filter farms and low-level trigger system. In this paper the heterogeneous FPGA-GPU architecture will be presented and its performance be discussed.

  18. High Performance Bulk Thermoelectric Materials

    SciTech Connect

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  19. High performance bilateral telerobot control.

    PubMed

    Kline-Schoder, Robert; Finger, William; Hogan, Neville

    2002-01-01

    Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system.

  20. High Performance Input/Output Systems for High Performance Computing and Four-Dimensional Data Assimilation

    NASA Technical Reports Server (NTRS)

    Fox, Geoffrey C.; Ou, Chao-Wei

    1997-01-01

    The approach of this task was to apply leading parallel computing research to a number of existing techniques for assimilation, and extract parameters indicating where and how input/output limits computational performance. The following was used for detailed knowledge of the application problems: 1. Developing a parallel input/output system specifically for this application 2. Extracting the important input/output characteristics of data assimilation problems; and 3. Building these characteristics s parameters into our runtime library (Fortran D/High Performance Fortran) for parallel input/output support.

  1. High Performance Tools And Technologies

    SciTech Connect

    Collette, M R; Corey, I R; Johnson, J R

    2005-01-24

    This goal of this project was to evaluate the capability and limits of current scientific simulation development tools and technologies with specific focus on their suitability for use with the next generation of scientific parallel applications and High Performance Computing (HPC) platforms. The opinions expressed in this document are those of the authors, and reflect the authors' current understanding and functionality of the many tools investigated. As a deliverable for this effort, we are presenting this report describing our findings along with an associated spreadsheet outlining current capabilities and characteristics of leading and emerging tools in the high performance computing arena. This first chapter summarizes our findings (which are detailed in the other chapters) and presents our conclusions, remarks, and anticipations for the future. In the second chapter, we detail how various teams in our local high performance community utilize HPC tools and technologies, and mention some common concerns they have about them. In the third chapter, we review the platforms currently or potentially available to utilize these tools and technologies on to help in software development. Subsequent chapters attempt to provide an exhaustive overview of the available parallel software development tools and technologies, including their strong and weak points and future concerns. We categorize them as debuggers, memory checkers, performance analysis tools, communication libraries, data visualization programs, and other parallel development aides. The last chapter contains our closing information. Included with this paper at the end is a table of the discussed development tools and their operational environment.

  2. High performance pyroelectric infrared detector

    NASA Astrophysics Data System (ADS)

    Hu, Xu; Luo, Haosu; Ji, Yulong; Yang, Chunli

    2015-10-01

    Single infrared detector made with Relaxative ferroelectric crystal(PMNT) present excellence performance. In this paper include detector capacitance, characteristic of frequency--response, characteristic of detectivity. The measure result show that detectivity of detector made with relaxative ferroelectric crystal(PMNT) exceed three times than made with LT, the D*achieved than 1*109cmHz0.5W-1. The detector will be applied on NDIR spectrograph, FFT spectrograph and so on. The high performance pyroelectric infrared detector be developed that will be broadened application area of infrared detector.

  3. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    NASA Astrophysics Data System (ADS)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  4. A High-Granularity Approach to Modeling Energy Consumption and Savings Potential in the U.S. Residential Building Stock

    SciTech Connect

    2016-08-12

    Building simulations are increasingly used in various applications related to energy efficient buildings. For individual buildings, applications include: design of new buildings, prediction of retrofit savings, ratings, performance path code compliance and qualification for incentives. Beyond individual building applications, larger scale applications (across the stock of buildings at various scales: national, regional and state) include: codes and standards development, utility program design, regional/state planning, and technology assessments. For these sorts of applications, a set of representative buildings are typically simulated to predict performance of the entire population of buildings. Focusing on the U.S. single-family residential building stock, this paper will describe how multiple data sources for building characteristics are combined into a highly-granular database that preserves the important interdependencies of the characteristics. We will present the sampling technique used to generate a representative set of thousands (up to hundreds of thousands) of building models. We will also present results of detailed calibrations against building stock consumption data.

  5. Toward high performance graphene fibers.

    PubMed

    Chen, Li; He, Yuling; Chai, Songgang; Qiang, Hong; Chen, Feng; Fu, Qiang

    2013-07-07

    Two-dimensional graphene and graphene-based materials have attracted tremendous interest, hence much attention has been drawn to exploring and applying their exceptional characteristics and properties. Integration of graphene sheets into macroscopic fibers is a very important way for their application and has received increasing interest. In this study, neat and macroscopic graphene fibers were continuously spun from graphene oxide (GO) suspensions followed by chemical reduction. By varying wet-spinning conditions, a series of graphene fibers were prepared, then, the structural features, mechanical and electrical performances of the fibers were investigated. We found the orientation of graphene sheets, the interaction between inter-fiber graphene sheets and the defects in the fibers have a pronounced effect on the properties of the fibers. Graphene fibers with excellent mechanical and electrical properties will yield great advances in high-tech applications. These findings provide guidance for the future production of high performance graphene fibers.

  6. Enhancement of Seismic Performance Using Shear Link Braces in a Building Designed Only for Gravity Loads

    NASA Astrophysics Data System (ADS)

    Maniyar, S. U.; Paul, D. K.

    2012-02-01

    The present work attempts to study the behaviour of building designed for gravity loads only under the effect of lateral seismic load. Such a building is generally deficient against lateral forces and need to be retrofitted against lateral earthquake forces. A retrofitting scheme by providing aluminium shear link with chevron braces is suggested to improve its performance. Past earthquakes have shown a great deal of damages to the deficient RC frame buildings designed without any consideration to the lateral earthquake forces. Chevron braces with the aluminium shear link can be implemented as an effective retrofit measure. A comparison of the performance of building initially designed for gravity load only with the retrofitted building using chevron braces with the aluminium shear link is presented in this paper. The behaviour of building is worked out by performing nonlinear static pushover analysis and nonlinear time history analyses. A parametric study has also been carried out to study the effect of shear link and braces on the retrofitted building. The performance of RC building designed for gravity loads only as evaluated from the nonlinear static pushover analysis lies in life safety and collapse prevention range for DBE and MCE level of earthquakes respectively. The same building when retrofitted by using chevron braces with aluminium shear link show improved performance. This device is very simple, economic, effective and can be placed in a building very easily. The dissipation of damaging energy/damage is localised in shear link which can be replaced after a major earthquake.

  7. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  8. High-performance sports medicine.

    PubMed

    Speed, Cathy

    2013-02-01

    High performance sports medicine involves the medical care of athletes, who are extraordinary individuals and who are exposed to intensive physical and psychological stresses during training and competition. The physician has a broad remit and acts as a 'medical guardian' to optimise health while minimising risks. This review describes this interesting field of medicine, its unique challenges and priorities for the physician in delivering best healthcare.

  9. Reduced Toxicity High Performance Monopropellant

    DTIC Science & Technology

    2011-09-01

    distribution unlimited Propellant Performance Characteristics LMP - 103S AF-M315E Hydrazine Flame Temperature 1600ºC 1900ºC 600 oC Isp 252 (theor)235 sec...public release; distribution unlimited Compatibility and Handling Propellant LMP - 103S AF-M315E Thruster Materials Compatibility High combustion...detonation Bikini gauges indicate > 103 kPa @ 50ft Fragments thrown > 185 m Punched hole in end cap 12 Distribution A: Approved for public

  10. High-performance permanent magnets.

    PubMed

    Goll, D; Kronmüller, H

    2000-10-01

    High-performance permanent magnets (pms) are based on compounds with outstanding intrinsic magnetic properties as well as on optimized microstructures and alloy compositions. The most powerful pm materials at present are RE-TM intermetallic alloys which derive their exceptional magnetic properties from the favourable combination of rare earth metals (RE = Nd, Pr, Sm) with transition metals (TM = Fe, Co), in particular magnets based on (Nd.Pr)2Fe14B and Sm2(Co,Cu,Fe,Zr)17. Their development during the last 20 years has involved a dramatic improvement in their performance by a factor of > 15 compared with conventional ferrite pms therefore contributing positively to the ever-increasing demand for pms in many (including new) application fields, to the extent that RE-TM pms now account for nearly half of the worldwide market. This review article first gives a brief introduction to the basics of ferromagnetism to confer an insight into the variety of (permanent) magnets, their manufacture and application fields. We then examine the rather complex relationship between the microstructure and the magnetic properties for the two highest-performance and most promising pm materials mentioned. By using numerical micromagnetic simulations on the basis of the Finite Element technique the correlation can be quantitatively predicted, thus providing a powerful tool for the further development of optimized high-performance pms.

  11. High-performance permanent magnets

    NASA Astrophysics Data System (ADS)

    Goll, D.; Kronmüller, H.

    High-performance permanent magnets (pms) are based on compounds with outstanding intrinsic magnetic properties as well as on optimized microstructures and alloy compositions. The most powerful pm materials at present are RE-TM intermetallic alloys which derive their exceptional magnetic properties from the favourable combination of rare earth metals (RE=Nd, Pr, Sm) with transition metals (TM=Fe, Co), in particular magnets based on (Nd,Pr)2Fe14B and Sm2(Co,Cu,Fe,Zr)17. Their development during the last 20 years has involved a dramatic improvement in their performance by a factor of >15 compared with conventional ferrite pms therefore contributing positively to the ever-increasing demand for pms in many (including new) application fields, to the extent that RE-TM pms now account for nearly half of the worldwide market. This review article first gives a brief introduction to the basics of ferromagnetism to confer an insight into the variety of (permanent) magnets, their manufacture and application fields. We then examine the rather complex relationship between the microstructure and the magnetic properties for the two highest-performance and most promising pm materials mentioned. By using numerical micromagnetic simulations on the basis of the Finite Element technique the correlation can be quantitatively predicted, thus providing a powerful tool for the further development of optimized high-performance pms.

  12. Improving Building Performance at Urban Scale with a Framework for Real-time Data Sharing

    SciTech Connect

    Pang, Xiufeng; Hong, Tianzhen; Piette, Mary Ann

    2013-06-03

    This paper describes work in progress toward an urban-scale system aiming to reduce energy use in neighboring buildings by providing three components: a database for accessing past and present weather data from high quality weather stations; a network for communicating energy-saving strategies between building owners; and a set of modeling tools for real-time building energy simulation.

  13. Determinants of the Safety Performance of Private Multi-Storey Residential Buildings in Hong Kong

    ERIC Educational Resources Information Center

    Yau, Yung; Ho, Daniel Chi Wing; Chau, Kwong Wing

    2008-01-01

    Given the high population and development density in Hong Kong, building failures can result in catastrophic consequences. It is thus worthwhile identifying those dilapidated buildings, and this explains why the Hong Kong government has considered launching a mandatory building inspection scheme in the city. Apart from the measurement of building…

  14. Field investigation of duct system performance in California light commercial buildings

    SciTech Connect

    Delp, W.W.; Matson, N.E.; Tschudy, E.

    1997-12-09

    This paper discusses field measurements of duct system performance in fifteen systems located in eight northern California buildings. Light commercial buildings, one- and two-story with package roof-top HVAC units, make up approximately 50% of the non-residential building stock in the U.S. Despite this fact little is known about the performance of these package roof-top units and their associated ductwork. These simple systems use similar duct materials and construction techniques as residential systems (which are known to be quite leaky). This paper discusses a study to characterize the buildings, quantify the duct leakage, and analyze the performance of the ductwork in these types of buildings. The study tested fifteen systems in eight different buildings located in northern California. All of these buildings had the ducts located in the cavity between the drop ceiling and the roof deck. In 50% of these buildings, this cavity was functionally outside the building`s air and thermal barriers. The effective leakage area of the ducts in this study was approximately 2.6 times that in residential buildings. This paper looks at the thermal analysis of the ducts, from the viewpoint of efficiency and thermal comfort. This includes the length of a cycle, and whether the fan is always on or if it cycles with the cooling equipment. 66% of the systems had frequent on cycles of less than 10 minutes, resulting in non-steady-state operation.

  15. High Performance Parallel Computational Nanotechnology

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    At a recent press conference, NASA Administrator Dan Goldin encouraged NASA Ames Research Center to take a lead role in promoting research and development of advanced, high-performance computer technology, including nanotechnology. Manufacturers of leading-edge microprocessors currently perform large-scale simulations in the design and verification of semiconductor devices and microprocessors. Recently, the need for this intensive simulation and modeling analysis has greatly increased, due in part to the ever-increasing complexity of these devices, as well as the lessons of experiences such as the Pentium fiasco. Simulation, modeling, testing, and validation will be even more important for designing molecular computers because of the complex specification of millions of atoms, thousands of assembly steps, as well as the simulation and modeling needed to ensure reliable, robust and efficient fabrication of the molecular devices. The software for this capacity does not exist today, but it can be extrapolated from the software currently used in molecular modeling for other applications: semi-empirical methods, ab initio methods, self-consistent field methods, Hartree-Fock methods, molecular mechanics; and simulation methods for diamondoid structures. In as much as it seems clear that the application of such methods in nanotechnology will require powerful, highly powerful systems, this talk will discuss techniques and issues for performing these types of computations on parallel systems. We will describe system design issues (memory, I/O, mass storage, operating system requirements, special user interface issues, interconnects, bandwidths, and programming languages) involved in parallel methods for scalable classical, semiclassical, quantum, molecular mechanics, and continuum models; molecular nanotechnology computer-aided designs (NanoCAD) techniques; visualization using virtual reality techniques of structural models and assembly sequences; software required to

  16. Building America Performance Analysis Procedures for Existing Homes

    SciTech Connect

    2006-05-01

    Building America is investigating the best ways to make existing homes more energy-efficient, based on lessons learned from research in new homes. America program is aiming for a 20%–30% reduction in energy use in existing homes by 2020.

  17. Energy Performance Evaluation of a Low-Energy Academic Building: Preprint

    SciTech Connect

    Pless, S.; Torcellini, P.

    2005-10-01

    This paper considers the energy performance analyses conducted to document and verify progress toward the building's design objectives. The authors present and discuss energy performance data and draw lessons that can be applied to improve the design of this and future low-energy buildings.

  18. Development of an Online Toolkit for Measuring Commercial Building Energy Efficiency Performance -- Scoping Study

    SciTech Connect

    Wang, Na

    2013-03-13

    This study analyzes the market needs for building performance evaluation tools. It identifies the existing gaps and provides a roadmap for the U.S. Department of Energy (DOE) to develop a toolkit with which to optimize energy performance of a commercial building over its life cycle.

  19. Performance of a solar-heated assembly building at Sandia National Laboratories

    SciTech Connect

    Haskins, D.E.

    1980-09-01

    The passive solar-heating system of the assembly building at Sandia National Laboratories' Photovoltaic Advanced Systems Test Facility is described and the thermal analysis of the building is given. Performance predictions are also given, and actual performance for December 1979 and January 1980 are shown.

  20. Performance of a solar-heated assembly building at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Haskins, D. E.

    1980-09-01

    The passive solar heating system of the assembly building at Sandia National Laboratories' Photovoltaic Advanced Systems Test Facility is described and the thermal analysis of the building is given. Performance predictions are also given, and actual performances for December 1979 and January 1980 are shown.

  1. High Performance Pulse Tube Cryocoolers

    NASA Astrophysics Data System (ADS)

    Olson, J. R.; Roth, E.; Champagne, P.; Evtimov, B.; Nast, T. C.

    2008-03-01

    Lockheed Martin's Advanced Technology Center has been developing pulse tube cryocoolers for more than ten years. Recent innovations include successful testing of four-stage coldheads, no-load temperature below 4 K, and the recent development of a high-efficiency compressor. This paper discusses the predicted performance of single and multiple stage pulse tube coldheads driven by our new 6 kg "M5Midi" compressor, which is capable of 90% efficiency with 200 W input power, and a maximum input power of 1000 W. This compressor retains the simplicity of earlier LM-ATC compressors: it has a moving magnet and an external electrical coil, minimizing organics in the working gas and requiring no electrical penetrations through the pressure wall. Motor losses were minimized during design, resulting in a simple, easily-manufactured compressor with state-of-the-art motor efficiency. The predicted cryocooler performance is presented as simple formulae, allowing an engineer to include the impact of a highly-optimized cryocooler into a full system analysis. Performance is given as a function of the heat rejection temperature and the cold tip temperatures and cooling loads.

  2. A dynamic experimental study on the evaporative cooling performance of porous building materials

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Lei; Meng, Qinglin; Feng, Yanshan; Chen, Yuanrui

    2017-03-01

    Conventional outdoor dynamic and indoor steady-state experiments have certain limitations in regard to investigating the evaporative cooling performance of porous building materials. The present study investigated the evaporative cooling performance of a porous building material using a special wind tunnel apparatus. First, the composition and control principles of the wind tunnel environment control system were elucidated. Then, the meteorological environment on a typical summer day in Guangzhou was reproduced in the wind tunnel and the evaporation process and thermal parameters of specimens composed of a porous building material were continuously measured. Finally, the experimental results were analysed to evaluate the accuracy of the wind tunnel environment control system, the heat budget of the external surface of the specimens and the total thermal resistance of the specimens and its uncertainty. The analysis results indicated that the normalized root-mean-square error between the measured value of each environmental parameter in the wind tunnel test section and the corresponding value input into the environment control system was <4%, indicating that the wind tunnel apparatus had relatively high accuracy in reproducing outdoor meteorological environments. In addition, the wet specimen could cumulatively consume approximately 80% of the shortwave radiation heat during the day, thereby reducing the temperature of the external surface and the heat flow on the internal surface of the specimen. Compared to the dry specimen, the total thermal resistance of the wet specimen was approximately doubled, indicating that the evaporation process of the porous building material could significantly improve the thermal insulation performance of the specimen.

  3. Data fusion of high-resolution satellite imagery and GIS data for automatic building extraction

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Luo, L.; Wang, W.; Du, S.

    2013-07-01

    Automatic building extraction in urban areas has become an intensive research as it contributes to many applications. High-resolution satellite (HRS) imagery is an important data source. However, it is a challenge task to extract buildings with only HRS imagery. Additional information and prior knowledge should be incorporated. c A new approach building extraction is proposed in this study. Data sources are QuickBird imagery and GIS data. The GIS data can provide prior knowledge including position and shape information, and the HRS image has rich spectral, texture features. To fuse these two kinds of features, the HRS image is first segmented into image objects. A graph is built according to the connectivity between the adjacent image objects. Second, the position information of GIS data is used to choose a seed region in the image for each GIS building object. Third, the seed region is grown by adding its neighbor regions constrained by the shape of GIS building. The performance is evaluated according to the manually delineated buildings. The results show performance of 0.142 in miss factor and detection percentage of 89.43% (correctness) and the overall quality of 79.35%.

  4. High performance aerated lagoon systems

    SciTech Connect

    Rich, L.

    1999-08-01

    At a time when less money is available for wastewater treatment facilities and there is increased competition for the local tax dollar, regulatory agencies are enforcing stricter effluent limits on treatment discharges. A solution for both municipalities and industry is to use aerated lagoon systems designed to meet these limits. This monograph, prepared by a recognized expert in the field, provides methods for the rational design of a wide variety of high-performance aerated lagoon systems. Such systems range from those that can be depended upon to meet secondary treatment standards alone to those that, with the inclusion of intermittent sand filters or elements of sequenced biological reactor (SBR) technology, can also provide for nitrification and nutrient removal. Considerable emphasis is placed on the use of appropriate performance parameters, and an entire chapter is devoted to diagnosing performance failures. Contents include: principles of microbiological processes, control of algae, benthal stabilization, design for CBOD removal, design for nitrification and denitrification in suspended-growth systems, design for nitrification in attached-growth systems, phosphorus removal, diagnosing performance.

  5. Monitoring building energy performance: An informal review and characterization of research in progress

    NASA Astrophysics Data System (ADS)

    1984-03-01

    The U.S. Department of Energy (DOE) and Brookhaven National Laboratory (BNL) have had a longstanding interest in the actual performance of energy conservation features in whole buildings. BNL, as part of its work for DOE, has concentrated on detailed understanding of the full-scale performance of innovative components and subsystems interacting within whole buildings over extended time periods. This work has resulted in the publication of several case study reports on the actual energy performance of a variety of innovative residential buildings. To help the federal government and others keep abreast of developments in the field of whole building energy performance monitoring, DOE asked BNL to undertake a limited review of work under way throughout the United States, and to assemble the results of the review in a manner that would provide a resource to policymakers, researchers and others interested in whole building performance monitoring.

  6. High Performance Proactive Digital Forensics

    NASA Astrophysics Data System (ADS)

    Alharbi, Soltan; Moa, Belaid; Weber-Jahnke, Jens; Traore, Issa

    2012-10-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  7. HIGH PERFORMANCE EBIS FOR RHIC.

    SciTech Connect

    ALESSI,J.; BEEBE, E.; GOULD, O.; KPONOU, A.; LOCKEY, R.; PIKIN, A.; RAPARIA, D.; RITTER, J.; SNYDSTRUP, L.

    2007-06-25

    An Electron Beam Ion Source (EBIS), capable of producing high charge states and high beam currents of any heavy ion species in short pulses, is ideally suited for injection into a synchrotron. An EBIS-based, high current, heavy ion preinjector is now being built at Brookhaven to provide increased capabilities for the Relativistic Heavy Ion Collider (RHIC), and the NASA Space Radiation Laboratory (NSRL). Benefits of the new preinjector include the ability to produce ions of any species, fast switching between species to serve the simultaneous needs of multiple programs, and lower operating and maintenance costs. A state-of-the-art EBIS, operating with an electron beam current of up to 10 A, and producing multi-milliamperes of high charge state heavy ions, has been developed at Brookhaven, and has been operating very successfully on a test bench for several years. The present performance of this high-current EBIS is presented, along with details of the design of the scaled-up EBIS for RHIC, and the status of its construction. Other aspects of the project, including design and construction of the heavy ion RFQ, Linac, and matching beamlines, are also mentioned.

  8. Air ventilation impacts of the "wall effect" resulting from the alignment of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Yim, S. H. L.; Fung, J. C. H.; Lau, A. K. H.; Kot, S. C.

    The objective of this study is to investigate the air ventilation impacts of the so called "wall effect" caused by the alignment of high-rise buildings in complex building clusters. The research method employs the numerical algorithm of computational fluid dynamics (CFD - FLUENT) to simulate the steady-state wind field in a typical Hong Kong urban setting and investigate pollutant dispersion inside the street canyon utilizing a pollutant transport model. The model settings of validation study were accomplished by comparing the simulation wind field around a single building block to wind tunnel data. The results revealed that our model simulation is fairly close to the wind tunnel measurements. In this paper, a typical dense building distribution in Hong Kong with 2 incident wind directions (0° and 22.5°) is studied. Two performance indicators are used to quantify the air ventilation impacts, namely the velocity ratio ( VR) and the retention time ( T r) of pollutants at the street level. The results indicated that the velocity ratio at 2 m above ground was reduced 40% and retention time of pollutants increased 80% inside the street canyon when high-rise buildings with 4 times height of the street canyon were aligned as a "wall" upstream. While this reduction of air ventilation was anticipated, the magnitude is significant and this result clearly has important implications for building and urban planning.

  9. Response of high-rise and base-isolated buildings to a hypothetical mw 7.0 blind thrust earthquake.

    PubMed

    Heaton, T H; Hall, J F; Wald, D J; Halling, M W

    1995-01-13

    High-rise flexible-frame buildings are commonly considered to be resistant to shaking from the largest earthquakes. In addition, base isolation has become increasingly popular for critical buildings that should still function after an earthquake. How will these two types of buildings perform if a large earthquake occurs beneath a metropolitan area? To answer this question, we simulated the near-source ground motions of a M(w) 7.0 thrust earthquake and then mathematically modeled the response of a 20-story steel-frame building and a 3-story base-isolated building. The synthesized ground motions were characterized by large displacement pulses (up to 2 meters) and large ground velocities. These ground motions caused large deformation and possible collapse of the frame building, and they required exceptional measures in the design of the base-isolated building if it was to remain functional.

  10. Performance-Based Seismic Retrofit of Soft-Story Woodframe Buildings Using Energy-Dissipation Systems

    NASA Astrophysics Data System (ADS)

    Tian, Jingjing

    Low-rise woodframe buildings with disproportionately flexible ground stories represent a significant percentage of the building stock in seismically vulnerable communities in the Western United States. These structures have a readily identifiable structural weakness at the ground level due to an asymmetric distribution of large openings in the perimeter wall lines and to a lack of interior partition walls, resulting in a soft story condition that makes the structure highly susceptible to severe damage or collapse under design-level earthquakes. The conventional approach to retrofitting such structures is to increase the ground story stiffness. An alternate approach is to increase the energy dissipation capacity of the structure via the incorporation of supplemental energy dissipation devices (dampers), thereby relieving the energy dissipation demands on the framing system. Such a retrofit approach is consistent with a Performance-Based Seismic Retrofit (PBSR) philosophy through which multiple performance levels may be targeted. The effectiveness of such a retrofit is presented via examination of the seismic response of a full-scale four-story building that was tested on the outdoor shake table at NEES-UCSD and a full-scale three-story building that was tested using slow pseudo-dynamic hybrid testing at NEES-UB. In addition, a Direct Displacement Design (DDD) methodology was developed as an improvement over current DDD methods by considering torsion, with or without the implementation of damping devices, in an attempt to avoid the computational expense of nonlinear time-history analysis (NLTHA) and thus facilitating widespread application of PBSR in engineering practice.

  11. The High Performance Storage System

    SciTech Connect

    Coyne, R.A.; Hulen, H.; Watson, R.

    1993-09-01

    The National Storage Laboratory (NSL) was organized to develop, demonstrate and commercialize technology for the storage system that will be the future repositories for our national information assets. Within the NSL four Department of Energy laboratories and IBM Federal System Company have pooled their resources to develop an entirely new High Performance Storage System (HPSS). The HPSS project concentrates on scalable parallel storage system for highly parallel computers as well as traditional supercomputers and workstation clusters. Concentrating on meeting the high end of storage system and data management requirements, HPSS is designed using network-connected storage devices to transfer data at rates of 100 million bytes per second and beyond. The resulting products will be portable to many vendor`s platforms. The three year project is targeted to be complete in 1995. This paper provides an overview of the requirements, design issues, and architecture of HPSS, as well as a description of the distributed, multi-organization industry and national laboratory HPSS project.

  12. Development of a Model Specification for Performance MonitoringSystems for Commercial Buildings

    SciTech Connect

    Haves, Philip; Hitchcock, Robert J.; Gillespie, Kenneth L.; Brook, Martha; Shockman, Christine; Deringer, Joseph J.; Kinney,Kristopher L.

    2006-08-01

    The paper describes the development of a model specification for performance monitoring systems for commercial buildings. The specification focuses on four key aspects of performance monitoring: (1) performance metrics; (2) measurement system requirements; (3) data acquisition and archiving; and (4) data visualization and reporting. The aim is to assist building owners in specifying the extensions to their control systems that are required to provide building operators with the information needed to operate their buildings more efficiently and to provide automated diagnostic tools with the information required to detect and diagnose faults and problems that degrade energy performance. The paper reviews the potential benefits of performance monitoring, describes the specification guide and discusses briefly the ways in which it could be implemented. A prototype advanced visualization tool is also described, along with its application to performance monitoring. The paper concludes with a description of the ways in which the specification and the visualization tool are being disseminated and deployed.

  13. Web-based remote sensing of building energy performance

    NASA Astrophysics Data System (ADS)

    Martin, William; Nassiopoulos, Alexandre; Le Cam, Vincent; Kuate, Raphaël; Bourquin, Frédéric

    2013-04-01

    The present paper describes the design and the deployment of an instrumentation system enabling the energy monitoring of a building in a smart-grid context. The system is based on a network of wireless low power IPv6 sensors. Ambient temperature and electrical power for heating are measured. The management, storage, visualisation and treatment of the data is done through a web-based application that can be deployed as an online web service. The same web-based framework enables the acquisition of distant measured data such as those coming from a nearby weather station. On-site sensor and weather station data are then adequately treated based on inverse identification methods. The algorithms aim at determining the parameters of a numerical model suitable for a short-time horizon prediction of indoor climate. The model is based on standard multi-zone modelling assumptions and takes into account solar, airflow and conductive transfers. It was specially designed to render accurately inertia effects that are used in a demand-response strategy. All the hardware or software technologies that are used in the system are open and low cost so that they comply with the constraints of on-site deployment in buildings. The measured data as well as the model predictions can be accessed ubiquously through the web. This feature enables to consider a wide range of energy management applications at the disctrict, city or national level. The entire system has been deployed and tested in an experimental office building in Angers, France. It demonstrates the potential of ICT technologies to enable remotely controlled monitoring and surveillance in real time.

  14. Evaluation of the effects of vegetation and green walls on building thermal performance and energy consumption

    NASA Astrophysics Data System (ADS)

    Susorova, Irina

    This research explored the use of vegetation in building facades as a potential solution to the problems of urban ecology and the excessive energy consumption in buildings. Vegetated facades substantially reduce building energy use, reduce the urban heat island effect, improve air quality, and increase the biodiversity of plants and animals in cities. The goal of this research was to evaluate the effects of plants on building thermal performance and energy consumption by developing a thermal model of a building facade covered with a layer of plants. The developed mathematical model accounts for thermal physical processes in a vegetated exterior wall including solar radiation, infrared radiative exchange between the facade and sky, the facade and ground, the facade and vegetation layer, convection to and from the facade, evapotranspiration from the plant layer, heat storage in the facade material, and heat conduction through the facade. The model calculates vegetated facade surface temperature and heat flux through the facade for multiple weather conditions, plant physiological characteristics, and facade parameters inputs. The model was validated with the results of a one-week long experiment measuring the thermal properties of bare and vegetated facades on the Illinois Institute of Technology campus. The experiment and subsequent sensitivity analysis demonstrated that a plant layer can effectively reduce the facade exterior surface temperature, daily temperature fluctuations, exterior wall temperature gradient, and, as a result, provide as much additional thermal insulation to the facade as a 2.5 cm layer of expanded polystyrene insulation. The vegetated facade model was also used to analyze the reduction in energy consumption in generic office and residential thermal zones for multiple parameters. The simulations showed that energy reduction could be as high as 6.2% of annual total energy use and 34.6% of cooling energy use in residential thermal zones. Overall

  15. Inside School Improvement: Creating High-Performing Learning Communities.

    ERIC Educational Resources Information Center

    Walsh, Jackie A.; Sattes, Beth D.

    In 1997, AEL, a regional educational laboratory, invited more than 100 people from 18 primarily rural school communities in Kentucky, Tennessee, Virginia, and West Virginia to join the QUEST network, a 3-year program dedicated to building quality learning communities that support high levels of student and adult performance. School stories from…

  16. The Case for High-Performance, Healthy Green Schools

    ERIC Educational Resources Information Center

    Carter, Leesa

    2011-01-01

    When trying to reach their sustainability goals, schools and school districts often run into obstacles, including financing, training, and implementation tools. Last fall, the U.S. Green Building Council-Georgia (USGBC-Georgia) launched its High Performance, Healthy Schools (HPHS) Program to help Georgia schools overcome those obstacles. By…

  17. Cobra Strikes! High-Performance Car Inspires Students, Markets Program

    ERIC Educational Resources Information Center

    Jenkins, Bonita

    2008-01-01

    Nestled in the Lower Piedmont region of upstate South Carolina, Piedmont Technical College (PTC) is one of 16 technical colleges in the state. Automotive technology is one of its most popular programs. The program features an instructive, motivating activity that the author describes in this article: building a high-performance car. The Cobra…

  18. Maintaining High-Performance Schools after Construction or Renovation

    ERIC Educational Resources Information Center

    Luepke, Gary; Ronsivalli, Louis J., Jr.

    2009-01-01

    With taxpayers' considerable investment in schools, it is critical for school districts to preserve their community's assets with new construction or renovation and effective facility maintenance programs. "High-performance" school buildings are designed to link the physical environment to positive student achievement while providing such benefits…

  19. High Performance Perovskite Solar Cells.

    PubMed

    Tong, Xin; Lin, Feng; Wu, Jiang; Wang, Zhiming M

    2016-05-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost-effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole-transporting materials (HTMs) and electron-transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  20. High performance phenolic pultrusion resin

    SciTech Connect

    Qureshi, S.P.; Ingram, W.H.; Smith, C.

    1996-11-01

    Today, Phenol-Formaldehyde (PF) resins are the materials of choice for aerospace interior applications, primarily due to low FST (flame, smoke and toxicity). Since 1990, growth of PF resins has been steadily increasing in non-aerospace applications (which include mass transit, construction, marine, mine ducting and offshore oil) due to low FST and reasonable cost. This paper describes one component phenol-formaldehyde resin that was jointly developed with Morrison Molded Fiber Glass for their pultrusion process. Physical properties of the resin with flame/smoke/toxicity, chemical resistance and mechanical performance of the pultruded RP are discussed. Neat resin screening tests to identify high-temperature formulations are explored. Research continues at Georgia-Pacific to investigate the effect of formulation variables on processing and mechanical properties.

  1. High Performance Perovskite Solar Cells

    PubMed Central

    Tong, Xin; Lin, Feng; Wu, Jiang

    2015-01-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long‐term stable all‐solid‐state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost‐effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole‐transporting materials (HTMs) and electron‐transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction. PMID:27774402

  2. Model building codes and acoustical performance: Where are we in 2003?

    NASA Astrophysics Data System (ADS)

    Tinianov, Brandon

    2003-10-01

    The proper acoustical design for multi-family dwellings is an important factor in occupant comfort. Key acoustical design practices are often not mandated by the builder or architect, but by the applicable building codes. In early 2003, the three regional/national building codes agreed to join into a single, unified national building code for residential and commercial construction. The scope and governance of these three codes: the Uniform Building Code (ICBO), the National Building Code (BOCA), the Southern Building Code (SBCCI) are reflected in the International Residential Code (IRC) and the International Building Code (IBC) which was developed by the International Code Council (ICC). With the move to a single code body, those concerned with building acoustical performance welcome the benefit of a single minimum standard. Unfortunately, this new minimum performance requirement does not reflect the state of the science for occupant satisfaction. The acoustical requirements of each of these building codes, the timeline of their development and an overview of the state of the science will be presented. Suggestions for revised performance minimums will also be offered for discussion.

  3. Quality Assurance Strategy for Existing Homes. Final Quality Management Primer for High Performing Homes

    SciTech Connect

    Del Bianco, M.; Taggart, J.; Sikora, J.; Wood, A.

    2012-12-01

    This guide is designed to help Building America (BA) teams understand quality management and its role in transitioning from conventional to high performance home building and remodeling. It explains what quality means, the value of quality management systems, the unique need for QMS when building high performing homes, and the first steps to a implementing a comprehensive QMS. This document provides a framework and context for BA teams when they encounter builders and remodelers.

  4. Quality Assurance Strategy for Existing Homes: Final Quality Management Primer for High Performing Homes

    SciTech Connect

    Del Bianco, M.; Taggart, J.; Sikora, J.; Wood, A.

    2012-12-01

    This guide is designed to help Building America (BA) Teams understand quality management and its role in transitioning from conventional to high performance home building and remodeling. It explains what quality means, the value of quality management systems, the unique need for QMS when building high performing homes, and the first steps to a implementing a comprehensive QMS. This document provides a framework and context for BA teams when they encounter builders and remodelers.

  5. Measured energy performance of a US-China demonstrationenergy-efficient office building

    SciTech Connect

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-08-28

    In July 1998, the U.S. Department of Energy (USDOE) and China's Ministry of Science of Technology (MOST) signed a Statement of Work (SOW) to collaborate on the design and construction of an energy-efficient demonstration office building and design center to be located in Beijing. The proposed 13,000 m{sup 2} (140,000 ft{sup 2}) nine-story office building would use U.S. energy-efficient materials, space-conditioning systems, controls, and design principles that were judged to be widely replicable throughout China. The SOW stated that China would contribute the land and provide for the costs of the base building, while the U.S. would be responsible for the additional (or marginal) costs associated with the package of energy efficiency and renewable energy improvements to the building. The project was finished and the building occupied in 2004. Using DOE-2 to analyze the energy performance of the as-built building, the building obtained 44 out of 69 possible points according to the Leadership in Energy and Environmental Design (LEED) rating, including the full maximum of 10 points in the energy performance section. The building achieved a LEED Gold rating, the first such LEED-rated office building in China, and is 60% more efficient than ASHRAE 90.1-1999. The utility data from the first year's operation match well the analysis results, providing that adjustments are made for unexpected changes in occupancy and operations. Compared with similarly equipped office buildings in Beijing, this demonstration building uses 60% less energy per floor area. However, compared to conventional office buildings with less equipment and window air-conditioners, the building uses slightly more energy per floor area.

  6. Performance of Building Technology Graduates in the Construction Industry in Ghana

    ERIC Educational Resources Information Center

    Ayarkwa, J.; Dansoh, Ayirebi; Adinyira, E.; Amoah, P.

    2011-01-01

    Purpose: This paper aims to assess the perception of the Ghanaian construction industry of the performance of entry-level building technology graduates. Also, other non-technical skills or attributes expected from building technology graduates are to be compared with the actual proficiency of the graduates. Design/methodology/approach: The…

  7. Window performance and building energy use: Some technical options for increasing energy efficiency

    NASA Astrophysics Data System (ADS)

    Selkowitz, Stephen

    1985-11-01

    Window system design and operation has a major impact on energy use in buildings as well as on occupants' thermal and visual comfort. Window performance will be a function of optical and thermal properties, window management strategies, climate and orientation, and building type and occupancy. In residences, heat loss control is a primary concern, followed by sun control in more southerly climates. In commercial buildings, the daylight provided by windows may be the major energy benefits but solar gain must be controlled so that increased cooling loads do not exceed daylighting savings. Reductions in peak electrical demand and HVAC system size may also be possible in well-designed daylighted buildings.

  8. Highlighting High Performance: National Renewable Energy Laboratory's Visitors Center, Golden, Colorado

    SciTech Connect

    Burgert, S.

    2001-06-19

    The National Renewable Energy Laboratory Visitors Center, also known as the Dan Schaefer Federal Building, is a high-performance building located in Golden, Colorado. The 6,400-square-foot building incorporates passive solar heating, energy-efficient lighting, an evaporative cooling system, and other technologies to minimize energy costs and environmental impact. The Visitors Center displays a variety of interactive exhibits on energy efficiency and renewable energy, and the building includes an auditorium, a public reading room, and office space.

  9. Building a Community Infrastructure for Scalable On-Line Performance Analysis Tools around Open|Speedshop

    SciTech Connect

    Miller, Barton

    2014-06-30

    Peta-scale computing environments pose significant challenges for both system and application developers and addressing them required more than simply scaling up existing tera-scale solutions. Performance analysis tools play an important role in gaining this understanding, but previous monolithic tools with fixed feature sets have not sufficed. Instead, this project worked on the design, implementation, and evaluation of a general, flexible tool infrastructure supporting the construction of performance tools as “pipelines” of high-quality tool building blocks. These tool building blocks provide common performance tool functionality, and are designed for scalability, lightweight data acquisition and analysis, and interoperability. For this project, we built on Open|SpeedShop, a modular and extensible open source performance analysis tool set. The design and implementation of such a general and reusable infrastructure targeted for petascale systems required us to address several challenging research issues. All components needed to be designed for scale, a task made more difficult by the need to provide general modules. The infrastructure needed to support online data aggregation to cope with the large amounts of performance and debugging data. We needed to be able to map any combination of tool components to each target architecture. And we needed to design interoperable tool APIs and workflows that were concrete enough to support the required functionality, yet provide the necessary flexibility to address a wide range of tools. A major result of this project is the ability to use this scalable infrastructure to quickly create tools that match with a machine architecture and a performance problem that needs to be understood. Another benefit is the ability for application engineers to use the highly scalable, interoperable version of Open|SpeedShop, which are reassembled from the tool building blocks into a flexible, multi-user interface set of tools. This set of

  10. High performance Cu adhesion coating

    SciTech Connect

    Lee, K.W.; Viehbeck, A.; Chen, W.R.; Ree, M.

    1996-12-31

    Poly(arylene ether benzimidazole) (PAEBI) is a high performance thermoplastic polymer with imidazole functional groups forming the polymer backbone structure. It is proposed that upon coating PAEBI onto a copper surface the imidazole groups of PAEBI form a bond with or chelate to the copper surface resulting in strong adhesion between the copper and polymer. Adhesion of PAEBI to other polymers such as poly(biphenyl dianhydride-p-phenylene diamine) (BPDA-PDA) polyimide is also quite good and stable. The resulting locus of failure as studied by XPS and IR indicates that PAEBI gives strong cohesive adhesion to copper. Due to its good adhesion and mechanical properties, PAEBI can be used in fabricating thin film semiconductor packages such as multichip module dielectric (MCM-D) structures. In these applications, a thin PAEBI coating is applied directly to a wiring layer for enhancing adhesion to both the copper wiring and the polymer dielectric surface. In addition, a thin layer of PAEBI can also function as a protection layer for the copper wiring, eliminating the need for Cr or Ni barrier metallurgies and thus significantly reducing the number of process steps.

  11. ALMA high performance nutating subreflector

    NASA Astrophysics Data System (ADS)

    Gasho, Victor L.; Radford, Simon J. E.; Kingsley, Jeffrey S.

    2003-02-01

    For the international ALMA project"s prototype antennas, we have developed a high performance, reactionless nutating subreflector (chopping secondary mirror). This single axis mechanism can switch the antenna"s optical axis by +/-1.5" within 10 ms or +/-5" within 20 ms and maintains pointing stability within the antenna"s 0.6" error budget. The light weight 75 cm diameter subreflector is made of carbon fiber composite to achieve a low moment of inertia, <0.25 kg m2. Its reflecting surface was formed in a compression mold. Carbon fiber is also used together with Invar in the supporting structure for thermal stability. Both the subreflector and the moving coil motors are mounted on flex pivots and the motor magnets counter rotate to absorb the nutation reaction force. Auxiliary motors provide active damping of external disturbances, such as wind gusts. Non contacting optical sensors measure the positions of the subreflector and the motor rocker. The principle mechanical resonance around 20 Hz is compensated with a digital PID servo loop that provides a closed loop bandwidth near 100 Hz. Shaped transitions are used to avoid overstressing mechanical links.

  12. Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint

    SciTech Connect

    Pless, S.; Torcellini, P.; Shelton, D.

    2011-05-01

    This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

  13. Green Schools as High Performance Learning Facilities

    ERIC Educational Resources Information Center

    Gordon, Douglas E.

    2010-01-01

    In practice, a green school is the physical result of a consensus process of planning, design, and construction that takes into account a building's performance over its entire 50- to 60-year life cycle. The main focus of the process is to reinforce optimal learning, a goal very much in keeping with the parallel goals of resource efficiency and…

  14. Methodology for estimating human perception to tremors in high-rise buildings

    NASA Astrophysics Data System (ADS)

    Du, Wenqi; Goh, Key Seng; Pan, Tso-Chien

    2016-12-01

    Human perception to tremors during earthquakes in high-rise buildings is usually associated with psychological discomfort such as fear and anxiety. This paper presents a methodology for estimating the level of perception to tremors for occupants living in high-rise buildings subjected to ground motion excitations. Unlike other approaches based on empirical or historical data, the proposed methodology performs a regression analysis using the analytical results of two generic models of 15 and 30 stories. The recorded ground motions in Singapore are collected and modified for structural response analyses. Simple predictive models are then developed to estimate the perception level to tremors based on a proposed ground motion intensity parameter—the average response spectrum intensity in the period range between 0.1 and 2.0 s. These models can be used to predict the percentage of occupants in high-rise buildings who may perceive the tremors at a given ground motion intensity. Furthermore, the models are validated with two recent tremor events reportedly felt in Singapore. It is found that the estimated results match reasonably well with the reports in the local newspapers and from the authorities. The proposed methodology is applicable to urban regions where people living in high-rise buildings might feel tremors during earthquakes.

  15. High Performance Walls in Hot-Dry Climates

    SciTech Connect

    Hoeschele, Marc; Springer, David; Dakin, Bill; German, Alea

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of high performance wall systems. Builders were given incentives and design support in exchange for providing site access for construction observation, cost information, and builder survey feedback. Information from the project was designed to feed into the 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project utilized information collected in the California project.

  16. A computational environment for performance-based building enclosure design and operation

    NASA Astrophysics Data System (ADS)

    Mahattanatawe, Prechaya

    Building enclosure plays an essential role with regard to the overall performance of buildings. Specifically, energy performance, thermal comfort, and lighting conditions are significantly affected by the quality of enclosure design and its operational status. Currently, few tools exist that provide integrative and effective support for building enclosure design. Moreover, computational support for the real-time control of dynamic building enclosure components is de facto non-existent. To address these shortcomings, this thesis introduces a novel computational environment for performance-based integrated building enclosure design and operation support. The key concepts and features of this system include: (1) Virtual enclosure---Given a set of desirable conditions for an indoor climate (preferred thermal and visual settings) and outdoor conditions (temperature, humidity, solar radiation, etc.), a set of dynamic transfer functions may be derived that constitute, in toto, the virtual enclosure. This is, thus, an abstract representation of physical transfer phenomena and not a set of actual building layers. (2) Dynamic optimization---Three optimization methods are adapted and dynamically applied to derive the basic (static) values of the transfer functions of the enclosure for a given set of indoor climate requirements. Such transfer functions are arrived at for both opaque and transparent building components. (3) Construction mapping---The basic (static) components of the building enclosure are determined by the attributes of the optimal virtual enclosure being mapped to a database of actual building enclosure constructions. (4) Using a knowledge---based mapping method, the passive signature of the performance of the static enclosure is used to derive recommendations for secondary enclosure devices for shading and light redirection. (5) The actual operation of the dynamic components of the building enclosure makes use of the time-step utilization of the dynamic

  17. Scalable resource management in high performance computers.

    SciTech Connect

    Frachtenberg, E.; Petrini, F.; Fernandez Peinador, J.; Coll, S.

    2002-01-01

    Clusters of workstations have emerged as an important platform for building cost-effective, scalable and highly-available computers. Although many hardware solutions are available today, the largest challenge in making large-scale clusters usable lies in the system software. In this paper we present STORM, a resource management tool designed to provide scalability, low overhead and the flexibility necessary to efficiently support and analyze a wide range of job scheduling algorithms. STORM achieves these feats by closely integrating the management daemons with the low-level features that are common in state-of-the-art high-performance system area networks. The architecture of STORM is based on three main technical innovations. First, a sizable part of the scheduler runs in the thread processor located on the network interface. Second, we use hardware collectives that are highly scalable both for implementing control heartbeats and to distribute the binary of a parallel job in near-constant time, irrespective of job and machine sizes. Third, we use an I/O bypass protocol that allows fast data movements from the file system to the communication buffers in the network interface and vice versa. The experimental results show that STORM can launch a job with a binary of 12MB on a 64 processor/32 node cluster in less than 0.25 sec on an empty network, in less than 0.45 sec when all the processors are busy computing other jobs, and in less than 0.65 sec when the network is flooded with a background traffic. This paper provides experimental and analytical evidence that these results scale to a much larger number of nodes. To the best of our knowledge, STORM is at least two orders of magnitude faster than existing production schedulers in launching jobs, performing resource management tasks and gang scheduling.

  18. New high performance Si for optical devices

    NASA Astrophysics Data System (ADS)

    Tenma, T.; Matsuzaka, M.; Sako, R.; Takase, K.; Chiba, K.

    2016-05-01

    Against the backdrop of a growing demand in the areas of smart buildings, security, vehicle installation, and other applications, the market for far infrared cameras is expected to grow significantly in the future. However, since germanium (Ge) and chalcogenide glass, which have been used as the lens materials of far infrared cameras, are very expensive or highly toxic, there are some problems supporting the growing demand. We have therefore focused attention on silicon, which is inexpensive and less toxic. Although silicon has been used as a lens material of far infrared cameras, there are some problems remaining to be solved: Cz silicon is inexpensive but delivers low transmittance, and Fz silicon delivers sufficient transmittance but is expensive. We have developed New Cz silicon, which delivers high transmittance as Fz silicon does, and is inexpensive as conventional Cz silicon is. We have already started its sample work at both companies in Japan and overseas and have obtained excellent performance results. Mass production is scheduled to start in this fiscal year.

  19. Successful performance of a base-isolated hospital building during the 17 January 1994 northridge earthquake

    USGS Publications Warehouse

    Celebi, M.

    1996-01-01

    The purpose of this paper is to examine the response records and thereby the performance of the base-isolated University of Southern California (USC) hospital building during the Ms = 6-8 Northridge (California) earthquake of 17 January 1994. The data retrieved from the building is the first set of data from any base-isolated building that (a) was tested to acceleration levels at the free-field similar to the zero period acceleration (ZPA) level postulated in the seismic design criteria of the building and (b) exhibits levels of relative displacement excursions which puts the isolators into the nonlinear range. The variation of the fundamental frequency as a function of changing instantaneous stiffness of the isolators is identifiable. During the shaking, the isolators (a) performed well and, having attained up to 10% hysteretic damping, effectively dissipated the incoming energy of motions and (b) reduced the drift ratios of the superstructure of the building to a maximum of 10% of the allowable, which should explain the fact that there was no damage to the structure or its contents. The primary conclusion of this study is that this base-isolated building performed well during the Northridge earthquake of 17 January 1994 when only approximately 10% of the displacement capability of the isolators were utilized. Therefore, there is every reason to believe that the building will perform well during future earthquakes in the region.

  20. Building a Strong Culture That Produces Sustainable Performance - 13444

    SciTech Connect

    McDonald, John A. Jr

    2013-07-01

    Washington River Protection Solutions LLC (WRPS) has been involved with culture improvement for a number of years which has included co-chairing the industry effort to develop the EFCOG safety culture guidance documents [1, 2], and integration of this guidance into organizational processes and behavior expectations, described in more detail below. As various organizational cultural assessments have been periodically performed, and subsequent actions implemented to address improvement opportunities, organizational performance has shown improvement. Culture improvement is evident in the company's industrial safety statistics, event rates, safety culture survey results, employee morale, productivity, leadership effectiveness, and employee engagement. There does appear to be a relationship between striving to demonstrate behaviors consistent with excellent safety culture and good organizational performance over the past couple of years at WRPS. As performance continues to be evaluated, an improvement opportunity was identified to further enhance performance through field oriented behavioral/cultural improvement activities. WRPS recently conducted a three month effort to improve consistent implementation of management expectations by increasing management field presence with a focus on interacting real-time with workers and first line supervisors, and changing behaviors as appropriate. (authors)

  1. Performance-based Design of RC Frame Buildings with Metallic and Friction Dampers

    NASA Astrophysics Data System (ADS)

    Chaudhury, Deepsikha; Singh, Yogendra

    2014-12-01

    Supplemental energy dissipation is a technique of earthquake resistant design and for improving the seismic performance of existing buildings. In the present study, a comprehensive design methodology for performance based design of frame buildings with metallic and friction dampers has been proposed. In this study, the target performance level is aimed to achieve both in terms of inter-storey drift and plastic hinge rotation. A non-iterative step-by-step design procedure is proposed to achieve the target performance level. The methodology provides the design yield forces in case of metallic dampers, and slip forces in case of friction dampers. A satisfactory distribution of both types of dampers along the height of the building is also provided in the methodology. The efficiency of the proposed design methodology is validated by applying to a ten storey building and performing nonlinear time history analysis. The building, with and without dampers, is subjected to five spectrum compatible time histories with peak ground acceleration of 0.24 g and the relative performance of the building with the two types of dampers is studied.

  2. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Xiao, Xuezhang; Shao, Jie; Zhai, Bing; Fan, Xiulin; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin

    2016-08-01

    Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (~10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol-1 and 71 kJ mol-1, respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with efficient

  3. Evaluation of a micro-scale wind model's performance over realistic building clusters using wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Du, Yunsong; Miao, Shiguang; Fang, Xiaoyi

    2016-08-01

    The simulation performance over complex building clusters of a wind simulation model (Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system (Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL (Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data (Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier-Stokes equations, and can produce very high-resolution (1-5 m) wind fields of a complex neighborhood scale urban building canopy (~ 1 km ×1 km) in less than 3 min when run on a personal computer.

  4. Automated Fabrication Technologies for High Performance Polymer Composites

    NASA Technical Reports Server (NTRS)

    Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.

    1998-01-01

    New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.

  5. Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach.

    PubMed

    Kneifel, Joshua; Webb, David

    2016-09-01

    Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the

  6. High Comfort - Low Impact Concepts For Buildings and Cities

    SciTech Connect

    Schuler, Matthias

    2012-04-30

    This lecture provides an overview of what Transsolar is doing in the field of sustainable buildings and cities. Topics covered include: Why sustainability for buildings and cities; What does sustainability mean for buildings and cities; The company's "KlimaEngineering" approach; and Project examples.

  7. Performing Curriculum: Building Ethos through Narratives in Pedagogical Discourse

    ERIC Educational Resources Information Center

    Juzwik, Mary M.

    2006-01-01

    This study examines the problem of how teachers establish desirable positions of authority in their classrooms. The interpretive analysis draws on insights from narrative theory in order to consider the following question: How does one teacher establish authority in her classroom through the means of narrative performance? I articulate a…

  8. Performance evaluation of passive cooling in office buildings based on uncertainty and sensitivity analysis

    SciTech Connect

    Breesch, H.; Janssens, A.

    2010-08-15

    Natural night ventilation is an interesting passive cooling method in moderate climates. Driven by wind and stack generated pressures, it cools down the exposed building structure at night, in which the heat of the previous day is accumulated. The performance of natural night ventilation highly depends on the external weather conditions and especially on the outdoor temperature. An increase of this outdoor temperature is noticed over the last century and the IPCC predicts an additional rise to the end of this century. A methodology is needed to evaluate the reliable operation of the indoor climate of buildings in case of warmer and uncertain summer conditions. The uncertainty on the climate and on other design data can be very important in the decision process of a building project. The aim of this research is to develop a methodology to predict the performance of natural night ventilation using building energy simulation taking into account the uncertainties in the input. The performance evaluation of natural night ventilation is based on uncertainty and sensitivity analysis. The results of the uncertainty analysis showed that thermal comfort in a single office cooled with single-sided night ventilation had the largest uncertainty. The uncertainties on thermal comfort in case of passive stack and cross ventilation were substantially smaller. However, since wind, as the main driving force for cross ventilation, is highly variable, the cross ventilation strategy required larger louvre areas than the stack ventilation strategy to achieve a similar performance. The differences in uncertainty between the orientations were small. Sensitivity analysis was used to determine the most dominant set of input parameters causing the uncertainty on thermal comfort. The internal heat gains, solar heat gain coefficient of the sunblinds, internal convective heat transfer coefficient, thermophysical properties related to thermal mass, set-point temperatures controlling the natural

  9. 41 CFR 102-73.75 - What functions must Federal agencies perform with regard to leasing building space?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Federal agencies perform with regard to leasing building space? 102-73.75 Section 102-73.75 Public... functions must Federal agencies perform with regard to leasing building space? Federal agencies, upon approval from GSA, must perform all functions of leasing building space, and land incidental thereto,...

  10. 41 CFR 102-73.75 - What functions must Federal agencies perform with regard to leasing building space?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Federal agencies perform with regard to leasing building space? 102-73.75 Section 102-73.75 Public... functions must Federal agencies perform with regard to leasing building space? Federal agencies, upon approval from GSA, must perform all functions of leasing building space, and land incidental thereto,...

  11. The effect of simplifying the building description on the numerical modeling of its thermal performance

    SciTech Connect

    Stetiu, C.

    1993-07-01

    A thermal building simulation program is a numerical model that calculates the response of the building envelopes to weather and human activity, simulates dynamic heating and cooling loads, and heating and cooling distribution systems, and models building equipment operation. The scope of the research is to supply the users of such programs with information about the dangers and benefits of simplifying the input to their models. The Introduction describes the advantages of modeling the heat transfer mechanisms in a building. The programs that perform this type of modeling have, however, limitations. The user is therefore often put in the situation of simplifying the floor plans of the building under study, but not being able to check the effects that this approximation introduces in the results of the simulation. Chapter 1 is a description of methods. It also introduces the floor plans for the office building under study and the ``reasonable`` floor plans simplifications. Chapter 2 presents DOE-2, the thermal building simulation program used in the sensitivity study. The evaluation of the accuracy of the DOE-2 program itself is also presented. Chapter 3 contains the sensitivity study. The complicated nature of the process of interpreting the temperature profile inside a space leads to the necessity of defining different building modes. The study compares the results from the model of the detailed building description with the results from the models of the same building having simplified floor plans. The conclusion is reached that a study of the effects of simplifying the floor plans of a building is important mainly for defining the cases in which this approximation is acceptable. Different results are obtained for different air conditioning/load regimes of the building. 9 refs., 24 figs.

  12. Design and Optimization of Slot Aluminum Alloy Connectors of Photovoltaics Applied to High-rise Building Facades

    NASA Astrophysics Data System (ADS)

    Liang, Ya-Wei; Zhang, Hong-Mei; Dong, Jin-Zhi; Shi, Zhen-Hua

    2016-05-01

    Building Integrated Photovoltaic (BIPV) is a resort to save energy and reduce heat gain of buildings, utilize new and renewable energy, solve environment problems and alleviate electricity shortage in large cities. The area needed to generate power makes facade integrated photovoltaic panel a superb choice, especially in high-rise buildings. Numerous scholars have hitherto explored Building Facade Integrated Photovoltaic, however, focusing mainly on thermal performance, which fails to ensure seismic safety of high-rise buildings integrated photovoltaic. Based on connecting forms of the glass curtain wall, a connector jointing photovoltaic panel and facade was designed, which underwent loading position and size optimization. Static loading scenarios were conducted to test and verify the connector's mechanical properties under gravity and wind loading by means of HyperWorks. Compared to the unoptimized design, the optimized one saved material and managed to reduce maximum deflection by 74.64%.

  13. Investigating the discrepancy between the predicted and actual energy performance of buildings

    NASA Astrophysics Data System (ADS)

    Demanuele, Christine

    The threat of climate change has increased the demand for energy efficiency in buildings, with various stakeholders requesting more accurate predictions of energy consumption, and energy consultants coming under increased pressure to guarantee the energy performance of buildings. This study aims to investigate the factors causing the discrepancy which currently exists between the predicted and actual energy performance of buildings, which will lead to a deeper understanding of this discrepancy and, ultimately, more accurate energy predictions. As part of this study, a non-domestic building in London was modelled and monitored, so as to identify the main contributors to the discrepancy between the predicted and actual energy consumption. In addition, sensitivity analysis was carried out on a number of input variables to establish the set of influential parameters, and to determine whether using such techniques would successfully predict the range in which building energy consumption is likely to fall. The results show that the uncertainty calculated from differential sensitivity analysis encompasses the actual energy performance of the building. The most variable and influential parameters are those which are controlled by occupants, therefore it is paramount that management and occupants are well-informed about the building operation for energy targets to be achieved. Although the sensitivity analysis methods employed are impractical for commercial use, it is possible to develop simpler methods, encompassing all stages of building design and operation, which would decrease the discrepancy between the actual and predicted energy performance of buildings. Such techniques would be invaluable to energy consultants, for whom the cost resting on uncertainties in predictions is substantial due to more demanding clients and fines liable to be paid if energy predictions go wrong. A better understanding of the discrepancy, together with more accurate predictions, would

  14. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    SciTech Connect

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

  15. High Performance Torso Cooling Garment

    NASA Technical Reports Server (NTRS)

    Conger, Bruce

    2016-01-01

    The concept proposed in this paper is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area, which could facilitate removal of LCVG tubing from the arms and legs, thereby increasing suited crew member mobility. EVA space suit mobility in micro-gravity is challenging, and it becomes even more challenging in the gravity of Mars. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased. This increase in efficiency could provide the required liquid cooling via torso tubing only; no arm or leg LCVG tubing would be required. Benefits of this approach include increased crewmember mobility, reduced LCVG mass, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development. This report describes analysis and test activities performed to evaluate the potential improvements to the thermal performance of the LCVG. Analyses evaluated potential tube shapes for improving the thermal performance of the LCVG. The analysis results fed into the selection of flat flow strips to improve thermal contact with the skin of the suited test subject. Testing of small segments was performed to compare thermal performance of the tubing approach of the current LCVG to the flat flow strips proposed as the new concept. Results of the testing is presented along with recommendations for future development of this new concept.

  16. High Performance Torso Cooling Garment

    NASA Technical Reports Server (NTRS)

    Conger, Bruce; Makinen, Janice

    2016-01-01

    The concept proposed in this paper is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area, which could facilitate removal of LCVG tubing from the arms and legs, thereby increasing suited crew member mobility. EVA space suit mobility in micro-gravity is challenging, and it becomes even more challenging in the gravity of Mars. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased. This increase in efficiency could provide the required liquid cooling via torso tubing only; no arm or leg LCVG tubing would be required. Benefits of this approach include increased crewmember mobility, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development. This report describes analysis and test activities performed to evaluate the potential improvements to the thermal performance of the LCVG. Analyses evaluated potential tube shapes for improving the thermal performance of the LCVG. The analysis results fed into the selection of flat flow strips to improve thermal contact with the skin of the suited test subject. Testing of small segments was performed to compare thermal performance of the tubing approach of the current LCVG to the flat flow strips proposed as the new concept. Results of the testing is presented along with recommendations for future development of this new concept.

  17. Building application of solar energy. Study no. 2: Representative buildings for solar energy performance analysis and market penetration

    NASA Technical Reports Server (NTRS)

    Hirshberg, A. S.

    1975-01-01

    The following topics are discussed: (1) Assignment of population to microclimatic zones; (2) specifications of the mix of buildings in the SCE territory; (3) specification of four typical buildings for thermal analysis and market penetration studies; (4) identification of the materials and energy conserving characteristics of these typical buildings; (5) specifications of the HVAC functions used in each typical building, and determination of the HVAC systems used in each building; and (6) identification of the type of fuel used in each building.

  18. Indoor Air Quality in High Performance Schools

    EPA Pesticide Factsheets

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  19. A high performance thermoacoustic engine

    NASA Astrophysics Data System (ADS)

    Tijani, M. E. H.; Spoelstra, S.

    2011-11-01

    In thermoacoustic systems heat is converted into acoustic energy and vice versa. These systems use inert gases as working medium and have no moving parts which makes the thermoacoustic technology a serious alternative to produce mechanical or electrical power, cooling power, and heating in a sustainable and environmentally friendly way. A thermoacoustic Stirling heat engine is designed and built which achieves a record performance of 49% of the Carnot efficiency. The design and performance of the engine is presented. The engine has no moving parts and is made up of few simple components.

  20. High-performance composite chocolate

    NASA Astrophysics Data System (ADS)

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-07-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with the material selection process. In a competition-based practical, first-year undergraduate students design, cost and cast composite chocolate samples to maximize a particular performance criterion. The same activity could be adapted for any level of education to introduce the subject of materials properties and their effects on the material chosen for specific applications.

  1. High-Performance Composite Chocolate

    ERIC Educational Resources Information Center

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-01-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with…

  2. Toward High-Performance Organizations.

    ERIC Educational Resources Information Center

    Lawler, Edward E., III

    2002-01-01

    Reviews management changes that companies have made over time in adopting or adapting four approaches to organizational performance: employee involvement, total quality management, re-engineering, and knowledge management. Considers future possibilities and defines a new view of what constitutes effective organizational design in management.…

  3. Seismic performance of non-structural components and contents in buildings: an overview of NZ research

    NASA Astrophysics Data System (ADS)

    Dhakal, Rajesh P.; Pourali, Atefeh; Tasligedik, Ali Sahin; Yeow, Trevor; Baird, Andrew; MacRae, Gregory; Pampanin, Stefano; Palermo, Alessandro

    2016-03-01

    This paper summarizes the research on non-structural elements and building contents being conducted at University of Canterbury in New Zealand. Since the 2010-2011 series of Canterbury earthquakes, in which damage to non-structural components and contents contributed heavily to downtime and overall financial loss, attention to seismic performance and design of non-structural components and contents in buildings has increased exponentially in NZ. This has resulted in an increased allocation of resources to research leading to development of more resilient non-structural systems in buildings that would incur substantially less damage and cause little downtime during earthquakes. In the last few years, NZ researchers have made important developments in understanding and improving the seismic performance of secondary building elements such as partitions, facades, ceilings and contents.

  4. Sustaining High Performance in Bad Times.

    ERIC Educational Resources Information Center

    Bassi, Laurie J.; Van Buren, Mark A.

    1997-01-01

    Summarizes the results of the American Society for Training and Development Human Resource and Performance Management Survey of 1996 that examined the performance outcomes of downsizing and high performance work systems, explored the relationship between high performance work systems and downsizing, and asked whether some downsizing practices were…

  5. High performance, high density hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Frankenfeld, J. W.; Hastings, T. W.; Lieberman, M.; Taylor, W. F.

    1978-01-01

    The fuels were selected from 77 original candidates on the basis of estimated merit index and cost effectiveness. The ten candidates consisted of 3 pure compounds, 4 chemical plant streams and 3 refinery streams. Critical physical and chemical properties of the candidate fuels were measured including heat of combustion, density, and viscosity as a function of temperature, freezing points, vapor pressure, boiling point, thermal stability. The best all around candidate was found to be a chemical plant olefin stream rich in dicyclopentadiene. This material has a high merit index and is available at low cost. Possible problem areas were identified as low temperature flow properties and thermal stability. An economic analysis was carried out to determine the production costs of top candidates. The chemical plant and refinery streams were all less than 44 cent/kg while the pure compounds were greater than 44 cent/kg. A literature survey was conducted on the state of the art of advanced hydrocarbon fuel technology as applied to high energy propellents. Several areas for additional research were identified.

  6. Nanocrystalline high performance permanent magnets

    NASA Astrophysics Data System (ADS)

    Gutfleisch, O.; Bollero, A.; Handstein, A.; Hinz, D.; Kirchner, A.; Yan, A.; Müller, K.-H.; Schultz, L.

    2002-04-01

    Recent developments in nanocrystalline rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated.

  7. Building a practice. Budget forecasts and performance monitoring.

    PubMed

    Gripper, J

    1989-01-14

    In order to run a small business effectively you must be in financial control and this means that you have to be aware how the business is performing. If you wait until your accountant has got out the annual accounts valuable time has been wasted in making necessary decisions and corrections to poor trends in your business so monthly/quarterly records are required. Decisions as to whether you can afford to take another assistant, set up a branch surgery, the level of your fee increases, whether to buy or lease your cars; are all dependent on having available up to date financial knowledge of your business. If you have a microcomputer in the practice you can use spreadsheets which will allow the accurate prediction of cash flow or profitability. You can also ask the question 'what happens if...?' and get the answer in seconds. But even without a computer, financial control can be easily maintained if you are prepared to spend a couple of hours each month with your practice figures.

  8. Carpet Aids Learning in High Performance Schools

    ERIC Educational Resources Information Center

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  9. High-Performance Miniature Hygrometer

    NASA Technical Reports Server (NTRS)

    Van Zandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.; Crisp, David

    1994-01-01

    Relatively inexpensive hygrometer that occupies volume less than 4 in.(3) measures dewpoints as much as 100 degrees C below ambient temperatures, with accuracy of 0.1 degrees C. Field tests indicate accuracy and repeatability identical to those of state-of-the-art larger dewpoint hygrometers. Operates up to 100 times as fast as older hygrometers, and offers simplicity and small size needed to meet cost and performance requirements of many applications.

  10. PERFORMANCE CRITERIA, A SYSTEM OF COMMUNICATION FOR MOBILIZING BUILDING INDUSTRY RESOURCES.

    ERIC Educational Resources Information Center

    JACQUES, RICHARD G.

    A PROGRAM TO TEST AND DEMONSTRATE THE EFFICACY OF PERFORMANCE CRITERIA FOR UNIVERSITY BUILDING DESIGN AND CONSTRUCTION IS UNDER WAY IN NEW YORK STATE UNDER THE AUSPICES OF THE NEW YORK STATE UNIVERSITY CONSTRUCTION FUND. THE PROGRAM IS TO RESULT IN AN EXTENSIVE LIBRARY OF PERFORMANCE CRITERIA TO AID COMMUNICATION WITH ALL SECTORS OF THE BUILDING…

  11. Contributing to Net Zero Building: High Energy Efficient EIFS Wall Systems

    SciTech Connect

    Carbary, Lawrence D.; Perkins, Laura L.; Serino, Roland; Preston, Bill; Kosny, Jan

    2014-01-29

    The team led by Dow Corning collaborated to increase the thermal performance of exterior insulation and finishing systems (EIFS) to reach R-40 performance meeting the needs for high efficiency insulated walls. Additionally, the project helped remove barriers to using EIFS on retrofit commercial buildings desiring high insulated walls. The three wall systems developed within the scope of this project provide the thermal performance of R-24 to R-40 by incorporating vacuum insulation panels (VIPs) into an expanded polystyrene (EPS) encapsulated vacuum insulated sandwich element (VISE). The VISE was incorporated into an EIFS as pre-engineered insulation boards. The VISE is installed using typical EIFS details and network of trained installers. These three wall systems were tested and engineered to be fully code compliant as an EIFS and meet all of the International Building Code structural, durability and fire test requirements for a code compliant exterior wall cladding system. This system is being commercialized under the trade name Dryvit® Outsulation® HE system. Full details, specifications, and application guidelines have been developed for the system. The system has been modeled both thermally and hygrothermally to predict condensation potential. Based on weather models for Baltimore, MD; Boston, MA; Miami, FL; Minneapolis, MN; Phoenix, AZ; and Seattle, WA; condensation and water build up in the wall system is not a concern. Finally, the team conducted a field trial of the system on a building at the former Brunswick Naval Air Station which is being redeveloped by the Midcoast Regional Redevelopment Authority (Brunswick, Maine). The field trial provided a retrofit R-30 wall onto a wood frame construction, slab on grade, 1800 ft2 building, that was monitored over the course of a year. Simultaneous with the façade retrofit, the building’s windows were upgraded at no charge to this program. The retrofit building used 49% less natural gas during the winter of

  12. High performance Vernier racetrack resonators.

    PubMed

    Boeck, Robert; Flueckiger, Jonas; Yun, Han; Chrostowski, Lukas; Jaeger, Nicolas A F

    2012-12-15

    We demonstrate record performance of series-coupled silicon racetrack resonators exhibiting the Vernier effect. Our device has an interstitial peak suppression (IPS) of 25.5 dB, which is 14.5 dB larger than previously reported results. We also demonstrate the relationship between the inter-ring gap distance and the IPS as well as the 3 dB bandwidth (BW) both theoretically and experimentally. Namely, we show that as the inter-ring gap distance increases, the IPS increases and the 3 dB BW decreases.

  13. High-performance solar collector

    NASA Technical Reports Server (NTRS)

    Beekley, D. C.; Mather, G. R., Jr.

    1979-01-01

    Evacuated all-glass concentric tube collector using air or liquid transfer mediums is very efficient at high temperatures. Collector can directly drive existing heating systems that are presently driven by fossil fuel with relative ease of conversion and less expense than installation of complete solar heating systems.

  14. DEEP: A Database of Energy Efficiency Performance to Accelerate Energy Retrofitting of Commercial Buildings

    SciTech Connect

    Hoon Lee, Sang; Hong, Tianzhen; Sawaya, Geof; Chen, Yixing; Piette, Mary Ann

    2015-05-01

    The paper presents a method and process to establish a database of energy efficiency performance (DEEP) to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 35 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones. DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and domestic hot water. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of an on-going project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users’ decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct

  15. High-performance magnetic gears

    NASA Astrophysics Data System (ADS)

    Atallah, Kais; Calverley, Stuart D.; Howe, David

    2004-05-01

    Magnetic gearing may offer significant advantages such as reduced maintenance and improved reliability, inherent overload protection, and physical isolation between input and output shafts. Despite these advantages, it has received relatively little attention, to date, probably due to the poor torque transmission capability of proposed magnetic gears. The paper describes a magnetic gear topology, which combines a significantly higher torque transmission capability and a very high efficiency.

  16. Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    SciTech Connect

    Burdick, A.

    2011-10-01

    This report outlines findings resulting from a U.S. Department of Energy Building America expert meeting to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting. IBACOS has embarked upon a research effort under the Building America Program to understand business impacts and change management strategies for HVAC companies. HVAC companies can implement these strategies in order to quickly transition from a 'traditional' heating and cooling contractor to a service provider for whole house energy upgrade contracting. Due to HVAC service contracts, which allow repeat interaction with homeowners, HVAC companies are ideally positioned in the marketplace to resolve homeowner comfort issues through whole house energy upgrades. There are essentially two primary ways to define the routes of transition for an HVAC contractor taking on whole house performance contracting: (1) Sub-contracting out the shell repair/upgrade work; and (2) Integrating the shell repair/upgrade work into their existing business. IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major objectives of the meeting were to: Review and validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the structure of traditional HVAC Companies and whole house energy upgrade companies Seek industry input on how to structure information so it is relevant and useful for traditional HVAC contractors who are transitioning to becoming whole house energy upgrade contractors Seven industry experts identified by IBACOS participated in the session along with one representative from the National Renewable Energy Laboratory (NREL). The objective of the meeting was to validate the general operational profile of an

  17. High performance rotational vibration isolator

    NASA Astrophysics Data System (ADS)

    Sunderland, Andrew; Blair, David G.; Ju, Li; Golden, Howard; Torres, Francis; Chen, Xu; Lockwood, Ray; Wolfgram, Peter

    2013-10-01

    We present a new rotational vibration isolator with an extremely low resonant frequency of 0.055 ± 0.002 Hz. The isolator consists of two concentric spheres separated by a layer of water and joined by very soft silicone springs. The isolator reduces rotation noise at all frequencies above its resonance which is very important for airborne mineral detection. We show that more than 40 dB of isolation is achieved in a helicopter survey for rotations at frequencies between 2 Hz and 20 Hz. Issues affecting performance such as translation to rotation coupling and temperature are discussed. The isolator contains almost no metal, making it particularly suitable for electromagnetic sensors.

  18. High performance rotational vibration isolator.

    PubMed

    Sunderland, Andrew; Blair, David G; Ju, Li; Golden, Howard; Torres, Francis; Chen, Xu; Lockwood, Ray; Wolfgram, Peter

    2013-10-01

    We present a new rotational vibration isolator with an extremely low resonant frequency of 0.055 ± 0.002 Hz. The isolator consists of two concentric spheres separated by a layer of water and joined by very soft silicone springs. The isolator reduces rotation noise at all frequencies above its resonance which is very important for airborne mineral detection. We show that more than 40 dB of isolation is achieved in a helicopter survey for rotations at frequencies between 2 Hz and 20 Hz. Issues affecting performance such as translation to rotation coupling and temperature are discussed. The isolator contains almost no metal, making it particularly suitable for electromagnetic sensors.

  19. Effects of salinity build-up on the performance and bacterial community structure of a membrane bioreactor.

    PubMed

    Luo, Wenhai; Phan, Hop V; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2016-01-01

    This study investigated the effects of salinity increase on bacterial community structure in a membrane bioreactor (MBR) for wastewater treatment. The influent salt loading was increased gradually to simulate salinity build-up in the bioreactor during the operation of a high retention-membrane bioreactor (HR-MBR). Bacterial community diversity and structure were analyzed using 454 pyrosequencing of 16S rRNA genes of MBR mixed liquor samples. Results show that salinity increase reduced biological performance but did not affect microbial diversity in the bioreactor. Unweighted UniFrac and taxonomic analyses were conducted to relate the reduced biological performance to the change of bacterial community structure. In response to the elevated salinity condition, the succession of halophobic bacteria by halotolerant/halophilic microbes occurred and thereby the biological performance of MBR was recovered. These results suggest that salinity build-up during HR-MBR operation could be managed by allowing for the proliferation of halotolerant/halophilic bacteria.

  20. Mapping of noise impact provoked by the execution of foundation piles at high rise building sites.

    PubMed

    de Araújo, Adolpho Guido; Gusmão, Alexandre Duarte; Rabbani, Emilia Rahnemay Kohman; Fucale, Stela Paulino

    2012-01-01

    The objective of this work is to map, in a limited area inside and outside of the worksite, the environmental impact generated by sound pollution coming from the driving of foundation piles for high rise buildings, as well as to observe and check if the noise levels produced by the emitting source are tolerable in the urban environment. The methodology of the work includes a survey of technical references about the subject; measurement of noises surrounding the worksite during the foundation phase for four distinct buildings, with different types of piles: prefabricated piles, continuous helical displacement piles , traditional compaction piles and Terra Probe compaction piles. A grid of points was built due to the time of driving and after that the measurements of environmental noises were performed emitted by the execution of each type of pile using a sound level meter. The interpretation of the measurements and their impacts on the neighborhood of the building were performed using the computational tool Suffer for creating noise level contours. The X and Y axes of the grid represent the distances in meters of the area studied and the Z axis represents the noise measured in dB. The contours developed represent the mapping of the noise at the worksites and their surroundings. The mapping of the urban impact of noise, the measurement of its dimensions, and the examination of its propagation around the building are important subsides to adequate individual and collective protection procedures. Seventy one points were measured at four building sites with different types of piles, and the results showed that at only three points was the noise within the limits of the Municipal Law of Recife of 70 dB, which proves the relevance of the research. Finally, the comparative analysis between the four types of piles shows that the continuous helical displacement pile emits the lowest noise level among the four pile types studied.

  1. Analysis of building envelope insulation performance utilizing integrated temperature and humidity sensors.

    PubMed

    Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei

    2012-01-01

    A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments.

  2. Analysis of Building Envelope Insulation Performance Utilizing Integrated Temperature and Humidity Sensors

    PubMed Central

    Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei

    2012-01-01

    A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments. PMID:23012529

  3. [Research on the performance comparing and building of affective computing database based on physiological parameters].

    PubMed

    Li, Xin; Du, Xiaojuan; Zhang, Yunpeng; Ying, Lijuan; Li, Changwuz

    2014-08-01

    The validity and reasonableness of emotional data are the key issues in the cognitive affective computing research. Effects of the emotion recognition are decided by the quality of selected data directly. Therefore, it is an important part of affective computing research to build affective computing database with good performance, so that it is the hot spot of research in this field. In this paper, the performance of two classical cognitive affective computing databases, the Massachusetts Institute of Technology (MIT) cognitive affective computing database and Germany Augsburg University emotion recognition database were compared, their data structure and data types were compared respectively, and emotional recognition effect based on the data were studied comparatively. The results indicated that the analysis based on the physical parameters could get the effective emotional recognition, and would be a feasible method of pressure emotional evaluation. Because of the lack of stress emotional evaluation data based on the physiological parameters domestically, there is not a public stress emotional database. We hereby built a dataset for the stress evaluation towards the high stress group in colleges, candidates of postgraduates of Ph. D and master as the subjects. We then acquired their physiological parameters, and performed the pressure analysis based on this database. The results indicated that this dataset had a certain reference value for the stress evaluation, and we hope this research can provide a reference and support for emotion evaluation and analysis.

  4. High performance light emitting transistors

    NASA Astrophysics Data System (ADS)

    Namdas, Ebinazar B.; Ledochowitsch, Peter; Yuen, Jonathan D.; Moses, Daniel; Heeger, Alan J.

    2008-05-01

    Solution processed light emitting field-effect transistors (LEFETs) with peak brightness exceeding 2500cd/m2 and external quantum efficiency of 0.15% are demonstrated. The devices utilized a bilayer film comprising a hole transporting polymer, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) and a light emitting polymer, Super Yellow, a polyphenylenevinylene derivative. The LEFETs were fabricated in the bottom gate architecture with top-contact Ca /Ag as source/drain electrodes. Light emission was controlled by the gate voltage which controls the hole current. These results indicate that high brightness LEFETs can be made by using the bilayer film (hole transporting layer and a light emitting polymer).

  5. Designing high-performance jobs.

    PubMed

    Simons, Robert

    2005-01-01

    Tales of great strategies derailed by poor execution are all too common. That's because some organizations are designed to fail. For a company to achieve its potential, each employee's supply of organizational resources should equal the demand, and the same balance must apply to every business unit and to the company as a whole. To carry out his or her job, each employee has to know the answers to four basic questions: What resources do I control to accomplish my tasks? What measures will be used to evaluate my performance? Who do I need to interact with and influence to achieve my goals? And how much support can I expect when I reach out to others for help? The questions correspond to what the author calls the four basic spans of a job-control, accountability, influence, and support. Each span can be adjusted so that it is narrow or wide or somewhere in between. If you get the settings right, you can design a job in which a talented individual can successfully execute on your company's strategy. If you get the settings wrong, it will be difficult for an employee to be effective. The first step is to set the span of control to reflect the resources allocated to each position and unit that plays an important role in delivering customer value. This setting, like the others, is determined by how the business creates value for customers and differentiates its products and services. Next, you can dial in different levels of entrepreneurial behavior and creative tension by widening or narrowing spans of accountability and influence. Finally, you must adjust the span of support to ensure that the job or unit will get the informal help it needs.

  6. HIGH-PERFORMANCE COATING MATERIALS

    SciTech Connect

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  7. Perceived Comfort of Indoor Environment and Users' Performance in Office Building with Smart Elements - case Study

    NASA Astrophysics Data System (ADS)

    Pilipová, Ivana; Vilčeková, Silvia

    2013-11-01

    A greater degree of awareness of comfort and productivity of building users according to post-occupancy evaluation and feedback of users in intelligent buildings is necessary. This report presents a summary of the results from a physical measurements, a post-occupancy evaluation study on perceived comfort of indoor environment and self-evaluation of occupant's performance in the new multifunctional 5 floor-building in city of Kosice, Slovakia. There were investigated degree of perceived comfort and user's performance with regard to objective measurement, respondents' response and building character. This case study has highlighted that influence of monitored factors of building with smart elements is positively received and wasn't determined their negative impact on perceived comfort of indoor environment and occupants' performance. Results show that respondents are mostly satisfied with their indoor environment conditions of workplace. Interviews with respondents detected they have not been perceived (negative) factors in workplace because they have been too concentric on the work and they have not felt discomfort.

  8. Energy Efficiency and Conservation Block Grant (EECBG) - Better Buildings Neighborhood Program at Greater Cincinnati Energy Alliance: Home Performance with Energy Star® and Better Buildings Performance

    SciTech Connect

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy; Meyer, Chris; Van Divender, Lisa

    2013-12-30

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operation in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training

  9. Highlighting High Performance: Adam Joseph Lewis Center for Environmental Studies, Oberlin College, Oberlin, Ohio

    SciTech Connect

    2002-11-01

    Oberlin College’s Adam Joseph Lewis Center for Environmental Studies is a high-performance building featuring an expansive photovoltaic system and a closed-loop groundwater heat pump system. Designers incorporated energy-efficient components and materials

  10. Energy performance of medium-sized healthcare buildings in Victoria, Australia- a case study.

    PubMed

    Rajagopalan, Priyadarsini; Elkadi, Hisham

    2014-01-01

    This paper investigates the energy performance of three medium-sized healthcare buildings in Victoria, Australia, that operate only during the daytime. The aim is to provide preliminary understanding of energy consumption in this particular typology in Australia in relation to the available benchmarks. This paper also identifies the differences of energy consumption between different functional areas within medium health facilities. Building features and operational characteristics contributing to the variations in healthcare energy performance are discussed. The total annual energy consumption data ranging from 167-306 kWh/m(2) or 42-72 kWh/m(3) were compared against international data from various climatic zones. Some of the drivers of energy consumption were determined and potentials for energy and water conservation were identified. Comparison with international standards shows a possibility to achieve lower energy consumption in Victorian healthcare buildings.

  11. Use of whole building simulation in on-line performance assessment: Modeling and implementation issues

    SciTech Connect

    Haves, Philip; Salsbury, Tim; Claridge, David; Liu, Mingsheng

    2001-06-15

    The application of model-based performance assessment at the whole building level is explored. The information requirements for a simulation to predict the actual performance of a particular real building, as opposed to estimating the impact of design options, are addressed with particular attention to common sources of input error and important deficiencies in most simulation models. The role of calibrated simulations is discussed. The communication requirements for passive monitoring and active testing are identified and the possibilities for using control system communications protocols to link on-line simulation and energy management and control systems are discussed. The potential of simulation programs to act as ''plug-and-play'' components on building control networks is discussed.

  12. Statistical properties of high performance cesium standards

    NASA Technical Reports Server (NTRS)

    Percival, D. B.

    1973-01-01

    The intermediate term frequency stability of a group of new high-performance cesium beam tubes at the U.S. Naval Observatory were analyzed from two viewpoints: (1) by comparison of the high-performance standards to the MEAN(USNO) time scale and (2) by intercomparisons among the standards themselves. For sampling times up to 5 days, the frequency stability of the high-performance units shows significant improvement over older commercial cesium beam standards.

  13. Effects of rate building on fluent performance: A review and commentary

    PubMed Central

    Doughty, Shannon S.; Chase, Philip N.; O'Shields, Elizabethann M.

    2004-01-01

    The use of rate-building procedures to encourage the production of high response rates and to develop fluency has been increasingly justified by research on precision teaching and automaticity. Rate-building procedures often ensure both speed and accuracy, and claims have been made that such procedures result in greater retention, persistence, and generalization of trained skills, as well as preference by students. Given the potential importance of these claims for behavior analysts and educators alike, this review assesses the validity, generality, and implications of research on rate building. The review revealed sparse empirical evidence that retention, persistence, and generalization of skills result from the use of rate-building procedures when the effects of practice and reinforcement rate are controlled. Given the results of this review, the implications are discussed in the context of behavior-analytic research (e.g., behavioral momentum), and further research is recommended. PMID:22478412

  14. Method of making a high performance ultracapacitor

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.

    2000-07-26

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  15. High performance carbon nanocomposites for ultracapacitors

    DOEpatents

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  16. Assessment of energy and economic performance of office building models: a case study

    NASA Astrophysics Data System (ADS)

    Song, X. Y.; Ye, C. T.; Li, H. S.; Wang, X. L.; Ma, W. B.

    2016-08-01

    Energy consumption of building accounts for more than 37.3% of total energy consumption while the proportion of energy-saving buildings is just 5% in China. In this paper, in order to save potential energy, an office building in Southern China was selected as a test example for energy consumption characteristics. The base building model was developed by TRNSYS software and validated against the recorded data from the field work in six days out of August-September in 2013. Sensitivity analysis was conducted for energy performance of building envelope retrofitting; five envelope parameters were analyzed for assessing the thermal responses. Results indicated that the key sensitivity factors were obtained for the heat-transfer coefficient of exterior walls (U-wall), infiltration rate and shading coefficient (SC), of which the sum sensitivity factor was about 89.32%. In addition, the results were evaluated in terms of energy and economic analysis. The analysis of sensitivity validated against some important results of previous studies. On the other hand, the cost-effective method improved the efficiency of investment management in building energy.

  17. Highlighting High Performance: Michael E. Capuano Early Childhood Center; Somerville, Massachusetts

    SciTech Connect

    Not Available

    2006-03-01

    This brochure describes the key high-performance building features of the Michael E. Capuano Early Childhood Center. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  18. Building Learning Communities: Partnerships, Social Capital and VET Performance. Support Document

    ERIC Educational Resources Information Center

    Allison, Janelle; Gorringe, Scott; Lacey, Justine

    2006-01-01

    This document was produced by the authors based on their research for the report "Building Learning Communities: Partnerships, Social Capital and VET Performance." It provides regional summaries and the "facts and flavour" for each of the following areas: (1) Restructuring Rural Landscape (Wide Bay Burnett, Queensland); (2)…

  19. A SOFTWARE TOOL TO COMPARE MEASURED AND SIMULATED BUILDING ENERGY PERFORMANCE DATA

    SciTech Connect

    Maile, Tobias; Bazjanac, Vladimir; O'Donnell, James; Garr, Matthew

    2011-11-01

    Building energy performance is often inadequate when compared to design goals. To link design goals to actual operation one can compare measured with simulated energy performance data. Our previously developed comparison approach is the Energy Performance Comparison Methodology (EPCM), which enables the identification of performance problems based on a comparison of measured and simulated performance data. In context of this method, we developed a software tool that provides graphing and data processing capabilities of the two performance data sets. The software tool called SEE IT (Stanford Energy Efficiency Information Tool) eliminates the need for manual generation of data plots and data reformatting. SEE IT makes the generation of time series, scatter and carpet plots independent of the source of data (measured or simulated) and provides a valuable tool for comparing measurements with simulation results. SEE IT also allows assigning data points on a predefined building object hierarchy and supports different versions of simulated performance data. This paper briefly introduces the EPCM, describes the SEE IT tool and illustrates its use in the context of a building case study.

  20. Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings

    SciTech Connect

    Kiliccote, Sila; Piette, Mary Ann; Mathieu, Johanna; Parrish, Kristen

    2010-05-14

    California is a leader in automating demand response (DR) to promote low-cost, consistent, and predictable electric grid management tools. Over 250 commercial and industrial facilities in California participate in fully-automated programs providing over 60 MW of peak DR savings. This paper presents a summary of Open Automated DR (OpenADR) implementation by each of the investor-owned utilities in California. It provides a summary of participation, DR strategies and incentives. Commercial buildings can reduce peak demand from 5 to 15percent with an average of 13percent. Industrial facilities shed much higher loads. For buildings with multi-year savings we evaluate their load variability and shed variability. We provide a summary of control strategies deployed, along with costs to install automation. We report on how the electric DR control strategies perform over many years of events. We benchmark the peak demand of this sample of buildings against their past baselines to understand the differences in building performance over the years. This is done with peak demand intensities and load factors. The paper also describes the importance of these data in helping to understand possible techniques to reach net zero energy using peak day dynamic control capabilities in commercial buildings. We present an example in which the electric load shape changed as a result of a lighting retrofit.

  1. Review of California and National Methods for Energy PerformanceBenchmarking of Commercial Buildings

    SciTech Connect

    Matson, Nance E.; Piette, Mary Ann

    2005-09-05

    This benchmarking review has been developed to support benchmarking planning and tool development under discussion by the California Energy Commission (CEC), Lawrence Berkeley National Laboratory (LBNL) and others in response to the Governor's Executive Order S-20-04 (2004). The Executive Order sets a goal of benchmarking and improving the energy efficiency of California's existing commercial building stock. The Executive Order requires the CEC to propose ''a simple building efficiency benchmarking system for all commercial buildings in the state''. This report summarizes and compares two currently available commercial building energy-benchmarking tools. One tool is the U.S. Environmental Protection Agency's Energy Star National Energy Performance Rating System, which is a national regression-based benchmarking model (referred to in this report as Energy Star). The second is Lawrence Berkeley National Laboratory's Cal-Arch, which is a California-based distributional model (referred to as Cal-Arch). Prior to the time Cal-Arch was developed in 2002, there were several other benchmarking tools available to California consumers but none that were based solely on California data. The Energy Star and Cal-Arch benchmarking tools both provide California with unique and useful methods to benchmark the energy performance of California's buildings. Rather than determine which model is ''better'', the purpose of this report is to understand and compare the underlying data, information systems, assumptions, and outcomes of each model.

  2. Impact of CFC (chlorofluorocarbon) restrictions of US building foundation thermal performance

    SciTech Connect

    Christian, J.

    1987-12-01

    A significant increase in the use of foundation insulation had been expected as a result of the near completion of ASHRAE 90.2P, New Building Energy Efficiency Standard, and the publication of several Department of Energy foundation design tools. Potential restrictions on the future availability and/or price of chlorofluorocarbon (CFC)-12 will have a potentially substantial impact on the goal of improving the efficiency of building foundations. One of the better ways to insulate foundations is on the exterior in contact with the earth, and one of the better insulating products for this application is extruded polystyrene (XEPS). According to some personnel in the Environmental Protection Agency, it is likely that because XEPS is currently blown with CFC-12 and since CFCs could be a major contributor to anticipated future ozone depletion, some restrictions are imminent. The work statement for this analysis called for an initial impact analysis on energy conservation goals and a foundation research plan to mitigate the impacts of restricting the use of CFCs in foundation insulation systems. This report addresses quantitatively the energy-saving impacts at the state level of CFC restrictions on foundation insulation and concludes that the total impact could be anywhere from near zero to 0.8 quad in the year 2010, with the most likely impact being about 0.13 quad/year. The risk of high impacts can be reduced by an accelerated research effort focused on developing and demonstrating insulated foundation systems that have overall performance equivalent or superior to that of exterior XEPS insulated basement walls, crawl space walls and slab-on-grade systems. 27 refs., 14 figs., 19 tabs.

  3. Real estate market and building energy performance: Data for a mass appraisal approach.

    PubMed

    Bonifaci, Pietro; Copiello, Sergio

    2015-12-01

    Mass appraisal is widely considered an advanced frontier in the real estate valuation field. Performing mass appraisal entails the need to get access to base information conveyed by a large amount of transactions, such as prices and property features. Due to the lack of transparency of many Italian real estate market segments, our survey has been addressed to gather data from residential property advertisements. The dataset specifically focuses on property offer prices and dwelling energy efficiency. The latter refers to the label expressed and exhibited by the energy performance certificate. Moreover, data are georeferenced with the highest possible accuracy: at the neighborhood level for a 76.8% of cases, at street or building number level for the remaining 23.2%. Data are related to the analysis performed in Bonifaci and Copiello [1], about the relationship between house prices and building energy performance, that is to say, the willingness to pay in order to benefit from more efficient dwellings.

  4. Real estate market and building energy performance: Data for a mass appraisal approach

    PubMed Central

    Bonifaci, Pietro; Copiello, Sergio

    2015-01-01

    Mass appraisal is widely considered an advanced frontier in the real estate valuation field. Performing mass appraisal entails the need to get access to base information conveyed by a large amount of transactions, such as prices and property features. Due to the lack of transparency of many Italian real estate market segments, our survey has been addressed to gather data from residential property advertisements. The dataset specifically focuses on property offer prices and dwelling energy efficiency. The latter refers to the label expressed and exhibited by the energy performance certificate. Moreover, data are georeferenced with the highest possible accuracy: at the neighborhood level for a 76.8% of cases, at street or building number level for the remaining 23.2%. Data are related to the analysis performed in Bonifaci and Copiello [1], about the relationship between house prices and building energy performance, that is to say, the willingness to pay in order to benefit from more efficient dwellings. PMID:26793751

  5. A novel preparation procedure of future weather datasets for building performance simulation

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Tsang; Chuang, Kai-Han

    2014-05-01

    The concern on climate change leads to growing demand for countermeasures against its impact on building performance. The aspects of building performance study includes the analysis of indoor thermal environment, building energy use, and energy efficiency design of building envelope. It enables and facilitates the evaluation of a building's performance during the design phase for adjusting the proposed architectural design to meet the expected performance criteria. The assessment of a building's performance is often done by hourly or sub-hourly computer dynamic simulation software with local weather datasets. These weather datasets, which are termed typical meteorological years (TMYs), are selected from long-term observed historical weather by means of Sandia method to ensure their representatives of local climate. Each TMY contains hourly values of observed data of a 1-year period. For the reason of longevous building lifespan and on-going climate change, one might ask how well the building is able to cope with future climate and what kind of countermeasure we should implement in advanced in face of climate change. However, the results obtained from the simulation with TMY couldn't forecast a building's performance in a future climate context without future climate is concerned. In this regard, future climate responsive meteorological data is needed for future climate impact study. From previous studies, as Belcher proposed, the future responsive weather data could be constructed by morphing existing TMY with future weather predicted by general circulation models (GCMs), which could substantially alleviate efforts from spatial and temporal downscaling processes. Consequently, choosing an adequate GCM that fits well with local climatic change pattern is in crucial need. The objective of the study is to develop a new GCMs selection method for generating future meteorological data. During TMY morphing procedure, monthly changes of a certain meteorological element in

  6. Turning High-Poverty Schools into High-Performing Schools

    ERIC Educational Resources Information Center

    Parrett, William H.; Budge, Kathleen

    2012-01-01

    If some schools can overcome the powerful and pervasive effects of poverty to become high performing, shouldn't any school be able to do the same? Shouldn't we be compelled to learn from those schools? Although schools alone will never systemically eliminate poverty, high-poverty, high-performing (HP/HP) schools take control of what they can to…

  7. Common Factors of High Performance Teams

    ERIC Educational Resources Information Center

    Jackson, Bruce; Madsen, Susan R.

    2005-01-01

    Utilization of work teams is now wide spread in all types of organizations throughout the world. However, an understanding of the important factors common to high performance teams is rare. The purpose of this content analysis is to explore the literature and propose findings related to high performance teams. These include definition and types,…

  8. High-Performance Java Codes for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  9. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Jensen, R. N.; Knoll, R. H.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. A 1,180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row were calculated and recorded along with sensor, insolation, and weather data every five minutes using a minicomputer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  10. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Knoll, R. H.; Jensen, R. N.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. An 1180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row are calculated and recorded along with sensor, insolation, and weather data every 5 minutes using a mini-computer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  11. Development of new methodologies for evaluating the energy performance of new commercial buildings

    NASA Astrophysics Data System (ADS)

    Song, Suwon

    The concept of Measurement and Verification (M&V) of a new building continues to become more important because efficient design alone is often not sufficient to deliver an efficient building. Simulation models that are calibrated to measured data can be used to evaluate the energy performance of new buildings if they are compared to energy baselines such as similar buildings, energy codes, and design standards. Unfortunately, there is a lack of detailed M&V methods and analysis methods to measure energy savings from new buildings that would have hypothetical energy baselines. Therefore, this study developed and demonstrated several new methodologies for evaluating the energy performance of new commercial buildings using a case-study building in Austin, Texas. First, three new M&V methods were developed to enhance the previous generic M&V framework for new buildings, including: (1) The development of a method to synthesize weather-normalized cooling energy use from a correlation of Motor Control Center (MCC) electricity use when chilled water use is unavailable, (2) The development of an improved method to analyze measured solar transmittance against incidence angle for sample glazing using different solar sensor types, including Eppley PSP and Li-Cor sensors, and (3) The development of an improved method to analyze chiller efficiency and operation at part-load conditions. Second, three new calibration methods were developed and analyzed, including: (1) A new percentile analysis added to the previous signature method for use with a DOE-2 calibration, (2) A new analysis to account for undocumented exhaust air in DOE-2 calibration, and (3) An analysis of the impact of synthesized direct normal solar radiation using the Erbs correlation on DOE-2 simulation. Third, an analysis of the actual energy savings compared to three different energy baselines was performed, including: (1) Energy Use Index (EUI) comparisons with sub-metered data, (2) New comparisons against

  12. Ambient response of a unique performance-based design building with dynamic response modification features

    USGS Publications Warehouse

    Celebi, Mehmet; Huang, Moh; Shakal, Antony; Hooper, John; Klemencic, Ron

    2012-01-01

    A 64-story, performance-based design building with reinforced concrete core shear-walls and unique dynamic response modification features (tuned liquid sloshing dampers and buckling-restrained braces) has been instrumented with a monitoring array of 72 channels of accelerometers. Ambient vibration data recorded are analyzed to identify modes and associated frequencies and damping. The low-amplitude dynamic characteristics are considerably different than those computed from design analyses, but serve as a baseline against which to compare with future strong shaking responses. Such studies help to improve our understanding of the effectiveness of the added features to the building and help improve designs in the future.

  13. Specification and implementation of IFC based performance metrics to support building life cycle assessment of hybrid energy systems

    SciTech Connect

    Morrissey, Elmer; O'Donnell, James; Keane, Marcus; Bazjanac, Vladimir

    2004-03-29

    Minimizing building life cycle energy consumption is becoming of paramount importance. Performance metrics tracking offers a clear and concise manner of relating design intent in a quantitative form. A methodology is discussed for storage and utilization of these performance metrics through an Industry Foundation Classes (IFC) instantiated Building Information Model (BIM). The paper focuses on storage of three sets of performance data from three distinct sources. An example of a performance metrics programming hierarchy is displayed for a heat pump and a solar array. Utilizing the sets of performance data, two discrete performance effectiveness ratios may be computed, thus offering an accurate method of quantitatively assessing building performance.

  14. High Performance School Buildings in Portugal: A Life Cycle Perspective

    ERIC Educational Resources Information Center

    Jorge, Graca Fonseca; da Costa, Marta Marques

    2011-01-01

    In 2007 the Portuguese government launched a major school modernisation programme, and has taken steps to ensure the long-term sustainability of facilities. A specially created state-owned company, Parque Escolar (PE) has already completed 104 schools; 70 are work-in-progress and an additional 39 are under design or tender. Parque Escolar is…

  15. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    SciTech Connect

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  16. National Best Practices Manual for Building High Performance Schools

    SciTech Connect

    2007-10-01

    The Best Practices Manual was written as a part of the promotional effort for EnergySmart Schools, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy.

  17. National Best Practices Manual for Building High Performance Schools (Revised)

    SciTech Connect

    Not Available

    2007-10-01

    The Best Practices Manual was written as a part of the promotional effort for EnergySmart Schools, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy. Written specifically for architects and engineers, The Best Practices Manual is designed to help those who are responsible for designing or retrofitting schools, as well as their project managers. This manual will help design staff make informed decisions about energy and environmental issues important to the school systems and communities.

  18. National Best Practices Manual for Building High Performance Schools.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Energy Efficiency and Renewable Energy.

    The U.S. Department of Energy's Rebuild America EnergySmart Schools program provides school boards, administrators, and design staff with guidance to help make informed decisions about energy and environmental issues important to school systems and communities. This document is part of the suite of products developed to promoteenergy efficiency…

  19. Quality Assurance Roadmap for High Performance Residential Buildings

    SciTech Connect

    2008-10-05

    This report outlines the approach to quality assurance in the construction process for new residential construction, including seven process steps from the assessment of current construction practice, through design and documentation changes, to training and quality control for on-site personnel.

  20. Building High-Performing and Improving Education Systems: Teachers. Review

    ERIC Educational Resources Information Center

    Slater, Liz

    2013-01-01

    There is overwhelming evidence that teachers have the most effect on pupil outcomes (closely followed by the quality of leadership). The Organisation for Economic Co-Operation and Development (OECD) concluded that: (1) teachers were central to school improvement; (2) in order to improve the quality and fairness of education, teachers had to be…

  1. Building High-Performing and Improving Education Systems: Leadership. Review

    ERIC Educational Resources Information Center

    Slater, Liz

    2013-01-01

    Many of the policy documents and much of the recent literature talk about "leadership" when discussing the role of headteachers and principals of schools. The word is also used when writing about other senior and middle managers. It is a way of showing the difference between what used to be expected of headteachers and what is expected…

  2. Design, Monitoring, and Validation of a High Performance Sustainable Building

    DTIC Science & Technology

    2013-08-01

    32 v ACRONYMS AND ABBREVIATIONS AEWRS Army Energy and Water Reporting System ASHRAE American Society of Heating , Refrigeration, and...common spaces - Lighting control - Cooling and heating control when systems functioned properly Negative feedback for: - CESS flooring...materials in one room - insufficient training for maintenance staff on integrated systems for heating , ventilation, and air conditioning (HVAC) units

  3. High performance computing at Sandia National Labs

    SciTech Connect

    Cahoon, R.M.; Noe, J.P.; Vandevender, W.H.

    1995-10-01

    Sandia`s High Performance Computing Environment requires a hierarchy of resources ranging from desktop, to department, to centralized, and finally to very high-end corporate resources capable of teraflop performance linked via high-capacity Asynchronous Transfer Mode (ATM) networks. The mission of the Scientific Computing Systems Department is to provide the support infrastructure for an integrated corporate scientific computing environment that will meet Sandia`s needs in high-performance and midrange computing, network storage, operational support tools, and systems management. This paper describes current efforts at SNL/NM to expand and modernize centralized computing resources in support of this mission.

  4. What Builds Student Capacity in an Alternative High School Setting?

    ERIC Educational Resources Information Center

    Lind, Candace

    2013-01-01

    Good mental health is a learning enabler for adolescents, demonstrating a reciprocal relationship between mental health and learning outcomes. This article describes a Canadian participatory action research partnership between students, staff and a nurse researcher working together to explore student capacity-building experiences at an alternative…

  5. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  6. LANL High-Performance Data System (HPDS)

    NASA Technical Reports Server (NTRS)

    Collins, M. William; Cook, Danny; Jones, Lynn; Kluegel, Lynn; Ramsey, Cheryl

    1993-01-01

    The Los Alamos High-Performance Data System (HPDS) is being developed to meet the very large data storage and data handling requirements of a high-performance computing environment. The HPDS will consist of fast, large-capacity storage devices that are directly connected to a high-speed network and managed by software distributed in workstations. The HPDS model, the HPDS implementation approach, and experiences with a prototype disk array storage system are presented.

  7. Measure Guideline: Ventilation Guidance for Residential High-Performance New Construction - Multifamily

    SciTech Connect

    Lstiburek, Joseph

    2017-01-01

    The measure guideline provides ventilation guidance for residential high performance multifamily construction that incorporates the requirements of the ASHRAE 62.2 ventilation and indoor air quality standard. The measure guideline focus is on the decision criteria for weighing cost and performance of various ventilation systems. The measure guideline is intended for contractors, builders, developers, designers and building code officials. The guide may also be helpful to building owners wishing to learn more about ventilation strategies available for their buildings. The measure guideline includes specific design and installation instructions for the most cost effective and performance effective solutions for ventilation in multifamily units that satisfies the requirements of ASHRAE 62.2-2016.

  8. Pushover, Response Spectrum and Time History Analyses of Safe Rooms in a Poor Performance Masonry Building

    SciTech Connect

    Mazloom, M.

    2008-07-08

    The idea of safe room has been developed for decreasing the earthquake casualties in masonry buildings. The information obtained from the previous ground motions occurring in seismic zones expresses the lack of enough safety of these buildings against earthquakes. For this reason, an attempt has been made to create some safe areas inside the existing masonry buildings, which are called safe rooms. The practical method for making these safe areas is to install some prefabricated steel frames in some parts of the existing structure. These frames do not carry any service loads before an earthquake. However, if a devastating earthquake happens and the load bearing walls of the building are destroyed, some parts of the floors, which are in the safe areas, will fall on the roof of the installed frames and the occupants who have sheltered there will survive. This paper presents the performance of these frames located in a destroying three storey masonry building with favorable conclusions. In fact, the experimental pushover diagram of the safe room located at the ground-floor level of this building is compared with the analytical results and it is concluded that pushover analysis is a good method for seismic performance evaluation of safe rooms. For time history analysis the 1940 El Centro, the 2003 Bam, and the 1990 Manjil earthquake records with the maximum peak accelerations of 0.35g were utilized. Also the design spectrum of Iranian Standard No. 2800-05 for the ground kind 2 is used for response spectrum analysis. The results of time history, response spectrum and pushover analyses show that the strength and displacement capacity of the steel frames are adequate to accommodate the distortions generated by seismic loads and aftershocks properly.

  9. Can sick buildings be assessed by testing human performance in field experiments

    SciTech Connect

    Berglund, B. ); Berglund, U. ); Engen, T. )

    1992-01-01

    The present paper is devoted to the Sick Building Syndrome and describes an experiment comparing a diagnosed sick' with a healthy' Swedish preschool. The indoor air quality of both buildings were nearly the same and the concentrations of total separated volatile organic compounds were low according to suggested guidelines for indoor air in nonindustrial buildings. Forty-eight previously unexposed subjects were exposed to each of the two buildings for one day, and the effect of the exposure was assessed with a battery of diverse psychological test. Despite a favorable experimental situation of utilizing a building with a record of producing the Syndrome, the results of psychological tests of mental and motor performance, and therefore the answer to the question raised by the title above, were in the negative. This failure raises questions both regarding the choice of subjects and experimental methods including the selection of tests, the duration of exposure, and the environmental setting. Several combinations of experimental method and subjects which must be considered in future research on indoor pollution are discussed.

  10. Italian guidelines for energy performance of cultural heritage and historical buildings: the case study of the Sassi of Matera.

    NASA Astrophysics Data System (ADS)

    Negro, Elisabetta; Cardinale, Tiziana; Cardinale, Nicola

    2016-04-01

    The Sassi of Matera are a unique example in the world of rock settlement, developed from natural caves carved into the rock and then molded into increasingly complex structures inside two large natural amphitheatres: the Sasso Caveoso and the Sasso Barisano. Thanks also to this aspects Matera is an UNESCO world heritage site and was elected European Capital of Culture in 2019. Our research focuses on the compatibility of the energy efficiency measures applied in of Sassi buildings with the recent MiBACT (Italian Ministry of Cultural Heritage) guidelines on "Energy efficiency improvements in the cultural heritage" and AiCARR (Italian Association of Air Conditioning) guidelines on "Energy efficiency of historical building". One of the essential measures highlighted by Mibact guidelines is ensure the Indoor Environmental Quality improvement of the historical architecture in order to preserve their identity and cultural heritage. These paper aims to analyze energy and environmental performance of different buildings typology and monuments present in the Sassi site. The energy performance and microclimate measures conducted on different type of building by non-destructive measurements and laboratory tests in situ are useful to verify and quantify the thermal characteristics of the envelopes of the Mediterranean tradition and also to demonstrate their capacity to ensure internal comfort conditions. The calcarenite walls of vernacular building of Sassi show the excellent energy behavior of these constructions. But these material often present high moisture content which negatively influence the room microclimate in particular in presence of mural frescos and rocky churches. However these structures, once restored and in a condition of normal use, give indoor comfort within the limits of thermo-hygrometrics standards established by indices as the predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD). Another interesting consideration stated from our

  11. Moisture and Structural Analysis for High Performance Hybrid Wall Assemblies

    SciTech Connect

    Grin, A.; Lstiburek, J.

    2012-09-01

    This report describes the work conducted by the Building Science Corporation (BSC) Building America Research Team's 'Energy Efficient Housing Research Partnerships' project. Based on past experience in the Building America program, they have found that combinations of materials and approaches---in other words, systems--usually provide optimum performance. No single manufacturer typically provides all of the components for an assembly, nor has the specific understanding of all the individual components necessary for optimum performance.

  12. High performance computing with a conservative spectral Boltzmann solver

    NASA Astrophysics Data System (ADS)

    Haack, Jeffrey R.; Gamba, Irene M.

    2012-11-01

    We present new results building on the conservative deterministic spectral method for the space inhomogeneous Boltzmann equation developed by Gamba and Tharkabhushaman. This approach is a two-step process that acts on the weak form of the Boltzmann equation, and uses the machinery of the Fourier transform to reformulate the collisional integral into a weighted convolution in Fourier space. A constrained optimization problem is solved to preserve the mass, momentum, and energy of the resulting distribution. We extend this method to second order accuracy in space and time, and explore how to leverage the structure of the collisional formulation for high performance computing environments. The locality in space of the collisional term provides a straightforward memory decomposition, and we perform some initial scaling tests on high performance computing resources. We also use the improved computational power of this method to investigate a boundary-layer generated shock problem that cannot be described by classical hydrodynamics.

  13. Data of high performance precast external walls for warm climate.

    PubMed

    Baglivo, Cristina; Maria Congedo, Paolo

    2015-09-01

    The data given in the following paper are related to input and output information of the paper entitled Design method of high performance precast external walls for warm climate by multi-objective optimization analysis by Baglivo et al. [1]. Previous studies demonstrate that the superficial mass and the internal areal heat capacity are necessary to reach the best performances for the envelope of the Zero Energy Buildings located in a warm climate [2-4]. The results show that it is possible to achieve high performance precast walls also with light and ultra-thin solutions. A multi-criteria optimization has been performed in terms of steady and dynamic thermal behavior, eco sustainability score and costs. The modeFRONTIER optimization tool, with the use of computational procedures developed in Matlab, has been used to assess the thermal dynamics of building components. A large set of the best configurations of precast external walls for warm climate with their physical and thermal properties have been reported in the data article.

  14. Solving Human Performance Problems with Computers. A Case Study: Building an Electronic Performance Support System.

    ERIC Educational Resources Information Center

    Raybould, Barry

    1990-01-01

    Describes the design of an electronic performance support system (PSS) that was developed to help sales and support personnel access relevant information needed for good job performance. Highlights include expert systems, databases, interactive video discs, formatting information online, information retrieval techniques, HyperCard, computer-based…

  15. The Social Responsibility Performance Outcomes Model: Building Socially Responsible Companies through Performance Improvement Outcomes.

    ERIC Educational Resources Information Center

    Hatcher, Tim

    2000-01-01

    Considers the role of performance improvement professionals and human resources development professionals in helping organizations realize the ethical and financial power of corporate social responsibility. Explains the social responsibility performance outcomes model, which incorporates the concepts of societal needs and outcomes. (LRW)

  16. Semiconducor wires and ribbons for high performance flexible electronics.

    SciTech Connect

    Sun, Y.; Baca, A. J.; Ahn, J.-H.; Meitl, M.; Menard, E.; Kim, H.-S; Choi, W.; Kim, D.-H; Huang, Y.; Rogers, J. A.; Center for Nanoscale Materials; Univ. of Illinois

    2008-01-01

    This article reviews the properties, fabrication and assembly of inorganic semiconductor materials that can be used as active building blocks to form high-performance transistors and circuits for flexible and bendable large-area electronics. Obtaining high performance on low temperature polymeric substrates represents a technical challenge for macroelectronics. Therefore, the fabrication of high quality inorganic materials in the form of wires, ribbons, membranes, sheets, and bars formed by bottom-up and top-down approaches, and the assembly strategies used to deposit these thin films onto plastic substrates will be emphasized. Substantial progress has been made in creating inorganic semiconducting materials that are stretchable and bendable, and the description of the mechanics of these form factors will be presented, including circuits in three-dimensional layouts. Finally, future directions and promising areas of research will be described.

  17. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    SciTech Connect

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-04-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

  18. Advanced high-performance computer system architectures

    NASA Astrophysics Data System (ADS)

    Vinogradov, V. I.

    2007-02-01

    Convergence of computer systems and communication technologies are moving to switched high-performance modular system architectures on the basis of high-speed switched interconnections. Multi-core processors become more perspective way to high-performance system, and traditional parallel bus system architectures (VME/VXI, cPCI/PXI) are moving to new higher speed serial switched interconnections. Fundamentals in system architecture development are compact modular component strategy, low-power processor, new serial high-speed interface chips on the board, and high-speed switched fabric for SAN architectures. Overview of advanced modular concepts and new international standards for development high-performance embedded and compact modular systems for real-time applications are described.

  19. Optical interconnection networks for high-performance computing systems.

    PubMed

    Biberman, Aleksandr; Bergman, Keren

    2012-04-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.

  20. Response of high-rise and base-isolated buildings to a hypothetical M w 7.0 blind thrust earthquake

    USGS Publications Warehouse

    Heaton, T.H.; Hall, J.F.; Wald, D.J.; Halling, M.W.

    1995-01-01

    High-rise flexible-frame buildings are commonly considered to be resistant to shaking from the largest earthquakes. In addition, base isolation has become increasingly popular for critical buildings that should still function after an earthquake. How will these two types of buildings perform if a large earthquake occurs beneath a metropolitan area? To answer this question, we simulated the near-source ground motions of a Mw 7.0 thrust earthquake and then mathematically modeled the response of a 20-story steel-frame building and a 3-story base-isolated building. The synthesized ground motions were characterized by large displacement pulses (up to 2 meters) and large ground velocities. These ground motions caused large deformation and possible collapse of the frame building, and they required exceptional measures in the design of the base-isolated building if it was to remain functional.

  1. [Build and Demonstrate a X-Ray Interferometer and Build and Fly a High Resolution Telescope on a Sounding Rocket}

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report is written with eight months still go on the 36 month period of the grant. This grant, as originally proposed three years ago, was two pronged - to build and demonstrate a practical x-ray interferometer, and to build and fly a high resolution telescope on a sounding rocket. As we started into these projects, we received community feedback that led to our giving priority to the interferometer., The rocket would achieve O.2-arcsecond resolution that, while better, than that of Chandra, would, because of the limited signal of a sub-orbital flight, not be of substantially greater scientific use. The interferometry, on the other hand, shows the potential for many orders of magnitude improvement. For this reason we gave priority to the lab interferometry, and the building of the telescope lagged behind. With our new understanding (and practical demonstration) of how to build an interferometer, we changed the telescope design from spherical surfaces in the Kirkpatrick-Baez configuration, to an interferometer with resolution between .005 and .05 arcseconds.

  2. Rapidly Reconfigurable High Performance Computing Cluster

    DTIC Science & Technology

    2005-07-01

    1 SECTION 2 BACKGROUN D AN D OBJECTIVES ......................................................................... 2 2.1 H...igh Perform ance Com puting Trends ................................................................................ 2 2.2 Georgia Tech Activity in H PEC

  3. Building Change Detection in Very High Resolution Satellite Stereo Image Time Series

    NASA Astrophysics Data System (ADS)

    Tian, J.; Qin, R.; Cerra, D.; Reinartz, P.

    2016-06-01

    There is an increasing demand for robust methods on urban sprawl monitoring. The steadily increasing number of high resolution and multi-view sensors allows producing datasets with high temporal and spatial resolution; however, less effort has been dedicated to employ very high resolution (VHR) satellite image time series (SITS) to monitor the changes in buildings with higher accuracy. In addition, these VHR data are often acquired from different sensors. The objective of this research is to propose a robust time-series data analysis method for VHR stereo imagery. Firstly, the spatial-temporal information of the stereo imagery and the Digital Surface Models (DSMs) generated from them are combined, and building probability maps (BPM) are calculated for all acquisition dates. In the second step, an object-based change analysis is performed based on the derivative features of the BPM sets. The change consistence between object-level and pixel-level are checked to remove any outlier pixels. Results are assessed on six pairs of VHR satellite images acquired within a time span of 7 years. The evaluation results have proved the efficiency of the proposed method.

  4. High Performance Split-Stirling Cooler Program

    DTIC Science & Technology

    1982-09-01

    7 SPLIT- STIRLING CYCLE CRYOCOOLER . ...... . . . . . 13 8 TEMPERATURE-SHOCK COMPARISON PERFORMANCE DATA, S/N 002 . . 23 9 TEMPERATURE-SHOCK...PERFORMANCE SPLIT- STIRLING "COOLER PROGRAM FINAL TECHNICAL REPORT "September 1982 Prepared for NIGHT VISION AND ELECTRO-OPTICS LABORATORI ES "Contract DAAK70...REPORT & P.Vt2OO COVERED HIGH PERFORMANCE SPLIT- STIRLING COOLER PROGRAM Final Technical Sept. 1979. - Sept. 1982 S. PERPORMING ORO. REPORT KUMMER

  5. Architecture Analysis of High Performance Capacitors (POSTPRINT)

    DTIC Science & Technology

    2009-07-01

    includes the measurement of heat dissipated from a recently developed fluorenyl polyester (FPE) capacitor under an AC excitation. II. Capacitor ...AFRL-RZ-WP-TP-2010-2100 ARCHITECTURE ANALYSIS OF HIGH PERFORMANCE CAPACITORS (POSTPRINT) Hiroyuki Kosai and Tyler Bixel UES, Inc...2009 4. TITLE AND SUBTITLE ARCHITECTURE ANALYSIS OF HIGH PERFORMANCE CAPACITORS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c

  6. An analysis of the benefits of photovoltaic-coated glazing on owning and operating costs of high rise commercial buildings

    NASA Astrophysics Data System (ADS)

    Sylvester, Keith Everette

    Energy efficient glazing is necessary to reduce heat gains or losses that contribute to the high-energy use of buildings. However, high-rise commercial buildings that use energy efficient glazing are still consumptive. To reduce their energy use further, recent studies have integrated photovoltaic glazed window systems into the building shell. With limited light transmittance due to their required production of electricity, photovoltaic glazed windows can be developed with thermal properties similar to Low-E coatings. Consequently, these window systems can reduce operating costs of buildings without reducing the human satisfaction of the built environment. To understand the relationship between photovoltaic windows, energy use and human satisfaction, this study investigates the effects of photovoltaic glazed windows on energy use of large commercial buildings and includes an assessment of the overall human satisfaction of the workers within photovoltaic glazed office spaces. This study targets high-rise commercial buildings and their occupants in urban centers of the four census regions---North, Northeast, South, and Midwest. A prototypical building was used to develop the base case simulations for the DOE-2 energy simulation program and the PV F-Chart photovoltaic analysis program. By substituting the appropriate variable in the base case simulation for each site, building was simulated to evaluate the impact of the PV glazing on the building's heat loss/gaining as well as the amount of electricity that could be expected from the PV. To test for human satisfaction, a survey was performed to assess the overall preference of the subjects to the office spaces using the photovoltaic glazed windows. An analysis of the variance was also conducted to test for significantly different treatment means. Overall, the findings of this study show that photovoltaic windows significantly decrease the energy used by high-rise commercial buildings. Payback periods 11 to 20 years

  7. High pressure compressor component performance report

    NASA Technical Reports Server (NTRS)

    Cline, S. J.; Fesler, W.; Liu, H. S.; Lovell, R. C.; Shaffer, S. J.

    1983-01-01

    A compressor optimization study defined a 10 stage configuration with a 22.6:1 pressure ratio, an adiabatic efficiency goal of 86.1%, and a polytropic efficiency of 90.6%; the corrected airflow is 53.5 kg/s. Subsequent component testing included three full scale tests: a six stage rig test, a 10 stage rig test, and another 10 stage rig test completed in the second quarter of 1982. Information from these tests is used to select the configuration for a core engine test and an integrated core/low spool test. The test results will also provide data base for the flight propulsion system. The results of the test series with both aerodynamic and mechanical performance of each compressor build are presented. The second 10 stage compressor adiabatic efficiency was 0.848 at a cruise operating point versus a test goal of 0.846.

  8. Strategy Guideline: Advanced Construction Documentation Recommendations for High Performance Homes

    SciTech Connect

    Lukachko, A.; Gates, C.; Straube, J.

    2011-12-01

    As whole house energy efficiency increases, new houses become less like conventional houses that were built in the past. New materials and new systems require greater coordination and communication between industry stakeholders. The Guideline for Construction Documents for High Performance Housing provides advice to address this need. The reader will be presented with four changes that are recommended to achieve improvements in energy efficiency, durability and health in Building America houses: create coordination drawings, improve specifications, improve detail drawings, and review drawings and prepare a Quality Control Plan.

  9. Performance and Costs of Ductless Heat Pumps in Marine-Climate High-Performance Homes -- Habitat for Humanity The Woods

    SciTech Connect

    Michael Lubliner; Howard, Luke; Hales, David; Kunkle, Rick; Gordon, Andy; Spencer, Melinda

    2016-02-23

    This final Building America Partnership report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013 and October 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing.

  10. Measurement Issues for Energy Efficient Commercial Buildings: Productivity and Performance Uncertainties

    SciTech Connect

    Jones, D.W.

    2002-05-16

    buildings. Commercially available data bases exist that, if supplemented with engineering survey for equipment and materials use, could be analyzed statistically with a hedonic price model for the valuation of both the energy-saving and productivity effects of building technologies. Uncertainties about technology performance can cause investors to delay deploying new technologies. This behavior is explained by the ''investment under uncertainty'' literature. This literature suggests that under conditions of irrecoverable (''sunk'') costs, uncertain outcomes, and the ability to defer deployment, decision makers focus on potential losses and demand risk premiums and a few support the notion of focusing on losses, the so-called ''bad news principle.'' We describe a series of approaches to isolating buyer perceptions of uncertainty and means for reducing uncertainty.

  11. Performance criteria for solar heating and cooling systems in residential buildings

    NASA Astrophysics Data System (ADS)

    1982-09-01

    This performance criteria, developed for the Department of Housing and Urban Development, is a baseline document for criteria and standards for the design, development, technical evaluation, and procurement of solar heating and cooling systems for residential buildings in accordance with the requirements of Section 8 of Public Law 93-409, the Solar Heating and Cooling Demonstration Act of 1974. The document is intended to establish minimum levels of performance with regard to health and safety and the various aspects of technical performance. The criteria for health and safety put primary emphasis on compliance with existing codes and standards. The criteria on thermal and mechanical performance, durability/reliability and operation/servicing present performance requirements considered to be representative of acceptable levels.

  12. High Performance Work Systems for Online Education

    ERIC Educational Resources Information Center

    Contacos-Sawyer, Jonna; Revels, Mark; Ciampa, Mark

    2010-01-01

    The purpose of this paper is to identify the key elements of a High Performance Work System (HPWS) and explore the possibility of implementation in an online institution of higher learning. With the projected rapid growth of the demand for online education and its importance in post-secondary education, providing high quality curriculum, excellent…

  13. Overview of high performance aircraft propulsion research

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.

    1992-01-01

    The overall scope of the NASA Lewis High Performance Aircraft Propulsion Research Program is presented. High performance fighter aircraft of interest include supersonic flights with such capabilities as short take off and vertical landing (STOVL) and/or high maneuverability. The NASA Lewis effort involving STOVL propulsion systems is focused primarily on component-level experimental and analytical research. The high-maneuverability portion of this effort, called the High Alpha Technology Program (HATP), is part of a cooperative program among NASA's Lewis, Langley, Ames, and Dryden facilities. The overall objective of the NASA Inlet Experiments portion of the HATP, which NASA Lewis leads, is to develop and enhance inlet technology that will ensure high performance and stability of the propulsion system during aircraft maneuvers at high angles of attack. To accomplish this objective, both wind-tunnel and flight experiments are used to obtain steady-state and dynamic data, and computational fluid dynamics (CFD) codes are used for analyses. This overview of the High Performance Aircraft Propulsion Research Program includes a sampling of the results obtained thus far and plans for the future.

  14. Teacher Accountability at High Performing Charter Schools

    ERIC Educational Resources Information Center

    Aguirre, Moises G.

    2016-01-01

    This study will examine the teacher accountability and evaluation policies and practices at three high performing charter schools located in San Diego County, California. Charter schools are exempted from many laws, rules, and regulations that apply to traditional school systems. By examining the teacher accountability systems at high performing…

  15. Qualitative and quantitative analysis of N-acetyllactosamine and lacto-N-biose, the two major building blocks of human milk oligosaccharides in human milk samples by high-performance liquid chromatography-tandem mass spectrometry using a porous graphitic carbon column.

    PubMed

    Balogh, Réka; Jankovics, Péter; Béni, Szabolcs

    2015-11-27

    This study presents a validated, porous graphitic carbon stationary phase-based LC-MS/MS method for the identification and quantification of lacto-N-biose (LNB) and N-acetyllactosamine (LacNAc). These compounds are the major building blocks of human milk oligosaccharides, however the presence of their unbound form in human milk has not been examined so far. The separation of these highly related structures in their alditol form was accomplished by a gradient LC method and multiple reaction monitoring (MRM) analysis after appropriate sample preparation including size-exclusion chromatography and solid-phase extraction. Baseline separation of the components provides the selectivity for the method. Validation was performed according to the European Medicines Agency (EMA) Guidelines and the method was found to be precise and accurate. Using our developed and validated method we were able to identify and quantify both saccharides in human milk for the first time. Based on our results the LacNAc concentration is in the range of 6.7-31μg/mL while LNB concentration decreased from 26μg/mL below the detection limit during the first week of lactation. The presence of LNB and LacNAc in human milk also implies new biological functions which can lead us closer to the understanding of the various functions of this complex biofluid.

  16. High-Performance Energy Applications and Systems

    SciTech Connect

    Miller, Barton

    2014-01-01

    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “Foundational Tools for Petascale Computing”, SC0003922/FG02-10ER25940, UW PRJ27NU.

  17. High Strength Phosphogypsum and Its Use as a Building Material

    NASA Astrophysics Data System (ADS)

    Kanno, Wellington Massayuki; Rossetto, Hebert Luis; de Souza, Milton Ferreira; Máduar, Marcelo Francis; de Campos, Marcia Pires; Mazzilli, Barbara Paci

    2008-08-01

    A new process (patent applied) that works equally well with both plaster of mineral gypsum and phosphogypsum for the preparation of gypsum components, UCOS, has been developed. The process consists of the following steps: humidification of plaster by fine water droplets, uni-axial compression, hydration reaction and drying. Strong hydrogen bonds develop among the crystals together with adhesion provided by confined water that accounts for nearly 70% of the adhesion forces. By reducing the plaster to water ratio to close the minimum necessary, new features are generated. An experimental house has been constructed, in which walls and ceilings have been built of gypsum and phosphogypsum. Since phosphogypsum potentially contain radioactive elements, the application of an activity concentration index to the phosphogypsum employed in the building was carried out.

  18. The use of energy management and control systems to monitor the energy performance of commercial buildings

    SciTech Connect

    Heinemeier, Kristin Elizabeth

    1994-12-01

    Monitored data play a very important part in the implementation and evaluation of energy conservation technologies and programs. However, these data can be expensive to collect, so there is a need for lower-cost alternatives. In many situations, using the computerized Energy Management and Control Systems (EMCSs)--already installed in many buildings--to collect these commercial building performance data has advantages over more conventional methods. This method provides data without installing incremental hardware, and the large amounts of available operational data can be a very rich resource for understanding building performance. This dissertation addresses several of these issues. One specific objective is to describe a monitoring-project planning process that includes definition of objectives, constraints, resources and approaches for the monitoring. The choice of tools is an important part of this process. The dissertation goes on to demonstrate, through eight case studies, that EMCS monitoring is possible, and to identify and categorize the problems and issues that can be encountered. These issues lead to the creation, use, and testing of a set of methods for evaluation of EMCS monitoring, in the form of guidelines. Finally, EMCS monitoring is demonstrated and compared with conventional monitoring more methodically in a detailed case study.

  19. An implementation of co-simulation for performance prediction of innovative integrated HVAC systems in buildings

    SciTech Connect

    Trcka, Marija; Wetter, Michael; Hensen, Jan L.M.

    2010-07-01

    Integrated performance simulation of buildings and heating, ventilation and air-conditioning (HVAC) systems can help reducing energy consumption and increasing level of occupant comfort. However, no singe building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to accommodate the ever-increasing complexity and rapid innovations in building and system technologies. One way to alleviate this problem is to use co-simulation. The co-simulation approach represents a particular case of simulation scenario where at least two simulators solve coupled differential-algebraic systems of equations and exchange data that couples these equations during the time integration. This paper elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in a co-simulation prototype. The prototype is verified and validated against the results obtained from the traditional simulation approach. It is further used in a case study for the proof-of-concept, to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling frequency. The paper concludes by defining requirements and recommendations for generic cosimulation implementations.

  20. A Stable Whole Building Performance Method for Standard 90.1

    SciTech Connect

    Rosenberg, Michael I.; Eley, Charles

    2013-05-01

    Wouldn’t it be great if a single energy model could be used to demonstrate minimum code compliance, green code compliance, establish a Leadership in Energy and Environmental Design (LEED) rating, and determine eligibility for federal tax and utility incentives? Even better, what if the basic rules for creating those models did not change every few years? This paper descibes a recently proposed addendum to ASHRAE/ANSI/IES Standard 90.1 aims to meet those goals. Addendum BM establishes the Performance Rating Method found in Appendix G of Standard 90.1 as a new method of compliance while maintaining its traditional use in gauging the efficiency of beyond code buildings. Furthermore, Addendum BM sets a common baseline building that does not change with each update to the standard.

  1. High-performance computing and communications

    SciTech Connect

    Stevens, R.

    1993-11-01

    This presentation has two parts. The first part discusses the US High-Performance Computing and Communications program -- its goals, funding, process, revisions, and research in high-performance computing systems, advanced software technology, and basic research and human resources. The second part of the presentation covers specific work conducted under this program at Argonne National Laboratory. Argonne`s efforts focus on computational science research, software tool development, and evaluation of experimental computer architectures. In addition, the author describes collaborative activities at Argonne in high-performance computing, including an Argonne/IBM project to evaluate and test IBM`s newest parallel computers and the Scalable I/O Initiative being spearheaded by the Concurrent Supercomputing Consortium.

  2. Engineering high-performance vertical cavity lasers

    SciTech Connect

    Lear, K.L.; Hou, H.Q.; Hietala, V.M.; Choquette, K.D.; Schneider, R.P. Jr.

    1996-12-31

    The cw and high-speed performance of vertical cavity surface emitting laser diodes (VCSELs) are affected by both electrical and optical issues arising from the geometry and fabrication of these devices. Structures with low resistance semiconductor mirrors and Al-oxide confinement layers address these issues and have produced record performance including 50% power conversion efficiency and modulation bandwidths up to 20 GHz at small bias currents.

  3. A solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design

    SciTech Connect

    Qu, Ming; Yin, Hongxi; Archer, David H.

    2010-02-15

    A solar thermal cooling and heating system at Carnegie Mellon University was studied through its design, installation, modeling, and evaluation to deal with the question of how solar energy might most effectively be used in supplying energy for the operation of a building. This solar cooling and heating system incorporates 52 m{sup 2} of linear parabolic trough solar collectors; a 16 kW double effect, water-lithium bromide (LiBr) absorption chiller, and a heat recovery heat exchanger with their circulation pumps and control valves. It generates chilled and heated water, dependent on the season, for space cooling and heating. This system is the smallest high temperature solar cooling system in the world. Till now, only this system of the kind has been successfully operated for more than one year. Performance of the system has been tested and the measured data were used to verify system performance models developed in the TRaNsient SYstem Simulation program (TRNSYS). On the basis of the installed solar system, base case performance models were programmed; and then they were modified and extended to investigate measures for improving system performance. The measures included changes in the area and orientation of the solar collectors, the inclusion of thermal storage in the system, changes in the pipe diameter and length, and various system operational control strategies. It was found that this solar thermal system could potentially supply 39% of cooling and 20% of heating energy for this building space in Pittsburgh, PA, if it included a properly sized storage tank and short, low diameter connecting pipes. Guidelines for the design and operation of an efficient and effective solar cooling and heating system for a given building space have been provided. (author)

  4. Friction Stir Additive Manufacturing: Route to High Structural Performance

    NASA Astrophysics Data System (ADS)

    Palanivel, S.; Sidhar, H.; Mishra, R. S.

    2015-03-01

    Aerospace and automotive industries provide the next big opportunities for additive manufacturing. Currently, the additive industry is confronted with four major challenges that have been identified in this article. These challenges need to be addressed for the additive technologies to march into new frontiers and create additional markets. Specific potential success in the transportation sectors is dependent on the ability to manufacture complicated structures with high performance. Most of the techniques used for metal-based additive manufacturing are fusion based because of their ability to fulfill the computer-aided design to component vision. Although these techniques aid in fabrication of complex shapes, achieving high structural performance is a key problem due to the liquid-solid phase transformation. In this article, friction stir additive manufacturing (FSAM) is shown as a potential solid-state process for attaining high-performance lightweight alloys for simpler geometrical applications. To illustrate FSAM as a high-performance route, manufactured builds of Mg-4Y-3Nd and AA5083 are shown as examples. In the Mg-based alloy, an average hardness of 120 HV was achieved in the built structure and was significantly higher than that of the base material (97 HV). Similarly for the Al-based alloy, compared with the base hardness of 88 HV, the average built hardness was 104 HV. A potential application of FSAM is illustrated by taking an example of a simple stiffener assembly.

  5. Massive Contingency Analysis with High Performance Computing

    SciTech Connect

    Huang, Zhenyu; Chen, Yousu; Nieplocha, Jaroslaw

    2009-07-26

    Contingency analysis is a key function in the Energy Management System (EMS) to assess the impact of various combinations of power system component failures based on state estimates. Contingency analysis is also extensively used in power market operation for feasibility test of market solutions. Faster analysis of more cases is required to safely and reliably operate today’s power grids with less marginal and more intermittent renewable energy sources. Enabled by the latest development in the computer industry, high performance computing holds the promise of meet the need in the power industry. This paper investigates the potential of high performance computing for massive contingency analysis. The framework of "N-x" contingency analysis is established and computational load balancing schemes are studied and implemented with high performance computers. Case studies of massive 300,000-contingency-case analysis using the Western Electricity Coordinating Council power grid model are presented to illustrate the application of high performance computing and demonstrate the performance of the framework and computational load balancing schemes.

  6. Performance variability of highly parallel architectures

    SciTech Connect

    Kramer, William T.C.; Ryan, Clint

    2003-05-01

    The design and evaluation of high performance computers has concentrated on increasing computational speed for applications. This performance is often measured on a well configured dedicated system to show the best case. In the real environment, resources are not always dedicated to a single task, and systems run tasks that may influence each other, so run times vary, sometimes to an unreasonably large extent. This paper explores the amount of variation seen across four large distributed memory systems in a systematic manner. It then analyzes the causes for the variations seen and discusses what can be done to decrease the variation without impacting performance.

  7. Practices and Processes of Leading High Performance Home Builders in the Upper Midwest

    SciTech Connect

    Von Thoma, E.; Ojczyk, C.

    2012-12-01

    The NorthernSTAR Building America Partnership team proposed this study to gain insight into the business, sales, and construction processes of successful high performance builders. The knowledge gained by understanding the high performance strategies used by individual builders, as well as the process each followed to move from traditional builder to high performance builder, will be beneficial in proposing more in-depth research to yield specific action items to assist the industry at large transform to high performance new home construction. This investigation identified the best practices of three successful high performance builders in the upper Midwest. In-depth field analysis of the performance levels of their homes, their business models, and their strategies for market acceptance were explored. All three builders commonly seek ENERGY STAR certification on their homes and implement strategies that would allow them to meet the requirements for the Building America Builders Challenge program. Their desire for continuous improvement, willingness to seek outside assistance, and ambition to be leaders in their field are common themes. Problem solving to overcome challenges was accepted as part of doing business. It was concluded that crossing the gap from code-based building to high performance based building was a natural evolution for these leading builders.

  8. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  9. High Performance Multiwall Carbon Nanotube Bolometers

    DTIC Science & Technology

    2010-10-21

    REPORT High performance multiwall carbon nanotube bolometers 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: High infrared bolometric photoresponse has...been observed in multiwall carbon nanotube MWCNT films at room temperature. The observed detectivity D in exceeding 3.3 106 cm Hz1/2 /W on MWCNT film...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS carbon nanotube, infrared detector, bolometer

  10. Experimental Evaluation of High Performance Integrated Heat Pump

    SciTech Connect

    Miller, William A; Berry, Robert; Durfee, Neal; Baxter, Van D

    2016-01-01

    Integrated heat pump (IHP) technology provides significant potential for energy savings and comfort improvement for residential buildings. In this study, we evaluate the performance of a high performance IHP that provides space heating, cooling, and water heating services. Experiments were conducted according to the ASHRAE Standard 206-2013 where 24 test conditions were identified in order to evaluate the IHP performance indices based on the airside performance. Empirical curve fits of the unit s compressor maps are used in conjunction with saturated condensing and evaporating refrigerant conditions to deduce the refrigerant mass flowrate, which, in turn was used to evaluate the refrigerant side performance as a check on the airside performance. Heat pump (compressor, fans, and controls) and water pump power were measured separately per requirements of Standard 206. The system was charged per the system manufacturer s specifications. System test results are presented for each operating mode. The overall IHP performance metrics are determined from the test results per the Standard 206 calculation procedures.

  11. The Use and Efficacy of Capacity-Building Assistance for Low-Performing Districts: The Case of California's District Assistance and Intervention Teams

    ERIC Educational Resources Information Center

    Strunk, Katharine O.; McEachin, Andrew; Westover, Theresa N.

    2014-01-01

    The theory of action upon which high-stakes accountability policies are based calls for systemic reforms in educational systems that will emerge by pairing incentives for improvement with extensive and targeted technical assistance (TA) to build the capacity of low-performing schools and districts. To this end, a little discussed and often…

  12. Task parallelism and high-performance languages

    SciTech Connect

    Foster, I.

    1996-03-01

    The definition of High Performance Fortran (HPF) is a significant event in the maturation of parallel computing: it represents the first parallel language that has gained widespread support from vendors and users. The subject of this paper is to incorporate support for task parallelism. The term task parallelism refers to the explicit creation of multiple threads of control, or tasks, which synchronize and communicate under programmer control. Task and data parallelism are complementary rather than competing programming models. While task parallelism is more general and can be used to implement algorithms that are not amenable to data-parallel solutions, many problems can benefit from a mixed approach, with for example a task-parallel coordination layer integrating multiple data-parallel computations. Other problems admit to both data- and task-parallel solutions, with the better solution depending on machine characteristics, compiler performance, or personal taste. For these reasons, we believe that a general-purpose high-performance language should integrate both task- and data-parallel constructs. The challenge is to do so in a way that provides the expressivity needed for applications, while preserving the flexibility and portability of a high-level language. In this paper, we examine and illustrate the considerations that motivate the use of task parallelism. We also describe one particular approach to task parallelism in Fortran, namely the Fortran M extensions. Finally, we contrast Fortran M with other proposed approaches and discuss the implications of this work for task parallelism and high-performance languages.

  13. High Performance Computing and Communications Panel Report.

    ERIC Educational Resources Information Center

    President's Council of Advisors on Science and Technology, Washington, DC.

    This report offers advice on the strengths and weaknesses of the High Performance Computing and Communications (HPCC) initiative, one of five presidential initiatives launched in 1992 and coordinated by the Federal Coordinating Council for Science, Engineering, and Technology. The HPCC program has the following objectives: (1) to extend U.S.…

  14. Debugging a high performance computing program

    DOEpatents

    Gooding, Thomas M.

    2013-08-20

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  15. Debugging a high performance computing program

    DOEpatents

    Gooding, Thomas M.

    2014-08-19

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  16. High-Performance, Low Environmental Impact Refrigerants

    NASA Technical Reports Server (NTRS)

    McCullough, E. T.; Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    Refrigerants used in process and facilities systems in the US include R-12, R-22, R-123, R-134a, R-404A, R-410A, R-500, and R-502. All but R-134a, R-404A, and R-410A contain ozone-depleting substances that will be phased out under the Montreal Protocol. Some of the substitutes do not perform as well as the refrigerants they are replacing, require new equipment, and have relatively high global warming potentials (GWPs). New refrigerants are needed that addresses environmental, safety, and performance issues simultaneously. In efforts sponsored by Ikon Corporation, NASA Kennedy Space Center (KSC), and the US Environmental Protection Agency (EPA), ETEC has developed and tested a new class of refrigerants, the Ikon (registered) refrigerants, based on iodofluorocarbons (IFCs). These refrigerants are nonflammable, have essentially zero ozone-depletion potential (ODP), low GWP, high performance (energy efficiency and capacity), and can be dropped into much existing equipment.

  17. High performance flight simulation at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II; Sudik, Steven J.; Grove, Randall D.

    1992-01-01

    The use of real-time simulation at the NASA facility is reviewed specifically with regard to hardware, software, and the use of a fiberoptic-based digital simulation network. The network hardware includes supercomputers that support 32- and 64-bit scalar, vector, and parallel processing technologies. The software include drivers, real-time supervisors, and routines for site-configuration management and scheduling. Performance specifications include: (1) benchmark solution at 165 sec for a single CPU; (2) a transfer rate of 24 million bits/s; and (3) time-critical system responsiveness of less than 35 msec. Simulation applications include the Differential Maneuvering Simulator, Transport Systems Research Vehicle simulations, and the Visual Motion Simulator. NASA is shown to be in the final stages of developing a high-performance computing system for the real-time simulation of complex high-performance aircraft.

  18. Building a New High School and Forging a New Community.

    ERIC Educational Resources Information Center

    Krajewski, Robert

    1988-01-01

    Two aging structures were replaced by Central High School in an Indiana steel town. Planning, board and administrator support, and community involvement eased negative attitudes toward the high school closures and resulted in a $36 million school that has unified the city and will serve it for over 50 years. (MLF)

  19. Building a Framework for Engineering Design Experiences in High School

    ERIC Educational Resources Information Center

    Denson, Cameron D.; Lammi, Matthew

    2014-01-01

    In this article, Denson and Lammi put forth a conceptual framework that will help promote the successful infusion of engineering design experiences into high school settings. When considering a conceptual framework of engineering design in high school settings, it is important to consider the complex issue at hand. For the purposes of this…

  20. Building a Portfolio of High Schools: A Strategic Investment Toolkit

    ERIC Educational Resources Information Center

    Allen, Lili; Almeida, Cheryl; Murphy, Lucretia; Steinberg, Adria

    2005-01-01

    For generations, Americans have known what to expect from their high schools. Teenagers in cities across the U.S., like their parents and grandparents before them, could expect to go to a large high school with as many as three or four thousand of their peers. They could anticipate a day segmented into 45 minute blocks, each devoted to a different…

  1. Scientific Skill Building: Linking High School, College and Work.

    ERIC Educational Resources Information Center

    Ryken, Amy E.

    This case study focused on a biotechnology education and training program that includes 2 years of science coursework at the high school level, a year of science coursework at the community college level, paid summer laboratory internships for the high school students, and a year-round co-op job for the college students. The study was conducted in…

  2. Elevating the Conversation: Building Professional Community in Small High Schools

    ERIC Educational Resources Information Center

    Gallucci, Chrysan; Wallach, Catherine A.

    2004-01-01

    This report includes observations from the first year of a three-year study of seven small high schools (that exist in converted comprehensive high schools) in Washington State. It discusses the unique characteristics of professional communities that are emerging and examines how these communities are changing teachers expectations for their…

  3. Building Mathematics Learning Communities: Improving Outcomes in Urban High Schools

    ERIC Educational Resources Information Center

    Walker, Erica N.

    2012-01-01

    Drawing on perceptions, behaviors, and experiences of students at an urban high school--both high and low achievers--this timely book demonstrates how urban youth can be meaningfully engaged in learning mathematics. The author presents a "potential" model rather than a "deficit" model, complete with teaching strategies and best practices for…

  4. A high performance field-reversed configuration

    SciTech Connect

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; and others

    2015-05-15

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  5. A high performance field-reversed configurationa)

    NASA Astrophysics Data System (ADS)

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Schmitz, L.; Guo, H. Y.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; Cheung, A. H.; Conroy, K. D.; Dettrick, S. A.; Douglass, J. D.; Feng, P.; Galeotti, L.; Giammanco, F.; Granstedt, E.; Gupta, D.; Gupta, S.; Ivanov, A. A.; Kinley, J. S.; Knapp, K.; Korepanov, S.; Hollins, M.; Magee, R.; Mendoza, R.; Mok, Y.; Necas, A.; Primavera, S.; Onofri, M.; Osin, D.; Rath, N.; Roche, T.; Romero, J.; Schroeder, J. H.; Sevier, L.; Sibley, A.; Song, Y.; Van Drie, A. D.; Walters, J. K.; Waggoner, W.; Yushmanov, P.; Zhai, K.

    2015-05-01

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ˜1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  6. Java-based communication in a High Performance Computing environment

    NASA Astrophysics Data System (ADS)

    Fries, A.; de Mora, J. Portell I.; Sirvent, R.

    2011-02-01

    Java is one of the most widely used computer programming languages, however its use in High Performance Computing (HPC) is relatively low. A typical HPC environment consists of a number of multi-core computing nodes, while a typical application running in such an environment will normally contain CPU intensive code that can be executed in parallel. Such an application may require inter-node as well as intra-node communication. Message Passing Interface (MPI) is a language independent specification of an API to allow such communication. MPJExpress (Baker et al. 2006) and F-MPJ (Taboada et al. 2009) are Java-based implementations of MPI, designed with the efficient performance of data transfers as a main objective. In this paper we discuss the scalability of one approach of distributing data to compute nodes in HPC and we propose the design of an alternative data transfer system, building upon MPI.

  7. The impact of team building and leadership development on nuclear plant performance

    SciTech Connect

    Fiedler, P.B.; Long, R.L.; Childress, J.R.

    1988-01-01

    Within the nuclear utility industry, the pressures of complex technologies, increasing regulations, and critical public scrutiny create a working environment filled with numerous pressures. The difficult nature of the industry puts a premium on effective teamwork, interdepartmental cooperation, and communication skills. A well-conceived and implemented team building and leadership development program can substantially improve the operating performance of a nuclear plant. This paper describes one such implementation effort at GPU Nuclear Corporation and at the Oyster Creek nuclear generating station (OCNGS) over an 18-month period.

  8. Building the infrastructure: the effects of role identification behaviors on team cognition development and performance.

    PubMed

    Pearsall, Matthew J; Ellis, Aleksander P J; Bell, Bradford S

    2010-01-01

    The primary purpose of this study was to extend theory and research regarding the emergence of mental models and transactive memory in teams. Utilizing Kozlowski, Gully, Nason, and Smith's (1999) model of team compilation, we examined the effect of role identification behaviors and posited that such behaviors represent the initial building blocks of team cognition during the role compilation phase of team development. We then hypothesized that team mental models and transactive memory would convey the effects of these behaviors onto team performance in the team compilation phase of development. Results from 60 teams working on a command-and-control simulation supported our hypotheses.

  9. High voltage electric substation performance in earthquakes

    SciTech Connect

    Eidinger, J.; Ostrom, D.; Matsuda, E.

    1995-12-31

    This paper examines the performance of several types of high voltage substation equipment in past earthquakes. Damage data is provided in chart form. This data is then developed into a tool for estimating the performance of a substation subjected to an earthquake. First, suggests are made about the development of equipment class fragility curves that represent the expected earthquake performance of different voltages and types of equipment. Second, suggestions are made about how damage to individual pieces of equipment at a substation likely affects the post-earthquake performance of the substation as a whole. Finally, estimates are provided as to how quickly a substation, at various levels of damage, can be restored to operational service after the earthquake.

  10. High Performance Woven Mesh Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Wirtz, Richard A.; Li, Chen; Park, Ji-Wook; Xu, Jun

    2002-07-01

    Simple-to-fabricate woven mesh structures, consisting of bonded laminates of two-dimensional plain-weave conductive screens, or three-dimensional orthogonal weaves are described. Geometric equations show that these porous matrices can be fabricated to have a wide range of porosity and a highly anisotropic thermal conductivity vector. A mathematical model of the thermal performance of such a mesh, deployed as a heat exchange surface, is developed. Measurements of pressure drop and overall heat transfer rate are reported and used with the performance model to develop correlation equations of mesh friction factor and Colburn j-factor as a function of coolant properties, mesh characteristics and flow rate through the mesh. A heat exchanger performance analysis delineates conditions where the two mesh technologies offer superior performance.

  11. Failure analysis of high performance ballistic fibers

    NASA Astrophysics Data System (ADS)

    Spatola, Jennifer S.

    High performance fibers have a high tensile strength and modulus, good wear resistance, and a low density, making them ideal for applications in ballistic impact resistance, such as body armor. However, the observed ballistic performance of these fibers is much lower than the predicted values. Since the predictions assume only tensile stress failure, it is safe to assume that the stress state is affecting fiber performance. The purpose of this research was to determine if there are failure mode changes in the fiber fracture when transversely loaded by indenters of different shapes. An experimental design mimicking transverse impact was used to determine any such effects. Three different indenters were used: round, FSP, and razor blade. The indenter height was changed to change the angle of failure tested. Five high performance fibers were examined: KevlarRTM KM2, SpectraRTM 130d, DyneemaRTM SK-62 and SK-76, and ZylonRTM 555. Failed fibers were analyzed using an SEM to determine failure mechanisms. The results show that the round and razor blade indenters produced a constant failure strain, as well as failure mechanisms independent of testing angle. The FSP indenter produced a decrease in failure strain as the angle increased. Fibrillation was the dominant failure mechanism at all angles for the round indenter, while through thickness shearing was the failure mechanism for the razor blade. The FSP indenter showed a transition from fibrillation at low angles to through thickness shearing at high angles, indicating that the round and razor blade indenters are extreme cases of the FSP indenter. The failure mechanisms observed with the FSP indenter at various angles correlated with the experimental strain data obtained during fiber testing. This indicates that geometry of the indenter tip in compression is a contributing factor in lowering the failure strain of the high performance fibers. TEM analysis of the fiber failure mechanisms was also attempted, though without

  12. Assigning Robust Default Values in Building Performance Simulation Software for Improved Decision-Making in the Initial Stages of Building Design

    PubMed Central

    2015-01-01

    Applying data mining techniques on a database of BIM models could provide valuable insights in key design patterns implicitly present in these BIM models. The architectural designer would then be able to use previous data from existing building projects as default values in building performance simulation software for the early phases of building design. The author has proposed the method to minimize the magnitude of the variation in these default values in subsequent design stages. This approach maintains the accuracy of the simulation results in the initial stages of building design. In this study, a more convincing argument is presented to demonstrate the significance of the new method. The variation in the ideal default values for different building design conditions is assessed first. Next, the influence of each condition on these variations is investigated. The space depth is found to have a large impact on the ideal default value of the window to wall ratio. In addition, the presence or absence of lighting control and natural ventilation has a significant influence on the ideal default value. These effects can be used to identify the types of building conditions that should be considered to determine the ideal default values. PMID:26090512

  13. High-performance superconductors for Fusion Nuclear Science Facility

    SciTech Connect

    Zhai, Yuhu; Kessel, Chuck; Barth, Christian; Senatore, Carmine

    2016-11-09

    High-performance superconducting magnets play an important role in the design of the next step large-scale, high-field fusion reactors such as the fusion nuclear science facility (FNSF) and the spherical tokamak (ST) pilot plant beyond ITER. Here, Princeton Plasma Physics Laboratory is currently leading the design studies of the FNSF and the ST pilot plant study. ITER, which is under construction in the south of France, utilizes the state-of-the-art low temperature superconducting magnet technology based on the cable-in-conduit conductor design, where over a thousand multifilament Nb3Sn superconducting strands are twisted together to form a high-current-carrying cable inserted into a steel jacket for coil windings. We present design options of the high-performance superconductors in the winding pack for the FNSF toroidal field magnet system based on the toroidal field radial build from the system code. For the low temperature superconductor options, the advanced JcNb3Sn RRP strands (Jc > 1000 A/mm2 at 16 T, 4 K) from Oxford Superconducting Technology are under consideration. For the high-temperature superconductor options, the rectangular-shaped high-current HTS cable made of stacked YBCO tapes will be considered to validate feasibility of TF coil winding pack design for the ST-FNSF magnets.

  14. High-performance superconductors for Fusion Nuclear Science Facility

    DOE PAGES

    Zhai, Yuhu; Kessel, Chuck; Barth, Christian; ...

    2016-11-09

    High-performance superconducting magnets play an important role in the design of the next step large-scale, high-field fusion reactors such as the fusion nuclear science facility (FNSF) and the spherical tokamak (ST) pilot plant beyond ITER. Here, Princeton Plasma Physics Laboratory is currently leading the design studies of the FNSF and the ST pilot plant study. ITER, which is under construction in the south of France, utilizes the state-of-the-art low temperature superconducting magnet technology based on the cable-in-conduit conductor design, where over a thousand multifilament Nb3Sn superconducting strands are twisted together to form a high-current-carrying cable inserted into a steel jacketmore » for coil windings. We present design options of the high-performance superconductors in the winding pack for the FNSF toroidal field magnet system based on the toroidal field radial build from the system code. For the low temperature superconductor options, the advanced JcNb3Sn RRP strands (Jc > 1000 A/mm2 at 16 T, 4 K) from Oxford Superconducting Technology are under consideration. For the high-temperature superconductor options, the rectangular-shaped high-current HTS cable made of stacked YBCO tapes will be considered to validate feasibility of TF coil winding pack design for the ST-FNSF magnets.« less

  15. High performance anode for advanced Li batteries

    SciTech Connect

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  16. Expert Meeting: Recommended Approaches to Humidity Control in High Performance Homes

    SciTech Connect

    Rudd, A.

    2013-07-01

    The topic of this Building America expert meeting was 'Recommended Approaches to Humidity Control in High Performance Homes,' which was held on October 16, 2012, in Westford, MA, and brought together experts in the field of residential humidity control to address modeling issues for dehumidification. The presentations and discussions centered on computer simulation and field experience with these systems, with the goal of developing foundational information to support the development of a Building America Measure Guideline on this topic.

  17. A Linux Workstation for High Performance Graphics

    NASA Technical Reports Server (NTRS)

    Geist, Robert; Westall, James

    2000-01-01

    The primary goal of this effort was to provide a low-cost method of obtaining high-performance 3-D graphics using an industry standard library (OpenGL) on PC class computers. Previously, users interested in doing substantial visualization or graphical manipulation were constrained to using specialized, custom hardware most often found in computers from Silicon Graphics (SGI). We provided an alternative to expensive SGI hardware by taking advantage of third-party, 3-D graphics accelerators that have now become available at very affordable prices. To make use of this hardware our goal was to provide a free, redistributable, and fully-compatible OpenGL work-alike library so that existing bodies of code could simply be recompiled. for PC class machines running a free version of Unix. This should allow substantial cost savings while greatly expanding the population of people with access to a serious graphics development and viewing environment. This should offer a means for NASA to provide a spectrum of graphics performance to its scientists, supplying high-end specialized SGI hardware for high-performance visualization while fulfilling the requirements of medium and lower performance applications with generic, off-the-shelf components and still maintaining compatibility between the two.

  18. An Introduction to High Performance Computing

    NASA Astrophysics Data System (ADS)

    Almeida, Sérgio

    2013-09-01

    High Performance Computing (HPC) has become an essential tool in every researcher's arsenal. Most research problems nowadays can be simulated, clarified or experimentally tested by using computational simulations. Researchers struggle with computational problems when they should be focusing on their research problems. Since most researchers have little-to-no knowledge in low-level computer science, they tend to look at computer programs as extensions of their minds and bodies instead of completely autonomous systems. Since computers do not work the same way as humans, the result is usually Low Performance Computing where HPC would be expected.

  19. The design of linear algebra libraries for high performance computers

    SciTech Connect

    Dongarra, J.J. |; Walker, D.W.

    1993-08-01

    This paper discusses the design of linear algebra libraries for high performance computers. Particular emphasis is placed on the development of scalable algorithms for MIMD distributed memory concurrent computers. A brief description of the EISPACK, LINPACK, and LAPACK libraries is given, followed by an outline of ScaLAPACK, which is a distributed memory version of LAPACK currently under development. The importance of block-partitioned algorithms in reducing the frequency of data movement between different levels of hierarchical memory is stressed. The use of such algorithms helps reduce the message startup costs on distributed memory concurrent computers. Other key ideas in our approach are the use of distributed versions of the Level 3 Basic Linear Algebra Subprograms (BLAS) as computational building blocks, and the use of Basic Linear Algebra Communication Subprograms (BLACS) as communication building blocks. Together the distributed BLAS and the BLACS can be used to construct higher-level algorithms, and hide many details of the parallelism from the application developer. The block-cyclic data distribution is described, and adopted as a good way of distributing block-partitioned matrices. Block-partitioned versions of the Cholesky and LU factorizations are presented, and optimization issues associated with the implementation of the LU factorization algorithm on distributed memory concurrent computers are discussed, together with its performance on the Intel Delta system. Finally, approaches to the design of library interfaces are reviewed.

  20. 77 FR 43084 - Office of Federal High-Performance Green Buildings; Federal Buildings Personnel Training Act...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ...://www.gsa.gov/portal/content/117699 . The Facilities Management Institute, FMI.innovations.gov... principles of transparency, participation and collaboration. No membership will be required for...

  1. Improving the Energy Performance of Multi-Unit Residential Buildings Using Air-Source Heat Pumps and Enclosed Balconies

    NASA Astrophysics Data System (ADS)

    Touchie, Marianne

    Existing multi-unit residential buildings (MURBs) are important assets for urban regions such as Toronto, Canada. These buildings provide high-density housing and allow for the efficient provision of public services and utilities. However, MURB energy-use imposes a significant environmental burden. A preliminary part of the study presented here found that the median energy intensity of MURBs in Toronto is 300ekWh/m2 and that this energy-use accounts for 17% of residential greenhouse gas (GHG) emissions in the City. To reduce this environmental burden, this work explores a novel energy retrofit strategy involving a suite-based air-source heat pump (ASHP) operating in an enclosed balcony space which serves as a thermal buffer zone (TBZ) to improve the cold-weather ASHP performance in a heating-dominated climate. More broadly, a methodology for assessing the impact of an energy retrofit measure is developed. First, energy-use and interior condition data were collected from a 1960s MURB over the course of one year. The subject building was found to have a higher-than-average energy intensity of 374ekWh/m2 and other operational issues including overheating of suites. These data were then used to calibrate an energy model so that the proposed retrofit strategy could be modeled. Next, the proposed retrofit strategy was tested in a mock apartment unit constructed in a climate-controlled chamber. The testing showed that the coefficient of performance of the ASHP could be improved by operating it in a TBZ with access to heat from solar gains. This finding was used to modify the subject building energy model which showed that applying the proposed retrofit could reduce the annual energy intensity and GHG emissions of the building by 39% and 45%, respectively. An estimate of the impact of applying this retrofit strategy to Toronto MURBs with energy intensities greater than the median results in a median sector energy intensity of 236ekWh/m 2.

  2. Teacher Performance of the State Vocational High School Teachers in Surabaya

    ERIC Educational Resources Information Center

    Kusumaningtyas, Amiartuti; Setyawati, Endang

    2015-01-01

    This research talked about Analysis of Teacher Performance Through Competence, Compensation, and Job Satisfaction of the State Vocational High School Teachers in Surabaya. State Vocational High School Teacher is a professional educator with major duties to educate, teach, build, direct, coach, assess and evaluate learners on the vocational high…

  3. Building Bridges: From High School to Healthcare Professional.

    ERIC Educational Resources Information Center

    Bumgarner, Susan D.; Means, Bill H.; Ford, Marian J.

    2003-01-01

    A summer health careers program in rural North Carolina educates and recruits high school students into health professions. Collaboration between an Area Health Education Center, a local hospital, and schools makes the program successful. A week of classroom presentations is followed by up to 6 weeks of job shadowing. Seventy percent of the 160…

  4. Building high-coverage monolayers of covalently bound magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Williams, Mackenzie G.; Teplyakov, Andrew V.

    2016-12-01

    This work presents an approach for producing a high-coverage single monolayer of magnetic nanoparticles using "click chemistry" between complementarily functionalized nanoparticles and a flat substrate. This method highlights essential aspects of the functionalization scheme for substrate surface and nanoparticles to produce exceptionally high surface coverage without sacrificing selectivity or control over the layer produced. The deposition of one single layer of magnetic particles without agglomeration, over a large area, with a nearly 100% coverage is confirmed by electron microscopy. Spectroscopic techniques, supplemented by computational predictions, are used to interrogate the chemistry of the attachment and to confirm covalent binding, rather than attachment through self-assembly or weak van der Waals bonding. Density functional theory calculations for the surface intermediate of this copper-catalyzed process provide mechanistic insight into the effects of the functionalization scheme on surface coverage. Based on this analysis, it appears that steric limitations of the intermediate structure affect nanoparticle coverage on a flat solid substrate; however, this can be overcome by designing a functionalization scheme in such a way that the copper-based intermediate is formed on the spherical nanoparticles instead. This observation can be carried over to other approaches for creating highly controlled single- or multilayered nanostructures of a wide range of materials to result in high coverage and possibly, conformal filling.

  5. High performance FDTD algorithm for GPGPU supercomputers

    NASA Astrophysics Data System (ADS)

    Zakirov, Andrey; Levchenko, Vadim; Perepelkina, Anastasia; Zempo, Yasunari

    2016-10-01

    An implementation of FDTD method for solution of optical and other electrodynamic problems of high computational cost is described. The implementation is based on the LRnLA algorithm DiamondTorre, which is developed specifically for GPGPU hardware. The specifics of the DiamondTorre algorithms for staggered grid (Yee cell) and many-GPU devices are shown. The algorithm is implemented in the software for real physics calculation. The software performance is estimated through algorithms parameters and computer model. The real performance is tested on one GPU device, as well as on the many-GPU cluster. The performance of up to 0.65 • 1012 cell updates per second for 3D domain with 0.3 • 1012 Yee cells total is achieved.

  6. Evaluation of high-performance computing software

    SciTech Connect

    Browne, S.; Dongarra, J.; Rowan, T.

    1996-12-31

    The absence of unbiased and up to date comparative evaluations of high-performance computing software complicates a user`s search for the appropriate software package. The National HPCC Software Exchange (NHSE) is attacking this problem using an approach that includes independent evaluations of software, incorporation of author and user feedback into the evaluations, and Web access to the evaluations. We are applying this approach to the Parallel Tools Library (PTLIB), a new software repository for parallel systems software and tools, and HPC-Netlib, a high performance branch of the Netlib mathematical software repository. Updating the evaluations with feed-back and making it available via the Web helps ensure accuracy and timeliness, and using independent reviewers produces unbiased comparative evaluations difficult to find elsewhere.

  7. Monitoring SLAC High Performance UNIX Computing Systems

    SciTech Connect

    Lettsome, Annette K.; /Bethune-Cookman Coll. /SLAC

    2005-12-15

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface.

  8. Toward a theory of high performance.

    PubMed

    Kirby, Julia

    2005-01-01

    What does it mean to be a high-performance company? The process of measuring relative performance across industries and eras, declaring top performers, and finding the common drivers of their success is such a difficult one that it might seem a fool's errand to attempt. In fact, no one did for the first thousand or so years of business history. The question didn't even occur to many scholars until Tom Peters and Bob Waterman released In Search of Excellence in 1982. Twenty-three years later, we've witnessed several more attempts--and, just maybe, we're getting closer to answers. In this reported piece, HBR senior editor Julia Kirby explores why it's so difficult to study high performance and how various research efforts--including those from John Kotter and Jim Heskett; Jim Collins and Jerry Porras; Bill Joyce, Nitin Nohria, and Bruce Roberson; and several others outlined in a summary chart-have attacked the problem. The challenge starts with deciding which companies to study closely. Are the stars the ones with the highest market caps, the ones with the greatest sales growth, or simply the ones that remain standing at the end of the game? (And when's the end of the game?) Each major study differs in how it defines success, which companies it therefore declares to be worthy of emulation, and the patterns of activity and attitude it finds in common among them. Yet, Kirby concludes, as each study's method incrementally solves problems others have faced, we are progressing toward a consensus theory of high performance.

  9. High performance forward swept wing aircraft

    NASA Technical Reports Server (NTRS)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)

    1988-01-01

    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  10. Building and testing a high school calorimeter at CERN

    NASA Astrophysics Data System (ADS)

    Biesot, L.; Crane, R.; Engelen, M. A. G.; van Haren, A. M. A.; van Kleef, R. H. B.; Leenders, O. R.; Timmermans, C.

    2016-11-01

    We have designed, built and tested a crystal calorimeter in the context of CERN’s first beam line for schools competition. The results of the tests at CERN show that the light output of our calorimeter depends on the energy deposited by particles (electrons and muons) hitting the crystals. Our design can be reproduced by high schools around the world, as we have avoided the use of toxic chemicals.

  11. High Performance Databases For Scientific Applications

    NASA Technical Reports Server (NTRS)

    French, James C.; Grimshaw, Andrew S.

    1997-01-01

    The goal for this task is to develop an Extensible File System (ELFS). ELFS attacks the problem of the following: 1. Providing high bandwidth performance architectures; 2. Reducing the cognitive burden faced by applications programmers when they attempt to optimize; and 3. Seamlessly managing the proliferation of data formats and architectural differences. The approach for ELFS solution consists of language and run-time system support that permits the specification on a hierarchy of file classes.

  12. Tough, High-Performance, Thermoplastic Addition Polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Proctor, K. Mason; Gleason, John; Morgan, Cassandra; Partos, Richard

    1991-01-01

    Series of addition-type thermoplastics (ATT's) exhibit useful properties. Because of their addition curing and linear structure, ATT polymers have toughness, like thermoplastics, and easily processed, like thermosets. Work undertaken to develop chemical reaction forming stable aromatic rings in backbone of ATT polymer, combining high-temperature performance and thermo-oxidative stability with toughness and easy processibility, and minimizing or eliminating necessity for tradeoffs among properties often observed in conventional polymer syntheses.

  13. AHPCRC - Army High Performance Computing Research Center

    DTIC Science & Technology

    2010-01-01

    treatments and reconstructive surgeries . High performance computer simu- lation allows designers to try out numerous mechanical and material...investigating the effect of techniques for simplifying the calculations (sending the projectile through a pre-existing hole, for example) on the accuracy of...semiconductor particles are size-dependent. These properties, including yield strength and resistance to fatigue, are not well predicted by macroscopic

  14. AHPCRC - Army High Performance Computing Research Center

    DTIC Science & Technology

    2008-01-01

    materials “from the atoms up” or to model biological systems at the molecular level. The speed and capacity of massively parallel computers are key...Streamlined, massively parallel high performance computing structural codes allow researchers to examine many relevant physical factors simultaneously...expenditure of energy, so that the drones can carry their load of sensors, communications devices, and fuel. AHPCRC researchers are using massively

  15. High-performance reactionless scan mechanism

    NASA Technical Reports Server (NTRS)

    Williams, Ellen I.; Summers, Richard T.; Ostaszewski, Miroslaw A.

    1995-01-01

    A high-performance reactionless scan mirror mechanism was developed for space applications to provide thermal images of the Earth. The design incorporates a unique mechanical means of providing reactionless operation that also minimizes weight, mechanical resonance operation to minimize power, combined use of a single optical encoder to sense coarse and fine angular position, and a new kinematic mount of the mirror. A flex pivot hardware failure and current project status are discussed.

  16. Development of high performance BWR spacer

    SciTech Connect

    Morooka, Shinichi; Shirakawa, Kenetu; Mitutake, Tohru; Yamamoto, Yasushi; Yano, Takashi; Kimura, Jiro

    1996-07-01

    The spacer has a significant effect on thermal hydraulic performance of BWR fuel assembly. The purpose of this study is to develop a new BWR spacer with high critical power and low pressure drop performance. The developed high performance spacer is a ferrule type spacer with twisted tape and improved flow tab. This spacer is called CYCLONE spacer. Critical power and pressure drop have been measured at BEST (BWR Experimental Loop for Stability and Transient test) of Toshiba Corporation. The test bundle consists of electrically heated rods in a 4x4 array configuration. These heater rods are indirectly heated. The heated length and outer diameter of the heater rod, as well as the number and the axial locations of the spacers, are the same as for those for a BWR fuel assembly. The axial power shape is stepped cosine (1.4 of the maximum peaking factor). Two test assemblies with different radial power distribution have been used. One test assembly has the maximum power rods at the center of the test assembly and the other has the maximum power rods near the channel wall. The results show that the critical power performance of CYCLONE spacer is 10 to 25 % higher than that of the ferrule spacers, while the pressure drop for CYCLONE spacer is nearly equal to that of the ferrule spacer.

  17. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1992-01-01

    Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.

  18. Towards High-Assurance High-Performance Program Synthesis

    NASA Technical Reports Server (NTRS)

    Lowry, Michael; Roach, Steven; vanBaalen, Jeffrey

    1997-01-01

    Domain-specific automatic program synthesis tools, also called application generators, are playing an ever-increasing role in software development. However, high-performance application generators require difficult manual construction, and are very difficult to verify correct. This paper describes research and an implemented system that transforms program synthesis tools based on deductive synthesis into high-performance application generators. Deductive synthesis uses theorem-proving to construct solutions when given problem specifications. The verification condition for a deductive synthesis tool is essentially the soundness of the implemented inference rules. Theory Operationalization for Program Synthesis (TOPS) synergistically combines reformulation, automated mathematical classification, and compilation through partial deduction to decision procedures. It transforms general-purpose deductive synthesis, with exponential performance, into efficient special-purpose deductive synthesis, with near-linear performance. This paper describes our experience with and empirical results of PD(TH) theory-based partial deduction - in which partial deduction of a set of first-order formulae is performed within the context of a background theory. The implemented TOPS system currently performs a special variant of PD(TH) in which the compilation process results in the transformation of a set of first order formulae into the theory of an instantiated library decision procedure augmented by a compiled unit theory.

  19. Computational Biology and High Performance Computing 2000

    SciTech Connect

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  20. A survey on classification of maintenance fund for high rise residential building in Klang Valley

    NASA Astrophysics Data System (ADS)

    Wahab, Siti Rashidah Hanum Abd; Ani, Adi Irfan Che; Sairi, Ahmad; Tawil, Norngainy Mohd; Razak, Muhd Zulhanif Abd

    2016-08-01

    High-rise residential building is a type of housing that has multi-dwelling units built on the same land. This type of housing has become popular each year in urban area due to the increasing cost of land. Unfortunately, there are several issues occurred in managing high rise residential building especially in maintenance fund. Thus, distribution of maintenance fund need to be clarified in order to make it well organised. The purpose of this paper is to identify the classification of maintenance fund distribution at high rise residential building. The survey was done on 170 high-rise residential schemes by using stratified random sampling technique. The scope of this research is within Klang Valley area. This area is rapidly developed with high-rise residential building. The result, there are five classification of maintenance fund identified in managing high-rise residential building scheme namely, management fund for administration and utilities, maintenance fund for exclusive facilities, maintenance fund for basic facilities, maintenance fund for support facilities and management sinking fund.

  1. Urban Building Collapse Detection Using Very High Resolution Imagery and Airborne LIDAR Data

    NASA Astrophysics Data System (ADS)

    Wang, X.; Li, P.

    2013-07-01

    The increasing availability of very high resolution (VHR) remotely sensed images makes it possible to detect and assess urban building damages in the aftermath of earthquake disasters by using these data. However, the accuracy obtained using spectral features from VHR data alone is comparatively low, since both undamaged and collapsed buildings are spectrally similar. The height information provided by airborne LiDAR (Light Detection And Ranging) data is complementary to VHR imagery. Thus, combination of these two datasets will be beneficial to the automatic and accurate extraction of building collapse. In this study, a hierarchical multi-level method of building collapse detection using bi-temporal (pre- and post-earthquake) VHR images and postevent airborne LiDAR data was proposed. First, buildings, bare ground, vegetation and shadows were extracted using post-event image and LiDAR data and masked out. Then building collapse was extracted using the bi-temporal VHR images of the remaining area with a one-class classifier. The proposed method was evaluated using bi-temporal VHR images and LiDAR data of Port au Prince, Haiti, which was heavily hit by an earthquake in January 2010. The method was also compared with some existing methods. The results showed that the method proposed in this study significantly outperformed the existing methods, with improvement range of 47.6% in kappa coefficient. The proposed method provided a fast and reliable way of detecting urban building collapse, which can also be applied to relevant applications.

  2. Heavily Doped PBSE with High Thermoelectric Performance

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor); Wang, Heng (Inventor); Pei, Yanzhong (Inventor)

    2015-01-01

    The present invention discloses heavily doped PbSe with high thermoelectric performance. Thermoelectric property measurements disclosed herein indicated that PbSe is high zT material for mid-to-high temperature thermoelectric applications. At 850 K a peak zT (is) greater than 1.3 was observed when n(sub H) approximately 1.0 X 10(exp 20) cm(exp -3). The present invention also discloses that a number of strategies used to improve zT of PbTe, such as alloying with other elements, nanostructuring and band modification may also be used to further improve zT in PbSe.

  3. High Performance Fortran for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush; Zima, Hans; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    This paper focuses on the use of High Performance Fortran (HPF) for important classes of algorithms employed in aerospace applications. HPF is a set of Fortran extensions designed to provide users with a high-level interface for programming data parallel scientific applications, while delegating to the compiler/runtime system the task of generating explicitly parallel message-passing programs. We begin by providing a short overview of the HPF language. This is followed by a detailed discussion of the efficient use of HPF for applications involving multiple structured grids such as multiblock and adaptive mesh refinement (AMR) codes as well as unstructured grid codes. We focus on the data structures and computational structures used in these codes and on the high-level strategies that can be expressed in HPF to optimally exploit the parallelism in these algorithms.

  4. Assessment of rainwater use and greywater reuse in high-rise buildings in a brownfield site.

    PubMed

    Zhang, Yan; Grant, Andrew; Sharma, Ashok; Chen, Donghui; Chen, Liang

    2009-01-01

    This study describes the use of rainwater and greywater (originated from bathroom only) for provision of non-contact indoor and outdoor use in high-rise buildings. A brownfield development site in Box Hill suburb of Melbourne was selected as case study site for this investigation. The performance of alternative servicing options was compared with conventional water supply, stormwater and wastewater servicing. A water balance model UVQ (Urban Volume and Quality) was applied to determine storage capacities and to evaluate the percentage reduction in water supplying, stormwater run-off and wastewater disposal, as well as volumes of rainwater use and greywater reuse. In this study, the impact of variation in collection area (600 m(2) and 900 m(2)) and appliance discharge volumes was examined. A number of demand management options were also investigated. The results of this study indicate greywater reuse is more suited than rainwater use for this development because of the steady, constant supply of greywater compared to the highly fluctuating, storm-event supply of rainwater and the high population density creating comparatively large volumes of greywater.

  5. Multi-Level Building Reconstruction for Automatic Enhancement of High Resolution Dsms

    NASA Astrophysics Data System (ADS)

    Arefi, H.; Reinartz, P.

    2012-07-01

    In this article a multi-level approach is proposed for reconstruction-based improvement of high resolution Digital Surface Models (DSMs). The concept of Levels of Detail (LOD) defined by CityGML standard has been considered as basis for abstraction levels of building roof structures. Here, the LOD1 and LOD2 which are related to prismatic and parametric roof shapes are reconstructed. Besides proposing a new approach for automatic LOD1 and LOD2 generation from high resolution DSMs, the algorithm contains two generalization levels namely horizontal and vertical. Both generalization levels are applied to prismatic model of buildings. The horizontal generalization allows controlling the approximation level of building footprints which is similar to cartographic generalization concept of the urban maps. In vertical generalization, the prismatic model is formed using an individual building height and continuous to included all flat structures locating in different height levels. The concept of LOD1 generation is based on approximation of the building footprints into rectangular or non-rectangular polygons. For a rectangular building containing one main orientation a method based on Minimum Bounding Rectangle (MBR) in employed. In contrast, a Combined Minimum Bounding Rectangle (CMBR) approach is proposed for regularization of non-rectilinear polygons, i.e. buildings without perpendicular edge directions. Both MBRand CMBR-based approaches are iteratively employed on building segments to reduce the original building footprints to a minimum number of nodes with maximum similarity to original shapes. A model driven approach based on the analysis of the 3D points of DSMs in a 2D projection plane is proposed for LOD2 generation. Accordingly, a building block is divided into smaller parts according to the direction and number of existing ridge lines. The 3D model is derived for each building part and finally, a complete parametric model is formed by merging all the 3D models of

  6. Technology Solutions Case Study: High-Performance Ducts in Hot-Dry Climates

    SciTech Connect

    M. Hoeschele, A. German, E. Weitzel, R. Chitwood

    2015-08-01

    Ducts in conditioned space (DCS) represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. Various strategies exist for incorporating ducts within the conditioned thermal envelope. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of various DCS strategies. Builders were given incentives and design support in exchange for providing site access for construction observation, diagnostic testing, and builder survey feedback. Information from the project was designed to feed into California's 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project complemented information collected in the California project with BEopt simulations of DCS performance in hot/dry climate regions.

  7. A High Performance COTS Based Computer Architecture

    NASA Astrophysics Data System (ADS)

    Patte, Mathieu; Grimoldi, Raoul; Trautner, Roland

    2014-08-01

    Using Commercial Off The Shelf (COTS) electronic components for space applications is a long standing idea. Indeed the difference in processing performance and energy efficiency between radiation hardened components and COTS components is so important that COTS components are very attractive for use in mass and power constrained systems. However using COTS components in space is not straightforward as one must account with the effects of the space environment on the COTS components behavior. In the frame of the ESA funded activity called High Performance COTS Based Computer, Airbus Defense and Space and its subcontractor OHB CGS have developed and prototyped a versatile COTS based architecture for high performance processing. The rest of the paper is organized as follows: in a first section we will start by recapitulating the interests and constraints of using COTS components for space applications; then we will briefly describe existing fault mitigation architectures and present our solution for fault mitigation based on a component called the SmartIO; in the last part of the paper we will describe the prototyping activities executed during the HiP CBC project.

  8. High capacity heat pipe performance demonstration

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A high capacity heat pipe which will operate in one-g and in zero-g is investigated. An artery configuration which is self-priming in one-g was emphasized. Two artery modifications were evolved as candidates to achieve one-g priming and will provide the very high performance: the four artery and the eight artery configurations. These were each evaluated analytically for performance and priming capability. The eight artery configuration was found to be inadequate from a performance standpoint. The four artery showed promise of working. A five-inch long priming element test article was fabricated using the four artery design. Plexiglas viewing windows were made on each end of the heat pipe to permit viewing of the priming activity. The five-inch primary element would not successfully prime in one-g. Difficulties on priming in one-g raised questions about zero-g priming. Therefore a small test element heat pipe for verifying that the proposed configuration will self-prime in zero-g was fabricated and delivered.

  9. Research of building information extraction and evaluation based on high-resolution remote-sensing imagery

    NASA Astrophysics Data System (ADS)

    Cao, Qiong; Gu, Lingjia; Ren, Ruizhi; Wang, Lang

    2016-09-01

    Building extraction currently is important in the application of high-resolution remote sensing imagery. At present, quite a few algorithms are available for detecting building information, however, most of them still have some obvious disadvantages, such as the ignorance of spectral information, the contradiction between extraction rate and extraction accuracy. The purpose of this research is to develop an effective method to detect building information for Chinese GF-1 data. Firstly, the image preprocessing technique is used to normalize the image and image enhancement is used to highlight the useful information in the image. Secondly, multi-spectral information is analyzed. Subsequently, an improved morphological building index (IMBI) based on remote sensing imagery is proposed to get the candidate building objects. Furthermore, in order to refine building objects and further remove false objects, the post-processing (e.g., the shape features, the vegetation index and the water index) is employed. To validate the effectiveness of the proposed algorithm, the omission errors (OE), commission errors (CE), the overall accuracy (OA) and Kappa are used at final. The proposed method can not only effectively use spectral information and other basic features, but also avoid extracting excessive interference details from high-resolution remote sensing images. Compared to the original MBI algorithm, the proposed method reduces the OE by 33.14% .At the same time, the Kappa increase by 16.09%. In experiments, IMBI achieved satisfactory results and outperformed other algorithms in terms of both accuracies and visual inspection

  10. Towards high performance inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Gong, Xiong

    2013-03-01

    Bulk heterojunction polymer solar cells that can be fabricated by solution processing techniques are under intense investigation in both academic institutions and industrial companies because of their potential to enable mass production of flexible and cost-effective alternative to silicon-based electronics. Despite the envisioned advantages and recent technology advances, so far the performance of polymer solar cells is still inferior to inorganic counterparts in terms of the efficiency and stability. There are many factors limiting the performance of polymer solar cells. Among them, the optical and electronic properties of materials in the active layer, device architecture and elimination of PEDOT:PSS are the most determining factors in the overall performance of polymer solar cells. In this presentation, I will present how we approach high performance of polymer solar cells. For example, by developing novel materials, fabrication polymer photovoltaic cells with an inverted device structure and elimination of PEDOT:PSS, we were able to observe over 8.4% power conversion efficiency from inverted polymer solar cells.

  11. RISC Processors and High Performance Computing

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Bailey, David H.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    In this tutorial, we will discuss top five current RISC microprocessors: The IBM Power2, which is used in the IBM RS6000/590 workstation and in the IBM SP2 parallel supercomputer, the DEC Alpha, which is in the DEC Alpha workstation and in the Cray T3D; the MIPS R8000, which is used in the SGI Power Challenge; the HP PA-RISC 7100, which is used in the HP 700 series workstations and in the Convex Exemplar; and the Cray proprietary processor, which is used in the new Cray J916. The architecture of these microprocessors will first be presented. The effective performance of these processors will then be compared, both by citing standard benchmarks and also in the context of implementing a real applications. In the process, different programming models such as data parallel (CM Fortran and HPF) and message passing (PVM and MPI) will be introduced and compared. The latest NAS Parallel Benchmark (NPB) absolute performance and performance per dollar figures will be presented. The next generation of the NP13 will also be described. The tutorial will conclude with a discussion of general trends in the field of high performance computing, including likely future developments in hardware and software technology, and the relative roles of vector supercomputers tightly coupled parallel computers, and clusters of workstations. This tutorial will provide a unique cross-machine comparison not available elsewhere.

  12. Automatic Energy Schemes for High Performance Applications

    SciTech Connect

    Sundriyal, Vaibhav

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  13. Performance of the CMS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Perrotta, Andrea

    2015-12-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increases in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. The increase in the number of interactions per bunch crossing, on average 25 in 2012, and expected to be around 40 in Run II, will be an additional complication. We present here the expected performance of the main triggers that will be used during the 2015 data taking campaign, paying particular attention to the new approaches that have been developed to cope with the challenges of the new run. This includes improvements in HLT electron and photon reconstruction as well as better performing muon triggers. We will also present the performance of the improved tracking and vertexing algorithms, discussing their impact on the b-tagging performance as well as on the jet and missing energy reconstruction.

  14. IFC BIM-Based Methodology for Semi-Automated Building Energy Performance Simulation

    SciTech Connect

    Bazjanac, Vladimir

    2008-07-01

    Building energy performance (BEP) simulation is still rarely used in building design, commissioning and operations. The process is too costly and too labor intensive, and it takes too long to deliver results. Its quantitative results are not reproducible due to arbitrary decisions and assumptions made in simulation model definition, and can be trusted only under special circumstances. A methodology to semi-automate BEP simulation preparation and execution makes this process much more effective. It incorporates principles of information science and aims to eliminate inappropriate human intervention that results in subjective and arbitrary decisions. This is achieved by automating every part of the BEP modeling and simulation process that can be automated, by relying on data from original sources, and by making any necessary data transformation rule-based and automated. This paper describes the new methodology and its relationship to IFC-based BIM and software interoperability. It identifies five steps that are critical to its implementation, and shows what part of the methodology can be applied today. The paper concludes with a discussion of application to simulation with EnergyPlus, and describes data transformation rules embedded in the new Geometry Simplification Tool (GST).

  15. Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings

    SciTech Connect

    Robert Tichy; Chuck Murray

    2006-05-31

    This document serves as the Topical Report documenting work completed by Washington State University (WSU) under U.S. Department of Energy Grant, Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings. This project was conducted in collaboration with Oak Ridge National Laboratory (ORNL), and includes the participation of several industry partners including Weyerhaeuser, APA - The Engineered Wood Association, CertainTeed Corporation and Fortifiber. This document summarizes work completed by Washington State University August 2002 through June 2006. WSU's primary experimental role is the design and implementation of a field testing protocol that monitored long term changes in the hygrothermal response of wall systems. During the project period WSU constructed a test facility, developed a matrix of test wall designs, constructed and installed test walls in the test facility, installed instrumentation in the test walls and recorded data from the test wall specimens. Each year reports were published documenting the hygrothermal response of the test wall systems. Public presentation of the results was, and will continue to be, made available to the building industry at large by industry partners and the University.

  16. Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings

    SciTech Connect

    Robert Tichy; Chuck Murray

    2003-10-01

    This document serves as the Topical Report documenting the first year of work completed by Washington State University (WSU) under US Department of Energy Grant, Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings. This project is being conducted in collaboration with Oak Ridge National Laboratory (ORNL), and includes the participation of several industry partners including Weyerhaeuser Company, APA - The Engineered Wood Association, CertainTeed Corporation and Fortifiber. This document summarizes work completed by Washington State University August, 2002 through October, 2003. WSU's primary experimental role is the design and implementation of a field testing protocol that will monitor long term changes in the hygrothermal response of wall systems. In the first year WSU constructed a test facility, developed a matrix of test wall designs, constructed and installed test walls in the test facility, and installed instrumentation in the test walls. By the end of the contract period described in this document, WSU was recording data from the test wall specimens. The experiment described in this report will continue through December, 2005. Each year a number of reports will be published documenting the hygrothermal response of the test wall systems. Public presentation of the results will be made available to the building industry by industry partners and the University cooperators.

  17. Semi-auto assessment system on building damage caused by landslide disaster with high-resolution satellite and aerial images

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Xu, Qihua; He, Jun; Ge, Fengxiang; Wang, Ying

    2015-10-01

    In recent years, earthquake and heavy rain have triggered more and more landslides, which have caused serious economic losses. The timely detection of the disaster area and the assessment of the hazard are necessary and primary for disaster mitigation and relief. As high-resolution satellite and aerial images have been widely used in the field of environmental monitoring and disaster management, the damage assessment by processing satellite and aerial images has become a hot spot of research work. The rapid assessment of building damage caused by landslides with high-resolution satellite or aerial images is the focus of this article. In this paper, after analyzing the morphological characteristics of the landslide disaster, we proposed a set of criteria for rating building damage, and designed a semi-automatic evaluation system. The system is applied to the satellite and aerial images processing. The performance of the experiments demonstrated the effectiveness of our system.

  18. Fire Problems in High-Rise Buildings. California Fire Service Training Program.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Industrial Education.

    Resulting from a conference concerned with high-rise fire problems, this manual has been prepared as a fire department training manual and as a reference for students enrolled in fire service training courses. Information is provided for topics dealing with: (1) Typical Fire Problems in High-Rise Buildings, (2) Heat, (3) Smoke and Fire Gases, (4)…

  19. DOE High Performance Concentrator PV Project

    SciTech Connect

    McConnell, R.; Symko-Davies, M.

    2005-08-01

    Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

  20. High-performance computing in seismology

    SciTech Connect

    1996-09-01

    The scientific, technical, and economic importance of the issues discussed here presents a clear agenda for future research in computational seismology. In this way these problems will drive advances in high-performance computing in the field of seismology. There is a broad community that will benefit from this work, including the petroleum industry, research geophysicists, engineers concerned with seismic hazard mitigation, and governments charged with enforcing a comprehensive test ban treaty. These advances may also lead to new applications for seismological research. The recent application of high-resolution seismic imaging of the shallow subsurface for the environmental remediation industry is an example of this activity. This report makes the following recommendations: (1) focused efforts to develop validated documented software for seismological computations should be supported, with special emphasis on scalable algorithms for parallel processors; (2) the education of seismologists in high-performance computing technologies and methodologies should be improved; (3) collaborations between seismologists and computational scientists and engineers should be increased; (4) the infrastructure for archiving, disseminating, and processing large volumes of seismological data should be improved.